

 farmed ta meet the needs Gf Manitaba based Tesas Instruments users．The aontent Gf this publisatign daEs hat héessarily represent the view of the Winnipeg $99 / 4$ User Grgup．This newsletter is one form of Eormuniaatian ta keep Manitobans up an Texas Instruments Gomputers and its Elomes．

Next Eeneral MeEting－Date Febuary Ethy $198 \in$
Time：7：00 F：M．
Flawe：Winnip＊q Genterniel Library Ene Flour，Assembly Foworit

Fresident and Eduratignal
ロaーロrdiratar：
Jirí Eairiard
$334-5987$

Treesurera
Newsletter Editor：

Eロッtributing Editar：
Inter－Grgup Fepresentative and Newsletter Fublisher：

Systems ショ－Drdinatar：
Fubli＝Dumain Librarian： Baz Hendersen Huy．

Module Librarian：
User Frograms and
BGロヒ：Librarian：

Eill Duinn
$897-7756$
Mike Swiridento 77玉－ロらES
Feul Degrer $\quad 58 \in-6 \infty G 9$

Dave Wmad
855－70E7
Shel dian ItsEavirh 633－0835
Bordon Fiahards
$6 E 8-4904$

Feter Eiguld
6аЭ 5505

Mi：E Swirident：$\quad 772$－G5ES

Mailing＿Addres巨：
NEWSILETTEF EDTTEF：
WINNIFEG $9 \theta / 4$ USEFS EFOUF
F．G．E． 1715
WINNIFEEB，MANITDEA
GANADA，FBE ZZE
ESG＿\＃：（204）－885－14．
GYSDE：Gharles varl Sor
SEITINGS： $300 / 1200$ baud， 7 bits， 1 stop bit，wdd parity HOUFS：7：00 P．m．ta E：00 ant． 7 days／weet：

EDITORIAL COMMENTS:

Hope all have had a good Christmas and are looking forward to another swing around ol' Sol. This wionth faul Degner, uur contributing editor, seems to be exercising has literary talents as he gives us has contrabution, Quid F'ro Quo. A hefty five pages. Scheuatics and description of an $1 n$-console 32 K aemury expansion are also in this 15514 . These were submitfed by Rick Lumsden and are much appreciated. The frogramer's Helpfile Basic section takes a look at using 'character strings' (or text) in prograns. Reviews takes a look at the MYaR li2kk expansion card. Thanks go to Minn and Dakota Hone Users Group, who meet in Grand Forks, for thas review. Whale l'ie on the subject I'd lake to wish all the users groups that we are in contact wath a Happy New Year, and thank them for the many newsletters that we have recelved and enjoyed reading. That about does it. See you all next month.

If you have a review, user hints, or helpful prograuming tips, get them to for for the next newsletter. The deadine that I have set for submissions is one veek before the date of the group's meeting. If you can't contact ae by phone manl your subaission to the POB address on the front cover or get the to faul Degner, contributing editer. thanks to all who have submitted items for this issue of our neusletter.

MISCELLANIA:

Masellameous nevs and refinders.
Faul Degner has received a video tape of the Chicago TI-Fare. Portions of the tape wll be vaewed at aeetings wer the neat few months.

The suftware packages sold at the last meeting seem to have been a hit. Faul will continue to brang these packapes to weetings as long as they are popular. I don't know why no one tried doing this sort of thing before.

For more news and some interesting mall from the Timeline bBS turn to quid pro Quo.

READER RESPONSE:

Have a comuents or questions that you would Iake to express to the other reader 5 of our club's newsletter? Space 15 available, here, for this purpose. Flease use it

REVIEWS:

This colum presents reviews of materals that way be of interést to the user. The ways eapressed are the opimions of the reviewer 5 , exclusively.

HARDNARE:
The followng was taken frouil mad hug's Decentey 1985 newsletter.
??THEMDRY EXPAKSIDN???
I5 the FYARC 128 K expansion card really worth 1 t? I'd 5 ay yes! It has 32 K of computer accessible RAM and 96K $(96 \mathrm{~K}+3 \mathrm{~K}=120 \mathrm{~K})$ for RAti-di5k and $/ 0$ FRINT SFOOLER.

Let mé explann what a RAM-disk and FRINT SPODLER 15 for these who really want to know.
A RAM-disk 15 a block of memory that can be uthlized as if it were a floppy diskette and is ultra-fast.
A FRINT SFOLLER 15 a buffer that holds text or data to be prifited. It gives the user control of the couputer faster. Wath the PRINT SPOOLER the computer duaps the text or data to the buffer then gives control to the user and continues to print until the buffer 15 empty. You can do muin wore computing in the same anount of time instead of watching your printer print.

