
334-59B7 Jim Bainard

Dill Quinn 	 837-775e

President:

Treasurer:

B.25-7(jE7

7' 5 3 - 0 7 94

•••••• • k."01 	1 4E-""
---• -• 	 •••_ -•_. •••-•- ___•• --•

The Winnipeg 99/4 User Group is C non-profit organization
' formed to meet the needs of Manitoba based Texas Instruments

users. The content of this publication does not necessarily
represent the view of the Winnipeg 99/4 User Group. This
newsletter is one form of communication to keep Manitobans up on
Texas Instruments Computers and its clones.

Next General Meeting - Date : April 3rd, 1986
Time : 7:00 P.M.
Place: Winnipeg Centennial Library

Lod Floor, Assembly Poom
Executive 1986:

Newsletter EditorBook
and User Programs Librarian: Mike Swiridenko 	772-8565

Contributing Editor: Paul Dedner 5E16-6899

inti-Caroup Representiitl..E,
ant Newaletter Publisner:
A SSIS1 Ater 1%.) elArz t-Exte.,2-

Systems Co-Ordinator:

Educational Co-.0fdinator:

Public Domain Librarian:
02- he!.oerson Hw:y.

Da,..e Wood
MK) 'Der kSceel

Rick Lumsden

Sheldon ltscovich 633-0835

Gordon Richards 	66e-4e04

Libr &rlah; Peter Gould &7;9-550:

Mailino Address: NEWSLETTER EDITER
WINNIPEG 99/4 USERS GROUP
P.O.E. 1715
WINNIPEG, MANITOBA
CANADA, R3C 21'6

DBE #: (204)-889-1432 	 SYSOF1 Charles Carlson

HOURS: CLOSED PERMANENTLY, during FEBUARY!

ED I TOR I AL COMMENTS:

Welcoie back. to another edition of the newsletter. This month I've inserted some interesting items from some
back issues of the Clubline-99 magazine. These itas includE an article about Program Files using the
Editor/Assabler, two TI-Forth screens of speech words, and an Extended Basic program which will print nifty little
diskette labels. Hank Derkson passed along a little progra written by a 'FREEWARE* author by the name of Barry A.
Traver. I'll let you figure out what it does. Paul provides the second part of a two part article on caputer
interrupts. I talk about prograt control structures in the XBasic Helpfile, and present a review of a book Paul
loaned me, 'Cracking the 99/4A', in the reviews column. I also have to appologize because I have to put off ty
proused article on software design until another month.

If you have a review, user hints, or helpful programing tips, get them to me for the next newsletter. The
deadline that I have set for subtissions is one week before the date of the group's meeting. Tnanks go to all who
have submitted items for this issue of our newsletter.

M I SCELLAN I A:

Miscellaneous news and reminders.

R.I.P.-The SMORGAS BOARD closed last month. Charles Carlson sold his model. It was nice while it lasted.
Last seeting the tape of the Chicago Faire was not shown as the video sachine did not take it to the meeting.

Hopefully, this month soteone can coax it out from hiding.
Good news on the widget that Sheldon Itscovitch has been working on. It is finally operational! If interested

in a six slot widget contact Sheldon.
Steve Zabarylo has built a working 32K expansion for console systet. Steve will sake this expansion for others.

If interested talk to Steve. A 32k expansion without disk drive allows a memory aria for user written asseibly
language prograss. To access this iesory area you would need a Mini-Memory module or XBasic Module. The Mh module
and line-by-line assembler lets you program directly in assably language, while XBasic would allow you to use Load
and Peek to put asseably code in this area.

READER RESPONSE:

Thanks goes to Brian Lesko for pointing out to me an article in the March 1986 issue of Coipute! from which the
following exerpt COLES. The article is entitled d 'The Future of Mass Storage' by Selby Bateman, Features Editor.

'Sae cotputer experts believe that by the year 2000, the days of magnetic computer data storage say be only a
historical footnote. Major advances in the use of low power lasers in audio and video players are being quickly
applied to computer technology. One of the hottest consumer electronics items in recent years is the audio coipact
disc (CD). And later this year, coiputer users will get a chance to see what laser technology can do when linked
with a computer - virtually any computer - as a CD-ROK storage device.

The basic principle of CD ROMs is similar to the audio CD. A low-power laser beat reads 'microscopic pits that
have been burned into the disc itself. These pits - representing a series of ones and zeros - contain the data that
in a magnetic medium would be formed by the arrangement of tagnetic particles. The 4.7-inch CD-ROM discs contain a
whopping 550 iegabytes of data per disc. The first applications are likely to bE encyclopedias, such as the
nine-iillion-word kadelic Aserican Encyclopedia, a 21-volute reference work that fits on just a quarter of one
CD-ROM disc.

The biggest problem with CD-ROM technology at this point is that the devices are read-only. Unlike the sagnetic
particles on a megnetic floppy or hard disk, once the pits are burned into the surface of a CD, they can't be
altered. But that limitation is already being challenged in the lats.

Sony recently announced a writeatIE 12-inch optical disc systet that can hold up to 3.2 gigabytes of
infortation. The disc is composed of two metalic elements sealed in a polycarbonate plastic. The laser beam writes
inforiation on the disc by turning the elements into an alloy which has different reflective properties. 'This
direct-stal iethod is more reliable and less costly than telt-type or bubble formation methods, which fort gases
during the writing process,' Robert Mesnik, Sony Infortation Products product tanager. 'The direct-seal sethod has a
simple structure with no air spaces which can cause degradation of infuriation over time.'

This is a fora of WORN (Write-Once, Read-Mainly) storage technology which offers high-densty storage options
for a variety of markets. The next step, however, is to create an optical technology that allows a laser to
repeatedly write inforiation on the sate disc, Although not yet fullydeveloped, an eraseable, reustable 5 1/4-inch
optical disc has been announced by Maxell for distributior in 1967. But for no6, CD-RONS will remain read-only
reference and archival storage devices.

One of the first CD-ROM todels debuting in 1986 is Toshiba's XM-1000 drive, which will be able to access
digital coeputer dataand also play susic - that is, it will be both an audio accessory and a cosputer peripheral.
The unit will have a storage capacity of 600-680 regabytes and bay enter the rettail market at close to $1,000. Sony
will also market its CDU-1 CD-ROM player in 198E.

