%@NewsLetter

Tah

A_1991)

Serving the Pascal, Modula-2, and Portable Programming Community Vol. 5 No. 2 Mar - Apr 1991
I N THIS 1 S S UE
From Modula to Oberon
From Modula to Oberon 1 .
N. Wirth
The Programming Language Oberon 7
Oberon EBNF 18
Abstract
QOberon Availability 20
The programming language Oberon is the result of a concentrated effort
Interupt Routines in JPI Modula-2 22 to increase the power of Modula-2 and simultaneously to reduce is
complexity. Several features were eliminated, and a few were added in
Board Meeting Minutes (March 13, 28 order to increase the expressive power and flexibility of the language.

"a

L | e ﬁrpg;amming. mguage‘obemmvmcdrfwm a p oj_get}vhﬁse\gd,a
L 'wi&the dﬁagl‘ofmmd&em, ﬁex;blct@dcfﬁme it

*. Propertigs.that are genuﬁe]‘y essential aqd. - a&amonsé:qu"éqﬁ%

3| 2quendy: Falleq %t), a8 4hal la.ngnage suppaorts, the notion of modu: <
: LM.%l%‘aely, $nd Beradse

Copyright 1991, USUS INC, All Rights Reserved.

The USUS NewsLetter is published =6 times per year by
USUS, the UCSD Pascal System User's Society, P.O. Box
1148 La Joila, California 92038, The NewsLetter is a direct
benefit of membership in USUS.

Tom Cattrall Editor
Witliam Smith Publisher

This paper describes and motivates the changes The language is de-
fined in a conc:se report :

B Ggeratmg ysmm
f"@gieaﬁ'scf WotkstatiohoA: pr,m‘clpal ' mdcl‘mé' 3 APiegnd ntratef i
‘to t')mll‘\
[‘)’hbmxg}ﬁ;)sues, 1f it best waytoTkes fra syStem i handto make,gt Y
nderst:mdable cxphcab!c rehab]e é'ﬁde :ciex‘ﬁiyimplememable-: o

- »e\uq- ~, _4‘1,:'*4@._

N i .5() " A
- N
Tnmally, it Was-plaiinéd 10 expreéss’ 1%3 system in M,Qd).gla E*‘[i} (SUESCr'—:—:; =5

“lar désign, quite € Jg’rT pa:raiﬁig\sﬁsl;c’m has to be i
designed in terms of separately compllab]e parts with conscmntmusl»"
chosen interfaces. In fact, an operating system should be no more than a

set of basic modules, and the design of an application must be consid-
ered as a goal-oriented extension of that basic set: Programming is al-
ways extending a given system.

Whereas modem languages, such as Modula, support the notion of ex-
tensibility in the procedural realm, the notion is less well established in
the domain of data types. In particular, Modula does not allow the defi-
nition of new data types as extensions of other, programmer-defined
types in an adequate manner. An additional feature was called for,
thereby giving rise to an extension of Modula.

The concept of the planned operating system also called for a highly
dynamic, centralized storage management relying on the technique of
garbage collection. Although Modula does not prevent the incorpora-

tion of a garbage collector in principle, its variant record fea-
ture constitutes a genuine obstacle. As the new facility for ex-
tending types would make the variant record feature superflu-
ous, the removal of this stumbling block was a logical deci-
sion. This step, however, gave rise to a restriction (subset) of
Modula.

It soon became clear that the rule to concentrate on the essen-
tial and to eliminate the inessentiai should not only be applied
to the design of the new system, but equally stringently to the
language in which the system is formulated. The application of
the principle thus led from Modula to a new language. Howev-
er, the adjective "new™ has to be understood in proper context:
Oberon evolved from Modula by very few additions and sev-
eral subtractions. In relying on evolution rather than revolution
we remain in the tradition of a long development that led from
Algol to Pascal, then to Modula-2, and eventually to Oberon.
The common traits of these languages are their procedural
rather than functional model and the strict typing of data. Even
more fundamental, perhaps, is the idea of abstraction: the lan-
guage must be defined in terms of mathematical, abstract con-
cepts without reference to any computing mechanism. Only if
a Janguage satisfies this criterion, can it be called “higher-
level”. No syntactic coating whatsoever can earn a language
this attribute alone. The definition of a language must be co-
herent and concise. This can only be achieved by a careful
choice of the underlying abstractions and an appropriate struc-
ture combining them. The language manual must be rea-
sonably short, avoiding the expilanation of individual cases
derivable from the general rules. The power of a formalism
must not be measured by the length of its description. To the
contrary, an overly lengthy definition is a sure symptom of in-
adequacy, In this respect, not complexity but simplicity must
be the goal.

