
r- 	1 ' 	 11".• 	1 	 r-

The Winnipeg 99/4 Users Group is a non-profit organization
created for users by users of Texas Instruments 99/4A Home
Computers and compatibles. The content of this publication
doesn't necessarily represent the view of this user group.

Next General Meeting - Date : May 1, 1986
Time : 7:00 P.M.
Place: Winnipeg Centennial Library

2nd Floor, Auditorium

Executive 1986:

President: 	 Jim Bainard 	334-5987

Treasurer: 	 Bill Quinn 	 837-7758

Newsletter Editor, Book
and User Programs Librarian: Mike Swiridenko 	772-8565

Contributing Editor: 	 Paul Degner 	586-6889

Newsletter Publisher: 	 Hank Derkson

Inter-Group Representative: Dave Wood 	 895-7067

Systems Co-Ordinator: 	 Rick Lumsden 	253-0794

Educational Co-Ordinator: 	Sheldon Itscovich 633-0835

Public Domain Librarian: 	Gordon Richards 	668-4804
• 822 Henderson Hwy.

Module Librarian: 	 Peter Gould 	 889-5505

Mailing Address:
	

NEWSLETTER EDITER
WINNIPEG 99/4 USERS GROUF
P.O.B. 1715
WINNIPEG. MANITOBA
CANADA R3C 2Z6

BBS_#: (204)-889-1432 	 SYSOP: Charles Carlson
HOURS: REOPENING IN THE NEAR FUTURE

Newsletter

EDI TOR I AL COMMENTS:

Mike Swiridenko, Newsletter Editor, is busy writing university finals so Paul Degner will slip in as Newsletter Editor
for this issue.

MISCELLANI A:

Miscellaneous news and retinders.

The FEDATA NETWORK provided us information on their FEDATA INFORMATION NETWORK B.B.S. containing a online catalog of
documents, reports, handbooks, surveys, and books on and from the United States Government. They have given our user group a
free I.D. and password to use their systes. 14 you are interested in trying out this B.B.S then please contact Paul Degner.

Last meeting the tape of the Chicago Faire vas shown. Bill Quinn brought his portable VCR. Thanks Bill!
Our hardware people mere busy last month! Sheldon Itscovich, a proud father of a bouncing baby widget, showed off his

four slot darling. He says he can produce these at forty dollars a pop. Steve labarylo walked in with a alternative widget,
two aodules full of GRP games, and the hole brew 32K expansion neatly attached to his Corcomp 9911 system. It's truIV
ispressive what Tiers can do on winter evenings!

READER FEEPONISIE:

The following was attained frog Charles Carlson. The author is unknown.

Sabject: 99/4A P-Iox Purer Supply Nodificatioo

This modification should be performed only by coapentent electronic technicians.
This aodification was performed to allow, first; the console to run cooler, and second; to 'beef' up the power supply so

it could supply enough power to run two disk drives in the P-Box.
This modification involves removing the exsisting voltage regulators in the P-Box and replacing them higher capacity

units. Also three more voltage regulators will be added as to supply power to the console. Holes will have to be drilled in
the rear of the P-Box, to tount the voltage regulators. This is necessary to provide heatsinking for the regulators.

You will need to purchase the following parts:

2-7812HK 12V 5A TO-3 regulator chips.
2-7815HK 5V 5A TO-3 regulator chips.
I-7915T -5V IA TO-220 regulator chip.
5-0.47 uF/35V tatalug capacitors.
5-2.2 uF/35V tatalum capacitors.
1-4,701 uF/35V electrolytic capacitor.
1-2,211 ohm 1/2 watt resistor.
2-MR511 diodes.
4-T0-3 transistor @punting sockets.
1-set of TO-221 insulating sounting hardware.
1-aale and female 15 pin Rd' connectors with hoods.
an assortment of colored wire, 22 gauge is ideal.

1. Remove the top cover to the P-Box. Remove the flex-cable P-Box interface card, memory and RS-232 cards and any other
cards you say have except the disk controller.

2. Reaove the disk drive (two screws on top, two screws on bottom).
3. Reaove the disk drive data cable fros the disk controller.
4. Remove the disk controller card.
5. Remove the power switch knob (pull it off).
6. Remove the front cabinet from the P-Box (I screw on left side, 1 screw on right side, top 4 screw on rear, 1 screw

beside fuse, 1 screw behind disk drive, 3 screws on right bottoa side, 1 bottoa front screw, 2 bottoa left screws, and one
bottom screw about 2 inches back from where the PEB card Daunts).

7. Pull the cabinet +ward and set it aside. You will see the power supply section on the left side (power transforaer.
in front of blower, and PC board to the left of the transformer). At this point, you say wish to install a different blower,
such as a high quality boxer fan in place of the blower. I replaced sine and it is such quiter and it pulls sore air.

8. The PC board is aounted via a plastic holder that angles to the right on the bottoa. There are two screws, one at
each end of the holder. Loosen thea, but do not remove thee. There are-two connectors that lock on to the PC board on the
rear. Push their tabs thru the board and pull the connectors off. There is also another connector on the front. 	Relove it
the sae way. Then slide out the PC board.

9. Locate the voltacie regulator ICs(in the aiddle and center rear). Remove the regulators ICs.
11. 	Solder three different color mires appx 6 inches long to the holes of the voltage regulator. Do this again for the

other regulator.
11.Locate D3 and D4. Note the polarity of the diodes. Solder two diodes to the transforker side of the existino

diodes. 	Be sure that the cathodes go towards the transformer side. Solder the anode ends together. Solder a wire appx
inches long, to the ends you just soldered on the diodes. Set the PC board aside.

12. Drill the TO-3 sounting holes on the rear of the expansion box. I mounted mine beside the blower, going downward
for three of the regulators and sounted the reaaining below the blower above the fuse holder. You will have to take a razor
blade and cut off part of the serial number tag. You need to do this so the chassis can be used for an heatsink. 	After
drilling be sure to file the holes smooth.