L_ A r.s. LJ A

L_ NJ LJ

AK AK 	AK AK AK
AK -T 1-1 L_ L_ S /3 1/4/
AK Et F" Cl Z IC 13 A F" AK

AK F` 	D, S F` '1/4/ AK

CrY' 	 14Z 	AK

*zIAI 	—rx
1=- IF2 1•11-1 Z 1/4/ Z AK

L_ 	F" CI A E 1■1

L_ 1/4/ L_ 	S
1,4 LJ 	1/4/ I '3 AK

AK -1"- 1/4/ I 1/4/ L_ 	IC L_
-a- -4-- -4, -IC 	 AK 	AK

13 P.S I IQ

X El AS I IC
F- CI IR -I" 1-1
^SSE IN1 L_
IC 9 9
F- 	 L_
L_ 	CI

_ 	 - 	. V* A 111! LIR) 	LIPP Lit

ts;'";-

The lion hasn't returned! Maybe we should send out a posse? Noah, where are you? On a serious note, Charles Carlson has
guillotined his Volksmodem leaving millions and millions of Tlers without a hose. Therefore I would sugoest a fundraiser to
'Raise The Seorg'. In any case, I can get sore work done now during the evenings so I guess it can't be ail that bad. Two
other BBSs that support the TI community are Tronica Information Network (9438517) and Tec Yoc Computer Services (8857921).
T.I.N is operated by the folks at Tronica on McPhillips. Don Ponchinko, System Operator, is running a TBBS program in a IBM
PC supporting 20 megabytes of storage with 300/1201/2400 bps access. There is a one time fee of twenty dollars which I guess
is to pay for TBBS enhancements such as a multi-user system soon to be released. TBBS has a TI download section containing
over a megabyte of programs for you to tap. T.V.C.S. on the other hand costs you nothing to access. Just logon and read the
bulletin and it will tell you how to gain access to the system. I'm the grand T1 poobah there and currently the only TI user
on the board, just imagine the great email I can have sent to myself! I will start doing massive injections of programs to
T.V.C.S as currently the bare minimum exists! I hope to see you all on either of the two boards!

Briefs:

The final chapter of Bill and the plight of his interruptable interrupts!

INTERRUPTS cont'd

The second data word, which for reset will be >0002, contains the memory location of the first instruction of
the interrupt routine's program coding. The processor will begin program execution at the address contained in
>0002 immediately after the workspace changeover.

TI refers to the memory addresses containing the new workspace and program location addresses as 'context
vectors'. You ray have seen this term used to explain the 'bullwhip' instruction (Branch and Load Workspace Pointer
- BAP). The functions of the bullwhip instruction and interrupt are identical except that the BLIP is encountered
within a program while interrupts are generated outside of the program. Both return to the original program via the
Return with Oorkspace Pointer (RTWP) instruction.

There are sixteen levels of interrupts available on the TMS 9900 microprocessor. 	Each level has its own
allotted context vector at an address predetersined by the silicon substrate of the microchip. Each level is also a
priority, which allows more important program routines to take priority over less imortant ones; so one interrupt
can actually 'interrupt' another interrupt. The interrupt priorities of the TMS 1900 are numbered 0-15; the lower
the number, the higher the priority.

The programer is able to decide what priority of interrupts will be acted upon by the processor by usino the
Load Interrupt Mask Immediate (LIMI) instruction. Within the status register that is finely etched upon tfie TMS
9900 silicon are four status bits that form the interrupt Aask. The prograsmer set/resets these bits via an LIMI
instruction to tell the processor which interrupts to act upon and which to ignore. The processor constantly
samples-the interrupt priorities of equal or higher precedence as specified by the sask.

Again using the pizza delivery example, suppose that when deliveries fall behind more than thirty minutes, the
driver has been instructed to ignore green colored flares and only act upon red flares. When the critical time
delay is reached, the driver puts on a pair of green-lensed glasses. Nom he won't be able to see the green flares
(nor green traffic signals for that matter, but that's not the point), but he will still see the red ones, which
perhaps may indicate the store has been robbed and he is needed at once. The green glasses would be analogous to
the status register interrupt mask,

The 99/4 is set-up to use interrupts numbered two or lower. All external interrupts are done by means of the
9901 microcircuit soldered within the console. The versatile chip is called a Programmable System Interface (PSI),
The PSI is capable of recognizing its own set of interrupt levels, but all o; these are still presented to the
processor as level two interrupts. I'm not going to give you an excessive amount of information on the PSI in this
article, I just want you to have a noding acquaintance with the interrupt PROCESS within your system. The PSI,
however, is of great use to the advanced Assembly language programmer and responds to Communications Register Unit
(CRU) instructions such as SBO, SB1, TB, STCR, and LOU. The Editor/Assembler manual doesn't tell you all that the
PSI is capable of doing for you.; I had to get a copy of the 9911 designer manual to learn all its secret powers.
The PSI will provide an advanced interrupt capability to the user who has a solid back ground in comuter hardware
and needs to use his 99/4 for external control. However, there is one interrupt that the novice user can access
with a very simple piece of hardware that he can fabricate for under two dollars.

Reset is the most powerful interrupt in your hose computer. However, it is of limited used to you because its
context vector is in ROM, frozen into a factory chosen state of existence. Oh!, if only we were allowed to change
those two memory words at >0000 and >0002, what powers we could command! (CE. You can now do this with the Gram
Cracker device available from Millers firaphics.) Luckily, there is a very powerful and very useful interrupt which
has a context vector that resides in RAM; it is called the 'Load' interrupt. Load has the second highest priority,
topped only by reset. Like Reset, Load interrupts on Level 0, but the system can differentiate between the two and
Load uses memory words >FFFC and >FFFE as its context vector.

Load and Reset share the quality of being the only two interrupts that are non-saskable. The processor will
always jump to attention whenever Load or Reset tickles its interrupt control lines and the interrupt sask is
powerless to stop them.

What this means to you is that for $2 you can have supreme control over your computer, being able to snatch
control away from whatever program is being executed, be it the BASIC interpreter or a Command Module. Let me give
you a practical example of this.

Suppose you are writing/debugging a program and for some reason it keeps 'locking up' the console. In the
past, you had to turn off the main console switch and scratch your head--the 'lock-up' can be most difficult Duo to
find. Imagine instead of resorting to the on/off switch you pressed a switch that generated the Load interrupt and
brought up the debugger. Now you can check around in memory to see what happened right when your console was locked
up.

3

Another example will show that even those of you who don't prograti could Bake good use of a Load generator.
You could press the Load button and get a printout of the lonitor screen even if you were using a Cosaand Module
that lacked a-print -capability! lhat could cote in very handy. What does it take to achieve this miraculous power?
Assueing you have the mesory expansion, which you need to give you eemory addresses >FFFC and >FFFE, all you need is
a connector to fit your I/0 port (which is the one your peripherals attach to), a switch and a soldering iron.