In spite of its brevity, a description must be complete. Com-
pleteness is to be achieved within the framework of the chosen
abstractions. Limitations imposed by particular implementa-
tions do not belong to a language definition proper. Examples
of such restrictions are the maximum values of numbers,
rounding and truncation errors in arithmetic, and actions taken
when a program violates the stated rules. It should not be nec-
‘essary to supplement a language definition with a voluminous
standards document to cover "unforeseen” cases.

But neither should a programming language be a mathematical
theory only. It must be a practical tool. This imposes certain
limits on the terseness of the formalism. Several features of
Oberon are superfluous from a purely theoretical point of
view. They are nevertheless retained for practical reasons, ei-
ther for programmers’ convenience or to allow for efficient
code generation without the necessity of complex, "optimiz-
ing" pattern matching algorithms in compilers. Examples of
such features are the presence of several forms of repetitive
statements, and of standard procedures such as INC, DEC, and
ODD. They complicate neither the language conceptuaily nor
the compiler to any significant degree.

These underlying premises must be kept in mind when com-
paring Oberon with other languages. Neither the language nor
its defining document reach the ideal; but Oberon approxi-
mates these goals much better than its predecessors.

A compiler for Oberon has been implemented for the

Page 2

INS32000 processor family and is embedded in the Oberon
operating environment [8). The compiler requires less than 50
KByte of memory, consists of 6 modules with a total of about
4000 lines of source code, and compiies itself in about 15 sec-
onds on a workstation with a 25MHz N§32532 processor.

After extensive experience in programming with Oberon, a re-
vision was defined and implemented. The differences between
the two versions are summarised towards the end of the paper.
Subsequently, we present a brief introduction to (revised)
Oberon assuming familiarity with Modula (or Pascal), concen-
trating on the added features and listing the eliminated ones. In
order to be able to start with a clean slate, the fatter are taken
first.

Features omitted from Modula

Data types

Variant records are eliminated, because they constitute a gen-
uine difficulty for the implementation of a reliable storage
management system based on automatic garbage collection.
The functionality of variant records is preserved by the intro-
duction of extensible data types.

Opagque types cater for the concept of abstract data type and
information hiding. They are eliminated as such, because
again the concept is covered by the new facility of extended
record types.

Enumeration types appear to be a simple enough feature to be
uncontroversial. However, they defy extensibility over module
boundaries. Either a facility to extend given enumeration types
has to be introduced, or they have to be dropped. A reason in
favour of the latter, radical solution was the observation that in
a growing number of programs the indiscriminate use of enu-
merations (and subranges) had led to a type explosion that
contributed not to program clarity but rather to verbosity. In
connection with import and export, enumerations give rise to
the exceptional rule that the import of a type identifier also
causes the (automatic) import of all associated constant identi-
fiers. This exceptional rule defies conceptual simplicity and
causes unpleasant problems for the implementor. Subrange
types were introduced in Pascai (and adopted in Modula) for
two reasons: (1) to indicate that a variable accepts a limited
range of values of the base type and to allow a compiler to
generate appropriate guards for assignments, and (2) to allow a
compiler to ailocate the minimal storage space needed to store
values of the indicated subrange. This appeared desirable in
connection with packed records. Very few implementations
have taken advantage of this space saving facility, because the
additional compiler complexity is very considerable. Reason |
alone, however, did not appear to provide sufficient justifica-
tion to retain the subrange facility in Oberon.

With the absence of enumeration and subrange types, the gen-
eral possibility of defining set types based on given element
types appeared as redundant. Instead, a single, basic type SET
is introduced, whose values are sets of integers from 0 to an
implementation-defined maximum.

USUS NewslLetter Mar - Apr 1991

The basic type CARDINAL had been introduced in Modula in
order to allow address arithmetic with values from 0 to 2 16
on 16-bit computers. With the prevalence of 32-bit addresses
in modern processors, the need for unsigned arithmetic has
practically vanished, and therefore the type CARDINAL has
been eliminated. With it, the bothersome incompatibilities of
operands of types CARDINAL and INTEGER have disap-
peared.

Pointer types are restricted to be bound to a record type or to
an array type.