The user also gets a few duote comandands.
CALL PART (X, Y) partations memory. Where X equals Kbytes allocated to RAM-disk y equals Kbytes allucated to the PRINT SFOLEP, and the sum of X and Y is equal to $76 k^{\text {. This }} 15$ how you "INITIALI2E the metury and must be done every thae the power 15 turned on.

The device name for RAM-disk 15 RD. CALL EMDK (X) instructs the RAM-disk to emulate a floppy dishette or turn of the emulation. $X=1$ instructs $R D$ to emulate $D K^{\prime} 1 . X=0$ turns of f the emulation.

The user can enulate disk $1-5$. Since it 15 emulating a disk drive the user can use OLD DSkX. NAME or OLD RD. NAME (5ame with SAVE) to access programs in RAM-disk.

The device name for FRINT SPOULER is FS/1, FS/2, or FID. Which 15 R2232/1, R5232/2, and FIO respectively. To abort the PRIMT SPOOLER, ENTER: CALL ABFS/1 of $/ 2$.

To get a directory listing of all files in the (RAM-disk) directory froti BASIC or EXTENDED BASIC ENTER: CALL RODIR. If acts and looks like the the directory the DISK MANAGER 2 produces. The user can also ada a IISK NAME to the RAM-disk by using CALL VDL("volume-nafe").

MYARC also has a power pack that plugs into the back of the card. This keeps the $\because f$ in a power up state and the user can retan all the data in the card, and su the user doesn't have to "Pafilijas' (INITIALIZE) the memory on every fower up.

This card 15 expandable to 51 Ck . The only drawach I have found 15 this expansion card 15 not compatatle with the Corcomp RS232 card. The PRINT SPODLER feature won't work with this RS232,

Once you use it, you won't give it up.

- M.A.G. -

SOFTHARE:

Acquire some softuare for your TI lately and feel goad, bad, or indifferent adout it. Thas space 15 arallable for your coundents.

This columin features tips brought to miy attention from wiembers of thas group, other user group's newsletters,
and various other sources. WARNING: These hants and tips are to be used at your oun rask'
SPEECH:
Ever yonder how to get all of the words listed for the speech syntheshzey to work from XBASIC? There are several wultiple vord cuiutanations that don't quite do what they should unless you know the syntax that the speth subroutine recognazes. Enclusing multiple word phrases within number 5 gign will solve thas problem.
e.g. \#SOOD WORK\#, \#TEXAS INSTRUMENTS\#, \#THAI IS CORRECT\#, and 50 on.

EXTENDED BASIC
This tap was taken from the December 1984 edation of MICROpendium.
Dan Farrott, president of SMAUG of Grand Bay, Alabama, writes: "Sriooth, curvilinear sprite wotion can be achieved with sine and cosine functions. The track 15 to store the factors derived from the trigonometric functions in an array that can be called wuch faster than having to recalculate each time. For example:"

```
100 CALL Cl:E=
110 CALL SCROBM(2)
120 DIM A1(2B), AZ(2B)
130 FOR A=1 TO 28
140 CALL SPRITE(#A,46,1E,98,128)
150 A2(A)=5NN(A/4.456)*40 :: A2(A)=COS(A/4.456) :: NEXT A
160 FOR A=1 TO 28 :: CALL MOTION(#A, -A1(A),-A2(A)) :: NEXT A
170 6070 130
```

Farrott recounands that you vary the constants an line 150 to produce different results. This requires Extended EAEIC.

SUBMITEED BY RICK LUMSDEN.
THIS ARTICLE IE REPRINTED FROM AN ARTICLE APPEARINE IN THE R/D COMPUTING NEWSLETTER FROM RYTE DATA IN HALIBURTON ONTARIO

IMPORTANT:

Any modificatians ta your computer should be attempted by users who have some expereince in electranic wark and will void any warranty in effect.

32K MEMORY EXPANSION INSIDE THE TI-99/4A CONSOLE.

NOTE: This $32 K$ version does not run off the 16 Bit Buss that was reported in the last newsletter. This is an econo version that will run most popular software (e.g. TI-Writer, Multiplan,TI-Logo, TI-Forth, Editor Assembler) but may not work with machine language programs where CRITICAL timing is invalved. An eyample is programs that use the Speech Syrithesizer.

The circuit 15 shown on the attached wiring schematic and can be built on a piece of stripboard and mounted on the RF sheild on the computer matherboard. The schematic is very straightforward and the only thing that needs clarification is the fact that in the drawing it only shows to HMbab4Lf-15 chlps. This 15 because the chips are "piggybacked" one on top of the other.

This article originally comes from the International Society of Almalgamted Dodo Users and Dead Ducks (ISADUDD) from Australia. If this circuit is built on a large enough stripboard, as mentioned in the parts list, there are more circuits on the drawing board. These include: 1. Provision of a crul selectable aK CMOS RAM chip in the DSR area of CFU RAM from >40.Gの->5FFF
2. Console ROM to be selectable between Rom and battery Dacked CMOS RAM.
3. An EPROM copier-progammer with a zero insertion farce socket mounted on the cooling slots on the top of the console.