13. Install the 1.47 uf capacitors to the inputs of the voltage regulator (pin 	and install the 2.2uF capacitor to the
outputs (pin 2). Solder the negative side to the chassis/ground lug on the &punting socketithis is only for the TO-3
devices).

14. Mount the P-Box 5V and 12V regulators. Use a good grade of silicone heatsinking coapound when you install the
regulators.

15.Solder the wires from the circuit board that went to the regulator that use to be on the board. 	Observe correct
wiring.

16. Install the other two TO-3 regulators using heatsinking compound. On the 12V unit juep 	wire from the 12V
regulators input you just instilled. Also jumper a ground wire. Install the capacitors, as before. Do the 5tt regulator the
sloe way. Solder a wire appx 15 inches long to the outputs of the second cet of TO-3 regulators. Route these wires to go out
the cerd cage, thru an unused P-Box slot.

17.Install the TO-220 -5 Volt regulator. Be sure to use insulating hardware. Solder a wire to the output tereinal and
solder 2 wires to the ground terminal, appx 15 inches long. Route the wires out, as above with exception to one of the ground
wires. Jumper it to a ground on one of the TO-3 regulators. Add the bypass capacitors as above but note the polarity.
Solder another wire to the input of the regulator, apex 8 inches long. Route this wire to the front of the P-box near the
power switch.

18.Instill the PC board back in place. The wire fro the rectifiers you installed needs to be soldered to the 4700 uF
filter cap. The wire that case froe the negative voltage regulator should be solder to the ease point. Install a ground mire
fro' the filter cap to any ground point on the PC Board. Again observe polarity.

19.At this point, the box should be wired. Check for proper wiring. Turn on power to the P-Box. Very quickly check
the outputs of all regulators for proper operation t one +12 and +5 for the drive, one +12 and +5 and -5 for the coeputer).
If all voltages are OK, then procede with the next step. If you do not a have a voltage check the input to the regulator and
work it back. Check for shorts and prpper wiring.

20.On the wires that you routed out of the P-Box, you will need to indentify thee and solder on a 15 pin "(11 connector,
female jack. Use a 15 pin 'D' so you will hive no problees with hookupithe joysticks and cassette ports are 9 pins). 	I
solder pin 7 to +12, +5 to pin 5, -5 to pin 3 and ground to pin 1.

21.Put your P-Box back together. Bring your systee up with the coeputer to lake sure its OK. Test a disk drive.

CONSOLE NODIFICAT1ON,

Check the Wino on your 15 pin 'd' plug. You need to construct another 15 pin 'd' connector sale with 4 mires appx
15-30 inches long. After Baking the cable, hook it up to your system and turn the P-Box on. Use a voltmeter to confire
wiring and mark each wire as to what voltage they are. Hookup is EXTREMELY sensitive at this point. If you wire a power
supply to the wrong power buss in the 99/4A cosputer, I lay take its last dying gasp and smoke. There will be no may to
repair the damage as it will be extensive. Semiconductors do not like reverse voltages. They usually conduct very heavy and
burn. I cannot overstress this point!

1. Open the 99/4A console by reeoving all the bottom screws. You mill see the power supply beside the keyboard and
below the computer's PC board. You mill see four wires connecting the cooputer to the existing power supply. With the power
supply board exposed, turn on the computer end check the voltages where the wires connect to the power supply. 	Mark these
carefully. 	Turn off the computer. Connect the power cable frog the P-Box to these wires, again noting correct hook up 012
to +12. +5 to +5, -5 to -5, ground to ground). Remove the 4A's power supply. Keep it for the future.

Ruute the cable outside the oxsisting hole mher0 the power plug use to connect.
3. Take the big step. Hook the coeputer up to the P Box and the systee. Bring the system up. All should be well. 	If

you do not get your title screen shut down, and check connections and pray that you did not burn up anything. You should have
no problems a point if you maintained correct wiring.

4. If ells well, shut down the system. I left the original power switch in the 4A coeputer. 1 superglued it in the on
position. 	You lay wish tp take it out and install a systee reset switch 	highly recomeend as if the mister locks up you
will be powering down your whole system. You can also use a Widget). Put your case back on and happy coeputing.

The best benefit is the lack of heat free the console. Noreally, when I use ey cosputer I as on for about two hours.
Its strange not to feel any heat coming from the cartridge port area. Also I put two half height drives in the P-Box and I
have had no problees. If you use the parts I recomeended, you will not be able to destroy the power supply. They are
internally limited and the P-Box power transferrer will burn up before the regulators will. Also, just to relieve your
worries, the P-Box can handle a heavy load. It was designed to operate 8 cards.

Here is spee checks I did for current draw on the coaputer.

+12V draws 240 la
+5V draws 940 ma
-5V draws 132 ma

If you have any questons, feel free to contact se.
There are two schelatics for this article called before and after. Please pardon the word processor graphics, but if you

can read a scheeatic you should not have ariy problee with these. I recommend that you study thee before you perform the
sodifications, so you will understand exactly what is going on. Also take your time and do the job right.

REVIEWS:

This column presents reviews of eaterials that say be of interest to the user. The views expressed are the opinions of
the reviewers, exclusively.

SOFTNARE:

09 A review by Paul Degner

How can a person really review a computer language? Basically it is only as good as what you can do with it. I will
attempt to review this language to the best of my knowledge.

A fem eonth's ago 1 cafe across a advertisement in a CIM-99 newsletter for a subset C coepiler. Not knowing such about
the language I sent off my disk/mailer/money for this tryware package called c99 developed by Clint Pulley. Two weeks later
the package arrived. I read the documents, tried the exaeple prograes, and filed it away for future use. This is usually the
may 1 tackle any new significant software arrivals.

In the package was a note from Clint that he had just finished a library of graphic functions, a random number generator,
and a text forgetter written in c99. What he said sounded interesting so I sent another disk/mailer/money to Clint. Another
wait of two weeks and 1 recieyed what I wanted. This time I was ready to learn the language. In order to do so I had to have

some kind of learning aid so I decided to drop over to the local book shop and purchase a C book such as Jack J. 	Purdum's C
Prograssing Guide.