The notion of a definable index type of arrays has also been
abandoned: All indices are by default integers. Furthermore,
the lower bound is fixed to O; array declarations specify a
number of elements (length) rather than a pair of bounds. This
break with a long standing tradition since Algol 60 clearly
demonstrates the principle of eliminating the inessential. The
specification of an arbitrary lower bound hardly provides any
additional expressive power. It represents a rather limited
kind of mapping of indices which introduces a hidden compu-
tational effort that is incommensurate with the supposed gain
in convenience. This effort is particularly heavy in connection
with bound checking and with dynamic arrays.

Modules and import/export rules

Experience with Modula over the last eight years has shown
that local modules were rarely used. Considering the addi-
tional complexity of the compiler required to handle them,
and the additional complications in the visiblity rules of the
language definition, the elimination of local modules appears
justified.

The gualification of an imported object’s identifier x by the
exporting module’s name M, viz. M.x, can be circumvented
in Modula by the use of the import clause FROM M IMPORT
x. This facility has also been discarded. Experience in pro-
gramming systems involving many modules has taught that
the explicit qualification of each occurrence of x is actually
preferable. A simplification of the compiler is a welcome
side-effect.

The dual role of the main module in Modula is conceptually
confusing. It constitutes a module in the sense of a package
of data and procedures enclosed by a scope of visibility, and
at the same time it constitutes a single procedure called main
program. A module is composed of two textual pieces, called
the definition part and the implementation part. The former is
missing in the case of a main program module.

By contrast, a module in Oberon is in itself complete and con-
stitutes a unit of compilation. Definition and implementation
parts are merged; names to be visible in client modules, i.e.
exported identifiers, are marked, and they typically precede
the declarations of objects not exported. A compilation gener-
ates in general a changed object file and a new symbol file.
The latter contains information about exported objects for use
in the compilation of client modules. The generation of a new
symbol file must, however, be specifically enabled by a com-
piler option, because it will invalidate previous compilations
of clients.

The notion of a main program has been abandoned. Instead,

USUS NewsLetter Mar - Apr 1991

the set of modules linked through imports typically contains
(parameterless) procedures. They are to be considered as indi-
vidually activatable, and they are called commands. Such an
activation has the form M.P, where P denotes the command
and M the module containing it. The effect of a command is
considered - not like that of a main program as accepting input
and transforming it to output - as a change of state represented
by global data.

Statements

The with statement of Modula has been discarded. Like in the
case of imported identifiers, the explicit qualification of field
identifiers is to be preferred. Another form of with statement is
introduced; it has a different function and is called a regional
guard (see below).

The elimination of the for statement constitutes a break with
another long standing tradition. The baroque mechanism of
Algol 60’s for statement had been trimmed significantly in
Pascal (and Modula). Its marginal value in practice has led to
its absence from Oberon.

Low-level facilities

Modula makes access to machine-specific facilities possible
through low-level constructs, such as the data types AD-
DRESS and WORD, absolute addressing of variables, and
type casting functions. Most of them are packaged in a module
called SYSTEM. These features were supposed to be rarely
used and easily visible through the presence of the identifier
SYSTEM in a module’s import list. Experience has revealed,
however, that a significant number of programmers import this
module quite indiscriminately. A particularly seductive trap are
Modula’s type transfer functions.

It appears preferable to drop the pretense of portability of pro-
grams that import a "standard”, yet system-specific module.
Type transfer functions denoted by type identifiers are there-
fore eliminated, and the module SYSTEM is restricted to pro-
viding a few machine-specific functions that typically are
compiled into inline code. The types ADDRESS and WORD
are replaced by the type BYTE, for which type compatibility
rules are relaxed. Individual implementations are free to pro-
vide additional facilities in their module SYSTEM. The use of
SYSTEM declares a program to be patently implementation-
specific and thereby non-portable.

Concurrency

The system Oberon does not require any language facilities for
expressing concurrent processes. The pertinent rudimentary
features of Modula, in particular the coroutine, were therefore
not retained. This exclusion is merely a reflection of our actual
needs within the concrete project, but not on the general rele-
vance of concurrency in programming.

Features introduced in Oberon

In contrast to the number of eliminated features, there are only
a few new ones. The important new concepts are type exten-

Page 3

sion and type inclusion. Furthermore, open arrays may have
several dimensions (indices), whereas in Modula they were
confined to a single dimension.