This modification uses the Hitachi static RAM chips that do not need the refresh circultry of a Dynamic RAM and thus accounts for the small parts count required. Cassete users should be advised that the $32 k$ is not fully usable since you can still only save 12 K to tape, howevers the programs will have a much larger operating space.

FARTS LIST

1. 4 HMÉ2GLLF-15 H1tachi CMOS RAM chips
2. 2 or 42 gin IC sockets (depending if you "piggyback" the chips)
3. 1 peice of copper stripboard 32 strips wide by 23cm. lang
4. 2 or 4 zauf Tantalurn capacitors
5. Insulating stand-offs to mount the board on the RF sheild
o. Wire, salder, and saldering gun.

by Paul Degner

Andther year is upon us as well as the cold weathor and the colds. Ninetesn eiohty five was a quet vear for our computer and hopefully not this year ton! He expect darvelous things such as seeing the 'Noeh' in action. 'Noah' is the current name for the fictional $99 / 128$ personal computer the taby of Miari Industries. Locally our isers eroup this year hapes to be miore 'user friendly' for the interests of its members. The group is trying new methods to increase the tody count at our mesting because we found out that some fembers just don't bother to show up. de want to know any and wat we can do to corred this situation. If we don't see a significant nember turnout before the end of the vear there is aliajos a fussitility of a rumour that the oroup might fold may have some trath. In order te circument this rumour is to try to show bp at these meting mu matter hou boring they can be and present sone feadback to the group on the various features the group ofters vou sidh as the progran libraries, newsletter, and propran titorials. I hope I have enliohtered you on your resporsibinities for the upcoming months and hopefully we will have a place to cone every first thursday of the month.

The emtensive lise of a Terminal Emulator prouram (Tell or Fast-Tern ar any progran that oreates a lisolay/Variable af file could lead some day to the loss of a veluable filet the disk Manager shows yoli a directory where your file is listed. for erempe: "FILEMAE llsector) IISFLAYFIXED g" but such a filecan't be read by Ti-briter. This article deals with a way of recovering a "lost" file using a progran like Disk Fixer or Disktaid and was made poseible trank to fruce
 Group Newsletter from Wovember 1984 fo March 1985 ;

Since the fallowing is the resill of only a fen trials, it would be rore prudent to work on a dopliated dizkette couied sector by sector rather than using the bit fap. For more information on this process abe the dist kanager lama mandal.

The "lost" file, as it segns, was probably sent to the disk and a Directary entry sector mas crated for it but, for ra knomi reacon, it wan't closed, gince the exact location of the file is printed on that sector during the closing Tocess, the file doen't seat to be ambihere althoug its proper mame fiqures on the directory. If you use the file
 Tifi三 option won't work in such a case probably because this propram roulids the file direntery entry and not from the file itedf. Let's teat in ind that when a file is deleted, the Dish Hanager erases the "pointer" of the file directory entry (ori sector 3l) but not the file directory entry itself.

A dist finer progian like mektall alous you to read or mudifi information contaned an esth sector of the tisk, If you reat the directary entry sectar corresponding to your file, youll see that its name a the only inforation prifted there, If vour diel doesn't contain tü many fifer, the directory entry ghould be located betuen sector al and Eentor 22, ctherwise gamewhere close to 22. In order to recorer that file; the task mill be to wite in the same entor the mecescary information to be anle to read the file fror Ti-kiter or another similar prouram. here are the operatione:

2: GEAFH THE CF FILE MAREET
3: WITE TO EL: \therefore OAY EATM SECTOR:
4: FEAD ABM FE-SAVE YOUR FILE.

```
Era4 the Hol:
```

To find the file iccation it is meressery to scan the dick sector by sector. finis precess shal on't be tou
 gent the dist until you find a sector that yourecognize as belonging to your file, you can scari the disk skipping afor secters at your convinjence, what is then meded are the iumbers of the first and last sectors ised by the file. , hith that. information, we'll be able later to calculate its siae. If your file is not fractured, that is in more than one Fiece of consective sectors, this will be an easy operation. If not; the scancing will then take longer since well hase to find the nuther of the starting and endiry sectors of every fortien of the fractured file

GEGRH THE END GI FIE NGEER

Gnce the fine nes been fond, we have to find the eosition of its end on its last sector, lf werre dealing with a fractured file, its leration will he on the last \because : tor fo the last pertion of the fractured file, in all the case lye examined, at the ena of afile there is a marker \therefore " caled the End of File offset. Depending from mhich progran you've seve the file with (Tl-witer or an equator program) the marker may or may not be precedod by some gther chararters,
 gasiv check this by comearing last sector of a file seret by any progem and the last secter of the same file saved ty

