""ewsLetter

nf.i‘: the PaScal »Modularz and Portable Programming Community Vo). 5§ No.3 December 1991

THE PROPOSED STANDARD FOR
MODULA-2
by Pat Terry

USUS members may be curious as to the state of the proposed standard
for Modula-2.

This "unofficial” note aims to give some idea of the rough state of the
language that is likely to be proposed in the next Draft of the Standard,
as agreed at the most recent meeting of WG13/SC22, held in July 1991
in Tuebingen, Germany.

The note is (deliberately) imprecise, but should give youn a feeling of
the surprises one may expect to see when the draft is published,
probably later this year. In what follows I have focussed on the
"added" features, rather than the "clarifications”, of which there are
many (for example, exactly what is meant by compatibility in various
contexis). '

Devotees of Modula-2 as it was originally described in PIM
(Programming in Modula-2, Wirth’s textbook), where it was a rather
"small" language, may be surprised at some of what follows. Indeed,
the trend towards extending the language desire for extensions is not
shared by all of the Standards group, and in particular not by the US
members.

Comments, criticisms and queries will be welcomed. You can e-mail
them to me, at either of the addresses:

Pat.Terry(@f4.n7104.75.fidonet.org
) g
~ pdterry@m2xenix.psg.com

“ or, on FidoNet as Pat Terry of 5:7104/4.

You can also send comments to the chairman of the US TAG (Task
Action Group), Randy Bush, whose name will be familiar to
aficionados of the excellent old Volition Modula-2 and Oregon
Softwate Modula-2 implementations. Randy can be contacted by
e-mail at

randy@m?2xenix.psg.com

or, by regular mail, at

Pacific Systems Group,
9501 SW Westhaven Drive
PORTLAND

OR 97225

Any errors and misleading statements in what follows are
unintentional, and are my responsibility; they should not
reflect on the other members of the group.

The draft of the proposed standard document runs to about 500
pages, and there are still bits to be added to the text. Much of
this bulk is attributable to the fact that the language is
specified primarily using a mathematical language "VDM-SL"
(Vienna Definition Language - Specification Language").
And part of the delay in standardizing Modula-2 has arisen
because VDM-SL is not yet standardized or stable either!

On to the changes:
New reserved words:

REM FORWARD PACKEDSET EXCEPT
FINALLY RETRY

/ and REM provide alterative ways of doing whole number
division and remaindering. PACKEDSET is a way of
specifying "packed" sets (that is, bitsets), and EXCEPT,
FINALLY and RETRY are there to deal with exception
handling and termination, probably the biggest and most
contentious additions to a once fairly simple language in this
area.

New pervasive (standard identificrs):
COMFLEX CMPLX ENTER IM IRT
INTERRUPTIBLE LEAVE LENGTH LFLOAT

LONGCOMPLEX PROT PRCOTECTION RE
UNINTERRUPTIBLE

These are discussed in more detail below,
New lexical elements:
(!and !) as equivalents for [and]
(:and :) as equivalents for { and }
@ as equivatent for * (pointer dereferencing)
These are all to handle non-ASCIH machines.
<* compiler directives *> in <* brackets *>
This attempts to get away from comments that are not really

comments and to ensure poriability to a greater extent than

before. -y

Page 2

__Underlines_allowed_anywhere in_identifiers

This should be attractive to devotees of this style.

While the Committee has not gone so far as to introduce a
STRING type (the issue was discussed), some exfra support
for string operations has been added. -For example

+ may be used to concatenate string constants:

nthisu + " is funn

New types:

The new types COMPLEX and LONGCOMPLEX give the
possibility for doing complex arithmetic very much as in
FORTRAN. Standard identifiers

CMPLX(real, imaginary) construct complex
from real

extract real part
extract imaginary
part

RE{complex)
IM{complex)

and a basic complex library have been proposed.

The type PROTECTION allows for more "portable” conirol
over interrupts. Five standard identifiers are introduced for
this:

function PROT() returns current level of protection

INTERRUPTIBLE, UNINTERRUPTIBLE define two of the
levels (an implementation may add others)

Procedures ENTER(protection) and LEAVE(protection)
allow for bracketing statements to guard against interrupts.

As already mentioned, there is a new type constructor. The
PACKEDSET keyword allows for construction of sets
required to be "packed” so that each element is represented by
one bit. For example

TYPE
Permissions = PACKEDSET OF
(mayOpen, mayClose, mayTryCinstead);
and the standard type BITSET is in this category:
TYPE

BITSET = PACKEDSET OF
[¢ .. SomelmplementationDefinedLimit];

Other sets are not required to be packed, and the upper limit
on set size may be considerably larger for "ordinary™ sets than
for "bitsets".

Other new pervasive identifiers have been added to clean up

USUS NewslLetter December 1981

type conversions:

INT(real) convert real to INTEGER
LFLOAT (wholenumber) convert who lenumber
(INTEGER/CARDINAL) to LONGREAL

Other conversion functions like this have also been "relaxed”.
So, for example,

FLOAT{wholenumber) convert wholenumber
(INTEGER or CARDINAL) to REAL

The general purpose type converter, VAL, has been
considerably relaxed. Note that VAL does not cast or coerce,
as it does in some present implementations.

The last new pervasive is LENGTH:

LENGTH(string) retumns length of its string parameter

Type Casting:

Type casting is now to be done as SYSTEM.CAST(TYPE,
value), not TYPE(value) as it was in PIM. This is to ensure
that the potentially non-portable use of this feature is properly
highlighted. The TYPE(value) syntax is to be removed.

Various other fundamental changes:

Varjous of these have been made. Some of these would take
too long to explain in detail here:

The order of initialization of circularly importing moduies is
now defined,

Recursive procedure types are allowed for example:

TYPE RecProc = PROCEDURE (Real, RecProc)

Coroutines have been moved from SYSTEM to another
system module, named COROUTINES. Several extra
features have been added; and these are no longer directly
compatible with PIM. The motivation is that interrupt
handling, in particular, on the PIM model was inadequate.

Multi-dimensional open array parameters are allowed.

A new set of rules for FOR statements and their control
variables has been formulated. Basically, thou shalt define
control variables locally and thou shalt not alter them; this is
explained more clearly in about 16 pages of formal
specification!

FORWARD declarations are allowed, and must be acceptable
to multipass compilers.

USUS NewslLetter December 1991

Termination and exception handling have been built into the
language through the keywords FINALLY and EXCEPT and
RETRY, along with a supporting system level module. This is
a very big change. Some idea of the feature can be gleamed
from the following examples:

IMPLEMENTATION MODULE Wotsit;
IMPORT EXCEPTIONS (*system module*);

VAR
LocEx : EXCEPTIONS.EXCEPTION;
PROCEDURE Action ({);
VAR
Which : EXCEPTIONS.EXCEPTION;
BEGIN
something;
IF Wrong THEN
EXCEPTIONS ,RAISE (LocEx) END;
SomethingElse
EXCEPT
HandleException;
END Action;

BEGIN (*Module body¥*)
InitialisationCode;
~ FINALLY
TerminationCode
EXCEPT
HandleTheException
END Wotsit.

Second example:

FROM EXCEPTIONS IMPORT
ExceptionValue, EXCEPTION,
RAISEGENERALEXCEPTION ;

FROM LibModule IMPORT
LibExceptionValue, LibException, Fly,
ReplaceRubberBand;

PROCEDURE KeepFlying();

PROCEDURE TryFlying():
BEGIHN
Fly
EXCEPT
IF LibExceptionValue() =
BrokenRubberBand
THEN
ReplaceRubberBand;
RETRY
END
{* Re RAISE exception #*)
END TryFlying;

BEGIN
(* Statements in normal execution ¥)
PryFlying;
(¥ veves *)
EXCEPT
CASE ExceptionValue(} OF
| NotLanguageException:

Page 3

RATSEGENERALEXCEPTION("Unknown /O Library
library exception”)
| IndexException
{* Take recovery exception if
possible *)

This is different in very many respects -from all of the ones
proposed in earlier drafts of the Standard. Indeed, every draft

RETRY has seen virtually a complete redesign on what has gone
(* Other cases *) before.
ELSE
(* Re Raise exception *)
END I/O operations (reading, writing)
END KeepFlying;
StdChans 10 procedures
Value constructors are allowed for arrays and records, as well ProgramArgs 3 procedures
as for sets: I0Types 1 type
TYPE TextIO 8 procedures
ArrayType = ARRAY [0 .. 10] OF REAL; WholelIO 4 procedures
VAR RealIO 5 procedures
X t ArrayType; LongIC 5 procedures
BEGIN RawIO 2 procedures
(* lots of code *) ICRes 1 procedure and 1 type
x 1= ArrayType{S5.3 BY 5, 6.7,
8.2*sqrt(y), 0.0 BY 3} The following are much the same, but for default channels
Full generality is allowed, which this simple exampie does not STextIO 8 procedures
show. In particular, note that it is not intended just for SWholelO 4 procedures
constants or for variable initialization. SRealIO 5 procedures
SLongIO 5 procedures
The SYSTEM module typically is required to export SRawIO 2 procedures
SIORes 1 procedure and 1 type
{*types*)

LoC, BYTE, WORD, ADDRESS, MACHINEADDRESS
Device modules (opening, closing, positioning)
(*ADDRESS manipulation*)

ADDADR, SUBADR, DIFFADR, ADDRESSVALUE DevConsts 3 types and 7 constants
StreamFile 3 procedures, 3 types
SHIFT, ROTATE and 5 constants
‘ SeqFile 7 procedures, 3 types
CAST (*type casting*) and 5 constants
TSIZE, ADR (*old favorites*) RndFile 10 procedures, 5 types
and & constants
LOC is the "smallest addressable location" (typically a byte). TermFile 3 procedures, 3 types
MACHINEADDRESS is for use in specifying absolute and 5 constants
addresses in variable declarations:
VAR Interfaces
Screen
{MACHINEADDRESS {0B8COH,0H}] : BigArray; IGChan 17 procedures and 3 types
I0Link 7 procedures and 17 types

Library modules: Storage

Storage 5 procedures, 1 type and

The modules of the "standard" library will be "optional” - 2 constants

however, implementations that claim to be standard will not be
alfowed to have moduies of these names that do not conform

X Concurrent processing
exactly to the features and semantics of the "standard" ones.

Note also that several of these will make direct use of the Processes 16 procedures and 5 types
exception handling features, and so will be rather unlike {Not the PIM module)
anything seen up till this time. Only the briefest of summaries Semaphores 5 procedures and 1 type

can be given here:

Page 4 USUS Newsletter December 1991

String handling

Mathematics
RealMath 12 procedures,
2 constants and 1 type
LongMath 12 preocedures,
2 constants and 1 type
ComplexMath 15 procedures, 1 type and
3 constants
LongComplexMath 15 procedures, 1 type and
3 constants
LowReal 15 procedures and

CharClass 6 procedures

Strings 1 procedures and 3 types
Convlypes 2 types

WholeConv 8 procedures

RealConv 7 procedures

LongConv 7 procedures

wholeStr 4 procedures

RealStr 5 procedures

LongStr 5 procedures

System clock
SysClock 5 procedures and 8 types

15 constants
LowLong 15 procedures and
15 constants

> ecmenencr>e><> The VOGON News Service <><><><o<><><><>

Edition : 2336
VNS TECHNOLOGY WATCH:

Tuesday 4-Jun-1991

[Mike Taylor, VNS Correspondent]

Circulation : 8466
[Utteton, MA, USA]

COMPUTERWORLD 1 April

CREATORS ADMIT UNIX, C HOAX

In an announcement that has stunned the com-
puter industry, Ken Thompson, Dennis Ritchie
and Brian Kernighan admitted that the Unix
operating system and C programming language
created by them is an elaborate April Fools
prank kept alive for over 20 years.

Speaking at the recent UnixWosld Software Development Fo-
rum, Thompson revealed the following:

“In 1969, AT&T had just tenminated their work with the
GE/Honeywell/AT&T Multics project. Brian and I had just
started working with an early reiease of Pascal from Professor
Nicklaus Wirth’s ETH labs in Switzerland and we were im-
pressed with its elegant simplicity and power. Dennis had just
finished reading ‘Bored of the Rings’, a hilarious National
Lampoon parody of the great Tolkien ‘Lord of the Rings’ tril-
ogy. As a lark, we decidéd to do parodies of the Multics envi-
ronment and Pascal. Dennis and T were responsible for the
operating environment.

“We looked at Multics and designed the new system to be as

USUS Newsletter December 19921

complex and cryptic as possible to maximize casual users’
frustration levels, calling it Unix as a parody of Multics, as
well as other more risque ailusions. Then Dennis and Brian
worked on a truly warped version of Pascal, called ‘A’. When
we found others were actually trying to create real programs
with A, we quickly added additional cryptic features and
evolved into B, BCPL and finally C. We stopped when we got
a clean compile on the following syntax:

for(;P("M), R-~P(""Wor(e=C;e-- ;P("_"+(*u+HBYH2DP("| "+(*u/D)%2);

“To think that modern programmers would try to use a lan-
guage that allowed such a statement was beyond our compre-
hension! We actually thought of selling this to the Soviets to
set their computer science progress back 20 or more years.
Imagine our surprise when AT&T and other US corporations
actually began trying to use Unix and C! It has taken them 20
years to develop enough expertise to generate even marginally
useful applications using this 1960’s technological parody, but
we are impressed with the tenacity (if not common sense) of
the general Unix and C programmer. In any event, Brian,
Dennis and [have been working exclusively in Pascal on the
Apple Macintosh for the past few years and feel really guilty
about the chaos, confusion and truly bad programming that

Page 5

have resulted from our silly prank so long ago.”

Major Unix and C vendors and customers, including AT&T,
Microsoft, Hewlett-Packard, GTE, NCR, and DEC have re-
fused comment at this time. Borland International, a leading
vendor of Pascal and C tools, including the popular Turbo Pas-
cal, Turbo C and Turbo C++, stated they had suspected this for
a number of years and would continue to enhance their Pascal
products and halt further efforts to develop C. An IBM
spokesman broke into uncontrolled laughter and had to post-
pone a hastily convened news conference concerning the fate
of the RS5-6000, merely stating ‘VM will be available Real
Soon Now’. In a cryptic statement, Professor Wirth of the
ETH institute and father of the Pascal, Modula 2 and Oberon

structured languages, merely stated that P. T. Barnum was cor-
rect,

In a related late-breaking story, usually reliable sources are
stating that a similar confession may be forthcoming from
William Gates conceming the MS-DOS and Windows operat-
ing environments. And IBM spokesman have begun denying
that the Virtual Machine (VM) product is an internal prank
gone awry.

{COMPUTERWORLD 1 April}
{contributed by Bernard L. Hayes}

Object-Oriented Programming (OOP) Resources

David T. Craig
736 Edgewater, Wichita, Kansas 67230
26 September 1990

Object-oriented programming (OOP) and OOP libraries are
becoming more and more prevalent in the field of computer
programming. To assist in the introduction and learning of
this exciting development I have compiled a set of documents
that provide an excellent foundation for the understanding of
OOP from a Pascal perspective. ’

Since 1983 Apple Computer has been invoived with QOP.
Apple first developed the language Clascal (Classes and Pas-
cal) for its Lisa computer. Complimenting this unique lan-
puage was an extensive set of class libraries cailed the Lisa
Toolkit. Clascal evolved in 1985 into Object Pascal for the
Macintosh computer and the Toolkit evoived into MacApp.
Note that Niklaus Wirth, the designer of Pascal and Modula,
assisted Apple in the design of Object Pascal.

Apple provided the following documents for Clascal, the
Toolkit, and Object Pascal:

* An Introduction to Clascal (55 pages)

This is an excelient discussion of the merits and mechanics
of an object-oriented programming methodology. 1 find this
document to be more readable than Apple’s later Object Pascal
tutorials.

Page 6

* Object Pascal Report (9 pages)

Complete description of Object Pascal and how it compares
to Pascal, Note that this report was piaced by Apple into the
public domain.

* Object Pascal vs, Lisa Clascal {4 pages)
Fascinating discussion of the changes Apple made to Clas-

cal to create Object Pascal. Provides rationales for each
change.

* Toolkit Reference Manual and Sources (= 1000 pages)

Detailed reference for all the Toolkit classes and the Toolkit
Clascal sources. If you really want to see what goes into de-
veloping a complete class library this is for you. Toolkit
sources are also available on Macintosh diskettes,

Many other secondary resources from magazines exist which
introduce Clascal, the Toolkit, and Object Pascal. I have pho-
tocopies of articles covering these topics,

Copies of these documents have been sent to the USUS Ad-
ministrator. If others in USUS have an interest in these con-
tact either the administrator or David Craig. 1 will gladly copy
whatever you need as long as you pay for the photocopies (=
10¢ per page) and the postage cost.

USUS Newsletter December 1891

Thirty Years
Waiching
The Same Mistakes

Felix E. Bearden and Angela Markwalter

There was a town in south Texas called “Nowhere” that computers from the Philco Technological Institute. I did
was having a very serious problem with rats, the rodent pretty well on the course— even the part where I had to
variety. Atatown council meeting where the problem program a three address machine. Do any of you even
was discussed in very ecological terms, a suggestion was know what that is? Why three addresses? This computer

made to acquire the tom cat from the
neighboring town of “Somewhere”
because of his reputation as a ratter
and a lover. The consensus was that if
the tom were brought in there would

be both an increase in cats and, most Accumulator Instruction
likely they would be cats with rat Address 1

catching skills. The tom was acquired,

and sure enough, after 6 months there . Address 2

was a definite drop in the rat popula- '

tion. After 8 months the measurable Address 3

population dropped to about one half,
After a year, the rat population was
essentially eliminated.

Unfortunately, “Nowhere” had a new problem. Cats. had a drum memory, the first address was the location of

Again the town council met. The tom had a reputation the second operand (the first was in the accumulator), the

around south Texas and having been passed from town to second address was the location into which the results of

town there was no rat problem anywhere and his reputa- the operation would be stored, and the third was the

tion as a lover also was well known so no other town location of the next instruction to be executed, The trick

wanted him. One suggestion that was made ‘ to writing effective programs on this

was that they terminate the taboo tactile machine was to optimize the location of

tabby. But gentler hearts prevailed and the A operands and instructions on the drum to

local vet was given the job of neutering the 2+—Computer reduce the effect of rotational latency. And

tender tom. At the next months council THAT my friends was the original RISC

meeting the cat counters reported that the processor.

number of cat pregnancies had leveled off.

However, at the next meeting, the tom When I finished the course T was teaching

trackers reported that the cat pregnancies had the electrical and electronic systems in the

increased by an alarming 87 percent. Jupiter Missile system. As you may
recall, this was an inertially guided

Again the vet was dispatched to catch and missile. What you may not know is that it

examine the tom. At the next meeting the had an analog computer that could

vet reported that he had checked the tom and compute course corrections faster than any

had found that the operation was successful ARL of the existing digital computers of its day,

but that he believed that he had identified the and, more importantly, it fit neatly inside

problem.

the missile. And THAT was a powerful
computer. (I would advise you not to stand
in its way, or wake, when it is launched).
Even though there were a lot of analog
computers in use at the time, in fact there

The tom had become a “consuliant”,

In 1959, 1 took a correspondence course on

USUS Newsletter December 1991 Page 7

was one hybrid analog/digiiat computer, and it was less
expensive, the digital compuiers {inally won the contest in
the market place.

implementor’s limitation. Even though the word length
was 48 bits, INTEGERSs were only 16 bits. Som‘cboldy
thought it was “neat” to do INTEGER computation in lthe
index registers and only floating point in
the main accumulator. With such a great

L{ Address [T
D" Left

l | Address [i
D" Right

floating point unit, why would anybody
use an integer for anything other than
indexing anyway? After spending a
million dollars hand tuning the application
programs on a 6600, Control Data
Corporation (CDC) replaced the Philco
2000 at the Westinghouse facility doing
atomic research and Philco 2000's started -
1o be replaced by newer, more popular

\f\ | Address | Instruction i

Index Registers

AIXJEL

machines. Note: I didn’t say more
powerful, By the way, the 6600 was a
multi-processor machine with a less
powerful instruction set. One of the
biggest problems for the software engineer
was that HE was responsible for avoiding
memory contentions and for synchronizing

’ hi !
I'must have done fairly well on my course, because I was
invited to go to school to learn how to maintain the
“Philco 2000”, Are you surprised to know that Philco
built a computer in addition to radios and washing
machines? Well, they did, and did a fair job of it wo.
This machine was so powerful that some (all hardware
engineers } claimed that a higher level language was not
necessary. Well, it did have a great instruction set.
How about AIXJEL? The description is, Add the
contents of the address part of the instruction to an
index register and if the result is equal or less than
the value in the address part of the left half of the
“D” register then jump to the address contained in
the address part of the right half of the “D” register.
Or, in other words, it is the termination instruction
in 2 “FOR” loop. Another feature: floating point
was standard, In fact on the later models, the
floating point processor did floating point in
hexadecimal instead of digital. Remember now, the
IBM 360 was still a dream (at least to an engineer),
And I don’t know whether they even teach this
approach any more, but the arithmetic unit was

the processors. (At the tme there were a

number of papers on compilers which
were supposed to generate code for parallel processing to
automatically take care of these problems but I don’t
know if one was ever completed. If so, none ever became
very popular.} The competing Philco 2000 was a pipe-
lined processor and could be processing up to eight
instructions at a time, AND had built-in contention logic
and was priced lower.,

The Winner: The CDC 6600

asynchronous! That's right, the instruction time

depended on the operands rather than the worst case

timing of synchronous machines.