Type extension

The most important addition is the facility of extended record
types. It permits the construction of new types on the basis of
existing types, and establishes a certain degree of compatibil-
ity between the new and old types. Assuming a given type

T = RECORD x, y: INTEGER END

extensions may be defined which contain certain fields in ad-
dition to the existing ones. For example

TO0 = RECORD (T) z: REAL END
T1 = RECORD (T) w: LONGREAL END

define types with fields x, y, z and X, y, w respectively. We de-
fine a type declared by

T’ = RECORD (T) <field definitions> END

to be a (direct) extension of T, and conversely T to be the (di-
rect) base type of T’. Extended types may be extended again,
giving rise to the following definitions:

Atype T’ is an extension of T, if T’ =T or T” is a direct exten-
sion of an extension of T. Conversely, T is a base rype of T’, if
T =T or T is the direct base type of a base type of T, We de-
note this relationship by T” <=T.

The rule of assignment compatibility states that values of an
extended type are assignable to variables of their base types.
For example, a record of type TO can be assigned to a variable
of the base type T. This assignment involves the fields x and y
only, and in fact constitutes a projection of the value onto the
space spanned by the base type.

It is important to allow modules which import a base type to
be able to declare extended types. In fact, this is probably the
normal usage.

This concept of extensible data type gains importance when
extended to pointers. It is appropriate to say that a pointer type
P’ bound to T’ extends a pointer type P, if P is bound to a base
type T of T’, and to extend the assignment rule to cover this
case. It is now possible to form data structures whose nodes
are of different types, i.e. inhomogeneous data structures. The
inhomogeneity is automatically (and most sensibly) bounded
by the fact that the nodes are linked by pointers of a common
base type.

Typically, the pointer fields establishing the structure are con-
tained in the base type T, and the procedures manipulating the
structure are defined in the same (base) module as T. Individu-
al extensions (variants) are defined in client modules together
with procedures operating on nodes of the extended type. This
scheme is in full accordance with the notion of system extensi-
bility: new modules defining new extensions may be added to
a system without requiring a change of the base modules, not
even their recompilation.

Page 4

As access to an individual node via a pointer bound to a base
type provides a projected view of the node data only, a facility
to widen the view is necessary. It depends on the ability to de-
termine the actual type of the referenced node. This is
achieved by a type test, a Boolean expression of the form

tIST (or pISP’)

If the test is affirmative, an assignment t’ := t (t’ of type T”) or
p’ :=p (p’ of type P’) should be possible. The static view of
types, however, prohibits this. Note that both assignments vio-
late the rule of assignment compatibility. The desired assign-
ment is made possible by providing a type guard of the form

2= (") (0’ = p(P”))

and by the same token access to the field z of a TO (see previ-
ous examples) is made possible by a type guard in the designa-
tor t(T0).z. Here the guard asserts that t is (currently) of type
TO. In analogy to array bound checks and case selectors, a fail-
ing guard leads to program abortion.

Whereas a guard of the form i(T) asserts that t is of type T for
the designator (starting with) t only, a regional type guard
maintains the assertion over an entire sequence of statements.
It has the form

WITH t: T DO StatementSequence END

and specifies that t is to be regarded as of type T within the en-
tire statement sequence. Typically, T is an extension of the de-
clared type of t. Note that assignments to t within the region
therefore require the assigned value to be (an extension) of
type T. The regional guard serves to reduce the number of
guard evaluations.

As an example of the use of type tests and guards, consider the
following types Node and Object defined in a module M:

TYPE Node = POINTER TO Object;
Object = RECORD key, x, y: INTEGER,;
left, right: Node
END

Elements in a tree structure anchored in a variable called root
(of type Node) are searched by the procedure element de-
fined in M.

PROCEDURE element(k: INTEGER): Node;
VAR p: Node;
BEGIN p := root;
WHILE (p # NIL) & (p.key # k) DO
IF p.key < k THEN
p := p.left ELSE p := p.right END
END;
RETURN p
END element

Let extensions of the type Object be defined (together with
their pointer types) in a module M1 which is a client of M:

TYPE

Rectangle = POINTER TO RectObject;
RectObject = RECORD (Object) w, h: REAL END ;

USUS NewsLetter Mar - Apr 1991

Circle = POINTER TO CircleObject;
CircleObject = RECORD (Object)
rad: REAL;
shaded: BOOLEAN
END

After the search of an element, the type test is used to dis-
criminate between the different extensions, and the type guard
to access extension fields. For example:

p := M.element(K);
IF p # NILTHEN
IF p IS Rectangle THEN ... p(Rectangle).w ...
ELSIF (p IS Circle) & ~p(Circle).shaded THEN
« p(Circle).rad ...
ELSIF ...