1 call ey $2 Load generator the Gronos GROMbuster. It is siaply a normal open switch soldered to pins 13 and
21 of a connector that mates to the I/0 port connector. If you can find a 44 pin connector for the I/0 port, it
will probably cost you at least $5. I couldn't get oni it my local electronics surplus store, so bought a 32 pin
connector and hack sawed one of the ends off to ilake it fit onto the I/0 port. I used a Cherry microswitch that
straddled pins 13 and 21 with just a little bending, soldered it into place and then moulded some epoxy around it to
add a little strength. Looking straight on at your I/0 port, pin 1 is on bottom left, pin 2 is top left, pin 3 is
directly right of pin 1, etc. Works Great! (pd. A year ago I asseabled a Load interrupt switch where I mounted it
on the computer but it could have easily been mounted on the Voice Synthesizer.)

For the combined cost of a 75 cent connector, a 50 cent switch and a few pennies worth of epoxy, 1 have a
device that has saved se a great deal of debugging tiee and has allowed me to learn many sore 99/4 secrets. Oh, I
guess I left out one iaportant part; the software. Here is a short example to demonstrate the foraat:

REF VMBW
ST LI 0,302
LI 1,TX
LI 2;4
BLWP OVMBW
1101 2
O!V $
TX TEXT 'TEST'
WS BSS 32
AOR6 >FFFC
DATA WS,ST
END

To test your GROMbuster, assesble this program and load it into memory, use 'Quit' to return to the title
screen. Press the GROMbuster switch and 'TEST' should appear near the aiddle of the screen.

If you want to use the debugger with GROMbuster, asseable the following code:

INT CLR O>FFFC D1SA
LOPI MYWS
CLR RO
DEC RO
ONE $-2 WAIT FOR CONTACT
* TO BREAK CLEANLY
*--
* DO YOU,' DEBUGGING NERE-IN'ERFUPTED
* CONTEC IS IN R13-R15 OF M.N1
*--
STWP RO
NOV RO,O>FFFC
RTWP RETURN TO INTERRUPTED PROGRAM
MYWS BSS 32
ADR6 >FFFC
DATA MYWS,INT

Thanks to C.J. Daly for this one. Ne says it functions very such like breakpoints and you can return to the
interrupted prograe with the 'Q' comaand. Previous attempts were subject to aechanical switch bounce and thus would
not properly store the inforeation needed to return to the orioinal prograe via the RTWP instruction but this one
solves that. The key to this trick is the first instruction (at INT; which clears the workspace pointer word of the
Load interrupt vector, thereby causing interrupts after the first one to discard their contexts harmlessly into ROM.

This concludes my explanation of how interrupts are used in general within the 99/4A.

Grapevines are wonderful and thanks to the Ottawa User Group for getting the following from C.A.U.G Alert.

The following information is fro. the Victoria (B.C., Canada) 99'er Group's August newsletter.
Over two years aoo Johan Vanimschoot had spoken with me about a large high quality widget type device for more

than three sodules. The concept was a six or eight slot expansion box with line drivers and a buffered selector for
each sodule. This was to remove the Navarone Widget's worst features, limited expansion and noisy switching.

This idea has hung around and a couple of aonths ago he and I were talking about it, and I mentioned that I had
read about supposed software existing in the TI for aultiple pages of cartridges. 	This built in software would
supposedly work with the proper extra hardware. 	Lending credence to this information was a Millers Graphics
newsletter (The Eei-t Prograan.-) refering to their address decoding required. Johan and I had both had a screen
with 'REVIEW KILE LIFFAF.!' cose up from tile to time during assembly language developsent. We talked about the
hardware problem and devised a siaple scheme to test how the software worked (and if it would work at all).

I loaned Johan a wire wrap and a breadboard prototyping system 1 had built for the cartridge port and with
considerable effort Johan sanaged to locate some 36 pin sockets.

The software does work! This what appears to be possible:
The TI senu coaes up as it usually does and an extra selection is added 'REVIEW MODULE LIBRARY'. If this

option is chosen the next available cartridge page is displayed on the senu as if it were the only cartridge plugged
in and the option 'REVIEW MODULE LIBRARY' is also displayed. This action continues in a loop thru all modules unfil
a selection is Rade of an application.

Now this is nice, no need to flick switches and up to 16 modules could be available in a sonster box. 	But

there is pore!
The 6PL (Graphics Prograsaing Language) system is designed so that with this hardware the built in software

allows one cartridge to access the devices and calls in another. This allows for Purple, console basic to access
all of the plugged in aodules call routines and device names at one time. IMINIMEM1', 'MINIMEM2', and 'SPEECH' and
CALL PEEKV, POKEY, LOAD, etc. are all available froil basic.

TI Forth can access 'MINIMEM1' and 'MINIMEM2' and 'SPEECH' as devices with no need to switch anything or to
modify any console hardware. The operating systes in the console handles all accesses transparently.

This was built in fro, day one with the 99/4 and is on my pre 1963 black and silver console. I don't know for
a fact if this on the newer models, but 	suspect it is.

The software during the module library selection finds only those pages that contain gra or grog and ros
coabined. The slots with roe only (third party stuff) do not come up on the menu. Much like the post 1963
consoles.

The Victoria company Osram Industries is currently developing an inexpensive 'Super Widget' to take full
advantage of this in console software.

Rumours abound on Tioeline. 	Michel.A14C2, of Montrealt Quebec, sa.ys a local T1 BBS sysop, Tony Hackett, is in the
process of adding a 20 segabyte device to his coaputer. Though Michel was not very specific on this, it does sound like a RAM
card and possibly piggybacking his Myarc 512K card.

Another little message popped on my screen when I was on Timeline. It's from Tom Hall of the Edlonton Users Broup. The
subject relates to the current buzzword, Freeware.

At our sonthly group meeting last night, a rather heated discussion arose on the topic of freeware. 	It sem
that a nusber of our group have trouble with the 'free' part -- and the point was made quite strongly that freeware
does *NOT* mean that the program is free; it merely means that you are free to try it out before you pay for it, and
only your honor and integrity will force you to destroy a program for which you have no use. On the other hand, if
you find a prograa useful, you should in all fairness send sole token sue to the author, if for no other reason than
to let hia know that his work is appreciated. It should be resesbered that in aany cases the authors of freeware
are aerely atteepting to save theaselves some of the costs involved in the lore traditional fores of software
distribution, i.e., packaging, delivery to vendors, etc., and this is why their prograls can be offered to the end
user at such a low price. Perhaps it might be a good idea for us to consider that issue here. l's sure there are a
few 'professional' software developers who are using this service, and I's sure just about all users have sole
opinion on the subject of freeware. I don't know what it's like with other computers, but there is sufficient abuse
of the freeware concept within the T1 coamunity to cause sole developers to withdraw their software from the
freeware market, and gruablings of discontent have been heard fro' still others. If we want to continue to see the
quality of software we've grown accustoaed to in the past, we're going to have to seriously re-evaluate our
obligations to those individuals who are still comeitted to the TI and are deaonstrating that commitment by their
continuing developsent of first-rate software.