WRITINE TO DIRECTIRY ENTRY SECTOR

He now have almet everything we need to write on the file's directory entry sector la maman of nine itersl. Ask yer disk fixer froeran to print en yodr screan the file's directory entry sector, If you logile from AECII to HEX

 notation will rate our work essier since the nubers we have to write don't alwaysheve a corresponding and printatle AgEli theracter. fore's what we chould wite:
(postionFFC: velus=VAL, woth in hex)
 typ.

 rerresent das sector lese ther what you weuld get with a dist banager which counts the directory entry sector. For cur purpoe the value will be the number of the last sector of the file 百ins the numer of the first plus one 50 if, for E.ample: the first eector is 22 and the last is $25 . \mathrm{K}$ will be $(25)-(22)+1=4$ secters (22, 23,24 and 25 , the directory entry uses tho hytes to atore that value if your file is loner than ff sectors (zas in dec it'll need tro byes like
 should be written at position of ondy.

FOS 10 ; VAL Y : The zalue Y represents the End of rile Offset, he have to write here the position in hex of the marker $F F$ sean in the last sector of the file.

POS 11 ; VAL 5 ; This valie stands for the mandom lenght of each record. Since me are using Variable bia ke'll wite 5 which exals 8 , but in hexadecinal notation.

POS 12 and 13 : VAL y; Thisposition stores the number of sectors used by variable lenoth records. in the files I Ehatined, all had less than 255 sectors, the number of sectors used (k) was repeated at the position 12 . Even if this. information uses tra bytes, the tutes are put in reyersed order. If the file would have ben $A B C$ sectors long, the value BC would have been located at 12 and the vaiue an at $^{2} 3$.

That's it for the file description, And now for another trich; the last thinu we nust do is indicate the gpecific location of the tile on the disk. Tins is dome on the directory entry in the blotiolink startinu at pasition ic (28).

The location of earh continuous portion of a file uees three bytes. Lets tabe three of the as an enample: ob: Cut
 end EFC minh woud mean that the starting sector of the file is DAE and fie file continue for EFf additional sectors fictitious of coursel. Since EFC qeans the nuter of the sector we will be at when raching the last sector of the file, the size of the file would te EFD sectore since of is the first sector.

To reverse the process, let's say that our file is 10 sectore long and starts at 35 . The first yalue to tete wuld

Tricly isn't it just like Eruce sad, they gust have hen hioh on somethime when the decided it was going to be

 proces desoribed dove wil? te aplied to othe portions of the file.

Sine the relue thet fues ath the startho setur of every potin of the file is the nurber of the sector oe're at

 El there is te it: if you have third portion, then the seme propes is repeatet.

Then you've done all that, the last thing to do is to read the file and re-save it with a fropan siailar to

 LSEA ty the file,

This articie was presented for a specific purpose if ever you would life wore irformation on any of tha particularitifes mentioned here: you could find it in Eruce Caron's articies or in the Auvanced niagostics anial. If you vould libe bore details on the procese descrited. I'd be happy to try and heip you. You can raan me through the TMUS's BES ar in Hall at (619) 777-7686.
 medere. This indication of ancetance has made the eqecutive desde to offer a mide range of public domain enftare in the

 prodecing the mathly disiettes until the end of the February meeting unless there is a tanand for it. all feu softure
 provided to there interested!

 have reserved chamel 33 for hebly TCOMS.

[^0]
 All parties please contect the contributing editor if interested.
 198 National TI Fest to te helu ir otawa on April ©t. More uetails as they appear!

- I have come across a little gen of a program that all owners of a speech synthesizer and extended tasic should be interested in.

1R0 Rem *** Heird Sunds ***

IIG Rei by David Huggett
129 Pen
150 Rem 97 Per Users Group. Toronto.

150 For $Y=1$ To 88 : : if $Y=4$ Then $Y=7$

175 $\mathrm{D}=$ Len? $\mathrm{D}+\mathrm{I}:$: Print Y

- (Sher-TI-Eune) (Eerry Minul) Subject: Forth

De tempen temps des pens demandent des questions concernant les differentes versions de forth. Halgre gu'ily ait flusiurs differentes versions du Eagir il n'y a que 2 versions principales de FORTH.

Ii contient alore des additions a la version 'fig'. Et il est plutot offert par des vendeurs prives pour les plus grae pritedeurs.

Mais puisque forth est un lanouge extensible, il est possible d'ageter tous les mots dont vos auriez de besoin. It on peut alors compoer un programe de tracution qui nous permattrait duthiser une atre yersion gie la notre (fio) tel le 79 ou zutre.

 can only be deccibed as a mellifluous voice.