The extensibility of a system rests upon the premise that new
modules defining new extensions may be added without re-
quiring adaptations nor even recompilation of the existing
parts, although components of the new types are included in
already existing data structures.

The type extension facility not only replaces Modula’s variant
records, but represents a type-safe alternative. Equally impor-
tant is its effect of relating types in a type hierarchy. We com-
pare, for example, the Modula types

T0’ = RECORD t: T; z: REALEND ;
T1’=RECORD t: T; w: LONGREAL END

which refer to the definition of T given above, with the ex-
tended Oberon types TO and T1 defined above. First, the
Oberon types refrain from introducing a new naming scope.
Given a variable 0 of type T0, we write r0.x instead of r0.t.x
as in Modula. Second, the types T, TO’, and T1” are distinct
and unrelated. In contrast, TO and T1 are related to T as exten-
sions. This becomes manifest through the type test, which as-
serts that variable 10 is not only of type TO, but also of base

type T.

The declaration of extended record types, the type test, and
the type guard are the only additional features introduced in
this context. A more extensive discussion is provided in [2].
The concept is very similar to the class notion of Simula 67
[3], Smalltalk [4], Object Pascal [5], C++ [6], and others,
where the properties of the base class are said to be inherited
by the derived classes. The class facility stipulates that all
procedures applicable to objects of the class be defined to-
gether with the data definition. This dogma stems from the
notion of abstract data type, but it is a serious obstacle in the
development of large systems, where the possibility to add
further procedures defined in additional modules is highly de-
sirable. It is awkward to be obliged to redefine a class solely
because a method (procedure) has been added or changed,
particularly when this change requires a recompilation of the
class definition and of all its client modules.

We emphasise that the type extension facility - although gain-
ing its major role in connection with pointers to build hetero-
geneous, dynamic data structures as shown in the example
above - also applies to statically declared objects used as
variable parameters. Such objects are allocated in a
workspace organized as a stack of procedure activation

USUS NewslLetter Mar - Apr 1991

records, and therefore take advantage of an extremely efficient
allocation and deallocation scheme.

In Oberon, procedure rypes rather than procedures (methods)
are connected with objects in the program text. The binding of
actual methods (specific procedures) to objects (instances) is
delayed until the program is executed. The association of a
procedure type with a data type occurs through the declaration
of a record field. This field is given a procedure type. The as-
sociation of a method - to use Smalltalk terminology - with an
object occurs through the assignment of a specific procedure
as value to the field, and not through a static declaration in the
extended type’s definition which then "overrides" the declara-
tion given in the base type. Such a procedure is called a han-
dler. Using type tests, the handler is capable of discriminating
among different extensions of the record’s (object’s) base type.
In Smalltalk, the compatibility rules between a class and its
subclasses are confined to pointers, thereby intertwining the
concepts of access method and data type in an undesirable
way. In Oberon, the relationship between a type and its exten-
sions is based on the established mathematical concept of pro-
jection.

In Modula, it is possible to declare a pointer type within an
implementation module, and to export it as an opaque type by
listing the same identifier in the corresponding definition mod-
ule. The net effect is that the type is exported while all its
properties remain hidden (invisible to clients). In Oberon, this
facility is generalized in the sense that the selection of the
record fields to be exported is arbitrary and includes the cases
all and none. The collection of exported fields defines a partial
view - a public projection - to clients. '

In client modules as well as in the module itself, it is possible
to define extensions of the base type (e.g. TextViewers or
GraphViewers). Of importance is also the fact that non-
exported components (fields) may have types that are not ex-
ported either. Hence, it is possible to hide certain data types ef-
fectively, although components of (opaquely) exported types
refer to them.