It took a weekend to read Purdum's book fro' cover to cover which lade le very eager to cospare my subset C coapiler to
the various ones described in the book. Looking at the specifications sheet of c99 I found a smewhat complete subset C
compiler as compared with Purdues ideas of what a subset C cospiler should be.

Missing in c99 Y1.32 were the objects (float, double, enum, and void), data types (multi-diaensional arrays, function
returns other than integers, structures, and unions), identifiers (underscore), storage classes (automatic, static, external,
and register), attributes, assignment operators (+=, -=, a=, im,))=, 11=, :=, and =), statement keywords (for, switch.
case, default, do-while, and sizeof), gam preprocessor and control lines (aundef and and all parametized sacros. Not
ouch eh? Clint says he will hive these options installed in further releases of c99.

To use this language to do something is another task indeed! The best configuration is to install the c99 compiler, TI
assembler, libraries, refs, and a program image disk cataloger such as SD on a drive one diskette while keeping drive two
diskette allocated for c99/EDASM source and object files. Next is to develop a program. I eventually decided on a conversion
frog BASIC to c99 of a program which appeared in a Byte pagazine dealing with encoding and decoding of text files usirc
passwords. It took se about two weeks of ay spare time to perfect because of the Use it takes to get your c99 source to 990
object code.

I was always hoping smeday there would be a good language coapiler available for the 99/4A and I think I finally found
it. Clint Pulley has put a lot of his time and effort into developing c99 and he asks if you think he has to send hie twenty
dollars. I think it isn't enough for what he has put into c99 but I can only abide by his wishes and he also guarantees
notice of any new updates of c99 to the user.

For more inforsation on c99 write to:

Clint Pulley
38 Townsend Avenue
Burlington, Ontario

Canada L7T 1Y6

416/639-1583
STC TI7395

HELPFUL HINTS AP4I) TIPS!
(F7ElF7 THEE USERS, Er+, THEE USERS!)

This column feature tips brought to ny attention from embers of this group, other user group's newsletters, and various
other sources. NARNINE: These hints and tips are to be used at your own risk!

MULTIPLAN:

The following is reprinted from the 99'ER ONLINE February newsletter.

A BUG IN TI MULTIPLAN by Bob Chapman

I have been working on a project to get the old faeily Grandfather Clock back into operation and ran into a spot of
bother with the pendulus length - it wasn't quite long enough to give a beat of one second (ie, a period of two seconds). Now
long should the effective length be?

Out case the high school physics book and a few einutes research revealed the forsula:

T=2*PlaSORT(L/6)

where T is the period, L is the effective length, and 6 is gravitational accelleration (32.174 feet/second/second).
Then I waved over to my TI and loaded up MULTIPLAN end set up two columns, one for L (in inches), the other for T. 	The

formula in MULTIPLANESE is:

2*()*SORT(RCI-13/12/32.174)

where RCI-Il picks up the value for L. I varied L from 12 to 48 inches and took a look at the results.
Sosithing was wrong; between 38 and 39 inches, the period japed by a factor of ten! Now, I knew that the length should

be about 4O inches, which is what MULTIPLAN was indicating. But for lenaths under 38 inches, the results were obviously
whack°. On analysis. I found that at this and shorter lengths MULTIPLAN must calculate the Square Root of nurbers smaller
than .01 but it gets thee wrong - by a factor of ten. For exaple, it tells me the SORT of .09 is 3 when it should be 0.3.

I tried changing the foraula by using an exponential of 0.5 and got the same results. Next I tried it in basic and got
the correct answers. On an IBM-PC, using LOTUS 123, I got the correct answers.

Does anyone know why TI NULTIPLAN cannot find the correct roots of nuaber smaller than 0.01? I don't know the answer but
I would like to hear your theories or facts!

c99:

/* c99 encoding prograa
** This program was originally developed by ralph roberts which appeared in the
a* april 82 issue of byte. The program is really pretty siaple--but the code it
aa generates is not. The encryption begins as a simple offset. The program
a* first reads your password (or passphrase) and suss the ascii values of all
a* the letters and spaces. To obtain the offset, the program divides the sus by
a* the limber of letters and spaces in the password. kith an offset of 63, for
a* exasple, every letter is printed 63 characters higher than it actually is
** (with a wrap-around feature to maintain the desired ascii range of 32 to 123
a* and an upward shift of one so no space will be printed). In each succeeding
a* line, the offset is increased by one. This prevents anyone from breaking

++ your code by analyzing frequency of character appearance. Every single
ff letter And spice is represented by a different character in every line.
++ progressed in the basic language, it has since been translated to c99 by:
a+
ff Paul Degner
++ 1105 Church Avenue
++ Winnipeg, Manitoba
ff Canada R2X-181
ft
ff (204)-586-6889
a/
Sinclude IDS'1.STDID"
()define WPM 81
char fra16/,

inbufICHAPMA1),
outbufICHARMAIL
passwordICHARMAX);

int ascii,
ch,

inpl,
inp2,
leninbuf,
lenpw. 	 -
offset,
Mow;

lain()
(while(1)

while(11
while(1)

puts(11n\rAnThis program was originally developed');
puts(1\nby Ralph Roberts which appeared in the');
puts("\nApril B2 issue of BYTE as a BASIC');
putsr\nprogram. Recently this prograe has been');
puts("\nconverted to Clint Pulley's c99');
putsMnlanguage. This program is designated es');
putsOkntryware by :2);
puts(1\n 	Paul Degner');
putsMn 	1105 Church Avenue');
puts("\11 	 Winnipeg, Manitoba');
puts('‘n 	Canade R2X 161');
puts(1\n\nInThe Encoding Program");
putsMn 	5);
puts(11n1nPASSWORD <80 sax chars> : ');
gets(password);
if(!fpassword) continue;
else break;

)
lenpw = widthipassword);
i = I;
valpw = 0;
whilefi < lenpw)
valpw = valpw + passworiffil;
i++;