Eut foight Rider is televised fiatian. Those astanding speeh-synthesis and voicemenonition features mon't be standarid on next year's rars or hoe compters. In the here and now, most speach synthesizers still sound

 seach-related hardware and softuare currently abilable for feremal computers. Although still in its infanch speech

Nost people thay too much fun talking and singing to even think anot the physiological aspects of hok worde are
 [awemication-mhether it's a baty's first word or a fajestic aria-involver far giore than shoer jung-pouser.

 and tintre.
volume is self-explanatory unless you've never noticed that baseball's Billy martin bellows a bit lower than Alistair Coolet. The basic frequency of aperson's vaice is usuly called, "pitch, which sipply aeans that linda Roretat's varal corde vibrate concideraty faster than Neil Diamon's do. Timbe--jist a fancy tern for vocal tone-results from the sonic resonnese within a ferson's chest and throat, when the rori-to-tue bources around in veir vodl tract: secondary freasencies (usually called oyertones) are also created that give the spoken ward its tone and
 classical FH station.
 geech eafthare denoting the word fire weuld breat the word into four phonemes; f consonant: short A vowel, long E wosel and a guttural Ficonsmant.

When you ise a microphone to enter words into a compter'e speeithetoring system, the input gets ronverted into an

 reprosents a different combination of frecuency, volume, and timbre.
 rapid samplig of the data as it's teing input. Samping is e proces in whit special circuitry in the computer chathe the strenoth, or aplitude, of the electrical sional-that is, the feas and vallevs of the ravefora-at reauler intorvals. This information is than converted to as and ls by an analon-tondigital wenverter and stared on flopp disk. To replicate the sound you acces those numbers in meary and create anther signel that ofets turced back inte a epolen conemd via a digital-to-analro converter.

This kind of rapid saming demand a sampling rate twire that of the highest fregency gi spech signa to zoid losino crucial data, In other wor

per secorg of sturec Epeach.

 on': selectet bits, stipeing the rest, 50 thet memory space is conserved. The rissins data gets filled in the
 mathematical copffients neaded to concoct these estimates are stored on special foth (readonly perory) shipe. The eventual playbach can't moteh fich Lithle in the ert of niwicry, tut the trajent is menory concervation: the LFC wethad consumes miy about 1 witi butes per second of stored speech.

Stristly speating, both time-domain synthasis and LFC are not spech-svithesis procedures per se, farely sperh-storsine frocedures. Cheaper still--not to wention stingier with gemory-are systems that do zey hith microphoras and voice input altogether. Froducts like the votran Type ' n ' Tall are keybard-based. You type the latter apporimating the phoneme you want to hear, the progran quickly fetches a block of bemory contairing a tent-tospech a porithe, ffter dioital-to-analog conversion, the speech produced is jerly and mechanical. Eut the real beaty of these tona fide speetrsynthesis svstems is that they eat in only about 10 bytes of defory per second of synthe-bable.
 years in the future, goes half mad frow isulation. The song's only oversight was that computer technolegy will eventually provide interactive talking giamss as chatates for spere evplorers.

Alas, computer giners uto'd like to turn their machines into ersata Dict cavetts will have to te patient. Although we do have vaige-recoorition syetems now that let people call uf spreadshent files a continent away to vocally change a cell's data, the days of humatotocomputer repartee are several decades anay.

Sue Charonneau, a linguist and compter scientist at Anerican ficrosystams Inc. of ganta Clara, California, genairs why she doen't think that the dauning of full-scale speath reconition 5 infinent. "The day is very far
 chang in the content of a senterce. For emempe. we don't houk how to progran a compter to tell the difference betwen 'thic quy' and 'the sky' which sound enactly the same when mot people promource then "

Uictor lue, assistant profesear of electrical engineering and compter seiente at Mit and an amert in speach

The spech-remonition products to mith br. lue alludes come in two mair verieties: speder-uependent and zpeder-inuppedent, In the former catenory, the user creates a vocabulary by cpabling into a gicrophone and making
 pases create whats lnown as a teaplate, the speen pattern aganst whith the computer comparss al future yoicp

 if woutell the syetem run" or blist, "eure than 9 times out of ia it till recomize yolf voice and follow the instrution.

 tho ena entover whe tramed the se step and reated the template.

 of anly the wards yas and no and the mambers a throuth 9.

Hontan compter of gotis valley, cailfornia, is the leading manfacturer at epech-starage hadtare for the

 B EEconts of spereh.

The wountan Combter baerds heve their win for chips that fold routines though which the speet capsilities can

 and tola. Seet mould be a correct ancker, hole would not.

 stores the ir his datatase alog with the fure traditional details of a sitiog such as dete, tine, lucation, and the color and marbige of the tird.

 continue to be sold.

 Qutes such es Hangran.

 reations，seys that with this peripherat．wers will be atle to istye simple voice instructions te some Tl software． Frcluding genes and edacational applications．The MEX will cost about $\$ 170$.