The machine was a great machine. Two higher
level languages were available. COBOL, and

FORTRAN. The only language I used was FOR-
TRAN. Idon’t think it ever met the standard, but
worse, it had a typical non-thinking compiler

Page 8

USUS NewslLetter December 1981

Thirty Years Waiching the Same Mistakes

During that same period, I became aware of hi gh level
languages. In fact, as a member of the Association for
Computing Machinery (ACM) I saw many references to a
language called “ALGOL”. Even early in my career I
didn't like to reinvent the wheel so the collection of
algorithms from the ACM was something I kept close. T
had hand converted a number of the procedures to
assembly language but I never used a real live ALGOL
compiler. After Peter Naur presented an elegant descrip-
tion of ALLGOL 60 to the world, a formal ALGOL
working committee under the International Federation for
Information Processing (IFIP) published a 140 page
report' describing a language permitting user extensions
such as defining data types, data structures, and operators
that apply to these new types and structures. Were they
on the right track? It looked like it, Unfortunately the
report had “almost no exposition and the langnage
description was inelegant,” I'm not sure that the report
caused the demise of ALGOL, but I’'m certain it didn’t
breath life into the language either.

In the “colonies” as you like to say, the popular languages
were FORTRAN, COBOL, and IBM's entry, PL/I. Even
though the Burroughs 5000, 6000, and 7000 scrics
computer design was strongly influenced by ALGOL,
Burroughs had to supply FORTRAN to its users because
of their demand.

The Winner: FORTRAN (at least for the moment)

Philco announced that they were no longer going to
pursue the computer market, With that announcement
went a supertor machine, while others, namely the IBM
70xx, and CDC 6x00 gained market domination. My
experience at Philco was good. In the development lab
saw the early attempts at building a tape drive using a low
mass capstan drive instead of the pinch roller mechanism
that stretched so many tapes. And I saw an early moving

head disk drive. The disks were about eight feet in
diameter and the heads were moved by hydranlic cyiin-
ders. It worked fairly well except that it shook the whole
building when doing a seek.

Nope—
Felix is
just running
the seek

diagnostici

@& %SH#NNII
We must be
having an
earthquake!

%)
z

AU ATEE]
1\
LAt

\

You reglly don't need one!

By this time, I was a hooked hacker (a person who loved
to program computers, but had no formal training in
structure and design). Minicomputers were becoming
popular because of their simplicity and low cost. They
were parlicularly popular for measurement and control
applications because they could be placed closer to the
application, be dedicated to a particular application and
usually run unattended. I decided that I would join the
minicomputer revolution at a company called Scientific
Data Systems (SDS). Now there was a group of hackers,
I think that the main challenge of the programming staff
was uniqueness of programs. The approaches were novel.
Of course they had to be when your only input/output
device was a Teletype. One person, Richard Resnick,
wrote an assembler that solved the forward reference
problem in a one pass assembler by writing the output on
paper tape backwards. Now that is taking last-in first-out
to the extremes, but it worked. One of my attractions to
SDS was that they were developing an elegant processor
cailed the Sigma-7. The computer, apparently modeled
after the “Atlas” computer® , was the culmination of all of
what we understood was needed for a machine designed
for multi-programming (multiple registers, paged mem-

USUS NewslLetter December 1991

Page &

ory, and high speed state switching to name just a fcw of
its features), but doomed by the buyout of Xerox Corpora-
ton. Ican’t say much about their high level languages,
the only language I used was the “Meta-Symbel," As
assemblers go, it was about as elegant as they come. In
order o wrile a program, you had a library of procedures
to describe both the programmer’s language and the target
machine for which you were generating code, The
assembler was so good that “you didn't really need a
higher level language” or so I was told. They may have
had FORTRAN or COBOL, but I never used it or saw it.

Soffware Engineering

Everybody was talking about a “new"” concept called
“Modular Programming” . Because "software develop-
ment costs were so high and so unpredictable, program-
mers were encouraged to learn about and practice
techniques that came from the concepts.”

Because I had experience with the Sigma-7, I got tired of
the rat-race in California, my wife was sensitive to the
instability of the various geological faults (not to mention
the citizens), and moving 1o Florida at the same salary
represented a 12% raise, I left the state of nuts and
earthquakes and came to the land of sunburms and
retirement homes. Systems Engineering Laboratories
(SYSTEMS) gave me the opportunity to contribute to the
design of still another 32 bit minicomputer. Because
some of the engineers were from California and knew that
the new processor would probably compete with the
Sigma-5 and Sigma-7, the architecture was similar, Some
of the bad features of previous SYSTEMS machines were
omitted, like the dubious “TURN OFF MEMORY™, .
which had an OpCode of 0, and this was in a day when
computers didn’t make the distinction between program
and data,

However, because of production price constraints and
schedule, some of the better features were omitted. Most
of you are accustomed to easily booting your computers.
On earlier SYSTEMS computers, we keyed in the
bootstrap loader (about eleven instructions) using the
front panel switches. Of course, the time it took to load in
the bootstrap was insignificant compared to the time it
took to load the program on paper tape, on a Teletype,
particularly if the tape got tangled, and tore. We finally
started using Milar tape, strong enough to pull the reader
right off the Teletype when it got tangled up. But this
was a new 32 bit processor, designed to have a hard disk
connected. The programmers won the baitle for a
machine that automatically booted, but the engineers won
the war. The bootstrap was on the “here-is” response
drum on the Teletype, a real problem when the so called
“dumt_g,:, CRT terminals hit the market,

Finally, some importance was given (o the development

of a compiier, With the power of big computer in the
[rame and cost of a minicomputer, SYSTEMS decided to
offer a FORTRAN compiler on the “SYSTEMS 32",
They contracted with a supplier to provide a fairly good
compiler that met the FORTRAN 60 standard but had a
number of IBM Level 5 compiler extensions. Unfortu-
nately, the leadership changed at Systems. The then male
president (later to become a woman) decided 1o invest in
supplying multi-terminal data entry stations for large IBM
installations and subscribed to some questionable man-
agement techniques which encouraged the better engi-
neers to leave and form two other companies, The
Systems 32 with a decent compiler was a good solution to
a large number of process control problems but without
people who knew how to sell and support the computer in
that market we saw more good effort go to waste,

N
/4

System 37

N
[

One of the companies that was formed from SYSTEMS
believed that “twenty-four bit computers were going to
take over the world!™ I went to work for the other one,
Modular Computer Systems (ModComp). There I had the
opportunity to design and and work with the team of four
who implemented the FORTRAN compiler for their first
machine (then revised for the second, third, and forth
machines). FORTRAN was gaining acceptance in the
“Process Control” market and even though few applica-
tion programmers were using it, it was being listed as a
requirement on mini-computer requests for quotes (RFQ),
ModComp, in its first year proved that hoards of program-
mers approach is not necessary to develop software, Ten
programmers produced three operating systems, all of the
cpu and device diagnostic programs, a macro assembler, a
text editor, a FORTRAN system and two software
libraries. Among the interesting stories there is where our
first major customer, ALCOA, sent a team of engineers
and programmers to MoedComp to tour our facility, which
was at that time in a deserted grocery store, and watch us

Page 10

USUS Newsletter December 1991

Thirty Yeats Watching the Same Mistakes

run a benchmark on the prototype. We carefully ex-
plained that we had modified their programs because we
hadn’'t implemented the “DATA™ and “COMMON”
directives yet. Would you believe that they bought our
system? And were one of our best customers. Maybe
they knew we needed all the help we could get.

In 1976, a group of process control engineers and
programmers meeting as a working group of the FOR-
TRAN Committee of the International Purdue Workshop
on Industrial Computer Systems were successful in
establishing a standard “Procedures for Executive
Function, Process Input-Output, and Bit Manipulation.”
Even though this standard seemed to have little effect on
the mini-computer industry, it did signal that higher level
languages were being used more by industry who now
saw the advantages of higher level languages and standard
software interfaces.

fiware Engj ri

Everybody was talking about a “new” concept called
“Structured Programming”. Because "software develop-
ment costs were so high and so unpredictable, program-
mers were encouraged to learn about and practice
techniques that came from the concepts.”

After we had gotten well into the design of the ModComp
III, we saw the announcement of the new entry of Digital
Equipment Corporation into the measurement and control
market place, Something called a PDP-11. Somchow we
were able to obtain preliminary marketing and engineer-
ing data on the PDP-11 and decided that it couldn’t
possibly be a threat to our ModComp II1. Compared to the
ModComp series of camputers the PDP-11 was a RISC
processor.

It is rumored that there is a marketing technique taught in
some Amencan colleges of business where the salesmen
and developers are gathered into a conference room and
determine the worst feature of a new product and what is
going to cause the most sales resistance. Then the
marketing department develops a campaign selling that
feature as the most unique and beneficial feature in the
produce. I can’t swear that this technique was employed
at DEC, but remember the advertising? Remember the
“UNIBUS?”

According 1o the mailings I gét from time 1o time,
ModComp is still hanging in there. I leftafter it appeared
that ModComp was not going to invest in another
compiler like Pascal or even “C" or a systems program-
ming language that we were proposing. I must note that
after I had left and returned for a visit some time later,
they had a Pascal Compiler that a customer had cither
donated or sold them. Ten years after [started design of

the FORTRAN compiler, and T can testify that is wasn’t
the best design, it was still sold as a product {a much
enhanced and improved version, it even had DATA and
COMMON).

We had been right about the design of the PDP-11, later
models of it had additional higher speed buses to enhance
performance. Similar changes in the architecture of the
ModComp II, IV and CLASSIC were not required.

BUT the winner: The PDP-111

Modcomp

{ left south Florida to move back closer to home. I was
born in Birmingham, Alabama, but returned to Atlanta,
Georgia which was about 180 miles away. I went to work
for an engineering firm that used a matrix management
system (that is a system where no person having the title
of manager can really manage what the people in his
department are doing but is still accountable for the
success or failure of a project). Even though Pascal and
“C” were available on a number of machines (I had used
Primer on Pascal by David Gries as a teaching text) I was
instructed that our applications would be written in
FORTRAN because and I quote “there are more program-
mers that write in that language than in any other.”

USUS NewsLetter December 1981

Page 11

But reqlly, you don'l
While I was still at ModComp I heard something about
large scale integration (the ModComp II and IV used bit
slice technology) and microprocessors. In Atlanta I
watched as an engineer built a microprocessor controller,
programmed both its operating system and application in
assembly language and instailed it in a local steel plant.
Why was he using a microprocessor? “Because it is much
cheaper and the instruction set is so simple that we don’t
need a higher level language to program it.” After we
totaled the development costs, the support costs, and
maintenance costs we found that the microprocessors life-
¢ycle cost estimates were going to be about the same or
more than a mini-computer. Here we go again.

I was happier at doing than managing so I formed FBAI.
As president I could be a "“doer” and as a “doer” I found
many opportunities where large organizations needed
something done but couldn’t get it done in their own
organization (usually because the staff considered the job
a prostitution of their abilities).

One of my opportunities was to do a study for Bailey
Controls (they had unwittingly supplied the control
system for the infamous Three Mile Island), The study
resulted in a report” on the various 16 bit microprocessors
available at the time, their high level language support,
the performance of their high level language programs,
and a proof project that a control system could be

converted 1o a high level language from assembly
language measuring the difference in performance and
implementation. Part of the study involved running the
Bailey Controls loaded version of the “Whetstone”
benchmark on most of the available microprocessors of
the day in addition to several minicomputers to evaluate
performance of the language/machine.” We had a meas-
urement of 1,042 whetstones on the VAX 11/780 run
using FORTRAN included for reference. The micropro-
cessors for which a higher level language was available
and which were made available for test were TI990/
101M, INTEL 8086, and the Western Digital WD/90.
The HP-83, an 8 bit processor was tested because of its
availability— in other words, I had one. The Motorola
68000 was in beta test and no development software was
available. Of particular note, the WD/90's operating
systemn was version 2.0 of the p-System and the compiler
was version 3.0 of the UCSD Pascal Compiler. Perform-
ance of these machines ran from 21.27 whelstones to
1.23. The slowest 16 bit processor: the 8086 at 2.06. The
fastest: the WD/9(a1 21.27. I understand that one of the
remaining WD/90 processors is owned either by PECAN
US or Eli Wilner a principal of PECAN US.

The winner: the Intel 8086! We had been done unto by
big blue,

As a supplier in a free market, we are not always able to
convince our customers of what is right. When the PC’s
started outnumbering their competition by 100 to 1 it is

As you can see,
the 8086 is clearly
superior in all ways.

Aaaah!

Custormers

Page 12

USUS NewslLetter December 1991

Thirty Years Watching the Same Mistakes

not easy to convince all of your customers that your
“Sage IV” is a better solution to their computer needs,
Therefore, FBAI finally relented and purchased an IBM
portable to support a number of customers that wanted me
to do applications on the PC. Having already purchased
the p-System for the HP-86, however, I was able to start
the development of an application which was ultimately
placed on a PC running a p-System which was purchased
from SoftTech, The p-System was then and still is
superior to the operating system for the 80x86 machines
known as DOS— “Dumb Operating Stuff”.

But the winner in the market place: "Dumb Operating
Stuff."

During this period another operating system was under
development at Bell Labs®. An operating system that was
supposed to do every thing an operating system was
intended to do. Many articles were written extolling the
elegance of the structure and features of this new operat-
ing system. An operating system that 0ok the Modula
concept of opaque to the control language. No? “Cat
reads each file in sequence and writes it on the standard
output..”, “col - filter reverse line feeds”,”dd - convert and
copy a file”, and I love this one, “deroff - remove nroff,
wroff, thl and eqn constructs™. In all fairness, even though
that is not my purpose here, there are a number of

HP 9915 UNIX
Transporter-Robot-Carousel | Cell Controller
controller
9915 Processor 80386 processor
ROM 4 Mbytes of ROM
16 Kbytes of RAM 80 Mbytes of disk
0 disk
Controlls Controlls
4 carousels 2 carousels
2 robots 1 robot

2 level transporter
6 dispatch stations
1 return station

1 level ransporter
2 dispatch stations
1 return station

directives that do make sense. While installing a system
for one of my customers, I accidently typed in “date” and
was surprized when the date was displayed on my
terminal. It was in a funny format though, year, month,
and day, instead of day, month, and year as we are used o
sceing it. Most of us who are involved with control by
computer understand that time is an important considera-
ton. Things happen in milliseconds to which we must
respond. There are also times we want to suspend our
application program for short periods of time, and we can
in this all things to all people operating system, we can
“sleep”, for a number of SECONDS. (NOTE: some of the
later releases for the 80386 permit you to sleep for
miiliseconds).

This new operating system is a model of efficiency. I just
ingtalled KitTrac, an inventory accounting, Automatic
Storage and Retrieval System (ASRS) control and plant.
wide material management node, in a PS-2 witha 1
MByte of memory and 30 MByte disk drive controlling a
system with two carousels, a MOBOT robot , and a single
level gravity conveyor system with two dispatch stations
and one retern station, Each device had its own motion
controller with asynchronous interfaces. A “cell”
controller was supplied which quened commands from
KitTrac and managed the operation of the mechanical part
of the ASRS. Using this wonderful new operating system
running on a Compag 386, the application required only 4
MBytes of RAM and 80 MBytes of disk storage. This
may not sound so bad except an associate of mine
(designed and wrote) and 1 (optimized) a program that
solved the same control problem using an HP9915 (the
controller version of the HP-85) in under 16 Kbytes and
using the little carridge tape drive that was available on
the HP-9915 (actually, the program was stored on ROM
and could run without the use of the tape drive). We
controlled four carousels, two robots, and a two level
powered wansporter with 6 dispatch stations and one
return station. AND our system was faster.

In order to achieve this efficiency, it was necessary to
invent a high level language that looked like the machine
for which it was written. Even though the popular story is
that “C” was chosen for the name of this language
because it was the second letter of BCPLY, it has always
been my suspicion that the language was named for the
grade that Kernighan and Ritchie received in their
“compiler design” class. Yes, I have had the misfortune
of writing a program using that compiler after having
used UCSD Pascal. The program was the implementation
of a controller using a Z80 microprocessor for counting
sponges and measuring the amount of liquid in them, “C”
was the best choice available in this application. Fortu-
nately, the preprocessor permitted me to substitute
“BEGIN” [or begin brace” (*, “END” for end brace “}”,
and a few other choice changes so that I could read the
program better, and I was using “ASE’ with a rewritten

USUS Newstetter December 1991

Page 13

ASE Pascal Assistant" 1o assist me in keeping the syntax
correct, so, I came out of the experience with few scars.
When I got the SoftTech p-System, I found a mcmbership
application to USUS which I filled in and joined. With
the CompuServe material in hand I logged on and found
MUSUS which was promoting the upcoming “Stride
Faire”. I went, and was introduced to a machine that had
the p-System as its main operating system. I somehow
had missed the “Sage 11" and “Sage IV”. Ithought I was
in heaven. After all these years I found a bunch of folks
doing it right. I was so enthusiastc that I sold a customer
on buying two of my KitTrac systems on the then new
Stride 440. T ported the system to the Stride in a matter of
days. We installed the system and it ran so well for three
years that the customer failed to properly back up his
data-base. The Bernouli removable drive had a major
crash and I was only able to recover about 30% of the
data. My customer prior to the crash had decided that all
microprocessor systems would be replaced with 80286
and 80386 based processors because “they were more
available in the market” and asked me to convert from the
440s to PS-2 Model 80s. After wamning him that he may
not expect the same speed or reliability, I took his money
and did what he asked,

In the fall of 1988 A. Robert (Bob) Spitzer, MLD. invited
me (o work with him on a grant using a neural network to
decompose and analyze electromyograms (EMGs)2. The
offer looked attractive not because of the money, but
because I could work with the Stride, Modula-2 (Scenic
Soft version), and neural networks, The data acquisition
system (now called NSI-Rivka) needed to collect, display,
and store data at rates above S0KHz. We needed to write
handlers for special devices like AtoD converters and
bitmap processors. UCSD Pascal, limited to a 64K data
space, limited in handler development to assembly
language, and limited in processing speed by the inter-
preter finally yielded to a native code generating Modula-
2 with arich set of system development features. To
support NSI-Rivka we have developed the NSI-Daniel
library which permits you to get as close to the hardware
as you need to accomplish your objective. The “Artificial
Neural Network™ (ANN) system which is now being used
to analyze a number of electrophysiological signals
(EMG, EKG, EEG, and signals in the gastrointestinal
tract) was implemented and is still being developed as a
research tool using the Daniel library.

Sure, there are some things I dislike about Modula-2. The
CARDINAL data type can only be justified by the fact
that it gives you double the amount of positive INTE-
GERS in most applications. In our compiler, indexing
may be done with only CARDINAL values which are
limited to 16 bits. In artificial neural networks, as well as
seismic processing and a number of other applications,
arrays tend to have dimensions that are greater than
635576. We currently resort to pointers and ADDRESS

arithmetic to handle these large arrays. There are even
things I don’t like abaut DANIEL, ButI wouldn'tbe a
good salcsman if I told you those.

The SuperStride 740, in keeping with its predecessors, is
a great machine. Fully compatible with the VME bus,
designed for multi-processor applications (we are cur-
rently quoting a system with two 740s, one minning UNIX
and the other running an expanded version of NSE-Rivka},
super fast, based on a NON-RISC processor, the 68030)
it is clearty the leader technologically in its field. How-
ever, the survival of the Stride has been in doubt for the
last several years. “Nobody has ever been fired for
recommending IBM.”

I want to see the Stride survive. If [had the investment
capital, I would put it into Millennium, who now sells the
Stride, to promote sales, development, and thus its
survival. Failing that, I promote it when I can and help
them any way I can. After receiving the source of the
Modula-2 compiler for the Stride, I called a person in
development (whom I will not name) to ask if they
needed something fixed in the compiler to help them out.
1 was wold that they “were not interested in Modula-2
becanse they could find “C"” programmers six for a
shilling.”? I regret that I didn’t say *You get what you
pay for.”

In November, 1989, ISO/IEC JTC1/SC22 Languages
released a document requesting the review of a document
entitled: DP10514: Information Processing Systems-
Programming Language - Modula-2, and Letter Ballot.
This document, printed on both sides of 8 1/2 by 11
paper, and barely fitting into a 1 inch three ring binder
was the “Third Working Draft Modula-2 Standard”. The
standard is presented mostly in a varant* of a non-
standard language called VDM-SL(Vienna Development
Method-Specification Language), a language even more
difficult to learn than “American”. If the IF[P
commitice’s 140 page report can sink a langnage such as
ALGOL, then this “Standard” should blow Modula-2 out
of the water.

The winner: probably “C”.

ftware Engineerin

Everybody is talking about a “new” concept called
“Object Oriented Programming System” . Because
"software development costs were so high and so unpre-
dictable, programmers were encouraged to learn about
and practice techniques that come from the concepts.”

“S0 What's your point?” as my daughter would say,

Are we doomed to use second best technology because it
appears that the products available depend more on

Page 14

USUS Newsletter December 1991

Thirty Years Watching the Same Mistakes

marketing and positive cconomic feedbacks'® than on
excellence in technology? I think not. Your presence at
this meeting is assurance that there are some who are
always seeking excellence in their work and demanding
excellence in the products they purchase.