The following CALLs were given to us by Teresa Delaney of Dubuque, IA. Thanks Teresa!

Call Load(-31572,P). 0>=P>=255 to vary keyboard response.

Call Load(-31744,P). 0>=P>=15 for continuation of last sound (0=Loud 15=Soft).

Call Load(-31746,P). 0>=P)=255 to change cursor rate and response tone rates.

Call Load(-31766,160). Blank screen must press key to activate.

Call Load(-31794,P). 0>=P>=255 to change tiee for Call Sound.

Call Load(-31606,0). Norsal operation.

Call Peek(-316fS,P,G). P D - Double randoe numbers (0 to 255). Needs RANDOMIZE first.

Call Load(-31660,4). 6o fros xbasic to console basic. NEW afterwards.

Call Load(-3180,8). Auto run of DSK1.LOAD.

Call Load(-31866,0). No 'RUN' or 'LIST' after a function clear is used.

Call Load(-31873,P). 3>=P>=31 screen column to start at with a PRINT.

Call Load(-31B79,P). 0>=P)=255 timer for VDP interrupts every 1/60 sec.

Call Load(-31664,P). 1>=P>=5 change keyboard mode.

Call Load(-31962,32). Return to title screen.

Call Load(-32700,f). Clears screen for an instant.

I hope most of you enjoy reading ay column! In case you don't or have sugoestions on how to improve. this column, please
send your letters to the Readers Response coluan of this newsletter in care of the Newsletter Editor. Next month I hope to
get into Clint Pulley's c99 language. I have just bought Jack J. Purdua's C Proorasaino Guide inorder to understand this new
language and hopefully pass on some of my newly acquired knowledge of c99 to you the reaaers so stay tuned!

REVIEWS:

This column presents reviews of mattrials that key bt of interest tc tht user. Tht views expressed art thE
opinions of thE reviewirs, exclusively,

BOOKS:
Thanks goes to Paul Degner for loaning at 'Cracking the 99/4A' (subtitled:'Strious fun for tht hue computer

enthusiast...') fo, the following rv.iew. 'Cracking tht 99/4A' was writter by Brian Prothro and is publishtd by
Midnight Expriss, Box 2E941, Austin TX 78755.

Review: by Mike Sw:ridenko.

Well wt Tartly get to StE a ne.. text for the TI-99/4A, so a review of this work should be of SOLE interest.
Cracking the TI-95/4A is basically a collection of several types of programs prtfaced with seeral brief

tutorials of some fundasental programing techriqL,ts, Tht prograbs range fro' Gates such a chtckers ant Othillo to
Assetbly. Routints to baripulat: eisi filts. ThE tutorials cover such things as Structured Programing, Linked Lists,
Ustr FriendlineEs, an: Logical Operators.

The Prograks art writter for a full range of systems; Basic sytek to TEII with speech to full syster:s with,
EditorlAssebbler packagt. ThE prograts thttselves pirforn quite well, and tht Assembly Language TOUtlflfE art welcobe
although there weren't enough of thek to satisfy ty own wants. If yoL order thE progras disk, as PaLl did, you won't
have to key in all of tht programs in tht book, A nice choict for busy ptople.

The tutorials WETi infortative and centerid mainly on the topics of structured programming and user
friendliness. ThE tutorials walk you through the diviloptint of a sailing list prograk and show you how a basic idta
can be developed intc a tore sophisticattd working program. Linked lists are covered also, but one drawback to the
discussion of this useful' conctpl was the lack of diagraks that would aid grtatly in the understanding of what
exactly linktd lists art. Finally logical optrators are discussed. Logical operators are quite useful' and direct
the basic stquenct of operation of all proiraks. It iE noteworthy that this topic vas indludtd in this book.

MT. PrOthTC, in hia forward, states, 	Whiter you are just learning BASIC, OT are wtll on your Way to
understanding programing, this boo; offers- yo.: the opportunity to get to VE0h yo;:r 99/4A. Cfter the best solutions
to your progratming ntees are learnee by studying how others have solved thtir owr prograkking problems. For the
most part, this book is not a BASIC tutorial, but offers an opportunity to learn &hilt eqloring finished programs,
as well EE add to you, software library.'

'Cracking the 93:4A' tay. not be a BASIC tutorial, and it may contribute to one's software library, but I feel
that this book would be of LOTE. Elut tO thE average hat computer programmer if Mr. Prothro had presenttd sort than
the one prograt (a list prograk) in a tutorial tanner. A person may :tarn E lot from going through a working
prograk, but programing is bist 'Earned when you art shown in a stepwist manner hoi it can bt done. Not only does a
tutorial approach to progratking keep interest up it relitves the tediuk.of keying in a Ion; program by breaking it
up with discussion, and in sote cases prograk todifications..Tht disousslon Lay highlight a particular asptot of the
program design, or an interesting programing technique, Modifications ray suggest enhancements to the program or a
solution to a part of the prograk not yet ikpleminted. Both contribute to the. understanding of how a prograk works.

In summary 'Cracking tht 99/4A° is different from bost of thE 'prograk' books around, bEdause it givts the
reader an britf tour of the design of a sailing list prograt, as well as E. several other prograks for thE rEader to
key in.

PROGRAMMING HELP FILE:

The purpost of this colutir, is to present, to the UEET, techniques that will bt instful in thE writing of
prograks for the TI-9Sl4A hoke computer. If you can provide SOLE prgraming insight that might ht useful to sokedne,
please, feel frte to pEEE it OF. tO Mil ant I'll get it intc tht ntxt newsIttter.

BASIC/EY-BASIC:

Th'. 	d'.--.. the '=--THEN-ELSE, FOP-TO-NEYT, GOTO, ON-GOTC, and ON-SOSUB statetents.
It hEE bten pT04te LEthEEEtlCall) (hy BohL and jatop:h.) that al: programs my be wT:tter using on:. thrte

statetent types. These thFEE typeE of statetents art:
1.- Stquential.
2.- Dtoisior.