Type inclusion

Modem processors feature arithmetic operations on several
number formats. It is desirable to have all these formats re-
flected in the language as basic types. Oberon features five of
them:

LONGINT, INTEGER, SHORTINT (integer types)
LONGREAL, REAL (real types)

With the proliferation of basic types, a relaxation of compati-
bility rules among them becomes almost mandatory. (Note that
in Modula the numeric types INTEGER, CARDINAL, and
REAL are incompatible). To this end, the notion of fype inclu-
sion is introduced: a type T includes a type T’, if the values of
type T’ are also values of type T. Oberon postulates the follow-
ing hierarchy:

LONGREAL >= REAL >= LONGINT >=
INTEGER >= SHORTINT

The assignment rule is relaxed accordingly: A value of type T’
can be assigned to a variable of type T, if T’ is included inT

Page 5

(or if T’ extends T), i.e. if T >=T" or T’ ->T. In this respect,
we return to (and extend) the flexibility of Algol 60. For exam-
ple, given variables

i: INTEGER; k: LONGINT; x: REAL
the assignments
k:i=i; x:=k; x:=1; k:=k+i; x:=x*10+i

conform to the rules, whereas the statements i :=k; k :=x
are not acceptable. x := k may involve truncation.

The presence of several numeric types is evidently a conces-
sion to implementations which can allocate different amounts
of storage to variables of the different types, and which there-
by offer an opportunity for storage economization. This practi-
cal aspect should - with due respect for mathematical abstrac-
tion - not be ignored. The notion of type inclusion minimises
the consequences for the programmer and requires only few
implicit instructions for changing the data representation, such
as sign extensions and integer to floating-point conversions.

Differences between Oberon and Revised
Oberon

A revision of Oberon was defined after extensive experience
in the use and implementation of the language. Again, it is
characterized by the desire to simplify and integrate. The dif-
ferences between the original version [7] and the revised ver-
sion [9] are the following:

1. Definition and implementation parts of a module are
merged. It appeared as desirable to have a module’s specifica-
tion contained in a single document, both from the view of the
programmer and the compiler. A specification of its interface
to clients (the definition part) can be derived automatically.
Objects previously declared in the definition part (and repeat-
ed in the implementation part), are specially marked for ex-
port. The need for a structural comparison of two texts by the
compiler thereby vanishes.

2. The syntax of lists of parameter types in the declaration of a
procedure type is the same as that for regular procedure head-
ings. This implies that dummy identifiers are introduced; they
may be useful as comments.

3, The rule that type declarations must follow constant decla-
rations, and that variable declarations must follow type decla-
rations is relaxed.

4. The apostrophe is eliminated as a string delimiter.

5. The relaxed parameter compatibility rule for the formal type
ARRAY OF BYTE is applicable for variable parameters only.

Summary

The language Oberon has evolved from Modula-2 and incor-

Page 6

porates the experiences of many years of programming in
Modula. A significant number of features have been eliminat-
ed. They appear to have contributed more to language and
compiler complexity than to genuine power and flexibility of
expression. A small number of features have been added, the
most significant one being the concept of type extension.

The evolution of a new language that is smaller, yet more
powerful than its ancestor is conirary to common practices and
trends, but has inestimable advantages. Apart from simpler
compilers, it results in a concise defining document [9], an in-
dispensible prerequisite for any tool that must serve in the con-
struction of sophisticated and reliable systems.

Acknowlegement

It is impossible to expliciily acknowledge all contributions of
ideas that ultimately simmered down to what is now Oberon.
Most came from the use or study of existing languages, such
as Modula-2, Ada, Smalltalk, and Cedar, which often taught us
how not to do it. Of particular value was the contribution of
Oberon’s first user, J. Gutknecht. The author is grateful for his
insistence on the elimination of dead wood and on basing the
remaining features on a sound mathematical foundation. And
last, thanks go to the anonymous referee who very carefully
read the manuscript and contributed many valuable sugges-
tions for improvement.

References
1. N. Wirth. Programming in Modula-2. Springer-Verlag,
1982.

2. N. Wirth. Type Extensions. ACM Trans. on Prog. Lan-
guages and Systems, 10, 2 (April 1988) 204-214.

3. G. Birtwiste, et al. Simula Begin. Auerbach, 1973.

4. A. Goldberg, D. Robson. Smalltalk-80: The Language and
its Implementation. Addison-Wesley, 1983,

5. L. Tesler. Object Pascal Report. Structured Language Wor-
ld, 9, 3 (1985), 10-14.

6. B. Stroustrup. The Programming Language C ++. Addison-
Wesley, 1986.

7. N. Wirth. The programming language Oberon. Software -
Practice and Experience, 18, 7 (July 1988), 671-690.

8. J. Gutknecht and N. Wirth. The Oberon System. Software -
Pracrice and Experience, 19, (1989)

9. N. Wirth. The programming language Oberon (Revised Re-
port). (companion paper)

File: ModToOberon2.Doc / NW 1.10.90

USUS NewsLetter Mar - Apr 1991

The Programming Language Oberon
(Revision 1. 10. 90)

N.Wirth

i. Introduction

Oberon is a general-purpose programming language that
evolved from Modula-2. Its principal new feature is the
concept of fype extension. It permits the construction of
new data types on the basis of existing ones and to re-
late them.