Is there something we can do? You are doing some of it.
You are supporting USUS-UX and you are buying UCSD
p-Systems and using Pascal,

What more can we do?

1. Support each other in our conviction that what we are
doing is indeed in pursuit of excellence.

2. Bemore vocal. Let the world know that you believe
in excellence and this is the best way to achieve it.

3. Keep your vendors informed as to what you expect of
them. PECAN put a lot of effort into supplying “C”
in the Power System. I feel that their development
dollars could be better spent in bringing Modula-2 up
to standard or writing a highly optimized native code
generator for p-code. But [never told them.

4, Educate your co-professionals. If they do not know
why your approach is better, patiently explain why,
patiently explain again, then hit them in the head with
the two-by-four.'s

5. Listen to your co-professional. You may leamn
something. Even if his language of choice is “C".
Remember that the obstacles he faces are higher than
your own.

6. Educate yourselves! Give new ideas a chance before
you discard them as uselsess. I'm currently involved
in an “Q0PS" study group and even though (at least
so far) the concepts are not that far removed from
“Modular programming” and “Structured Program-
ming” I am finding that studying “OOPS” is forcing
me to look at software design differently. Revisit old
ideas. There were things an analog computer conld
do that were faster than digital processing. I suspect
there still are. And one of these days engineers will
see the advantage of the :"Balanced Temary Number
System”™"” Then we will all have to talk about
“TRITS” instead of “BITS”. Then Kemigan and
Ritchie will have the opportunity to invent a new
programming language “D” to run on a 12 trit
machine using the operating system “VQOJY,™®

Thank you for permitting me to share some of my
experiences and thoughts with you.

Ivan Wijngaarden, A. (Ed.). Report on the algorithmic language
ALGOL 68. Numerische Mathematik 14 (1969),79-218

*Rosemn, S., Programming Systems & Languages 1965-

1975 Communications of the ACM, Yolume 15, Number 7

*Kilbumn,t., Edwards,D.B.G., Lanigan,M.J., and Sumner,F.H.
One Level Storage Storage System, IRE Trans, Electronic
Comput. EC-11 (Apr. 1962, 223-235.

1SYMBOL and META-SYMBOL REFERENCE MANUAL,
Scientific Data Systems (Feb. 1966)

This instruction was actually designed to be used in the "Power
Failure Interrupt procedure’ and acrually tumed off the
memory so that it wasn't destroyed as power was fost in
memory.

‘Revised [SA Standard $61.1-1976, Industrial Computer System
FORTRAN Procedures for Executive Function, Process
Input-Output, and Bit Manipulation.

"Bearden,F. Report On High Level Language Evaluation, Bailey
Controls Company

*Ritchie, D.M., Thompson, K.L., The UNIX Time-sharing
System. CACM, July 1974

’Bell Telephone Laboratories, Incorporated, UNIX Programmers
Manual, Revised and Expanded Version, Holt, Rinehart
and Winston

19Tones, D., ANSI/ISO ‘C’ Standard, USUS(UK)LTD Newslet-
ter, December 1990

1"Karpinski, R., Pascal Assistant, a Fancy ASE Macro Module,
USUS News and Report Number 14, July, 1985

" Spitzer, A.R., Hassoun, M., Wang, C., Bearden, F,, Signal

Decomposition and Diagnostic Classification of the
Electromyogram using a Novel Neural Network Technique,
Proceeding of the Fourteenth Annual Symposium on
Computer Applications in Medical Care

UHe actually said “a dime a dozen'" but six for a shilling sounds
better here. :

"Section O Page 1, Third Working Draft Modula-2 Standard
(D106)

S Arthur, W.B., Positive Feedbacks in the Economy, Scientific
American, February 1990

15Refers to the story where one farmer who owned the mule with
the reputation of being the best plowing mule in the county
sold the mule to his neighbor. The farmer instructed his
neighbor that he must have a felt lined stall, must be fed
Jim Dandy Mule Feed at exactly 6 AM and 6PM, and that
the harness must have brightly shined brass fittings.
Having fullfilled 2l these requirements, the neighbor
harnessed the mule in preparation to plow up his field. The
mule wouldn't move. The neighbor called the farmer and
expressed his distress. The farmer asked if everything had
be done to specification. After checking the stall and
hamness he told the neighbor that he had done everything
correctly. He then picked up a two-by-four board and
soundly rapped the mule about the head after which the
mule plowed up the field in haif the time required by the
neighbors other mule. The neighbor, nonplussed, asked the
farmer “If I had done all of the things required of me, why
did you have to hit the mule to get him to plow.” The
farmer replied “You have to get his attention, first.”

"¥nuth, D.. Vol 2, Art of Computer Prograrnming - Seminu-
merical Algorithms, Addison Wesley

1By OJY - UNIX promoted by one letter

USUS NewsLetter December 1991

Page 15

MODULA-3 NEWS

Number 1, June 1991

Published by:
Pine Creek Software
Suite 300
305 South Craig Street
Pittsburgh, PA 15213

Editor: Samuel P. Harbison

Note: This is the on-line version of the Modula-3 News. It is missing photographs and graphics that are present in the
printed version. For a copy fo the printed version, contact harbison@bert.pinecreek.com.

In This Issue:

Introducing Modula-3

Xerox PARC Adopts Modula-3

Editor’s Corner: Will Modula-3 be Successful?
Modula-3 Information

Olivetti Tool Kit Announced

User Report: Steve Harrison, DEC

SRC Modula-3: Version 1.6 Released

Porting Problems Slow Migration to PC’s
Modula-3 Tips

Short Notes

Photograph of Modula-3 designers omitted.

Caption: Modula-3 language designers (left to right): Luca
Cardelli, Bill Kalsow, Greg Nelson, Mick Jordan, and Jim Don-
ahue. Jordan and Donahue were formerly with Olivetii,

Xerox PARC Adopts Moduia-3

Xerox’s Paio Alto Research Center (PARC), one of the
leading computer sciemce research institutions in the
world, has adopted Modula-3 for use in many of their
new projects.

Mark Weiser, Principal Scientist and Head of the Com-
puter Science Laboratory at PARC, reports that CSL is
on a multi-year track to switch their programming onto
Modula-3 from Cedar (which Modula-3 strongly resem-
bles). PARC intends to build a good Modula-3 program-
ming environment along the way, based on their current
Cedar environment. PARC has a strong commitment to
language interoperability, so they will be intercailing

Page 16

Modula-3, Scheme, C, and Cedar. PARC will use their
own portable, multi-threaded, garbage-coilecting run-
time, PCR, rather than SRC’s run-time environment.
PCR is in the public domain, and is already in wide use
inside Xerox for research and products. The Computer
Science Laboratory plans to make some supporting paris
of the new environment freely available.

PARC has beern the site of many important developments
in computer science, including personal workstations,
bitmapped graphic displays, the Ethernet network, and
the Smailtalk object-oriented programming language. A
focus of the Computer Science Laboratory today is the
world of ubiquitous computing, and the infrastructure for
supporting hundreds of independent wireless computers
per person per office.

EDITOR’S CORNER

Will Modula-3 be Successful?

A while ago, I visited a professor of computer science
who was familiar with Modula-3. He said that Modula-3
was probably the best language he’d ever seen. It was a
shame that it wasn’t likely to go anywhere because the
momentum behind C++ was too great. I didn’t want to
hear this; I was just about to quit my comfortable job as
vice president of a compiler company and become, in
effect, a Modula-3 evangelist.

Will Modula-3 be just another good idea that languishes

in journal articles and conference proceedings? It doesn’t
have to be. But, if we want to make Modula-3 successful,

USUS NewsLetter December 1991

we have to work at it. The first problem is exposure: a
lot of people don't know that Modula-3 exists. Tell
them about it. Pass on a copy of this newsletter or a
Modula-3 brochure. Give them a brief summary of the
features and the ““feel” of the language.

Once their interest is piqued, they’ll ask a tougher ques-
tion: What are the risks and benefits of choosing
Modula-3? Some of the risks are obvious: a new lan-
guage, no PC-hosted compilers, no third-party libraries,
and only one book. And, especially, no large user base
to build confidence. (Software developers do travel in
herds.) However, there are also some non-risks.
Although Modula-3 is new, it’s not an academic exer-
cise; its features have been proven in other languages in
commercial environments. Also, you don’t need an up-
front investment to try out Modula-3: all the necessary
software is free from DEC.

But more important, consider the benefits of using Mod-
ula-3. Increased quality, reliability, and mainfainability
of your software. Better productivity. Lower training
costs. Choosing the wrong language--one that lacks
modern features, is unsafe, or is very complex--could
easily cost a company millions of dollars over the life-
time of a large software product. If you had to debug
50,000 lines of code that Someone else wrote, would
you prefer that code to be Modula-3 or C++?

Persistence is the key. Keep spreading the word. And,
above all, keep writing those Modula-3 programs and
tools.

Modula-3 Information

Harbison, S., ‘“Modula-3,”” BYTE 15(12), November
1990. An introductory article.

Nelson, G. (ed), Systems Programming with Moduia-3,
Prentice Hall, 1991. Includes the final language refer-
ence and papers on the 1/O library, threads, and the Tres-
tle window system,

King, K., “What’s New with Modula-27” Dr. Dobb’s
Journal 16(6), June 1991. A good update on the Modula-
2 family of languages, including Oberon and Modula-3;
no specifics on Modula-3.

Harbison, S., Modula-3. A Modula-3 textbook that will
appear in the fall of 1991 from Prentice Hall.

Usenet newsgroup comp.lang.modula3. (If you do not
have Usenet access, you can send mail to m3-
request@decwri.dec.com and request them to forward
postings to you.)

USUS NewsLetter December 1991

For more information, including scheduling seminars on
Modula-3 for your school, user group, or business, con-
tact Pine Creek Software.

Modula-3 on PC’s

In line with its policy of encouraging the deveiopment of
Modula-3 tools, Pine Creek Software has had discussions
with several software vendors about putting Modula-3 on
personal computers. To lower costs and development
time, we have proposed modifying an existing program-
ming environment--perhaps one for Object Pascal, Mod-
ula-2, or Ada. To date, no development plans have been
agreed upon. Software vendors and developers inter-
ested in this project should contact Pine Creek.

Foreign Partners

Pine Creek Software is seeking representatives in
Europe, Asia, Africa, and Australia to distribute Modula-
3 software, documentation, and Modula-3 News. These
organizations would be the primary source of Modula-3
information in their areas.

Overseas interest in Modula-3 is strong. The Modula-2
language has seen more success in Europe than in the
United States. If you might be interested in helping pro-
mote Modula-3, please contact Pine Creek Software.

SPwM3 Appears

Prentice Hall began shipping Greg Nelson’s Systems
Programming with Modula-3 in May. SPwM3 is the first
book on Modula-3 and is now the de facto reference for
the language and core libraries.

The book, a collection of papers and original material,
includes the updated language reference, discussions of
threads and the I/O library, and a Trestle tutorial. The
final chapter, ““How the language got its spots,” is an
enlightening and amusing account of Modula-3 language
committee deliberations.

The book (ISBN 0-13-590464-1) costs $25.00 and can be
obtained at bookstores, from Prentice Hall, or from Pine
Creek Software.

PRODUCT WATCH:

Announced

Olivetti-Derived ToolKit

On May 11, 1991, Mick Jordan of DEC SRC announced

Page 17

the availability of the Modula-3 toolkit (m3tk), an evolu-
tion of the otherwise defunct Olivetti implementation of
Modula-3. The code-generation and run-time aspects of
the original implementation have been removed and the
remaining Modula-3 code has been configured as a
toolkit of reusable components, compatible with SRC
Modula-3. The system is made available under the same
licence terms as the SRC compiler. In addition, the origi-
nal QOlivetti sources are covered by a separate (less
restrictive) copyright notice.

The extensible toolkit is designed to support the creation
of Modula-3 program development tools and is struc-
tured around a compiler front-end (syntax and semantics)
which uses a public Abstract Syntax Tree (AST) to repre-
sent program source. Among the several tools in m3tk is
the beginning of an integrated, incremental program
development environment. It includes the Modula-3 com-
piler front end, a tool to scan the file system for source
file changes and recompile changed (and dependent)
units, a pre-linker to analyze a program for complete-
ness, a primitive browser, and a Makefile generator.

The toolkit is stored at gatekeeper.dec.com as the file
/pub/DEC/Modula-3/m3tk/dist-1.0.tar.Z. Bailding infor-
mation is contained in the file m3tk-instali.notes, and on
gatekeeper.dec.com as

/pub/DEC/Modula-3/m3tk/README.

A description of the system can be found in: Mick Jor-
dan, ‘““An Extensible Programming Environment for
Modula-3"" Proceedings of the Fourth ACM SIGSOFT
Symposium on Software Development Environments,
Software Engineering Notes, 15, 6, Dec 1990.

USER REPORT: Steve Harrison, Advanced Technology
Development, DEC

‘“We are the graphics software arm of the RISC worksta-
tions group at DEC. Some time ago, I got interested in
Jorge Stolfi’s wotrk on the ZZ-Buffer--a ray tracing
acceleration method. Jorge works at DEC SRC, and
coded his initial implementation in the Modula-2+ lan-
guage, which runs only on their own proprietary hard-
ware. I wanted to experiment with the algorithm, but on
a platform available to non-SRC folks like myself. 1
began to translate the code to C, but then I discovered
Bill Kalsow’s Modula-2+ to Modula-3 converter. The
converter does a reasonable job for most simple things.
Then Jorge and I spent many happy weeks doing the rest
of the translation and uncovering teething problems with
the then-new SRC Modula-3 compiler.

“The SRC Modula-3 compiler is much better now than it

Page 18

was in the carly days. I must say that Eric Mulier and
Bill Kalsow at SRC have done a first-rate job of fixing
bugs, and making other changes we asked for. Bill and
Eric continue to make significant improvements to the
compiler now that they have some reasonable input.

“I use Mick Jordan’s compiler front end tools [see Prod-
uct Watch, above] for Makefile generation, quick syntax
analysis and program checking. I recommend Mick’s
tools to anyone serious about developing Modula-3 pro-
grams.

“All in all, I’'m very pleased with Modula-3, the SRC
compiler--and in the way my own work on graphics aigo-
rithms is going!”

The Modula-3 Mark

The Modula-3 mark below was commissioned by Pine
Creek Software as a distinguishing symbol for Modula-3
related products and services. If you would like to use
the mark, send a description of your intended use to Pine
Creek Software and we will forward the necessary
licensing forms and artwork.

Modula-3 mark omitted

Pine Creek Software

If you’d like to reach us at Pine Creek Software, use any
of these postal and electronic addresses:

Postal: Suite 300, 305 South Craig Street,
Pittsburgh PA 15213, USA

Phone & FAX: +1 412 681 9811

Internet: harbison@bert.pinecreek.com

AppleLink: D6463

CompuServe: 73577,2217

BIX: samharbison

GEnie: S.HARBISON

SRC MODULA-3

Version 1.6 Released

Version 1.6 of SRC Modula-3 was released at the end of
March after a three-month beta test period. This version
includes many bug fixes and includes new support for
Sun-3, Encore, and Acorn computers. [See “SRC
Modula-3 Hosts” for a complete list of hosts.] There are
new interfaces to UNIX'™ and type-safe offline storage

USUS Newsl etter December 1991

“pickles”. Version 1.6 does not support the most recent
set of language changes. See “Which Modula-37”

SRC Medula-3 is presently the only available imple-
mentation of Modula-3, Tt includes a Modula-3-10-C
translator; a prelinker; a “cec-like” m3 command; inter-
faces for X11R4, UNIX, I/O, and other useful facilities;
profiling and coverage support; and documentation.
Modula-3 programs can be debugged using the standard
UNIX source debuggers. The SRC Modula-3 release
also includes a test suite and all source code (mostly
Modula-3). The software is provided ‘“‘as-is,” but it is
currently being actively maintained and upgraded by a
group at DEC SRC.

SRC Modula-3 may be obtained by anonymous fip from
the Internet site gatekeeperdec.com in directory
/pub/DEC/Modula-3/m3-1.6. UUCP and Easynet access
via DECWRL are also available.

Porting Problems, Slow Migration of SRC
Modula-3 to PCs

Many people have been interested in porting SRC Mod-
ufa-3 to the various versions of UNIX on PC’s.
Although the PC’s have adequate hardware resources,
some characterisiics of the SRC software have hindered
the ports.

The problems come from the fact that the PC versions of
UNIX are all based on System V UNIX, but the SRC
software relies on some of the Berkeley UNIX features
found in most of the workstation versions of UNIX. For
example, System V traditionally limits file names to 14
characters, whereas Berkeley UNIX allows much longer
names. The SRC software uses long names, and many
file names would no longer be distinct if shortened to
accommodate System V. A second problem is that the
build scripts rely on symbolic links to connect various
files and subdirectories within the directory hierarchy.
System V supports only ‘“‘hard links,” which cannot be
used to connect directories.

Changing the file names and build scripts would be
manageable in a small software release, but SRC Mod-
ula-3 1.6 consists of about 2,900 files and 1,400 links in
350 directories (many of which are part of the included
test suite). Most directories have their own build
scripts.

SRC Modula-3 Hosts

Here is the complete list of hosts to which SRC Modula-
3 1.6 has been ported. You should not expect problems

USUS Newsbetier December 1981

porting to other models or releases of the hardware and

software.

Computer oS

VAX 8800 Ultrix 3.1
DECstation 5000 Ultrix 3.1
Sparcstation-1 SunOS 4.0.3

Sun-3 SunOS

Apolio DN4500 Domain/OS 10.2
HFP 9000/300 HP-UX 7.0

IBM 5/6000 AlX 3.1

IBM RT IBM/4.3 (AOS 4.3)
IBM PS/2 AIX 3.1

Encore Multimax UMAX 4.3 (R4.1.1)
Acorn R260 RISC iX 1.21

SRC Modula-3 does not run under DOS or OS/2, nor has
it been ported to the various versions of PC UNIX.

Next: Version 2.0

The next release of SRC Modula-3--probably to be num-
berd version 2.0--is under development at SRC. Bill
Kalsow, one of the SRC Modula-3 authors, reports that
release 2.0 will contain the final Modula-3 language
changes, the Trestle window package, and improved
code-generation and linking. This will be a major
upgrade and a lengthy testing period is expected. No
release date was announced.

Who ya gonna call?

Comments of general interest about SRC Moduia-3
should be posted on comp.lang.modula3. Mail sent to
m3@decwrl.dec.com will also be posted on
comp.lang.modula3.

To contact the developers directly, send mail to:
m3-request@decwrl.dec.com.

MODULA-3 TIPS

Defauit Initialization of References

Q I know that Modula-3 guarantees that variables never
have “illegal” values. Does this mean that the following
reference variable will be initialized to NIL?

VAR P : REF REAL;
A No. The language says that P will be initialized to

Page 19

some value of its type; NIL is such a value and is quite
convenient for compilers. However, a compiler could
initialize P to a pointer to the value -34.88E20. As a mat-
ter of style, you should always write those initializations
your program depends on:

VAR P :+ REF REAL t= NIL;
The Modula-3 designers felt that requiring the default
initialization of references to be NIL would, in effect,

encourage a poor programming style,

Object Initialization

Q How can I define an initialization procedure for my
object types?

A Modula-3 does not support automatic initialization
procedures (constructors) for object types. Any client can
invoke NEW on an object type, even if the type is
opaque. The fields and methods of objects returned by
NEW are initialized according to any initializers in the
type declaration (or they are given default values). If you
need custom initialization, the accepted convention is to
provide an explicit method--usually named init--for the
object type:

TYPE Class = Parent OBJECT (* new fields *) ...
METHODS init{any: Any): Class := ClassInit; ...
END;

PROCEDURE ClassInit(self: Class; any: Anyj)t
Class = v
BEGIN

gself = Parent.init(self, ... }:; (* if neces-

sary *)

(* Initialize new fields in self ¥)
RETURN self;

END ClassInit;

A client is expected to aliocate and initialize an object
this way:

VAR newlInstance := NEW(Class).init(...};

The init method calls its parent’s init function (if any),
initializes its own fields, and returns the original object.
The init function is a new method, not an override of
Parent.init. This means the new init can have any signa-
ture. It’s important that init not allocate the object, s0
that descendant types can use this same style for their
initializations.

Ensuring That Objects Are Initialized
Q How can 1 ensure that clients call my object’s init

Page 20

method?

A In your object type, include a boolean field, init-
Called, with an initial value of FALSE. In the inmit
method, set initCalled to TRUE. In your other methods,
check this field to see if the object was injtialized. If the
object type is opaque, clients won’t be able to forge the
value of the initCalled field.

Object Finalization

Q How can I define a finalization procedure (destruc-
tor) for my objects.

A You can’t, but maybe you don’t have to. Destructors
are often used to release an object’s storage, In Modula-
3, this is taken care of by the garbage collector. For end-
of-program cleanup, there are library packages that let
you register procedures to be called when the Modula-3
program is about to terminate.

Which Modula-3?7

As software is upgraded and mew books appear, there
may seem to be several variations of the Moduia-3 lan-
guage. However, these variations are only temporary, and
soon everyone will converge on a single standard.