)
offset = valpw / lenpw;
if(offset < 123) break;
puts("kn\nSorry PASSWDRD phrase too big!‘nln');

)
while(1)
puts("\nENCODIN6 or DECODIN6 (1 or 2) :');
ch=getchar();
if(ch == 49)
t inpl=getfn(mbe ENCODED',80);
break;

if(ch == 50)
inpl=getfn(lbe DECODED',"r");
offset = offset * (-1);
break;

)
)
inp2=getfn("receive 'doctored' output","w");
while(fgets(inbuf,CHARMAX,inp1))
leninbuf = width(inbuf);
i = A;
Khileii < leninbuf);
(ascii = inbufIil;

eR)

December 1983 c Creative Computing

)

fclose(inpl);
fclose(inp2);
puts(sknkriContinue (Yy/14n)? :
ch = getchar();
iflch == 89)

continue;
else

ifich == 121)
continue;

else break;

)

outbufIi3 = NULL;
ifIch == 49)
(offset = offset + 1;
ifloffset == 124)
offset = 1;

)

iflch == 51)
(offset = offset - 1;
ifloffset == (-124))

offset = (-1);

puts("\n');
puts(inbuf);
puts(°\n');
puts(outbuf);
fputs(outbuf,inp2);

II);

ascii = ascii + offset;
iflch == 49)

iflascii 	123)
ascii = (ascii - 123) 4 32;

iflch == 50)
iflascii (32)
ascii = (ascii + 123) - 32;

outbuflil = ascii;
i++;

width(s) char ts;
int
i = f;
while(4441
i++;
return(i);

letfn(text,m) char ttext,fs;
int unit;
unit = 0;
while(1)
(puts("1111nFilenase to

putsitext);
puts(' ' ');
9ets(fn);
iflunit = fopen(fn,m)) break;
putsObad filename-try againkn');

return(unit);

Ther6 a good reason why we call it
the TI Home Computet

l3ecause it's for every family mem-
hnr 	h-sriv>. 	rbilcirert
grow in education and imagination.
And to help adults keep powmg.
with improved slcills and lcnowledge.

What makes it so versatile is pcnver
— the 16-bit processing power of
expensive computers. Combined with
a superior amount of usable memory,
the TI Home Computer is excep-
tionally easy to use, since it talces
over more work for you than compet-
ing 8-bit models.

TI's simplicity gets children into
computing — and learning — right
away. 'They don't have to push as
many keys as with other brands.

II);

The following is reprinted from CIM-99 Noveaber newsletter.

TO DEEFIN
TELL TuFTLE CS
HOME MAKE 'A 1 MAKE '8 90
REPEAT 36 (HOME RT :A FD 30 RT :B FD 50 MAtE 'A :A + 5 MAKE 	:B - 5 MAKE 'B 90
REPEAT 36 [HOE RT :A FD 30 RT :B FD 5e MtlE 'A :A + 5 h4E 	:B - 5 3 HOME WAIT MO CS RAKE 'A
REFEAT 72 NOME RT :A FD 20 RT 60 FT 34 MAKE 'A :A + 5) WAIT 3te CS
HOKE MAKE °A 90 RT 90
REPEAT 61 IFD 45 HOME RT :A MAKE 'A :A - 6 3 WAIT 30e CS
HamE MAkE 'A
HOmi REPEAT 9e [FD :A LT 90 MAKE 'A :A + 1 I WAIT 300 CS
H3ME REPEAT 11 EFD 2 RT 90 FD 100 LT 91 FD 2 LT 91 FD 111 RT 91) WAIT 300 CS
MAkE 'A 40
HOME REPEAT 41 [REPEAT 9 IFD :A LT 40 3 MAKE 'A :A - 1)
END

C.1%

•

Do-I t-Yourself Instructions
1. Empty parts on clean workspace.
2. Wire components according to schematic

diagram.
3. Plug in and turn on.
4. Write programs,

5

11/44 P-Dox Defori Modification (power supply)

I<

D2

D3

I--->10-1---uuu
1 t 	1

I 	1
I
, I 	,

(
111
1

(1

1 [
1

(-- 	:

(I 	
I
1

(i 	1

(:

1 	I

(:

i (
1

1 	1
I 	. t 	, ,
i 	.
r 	: • .

DI

I0)1----0---uuu 	

Cl-

:nc
1
1

1C2-
, : ,

1

:
1
1

:
1
1

:

:

1

1
1
1

1
. . , ,
: .

11111111
(1111151,

I 	
11111111
11111111
ir1111/1

(11111111

LI

1 	1
4,,

1
1
1
1

1

1

:

1

e L2.

1
. 1 	
.

C5- CB
" 	*

if 	if

C4- C7-C13-C1I-

L3

uuu 	
1 	1

RI<
• • 	• 	<

: 	: 	(
I

: 	1 	:
1 	1

1 	1 	1
1
1 	1 	:

1
1 	1 	:

1 	
1 	I

1

# (.41 	; 	*

1
I YRI

1

:
I

1 	1 	YR2 ,
1

'
1
1
1

f

) +16V unreg buss 1

1
1
) +12V reg buss to:

disk drive 	1
IC16- CI8-

f

> +RV unreg buss

:
1
I ------) +5V reg buss to
1 	1 	1 	 disk 	drive
: 	C17- C19-

4 	4

1 	1
1 	1

f 	f

'

I 	= transformer
->1-- = diode
uuu 	= inductor

= capicitor •

* 	= ground

= resistor

0 	= connection
nc 	= no connection

VRI=7812K
VR2=71305T

11111<

11111

. uuu 	

. 	. 	. 	, , 	.
-C14 -C11 - R2<
" 	' 	* 	<

1111

* 	* 	f 	f

:
.