_ p---,,e--
Thi sequintial statettnts include asEignEtents and other data manipulation statements. Thtse statelents are

.relatively straight forward, and are often performed one after another. The other two stattment typts diterkine
'flow of extoutice cf a prograk and are what this discussion is about.

Decision St2tEEET:E alter thE flow of a proorak by allowing choicts to bt tadt. Choicts in E cosputtr systek
involve yes:no typte of answers. ThE yts/no or TRUE/FALSE answtrs are the result of logical cokparisona which art
sybolic of qutstions soih as, 'is the value of variable TEST equal to ore?', or 'has an key bitn prtssed?', ane
so-forth.

Ti BaEic and)(Basic have several decision type statekents for the programmer to USE. Tnest Etatekents ETE fl'E
IF-THEN-ELSE, ON-LTZ, and ON-GOSUE stattkents.

In thE IF-THEN-ELSE statetent a logical test iE placid betweer the, IF and the THEN parts. If the tEEt iE TUE
tht statetents following the THEN will be executed, If the test is FALSE the stattteFts following the ELSE ETi
perforbed. In TI-Basio only E line numbtr bay appear aftir the THEN and ELSE parts. ThE lint numbirs indicate
stattkents to which execution will pass EE E rtsult of tht test lade. Has-lc allows tulti-line statektnts as well as
nested IF-THEN-ELSE stattkents. Nested control structures are another topic which I will discuss ir another
newsitttir. The ELSE part of a IF-THEN-ELSE statttent tay bE °witted. In this case a FALSE test result will reslt
in the statttent or the line imediately after the IF-THEN statekent to be txtoLtte, ThiS is callte ar 'itplied
else'.

ON-GOTO ane P.:--GOEUE stattkents provide additional deoision baking power. Thal are similar in struoturt to
ea:h other, but have a subtle difference in thEir operation. Both require a value, to select one of E choict of line
nutbers that follow the statesent, but the Oh-GOSUB statement will jump to a subroutine and return to continue
execution frok thE :ire following the ON-GOSUE statetent, whilt the ON-S2TO statektnt will continue extctution frok
the line nu:7..t6-7 e-eleotef.

/frir opj. Gcrit, &NA 	- GOZ att. ‘TATCPKCPJT5 1,...,06 K. 41
00 IF VALA4111r-ZER,C> ttimi

110 0) VA.1
120 PF:h7 "VAL.: is gneatc than 4'

19(' 	YALU:7ER: THEh 210
200 ON YALU KELT 1000,15N,1600
205 PRINT 'ON-GCSUE returns here.'
210 PRINT .ve of OW-GOTC/63SUB example"

The value of VAL!. selects the correspondihy line number from the list following the stateeent. WALL' Lay not bE
zero ir value, and any YALU that is greater than the number of line nuobers in the ON-SOTO/60M will recaLlt in
execution continuing with the next program line.

The FOP-TO-NEXT statement is a5 exatple of a repetitive control statesent, commonly called a 'loop'. A
repetitive structure repeatedly perforas SAE set of statements until a desired condition is let. The condition,
like the choice test of an IF-THEN-ELSE, is again a logical comparison. (Logical conditions play an itportant pa,t
in programs.) In the case of the FOR-TO-NEXT loop the comparison is bade between, the FOF-TO-NEXT index and the
limit, Once the index eeceeds the value of the litit the condition test evaluates to a TRUE value, the loop ends,
and execution, continuee from the line following the NEXT part.

The FOR-TO-NEXT statement consists of the FOR-TO part, the NEXT part, and sae statetents that are placed
between the FOR-TO part and the NEXT part. The statetents are said to fort the body of the loop. A typical
FOP-TO-KEXT loop looks like the following:

100 FOP. INDEX:1 TO LIMIT
110 PRINT "INDEX IS NOW ";INDEX
115 PRINT 'Other statetents execute here.'
120 NEXT INDEX

Notice that betveer, the FOR and the TO the index of the FOP-TO-NEXT is assigned an initial value, and that the
nERE r./ the variable used aE the index 	re.eeated after the NEXT. ThE NEXT must tateh up with the index of the
FOP-TC part otherwise the loop will not—function, When the loop is first eneountered the index is compared tc the
value of the limit. If the inde.x iE greater thar the limit the statetents within the loop are not exeouted. If the
index is less thar the limit the body of the loop will execute. When the NEXT is reached the index i5 increased by
an increment value of one and acain compa-ed to the litit. :f the index is still less or Equal tc the litit the
statements within the 	of tfie loop will exeoute again. Thus the bc,fy of the loop is exeouted repeatedly entil
the index exceeds the value of the limit. When the indes becotes greater than the limit the loop ends and the
statement itmediately ft:lowing the NEXT part vill execute.

You may alter the in:rement value andioi the E'.1 in which the index iS CAFETie. tO the iiiit b) the use of E
STEP value. If you specify a negative step valui the index must be less tha5 the value of the likit before the loop
will end. If you specify a STEP value then that value is added to the index after every repetition of the Ioop body.
ThE STEP value may be neiati‘e OT positive in value. If no STEP value is specified then the index is increased
automatically by one. A r0R-TC-NEXT with E STEP YE:UE speoified is shown below.

100 FOP INDEX=1 TC LIMIT STEP 2
110 PRINT "The indee of this loop (";INDEX;') is increasing by two.'
120 NEXT INDEX

There are tites when you want to leave a FOR-TO-NEXT loop before its index reaches its litit. A good example of
this is whir you' are doini a search for some iteie in a list. In a situation such aE this you would LSE a 1F-THeN
statement to test if the desired item was found, iE.— IF FOUND THEN 6OTO 200. This introduces the final statetent
that I will discuss,the 6CTC statement.

GOTO statements ane useful! in certain places in a Basic language prograt, but hiSUSE of this statement can
result ir a prooram that is very hard to understand waking changes to that pr:grae extrekely difficult. A 6CTC
merely- 	t5E 'flow of exe:utior' by causing the provam to exe:ute from the line nueter specified in the 6270,
OfIE p.aee where you would want to use tre 6:TC is in staLekents that are part of a THEN or ELSE of ar IF-THEN-ELSE
stateme5t. An example of an IF-THEN-ELSE Li:Ling 60TOE is shown below.