Until recently, the Modula-3 language was defined by
DEC SRC Report 52, Modula-3 Report (Revised),
November 1989. However, in December 1990 Modula-3
was changed, as described in a memo from Greg Nelson,
“Twelve Changes to Modula-3.”” This memo introduced
generics, the EXTENDED floating-point type, new float-
ing-point interfaces, and some smaller changes. The
updated, “official” language is described in the first
Modula-3 book, Nelson’s Systems Programming with
Modula-3 (Prentice Hall, 1991). SPwM3 is now consid-
ered the official reference for the language.

Unfortunately, the current versions of the SRC Modula-3
compiler and the Modula-3 ToolKit support only the
older language described in SRC Report 52. Release 2.0
of SRC Modula-3 will support the official language. If
you avoid generics, the EXTENDED type, and leave out
the OVERRIDE keyword in object type declarations, you
should be able to use SRC Moduia-3 without too much
difficulty.

Changes to the Modula-3 language are approved by the
Language Committee, which comsists of Luca Cardelli,
Jim Donahue, Mick Jordan, Bill Kalsow, and Greg Nel-
son.

USUS NewslLetter December 1981

Subscribe to Modula-3 News formed the ports of SRC Modula-3 to the IBM RISC Sys-
tem/6000, the IBM RT PC, and IBM PS/2 under AIX.

Modula-3 News is sent free of charge to people inter-
ested in Modula-3. To get your own subscription, send ~TRESTLE BETA IMMINENT A beta test version of the

your name and address to Pine Creek Software. Trestle window system will shortly be available from
DEC SRC. A tutorial on Trestle, which is written in Mod-

ula-3, can be found in Nelson’s Systems Programming
with Modula-3. The Trestle Reference Manual by Man-

SHORT NOTES asse and Nelson is now available as DEC SRC Research
Report 68.

MODULA-3 DOES WINDOWS There are an increasing
number of X Windows-related interfaces available in
Modula-3. In addition to the X11R4 interfaces included
with SRC Modula-3, there are the Trestle interfaces (see
above) and an interface to TK/TKL (a window system
developed at Berkeley). There also seems to be interest
in Moduia-3 interfaces to OSF/Motif and to ATK, the
Andrew Tool Kit.

GNU MODULA-3 PROJECT

Prof. Eliot Moss is heading a research project at the
University of Massachusetts at Amherst to create a Per-
sistent Modula-3 system that would transparently merge
objects in a long-term store with newly created objects
in a running Modula-3 program. A second aspect of the
project is an improved garbage collicctor that makes use
of compiler-generated information to locate precisely all
references to heap-allocated data. Moss’ group is build-
ing a new Modula-3 compiler based on the GNU soft-
ware from the Free Software Foundation. Once devel-
oped, the Modula-3 system would be distributed with
other GNU software. :

OOPSLA *91 TUTORIAL The OOPSLA ’91 conference
will feature a half-day tutorial on Modula-3. Sam Harbi-
son will present the intermediate-level tutorial, which is
aimed at programmers who have had some cxposure 1o
object-oriented programming concepts but who know
nothing about Modula-3. OOPSLA ’91 will be held Octo-

Upstaging Modula-2? In his June Dr. Dobb’s article . .
ber 6-11 in Phoenix.

updating Modula-2, Kim King says that Modula-2 *‘is
even in danger of being upstaged by its own offspring,
Oberon and Modula-3.”

End of Modula-3 News, Number 1, June 1951
BIG BLLUE MODULA-3? The IBM Rochester (Minn.)
Laboratory has been using Modula-3 heavily. They per-

From the NY Times

The annual Spring Comdex computer show in Atlanta earlier this month meant a booming business for the Bulletstop, an indoor
firing range in suburban Marietta where customers can rent firearms and bullets to shoot anything they please, as long as it is
already dead and fits through the doors. The Bulletstop gave Comdex visitors a chance to vent their frustrations by venting
PC’s, printers, hard disks, monitors and manuals with lead.

Paul LaVista, the owner, said about 10 groups of high-tech types came in during the Comdex show. “I'm not a computer whiz,
but one group brought in what looked like a hard disk and blasted it,’”” he said. ‘‘Another bunch brought in some kind of
technical manual. The thing was enormous, about 2,000 pages. They rented three machine guns -- an Uzi, an M3 grease gun
and a Thompson -- and when they were done it looked like confetti.”

“It must have been quite a show,”” LaVista said of Comdex. ‘‘Doctors and computer types usnally have a lot of pent-up
anxiety, but these folks were dragging when they came in. When they left they were really up. The range looked like a
computer service center after a tornado.”

LaVista said PC’s were popular targets year-round. ‘‘People are frustrated with them,” he said. A ycar ago seven or cight men

carried in a giant old Hewlett-Packard printer. *‘I ran an extension cord to it, and just as it started to whirr and spit out paper,
they blasted it,”’ he said.

USUS NewsLetter December 1991 Page 21

PBS - an alternative to the p-System.

Part 1

By Stephen Pickett

The p-System was initially conceived in the late 1970’s as a
strategy for escaping the confusion arising in the marketplace,
from the presence of a number of different styles of
microprocessor, Its instigators {a group at UCSD led by
Kenneth Bowies) were beginning to recognize the principle
that in the near future, the cost of building software would
start to exceed that of the computer hardware it was designed
to run on. In the circumstances, they used and later enhanced a
very stable design originating at least in part from ETH in
Switzerland, the brainchild of Niklaus Wirth, the creator of
Pascal. Their implementation became known as UCSD Pascal,
and was hailed by many as a landmark, mainly owing to its
ability to run on a microcompwter with 64K of memory.
Looking back, this is still an incredible achievement measured
by the megabytes of programs and hardware resources used in
today’s software development systems.

Over the last ten years I have been personally involved in
designing and implementing enhancements to this
architecture, This has been, on the whole, a rewarding task,
especially when a large program written 5 or even 10 years
ago on an Apple II or a SMHz IBM PC can run under
Windows, or 05/2, or DesqView. Perhaps in a future paper I
can describe some of these improvements. However, they all
suffer from the limitations inherent in the p-System itself
which no cne apparently foresaw when designing the original
system. This has meant to me that, for as long as I can
remember, people ‘‘outside’” the circle of believers have been
saying ‘‘the p-System is dead’’. Too bad they’re wrong - a
number of successful software projects are still being written
and maintained in this so-called ‘‘dead’” environment.

Notwithstanding the above, I have for a number of years been
locking to design a more realistic replacement for the
p-System. It is taken for granted that the resultant system will
have certain ‘‘magic’’ properties that its owner can rely upon:

1. Small code file size

2. Re-usability of object modules (the INTERFACE
concept still hardly understood ‘‘out there””)

3. Infinite code space.
4. Stability and ease of porting of interpreted environment.

However the driving forces determining system design are
different in the nineties:

Page 22

1. No absolute requirement for compiled object code to be
portable to multiple processor types.

2. Most advanced operating systems have many features
originally provided by the p-System.

3. Run-time compatibility with other languages and
language systems is crucial.

4. Memory, instead of being in short supply, is so plentiful
that we cannot usefully address it all.

How in practice might we go about this? A good start would
be to list those areas which need 1o be changed substantially in
a new design. Each one of these constitutes an obstacle
provided by the present p-System - each one, if overcome, an
advantage for new system when it is built.

Obstacles posed by existing p-System: (potential advantages if
removed in new system)

1. Fixed directory structure and (now) non-standard fle
system.

When UCSD Pascal was created (later the p-System) there
was no standard to violate - MSDOS did not exist. The limit of
77 files and no subdirectories (.SVOLs were added later)
seemed adequate on the original microcomputer media,
namely floppy diskettes. Subsequently, the world has adopted
several standards, none of which even slightly comresponds to
that of the p-System.

The CP/M (later MSDOS) restriction of 8.3 naming
convention for file names (8 characters with a 3 character
suffix) turns out to be a slight compatibility barrier for
programs which assume they can use volume:filename.xxxx
(the typical p-System filename). However this is more a
problem for application developers to make their programs
configurable enough to store the volume names in a variable,
rather than hard-wired. Some solutions for mapping of names
(eg SYSTEM.MISCINFO becomes SYSTEMMISCI, and
FOOBAR.TEXT becomes FOOBAR.TXT) have also been
implemented in existing p-Systems which are MSDOS-aware.
Finally, the makers of DOS are more aware of foreign file
systems and foreign file names, so perhaps it will be easy to
create a foreign file system based on p-System directories at

USUS NewslLetter December 1991

some date in the future.

Nevertheless, the pressure is to be compatible with the
existing drivers and disk layouts of common hosting systems,
and PBS’ goal is to help programs to be as independent of
disk/driver/directory details as possible. In practice all this
means s that volume name variables need to be long enough
to hold a full pathname.

2. Dependencies on p-System operating System (PSOS) -
much of it undocumented

. A serious probiem with the continued portability of p-code is

the dependence of the p-code itself on structures assumed to
be present at run-time in the memory space of the p-System
operating system. Not only is this a restriction which causes
code to fail to run if any of the said structures are changed,
but the runtime archilecture becomes non-re-entrant in a
totally unnecessary way. An example of this is the way in
which a constant may be passed as a parameter by pushing on
the stack a pointer to the EREC of the segment from which it
came. This is done automaticaily by the compiler during code
generation!

3. Lack of separation of I/Q component of i:iterpreter

The p-System interpreter was traditionaily a single file, with
I/O and other interpreted functions built in. As a consequence
there was no clear separation by interface of the 1/O based
components from the remaining functionality required in the
runtime. In addition, the requirement for a multi-tasking
interpreter complicated the implementation with details of the
operating system which are, in an ideal world, better left
untouched.

4. Multi-tasking foundation basically useless - no
re-entrancy except for p-code programs

The multi-tasking provided by the p-System is quite slow,
and has many hooks built in to the presence of the operating
system and all the data structures in it, as referred to in 2 and
3., Much better, therefore, to rely on the multi-tasking
executive present (DesqView, Windows, O5/2) of the host
system and keep the interpreter clean - the only real
requirement being re- entrancy. The only multi-user
p-Systems implemented up to now have had a complete
PSOS and interpreter loaded into memory for each task

anyway.

USUS Newsletter December 1991

5, Limited addressability of Data (64K minus Globals)

PBS provides two partial solutions to the addressability
probiem, which has been the most pressing problem posed by
the p-System since developers started getting stack overflows
during compilation. One is that with most of the PSOS (and its
variables) disappeared from the stack-heap, about 8K bytes is
freed up for actual programs. This guarantees that no existing
p-System program runs out of memory. The second is simply
that provision is made for calls to routines that can address
memory outside the 64K data segment, although in general it
is not possible to return an address from such a routine to the
existing pcode as there is no way for the 16-bit-addressed p-
System to deal with more than 16 bits of address information.

As hinted in the foregoing discussion, PBS was conceived as
an answer to all of these problems, but with the intent of full
compatibility of existing compiled pcode applications (some
of them upwards of 2 million lines of UCSD Pascal source
code). The resulting system has considerable advantages over
the more widely-distributed products from Borland and
Microsoft, with the special quality that, from the program and
programmer’s point of view, it is still close enough to the
p-System that the universe looks the same as it always did. I
was amused to note in a recent press release that Microsoft
just announced a pseudo-code-generating version of their C
compiler. The article referred to “‘the interpreted code, which
Microsoft calls P-code”’. So the wheel turns full circle.

What actually started the project off was the necessity to
provide a p-code interpreter that functioned correctly in
286/386 protected mode. For many of the reasons outlined
above, there are too many things which the p-System does that
are incompatible with the presence of a ‘‘real”’ operating
system such as OS/2. In fact most of the interpreter and PSOS
would simply be illegal in protected mode. On checking out
08/2 (Windows 3 protected mode didn’t exist at that time), I
discovered that it does many of the things the p-System has
been doing for years (and more as well). A client of mine
(who uses the p-System) actually went to a seminar, where
OS/2 was described, and was amazed to hear a voice pipe up
from across the room “‘that sounds like the UCSD p-System
all over again’’. In fact the idea quickly became to generate p-
code for OS/2 that conforms to the rules of the 0S/2
environment and thereby get OS/2 to do much of the work the
PSOS had been doing.

Next time 1’1l start to go into details of how we went about this
sizeable task, and review the two critical components of PBS -
the Interpreted DLL (IDLL) code file format, and the software
which creates it, the Microtopia code server.

Page 23

USUS Software Library Catalog

Summer 1991 Version

by
Keith Frederick

I'm proud to announce the introduction of the new USUS
Software Library. Keeping good on our pledge to extend sup-
port to other high level languages, we have made a major up-
grade to our Software Library. The new library contains over
forty megabytes of new software (in addition to cur 30+ vol-
ume library of UCSD Pascal software). The new software li-
brary includes the foliowing sections:

* Source Code and Utilities for:
* Ada

* Modula-2

* Modula-3

¢ Oberon

» Pascal

* Turbo Pascal

* UCSD Pascal

[Cand C++ Sections are stil} in development]
¢ Cther Language Implementations

Includes complete implementations of languages that USUS
does not currently support, such as SmallTalk, ProLog, Forth,
etc. These are provided so that members can experience these
languages at low cost. Often the language implementation
comes with complete source (noted in the catalog if 50).

Ada Software Library

Ada Volume 001

NAPP.......... NASA’s Ada Pretty Printer. No Source Code.
PAGER2........Source Tools for creating, scanning, and extracting
from paged files.

BD3........ Source illustrating modeling using Ada’s tasking mecha-
nism.

ADA-METL.....Program (and source) to measure complexity of Ada
source code.

Ada Valume 002

Page 24

* Documentation & Specification
Includes docs and specs on transfer protocols, graphic for-
mats, networking protocols, etc.

* Demo & Evaluation Disks
Vendor provided disks for evaluating their software. These
are provided at minimal cost and allow the user to try out the
software before buying.

in addition to the commented file listings, the USUS Software
Library Catalog contains the necessary price lists, order forms,
donation forms, a section on the USUS PowerTools software,
a definitions section, contents page, etc. In all, the document
is about sixty pages (and growing!). Due to the size, we are
making the Catalog available by three methods: disk, hard-
copy or from our CompuServe forum, CODEPORT. See the
order form in this issue for ordering informaticn.

The new USUS Software Library Catalog is but one of a series
of new services and benefits that will be introducing in the
coming months, so stay tuned!

Keith Frederick
USUS Secretary & Administrator

ADA-LRML.....As below

ADA-LRM3...._As below

ADA-LRM4.... Disk based Ada Language Reference Manual.
Needs Volume 003 to be complete.

Ada Volume 003

ADA-LRM?2..... Disk based Ada Language Reference Manual.
Needs Volume 002 to be complete.

Ada Volume 004

ADATU200......Disk Based Interactive Ada tutorial.

USUS Newsletter December 1991

Ada Volume 005

SPELL.......... Complete Spelichecker and dictionary.

Ada Voiume 006

ADACLL........ Ada Command Line Interface.
ASYNENTR......Generic package for asynchronous entry callls.

BIT.......... Bit mani pulation routines for INTEGERs.,
BPTREE........ Binary Plus Tree Generic Package.
CAS........... Source code analysis routine.
CLP...........Commannd Line Processor in Ada.

COUNTADA.......Counts number of Ada statements in an Ada frag-
mens.

CPA.......... Allows common pools in Ada.

CSET......... Character identification routines.
CSTRINGS......Routines to manipulate null-terminated strings.
CUSTIO........ Low level character 1/0 routines.

DIPLOT........ Device independent 2-dimensional plotting package.
DLIST......... Boubly-linked list routines.

DSTR.........Dynamic string manipulation routines.
DUNIT......... Dimensional units routines.
ENV.......... Environment interface package.

FGET.......... Perform character I/O: GETC, UNGETC, GETCH,
GET_CHAR.

FILECOMP......Compare two ASCI! files.
FLISTER.......Linked list routines.

FOF...........Report generator; formatted output generator.

Ada Volume 007

PARSER........ Generic parser like UNIX ARGC/ARGV.
PERMUTAT......Display all permuations for an array.
PRIOR......... Prioritized Queue routines.

QSORT......... Quicksort routine in Ada.

RANZ.......... Random Number Generator.

RAN3......... Another Random Number Generator,
RANDOM........ Yet another Random Number Generator.
RESERVE......Determine if a word is an Ada reserved word routine.
SAFEIOQ........Error checking input/output routines.
SDEPDG........System dependency package.
SEARCH........ Binary and sequentiai seartching routines.
SLIST......... Single linked list routines.
SORTARRY......Several array sorting routines.
STACK......... Abstract Stack manipulation routines.
STRCOMP.......Sophisticated string comparison package.
STRINGER......String manipulation routines.

Ada Volume 008
STAB.......... Block structured language tool to manipulate symbols.
TBD........... Tool to aid in the design of Ada software.

TESTLOG.......Unit to allow logging of execution for testing purpos-
es.

TOD........... Time of day routines.

VDT100........ Routines to interface with VT100 terminal.
VLENGTHL...... Variable length record manipulation routines.

Ada Volume 009

A970.......... Routines for a TVI 970 terminal

USUS Newsl etter December 1991

ASC...ovree Another Ada statement counter.

CALC.......... Online calculator that also bandles variables.
CBREAK........Program to separate and combine text files.
CONSTRCT......Ada source code project manager.
CREATETB......Table builder and formatter.

ED............Line based text editor.

ED2...........Another line based text editor.

FCHECK........Yet another Ada statement counler.
MIMS.........Mobile Infermation Management System.

Ada Volume 010

PRP..........Interactive progoram to evaluate signal performance and

noise of a set of RF propagation links. Aliows 300 nodes, each with
15 receivers and 15 transmitters.
Ada Volume 011

WSMGS......... Three-dimensional Map Generation System.

Ada Volume 012

WP............Complete word processor and formatter. Needs Ada Vol-
ume 013 to be complete.

Ada Volume 013

WP............Additional Source for Ada Word Processor in Ada Vol-
ume 012 Needs Ada Volume 013 to be complete.

C Software Library

Under construction.

C++ Software Library

Under construction.

Modula-2 Software Library

Modula-2 Veiume 001

M2CMP24...... Modula-2 Compiler. Source to compiler not included.
M2DOC20.......Documentation for Compiler above.
M?2EXA20.......Utilities for Modula-2 compiler above.

M2LIB20...... Moduoia-2 Libraries for compiler above.
M2UTL20......More Utilities for Modula-2 compiler above.

Complete Modula-2 Compiler, by Fitted Software Tools, with li-

braries and integrated editor, make utility, linker, makefile generafor,
and execution profiler.

Page 25

Modula-2 Volume 002

MOD2SRC.......Source code that goes along with Tutorial below.
MOD2TXT.......16-chapter Modula-2 Tutorial. Print utlity included.
AFAL........ Log, square root, and reciprocal routines.
BALTREE.......Inserting/Deleting in an AVL-balanced tree.
BINGCD........ Compute Greatest Common Divisor or 2 natural num-
bers.

BTREE......... Insert/Delete elements in a B-Tree.
CMPISQRT......Computer largest integer <= to the square root of a
given integer.

CMPPOWER......Raise integer to 2 positive power.
COMPLEX.......Complex number multiplication example.
CROSS1........ Generate cross reference table for all words in a text.
CROSS2........As above but use hash-table instead of binary tree.
CRUNCH........ Eliminate extra white spaces beiween words.
DIVIDE........Divide natural numbers by only using addition and sub-
traction.

EDIT.......... Change text to be fully justified each line (flushed left
and right).

FIBONACCI.....Compute fibonacci numbers two different ways.
FRACTION......Compute fable of exact fractions.

GCDLCM........ Computer Greatest Commeon Diviser and Least Com-
mon Multple.

HARMONIC......Compute harmonic function: H(n) = 1 + 1/2 + 1/3
+...4+1/m.

KNIGHTST......Find path of a knight on a chess board.
LIST.........Search routine to locate record in a list.
MARRIAGE......Finds solution to the stable marriage problem(}).
MERGESOR.....Natural merge sort routine, uses 3 files and 2 phas-
es.

OPTIMALT..... Finds optimally structured binary search tree for "n’
keys.

PALINDROQ......Finds integers whose squares are palindromes.
PERMUTE.......Compute 'n!’ permautations.

PLO......... Skeleton compiler. Checks syntax according to given
graminar.

POLYSORT......Polyphase sort routine.

POSTFIX.......Convert infix expression to postfix.
POWER?Z........Compute table of positive and negative powers of 2.
PRIMER........Compute table of primes.

PRINTERP.......Plot function f{x}=exp(-x) * cos(2*pi*x) on the
screen,

QUEENSS........Find setting of 8 queens on 8x8 chess board where no
queen checks another.

RECURREN......Compute functions as truncated sums & determine
recurreyice relations.

SELECTIQ......Determine optimal selection of objects given object
gualities.

SIEVE.........Sieve of Erastosthenes.

SORT..........Routines for Bubble, Shaker, and Quicksort sorts.
STRLIB........ Library module to handle string manipulations.
SUM10000......Compute sum 1 - 1/2 + 1/3 - 1/4 +...-1/10000 four
ways.

SUMOFCUB..... Find smallest positive int that can be represented as
sum of two cubes.

TOPSORT...... Topological sort routine.

TREE.......... Another Insert/Delete routine for binary trees.
WORDLENG......Read a text and count # of words of length 1..20
and over 20.