I - ->: - 	:
I D4 	1
I 	. .
(, .
I 	. ,
I 	, .
I 	, .
I 	, .
I 	. .
I 	>1 	I
I 1 -D5- -
I ; 	L5 	L6
I 	:
I -0 -1< -0 - - - -uuu 	uuu 	___) -16V unreg buss
D6111111:
D6 : C3- C6- C9-CI5-C12- R3(• • • • • (

',sit.
; ;

I D3

I-0->10-
I
I 	: 	I
I
I 1<-

D71:
I 	11

1: 	.
I 	::
I 	::
I 	1:
1-- 	:1
I 	1 	:1
I s 	1:

1:
I --11
I 	1ncln:c ------

D2 	LI 	L3

10)1----0---uuu-----uuu

C2- C5- C8 -C14 -C11
11. 	• 	/a 	•

1 	1 	1 	/
toot

1 	' 1 	
t 	1
1 	I

, 	1 	: 	: . 	, 	1 	1
1 	1 	1 	1
1 	1 	1 	I
1111

Cl- C4- C7-C13-C11 RI< 	!

nc

I 	f 	* 	* 	
# ■■ 	* 	f 	If

o
1
1

11 	 1
11 	 1
11 	 1
1 / 	1 	 1 	 1
11 	1 	 1 	 ,
1INC E: 	: 	F 	 ' .
1 - - - -0 -1 YR3 1-0 	> +12V to console I

o ot 	 t 1 1

	UUU 	
1 	1 	1 	1
1 	1

L2 s

<

*

R2<

<

. '
1

< 	1--0 A
1 	YRI

1 	 1
1 	1 — — —
1

t
1

1 	 1

1ric
1 	1 	1
1 	1 	1

1 	1 	: 	:
< 	:1-0 C 	1 YR2

:: 	 : 	: 	 :

1 	11 	-- —1 	1
.. 	. 	1 " 	' : 	:: 	 -...,—.-..

11 	 I

-o 	
C16- .

1 	D
1) 	

1
C17- .

/

C18- .
1

1
C19- .

1

> +12V reg buss to
disk drive

-) +8V unreg buss

) +5V reg bUSS tO 1
disk drive

.

1

.

it

<

0
nc

:

1
1

pin 7 . 	1 	 1

1 	 I 	= transformer
, 	 ->1-- = diode
1 	 uuu 	= inductor

> +16V unreg buss 1
. 	 . .
, 	 = capicitor i
, 	 .

= connection
= no connection

= resistor

= ground

D61 1111 1 1

D6 ' C3- Ch- C9 -C15-C12- R3< • .
it, 	<

1 	1 	1 	1 	:

I 	11 	1 	' .
I 	:1 	: 	. .
I 	:: 	: 	i .
I 	11 	1 	. ,
1 	11 	1 	, .
10-)1- 	: 	' ,
II D4 	:nc 	1
11 	 : 	I< 0 	
I 	: 	DB 	T 	T
I 	. , 	, 	.
I 	' , 	-K 	1
I 	. i 	.. 	1
[

.
, 	 :

I 	. 	1 	.
I)1 	: 	 .
I 1-D5--
1 1 	L5 	L6
I _1
I-0-1<-0- 	uuu 	uuu

1

8: 	1 H

	

YR4 1-0 	> +5V to console 1
pin 5

-> -16V unreg buss
.nc

nc

99/4t P-Box After Modification (power supply)

D1

01
J

YR5 1 0 	> -5 Volt to
to console

pin 3
---r--.

1
1
1

Change YRI to 7812HK
Change YR2 to 7811510:
add a .47 uF/35V teals' capacitor
to ground at points A,C,E,6,I
right at case of regulator
add a 2.2 uF/35%/ tatalum capacitor
to ground at points 8,1),F,H,J
right at case of regulator
add VR3, 7812HK
add 04, LA323K
add YR5, 7905T
add D7,D8 MR501
add 47.0 uF/35 volt capacitor at
point K
mount all YRs to case for a heatsink
! remember polarity on negative

5 volt bus to computer, and
capacitors, and insulate YR5 froa
chassis.

Use a 15 pin 'd' connector to supply
power to console (don't use a 9
pin, as to avoid confusion with
tape and joystick ports).

---> gnd to console
pin 1

Article: SOFTWARE DES I GN
Author: N. Swirideriko

What is softwert design?

Software design is the organized method of writing and testing computer programs. Programs written in an
unorganized fashion tend to be hard to understand, and difficult to debug. Software design helps the programmer to
write program that will be easier to understand, and get running. Because the programs will be easier to
understand, they will be easier to change.

The first step of designing a prograt is to write down, in plain English, a description of what it is you want
your prograt to do. Writing down a.prograt descrition not only sakes clear, in your own mind, what the prograt is
all about, it states for you an objective which you can work towards. Also should you decide to change 50be aspect
of your program you may alter it, easily, by changing the descrition before you actually start writing the prograt
statetents. Once you have the program objectives clearly in your mind, you may procede to the next steps of Software
Design.

The next steps of program design include writing progral 'psuedo-code' and actual program statetents, followed
by testing and debugging of the prograa.

Before I get involved further with these steps I will discuss the basic structure that all prograas have. All
programs usually corsist of three parts:

'ALIT
P]:ESSING

OuTPUT
Each of these parts don't necessarily follow in the order stated, and may be inter-mixed through-out a prograt. A
program will consist of controlling code, and code which perform processing operations. The processing code can be
further divided into independent functions, or subroutines. Controlling code directs how processing is to proceed,
and thusly deteraines (by means of logical comparisons) when particular subroutines are to perform their task.
Subroutines say be further broken down into controlling code and other processing tasks. These subtasks of a
subroutine 'ay be divided into other parts, and so on. The breaking down of a prograk into controlling code, and
independently executable processing code illustrates the hierarchical structure of prograts. That is prograas can be
divided into stall parts which are controlled fro routines which call those parts. These routines say then be
called from other controlling routines, and so on, for as sany levels as are needed. A controlling routine which
calls a subroutine is said to be a level above the subroutine. A routine which calls the controlling routine is said
to be two levels above the subroutine, and so on.

Because prograts can be written as subroutines which call subroutines,.you irmy write your progral in small
parts rather than all at once. Software design methods take advantage of this fact.

There are two basic Software Design techniques that are may applied when you create your prograa. These are
Top-Down design or programing, and Bottoa-Up design or programing.