100 IF TEST THEh 15!
11C PRINT "This is the ELSE part of the IF TEST statetent."
120 PRINT 'The program will get here if TEST is FALSE ir value.'
130 PENT 'WE now GCTC a statement past the THEN part of the IF TEST statetent.'
140 GOTC 17C
150 PR:f:T 'The pregeam getE here if the TEST is a TRIlE .value."
160 PRIN"The ELSE part of the IF TEST statement is paEsed OET, Erie iE not exeouted, in this case,'
170 PRINT "ThE program continues from here after executing a THEN OT ELSE part of the IF TEST

220, PR:NT °Count iS now ';ONT
24C 62T2

OPEN ti:"CEI.DATATILE',INPUT,INTERNAL,YAFIABLE 22
100 IF E07(1) THEN 150

	

110 	INP::T tliAt
.,. 	m4 	.

	

1,, 	'Thcs is a re:ord fee: E file,'

	

14 	61-7l 1C.0
150 PRINT 'All rezords in the file hate bEr. TEL."

LCSF 11

	

That ceeclEdes 	LECUEE Or- of thE IF-THEW-ELSE, FOP-TO-NEXT, ETD, ON-6CTO, and ON-GOSLIE stateeertE,

statement.'
lEl 	 iE the end of this example.'

ituther USE for the COTO is ir loops other than the FOR-TO-NEXT type. Exatples of thoEe loops are:
6:70 100 ! an infinite, l000. Ne way to Execute other statekents after this one :F. ere:a:entered.
CNT=L

210 :7 CNT.:100 THEN 250

ASSEMBLY:
7

MUNI l=" Ft Ft AM 1F- I LE

by Don Cook.

Once a program has been perfected in object code
using the 3. LOAD AND 1AN option , it usually is
advantageous to convert it to maChine code using. the
SAVE utility program on your EIA disk . A programMe

WhiCh is executed through the 5. RUN PROGRAM FTLE
option can take Less storage space on the disk and load
faster . TO gain these features , the constraints
listed below Should be observed .
1.The program must be contained in a continuous memory

space in hiel or low memory expansion . e.g. Part
of your program can't be at memorY>3000 to >3400
and the rest at >B000 to >C000 .

2. If your program uses low memory expansion , it can
only use locations >2F00 to >3F00 (4K) since the
utility routines , SAVE program and REF table use
the remaining low merirrry . There should be no
restriction on using high memory expansion from
>A000 to >YEW .

3.Try to avoid reserving memory expansion space using
BSS and insted use EQ0 . IF your program is in high
memory , use low memory for your workspace or any
memory buffers and keep tradk of What memory you
have reserved . e.g. Use MIMS EQU >2F00 Instead of
HNUS BSS 32 This example could save 32 bytes of disk
storage space .

4.You must DEF the first , load and Last locations of
your program as SFIRST , SLOAD and SLAST so that the
SAVE program can recognize them

5.The first statement in your program must be an
executable statement . (i.e. not DATA or TEXT) For
example :

DEF SFIRST,SLOAD,SLAST
SFERST
SLOAD LWPI MYWS

JMP START
MYWS BQU >2F00 	Workspace at >2F00->2F1F
INSIR ITXT 'PRESS SPACE TO quIT'
START LI R0,2 	Screen column 3 , row 1

SOFB RO
MOW RO,C*8O02 LSB of VIP RAM location
SWFB RD
IICVB RO,EMCO2 MSB of VDP RAM location
LI RLIWIR

SHOW MCIVB AR1+,@>8C00 Send byte to VDP RAM
CI R1,START last byte
JNE SVOW
CLR R12 	CRU address >0000

ISPACE TB 4 	SPACE key pressed 7
JEQ TSPACE
BLWP GO 	QUIT

SLAST END

6. TO store the program above as a program file ,
asseMble it and load it using the 3. LOAD AND RUN
option . Then , clean the dust off your E/A disk
part B , load t*.-.e SAVE utility program and run the
program called SAVE . It will prompt you for the
rase you wigh your program file saved as . When it
is finished , select the 5. RUN PROGRAM FTLE option
and test your program file .

7. The 5. 	RUN PROGRAM FILE option does not
automatically load the utility routines such as VMBW
, KSCAN , DSRLNK etc. You must either create your
own equivalent routines or load these utilities at
the beginning of your program . The machine code
for these utility routines is located in the E/A
command module GROM starting at location >7000 . A
method of loading these routines is listed below .

START LI R2,3
LI R1,>7000
MOVB R1,G49CO2
SWPB R1
MOVB Ri,G1>9CO2

GROMO LI- R3,4
LI 134,NNWS

GROMI MOVB G9800,*R4+
DEC R3
JNE GUM

GROM2 MOVB GO9800,*R1+
.DEC RO
JNE MEM
DEC R2
JNE GROMO

At GROM location >7000, the first two bytes are
the number of.maChine code bytes to load and the next
two bytes indicate where to load the code in memory
expansion. The -first group of code is the subroutine
brandh locations; the second group is the subnxitines
code and the Last group is the REF table
identification:Emil

Branches , Routines & REF
GROH location
MSB of GROIN location

LSB of MOM location

: Put # of bytes in RO ,
: memory location in R1

GRUM value to memory exp.

Last memory location

100 ! ***************fr"***
110 I * DLSKLABEL *
120 ! * by ROBERT NEAL *
130 ! * T.I. USERS CP *
140 ! * WM., COUNTY *
150 ! * MIMED TO WSW *
160 ! * &ROLAND PRINTERS *
170 I * by 7CM ARNOLD *
1E30 ! * CHAMEL 99 USE* *
190 ! ***************NcHrk
200 DIM PN$(127),S4(127),PT
$(127)
210 TYPE$(1)="DPE" 	TYPE$(
2)="D/V" 	TYPE$(3)=HI/F" :
: TfPF4(41I/V" rim
$(5)="ERO"
220 CPEN #1:"PICr
230 PRINT #1:CHR$(27)&CHR$(6
5ACHR$(6);:: !lit** SETS LINE
FEED TO 6/72 INCH ***
240 PUNT #1:CHR$(15);!*** P
UTS PRINTER INTO CONDENSED P

250 DISPLAY AT(2,1)ERASE ALL
DISKLABEL":"
	". ."

ty Bob Neel":" 	Vers
ion 2.0": :RP71("0",28)
260 DLSPLAY AT(9,1):"Avail=2
'91 Used= 67 DLSKRAME":RFT$C1
=",28):"DIABEL 20 PRO IL
ABEL 27 PRO":"LOAD 15 PRO
LDATA 25 Dir:RPT$("0",28)
270 DISPLAY AT(20,1)BEEP:"Pl
ace risk 7b Be Lateled in ET
ive #1 Then Press Any Ke
501 :: ST=1
280 CALL KEY(0,K,ST):: IF ST
=0 THEN 280
290 OPEN #2:"D6K1.",INPUT
ELATIVE,INTERNAL
300 FOR Y=1 TO CNT
310 PN$(X"' 	SZ$(X"' :