Modula-3 Software Library

Under construction,

Page 26

Oberon Software Library

Oberon Volume 001

OBERONM.......Oberon-M v1.1 compiler, docs, sample source. No
compiler source, MS-DOS. Requires an 80186 or higher cpu.
MATRIX........ Advanced Matrix handling routines.

Pascal Software Library

Pascal Volume 001

NRPASI3...... Numerical Recipes software. Over 200 routines for
scientific computation: integration, linear algebra, differential equa-
tions, and a lot more.

QPARSER........Tools for devetoping compilers and transiators. Pro-
vides grammar- directed ““front-end”” and several tools for develop-
ing the semantics *“back-end”” of a comypiler.

Pascal Volume 002

MYSTIC....... Mystic ISO Pascal compiler & editor. MS-DOS. No
source to compiter.

PASCSRC.......Source code to below Pascal tutorial.
PASCTXT.......14 Chapter Pascal tutorial.

SURPAS........SURPAS Pascal compiler, editor, and run-time pack-
age. No source to compiler. MS-DOS,

CAL...... Displays Gregorian calendar for any month and year.
CPMCQOP........ Transfer file from CP/M disk in Unit 5 to Pascal Disk
in Unit 4.

XYPLOT........ Generate 2-D plots of X,Y data pairs.

Turbo Pascal Software Library

Tuerbo Pascal Volume 001

DATES......... Keep a list of memos, displays calendars.
DATEIT3A......Several date maniputation routines.
DATETIME......Date and time utility.

ANSICRT.......ANSI alternative to CRT unit.

ASYNCA........Asyncd communication routines, interrupt handler.
ATKYBD........ Set AT keyboard delay and typematic.

BLOAD........ Load BASIC BSAVE'd files.

BTREEA........Unit (no source) for B-Tree indexing, data & file man-
agement.

CHAIN.........Chain facility for Tusbo Pascal 4 and 5 users.
COLORDEEF......CONST file with constants for all text color combi-
nations.

CRTPATCH......Patch units compiled with CRT unit to allow use of
TP5.0 TCRT Unit.

EXECWIN...... Keep child process output within specified window.
EXTEND........ Extends the number of open files DOS will allow.
LPT........... Printer Unit.

PSCREEN.......8ave and display packed text screens/windows,
TESTEMU....... Test reinitialize emulator.

USUS NewslLetter December 1991

TPCLONE...... Routines for cloning typed constants into a prograim.
TPENV......... Routines for manipulating the DOS environment.
TPKEYS........Keyboard instailation program.
TPSPOOQL.......Simple print spooler.

TPSTACK.......Unit to monitor stack and heap usage.
TPSWITCH......Switching screens on dual monitor systems and
writing to both screens.

TPTIMER.......Allow high resolution timing of events; good for
measuring benchmarks.

COMMCALL...... Access COM1 port with interrupt handler.
COMSET........Access COM1 and COM2 from Turbo Pascal.
CONCRA........Concurrent Programminng Executive.
CONVERTB......Convert Turbo Pascal data files from CP/M to MS-
DOsS.

CONV_P18......Convert all TP reserved words to uppercase; in-
cludes 29 string-related functions implemented in assembly lan-
guage.

CRCASM........ Speed optimized rouiine for cyclic-redundency
check,

DIRSELA......Menu routine for selecting files.

ERRTRACE......Unit for TP4 to display esror traceback information.

EXEUTIL.......Tools to pack TP EXE header and patching
stack/heap size without recompiling.

INLIN219......Assembler designed to produce inline assembly code
for TP3 and TP4. Comes with disassembler.

KTOOLS30......Text screen menu and windowing routines.

Turbo Pascal Volume 002

LCOMMTP....... Routines,for TP4, to access full capabilities of PC’s
async comm ports.

LTCOMMSO......As above, but for TP5.
MAKEWIND......Procedures for pop-up windows.
METAWIND......Complete demo of MetaWindows graphic soft-
ware.

MNDLBROT......Generate and display Mandlebrots.
MOUSTOOL......Too!l interface utilities, TP5.

Turbo Pascal Volume 003

OAS........ Shareware version of the Open Architecture Screen In-
terface System.
OK1390........ Printer utility for Okidata 390-391 printers.

Turbo Pascal Volume 004

OPROSM........ Complete list of declarations for all documented rou-
tines in Object Professional.

PAS-SCI.......Dozens of scientifc pascal routines.

PASED11.......No Source. Programmers editor for Pascal; specifi-
cally tailored for Turbo Pascal users.

PASLIB........ Misc. routines for screen handling (supports dual mon-
itors), windows, and date handling.

POSBM......... String search routines.

PP50.......... Pascal Pretty Printer.

PROCPARM......Allows procedures to be Pascal parameters.
PULLI1S........ multi-tevel puli-down menu utilities, TP3. Needs
QWIK30 & WNDW30 includes.

PULLZ20........ as above, for TP4. Comes with QWIK40 & WNDW40
units.

Turbo Pascal Volume 005

USUS Newsl.etter December 1991

PULLS5........ As Pull20 in vol. 004, but for TPS.5.
AMOUSESS5......Code (0 manage microsoft mouse.

EPB13.........Ed’s Pascal Beautifier.

COMM_TP4 ... TP4 serial communication routines.
INDX18EU.....Indexed file utility.

INTRFC61......Program to dump TPU fiies.

MOUSEFIX..... TSR; fixes bug in mouse driver when used with TP6.
NEKTOOLS...... Misc. tools; 1/0 logging, text file device drivers, math
and string routines.

PASMSG........ No source. Message filter for Turbo Pascal:
PCKSELFM..... Method for creating self-modifying EXE files that
keep integrity under checking schemes.

PPP........... Pretty Pascal Printer for TPS

Turbo Pascal Volume 006

PASTUT24......Turbo Pascal tutor with accompanying source.
PULLSX........As PULLXX in Vo! 005 and Vol. 004 but for TP5.X.
PULTPA4........ Puildown and pop-up menu system.
PASTOOLS.....ARGC, ARGV, and environment routines.
DSKRD-WR......Absolute disk read/writes; TP6.

EVAL........ Evaluate Infix expressions.

FASTWR........Fast writing to video memory.

GRAFDUMP.....TP4 or better Epson graphics screen dump.
HEXCOM........ Make COM file from HEX file.

INTERUPT...... Turbo Pascal interrupt handler code.

105150........ Device driver for IBM”s 5150 PC serial port.
PCDISK........Change volume lables and misc. other vol. and dir ac-
cess routines.

PRINTDIR...... Directory show routine with options.
RAW.-LPT.......Change file handler to process characters in raw
mode.

RENAME........File and directory renaming.
SELECTOR......Several CHAR routines; many based on C routines in
<ctype.h>.

Turbo Pascal Volume 007

QWIKA41A......For TP4,

QWIK42........ For TP4.

QWIKSS........ For TP5.5.

QWIKSX.......For TP3.X.

QWIK42B......For TP4,

QWIK is made vp of fast screen writing routines.
SLLIST........ Single linked list routine.
SEARCH........String search routines.

Turbe Pascal Volume 008

QOPSIO........No source, except DEF files. Group of I/O objects.
SFEM........... Super File Manager; cross between X-Tree and Norton
Utilities.

3D_MANDL......Generate 3-D Mandelbrots.

TPRATS........ Microsoft mouse driver for TPS.
QUARTIC.......Solve guartic equations.

PAINTTP.......Paint program, source code illustrates OOP.
STRG57........ String processing routines for TP5.5
STRGH1A.......String processing routines for TP6.
PASENG........ Directory search engine.
SYS60A........Replacement unit for TP6.0 to increase speed.

Page 27

Turbo Pascal Volume 0609

T301AS........ RS-232 support routines.

TIOOP11.......Source code illustrating OOP and polymerphism.
TOTDEMO.......TechnoJock’s windowing and menu routines, v1.0;
demo but fully usable.

Turbo Pascal Volume 010

SYST55C...... Replacement for SYSTEM.TPU in TP5.5.
STAY42........ Demos/Templaies for creating ““Stay Resident’” pro-

THELP......... Permanent Resident Help Utility for Turbo Pasca.
TICKTOCK.....High Resolution Timing illustration.

TOAD IAC.....Inter-Applications Communications fiddler,
TOADADD.......Add numeric strings to each other or numeric strings
to ints.

TOADLONG..... LONGINT functicns and procedures for TP3.
TOADLNS....... Much improved READLN for strings.
TLIST23.......Pascal Source Coede lister.

THREED........Toolkit for drawing and manipuiating 3-D objects.
TDEBUG........ No Source. Source code debugger for TP3.
TAVID12...... Fast direct video routines in TASM,

T-REF......... Sophisticated Source lister and cross referencer.
TASKERA4.......Non-preemptive multi-tasking.

Turbo Pascal Volume 011

TP-TSR........TSR demo package, showing how to write sophisticated
resident apps.

TPAMENUL......Complete program shell foor developing user inter-
faces.
"TPSMENUL......As abave, for TPS.

TPFORT12...... Access Microsoft FORTRAN routines from TP.
TPI022........Data entry controller.)
TPMATH........ Several math functions: trig, complex, Bessel, matri-
ces, eic.

TPPOP16...... Package containing tools to write TSR's.
TPPOPUPS......Pop-up window and menu bar routines.
TPSPOOL.......Print spooler.

TPSTR121......TP Rexx Strings unit, implemented in Assembly.
TPW32......... Quick multi-level windowing routine.

TPW6Q.........As above, or TP6.

Turbo Pascal Volume 012

TFP6XMS........Use Extended Memory from TP6.

TPA22......... Integrated compile-time assembler for TP4 or TP5.
TPENHKBD......Activate or simuiate Enhanced Keyboard.
TPFAST30......Fast routines for bit functions, strings, screen han-
dling, keyboard handling, files, eic.

TPTCI17........ Turbo Pascal to C Transiator and reiated files.
TPTC178C......As above.

TPTCI17EC......As above.

TPTCINFO......As above.

TPZSFZ........ ZMODEM send/receive code.

Turbo Pascal Volume 013

Page 28

TPMUSIC.......Play music in the background,

TPUZASM.......No source. Symbeolic disassembler for TP units.
TSHELLI1Z......TP preprocessor shell; aliows use of C-like preproces-
s0r stalements.

TSPEECH.......Speech driver and TP include file.

TSW...........Turbo Screen Works. Design and manage screens.
TTY...........Dumb terminal for COM1.

TURBO_TK...... TechnoJock Turbo Toolkit for TP4.
TRIDV183......**Door’ creating utility for BBS’s.
SVGABGI.......Super VGA BGI file and include.
VMATHI10.......Vector and matrix procedures and functions.
UPCONV14......Convert indentifiers/reserved words to different for-
mat.

ITP..........Source code for Inside Turbo Pascal 1990. Intermediate to
advance topics.

Turbo Pascal Volume 014

TURBOGEN......Creates TP source code to handle user I/O, file I/O,
and error checking. User paints screen. Requires Turbo Database
Toolbox.

TSPA2340......No source except DEF files. Units for bit manipula-
tion, run-time error handting, system/file information acquisition,
string manipulations, etc.

TSPA2350......As above, for TP5.

TSPA2355......As above, for TP5.5.

TSPA2360......As above, for TP6.

ZINDENTY......Indenting and formatting functions for source code.

Turbo Pascal Yolume 015

WINDOW....... Window BIOS demo and extender.
WINDOW34..... Multi-level random access windowing package.
WNDW40........As above, for TP4.

WNDW42........As above, for TP4.2.

WNDWS55........As above, for TP5.5.

WNDW_MS].... Simple text windowing package.
TWOSCRN.......Use two screens/monitors in TP.
DIALER.......Simple modem dialer.

LZH.........LZH algorithm in TP, compressing and decompressing.
HIGRAF....... High level graphic routines for scientific graphics.

Turbo Pascal Volume 016

TIOCKDQC......Documentation for Technolock’s Toolbox.
TIOCKSRC......Source Code for TechnoJock’s Toolbox.
TIOCKDEM......Demos for TechnoJock’s Toolbox.

Windowing, menu, user input, string formalting, directory liisting,
etc. routines.

Turbo Pascal Yolume 017

TUTORPAS...... Tutor on how to build a compiler, uses TP as a leamn-
ing tool.

PNLOO1........(Turbo) Pascal Newsletter, issue #1

PNLOOZ........ (Turbo) Pascal Newsletter, issue #2

PNLOO3........ {Turbo) Pascal Newsletter, issue #3
PNLOM........(Turbo) Pascal Newsletter, issue #4

PNLOOS........ (Turbo) Pascal Newsletter, issue #5
PNLOGS........(Turbo) Pascal Newsletter, issue #6

USUS NewsLetter December 1991

The Turbo Pascal Newslelters contain articles and accompanying
source code 1o a variety of topics. Contains both beginner and ad-
vanced subjects.

UCSD Pascal Software Library

ALL THE SOFTWARE IN THE UCSD PASCAL SOFTWARE LI-
BRARY MAY NOT BE DISTRIBUTED TO NON-USUS MEM-
BERS.

UCSD Pascal Volume 001

COMBINE.TEXT 8 A simple little thing to com-
bine 2 or more text files.

CPM.DOC.TEXT 8 Documentation of 8080/Z-
80 interfaces and prograrms.

CPMCOPY.TEXT 14 An all-Pascal CP/M file
copier.

CRCI16.TEXT 6 Assembly-language CRC
generator/checker for MODEM.TEXT.

CRT.I.O.TEXT 12 Very powertul, crash-proof
data entry UNIT for CRT menus.

DISKREAD.TEXT 8 Assembly-language direct
track/sector disk reader. ’
FORMAT.DOC.TEXT 30 Documentation
(from Pascal News) for FORMAT.

FORMAT.TEXT 20 Large, wonderful Pascal pro-
gram prettyprinter.

FORMAT1.TEXT 34 Part of FORMAT.TEXT
(subfile).

FORMAT2.TEXT 28 Part of FORMAT.TEXT
(subfite).

GETCPM.TEXT 8 Reads CP/M files -->
UCSD-format disks.

GETCPM2.TEXT 8 Another version of
GETCPM.TEXT.

GOTCHA.DOC.TEXT 28 Read all about
UCSD’s hidden gotchas for 8080/Z-80 users.

INITVAR.TEXT 18 Part of PRETTY . TEXT
(subfile).

INOUTREADY . TEXT 10 Assembly-
language routines: read/write to ifo port, etc.
INTRODUCTN.TEXT 26 A statement of
purpose—~why we are here, how we work.

L.TEXT 12 A short but effective text
printer with several options.

MODEM.TEXT 44 1st of 2 D.C. Hayes Modem
drivers (8-100 version).

MODEM1.TEXT 38 The second * "
PRETTY.TEXT 36 The second Pascal pret-
typrinter, from the Pascal News.

PRETTY DOC.TEXT 10 Documentation for
both FORMAT and PRETTY.

RWCPM.TEXT ' 6 Assembly-language direct
disk reading/writing.

SIMP.TEXT 20 Program to produce random
text; sounds ‘‘professional.””

TYPESET.TEXT 12 Takes text from editors &
right-justifies it.

READCPM.TEXT 6 Assembly-language direct

USUS NewsLetter December 1991

disk read.

UNITS.DOC.TEXT 12 Re UNITS, SEG-
MENTS, & EXTERNAL routines.

COMMENTO1.TEXT 10 Reviewer’s com-
ments about files on this disk.

VOLO1L.DOC.TEXT 8 You’re reading if.

This volume was assembied by Jim Gagne from material collected by
the Library Committee.

UCSD Pascal Volume 002a

S12.DOCTEXT 22 Documentation for 512-byte sectoring rou-
tines on 2A & 2B.

ACOUSTICTEXT 4 Use an acoustic modem with Pascal Trans-
fer Program (PTP).

BOOTASM.TEXT 4 Assembie a file with UCSD assembler and
save it on CE/M.

BOOTCPM.TEXT 4 Start up under UCSD and then boot up
CP/M.

CPMIO.DOCTEXT 14 How to alter the CP/M interpreter for
fancy disk action.

DCHAYES.IO.TEXT 10 Use a Hayes modem with Pascal Trans-
fer Program (PTP).

DELETE.LF.TEXT 10 Transfer a textfile to UCSD, then dump

ASCII linefeeds.

DFOCO.DOC.TEXT 46 Documentation for DFOCO.ASM on
Volume 2B.

H14.DRIVER.TEXT 28 Print out a text file on the Heath printer at

full speed.

H19.DOC.TEXT 4 Notes on optimizing the Heath terminal for
UCSD Pascal.

H19.GOTOXY 4 Textfile to compile your own GOTOXY for
the Heath H19. :
H19.MISCINFO 1 SYSTEM.MISCINFO for the Heath termi-
nal.

HAZELMISCINFO 1 SYSTEM.MISCINFO for the Hazeltine
terminal.

HEXOUT TEXT 4 Pascal routine to print out integers in hex-
adecimal.

KBSTAT. TEXT 4 Ancther keyboard status roatine, this time
for PTP.TEXT.

LINECOUNTR.TEXT 8 Count the lines of a textfile.

MOVRAM.TEXT 4 Assembly-language routine for
BOOTASM.

NEW.GOTOXY.TEXT 4 Let GOTOXY handle your CRT screen,
too. Sample.

PE1100.GOTOXY 4 Textfile GOTOXY for the Perkin-Elmer
1100 (Fox) terminal.

PERUSE.PG.TEXT 4 Look over a textfile on your CRT one page
at a time,

POLICY.DOCTEXT XX How the Users’ Group Library runs.

PRIMEL1.TEXT 4 Pascal routine to find prime numbers.
PRIME2.TEXT 4 Another prime-number generator.
PTP.DOCTEXT 22 Documentation for the Pascal Transfer Pro-
gram,

PTP.TEXT 96 The Pascal Transfer Program. Reguires ASE to

edit.

PUNCH.TAPETEXT 6 Send data from the UCSD system to the
Heath paper punch.

RANDOMBYTE.TEXT 4 Assembly-language routine to access
Z-80’s R register.

READ.TAPETEXT 6 Complement of PUNCH.TAPE.
SHELLMSORT.TEXT 6 Sorta disk-based ASCI list.

Page 29

SMARTREMOT.TEXT 22 Set up your machine as a smart remote
terminal.

TIMING.DOC.TEXT 10 How to tune your disk drives for fast
512-byte sectors.

TVI912C.GOTOXY 4 Another GOTOXY text, this time for the
TelVideo 912,

UPDATE.DOC.TEXT 18 Latest news on the UCSD Pascal Users’
Group Library.

COMMENTO02B.TEXT 20 Documentation for the second disk of
this volume.

COMMENTO2ZA TEXT 12 Notes on all the programs in Volume
#02A and #028

WRITER.DOC.TEXT 4 Documentation for WRITER.
WRITER. TEXT 22 A quick but nifty text or source file printer.
VOLO2A.DOC.TEXT 10 You're reading it.

XX = Programs withdrawn ot not on the disk.

This volume was assembled by Jim Gagne from material collected by
the Library Committee.

UCSD Pascal Volume 003

BLACKIACK.TEXT 20 The famous game. Allows negative
funds.

CHASE.TEXT 22 Get away from robots, but don’t get zapped
by fence.

DEBTS.TEXT 26 Home finance program keeps track of bills.
OTHELLO.TEXT 12 Another famous game.

OTHELL1L.TEXT 16 Aninciude file.

OTHELL2.TEXT 16 Aninclude file.

OTHELLINIT.TEXT 16 Subfiles for Othello
POLICY.DOC.TEXT XX How the USUS Library works.
PROSE.DOCLTEXT XX Documentation for Prose. Copied from
Pascal News

PROSE.DOC2TEXT XX #15. Read before trying program.
PROSE.TEXT XX Also from Pascal News #15. Author is J.P
Strait. '
PROSE.O.TEXT
PROSE.ATEXT
PROSE.B.TEXT
PROSE.C.TEXT
PROSE.D.TEXT
PROSE.E.TEXT
PROSE.F.TEXT
PROSE.15.CODE XX Object version. Will run under UCSD
VI4& VIS .
REQUESTS.TEXT XX Programs and routines needed in this li-

XX Include files for Prose.

fefepofege

brary.

SNOOPY. TEXT 14 A calendar program featuring the WW 1
flying ace.

STORE.DATA 2 A sample data file for DEBTS.TEXT

UNIVERSAL.TEXT XX Suggestions for a UNIT that will help
remove hardware dependencies from Pascal Programs.
VOLO3.DOC.TEXT 6 You’re reading it.

XX = Programs withdrawn or not on the disk.

This volume was assembled by Jim Gagne from material collected by
the Library Committee.

UCSD Pascal Volume 004

DBBUILDER.TEXT 38 Part of Keneth Bowles® database seed.

Page 30

DBUNIT.TEXT 4 The major data accessing routines, allowing
records of variable size and user-defined linkage & nesting.
DBUNIT.1. TEXT 18 Subfile of DBUNIT

DBUNIT.2TEXT 32 " " "

DBUNIT3TEXT 34 " " "

DBUNIT4TEXT 30 " "

KB.DATABASE.DOC 74 A detailed class manual to show you
how to use it.

KB.DBDEMO.TEXT 4 De¢mo program to further document the
system.
KB.SCUNIT.TEXT 16 Screen control unit with some very nice

screen ifo.
KB.STARTER.TEXT 30 Help set up the data structures.

KB.TESTDB 32 A testdalabase data file, used by DBDEMO.
COMPARE.TEXT 34 From the Pascal News No. 12; prints out
textfile diff’s.