Top-Down design involves the writing of the controlling code before writing the processing subroutines. This
means that the higher level routines wiii be written Liefore the lower 1,ivel routines. Bottom-Doyn design is the
exact reverse. In Bottom-Down design the lower level routines are written before the higher level controlling
routines. Design and testing of programs say use both of these techniques.

There are several advantages/disadvantages to each method. Top-down code is easier to test and get running
quickly. Bottom-Up written code can be tested only a subroutine at a tire, and often requires special controlling
routines (called drivers) for testing purposes. In the Top-Down approach, overall program testing is possible since
dummy routines may be substituted for lower level routines. In Bottol-Up programing you may test the low level
routines individually, but must wait for the higher level controlling routines to be written before the entire
prograt may be tested. If you want to see your program working before you have finished all of the prograning you
win use the Top-Down approach. If you want to spend less time adding and testing subroutines you will use the
Bottoa-Up approach to programaing.

Now that you have the choice Bottom-Up or Top-Down designing your prograt code you will want to start writing
your code. A usefull design technique that can help, at this point, is the use of what is known a 'Psuedo-code'.
Psuedo-code are descriptive English-like statements that represent program code. Psuedo-code is not restricted by
the demands of syntax that mortal prograt code is. English-like wording and lack of syntax restrictiveness make
Psuedo-code easy for the programer to work with and understand. Psuedo-code, because it represents program code is
also easily translatable into working program code. The following is an example of sote Psuedo-code,

display mailing label title
open the mailing file 111.
loop for 1 to 25 while reading and printing a mailing label.
close the sailing file Bl.
display the end of progral message.
quit the prograa.

The above Psuedo-code is easily translated into the following Basic program.

100 PRINT 'MAILING LABELS PROGRAM'
110 OPEN #1:1DSK1.MAILLIST',INPUT,INTERNAL,VARIABLE BO
120 FOR I.1 TO 25
130 INPUT Bl:NAME$,ADDRS,CITYS,PROVS,PCS
140 PRINT NAMES:ADDRS:CITYS:PROMPC$
150 NEXT I
1E0 PRINT :mEND OF MAILING LIST PROGRAM'
170 END

To summarize and end what I have said:
Software Design techniques methods take advantage of the hierarchical structure of prograts, and facilitates
programming by the use of Psuedo-code, and the sethods of Top-Down and Bottom-Up programming and testing. More will
be taid on the subject of progras testing and debugging in a future article.

9
PROGRAMM I NG HELP F I LE

The purpose of this column is to present, to the user, techniques that will be useful in the writing of
programs for the T1-99/4A home computer. I hope that there is something, in what follows, for everyone. If you can
provide some prgramming insight that might be useful to someone, please, feel free to pass it on to me and I'll get
it into the next newsletter.

BASIC/EX -BASIC!

A part of BASIC programming that many beginners find difficult to understand is the ARRAY. This month's
XBASIC/BASIC help-file discussion will try to explain what ARRAYS are all about, and how this very usefull
fundamental data construct can be used.

ARRAYS are basicly lists of related data values. An ARRAY may be a list of number values or a list of character
strings.

An example of a number list is a price list for products in a hardware store. If the items in the store are
numbered from 1 to 20 then there wo_id be 20 prices in your list, and in your program you would have to DIMENSION
your array for 20 numbers. Your LIME11310N statement would look like this:

100 DIM PRICES(20)
The default DIMENSION, in TI X/Basic, is 10. If you need more array space than the default of 10 items, you have to
use a DIM statement to have the BASIC interpreter reserve sore memory. You may also DIMENSION an array, for less
then 10 elements, to save memory. An array of one element (DIM ARRAY(1)) is like a simple variable except that it
requires an index.

Back to the price list again. If you numbered your products 1 to 20 you would be able to find the price of
product numbered 13 as follows:

110 PRINT PRICES(13)
To change a price, say the item numbered 18, from whatever it was before plus a 6I increase, due to inflation, you
would do the following:

120 PRICESC18)=PRICES(1831.06
As you can see an numeric ARRAY differs from an ordinary numeric variable in that it is immediately followed by a
set of parenthises which enclose a number. The parenthises indicate that the variable is a list of numbers rather
than the single value that a variable is. The number within the parenthises is called the 'index' of the array. The
index is used to indicate which element of the array list is to be used. The index may be a numeric variable. Having
a variable as an index makes your array kOfi versatile to use. You can now assign values to each element of an ARRAY
variable with a FOR-NEXT loop. To get the prices for your 20 hardware items you would do the following:

200 REM READ PRICES INTO THE ARRAY.
210 FOR INDEi=1 TO 20
220 READ ri.:';ES(INDEX)
230 NEr INDEX
235 PEP 20 PRICES FOR THE PRICE LIST
240 DATA 1.29,0.99,5.99,1.44,3.89
25: DATA 1.34,9.98,8.69,1.59,1.75
260 DATA 20.35,89.9%45.57,31.13,63.71
270 DATA 13.24,0.59,77.21,345.65,11.25
280 REM END OF PRICES.

To see the prices in your array you would also use a loop and a variable index to print the prices to the
screen. The following loop will print the prices in tabular form.

300 REM PRINT PRICES TO THE SCREEN
310 PRINT 'ITEnTAB(8);'PRICE'
320 FOR INDEX.1 TO 20
330 PRINT INDEX;TAB(8);PRICES(INDEX)
340 NEXT INDEX
350 PRINT 'END OF PRICE LIST'

Character arrays art also available. An example of a character array is a list, by name, of all 2C products
that the hardware store handles. Lets call this array PRODS. You would use indexes to change, read or print items in
this list. A DIMENSION satement would also be needed as there would be 2D items in this list. An example of changing
a name is:

400 PRODS(20)=NAMMER'
A revised price list program follows. It will display the name of the items as well as their prices.