PT$ (X)=""
320 NEXT X
330 CNI=0
340 INPUT #2:A$,J,J;K
350 IMAGE " #4444f Off #4#
#f fifff ###44###
#ff"
360 PRINT 41,USIM 350:"AVAI
1,',b-11400,"US",SIR$0-4(
),CHR$(14)&A$

II ifr AR/Ar 11 PRO AR/DOC
7 PRO ARCUST 24 P*0 **RAKE

Ili
P*0
PRO

ARIAS,
ARSTAT s

PRO
PRO 	

AarRAT

I PRO DA1ANCC 10 PRO coy!'
7 PRO CuSTIL 101 lir

24 PRO IRITRUCTNI 102 0/4 10r/FROS
2 PRO PAIWIL Iff PRINT

FORTH:

22 D/V
4 PRO
• PRO
10 PRO
10 PRO
11 Iff
20 PIM
110 PRO

370 PRINT #1:CHR$(27ACHR$(8
3)&CHR$(1);:: PRINT fl:RPT$(
"2%58)
380 LC=2
390 FOR X=1 TO 127
400 INPUT #2:Al$,A,J,K
410 IF LEN(Al$)=0 THEN 460
420 PN$(X)=Al$ 	SZ$(X)=STR
$(J):: SZ$(X)=RFT$(" ",3-LEN
(S24 (X) DeSZ-$ (X)
430 A=ABS(A):: PT$(X)=TYPE$(
A):: IF A=4 AND K=254 THEN P
7100=TYPE$(5)
440 CNT-NT+1
450 NEXT X
460 CLOSE #2
470 FOR Y=1 TO CNT SUP 3
480 'MACE #+####I#A# ### #ff
#144444441 #ff ### *kW

#ff
490 IF L009 THEN 500 ELSE 53
0
500 PRINT fl:"":""
510 IMAGE "

###444##
fff"

520 LC=2 :: PRINT #1,USING 5
10:CHR$(14)&A$ 	PUNT #1:C
MR$(27Y,CHR$(83)&CHR$(1)
;:: PRINT #1:RPT1(11-r,58)
530 PRINT #1:CHR$(27>&CHR$(8
3)&CHR$(1);:: !*** PUTS PRIN
TER 1N SUBSCRIPT MODE **

540 PRINT #1,USING 480:PN$(X
),SZ.$(X),PT$(X),PN$(X+1),SZ$
(X+1) Pr4 (X+1) , PN$ (X+2) ,
SZ$(X+2),PT$(X+2):: LC=LC+1
550 NEXT X
560 FOR X=1 TO 11-LC :: PRIN
T #1:"" :: NEXT X :: PRINT #
1:CHR$(27)&CHR$(84)! ***
LAST PART RESITS SUBSCRIPT,
HAY NOT BE NEEDED ON GEMINI
570 DISPLAY AT(20,1)BEEP:"CA
7ALOG ROHM? (Y/N)":"":""
580 CALL KEY(3,K,S):: IF S=0
THEN 580
590 IF CFRUK)="Y" THEN 270
FLSF IF CHR$(0="N"THEN 600
ELSE 570
600 CLOSE #1 :: END

SCR #36

0 (Speech words for 77 FORTH) BASE->R HEX : Z ; : SPSTART ;
1 (Adapted from Wycove FORTH by Clint Pulley)
2 (SPEECH? RETURNS TRUE rr SPEECH SYNTHESIZER IS ATTECHED)
3 (ADDRESS SAY speaks the word or phase with address given by
4 	 Editor/Assembler Manual or LIST-VOCAE)
5 (>HELLO and >IDENT speak appropriate things)
6 (LIST-VOCAB lists the resident vocab with DECIMAL addresses)
7 SPWR (n ---) 9400 CI ;
8 CODE SPRDC 0460 , 8320 , (brandh to read code on 16-bit bus)
9 : SPRD (n) [HERE 18 +] LITERAL 8320 OE CMOVE
10 SPRDC 8349 O@ (Read from speech ROM)
11 (Speech Read routine, roved to >830)
12 D820 , 9000 , 8349 , (HOVB @SPCHRD,@>8349)
13 1000 , 1000 , 1000 , (NOP's for delay)
14 045F , 	 (NEXT)
15 R->BASE 	-->

SCR #37
0 (Speech Wbrds Screen 2) BASE->R HEX
1 t SPAD (addr) 5 0 DO 10 /MOD SWAP 40 OR SPWR LOOP
2 DROP 1 0 DO LOOP ; (Load speech address)
3 : RESP (addr 	n) SPAD 10 SPWR SPRD ; (Read speech data)
4 : SPEECH? (--- flag) 0 RDSP OAA = ; (Test speech attached)
5 : SAY (adr) SPAD 50 SPWR ; (using resident vocabulary)
6 : >HELLO 351A SAY ;
7 : >IDENT 2019 3793 6551 3A32 6DDE SAY SAY,SAY SAY SAY ;
8 : RDSPW (addr --- word value) DUP 1+ RDSP SWAP RDSP 100 * + ;
9 : LIST-TREE -DUP IF DUP RDSP OVER + 1+ CUP RDSPW MYSELF CR
10 DUP 4 + DUP 1+ RDSPW SWAP USE' SWAP 7 D.R SPACE SWAP OVER OVER
11 - 1 DO 1+ DUP RDSP EMIT LOOP DROP PAUSE IF ABORT ENDIF
12 2+ RDSPW MYSELF ENDIF ;
13 : LIST-VOCAB 1 LIST-TREE ;
14 (PAUSE hy pressing any key, ABORT by pressing CLEAR)
15 >HELLO >IDENT 	R->BASE

kC0ORTRATA
*OAK
LRACAU
liteRCH
4W1EM
XIRAcci
'ILISKT-Ur
AMO

AUK= BO USED= 638
	

ACCOUNTS

• 	Here's what drives cars of the '80s—the
Electronic Computer Module (ECM). Typi-
cal GM unit has an analog board to run
sensors, digital board for "thinking" and
memory. Removable PROM (at tett) call-
brates computer to parlicular car/engine.

Computer-controlled Ouadrajet regulate'
primary fuel flow by pulsing metering
rocibar (A) up and down 10 times • sac,:
ond with a solenoid, pushing tpring-Ja I ed metering rods (B) down Into let&
Rcpt of carb is mechanical.

zrza ciffig MAO 	 Ilobs pow.. loos um: errs Lk..