This report is not intended as a programmer’s tutorial. It
is intentionally kept concise. Its function is to serve as a
reference for programmers, implementors, and manual
writers. What remains unsaid is mostly left so intention-
ally, either because it is derivable from stated rules of
the language, or because it would require to commit the
definition when a general commitment appears as un-
wise.

2. Syntax

A language is an infinite set of sentences, namely the
sentences well formed according to its syntax. Im
Oberon, these sentences are called compilation units.
Each unit is a finite sequence of symbols from a finite
vocabulary. The vocabulary of Oberon consists of iden-
tifiers, numbers, strings, operators, delimiters, and com-
ments. They are called lexical symbols and are com-
posed of sequences of characters. (Note the distinction
between symbols and characters.)

To describe the syntax, an extended Backus-Naur For-
malism called EBNF is used. Brackets { and] denote op-
tionality of the enclosed sentential form, and braces {
and } denote its repetition (possibly 0 times). Syntactic
entities (non-terminal symbols) are denoted by English
words expressing their intuitive meaning. Symbols of
the language vocabulary (terminal symbols) are denoted
by strings enclosed in quote marks or words written in
capital letters, so-called reserved words. Synfactic ruies
(productions) are marked by a $ sign at the left margin
of the line.

USUS NewslLetter Mar - Apr 1991

Make it as simple as possible, but not simpler.
A. Einstein

3. Vocabulary and representation

The representation of symbols in terms of characters is
defined using the ASCII set. Symbols are identifiers,
numbers, strings, operators, delimiters, and comments.
The following lexical rules must be observed. Blanks and
line breaks must not occur within symbols (except in
comments, and blanks in strings). They are ignored un-
less they are essential to separate two consecutive sym-
bols. Capital and lower-case letters are considered as be-
ing distinct.

1. Identifiers are sequences of letters and digits. The
first character must be a jetter.

$ ident = letter {letter | digit}.

Examples:

x scan Oberon GetSymbol firstLetter

2. Numbers are (unsigned) integers or real numbers. In-
tegers are sequences of digits and may be followed by a
suffix letter. The type is the minimal type to which the
number belongs (see 6.1.). If no suffix is specified. the
representation is decimal. The suffix H indicates hex-
adecimal representation.

A real number always contains a decimal point. Option-
ally it may also contain a decimal scale factor. The let-
ter E (or D) is pronounced as "times ten 1o the power
of". A real number is of type REAL, unless it has a
scale factor containing the letter D; in this case it is of
type LONGREAL.

integer | real.

$ number =
= digit {digit} | digit {hexDigit} "H" .

$ integer

Page 7

$ real = digit {digit} "." {digit} [ScaleFactor].

$ ScaleFactor = ("E" |"D") ["+" | "-"] digit {digit}.

$ hexDigit = digit|"A"|"B"|"C"|"D"|"E" | "F".

$ dlglt = rron I nln | nzn | r|3n ‘ n4n Irrsn | rr6u | H7rr | “8" | ﬂgrl.

Examples:
1987
100H = 256
12.3
4.567E8 = 456700000

0.57712566D-6 = 0.00000057712566

3. Character constants are either denoted by a single
character enclosed in quote marks or by the ordinal num-
ber of the character in hexadecimal notation followed by
the letter X.

$ CharConstant = """ character """ | digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in quote
marks ("). A string cannot contain a quote mark. The
number of characters in a string is called the length of
the string. Strings can be assigned to and compared with
arrays of characters (see 9.1 and 8.2.4).

$ string = """ {character} """ .

Examples:

"OBERON" "Don’t worry!"

5. Operators and delimiters are the special characters,
character pairs, or reserved words listed below. These
reserved words consist exclusively of capital letters and
cannot be used in the role of identifiers.