Most businespagle have two thirgs in mind wen they purchase harchare and softwere sar voice recogition； amirizing the efticiency of workers involved primarily 1π hands－on tasis and accessing or creatan files trof remate lecations：Vatan＇s lns．＇s Venan and Supersof＇s Voicedrive＇used in conjumetion rith a Tecmar Volce Recognitior．boart） are refresentstive of the latest aroup of voicerecagnition products gered to the business and scisertific commities．
fotut the size of a nornal disk drive，the vaded an be used with any computer－micro or mini－－equipged with an
 tan te esperially useful in businesees with emplovees involved in hands－on work．One California company，for example， LSes VBage to iseus voice commads to a computer that drives both an x－ray spectrometer and an electron microscope．When en empofee sits hunctied oyer the microscope in a darkened lat，he doesn＇t have tiee to onsher a phone ar type if keyteard comands ta control the equipment．

Voicedrive，speech recognition software for the IBM FC，is tallor－made for the businessperson who always sems to be two or three time zones away from vital spreadsheet data，Voiceorive and its companion hardmare，the Tecmer Voice Rzcoonition board，sell together for $\$ 795$ and enable the distant businessperson to access and operate the feratchpad spreadshet Frogram verbilly，Essentially，the jet－lagoed executive places the phome call，pulls file by voice， vorally trangits the numbers to be entered in variaus cells，and wats for the reaputer to spit tack a synthesized acener．

Another product dasigned for excutives is the Texas Instruments Spech Comand system for the TI Frofessional Comptar．This $\$ 260^{2}$ sveten includes a plugin board as well as software that lets a user set up greaker－dependent vaite recugnition for entering commands．this＂transparent heyboard＂can be used with any software to set ur multiple vectularies of 5 mords each，in which each word realaces up to 40 kevatrokes．The number of vocabularies is limited by the systen＇s metory，The system also allows the compiter to record incuming phone mascages，dial nudersy deliver outcoifo phone messaes，and play hack messages from a reante telephone．The speech susten can store up to it finutes of speect on a etandard 32ethyte disk or wo to 4 hours on a 5 －meoabve hard disk．

Eungrd dechiteh，director of morketing for Centioram Carporation＇s vuice－uutout profucts，feals that the slenly evolving speethrecognition merket is inhibiting seles of spech－storage and sperh－shithesie devices．＂State－nt－the－art spech recognition is laging far tehind speech reproduction，＂he notes：＂and many would－te tuyers feel that one appication isn＇t useful without the other．＂Moreover，dackitch stresses that many businesspeople igrare spech－symhesis developmente becalse of the trivial apolications they＇ve otserver（such as the finerican－built luyury cars that pipe un and let the driver know that all sybems are furctional．＂Talking cars are a gimick that fen people take serivusly，＂says Jackitch．

Anather objection to speech reproduction and recomition is that English，a lenquage already in dierepar，will dead even faster phce cognters uet involved．Tecmar＇s Val Matula scoffs at the dea，＂Y＇ve found that my spech has tecema fore prefise，＂he seys，＂after you use this bard for a while，you won＇t sey＂uh＇very diter betwen werds
 stilted．＂
 blessedly interruptibie these systeas are．bnlike an irate umpire or chattering fiver－vear－ald，a computer cail be quicky silenced．