500 REM PRICE LIST WITH PRODUCT NAMES INCLUDED
505 PRINT 'ITEM'iTAB(6);'NAME";TAD(23);'PRICE'
510 FOR INDEx=1 TO 20
520 PRINT 114:A;TAB(6);PRODS(INDEX);TAB(23);PRICES(INDEX)
530 NEXT IA:::
540 PRINT 'END OF PRICE LIST'

If the hardware store decides to expand its product line and now has 30 products rather than the previous 20
items, we would have to change our DIM statements and the loop limits to reflect the increased memory need. If we
had used a variable for our loop limits then this change would be simple. Since we did not we will have to change
the limits for all of the FOR-NEXT loops in our prograt(s).

The arrays, PRICES and PRODS, are exaples of single dimensioned arrays. Arrays may be multi-dimensioned. An
example of a 2 dimensioned array is a multiplication table. A 10x10 multiplication table is a 10 by 10 array. The
dimension statement for such a table would look like this:

100 DIM TABLE(10,10)
To get at a value in this table you must supply two index values. TABLE(5,5) will index the fifth element of the
fifth row, or the value 25, in our table. The TV screen is 32 columns by /4 rows long, and can also be regarded as a
two-divnsional table. Multi-dimensioned arrays must always have their indexes seperated by commas. Arrays of more -
Ahan two dimensions can be thought of simple as lists or pages of two-dimensional tables. Multi-dimensioned ,
character arrays are also possible.

0

This ends my discussion of arrays. I hope that it has shed a bit of light on the subject. Bye till next time.

MEGA

This month I will discuss memory addressing. As this is the heart of what assembly language is all about, I can
only hope to cover a small part of it in this short space. What I hope to convey is the sence of how assembly
language, and the underlying machine code function.

The first thing that must be understood about how the computer operates is that any program that it executes
must operate in a limited amount of semoT The memory that a computer can work with is called its address space.
The 9900 CPU has an address space of 64K ytes. Now, 'What does that sean?', you ask. From a previous discusion you
know that the computer works with l's and O's, bits. These bits are grouped into sets of eight, called bytes, and
pairs of bytes called words. The 9900 has 15 lines with which it may address words of memory. Each line say have a +
or 0 voltage. Because an address line can have two values and there are 15 of these lines, the 9900 can work with
2"15 words, or 2"16 bytes of memory. Now, 2'16 = 65536 bytes, and 2"10 = 1024, or 1K in computer lingo, so 2"16 =
64x2"10 or 64K.

So now you know that the 9900 can address 64K bytes of memory, but where are these bytes kept and how are they
arranged. The 64K address space of the 9900 is composed of ROM, and RAM. The bytes of ROM, and RAM are arranged one
after the other in a sequential fashion. Sequential means that byte 16 follows byte 15 and byte 15 follows byte 14,
and so on. Thus each byte of memory can be numbered frot 0 to 65536. The zero'th byte is addressed when all of the
address lines carry zero voltages. Different combinations of voltages on the address lines will access each of
computer's memory locations (words).

How does the computer know where a program is in its memory? The computer, when you turn it on, will look for a
program starting at memory location zero. This is the first byte of the computer's memory space. The computer will
then follow the instructions that it finds at that location. In the TI console location zero is in pre-programmed
ROM which contains the console's operating sytem. Becasue the operating system is at location zero, the operating
system will take over control of the computer. The first thing the operating system will do is to perform several
checks to see what accesories are attached, and if a cartridge is plugged in. The operating systet will then
transfer control to the appropriate software, as selected by you the user.

How does a program get to be executed by the computer? The 9900 is kept going by a clock (a quartz crystal),
and with a certain number of clock cycles it will fetch an instruction from memory, and execute it. The 99o0 will
then get the next instruction from memory based on the value of the 9900's address register. The address register is
refered to as the program counter or PC. The PC is set to zero when the power switch is turned on so the first
instruction that the computer will get is from memory address zero. As an instruction is executed the PC will change
value. If the instructicpn currently executing is two bytes long then the value of the PC will be increased by two,
so that it will point to the instruction immediately after the current one. If the instruction was a jump to another
memory location the PC will take on tha value of the neu tetory location; and the 9900 will fetch and execute its
next instruction from the new location in the PC. This is basically how the computer functions. It gets an
instruction, executes it, then gets the next instruction. If for sone reason there is no recognizable instruction at
the next PC location the computer will stop or 'Lock Up'. A correctly written progras will never intentionally 'lock
up', and should restore the PC value so that control goes back to the operating systea.

When you load and run an assembly program the loader program (in ROM) will put the start address of your
program into the PC, and the CPU will fetch the first instruction in your program and execute it. The computer will
then be under the control of your progra.

How do machine instructions make the CPU do thilii"` The 9900 has 69 machine instructions. Each instruction is
represented by a different set of bit patterns. The C!_ was built so that it will do different (predefined)
operations depending on the bit patterns that are loaded into its instruction register. The instruction register is
internal to the CPU and is where an instruction is kept while it is being examined and executed.

The Assembler will allow a programmer to format instructions using easy to TiEEbiF names rather thar the
tedious to use bit patterns that the CPU understands. The assembler will change your descriptive English-like
assembly mnemonics into machine readable code.

Where is data kept in memory? Data is often kept before the start of a program, or after the last instruction
of a program. If data is mixed with the instructions of a program unpredicatable results may OMIT unless
prezautions are taken to 'jump' around those data areas. Data may also be stored within a machine instruction. Types
of data that can be stored within an instruction are addresses to a data area (or areas), an address (or addresses)
to an instruction (or instructions), OF even a numeric data value. The type and number of data values that say be
within an instruction depend on the format of the instruction.

There eight types of instruction formats. These instruction formats are:
1. Register Direct 2. Register Indirect 3. Register Inderect Autoincrement 4. Memory Direct,"symbolic'
5. Memory Indexed 6. Immediate 7. PC-Relative 8. CRU/Single-bit/Multi-bit

The first five are referent to as the general addressing modes (GAS), and are the most commonly used of the eight.
That is all space will allow this month. I will continue with addressing formats, and how they look in

assembler mnemonics, next month. Till then, happy programming!