COMPRESS.TEXT 8 Compress leading/strip trailing blanks;
shrink files.

INDEX.TEXT 24 Expanded index to Jensen & Wirth--now you
can find it.

USUS.NEWS.TEXT XX Leam all about the UCSD System
Users’ Society.

WUMPUS. TEXT 28 The game of Wumpus, elegantly imple-
mented.

TEACH.WUMPUS 10 Documentation on the wunders of Wum-
pus.

WUMP.CAVEQ.TEXT 4 One of several cave configurations you
can select from

WUMP.CAVELTEXT 4 within the game; if you get bored with
one, iry

WUMP.CAVE2Z.TEXT 4 another.

WUMP.CAVE3. TEXT 4

WUMP.CAVEA.TEXT 4

WUMP.CAVES.TEXT 4

COMMENTO4. TEXT 12 Reviewer’s comments about files on this
disk.
VOLOM.DOCTEXT 8 You’rereadingit.
XX = Progrgms withdrawn on not on the disk.

This volume was assembled by Jim Gagoe from material collected by
the Library Committee.

UCSD Pascal Volume 005

ADDRS.DOCTEXT
SORT address database.
CRTINPUT.TEXT 20 A taned-up string, boolean & textfile input
package.

DIR TEXT 16 Sec the directory, double-column & alphabet-
ized, with file date & size, plus a list of unused areas,

10 Doc for STRUCT, UPDATE, and GET-

DISKREAD.TEXT 26 Similar to UCSD’s PATCH, lets you alter
disks directly.

FMT.1.5.CODE 27 Frank Monaco’s text formatter program,
Version L.5

FMT.20.CODE 26 Same for versions I1.0.
FMT.EXAMP.TEXT 16 Sample text for FMT - “‘before™ version
of READ.DISKR.

GETNUMBER.TEXT 30 Fancy, sophisticated integer & decimal
input routines.
GETSORT.TEXT
HEXDECOCT.TEXT
HEX, DECimal, OCTal.

ID2ID. TEXT 36 From the PASCAL NEWS No. 15, converted
by Frank Monaco. Lets you change one or mote identifiers in Pascal

12 Part of the mailing list *‘database’’ system.
18 Convert integers any way you want:

USUS Newsletter December 1991

source to others of your choice.

MAKEMASKS. TEXT 18 Allows you to edit SUPER CRT
masks, put them on disk.

MONACO.DOC.TEXT 14 Documentation for some of the files
on this disk.

PEEK.POKE.TEXT 8 Thought you couldn’t PEEK or POKE?
Shows you how.
QUICKSORT.TEXT 4 Example of fast disk sorting algorithm.

READ.DISKR.TEXT 24 Documentation for DISKREAD and ex-
ample of FMT at work.
READ.FMT.TEXT
example of output.
SCREENCNTL.TEXT 4 Example of SEPARATE UNITS, with
SOIne nice routines.

SOFT.TOCLSDOC 18 Doc for CRTINPUT, GETNUMBER,
MAKEMASKS, & SCREENCNTL.

82 Documentation for FMT.x.x.CODE and

SP.TEXT 14 Allows your line printer to follow FORTRAN
conventions.

STRUCT.TEXT 8 Part of the mailing address “*database” sys-
tem.

UNIT.GOOD.TEXT 22 Should be called WONDERSTUFF,
solves those nagging terminal dependendies for good, plus allows
you to read the directory from any disk, get date, etc.

UPDATE. TEXT 22 Part of the mailing address ‘‘database’’
system,
VOLO5.DOCTEXT 8 You're reading it.

This volume was assembled by Jim Gagne from material collected
by the Library Committee.

UCSD Pascal Volume 086

PTP.BUSHTEXT 154 An original Pascal Transfer Program, by
Mark Gang, edited by Randy Bush. Baud rate is sefected by
inter-modem dialogue; choice of radix-41 or true binary file transfer;
improved algorithms speed up data transfer,

BAUD.ATEXT 6 The suffix “A.TEXT’” indicates 8080 as-
sembly-

CTS.ATEXT 4 language files used by PTP; the function of
each

DIALER ATEXT 6 routine is described by “PTP-

FILES.TEXT’’. Note that

DTONEDET.A-TEXT 4 these routines are highly processor- and
modem-

DPTRON.ATEXT 4 specific.

HANGUP.ATEXT 4

KBSTATATEXT 4

MODEMINLA.TEXT 4

MREAD A.TEXT 4 Rewrite these files for your machine.
MRECSTATA.TEXT 4

MWRITE.ATEXT 4

RLATEXT 4

RINGING.ATEXT 4

SH.A.TEXT 4

SYSNAME.TEXT 4 User ID (just a few characters) used by
PTP.

PTP.FILES.TEXT 8 PTP documentation - which files are which.
PTP-INST.TEXT 6 PTP documentation - how fo set it up.

PTP-USE.TEXT 20 PTP documentation - how to use.

FORMAT.TEXT 6 A corrected and updated FORMAT (from
USUS Vol.
FORMAT.1. TEXT 16 1), 50 that now it works reasonably weli.
Most bugs

FORMAT.2TEXT 24 are gone (except the program still has
trouble with

USUS Newsletter December 1991

FORMAT.3.TEXT 18
prematurely).
FORMAT4.TEXT 20
ED!! Finally, it
FORMATSTEXT 22
tax. Itis

FORMAT.6. TEXT 24 handy for reformatting Pascal source to fit
on CRT screens-of different sizes.

FMT.64MASK DATA 5 Mask for FORMAT menu for 64-column
screens.

FMT.6MENU.TEXT 4 Source for above data; needs MAKE-
MASKS from Vol. 5.

extended comments and may terminate
Format options are now MENU SELECT-

accepts nearly all valid UCSD Pascal syn-

FMTMASK.DATA 5 'This menu mask is for 80-column CRTs
and Apples.

FMTMENUTEXT 6 Source for the above data; needs MAKE-
MASKS from Vot5.

FMT.NEWDOC.TEXT 20 Documentation on these changes to
FORMAT.

FORMAT.DOC.TEXT 30 Copy of original FORMAT documenta-
tion from Vol. 1.

BANNER.TEXT 20 This program was donated by David
Mundie. Prints a banner vertically on print-out paper, with up to

6 lines or 7-inch letiers.

VOL06.DOC.TEXT 8 You're reading it.

‘This volume was assembled by Jim Gagne from material coliected by
the Library Committee.
UCSD Pascai Volume 007

FASTREAD. TEXT 8 Dan Dorrough’s unit (used in MAP) that
speeds up readln for strings by a factor of about 10.

MAP.TEXT 38 The precompiler from PUG News #17 that al-
lows Pascal)
MAP-A.TEXT 42 macros, fancy constant expressions, nested
INCLUDE

MAFP-B.TEXT 32 files, conditional compilation, and more, con-

verted by Dan Domrough of PCD Systems.

MAPDOCTEXT 18 Documentation from PUG News.
PRXREF.TEXT 30 David Lewis’ superb Pascal cross-referencer
and source

PRXREF.TBL.TEXT 34 lister with several nice features: follows
INCLUDE

PRXREF.OPT.TEXT 24 (files, adds line numbers that match those
of the UCSD

PRXREF.INLTEXT 24 compiler, and marks procedures/functions
in the xref

PRXREF.UTL.TEXT 28 list.

PRXREF.PFL.TEXT 38

KEYHIT.TEXT 4 Assembly language keyboard poller (from
Usus).

PRX.DOCTEXT 68 Clear and thorough (1) documentation for
PRXREF.

PROC.REF1.TEXT 44 Procedure/function cross-referencer from
PUG News #17. It died when tried on a large program with many
cross-references, but works fine with smaller sources. Use is obvi-
ous.

PROC.REF2.TEXT 22 Pat Horton’s own procedure cross-
referencer.

VOLO7.DOCTEXT 6 You're reading it.

This volume was assembled by Jim Gagne from material collected by
the Library Committes.

Page 31

UCSD Pascal Volume 008

ARCHIVER.TEXT 10 Save & retrieve disk images.
CHAIN.TEXT 6 Chain to another program.
CHAIN.1.TEXT 4 Demo programs...

CHAIN.2. TEXT 4

COPYBLOCKS.TEXT 6 Copy blocks to a file by block number.
CRMBLEV1.2.TEXT 14 Break up long files for editing with the
UCSD editor,

D.TEXT 20 Revised disk directory lister.
DISKSORT.TEXT 12 Revised sample sort.
ERROR.DATATEXT 4 Messages used by FILEUNIT.
EXHALEV2.1.TEXT 6 Send data fo remote port.
INHALEV2.1.TEXT 8 Receive data from remote.
FAST.SEEK.TEXT 10 Greatly speed SEEK procedure.
FILEUNIT.TEXT 32 General-purpose file handling routines.
GLOBALHO.TEXT 30 GLOBALS for UCSD system I1.0.
GLOBAL.HLTEXT 36 ... I11.0.

LINECOUNT.TEXT 10 Counts lines in text files or entire vol-
umes,

LISP.TEXT 28 Public-domain LISP interpreter.

LISTER. TEXT 6 List text files.

MAILER.DOCTEXT 10

MAILER. TEXT 22 Mailing list facility; sounds NICE.
MODEMV22TEXT 8 Rework of program on Volume 2A.
MULDIV.ZBO.TEXT 6 Part of ZB0O.SEEK.

PERUSEV4.6. TEXT 14 Look over a text file forwards & back;
FAST!

RECOVER.TEXT 6 Find program source text after zapping a
directory.

REM.TERM.TEXT 34 Hardware-independent communications
utility.

REM.UNIT.TEXT 32 One implementation of new USUS stan-
dard remote unit,

SCREEN.TEXT 6 Western Digitat screen control unit.

SCREENUNIT.TEXT 10 Terminal-independent screen control
from Volume 5.

UNITS.DOC.TEXT 22 Documentation for FILEUNIT.,
WRITERV7.2.TEXT 34 Nice text printer, updated from Volume
2A.

Z80.SEEK.-TEXT 8 Fast seck routine specific to Z-80’s.
COMMENTO8. TEXT 20 Reviwer’s comments about files on this
disk.
VOLO8.DOC.TEXT 8 You’re reading it.

This volume was assembled by Jim Gagne from material collected by
the Library Committee.

UCSD Pascal YVolume 009

ADV.TEXT 34 Source for ADVENTURE.
ADV.DOC.TEXT 20 Read this documentation on setting up the
program.

ADVMISCINFO 4 Tells ADV your screen dimensions.
ADVINIT.TEXT 22 Run this program to set up ADV’s data
fites.

ADVSLTEXT 42 These are the text files used by ADVINIT.

ADVS2.TEXT 8
ADVS3.TEXT 22
ADVS4.TEXT 10
ADVS5.TEXT 14
ADVS6.TEXT 38
ADVS7.TEXT 6
ADVSS.TEXT 4
ADVS9. TEXT 4

Page 32

ADVSI0.TEXT 4
ADVS11.TEXT 4
ADVSUBS.TEXT 42
ADVVERB.TEXT 42

CASTLES.TEXT 36 A beard game for two or more players, in
which you

CASTLES.DOC 6 and your opponents are warlords plundering
each other, raising armies, etc.

SPACEWAR.TEXT 20 Fast action for two players shooting it out
in their space ships...it’ll require work to get it running on your ma-
chine.

STARTREK.TEXT 6 A Pascal version of the classic game.

STAR.PART1.TEXT 24
STARPARTZ.TEXT 22
STAR.PART3I.TEXT 22

COMMENTO9.TEXT 10 Reviewer's comments about files on this
disk.
VOL®W.DOCTEXT 6 You're reading it.

This volume was assembled by Jim Gagne from material coliected by
the Library Committee.

UCSD Pascal Volume 010

BENCHMARK.TEXT 28 Jon Bondy's benchmark with some
added goodies

BENCHMARKI.TEXT 18 Aninclude file

NEW.BFS.TEXT 22 Interesting, but what is it?
KRUSKAL.TEXT 22 ditio

KRUSKAL.1.TEXT 28 Aninclude file

CATALOG.TEXT 26 A file manager data base.
CATALOG.1.TEXT 24 Aninclude file

CATALOG.2.TEXT 10 Aninclude file

BTREE.GET.TEXT 28 A large impiementation of a B-tree algo-
rithm,

BTRE.FIND2.TEXT 22 Include files

BTREE.DEL1.TEXT 22

BTREE.DEL2.TEXT 32

BTREE.PRNT.TEXT 26

BTREE.DOIT.TEXT 30

BTREE.DCLR.TEXT 10

BTREE.STD.TEXT 8

BTRE.FIND1.TEXT 22

BTREE.INIT.TEXT 12

BTREFILE.TEXT 30 The imain program and the documentation
for B-tree.

COMMENTI10.TEXT 6 Reviewer’s comments about files on this
disk.
VOL10.DOCTEXT 6 You're reading it

This volume was assembled by George Schreyer from material col-
iected by the Library Committee.

UCSD Pascal Volume 011

MAIL.DOC.TEXT 100 Documentation for MAIL.
MAIL.E.GTEXT 10 A sample source document
MAIL.LETT.TEXT 4 A sample form letter
MAIL.INFO.DATA 4 A sample form

SCREENOPSX.TEXT 12 A Screen Control unit for version L9
SCREENOPSA.TEXT 14 A Screen Control unit for Apple
MAIL.TEXT 18 The main program

MAIL:. TEXT 16 an include file

USUS NewsLetter December 1991

MAIL2A TEXT 32

MAIL2B.TEXT 32

MAIL3. TEXT 16

MAILA4.TEXT 26

MAILS. TEXT 14

MAIL6 TEXT 20

MAIL7TEXT 22

MAILB. TEXT 12

MAILY9. TEXT 10

MAIJLINITEG.TEXT 4 A sample data form
MAILFORM.TEXT 6 A sample form

MAILREAD.TEXT 12 Documentation on the files in MAIL
MAIL.INIT.TEXT 32 Converts a text file into a MAIL data file
CHASE.TEXT 22 A reworked version of the game on Volume
3

BLACKJACK. TEXT 22 A reworked version of the game on
Volume 3. This

BIACK.1.TEXT 16 one splits pairs, doubles down, and has in-
surance.

COMMENTI11.TEXT 4 Reviewer’s comments about files on
this disk.

VOL11.DOCTEXT 8 You're reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 012

WINDOWS. TEXT 20 A screen window unit. Slow but nice.
Needs IV.0.

W.SEGS. TEXT 28 aninclude file

W.IO.TEXT 20 ditto

W.IMPLN.TEXT 32 ditto

WFILER.TEXT 26 A demonstration program for WINDOWS,
Acts like the Filer

W.DOC.TEXT 22 Documentation for WINDOWS.
OFFLOAD.TEXT 24 A command line interpreter which re-
places the USCD command prompt. Needs IV.0
OFF.INFO.TEXT 4 aninclude file for OFFLOAD

OFF START.TEXT 8 ditto

OFF READ.TEXT 8 instructions for using OFFLOAD
OFFDOC.TEXT 26 Documentation for OFFLOAD
HELP.DISK.TEXT 4 A help file for OFFLOAD
HELPXEYS.TEXT 4 ditto

HELP.OFF.TEXT 4 ditto

HELP.UTIL.TEXT 6 ditto

NEW.PAGE.TEXT 4 A data file for OFFLOAD
NEW.TEXT 4 ditto

PARAM.INFO.TEXT 4 ditto

MAKE.PAGE.TEXT 4 A utility for OFFLOAD

PRINT MEM.TEXT 4 Part of the benchmarks. Displays

memory available,

PRINT.HEAP.TEXT 6 Analyzes heap usage. Needs IV.0 and
timer support.

BENCH.USUS.TEXT 22 Jon Bondy’s benchmark with some
added goodies.
BENCH.PCW.TEXT
Needs timer support.
BENCHSWAFP. TEXT 4 Segment swap benchmark. Needs IV.0
and timer support.

BENCH.BYTE.TEXT 6 The infamous Byte benchmark
CPROC.TEXT 16 Another command line interpreter.
.0

12 Personal Computer World benchmark.

Needs

USUS Newsletter December 1991

VOLS.SMAC 4 Data for CPROC

STARTUP.TEXT 20 A startup program which sets the prefix
and date.

AUGMENT.TEXT 42 A program which adds timing info to a

Pascal source file so that timing data can be obtained.
ANALYZETEXT 24 Analyzes the resuits of AUGMENT.
Needs timer support.

RANALYZE.TEXT 24 Dito except uses reals.
DISK_COPY.TEXT 8 A disk copy and verification program.

LMFORMAT.TEXT 18 A simple Pascal source formatter.
COMMENT12.TEXT 16 Reviewer’s comments about files on this
disk,

VOL12.DOCTEXT 8 You're reading it.

This volume was assembled by George Schrier from material collect-
ed by the Library Committee.

UCSD Pascal Volume 013

DECLARE.TEXT 22 Include files of RUNON
INITCTEXT 26 ditto

DOPAGE. TEXT 34 ditto

READNU.TEXT 30 ditto

READLN.TEXT 16 ditto

MAIN.TEXT 22 RUNON main program. A nice fast text for-
matter.

SYSGEN.TEXT 4 Compile this file to make RUNON.

RUNON_DOC.TEXT 4 RUNON documeniation in un-formatted
form.

INTRO_DOCTEXT 10 an include file of the documentation.
HOWTO_DOCTEXT 12 ditto

DOT DOCTEXT 26 ditto

DEFALT DOCTEXT 4 ditto

SPEC DOC.TEXT 10 ditto
ERR DOCTEXT 12 ditto
TECH_DOC.TEXT 16 ditto

TAXNAMES.TEXT 18 Generates form line names for FIT.
TAXTABLE. TEXT 24 Generates an out-of-dale tax table for
FIT.

TAXCALCTEXT 20 an include file for FIT. The Federai In-
come Tax Program

TAXSTART.TEXT 8 ditto

TAXRW . TEXT 10 ditto

TAXPRINT.TEXT 16 ditto

TAXEDIT.TEXT 22 ditto

FIT.TEXT 20 The main program of FIT.

STARTUP.TEXT 22 A version IL.0 startup program with date
and prefix set

PDATE. TEXT 4 a unit for STARTUP

SPIN.TEXT XX an external procedure for Startup H-89 onty.
ERRORDATA 1 This data file should have been on Volume
8.

SCREDIT.TEXT 36 A screen form generator, simple but it
works.

SCRGEN.TEXT 18 Converts output of SCREDIT to Pascal
soruce

TYPES. TEXT 6 an inclode file for SCREDIT and SCRGEN
COMMENTI3. TEXT 6 Reviewer’s comments about files on this
disk.

VOLi13.DOCTEXT & You're reading it.

XX = Programs withdrawn or not on the disk.

This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

Page 33

UCSD Pascal Volume 014

COPVOL.TEXT
type boot blocks).
COPVER.ASM.TEXT 8 an external procedure for COPVAL.

18 Jon Bondy’s disk copier (will copy Z-80

COPFILE.TEXT 12 Jon Bondy’s file copier.
COMPFILETEXT 10 A binary file comparison program.
GAME.TEXT 26 A game with a maze and demons by Jon
Bondy.

GAMELTEXT 18 aninclude file of GAME.
DEFAULT.GPAT 4 a data file for GAME.
CROSSES.GPAT 4 ditto

SPARSE.GPAT 4 ditio -
GAME ASSEM.TEXT 4 an external procedure for GAME (key-
press).

SCANNER.TEXT 14 A nifty program which looks through a
disk for a string.

KBSTAT.TEXT 4 A keypress routine for an H-89.

BONDYSTUFF.TEXT 14 Ion’s documemtation.
HOME_LOAN.TEXT 10 Asimple program to calculate simpie
loans.

BANNER.TEXT 22 Prints banners in BIG letters.
STOCK.TEXT 22 A Stock Market game.
STOCK.DATA-TEXT 6 a data file for STOCK.
STOCK.DOCTEXT 6 documentation for STOCK.
SRCCOM.TEXT 18 A nice source comparison program.
FASTREAD.TEXT 8 a unit for SRCCOM.
REFERENCE.TEXT 24 A simple but effective procedural cross
referencer.

REFER.INC.TEXT 22 aninclude file of REFERENCE.

8080CONV.TEXT 26 Converts 8080 instructions to Z-80 instruc-
tions.

LOOK.UP.TABLE 15 A data file for SOBOCONV.
TABLE.TEXT 18 'The text of the data in case you have to
recreate if.

REFORM.TEXT 8 A uiility for B0BOCONV,
CALENDAR.TEXT 12 A perpetval calendar (requires an H-19).
DAYOFWK.TEXT 8 Calculates the day of the week for any
date.

LISTINFO.TEXT 36 Generates a report of your *SYS-
TEM.MISCINFO.

SORTS1.TEXT 6 These four programs are demos of four dif-
ferent sorts,

SORTS2.TEXT 6

SORTS3.TEXT 6

SORTS4.TEXT 6

HEXDUMP.TEXT 12 Dumps blocks in hex.

ROMAN.TEXT 10 Converts decimal dates to Roman numerals.
COMMENTI4.TEXT 8 Reviewer’s comments about files on this
disk.
VOLI4.DOCTEXT 8 You’re reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library Commiltee.

UCSD Pascal Volume 015

HSM.UROOT.TEXT 22 A RemoteUnit for the Hayes SmartMo-

dem (uses UNITSTATUS),

HSM.UINCLTEXT 16 aninclude file of HSM.UROOT.TEXT.
STD.UNIT.TEXT 24 A RemoteUnit for a dumb modem (uses
UNITSTATUS).

TERM.MAIN.TEXT 20 Bob Peterson’s terminal emuiator pro-
gram.

TERM.LOGTEXT 14 an inciude file of TERM.MAIN.TEXT.

Page 34

HSMUINC2.TEXT 14 ditio
TERM.EMUL.TEXT 10 ditto
TERM.INIT.TEXT 22 ditto

TERMUTIL.TEXT 22 ditto

CONTENTS.TEXT 14 Documentation for TERM.MAIN and
Bob’s RemoteUnitsx.

SMTREMVS.TEXT 26 A terminai emulator specific to the LSI-
11.

IOUNIT.TEXT 8 a unit for SMTREM V5. TEXT.

TOMUS4.C2.TEXT 24 Mike lkezawa’s terminal emulator.
REMUNIT.L3.TEXT 28 Mike’s RemoteUnit (specific to an LSI-

11).
SET_BREAK.TEXT 4 an external procedure for REMU-
NIT.L3.TEXT.

CLR_BREAK.TEXT 4 ditto

TOMUS3.CLTEXT 10 comments for TOMUS4.C2. TEXT.
TOMUS3ATEXT 22 Documentation for TOMUS4.C2. TEXT.
COMM.TEXT 24 Jon Bondy’s terminal emulator.
REMTALK.TEXT 24 Transfer files between two closely cou-
pled UCSD computers.

TELETALKER.TEXT 24 Randy Bush’s Communications pro-
gram. Uses a RemoteUnit.

AJ/{REMUTEXT 72 Arley Dealey’s Remote Unit for the Apple
.

COMMENTI5.TEXT 10 Reviewer's comments about files on this
disk.
VOLIS.DOCTEXT 8 You're reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 016

P.TEXT 24 A simple text formatter which is easy to use.
PINCTEXT 16 aninclude file for P.

INV.TEXT 8 An inventory management program from Pat
Horton.

ISSUE.TEXT 10 aninclude file for INV.
BASPROC2.TEXT 12 ditto

ADD.TEXT 8 ditto

REPORT.TEXT 20 ditto

BASPROC.TEXT 18 ditto

INV.DOCTEXT 34 documentation for INV.
HORTON.DOC.TEXT 4 Pat Horton’s comments on files he sub-
mitted.

ZBO.SEEK.TEXT 8 A fast Z80 seek procedure. Should have

been on Volume 8.

CHECKBOOK.TEXT 26 Jim Gagne’s checkbook balancer.
USUS.INV.TEXT 36 A USUS disk order entry program.
INVCSMASK.DATA 5 adata file for USUS.INV.,
8.INCH.TEXT 8 Prints 8" disk labels,

APPLELABL.TEXT 6 Prints Apple disk labels.
CRTINPUL.TEXT 22 A unit used by }ims programs.
GETNUMBER. TEXT 30 Another unit used by Jim’s programs.
ASE.HEADER.TEXT 6 The declarations for the ASE Header

Page.

BUNIT.TEXT 12 Mike Adams’s B-tree unit.
BDEBUG.TEXT 6 aninclude file of BUNIT.
BHKEEP.TEXT 6 ditto

BINTERN.TEXT 24 ditto

BIO.TEXT 8 ditto

BMAIN.TEXT 22 ditto

BDRIVERTEXT 12 A main program which uses and demos
BUNIT.

USUS NewslLetter December 1991

BDOC1.TEXT 30 Excelient documentation for Mike Adams’s

B-tree.

BDOC2.TEXT 30 More documentation on the b-tree.
BDOC3.TEXT 16 Even more documenation.

COMMENT16. TEXT 8 Reviewer’s comments about files on this
disk.

VOL16.DOCTEXT 8 You're reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 017

SYSTEM.ATEXT 48 UCSD Pascal Version 1.3 operaling sys-
tem.

SYSTEM.B.TEXT 44 an include file of the operating system.
LINKER.TEXT 8 The Linker.

FILER.TEXT 50 The Filer.

YALOE.TEXT 44 Yaloe (1.3 didn’t have a screen editor).
GLOBALS.TEXT 22 Globals for the system.
COMP.ATEXT 40 First file of the Compiler.

COMP B.TEXT 34 aninclude fiie,

COMP.C.TEXT 44 ditto

COMP.D.TEXT 52 ditto

COMP.E.TEXT 46 ditto

COMP.F.TEXT 34 ditto

BOOTER.TEXT 4 The bootstrap copier,

XFER.TEXT 6 A single disk file transfer program.
VOL17.DOCTEXT 6 You're reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 018

SEGMAP.1.TEXT 34 Arley Dealey’s version independant seg-
ment mapper.

SEGMAP2TEXT 28 aninclude file of segmap.
ODMSCU.TEXT 10 One Damn More Screen Control Unit (for
Segmap).

LIFE.TEXT 32 The game of LIFE.

LIFEINCTEXT 8 aninclude file for LIFE,
BLACKBOX.TEXT 38 A guessing game based on particle
physics.

BLACK.DOCLTEXT 6 a help file for BLACKBOX.
BLACK.DOC2.TEXT 6 ditto

TELE.TEXT 18 Keeps a data base of telephone traffic.
SORTUNIT.TEXT 18 A three-way key sort onit.
SORT2.TEXT 12 A sort program.

DEBUGATEXT 22 The UCSD 1.3 debugger.
DEBUGB.TEXT 44 aninclude file of the debugger
BENCHMARKS.TEXT 10 An overview of the benchmarks on
this disk.

PWROF2.TEXT 8 A Pascal benchmark program.
8QUEENS. TEXT 6 ditto

NUMBERIO.TEXT 8 ditto

ANCEST.STEXT 6 ditto

PRIMES. TEXT 6 ditto

QUICKSORT.TEXT 6 ditto

QUR.TEXT 6 A simple benchmark to measure "system"
speed.

STARS.TEXT 6 A simple I/0 benchmark.

COMPKILLER.TEXT 6 A benchmark desi gned especially to

USUS NewslLetter December 1991

crash your compiler.
WHETSTONE. TEXT
WHET.DOC.TEXT
from MUSUS.
SIEVE.TEXT
possibie.
LONG_INT.TEXT 12 Tests long integer operations.
INTRINSICS.TEXT 18 Tests system intrinsics.
SEGMASHER.TEXT 8 A segment swap speed tester.
REPORT.DOCTEXT 6 Some simple instructions for running the
benchmarks.

REPORTFORM.TEXT 8 A form for recording the results of the
benchmarks, ‘
BENCH.USUS.TEXT 26 Jon Bondy’s benchmark (again).
BONDY_FORM.TEXT 8 A form for recording the results of
BENCH.USUS.

12 The famous WHETSTONE benchmark.
16 Some notes on WHETSTONE, taken

8 The infamous Byte Benchmark, as standard as

COMMENTI8.TEXT 6 Reviewer’s comments about files on this
disk.
VOL18.DOC.TEXT 8 You're reading it.

This volume was assembled by George Screyer from material collect-
ed by the Library Committee.

UCSD Pascal Volume 019
DEC & RX01 Specific

MODEM.PAS.TEXT = 6 A simple routine to redirect [/O.
DECINDEX.TEXT 6 Anindex of the DEC specific software al-
ready in the USUS Library.

2K.KEY.TEXT 12 Some patches for the 2k Key.
PATCHESTEXT 30 A summary of the patches to the UCSD
DEC

PATCH.CONT.TEXT 20 interpreters to make them work right.

SYSTEM.INTERP 18 The interpreter for 1.3.
SYSTEM.PASCAL 110 The operating system for 1.3.
XFER.CODE 3 Asingle drive file transfer program for I.3.

BOOTER.CODE 2 The 1.3 bootstrap copier.

SETUP.CODE 13 ‘The L3 Setup utility.

MAKE 13 TEXT 4 AnRT-11 command file to assemble and
link the 1.3 interpreter.

RX11.TEXT 26 'The 1.3 floppy driver.

EIS.TEXT 4 A conditional assembly definition.
MACROS.TEXT 14 Macro definitions for the 1.3 interp.
MAINOP.TEXT 64 Part of the guts of the L3 interp.
TRAPS.TEXT 36 ditto

PROCOP.TEXT 64 ditto

LP11.TEXT 10 The printer driver for 1.3,

RXBOOT 2 The boot block for 1.3.

PYMMACTEXT 16 A RAMDISK handler for ILO.
ZAPRAM.TEXT 6 A utitity to initialize RAMDISK on boot.
COMMENTI19.TEXT 8 Reviewer’s comments aboul files on this
disk.

VOL19.DOCTEXT 6 You're reading it.

‘This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 020

UNLPATCH.1.TEXT 26 The University of Nebraska Lincoln disk

patch utility
UNLPATCH.2.TEXT 24 it displays its data in octal.

Page 35

UNLPCH.DOC.TEXT 10 doc for above.

AUTOPSY. TEXT 10 Divides a file into small enough pieces for
the sytem editor,

SCREEN.H19.TEX. 10 A screen control unit for Autopsy
SCREEN.TEXT 6 A terminal independant version of
SCREEN.H19.

LWRCASE.TEXT 8 Converts a file to lower case but ieaves lit-
erals intact.

UPRCASE.TEXT 8 same but to upper case.
HOME_LOAN.TEXT 14 A simple minded simple loan calculator.
SIGFIG.19.TEXT 14 Getanother "significant" figure, or maybe
even more!

OTHELLO.TEXT 28 Steve Brecher’s OTHELLO game, origi-

nally on Volume 3

OTHELLO.1. TEXT 26 aninclude file. This game is a real killer!
BASE. TEXT 6 A numeric base converter, works nice.
HISUTIL. TEXT 24 A screen control unit for BASE. Modify it
for other terminals.
NUMBER2.TEXT
FASTREAD.TEXT
tine.
ESCORT.DOCTEXT 8 Documentation for the Jonos ESCORT
BIOS

E.BOOT. TEXT 14

EBIOS. TEXT 8

BIOS.CONST. TEXT &

BIOS.SERPT.TEXT 22

BIOS DISKS. TEXT 26

BIOS PHONE.TEXT 4

BIOS.DATA. TEXT 10

SXFR.SVCS.TEXT 26

FORMATTER.TEXT 8

TRANSPORTR.TEXT 42

BOOTMAKER.TEXT 10

EBIOS-GENR.TEXT 4

EBOCT-GENR.TEXT 4

FMT-LINK.CODE XX

FMT-GENR.TEXT 4

TRANS-GENR.TEXT 4

FORMATTER.CODE XX

SXFR.SVCS.CODE XX

TRANS-MGR.CODE XX

BOOTR-GENR.TEXT 4

BOOTWRITE.CODE XX

BOOTMAKER.CODE XX

E.BOOT.CODE XX

E.LOAD.BCOT i

EBIOS.CODE XX

E.LOAD.BIOS 4

BOOT.WRITE.TEXT 16

12 A unit for BASE.
10 Another version of a fast string read rou-

COMMENT20.TEXT 8 Reviewer’s comments about files on this
disk.
VOL20.DOCTEXT 8 You'rereading it.

XX = Programs withdrawn or not on the disk.

This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 021
This Volume is specific to Apple machines

PTP.HAYES.TEXT 32 An Apple }{ version of PTP.BUSH from

Page 36

Vol. 6.
PTP.HAYELTEXT
11
PTP.HAYE2.TEXT
Micromodem
PTP.HAYE3.TEXT
must be
PTP.HAYE4TEXT 26 changed for another modem.
PTP.HAYESTEXT 26 :

MDMDRVR.TEXT 16 External modem support, Hayes Micro-
modem][.

PTP.APPLE.CODE 39 Compiled, linked, ready for Apple/Hayes.

28 Should be useful for anyone with Version
30 based system. As is, it is an Apple/Hayes

28 wversion ready to run. The modem drivers

SYSNAME.TEXT 4 Sample vser ID (mine).

PTP-USE.TEXT 20 Originai PTP documentaion.
PTP.DOC.TEXT 14 Doc. for this version.

CHAREDIT.TEXT 24 Create new graphic characler set - Apple
1

DOSCAT.TEXT 12 Read catalog on Apple DOS disk.
DOSTRANS.TEXT 8 Program using DOSstuff to fransfer text
from DOS.

DOSUNIT.TEXT 22 Unit to read Apple DOS disks from Pascal
programs.

DOSTR.TEXT 24 Documentation for the above.
ACPMCOPY.TEXT 12 Apple disk version of program from Vol

1 to fetch CP/M files. All in Pascal, so it’s slow, but it works.

GETFUNCS.TEXT 14 Input strings, reals, integers, Boolean
from CONSOLE..

STAT.DOCTEXT 10 Documentaion for a series of statistical
programs

ANOVA2.TEXT 12 by Phil Elder.

ANOVA1L.TEXT 10 Stat programs.

SEG.TEXT 8
DSTAT.TEXT 10
TIND.TEXT 8
TDEP.TEXT 8
CORR.TEXT 8
CHI12.TEXT 8
CH11.TEXT 8
VOLZ21.DOCTEXT 8 You're reading it

"This volume was assembled by George Schreyer from material col-
lected by the Library Committee.

UCSD Pascal Volume 022
Graphics Programs for the Terak (LSI-11) Computer

GRAPH.DOC.TEXT 40 Documentation for units and programs
on this disk.

POST.DOCTEXT 24 Documentation for POST_ENTRY.TEXT.
REAL_INPUT.TEXT 8 Unit to input real numbers from the con-
sole.

REVIEW.TEXT 14 Unit to facilitate running these programs
with a "dumb” Hiplot plotter instead of the Terak.
POST_ENTRY.TEXT 28 Unit to input functions from the conseie
orafile and to evaluate these functions.

SCRN_STUFF.TEXT 8 Screen control unit for these programs.
PLOTTER.TEXT 16 Unit to drive "dumb" Hiplot plotter.
GRAPHICS.TEXT 28 Fundamental graphics unit for both Terak
screen and "dumb” Hiplot piotter.

FACT_STUFF.TEXT 14 Math unit for factorial, log factorial, and
related calculations.

USUS NewslLetter December 1991

FUNC.TEXT
POLAR.TEXT
DISTRIB.TEXT
nomial distributions.

SINES. TEXT 14 Plot sine functions of various types.
HISTOGRAM.TEXT 20 Plot histograms using data from file or
console.

HISTOGRAM.DATA 2 Sample data file for the above.
CURVE_FIT.TEXT 28 Polynomial curve fitting and plotting.
CONTOUR.TEXT 28 Plot contours of 3-dimensional surfaces.
TRIANGLE.TEXT 40 Constructs triangie with minimum input
and plots resutt.

24 Plot functions entered from console.
22 Plot polar functions ent.red from console
24 Calculate and plot normal, Poisson, and bi-

TRAVERSE.TEXT 42 A calculating and plotting program for
surveyors.
IVP.TEXT 42 "Solves" differeniial equations by Euler and

4th order Runge-Kutta techniques and plots solution.
VOL22DOC.TEXT 8 You're reading it.

This volume was assembled by Henry Baumgarten from material
coilected by the Library committee.

UCSD Pascal Volume 023

STARGAME. TEXT 28 A simple, but captivating game.

RNDTEST.TEXT 16 A random number generator and some
simple tests :
RNDDOC.TEXT 14 Documentation for RNDTEST.
IOUNIT.TEXT 16 A unit fo quickiy read and write characters
and strings.

IOTEST. TEXT 8 A program to test and benchmark IOUNIT.
IODOC.TEXT 10 Documentation for IOUNIT and IOTEST.
SPELLER.TEXT 24 A Pascal spelling checker.that uses
IOUNIT

DICT.TEXT 78 A small literal dictionary for SPELLER.
SPELLDOCTEXT 18 Documentation for SPELLER and DICT.
DF.DOCUM.TEXT 26 The Display Filer Documentation,
DFIVOTEXT 86 Display Filer for IV.0.

DEIV.LTEXT 96 Display Filer for IV.1.
VOL23DOC.TEXT 8 You're reading it.

'This volume was assembled by George Schreyer from material col-
lected by the Library committee.

UCSD Pascal Volume 024

ADVX1.TEXT 48 A data file.
ADVX2. TEXT 8
ADVX3.TEXT 22
ADVX4. TEXT 10
ADVX5.TEXT 16
ADVX6. TEXT 42
ADVXTTEXT 6

ADVXS.TEXT 4

ADVX9.TEXT 4

ADVX10.TEXT 4

ADVXI11.TEXT 4 The last data file.
ADVXCONS.TEXT 4 Aninclude file of Adventure,

ADVXINIT.TEXT 24 Creates the Adventure data file from the
data source files.

ADVXVERB.TEXT 44 Aninclude file of Adveniure.
ADVXINIT4.CODE 8 A version 4 code file of ADVXINIT.
ADVXINIT2.CODE 9 A version 2 code file if ADVXINIT.

USUS Newsletter December 1981

ADV.MISCINFO 4 Specifies screen size.
ADVX2.CODE 50 An un-linked vers. n 2 code file of ADVX
ADVXSUBS.TEXT 20 An include file of Adventure.

ADVXSEGS. TEXT 28 Aninclude file of Adventure.

ADVX TEXT 38 The main program of Adventure.
ADVX DOCTEXT 22 Documentation of Adventure.
VOL24.DOCTEXT 6 You're reading it.

This volume was assembied by George Schreyer from material col-
lected by the Library committee.

UCSD Pascal Volume 026

Universal Data Entry Documentation and Code Files
-->Version IV.x ONLY<--

Sources on UCSD Pascal Volume 025

UD.INTIRDOC.TEXT 16 UDE Documentation.
UDE.1.TEXT 32

UDE.2.TEXT 26

UDE3.TEXT 32

UDE4.TEXT 34

UDE 5. TEXT 32

UDE.6.TEXT g

SD/DEFINE.CODE 30 UDE Sub-programs.
SH.SCREEN.CODE 21

UD.SORT.CODE 45

UD/COPY.CODE 41

UDAIST.CODE 39

UD/MAINT.CODE 23

UD/SORT.CODE 25

UD/UDE.CODE 3 UDE Main Program.
SH/SCREEN.UNIT 21 A necessary unit.

USERLIB.TEXT 4 Install this as your USERLIB.TEXT.
UD/LIST.SCRN & A couple of data files.
UD/SORT.SCRN 8

README.1ST 8 Read this FIRST!!!
VOL26.DOCTEXT 6 You're reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library committee.

UCSD Pascal Volume 027
FreeForm (a 3-D spreadsheet) Sources
Documentation and code files on UCSD Pascal Volume 028

--» IV.x ONLY <--
4 word reals recommended

FE.FREEFRM.TEXT 22 The main program of FreeForm
FF.COPY2.TEXT 18 aninclude file
FF.DATALTEXT 20 aninclude file

FF.FORMS3.TEXT 22 aninclude file
FF.DATA3Z.TEXT 20 aninclude file
FF.DATA2.TEXT 20 aninclude file
FF.DATASTEXT 22 aninclude file

FF.FORMSS. TEXT 26
FF.FORMS1. TEXT 24
FF.FORMS2TEXT 14
FF.FORMS4.TEXT 16
FFMISC2.TEXT 20

an include file
an include file
an include file
an inciude file
an include file

Page 37

FF.BASICS1.TEXT 30
FF.COPY1.TEXT 26
FF.BASICS3.TEXT 24
FF.BASICS2.TEXT 24
FFMISCL.TEXT 32 aninclude file
FEF.DATA4.TEXT 32 aninclude file
README.IST.TEXT 8 Read this FIRST!
VOL27.DOCTEXT 6 You're reading it

an include file
an include file

an include file

an include file

This volume was assembled by George Schreyer from malerial col-
lected by the Library committee.

UCSD Pascal Volume 028

FreeForm (a 3-D spreadsheet)
Documentation and Run Moduies
{Sources on UCSD Pascal Voiume 027)

--> Version [V.x ONLY <--
4 word reals recommended

FF.A.TEXT 20 FrecForm Documentation.
FF.B.TEXT 16 ditto

FF.CTEXT 18 ditto

FF.D.TEXT 18 ditto

FF.E.TEXT 18 ditto

FF.F.TEXT 8 ditto

FF.G.TEXT 14 ditto

FELTEXT 18 gitto

FFLTEXT 26 ditto

FF.KX.TEXT 20 ditto
FFAWORD.CODE 125 FreeForm for 4 word reals; IV.x only.

FF2WORD.CODE 124 FreeForm for 2 word reals; [V.x only.
README.IST.TEXT 8 Read this first!
VOL28.DOC.TEXT 6 You’re reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library committee.

UCSD Pascal Volume 029

A script driven communications package and a weaver’s helper
{a USUS REMUNIT is needed for CONVERS, see UCSD Pascal
Volume 015)

DRAWIA TEXT
DRAWA4A.1.TEXT
DRAWBA.TEXT 32 A more complex pattern weave analyzer.
DRAWBA.LTEXT 36 aninclude file.

DRAWDN.DOCTEXT 26 Documentation for the weaver’s design
package.

OSMISC_II0.TEXT 12 Misc routines for CONVERS for version
1L.0.

OSMISC IV.TEXT 14 Same forIV.x,

TEXTIO_NO.TEXT 26 Text file routines for CONVERS for ver-
sion I1.0.

TEXTIO IV TEXT 14 Same forlIV.x

SCRNOP_HO.TEXT 14 An ersatz SCREENOPS for ILO.
CONV_TEST.TEXT 6 A test script.

CONVDOC.TEXT 70 Documentation for CONVERS.
INSTALL.TEXT 6 installation notes for CONVERS
CONVERS.TEXT 112 CONVERS itself,

TERMINAL. TEXT 8 A dumb terminal emulator which can

32 A simple pattern weave analyzer.
34 aninclude file.

Page 38

stand alone.

VOL29.DOCTEXT 6 You're reading it.

This volume was assembled by George Schreyer from material col-
lected by the Library committee.

UCSD Pascal (Modula-2) Volume 033
Modulz-2 Stuff: Original Volition pShell & a BTree Package

The pShell was donated to the Library by Volition Systems.
The BTree package was submitted by Joseph Folse.

The following files make up the pShell package.

ARGS.D.TEXT 4 Definition Moduie for Command line argu-
ments.

ARGS.I.TEXT 4 Implementation Module Command line argu-
ments.

PSHELL.DOC. TEXT 26 General pShell documentation.
SHELL.NOTE. TEXT 12 Apple-specific pShell documentation.

SH.TEXT 32 The shell itself.

LS. TEXT 12 Pirectory listing module.
GREP.TEXT 6 Simpie strng finder.
SORT.TEXT 10 A sort module.

CAT.TEXT 6 Textfile concatenator (or lister).
CP.TEXT 6 File copier.

MV.TEXT 4 File renamer.

MORE.TEXT 4 Screen at a time lister.
DATE.TEXT 6 Show the current system date.
MEM.TEXT 4 Memavail.

ECHO.TEXT 4 Echo command line arguments.
MC.TEXT 4 Invoke the Modula-2 compiler.
F.TEXT 4 Iavoke the filer.

ED.TEXT 4 Invoke the editor,

RM.TEXT 4 Remove files.

The foliowing files make up the BTree package:

MBTREED.TEXT 10
MBTREE.TEXT 8
MBTBIO.TEXT 8
MBTDEBUG.TEXT 8
MBTHKEEP.TEXT 6
MBTINTERN.TEXT 24
MBTMAIN.TEXT 22
MBDOCL.TEXT 30
MBDOC2.TEXT 30
MBDOC3TEXT 16
MBTRETST.TEXT 14
ABTDEFD.TEXT 8
ABTDEF.TEXT 4
ABTBIOD.TEXT 4
ABTBIO.TEXT 4
ABTDEBUGD.TEXT 4
ABTDEBUGTEXT 4
ABTHKEEPD.TEXT 4
ABTHKEEP.TEXT 4
ABTINTERND.TEXT 4
ABTINTERN.TEXT 4
ABTMAIND.TEXT 6
ABTMAIN.TEXT 4
ABTREED.TEXT 10

USUS NewsLetter December 1991

ABTREE.TEXT 8

ABTRETST.TEXT 14

BTREE.DOC.TEXT 8 Main documentation file.
VOL33.DOCTEXT 8 You're reading it.

This volume was assembied by Dennis Cohen from material collect-
ed by the Library committee.

UCSD Pascal Volume 034

PASMAT. TEXT
typrinter.
PASMAT.DOCTEXT 24 The documentation for Pasmat,

112 Source to a fairly flexible Pascal pret-

UCSDXREF.TEXT 40 ldentifier crossreferencer which flags as-
signments and declarations.

PREF. TEXT 26 Arthur Sale’s Procedure Referencer in UCSD
Pascal.

PREF.LTEXT 44 An include file for PREF.

TCLISP.TEXT 70 A "tiny" lisp in UCSD.

XLISP.DOCTEXT 50 The documentation for the C version from
which it was developed.

ABSTRACT.TEXT 12 More documentation.

README. TEXT 8 Still more documentation.

TCLISP.CODE 13 The executable (IV.1).

HANOLTEXT 4 An example program.

VOL34DOCTEXT 6 You're reading it.

This volume was assembled by Dennis Cohen from matetial collect-
ed by the Library committee.

UCSD Pascal Volume 035

PDOSTRANS. TEXT 36 Originaily on Vol31: which was with-
drawn. Transfer IBM PCDOS text files to p-System text files.
PDOSOPS.TEXT 52 Part of the above.

LIFE. TEXT 28 Jai Khalsa’s game of LIFE...as discussed on
MUSUS and in the USUS Bulletin #13. An example of fast two-
dimensional list processing. Also originally on Vol31:
LIFEDOCTEXT 36

LNPR.TEXT 22 A group of Modula 2 programs submitted by
P.D.Tetry.
LNPRINCTEXT 18 A lot of worthwhile material you can use.

LNPRDATATEXT 4
LNPR.DOC.TEXT 16
OPENFILETEXT 6
TERM.DOCTEXT 8

TERM.TEXT 36

FIXDIRTEXT 22

FIXINCTEXT 28

FIX.DOCTEXT 10

LISTER.TEXT 12
LISTER.DOCTEXT 4
SETFX80.TEXT 16
SETFX.DOC.TEXT 8
EASYDEF.TEXT 12
EASYMOD.TEXT 26
TERMDEF.TEXT 12
TERMMOD.TEXT 28
README.TEXT 6 Listing of the programs in this group.
VOL35.DOCTEXT 6 Your reading it.

USUS Newsl.etter December 1991

This volume was assembled by David Rhoads from material collected
by the Library committee.

UCSD Pascal Volume 036

TEMPL.SUB.TEXT 38 The main program of Carl Helmers en-
hanced "REPORT" program for use with Tom Swan’s PDBS data
base. Provides additional formating capability.

MAKE TEMPL.TEXT 14 A quick way to start creating a tempiate
P3_LINESTEXT 4 These are demo files explained in the docu-
mentation

A3 LINESTEXT 4

AFORM_LTR.TEXT 6

PFORM_LTR.TEXT 6

ALIST HEAD.TEXT 4

ALISTHEAD 4

ALIST.TEXT 4

PLIST.TEXT 4

AGENERICTEXT 4

PGENERIC.TEXT 4

STATUS.TEXT 4

PA_DBS FLTEXT 4

A PDBSFIL.PDBF 3

TEMPLATES.TEXT 52 The documentation file.
DOCGGENCONV.TEXT 6 More on documentation.
STARTREK.TEXT 70 Revision of original program on VOLS:
Specific to IV.2.2 and STRIDE with WY50. Puts all action into
windows instead of continuous scroll.

STREK.TEXT 10 Broken up for older p-System Editors. (Was
not done

STREK1.TEXT 30 with "TEXTSPLIT".. see program below.)
STREK2.TEXT 36

STREK.DOC.TEXT 6 Explanation of the files and how to com-
pile for the Sage.

RIPPLES. TEXT 6 Repeatedly draws a pattern on a 24 x 80 ter-
minal.

COUNTWORDS. TEXT 4 Simple program for writers who get
paid by the word.

BIGIUL. TEXT 18 Screen display of weekdays for any period of

time starting 01/01/1769 and into the future.

BIGIULDOCTEXT 6 Author’s comments and explanations.
TEXTSPLIT.TEXT 18 Break big text files into small ones of any
size you specify. This is the best of any we have seen so far.
HOME_LOAN.TEXT 20 Generates amortization table on printer
or console.
VOL36.DOCTEXT 6 You're reading it.

NOTE: This volume directory is not idenctical to that published in
the Winter 1987-88 Newletter, S2. TEXT and its supporting files have
been removed because they were identical to STARTREK.TEXT.
Programs starting with RIPPLES and ending with HOME_LOAN
have been added as replacements.

This volume was assembled by William Reed from material coliected
by the Library committee.

UCSD Pascal Volume UK3

An ADA Syntax Checker
Submitted by USUS(UK)

Page 39

ADADOC.TEXT
er.
ADATEXT

er.

20 Documentation of the ADA Syntax Check-

34 The main program of the ADA Syntax Check-

COINT.TEXT 14 aninclude filex,

LAINIT.TEXT 8 ditto

LANEXT.TEXT 40 ditto

LUERROR.TEXT 14 ditto

LUINIT.TEXT 16 ditto

PARSER.TEXT 40 ditto

TYPES.TEXT 18 ditto

STGET.TEXT 12 ditto

TEXTDAT.TEXT 136 A data file.

FILECHECK.TEXT 4 A utility program.

ADA.CODE 33 A code file of the ADA Syntax Checker that
won’t run under IV.G.

GENDAT.TEXT 4 Generates the file TEXTDAT.TEXT.
GENDAT.CODE 2

ADATEST.TEXT 2! A non-UCSD text file of a sample ADA
test case.

NEWADATEST.TEXT 24 A version of ADATEST.TEXT con-
verted to UCSD formatd but without proper indentation.
CONTENTS.TEXT 6 The original UK contents file.
VOLUK3.DOCTEXT 6 You're reading it

This volume was assembled by USUS(UK) from material collected
by their Library committee.

UCSD Pascal Volume UK4
An APL Interpreter and other stuff Submitted by USUS(UK)
APL.TEXT 32 The APL Interpreter.

APILPARSEL.TEXT 18 an include file.
APLPARSE2. TEXT 66 ditto

APLPROCS.TEXT 34 ditto

APLPARSE3.TEXT 6 ditto

APLHEAP.TEXT 12 ditto

APLINITTEXT 16 ditto

APLCHERS.TEXT 6 ditto

APLPARSEQ.TEXT 16 ditto

SORT.DOC.TEXF 42 Documentation of the Sort/Merge Utility.

SORT.MERGE.TEXT 26 The main Sort/Merge program.

SORT.READ.TEXT 6 Some more notes on the Sort/Merge files.
SORT.DUMUN.TEXT 8 A example of the required user-supplied
for Sort/Merge.

SORT.TXTUN.TEXT 18 A more general example of
SORT.DUMUN.TEXT,

SPBSSTUFF.TEXT 40 A unit full of useful goodies.
SPBSSDOCL.TEXT 32 Documentation for SPBSSTUFF.
SPBSSDOC2.TEXT 32 Documentation for SPBSSTUFF.
SPBSSTUFE.CODE 16 A code file for IV.0 of SBBSSTUFF.
CONTENTS.TEXT 10 The UK’s file of the contents of this disk,

there’s more detail in this one about this disk.
VOLUKADOCTEXT 6 You're reading it.

This volume was assembled by USUS(UK) from material collected
by their Library committee.

Page 40

V. USUS Software Library Part 1

The second patt of the USUS Library contains implementations of
computer languages other than Ada, Pascal, Modula-2, Modula-3,
and Cberon. These are provided simply as a resource to USUS mem-
bers to view characteristics of other languages, read about them, and
try them out without needing to purchase commericial implementa-
tions. Also, along the same idea, we have a complete set of demon-
stration disks and evaluation disks from several companies that pro-
vide programming utilities, Lastly, Part H of the Software Library
contains documentation files and specification files for a host of top-
ics refated to programming. Noted examples include documentation
on graphic file formats and communication protocols.

Because the Demo and Evaluation volumes are not homo-
g£eneous in size, the pricing structure is different. In the listing, there
will be an individual price for each of the volumes. Furthermore,
USUS will only provide the volumes as received from the original
company. Thus, we wiil only provide the disk format that is given to
us. We will mail only exact duplicates of the originals.

When ordering from the Other Language Implementations
Library, on the order form where it asks "Language® write in "OTH-
ER." Likewise when ordering from the Demo and Evaluation Disk
Library, write "DEMO & EVAL" for "Language" in the order form.
And, for the Documentation and Specification Library, write "DOC
& SPEC" for the "Language."

If you have any questions, leave a message on CODEPORT
or write.

Demo and Evaluation Disk Library

MULTIEDIT
VEDIT

SHIELD

Documentation and Specification Library

Doc & Spec Volume 001

4KXMODEM.....Specs for 4K extension to XMODEM.
BPROTO........VIDTEX and CompuServe B protocol specifications.
CMODEM.........C-MODEM transfer protocol spec.
MEGALINK..... MegaLink file transfer protocol spec.
MIT-SLFP.....MIT’s Serial Line Framing Protocol spec.
MODEMY....... TOPS20 MODEM?7 implementation spec.
PROTOCOL......A primer on transfer protocols.
WXMODEM.......Specs on XMODEM, XMODEM CRC, and WX-
MODEM.

USUS NewslLetter December 1991

X-PC.........X.PC protocol specification.

XPKTPROT..... X-Packet protocol specs for Packet Radio transfers.

YMODEMSE......XMODEM and YMODEM specifications.
ZMODEMS......ZMODEM specification.
PROTCISA......CompuServe A protocol spec.

FAST..........Fast transter protocol spec for error-free lines.
AFFRO......... ASCII Express extensions reference to Christensen
protocol.

SLIP......... SLIP protocol specification.

UUCP.......... UUCP protocol specification.

ASYNCH-FA..... Asynchronous Fascimile Control Standard specifi-
cation.

XMODEM-C......Calculating XMODEM CRC documentation.
GIF........... Graphic Interchange File Format Documentation.
TIFF-40.......Tag Image File Format Rev. 4 documentation.
FIPS.......... Federal Information Processing Standards Publication

Doc & Spec Volume 002
BASIS17...... Documentation for ANS FORTH. In RTF (Rich Text

Format). Due to the file sizes, this volume is only available in 640k,
720k, 800k, 1.2 meg and 1.44 meg disk sizes.

Other Language Implementations Library

Other Language !mpiementations Volume 001

SMDOCS........Documentation to SmaliTalk implementation below.
SMEXE......... MS-DOS SmallTalk execntable.

SMPROGS.......Sample SmaliTalk programs for above.
SMTALK........C source code to the SmaliTalk implementation
above,

ZEN........... Zen Forth programming language. MS-DOS,

Other Language Implementations Volume 002

ASIC20.......BASIC compiler, editor, docs. No source to compiler.
XLISPDOC......Documentation for X-LISP implementation below.
XLSPZ1EX.....MS-DOS X-LISFP executable.

XLSP21TC......C source code to X-LISP implementation above.

Other Language Implementations Volume 603

SC88.......... Smail-C compiler, outputs 8088 assembly source. Comes
with C source for the compiler and libraries. Compiler is for MS-
DOs.

COBOL650......ANSI 6.50 COBOL compiler and docs. MS-DOS. No
source to compiler.

PROLOG19.....Implementation of a Prolog interpreter. MS-DOS.
Documentations and a great deal of sample source. No source for the
interpreter.

Other Language Implementations Volume 604

VSNOBOLA......Implementation of Snobol 4 for MS-DOS. Docu-
mentation and sample source. No source for the Snobel 4 implemen-
tation itseif,

FORTHV2......Implementation of FORTH-83 for MS-DOS. Docu-
mentation and sample source. FORTH source to portions of system.
ABC........... The ABC language, casy to learn interpretive language.

Notice to International Members

If you are an overscas member and would rather have Computer Language Magazine be sent to you via airmail (as
opposed to surface mail, which is the default) there is an additional $25 per year fee. To receive CLM airmail, send a
check or money order for $40 (made out to USUS, Inc.) to our La Jolla address and we will notify the CLM staff to

change your subscription to airmail delivery.

USUS Newsletter Pecember 1991

Page 41

USUS SOFTWARE LIBRARY ORDER FORM

Ship To:
Name:
Address:
City: State/Province:
Country:_ Postal Code:
Phone: (in case there are questions about your order}
Member Number: (required for UCSD Pascal Software Library Volumes)

Volumes You Want:
Language Volume Numbers

Destination, and payment amount {check one):

Per Volume: [(}$6.00 USA [(3$6.00 Canada/Mexico {}$8.0(airmail} Intemational
Times volumes ordered, Total Amount Enclosed:

Please send a check or money order for the appropriate amount. The check or money order must be drawn from & US Bank or Office, be in US
dollars, and made payable to USUS Inc. Send the order directly to the USUS librarian:

Stephen Pickett
PO Box 1279
Point Roberts, WA 98281-1279
Indicate the desired format and operating system:

Disk Size (3.5” or 5.25"} and Capacity: Disk Operating System: Computer System:

Formats Supported Include:

Apple][280 blocks Some 8" formats (ask)

MSDOS hosted p-system (360K, 1.2M, 720K, 1.44M) MSDOS native (360K, 1.2M, 720K, 1.44M)

P-system (specified by number of blocks in the disk format): 640, 720, 800 (NCI/RECS), 1280 (Stride), 1440 (3.5"), 1440(5.25"),
1600 (NCI 3.5, 1600 (NCI 5.25"), 2400, 2880

IMPORTANT: Please read and sign the following agreement.
Software Order Agreement

I acknowledge that neither USUS nor any of its representatives nor the author makes any warranty with respect to the contents of any Software
Library disks, particularly, no warranty of fitness for any purpose.

For any volumes from the LISUS UCSD Pascat Software Library (volumes 001 .. UK4), I also acknowledge that I will not permit the Programs
I receive pursuant to the foregoing order to be published for profit in whole or in part or to be transferred to any person who is not a member of
USUS, without the express written consent of the author identified in the files of the Library. Further, lacking such author’s consent, I will
ensure that the following items have been submitted to the designated individual {for now the USUS Treasurer, USUS Librarian, or the USUS
administrator) before transferring any Program(s) to another USUS member: a) the current Software Order Agreement signed by the software
recipient; and b) $1 per volume or fraction of a volume received.

Signed Date

Page 42 USUS NewsLetter December 1991

From the editor

by Tom Cattral

Finally, the newsletter is back. The long time since the
last issue has been entirely my fauit. Due to a heavy
work load, some business trips, and some bouts of bad
health, I just hade’t made the time to work on the
newsletter. I’'m hoping to get back onto a reasonmable
schedule now. I have enough material to get another is-
sue out SOOR. '

Expanded Library

Keith Frederick has spent a lot of time collecting materi-
al from various computer systems around the world. The
result is a huge increase in our library volumes. You can
see the result in the new library listing starting on page
24 of this issue. In his comments he doesn’t say anything
about his part in this, so I will: Keith did all of this work
on his own initiative. Nobody else helped him. We all
should be grateful for his efforts in bringing so much
new material to our library.

USUS Board Elections

It is time for another eiection of directors ta the USUS
board. If you are interesied, or know someone that is,
please get in contaci with me. The duties consist of at-
tending meetings on the Compuserve forum and provid-
ing guidance at other times.

News from CodePort (MUSUS)

The forum on Compuserve is keeping a slow but steady
pace. We have added a section for APL and an assistant
sysop (Woody Butler) that is a long time user of APL.
Messages on Modula-2, Oberon, and Pascal, along with
APL make up the bulk of discussions. It seems to me that
more people frequent the forum for the Iibrary files than
for the discussions. The number and quality of files
submitted to the online libraries continues to grow.

Submission

Submit articles 10 me at the address shown on the back cover.
Electronic mail is probably best, disks next best, and paper
copy is last. If your article has figures or diagrams, I can use
encapsulated Postscript files in any of the disk formats listed
below. If you can’t produce encapsulated Postscript, then paper
copy is probably the only practical method for submitting
graphics.

You can send E-Maii to my Compuserve ID: 72767,622, or in-
directly from internet: 72767.622@compuserve.com. For disks,
I can read Sage/Stride/Pinnacle format disks. Alse, any MS-
DOS 5.25 or 3.5 disks, and 3.5 Amiga disks. If anyone wants
lo send Mac format disks I could probably get someone to
transiate them into something I can use. Whatever you send,
please mark on the disk what format it is. That will save me a
lot of guesswork.

Text should be plain ascii rather than a word processor fite. It

USUS Newsletter December 1991

Guidelines

can have carriage returns at the end of all lines or only at the
ends of paragraphs. What you send doesn’t have to look pretty.
I will take care of that. My spelling checker will take care of
speiling errors too. If you want special formatting use the fol-
lowing conventions:

1. _Underline_, put an underline character at each end of the
section to gndecline.

2. *Bold*, put a star at each end of the section to bold.

3. "Italics®, put a caret at each end of the section to be set in
italics.

4. 7?8pecial requests??, such as ??box next paragraph?? should
be surrounded with "?? 27"

Page 43

NewslLetter Editor : Tom Cattrall USUS Staff
Amity Software Inc. :
7600 Seawood Road SE Administrator: Keith Frederick 73760,3521

Amity, Oregon 5710t Legal Agvisor: David R. Babb 72257,1162
503/835-1613 Librarian: Stephen Pickett 71016,1203
Compuserve | 72767,622 MUSUS Sysop: Harry Baya 76702,513

Internet | 72767.622 @compuserve.com
tome@techbook.com

Newsl.etter Publisher : William Smith

UsSus | i Directors g
USUS Membership info
Felix Bearden 74078,1715
Tom Cattrail 72767,622 i
Keith Frederick 73760,3521 gt“delm memgersm
Gary Gibb 72230,1601 egu ar_ embership
Stephen Pickett 71016,1203 Professional Membe
USUS Ofticers $15 special handling
Mexico.
President:
Treasurer: Bob Clark 72747,3128 Write to the La Jolla
Secretary: Keith Frederick 73760,3521 ship form. §

USUS
P.0.BOX 1148
LA JOLLA, CA 92038

ADDRESS CORRECTION REQUESTED
FIRST CLASS MAIL

	USUS Newsletter V5N3 1991-12a.pdf
	USUS Newsletter V5N3 1991-12b.pdf