Thates Euison never tourted an integrated circuit，but his marvelous Victrola wes seciety＇s farst＂vaice rerodacer：＂Hen turn－of－the－century admirer fell all over himself praising Edisen＇contraption．Tom leaned hask and sad，＂Friend，Ididnt invent the first taling machine－just the first one fhat could be turned dif．＂

```
IHB FEL ART EA, DNFTEST2 FO
```



```
E Ehvon
```



```
46
```



```
7. 3):: 5P=24
```



```
5E:\ NEXT।
WE FOT I=2 T] 112::N(I,1)
=-1::|晻1
146 H2徃="123456789AE[DFF":
```



```
O FFP= FFPFFFFFFFFFF,
15E [PEN #1:"FID,S,LF"
```



```
i
17% FDF ROL=1 Te 24
```



```
M5H:\31;
15: FOS CH=1 T0 32
OF CALL SCHARFOW, RO,V1::
If YIJ2 THEN }\alpha=Y\mathrm{ ELSE }0=5,
T18 CGLL SFHTTE(41,D, \G,RDH:
-7, COL*E-7)
22% K=y-IE :: IF YQ THENK
```



```
52E : GTO +24 ELSE CALL}
MSFPT(y+51, , 部)
```



```
:: EOELS 524 :, 50T0420
25 IF NGFOFFF: THEN X=0::
6056 520:: 60T0420
1HB RED AR RA．DUETEST2 F0
```



```
46
```



```
2． \(31:: 15 ?=24\)
```



```
55：NEXT
```



```
150 LPEd \(41:\)＂FID．SR，LF＂
```



```
17\％FDR \(\operatorname{ROL}=1\) Te 24
```



```
1425（3）
\(15 \mathrm{E} 5 \mathrm{CE}=1\) T0 32
－
```



``` \(\mathrm{E}-7,20 \mathrm{C} * \mathrm{E}-7 \mathrm{I}\)
```



```
245 IF KRat＝5LAMG THEN \(y=1\)
```



``` 60565 520 ： 6010420
```

```
260 BYTE=7
2-2 FDG }A={E\mathrm{ 7O 1 STEF -2
2OE E(G, ETE:=FOSNEY5:SEDO!
KGRs,A,(j,1)
24A B(1, BYTE)=PGS(HEY$,SEG$(
*ra+1,1,1)
-\because BYTE=EYTE-1
31: NEXT A
32G FLR D=S TO 1
3O FOR E=? TO OTEP -1
34* FOR F=0 T0 7
35[ IF (EID,FIAND 2E)THEN H
=H+2^F
301 NEXT F
```



```
30% MEXT E
35N NEXTD
40% Y=6
410 GOSUE 520
420 FGR E=1 TO 6 ::IF K(X,E
I=3 THEN FRINT H1:CHR$(3):CH
```



```
,(1):
433 NEXT O
44E HEKT COL
459 FRINT #1:CHF# (3)&CHR#(2)
```



```
F)&CHEs{3):
466 FOR CD=1 TO 32 : : FOR 1
1708
```



```
;
4AE NEXT : :: NEXT CO
49% NEXT ROG
50G PRIN F::CHR&(3)?HR& (2)
```



```
266 EYTE \(=7\)
2．FDN \(A=1 E\) TO 1 STEF－2
```



```
\(-\because\) BYTE＝EYTE－1
312 NEXT A
320 FER D＝TO 1
342 FOR \(F=107\)
35 IF（EUG，FIAND 2AE）THEN H
\(=h+2\)
S0A MEXT F
```



```
35 NEXT D
\(40.5 \quad Y=6\)
410 GQSUE 520
420 FIR \(\mathrm{E}=1\) TO E ：：IF \(\mathrm{k}(\mathrm{X}, \mathrm{E}\)
```



``` （0））：
```



```
44A WEMT CDL
```



``` F） CH Hem 319
464 FOR \(00=1\) TO \(32:\) FOR I 1708
```



```
；
－liext C0
```



``` RCHF
```


PROGRAMMING HELP FILE：

The purpose of this culum is to present，to the user，techniques that will be useful in the writing of programs for the TI－9y／4A hume computer．As not all readers will have the same programing skills i will present the faterial at a fundamental level but in a way that tries to be stimulating to the more experienced．Not everyone has knowledge about assembly language and I hope that what is presented here will get some of those people 5 tarted with it．I hope that there is something，in what follows，for ever yone．If you can provide solie prgraming insight that aight be useful to somene，please，feel free to pass it on to ae，and l＇ll get it into the next newsletter．

BASIC／EX－BASIC：

Character strings have got to one of the ruore tricky items that one has to deal with when programing．Text is used throughout a progras to inform or to prompt for a response．Last anth we had a sample of how text can be used in the input and output statements．This month my discussion will take a closer look at character strings，character string variables and functions that operate on character strings and string variables．

What is a chapacter？A character，in computer terminology，is a symbol that is represented inside a computer by a byte value（ 8 bits）．Comon symbols that are used as characters are the letters of the alphabet（both upper and lowercase），punctuation and monetary sybols，numbersand aritheitic operator 5 ．The space or blank character must also be represented as a byte value．other single byte characters that are used in computers are used to control spacing on printers or in commications and to signal various devices．The carriage return and linefeed are two very comimon characters used in cominuicating with computer devicees．

A byte value is associated with a character symbol，in the T199／4A，by what is known as the Aumerican Standard Code for Information Interchange or ASCII pepresentation．Since a byte can have a numeric range of 0－255 each of these 256 byte values riay represent a different character．Because a computer works with bytes and not the actual symbols that an ASCII values may represent，but must display the symbols for human interpyetation，the computer must have some means of transforming the internal ASCII value of a character into a graphic inage on your computer screen．You may，if you wish change a graphic image（ 5 䣫ol）a 550 iated with a particular ASCII value to another character inage，but 1 will leave the discussion of that exercise till another newsletter．

So its mot too much mure difficult to understand，now，that a character string is rerely a series of characters that follou one another．A character string，inside a computer，would be a number of consecutive bytes which contain ASCII values．Right now we are not wofried muiti about the internal representation as we are about how strings are reptesented in TI BASIC／XBASIC．

In BASIC／XBASIC character strings must be enclosed in quatation marks． ie．＂this is a character string！＂
All symbols within the quotes are then part of the character string．A character string variable is used to hold a character string and is different froma nugeric variable in that the last symbol of the variable name is a＇$\$$＇． eg．STRING末，LETK\＄，M\＄．Hete are a fay examples of how strings and string variables are used．