LOAD/TFICt FPOOFAM
11f.. 	"FPEEOARE" E: EAFF A. TFAVER, 235 GREEN VALLEY DFIVE, PHILADELPHIA, FA 1

S126 (PHONE: 2i5/46S-1379,
120 ON BPEAI NExT :: CALL CLEAF
130 PFINT "# PEADY #": : 	M$="" :: CALL HCHAP,24,2,62,:: R=24 :: C=2 :: CTF=0

i4fD CALL tEY(00,E,:: CTP=_TF+i :: IF t =6 THEN PRINT "I DON'T DO BACiSFAIES.':

: 	GOTO 130
15C IF S 0 THEN CALL HCHAP(P,C,t):: C=C41 	M$=M$F2CHP$0)

16f:, IF M$="OLD" THEN PFINT 	 :"WHY OLD- WHY NOT NEW' ": : 	GOTO 12:

17 ■ _, IF t11-'NEw 	 "NEWm"; :"NOW THAT'S MOFE LIFE IT'n: 	 GOTD I:

160 IF M$="PUN" THEN PpirT "PUN': :"WHY RUN- WHY NOT WALt"": 	: 	GOTn 13:

IF MT="CALL" THEr, PFINT "CALL' ": :"NOT THAT STUFID CALL FILES 	ROUTINE AG.,

IN 	: 	 lac
1,7 LEN01%, 4 THEN PRINT :"1OU'FE TOO ROUGH--I'M GOIN3 	TO LOC, UF Ok YD.! '

,1O -0 L—
:10 IF CTF=2 THEN CALL HCHAF(P,C,301
220 IF CTP=4 THEN CALL HCHAP(F,C,32):: CTF=0

27(1 1--OTO 140
G11-,0 :4

1827 STEPHENSON STEAM LOCOMOTIVE

This was one of the first steam
locomotives to operate in the U. S.

Picture drawn by_Malcolm Johnson on
the GRAPHX program.

ViSA
BIll my 0 VISA 	0 MasterCard

1i-111111111111111
Account No

Max No. 	

Skratute
	

Exp Date

99c SUBSC IR1 TIOW99
CLUBLINE-99
P.O. BOX 1005, STATION A

Yes I would like to subscribe to CLUBLINE-99 	HAMILTON, ONTARIO
CANADA. L8N 3R1

Subscription Rates are high as the postage cost with
packaging is more than the production cost of the
Magazine.

(Please Print Clearly)

NAME

POSTAL ADDRESS

SUBSCRIPTION RATE "INDIVIDUAL"

MAGAZINE ONLY
	

MAGAZINE WITH MONTHLY DISK

CANADA $30 for 	12 	issues $120.00
,

U.S.A. $25
,-

U.S. 	Money $95.00 U.S. 	Money

OVERSEAS _ 	$35 Canadian Money $130.00 Canadian Money .

This magazine could be available from your club for
$2.00 Canadian per issue. The monthly disk should also
be available from your club at $6.00 Canadian or less.

0 Check or Money Order Enclosed

FILE: 	SWAFISELL
_DATE; 3/61E
TITLE: SWAP/SELL

INDD
C = PAGE i
1 = :TEM
2 	TYPE
3 = DECPFTION
4 = PFICE
5 . RHON:

0 	 2

-1 EST-SrTiAP.7--
WARE 	MODULE

2 DOw-4 GAZELLE CA2SETTE
4 ESYPT GRPH ADV CASSETTE
f HUNT THE WUMPUS MODULE

	

MDYL GRPH ADY 	CASSETTE

	

7 PUBLICATIONS 	'4.:7.INEE
E SIGNALMAN MARK3
9 SUNDIAL ISL ltx2 LASbETTE
IC TEACH SELF XBAS CASSETTE
11 TEACH SELF %PAS CASSETTE
12 TEACH SELF XBAS CASSETTE
13 TEACKSELF BASIC CASSETTE
14 TEAOHSELF BASIC CASSETTE
,r

	

TI FOFTH PKG 	DISK
IE TREASURE HUNT 	DISK
1; WIZARTAPRINCESS DISK
18 LAST,WORE ON TI B001
19 DUAL.CASEETTE 	CABLES
20 TI-99/4A 	CIIwPUTER
21 MINI-MEMORY 	"::_LE
22 TI LOGf II 	MODULE
22 ADVENTURE 	MODULE
24 TI SYSTEK 	UNIT
25 TI-SYSTEM 	COMPLETE

4 	5

seET-2es
SOFTWARE 	$20.00 EEF-1761
SOFTWARE 	$20.00 ::.-E889
SOFTWARE 	$10.00 fL.-E889
SOFTWARE 	$20.00 EE2-1721
SOFTWARE 	$10.00 58E-686S
BAD, ISEJES ECH $1.0C 52E-EBES
HARDWARE 	$100.0 58E-6E85
SOFTWARE 	$1(2.0C 582-ESES
SOFTWARE 	$1f.OU GEE-4804
SOFTWARE 	$18.00 682-I24E
SOFTWARE 	$20.00 E68-1781
SDFTWARE 	$17.00 6E8-4E:4
SOFTWARE 	$20.00 622-49E7
EfFTWARE 	$40.00 695-70E7
SOFTWARE 	$10.00 58E42E?
SOFTWARE 	$30.00 58E-ES23
INTORMATION 	$:0.00 E95-7027
HARDWARE 	$16.00 GEB-4604
h4LI4ARE 	$60.00 6E9-4804
EL-TwARE 	$30.00 6E8-1781
SOFTWARE 	$9(.00 439-3127
SOFTWARE 	$55.00 489-3172
HARDWAPE 	$77E. 489-3172
hiW+S/W 	$960. 255-2915

D 	L Abala

by Tom Arnold

Every once in a while I come across a program that
really impresses me. Disk Label by Robert Neal is one
of those. It is one of those rather simple programs
that perform* like magic and is really very useful.
This program catalogs your disks, which isn't so
special, however it prints out the catalog on a 3 1/2"
x 7/8" label! Nbw this is really handy. Simply place
the disk in the diak drive and press a key. The label
is printed out, ready to stick on your disk. This
macs updating your disks really easy. The print is in
compressed subscript, which isn't the easiest to read
tut neccessary to get long listings on the label. I
want to thank Bob for this most useful program and bet
that you, the reader will find this one of the most
used programs in your library.

I I

NEWSLETTER EDITER
WINNIPEG 99/4 USERS GROUP
P.O.B. 1715
WINNIPEG, MANITOBA

.CANADA, R3C 2ZE

aTECRS
0,c-A 	I

6.0rvor,J-miki 	L711 A-

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