FORTH:

Rather than discuss a particular aspect of the Forth language I will present SObe of my own Forth programming
attempts. Also if the readers have any particular questions about the Forth language I will try to answer them in
this column.

The following screens work with the Hi-Resolution graphics mode, of the 9918A video chip, that is accessable
frot TI-Forth. The first screen is a Forth version of the Mini-Memory's 'LINES' demo program. The second screen is a
word which draws a circle.

To run these screena you must load the TI-Forth options -TEXT, -GRAPH, and -GRAPH2. -GRAPH and -GRAPH2 loads
the Forth words that let you access Hi-Res or 'GRAPHICS2' mode, and also has the words to plot points and draw lines
in this mode. -TEXT load:: the word that will return you from the Hi-Res mode back to normal 'TEXT' mode. After

M 2 -0 2 2

le 2 0
••'• 	• 2 cr)

• 	•„,:,
rrt 	rtt
cr)

70-• •••■ m
kJ) ,0 M 	CJI...0

71. m
1'0 2 .46"=.
1,4 •-•
Cr, --4 c

cra
rrt

7> 2
0-3

70
CD

-0

1 1

loading in these options you can then enter 'scri LOAD' for the appropriate screen and it will run automatically.
After the lines demo is running pressing 'REDO' will quit the current drawing and start another one. Pressing

'CLEAR' will quit the demo and return you to text mode. Any. other key will pause the dello. The circle demo merely
plots a circle on the screen, waits for a key press, then returns to text mode. No checking is done for a circle
exceeding the edges ofthe screen. With a little modification the 'CIRCLE' word could becote a general purpose circle
drawer.

If you're looking for a quick and dirty way to access and learn about the TI's Hi-Res graphics capabilities
then Forth seems to be a good answer. Have fun! I did'

SOF $2E
0 (LINES DEMO PRGM.) : WAIT 20000 0 DO LOOP ; : NEG -1 	;
1 0 VARIABLE XO 0 VARIABLE YO 0 VARIABLE XI 0 VARIABLE Y1
2 0 VAFIABLE XDO 0 VARIABLE YDO 0 VARIAE. XD1 0 VARIAB_F YD1
3 RAN:.:°:ZE : RZ 4 RND 1+ 	: ND RZ 2 FN: IF NEG RZ 	RZ NEG ;
4 : S:i ND IDO ! YD1 ! ND IDO ' 11D1 ! ; : RY 40 - RND 20 + ;
5 : SEI SDP 256 RY XO ' 256 RY XI ' 192 RY YO ' 192 RY Y1 ' ;
6 : MVENDS XO @ XDO 1 + 	0: SWAP 255) OR IF XDO @ NE6 XDO '
7 	Ir:k YO 1 YDO 	+ 	0: SWAr 191) OR IF YDO @ NEG YDO
B 	THEN 11 @ XD1 @ + DUP 0(SWAP 255 > OR IF XD1 @ NE6 XD1 '
9 	THEN Y1 @ YD1 @ + DUP 0(SWAP 191 > OP IF YDI @ NEG YD1 '
10 	THEN XO @ XDO @ 	X0 I YO @ YDO @ + YO ! X1 	XD1 @ + 11 !
11 	Y1 @ YD1 @ + Yl '
12 : 	XO 	YO @ Y1 1 Y1 @ LINE ; : HCLR F1192 6144 0 VFILL
13 : DLINES 100 0 DO MVENDS D2LINE ?KEY -DUP IF 6 	IF LEAVE ELSE
14 PAuSi. IF TEXT ABORT THEN TmEN THEN LOOP 1KEY O. IF WAIT THEN ;
15 : LINES GRAPHICS2 BEGIN SET DO.INES WAIT HCLR AGAIN ; LINES

SCR $27
0 (CIRCLE DRAW PROGRAM)
1 0 VARIABLE A 0 VARIABLE B 0 VARIABLE RADIUS 0 VARIABLE PH
2 0 VARIABLE 	0 VARIABLE Y1 0 VARIABLE PX 0 VARIABLE PY
3 : INITD IGO BO 50 0 0 11 ! PH ! DUP X1 ! RADIUS ! B : A ! ;
4 : CIRCLE BEGIN XI @ Yl @ < O. WHILE
5 PH 1 YI @ DUP + + I+ PY ! PY 1 X1 	DUP + - 1+ PX !
6 A 1 II @ + B @ YI 1 + DOT A 1 YI 	+ B @ 11 	+ DoT
7 	A @ XI @ - B @ YI @ + D7.- A 	YI 1 - B @ X1 @ +

A t XI 	+ B 1 Y1 @ - DOT A @ YI @ + B @ 	@ - DC7
9 	A @ X1 @ 	B 1 Y1 	- DOT A 	Yl @ - B 	X1 @ - DOT

10 	PY t PH ! Y1 @ 1+ Yl !
11 	PX 	ABS PY 1 ABS < IF PX t PH ! X1 f 1 - X1 ! THEN REPEAT ;
12 : CTEST GRAPHICS2 INITD CIRCLE KEY DROP TEXT ;
13
14 	CTEST
15

CURIOSITIES ANI) PASTIMES

This month's BRAIN TWISTER: FOOTBALL RESULTS

Near the close of the football season a correspondent informed me that when he was returning from Glasgow after
the international catch between Scotland and England the following table caught his eye in a newspaper:

La's
Played Won Lost Drawn For Against Points
Scotland 	3 	20 	0' 7 	1
England 	2 	1 	I 	1 	2 	3
Walet 	3 	1 	1 	1 	2 	2
Ireland 	2 	0 	3 	0 	1 	6

As he knew, of COUT5E, that Scotland had beaten England by 3-.0, it struck hit that it might be possible to
find the scores in the other five batches Trot the table. In this he succeeded. Can you discover Trot it how &any
goals were won, drawn, or lost by each side in every match?

For Sec

HAM.teletype. 110 BAUD. DATA 100, -A level. $20.00.
Phone: Benny CFOOkS. HOE': 885-364.1 or Work: 895-5791.

3
2
0

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