120 PRINT＂this is a string test＂

140 PRINT＂rilx of strings and string variables．＂

160 PRINT＂ETH of string test．＂
If you try above example you will see that only what is within the quetes of a string is printed and that where a PRINT statement contains a string variable only the exact value of the string assigned to the variable is printed．

A character string must nut be mure than 255 characters long since only one byte is used to keep track of a string＇s length．The LEN（）function will return the number of characters that are in a character string or assigned to a strimp variatle．
eg．LEN（＂hello＂）returns then nuber 5 since＂hello＂is five characters long and LEN（V）would return the length of the string assigned to Vs ．

There are sulie other usefull functions that assist in converting an ASCII value to a single character，and a character to its ASCII value．You can also change numbers to strings and strings constisting of nuwbers to number values（8 byte internal number）．Since numeric values cannot be assigned to string variables and strings cannot be assigned to nulieric variables these functions are often use full．

ASC（）is used to get the ASCII value of a single character．CHR $\$$（）given an ASCII value will retupn a string character，STR年（）givena numeric value will return a character string where each character is a digit of the number，VAL（）given a chafacter string consiting only of numerics will return the number value．
other operations that gan be done with strings and that are useful when yü whant to change a character string in some way are the SEGO（）function and the concatenation operator，＇d＇．

The concatenation operator joins tuo strings together to make a longer string．eg．As＝＂hello！＂thow are you？＂ and $A \neq$ when printed will give the string，＂hello！how are you？＂．Notice that a blank was placed after the＇！＇in the string＂hello！＂so that the juined strings would be readatle．The＇null＇string or zero length character string

SEGF（）is used to extract parts of a string，usudly for the purpose of deleting characters making the ofiginal string shorter or tuilding a different string．eg．SEG\＃（hello hi bye goodbye ${ }^{n}, 1$ ， 5 ）will return 5 chapacters starting from the first character of the string＂helle hi bye goutfyét．Usefull if you want a choice of greatings in your program．With some experiwentation you can build all kinds of strings and even have your conputer génerate 5 mate randoli senténces or poetry．

RFT $\$$（）is also usefull at times．This function allows you to repeat a character string a specified nuliber of
 characters long and consisting of alternating xs and 0 s ．

A final string function 15 FOS() ．This function is usefull when you want to find characters or a sequence of characters withing atring，it works as follows．eg．POS（＂areonist＂，son＂，1），the secund string＂son＂is colipared with tharacters of the fifst string，narsonist＂，starting at the pusition of charater 1．If the string＂son＂is found in the string＂arsonist＂then the position of the first character of the first giatch will be returned．If mo fatch is mide then a zero value will be returned．Functions like this are usefull if word processing progras．

Thats the end of ay discussion about character strings．The best way to learn miore atout these functions and using characters strings is to sit down at your computer and try some experiments．Who knows what stories you can get jour cowiputer to tell．

ASSEMBLY:

The following tutorial comes from the MAD HUG newsletter, which was taken frow Lehigh gg'ers December newsletter. It should be short enough for must to enter and assemble.

a this part of the program is the initimilation:

Der start the program whir is sTart

1 MiA 10 could hive used ba instead of 10 (lias $y=10)$

1 program aesinc here

START UPI WSREG LOAD WORKSPACE POINTER IREDIATE. POINT ID DUR WORKSPACE,

- CLEAR The scream

IKE LO ADO 1 TO K
CI. RO,767 COMPARE I MEDIATE ROt TO 767

IE LOOP If ITS LESS THAK DR EQUL JP (EDJO) LODP

- nispiar di the screen al row 12 count io 15

Jap - prevents the program torn ending so you my set the result

I REturn to the clime program
CLR eis3TC CLEAR TE status ate
LIP $283 E 0$ LOAD GAL WORKSPACE RESISTERS
1 eVOO70 BEAKCH TO THE CALI IMS PROGRAK
END
\qquad
$\dot{~}$
ia dd the numbers together avo convert to anil

FORTH:
This section is postponed till next month.

Pastimes \& puzzles
Solution to December:
who is the Engineer? Smith.

		SMITh	
BONES	ROBINSON		
	NO	YES	NO
FIREMAN	NO	NO	YES
ENGINEER	YES	NO	NO

	Mr. Smith Mr. Jones Mr. Robinson		
	NO	YES	No
CALGARY	No	MOTTO	No
BETHE	No	YES	

Sorry! No puzzle this month. I was slow in getting started this issue.


```
*.; i, .. som
```


INDEX
$\cdots=F A G E$
$\therefore \quad \because \quad \because \because$
$\therefore=\mathrm{TYFE}$
已 = DSEFFTIDN
$4=F E T E E$
$5=F 4$ mis


```
%%
```



```
    wiNh=1EG 3j;
    F,0.8. 1715
```


[^0]:

