
VAST
9 9

U E R' S
GROUP

., 	 •... 	 i i 	(,,-

VRILLEY OF THE SUN I.1
-..... Ti 99 USERS I; 'OUF' 1" . .. 	i

..
•

0 L._ N A on I ND
1* -4-* 	.4- -Kr *: 	-I--I-.4-* .4- -4-* 	 1* 	.4-.

rt2 	.
fia 	

en,",, 111
.11 h 	 e 	 Ita 	 • 	• 	 • 	• 	AIN Eui r u1 1z

!!!: fi 	•
riti 	• • 	• •

GUI NG 	T
LA 	E CI T 	.

▪

.
ti/i'LPLITEP TIJTIDF.. B

I-IINTS ANC' TIPS. ..

11 	Ili
ill 	„I

o.
1

•fo. 	r. To • 	r . •

• • II 5

NAAST 99 LES 437-4335

F' CH 	 1-1` A S: 7' 44 .7.1H L:I.HTT H2

	 MAY,1987 	

T('- WiiN 	NN.TCEREctirc,\'

	

The VAST 99 USERS' GROUP is a 	Deadline for submission of art-
support group for TI 99 Home Comput- ides or advertising for the News-
er users. 	We meet on the second letter 	is the last Saturday of every
Saturday of 	the month at the Los month. Articles may be submitted 	in
Olives Resort Motel in the "Phoenix" any form, however, the preferred met-
room at 202 E. McDowell Road (about a hod is by phone transfer directly to
block East of the Library). The the Editor.
meetings start at 10:00 AM and con-
tinue until 	11:00 AM with social- ********T.****************************
izing 	starting at 	9:00 AM. 	The
yearly membership fee is $6.00. 	 Advertising rates are as follows:

	

All meetings are open and anyone 	 Commercial:
may attend. 	Only dues paying mem-
bers may vote in elections and ob- 	 Full Page $10.00
tam 	programs from the Users' Group 	 Half Page $ 7.00
library. 	 Quarter Page $4.00

The current officers are: 	 Personal:
President

Mike Marfisi 	 897-8280 	 Four lines,
Vice-President 	 30 Characters/line

Stu Olson 	 846-7624 	 $1.00
Secretary 	 $.20 per line

Bob Nixon... 	338-4083 	 over four.
Treasurer

Ike Van Kampen 	934-5164 	All rates are for ONE issue only!
User Group Librarian

	

Earl Bonneau —.269-3802 	*********************************-***
Newsletter Editor/BBS SysOp

Jim Ely...... 	437-1796 	 Programs 	are 	available 	from the
U*********************************** USERS' GROUP LIBRARY at the follow-

jng rates:
A FORTH Tutorial is being conduct-

ed by Rene' LeBlanc in this newslet- 	 SS/SD Disk $2.00
ter. 	It consists of 	a continuing 	 SS/DD Disk $4.00
series of 	articles relating to his 	 DS/SD Disk $4.00
version of FORTH which 	is available 	 DS/DD Disk $8.00
from the User Group Library. For
more information, please contact 	him 	If 	copying of 	documentation 	is
at (602) 991-1403. 	 required, it will be at the rate of

	

$.10 per page. 	If the User Group
The Users' Group's BBS is now in supplies the disk, please add $1.00

operation 24 hours a day. Contact it to the above charges. An exchange
at (602) 437-4335. There is a lot of program for free programs is also in
interesting conversation and informa- effect. Please contact the librarian

,.1

tion available here so give it a try.

* 4.: 4: 4: 4 4 4: 4: 4: :4: 4: :4: 4: 4: :4: 4: 4: -4: 4:

* .1%.7 Fl t 1 	of t. hiBun
AK
4:4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: :4: 4:

for 	further information.

* 	4::4: 4: 4: :4: 4: 4: 4: 4: * 4: 4: -4: 4: 4: 4:

TI c? Cl Lr_ rs G p,

-4: 4: 4: 4: 4: 4: 4: 4: 4: 4: * 4::4: 4: 4: *. *

MInUTES
For

APRIL 11,1987

Thu AP ✓ il maatino oF
	

'. ,'PST 	99
was hald on Saturday., Apr i I 10,
1987, at tha Olivos Hot aI on East
McDowall in Phoanix. II< a Von

Komp.= wo

•

unable. to b
	

present

E.0 Mika MorFisi acted cis Trams-

Th

•

maatino was coiled to
ordar by Prasidant Gar

	
Kannady.

ot 10:00A M.

Tha First ordar oF businass
was tha alaction oF oFFicars For
t ha 1987/88 .'zcir Durind the
Morch maatind tha Followind
bars wara nominotad hold
oFFica:

Prasidant
Pra-7idrrnt

c", r7 Cir''tClr

TICCISUICI

Mika MorFisi
c.tu 01.--zon
Bob nixon
Ikc Van Kampcn

T., AS., T. S' 	 ;E:-; L., HTTH 	 P" di a H

MAY,1987

From the Elitore be6h
so id that we had raciaved notica
From a user group in Oklahomo
thot has purchased tha antira

oF the notional 99 User
Group and is oFFarinci to sall
procirams Fri ObOUt 42.00 ccirh.
Tha addrass For tha Scott Adorns
domas is:

Graotar Orlondo USCF Group
P.O. Box 1391
Maitland, FL 32751

For tha library , inFo writa:

GCIFY) opanad t
Tha mora nominacs.

the 	nominotions
closad and tha nomi
dotas daclorad ml
month rothar thon h
maatino, wc OFC

computar swop maat.
ino thinds to sail
brino them alono.
thot as For as ha k
has no objaction
ovarFlowin9 into th
I ot. Ha will chack
mant. 	Also 	i_az wi
soma odvartisamant
popers. 	It tuns po
InSt 	yJeCIFS avant
savarol new mambars

C.O. 99ars U ,115 Group
P.n. Brix 70707
Midwast City, , OK 73110

Wa hova raciavad 	inFormotion
hhah 	KL S. , stcms 	is markctinci a
1<a9boor1J 	intarFaca wil I thot
ollow a usar 	to raploca the TI
kayboord with onp 	IBM
kcy, board. 	Thc 	intc(Facc 	is a
printcd c (cult board 	that 	Fit -.
into 	tha 	console: 	just lika thc

ha Floor For RAVE intarFaca that Mika damo'd o
ra baino none. , 	Faw months 000. Other naw itams
ware daclored 	includad on intarFoca From Mock
n iotad condi- McCormick 	that will allow usa oF
lactad. 	riaxt 	on RGB monitor with tha TI. 	Wa

o ld o 	Formal 	hava no raol inFo o 	 rZrrY,

	

n this. 	G

o ino to hold a sow a blurb about 	IL 	in MICRO-
Anyona ha'..- pandium.

is weicoma to

	

GC11- 1:2 	sci i ci 	SL Li read an odvartisamant that
nows tha hotal dascribad the new hard disk con-

	

Lo tha mact 	trollar card to ba markctad by,
C 1- Car parking My, arc. 	Ha sold that it is Floppy,

	

with monoga- compatable ond 	is sailing For
II arranga For 	around $250. 	It 	will ba ovoil-
in locol naws- obla From TEnEX.
intad out thot

	

brought 	in
	

Stu announced thot tha USCF

droup to which Gars, SIACCFS now
balonos has started a projact

rY. Pointed out 	that 	tha buildind Super Carts For sola to
Orlando, FL Uscr Group has bought 	individuals For a vars, reosonabla
thr, entireock oF tha Scott pr ice. 	Contact Stu For 	Mori

Adams 	advantura 	gomas. 	The inFo.

module 	is selling For $3.00 and
tha disks ara $4.00 aach. 	Mika conTinuED rIEXT PAGE -=>

.F` A. a .Er 4: .-' A ES' 	S' 	IslE" ArE;L H 77- E R

	 MAY,1987 	

Effitor6 	Cortinc,w6

Garry, asked i F anp 	mambar
would be intcrastad in toking thc
club spstcm I -ionic and using it
evarp onoc in n whilc to kaap it
in Dank condition. It scams that
when 	it 	i-s not bain9 usad on o
rapulor 	basis, 	it 	objacts 	to

bain9 usad at tha mactings.

Thar ,_ didn't scam to ba onpona
intarastad ot this time.

Pt thot point, thc mactinc - 1 WOE

CIOECd.

Mika MorFis
c..orrYtorp

0 ERROR

=tort this month's iHEUC

with a corraction to on ortiolc
thnt oppaorad lost month. I pub -
lishad Jim Patarson's BXB procirom
From "Tips FrOM Ticiaroub." Tharc
is on arror 	in th'_ second pro -
cirom. 	I copiad tha procirams os
thcp warc publishad in "Tips" but
therc I = (-1 bug 	Thr 	bug 	 in

thc 	lino 	numbar thot ther, cond

proclrom craotas. 	Thu_ line n ,-mbar
orcotad 	is 32000, 	but tha I inc
numbar thot should b'z orcotad 	is
30002. Whorl pou margc it os is
tha progrom doasn't - work. . The,
chongc For the sccond program is
in lina 110 ond hara is the COI -

FCCI:Cd lina:

lio opEn #1:"DSK1.BXBDATA",V
ARIABLE 163, OUTPUT :: PRIFIT

#41:CHR$(11),SCHRSC50)e."7C\C
7 .4-."CHR$C190),,,CHRSC199)e.CHR$
C.136),?,MSCHR$C0)

The rest of both programs is
coccact. 	I had o chance to plop
with 	this program n littla this
past month (aFtcr correcting
obova) and harc arc a Fcw com-
mants...

When tpping 	in and. cranking
tha progroms, mokc Sur'_ thara arc
no ossambly routincs in expansion
MCMOr. Start with a Frash (just
turnad on) spstam, othcrwisc thc
doto crcatcd will bc somcwhat
scromblcd and the rcsults lcss
thot imprassiva.

I mcrged this 	into 2 BASIC
onlp progroms to sac whot 	it
would do. 	Thc progroms wharc
"CAMELOT" ond vicounTinG Pun" (You

ore proboblp 	FOMiliOr 	with the

First). 	It works "like o Million

Bucks". 	Tha proc .iroms run per -
Factl 	now 	in EX-BASIC, 	onlp

IF 	pou havan't 	triad
this Droc -irom, do so. 	It 	raollp
works 	wall 	ond 	pou 	will 	b'z
imprasscd! 	now on 	to 	othr, r
things...

in THIS ISSUE...

I'm 	so ovarwhalmcd bp the
articics pou Folks hovc submittcd
that this month I have. 2 orticics
on FO RTH. I could hovc had 3 but
one. WOE submitted a littic Iota.
ou'll clat thot onr, 	nr,rxt 	month.

It 	looks 	lika 	pou pcoplc onlp
wont articlas on FORTH. OK
with me iF thot is whot pou wont.
Faiic 5 is GoinG FORTH bp Bill
Wadmorc about crcoting a FORTH
utilitp, M-Stock. Rana' baDins
his 	disr- 11.=-=.ion 	oF his DISK-COPY
utilitp on poga 6. Port 3 oF our
tutor on SORT Routines bp Tom
Moron is on Doge. 8 rind poge 9 is
Part 4 of our tutor on T11IS9900
Assamblp Languoga. You onlp get
out oF it what pou put into it!

A PROBLEM...

Our 	new 	President, 	Mike
MorFisi. is going to be unabla to
continua as Presidant. 	He has
had a changes in his work schadula

'CorITinuED on PAGE 12-=>

Vd4S:T 5"5' MEMS:Z-HTTHAV 	 P'XIGH

MAY,1987

-27077.0.°72P :/7767 -47-;9
TZTi-97ifZ' 705-,:gP7-39

***** GOING FORTH ******* 	 growing in opposite 	direc-
tions. 	They cannot collide

M-STACK, A FORTH Extension 	 unless their sum exceeds that
value, 	which is not likely in

If 	you have all 	been 	reading
	

normal usage.
Rene's WHEREFORTHS, you will know by
now that FORTH maintains two stacks, Line 3 initializes MPTR to point to

	

a PARAMETER stack with which it does 	 the base location of M.

most of its operations and a RETURN
stack "R" which is used for DO loop
housekeeping and auxiliary func-
tions.

Frequently, we come upon opera -
tions where we want to roll 	strings
of 	things 	into 	and out of a stack.
For this, one needs two stacks. "R"
can be used for this but if you are
also inside a DO loop or two at the
time, life can get very complicated.
On the way to building my FORTHOPS
system, I created a third stack "M"
as an extension to support these
operations. 	I think you will find M
very handy as an auxiliary stack 	in

your FORTH system.
The screen below defines a series

of words creating stack M and the
following is a line-by-line descrip-
tion of what is going on:

Line 2 places the M stack at 	low
memory location 3D00. 	This is
the same area occupied 	by

FORTH's Return stack. 	They
are over 300 words apart and

Line 5-7 defines PUSH, which moves
the top of the parameter stack
onto M, updating MPTR.

Line 8-13 defines POP which moves the
top of M onto the parameter
stack and decrements MPTR.

Line 14 defines M@ which gets a copy
of the top of M onto the
parameter stack. It does not
disturb M.

One of the advantages of having M
in the low memory space is that it is
outside of FORTH's dictionary space
and numbers placed on M will not be
disturbed if the dictionary contents
are changed. Thus M can be used to
pass parameters and values between
FORTH applications that are spooled
in as binary load modules from disk.

Next month I will give an example
or two of the use of M to do some fun
things in TI-FORTH.

Bill Wedmore

SCR 247
0 	(Definition of M stack)
1 BASE->R HEX
2 3D00 CONSTANT M-STACK
3 M-STACK VARIABLE MPTR
4 	(Set up pointer to stack location)
5 	: PUSH (n)
6 	MPTR @ 2+ SWAP OVER MPTR !
7 	(Push n onto M-STACK, update MPTR)
8 	: POP 	(n)
9 	MPTR DUP M-STACK 2+ •
10 	IF ." STACK EMPTY" M-STACK MPTR !
11 	ELSE @ DUP @ SWAP 2- MPTR !
12 	THEN
13 (Pop n to parameter stack)
14 : M@ (N) MPTR @ @
15 (Gets a copy of M) 	R->BASE

I. - c7"5' MHATZ—ETTHR'

MAY, 1987

\1111 	rtri±11-1_,C11±-1 lir 	1
In WHEREFORTHS #14 I provided a nine

screen Forth program designed to do a
sector-by-sector copy of disks using only a
single disk drive. 	I intend this program to
Cat 	reasonable example of a real and useful
program written 	in Forth, and at the same
time, I have tried to show how previous
utility words we .have developed in the
r..jHEREFORTHS articles can be used as compon-
ents in an application program.

How doss one get started to write a pro-
gram in Forth? 	In many respects, it 	is no
differsnt 	than 	getting, started 	writing a
prouam in any other computer language. 	We
m...ist 	decide 	what we want the program to do
(T.THAT?, decide or a method by which 	the
coram can cio it (HOW?), and then make a

numper of implementation choices of how to
encode that method into an operational pro-
gram (DETAILS).

Let's review these steps for the COPY-
DISE program:

WHAT?:

C, cipsy any formatted TI diskette to another
diskette on a sector-by-sector basis. This
is different than simply copying all the
files from somewhere on the source disk to
somewhere on the destination disk. Instead,
this means "cloning" the source disk so that
not only does the destination disk contain
the same information as the source disk but.
doingit so the information is located ex-
actly the same on the copy disk as it is on
the source disk.

An additional requirement is that only a
single disk drive is needed to do this copy
function. I also require that it work with
all .ralid formats (SSSD, SSDD, DSSD DSDD)
for TI disks.

HOW?:

The main strategy is to read as much as
possible from the source disk into memory,
then prompt the user to change diskettes and
then write the stored data back onto the
destination disk and prompt the user to
change back to the source disk and keep re-
peating this until the entire disk has been
cop i ed.

The first subproblem is to figure out how
much spare memory is available for storing
the intermediate disk data being copied, and

where the spare memory is located. This
will be the subject of the rest of this
article.

There are three main areas of RAM (Random
Access Memory) available to store the data
from the source disk before prompting the
user to change disks and writing it back out
to the destination disk. The TI memory ad-
dress space is partitioned into "low RAM"
from addresses 8192 to 16767; "high RAM"
from 40960 to 65335; and VDP RAM. In
Whereforths #4 I provided a memory map of
the RAM address space. Also this and the
VDP RAM space is summarized in your TI Forth
manual.

Of course, not all of this address space
is available to store disk data because the
Forth operating system and the disk copy
program itself occupy the RAM space, and the
VDF RAM is used for display of the screen
data, graphic characters for screen display
of ASCII characters, disk buffers and other
things. 	I had to dig around a little bit to
determine what memory 	is available within
each of these address spaces to store the
disk data.

It turns out that in low RAM the avail-
able space consists of the five Forth system
disk buffers. The address of the first disk .

 buffer is stored in the Forth user variable
FIRST and the first address above the Forth
disk buffers is stored in the Forth user
variable LIMIT.

In high RAM the space consists roughly of
the space between the end of the scratch pad
buffer PAD which floats above the top of the
Forth dictionary and the parameter stack
whose base is pointed to by the Forth user
variable SO. The parameter stack starts at
high memory and grows downward toward low
memory.

The available VDP RAM can be determined
from Page 3 of Chapter 4 of your TI Forth
manual as the space between >1400 (hex 1400)
and the highest available address of VDP RAM
(This is stored in the CPU RAM address >G370
(See Chapter 4, Page 5 of your TI Forth
manual)).

By knowing these things, we can compute
the available space within each of these
three regions of memory. Most of these
calculations are made on screen #4. Then a
final calculation is made at the end of
screen #9.

E: 7' 9 9 11H INT E-:1.--HT T H
	

P^4 H 7

MAY,1987

\ Disk Copy Program SCR#4
' BASE->R DECIMAL

0 VARIABLE #B \ Number of Blocks
O VARIABLE BP \ Block Pointer
SO @ PAD 40 + - 	B/BUF / CONSTANT
LIMIT FIRST - 	B/BUF / CONSTANT
HEX 8370 @ 1400 - B/BUF / CONSTANT
1400 CONSTANT VDPBUF \ Address of first VET' Buffer

R->P4217,

-->

: \ Disk Copy Program SCR#9
OOPY-DISK TEXT DRO .SD GET_#B 0 BE
BE,--;IN Br@
WHILE CR .RB 2.® >R

GET-LO-BUFS GET-HI-BUFS GET-VDP-BUFS .TD
CR .WB R> B!
PUT-LO-BUFS PUT-HI-BUFS PUT-VDP-BUFS .SD

REPEAT
CR .COMPL

r-.) ri% Prin 40 + 	R/RUF 	#HB ! \ 	SP+, #HB to final value

#HB \ # Hi Bufs
#LB \ # Low Bufs
#VB \ # VDP Bufs

Now, what did we do here? On screen #4,
I first set the BASE to DECIMAL (iust to be
sure) then defined the variables #B (Number
of Blocks) and BP (Block pointer). 	Next, I
defined three constants: #HB (Number of hi . :
blocks), #LB (Number of low blocks) and
(Number of VDP blocks). 	Remember, Forth
partitions disks into blocks of 1K each, so
we are setting up how many 1K blocks we can
put in each of the three memory areas.

The first constant definition for #HB is
temporarily calculated as

SO PAD 40 + - B/BUF

Since PAD will move up as the dictionary
grows, I recalculate this on screen #9 where
the dictionary has grown to the maximum
after loading the program. I put it on
screen #4 because it will be referenced by
subsequent screens. We will just overwrite
it with a new value on screen #9, SO @
returns the address of the stack base (the
effective high address in memory), then PAD
returns the beginning of the scratchpad
buffer. I add 40 to it, because during
output of text to the screen, this buffer
will be used. I chose 40 because no user
messages are longer than this. So PAD 40 +
computes 40+PAD which is the low 	byte
address of this range. 	Then the - sign
subtracts P8D+40 from SO yielding the number
of bytes of available space. 	Actually,

there is a slight risk here because I didn't
allow for any values on the stack. It is
unlikely that more than 3 or 4 values would
be used, and I probably should have used a
value of SO 8 - to be safer. You can add
this refinement if you wish.

	

B/Buf 	is a system constant set at 1024
(bytes per buf(er). 	We divide by 	this to
see 	how 	many 	buffers will 	fit into that
range of addresses. 	The forth word "/"
discards any remainder which 	is what we
want. We only want the 	integer number of
buffers that will fit.

For #LB the calculation

LIMIT FIRST - B/BUF /

performs a similar calculation.

Then HEX 8370 @ returns the highest VDP
RAM address available, and 1400 - gives us
the number of VDP RAM bytes available.
B/BUF again gives us the number of blocks
that will fit into that space and this de-
fines the value for the constant #VB.

After the program is done loading and PAD
will return its final value, we want to
patch the proper value into the constant
#HB. On screen #9, we recalculate the num-

CONT .2v u HD PACE 	—=

,F• A. H
	

I-7 A ;E: 	'5"'

MAY,1987

SORTING OUT THE SORTS 	 ST$(IW' ";L8ST$(1):: NEXT I
BO REM - Now let's sort thes

PART III 	 e names
100 FOR I=1 TO (6-1)

	

SORTING POINTERS 	 110 IF L8STS(I+1)>=L8ST$MT
HEN 200

This is part 3 of 	our 	three . 120 Bl=L8ST$(1+1)
par", 	tutor 	series on . sorting 	130 8$=FIRSTS(I+1)

le-0 algorithms in basic. 	In part 	1 	140 LAST$(1-1-1)=LAST$(1)
Pi, 2 we examined sort routines 	150 FIRSTS(I+1)=FIRSTI(I)
that organize your data whether 	160 LAST$(I)=B$
it be numbers or strings. Now 	170 FIRST$(1)=A$

	

vl let's see how to keep everything 	180 GOTO 100
together when you have Multiple 	200 NEXT I

ds 	 :; ERIN"' "SORTED L
IST:"

el 9

	

PROBLEM: We have written a 	220 FOR I=1 TO 6 	PRINT FI)!
phone-book type database that 	RST$(IW' ":LAST$(1):: NEXT
includes first name, last 	name,
Dddress, 	city, 	state, zip-code
and phone number. 	Each record 	Line 	110 is the actual sort- 	,' 0 1
has a separate designated array. 	ing algorithm. 	This 	line com-
We want to sort the database 	in pares all of the last names. 	If
alphabetical 	order by the last a shuffle of the names is needed

eol
1 T-J name. How do we make sure that then the program continues on to w,)

all 	the 	accompanying data 	is 	line 120, else 	if 	proceeds to 	dab
sorted properly. 	 the next loop.

1 ,,, 	SOLUTION: 	This 	is 	accom- 	Lines 120-180 is the exchange
LA j'' 	plished 	by using pointers which 	routine. 	A$ and 	B$ 	are 	vari-

keep track of where all 	that ables to hold the string being
information 	is 	located.When 	replaced so 	we don't 	lose 	it .
sorting in RAM 	(vs. the sl000w during 	the 	exchange. 	B$ holds 	Imi
disk-sort) 	here 	is the easiest 	the last name and 8$ 	holds the 	LqL]
way to accomplish the task 	 first 	name. 	If 	you had other

7-1 	 fields 	to 	sort, 	like adress, 1----I
0
N T ii 	To keep this routine as cam- 	zip-code, 	etc., 	you would need

Li prehensible as possible we will to create separate variables to
use a simple select sort rou- hold the exchange data as well.
tine. While this is the least When the exchange is completed

-T efficient, 	it 	is easiest 	to the program returns to line 100 	rn iA
	

1.1 follow. 	 to make more comparisons.

,-. 10 REM - First we need to cr 	Now if you wanted to sort.
C -' 	 ----, ilr 	eate a sample data base 	 this 	same 	list 	by first name, 	:7;Fil 1 ,,,

	

L.. 	 (1 20 DATA JONES,SM 	 A ITH,ELY,COOP 	you would simply change 	I, H e 	---1
ER,KENNEDY,BROWN 	 variable in line 110 from LASTS
30 DATA JACK,SAM,ED,CARL,KOR 	to FIRST$.

/;) 	Y,BILL 	 G9 ! 	J ,__/ 	40 FOR I=1 TO 	 ill O 6 :: READ LAST 	This 	is a permanent sort. u.'-j
$(1):: NEXT I 	 That means 	that 	your original
50 FOR I=1 TO 6 :: READ FIRS 	list is changed forever. 	There

IP 	T$(1):: -NEXT I 	 may be times when you want to
Li 	 .

60 CALL CLEAR :: PRINT "UNSO 	leave the original 	list 	intact
RTED LIST:" 	 while sorting by another field.
70 FOR I=1 TO 6 :: PRINT FIR 	This is a bit more complicated.

ArE m.E.-z_ErTH 	 9

MAY,1987

,E7C3M.F°L7TH 	TUTa..R

Here you would use pointers. For in-
stance if you were sorting this list
by last name you would amend the
LAST$ variable with its record (or
position) 	number. 	Therefore 	the
first record, LAST$(1) would now
change from JONES to JONES1. The way
you would do this is to include a
line of code that says:

FOR I=1 TO 6 :: LAST$(1)=LAS
T$(1)8,STR$(1):: NEXT I

me at a DG meeting or drop a line to
the VAST DG Newsletter editor, Jim
Ely.

T.M.

) 	 () 	 ()) 	 () 	 (

MME,RH.F"aFeTH'3; - - - -
(=fMT 	 .P.T2a141
,F'AaH 7

ber 	of 	high buffers and then ' #HB
returns the parameter field address
of 	the constant #HB. We then store
the new value into that address and

This appends the position 	number 	all 	previous references 	to it will
onto Lhe end of the last name string. 	return the new value at run time.
Now you always know where that string
belongs. Such as JONES always should 	The number of blocks that can be
be kept in 	the first position, 	or 	stored 	in 	each of the three buffer
better stated, 	is the first record. 	areas have now been calculated and
That is known as a pointer. 	That assigned to the constants #HB, #LB
number 	appended to the string points and #VB. 	Note that to optimize 	the
to the position of the data. 	 amount 	of 	space 	in high RAM you

should strip the starting Forth con-

	

Pointers are best used with hugh 	figuration down 	to 	just the kernal
data files and disk sorts. Your RAM plus just those extensions needed to
sorts work best with the exchange support the COPY-DISK program.
method.

Next month we'll 	discuss other
I hope this series of sorting in- aspects of the COPY-DISK program.

formation has been 	helpful 	to you.
If you have any questions, please see 	 Rene' LeBlanc

'1J 	tr'Ert,,ti
TMS9900 ASSEMBLY LANGUAGE TUTORIAL

Part IV
THE BEAUTY OF BASIC (CONTINUED)

by Steve Royce - WNY 99'ERS

Last month, I went on at great length about the value
of creating your own subroutines for use in your
assembly programs. This month, I present two routines
one rather simple (CLEAR) and one not so simple
(SPRITE). 	I won't go into any great explanation, 	but
will let the routines do the work. Type them in
yourself as you will see how the structure works if you
do the work.

ASSEMBLY LISTING STARTS ON NEXT PAGE -=)

F' A a H 1 0 	 1.-7 A „E: T 5` 	N H 	HWTH

NAY, 1987

itr LLlT
DEF TEST
REF VSBW,VMBW,VWTR

TEST EL @CLEAR
LI R2,>0100
MOVE R1,@>837A
EL 	PRITE
DATA 0,95,9,1,5,5,7,33
LIMI 2
JMP 4
TITL ':4: CLEAR SUBROUTINE V 2.0 9-4-84 SJR :4:'
PAGE

CLEAR COMMON WORKSPACE, USES RO,R1,R11

LI R0,767
LI R1,>2000
BLWP @VSBW
DEC RO
JLT $+4
IMP $-8
RT

LOWER RIGHT SCREEN LOCATION
BLANK CHAR (ASCII 32)
WRITE
NEXT SCREEN LOC
COTO RT IF RO IS NEC
BACK TO BLWP

4:
* SUR
4
CLEAR

4:

:4:

:4:
:4:

:4:

TITL ':4: SPRITE SUBROUTINE V 2.0 9-16-84 SJR :4:'
PAGE
SUB SPRITE
USES RO,R1,R2, R11
REF VSBW, VMBW REQUIRED
START WITH SPRITE 0 WHEN DEFINING
PUT 4 OF SPRITES TO MOVE IN >837A
CLR @SPRITE-6 UPON REDO OF PROGRAM
BSS 2 	 **INITIALIZE FLAG
DATA >D000,>0000 Y,X,CHAR,C -J.OR INIT DATA

SPRITE NOV @SPRITE-6,RO NOV FROM Bss 2, ABOVE
CI RO,>0000 	CHECK IF INITIALIZED YET
JNE 4+64 	 IF YES, JMP TO MAIN

4
4 INITIALIZE TABLES

LI R0,>0:=:00
LI R1,SPRITE-4
LI R2,4
IIMWP g, VMBW
INF,T RO
INCT RO
CI R0,>0380
INC $-12

:4.
LI R0,>0780
LI R1,SPRITE-2
LI R2.2
BLWP @VMBW
INCT RO
CI RO,>0800
JNE $-10

LI RO,>0601
BLWP @VWTR

.4:
* SET FLAG

SETO @SPRITE-6

SPRITE ATT LIST
DATA TO LOAD
4 BYTES
WRITE TO VDP
BUMP POINTER
BUMP POINTER
AT END OF TABLE?

MOTION TABLE
ZERO DATA
2 BYTES
VDP WRITE
BUMP POINTER
AT END OF TABLE?

WRITE TO VDP R6
TO START PAT LIST AT >0800

4:
:4:
	

MAIN SPRITE SUBROUTINE
LI R2,4
NOV *:11+,R0 	GET SPRITE #

CONTINUED NEXT PAGE - =)

cP-'1 M.ENS:i-ETTH,R 	 .F'yq ,0"E I/

MAY,1987

lait
CI RO,•2000
JL $+4
MOV *RO,R0
CI R0,32
jNE $+4
RT
SLA R0,2
AI RO,>0300
MOV *11+,R1
CI R1,>2000
IL i+4
MOV :4R1 ,.R1
SWPB R1
BLWP @VSBW
INC; RO
DEC R2
JNE $-20

4.
AI RO,>047C
MOV *11+,R1
CI R1,>2000
IL $+4
MOV *R1,R1
SIJJPB RI
BLWP @VSBW
INC RO
MOV *11+,R1
CI R1,>2000
IL $+4
NOV 	1.., R RI
i.WPB R1
BLWP @VSBW
JMP $-88

PACE
END

MPY BY 4
ADJUST TO S.A.L.
GET DATA

PUT IN MSB .
VDP WRITE
BUMP POINTER
DECREASE COUNTER
BACK TO GET NEXT DATA

ADJUST TO MOTION TABLE
GET Y MOTION

PUT IN IIEB

BUMP POINTER
GET X MOTION

PUT IN MSB

Assemble this routine and RUN it. You should oet a

silly 	stick wriggling down your screen from upper left

to lower right. 	That's character 95. 	Too bad we don't
have a routine to define characters, isn't it????

THINK ABOUT THAT ONE!

.F• A. a H 1 :2 A S.77"- 	5 Air .E" 	E.- 7 T H„R.

	 MAY, 1987 	

Efitore 	fortinue@

ond will most. I ikzL miss most oF
Our maatinDs. Wa naad a parson
to laad our c-iroup, or do wa just
disband bacousa nobody, iF

Pciain, 	THE 	CHOICE 	I
YOURS!!

the wci. in raodinp throusph
the. nawslattars FIOM tha othar
sliroups around tha countr, this
EfzamE to b uci-.L7 , common
Problam. Evai- ona wants CO ba o
mambar oF tha Droup, but nobody,

 wants to land. Too bod we can't
Find this Falla riOBODY!

In OTHER nEws...

T 	i sn ' t 	much . 	Supp I ICI:F.
oF tha naw 1Icir c 	'640 COMM /- u,ar
ora to racaiva Chair
ordars and shipmants to consumars

ara 	slow, 	but 	goinq wall. 	Br7t
y;iou thou9ht y, ou would naval- sae.
the da...”, HUH? 	111c too.

OUR EBS...

Has CCCCiVCd Over 4500 calls
and is ooinD wall. It's baan a
slowar month than last month as
Brendo hasn't baan or Come to
think 	oF 	it, 	rim Chin 	hris 	Dom
Shoc'mm 	I 	wondr-r 	 T
(ha?) must hove 	lost the. phonc
rumba - to tha BES. 	Hop: :-..?ou lika
tha racant chanazs.

That's it. 	 naxt month.

Jim
nawslattar Editpr.

	

• B B S 	'Li:, S

TAT L-
Thj 	 c9. 	ur 	 LI IF"

	

1 -4 2 	T"...! F - 	1 	F 	CD ID r-

	

nrb p 	 B2B2

I= I Vie 	 ,̀E.̀ 	 I L.

P-Th 	 in Ft.
May, 1987

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