+ = ARRAY IS TO
. B BEGIN LOOP TYPE

£ = CASE MOD UNTIL
| # CONST MODULE VAR

5 & DIV NIL WHILE
& > DO OF WITH

. <= ELSE OR

, >= ELSIF POINTER

; END PROCEDURE

| EXIT RECORD

() IF REPEAT

[] IMPORT RETURN

{ IN THEN

Page 8

6. Comments may be inserted between any two symbols
in a program. They are arbitrary character sequences
opened by the bracket (* and closed by *). Comments do
not affect the meaning of a program.

4. Declarations and scope rules

Every identifier occurring in a program must be intro-
duced by a declaration, unless it is a predefined identifi-
er. Declarations also serve to specify certain permanent
properties of an object, such as whether it is a constant, a
type, a variable, or a procedure.

The identifier is then used to refer to the associated ob-
ject. This is possible in those parts of a program only
which are within the scope of the declaration. No iden-
tifier may denote more than one object within a given
scope. The scope extends textually from the point of the
declaration to the end of the block (procedure or module)
to which the declaration belongs and hence to which the
object is local. The scope rule has the following amend-
ments:

1. If a type T is defined as POINTER TO T1 (see 6.4),
the identifier T1 can be declared textually following the
declaration of T, but it must lie within the same scope.

2. Field identifiers of a record declaration (see 6.3) are
valid in field designators only.

In its declaration, an identifier in the global scope may
be followed by an export mark (*) to indicate that it be
exported from its declaring module. In this case, the
identifier may be used in other modules, if they import
the declaring module. The identifier is then prefixed by
the identifier designating its module (see Ch. 11). The
prefix and the identifier are separated by a period and to-
gether are called a qualified identifier.

$ qualident = [ident "."] ident.
$ identdef = ident ["*"].

The following identifiers are predefined; their meaning
is defined in the indicated sections:

ABS (10.2) LEN (10.2)
ASH (10.2) LONG (10.2)
BOOLEAN (6.1) LONGINT (6.1)
BYTE (6.1) LONGREAL (6.1)
CAP (10.2) MAX (10.2)
CHAR (6.1) MIN (10.2)
CHR (10.2) NEW (6.4)
DEC (10.2) ODD (10.2)
ENTIER (10.2) ORD (10.2)

USUS Newsletter Mar - Apr 1991

EXCL (0.2) SET (6.1)
HALT (10.2) SHORT (10.2)
INC (10.2) SHORTINT (6.1)
INCL (10.2) SIZE (10.2)
INTEGER (6.1) TRUE (6.1)

5, Constant declarations A constant declara-
tion associates an identifier with a constant value,

$ ConstantDeclaration = identdef "=" ConstExpression.
$ ConstBxpression = expression.

A constant expression can be evaluated by a mere textu-
al scan without actuaily executing the program. Its
operands are constants (see Ch. 8). Examples of con-
stant declarations are

N =100
limit = 2*N -1
all = {0 .. WordSize-1}

6. Type declarations

A data type determines the set of values which variables
of that type may assume, and the operators that are ap-
plicable. A type declaration is used to associate an iden-
tifier with the type. Such association may be with un-
structured (basic) types, or it may be with structured
types, in which case it defines the structure of variables
of this type and, by implication, the operators that are
applicable to the components. There are two different
structures, namely arrays and records, with different
component selectors.

$ TypeDeclaration = idemtdef "=" type.
$ type = qualident | ArrayType | RecordType |
$ PointerType | ProcedureType.
Examples:
Table = ARRAY N OF REAL
Tree = POINTER TO Node
Node = RECORD key: INTEGER;
left, right: Tree
END
CenterNode = RECORD (Node)
name: ARRAY 32 OF CHAR;
subnode: Tree

END

Function* = PROCEDURE (x: INTEGER): INTEGER

USUS Newsletter Mar - Apr 1991

6.1. Basic types

The foilowing basic types are denoted by predeclared
identifiers. The associated operators are defined in 8.2,
and the predeclared function procedures in 10.2. The vai-
ues of a given basic type are the following:

1. BOOLEAN the truth values TRUE and FALSE.

2. CHAR the characters of the extended ASCII set
(0X ... OFFX).

3, SHORTINT the integers between -128 and 127.

4. INTEGER the integers between MIN(INTEGER) and
MAX(INTEGER).

5, LONGINT the integers between MIN(LONGINT) and
MAX(LONGINT).

6. REAL real numbers between MIN(REAL) and

MAX(REAL).

7. LONGREAL reai numbers between MIN(LONGREAL)
and MAX(LLONGREAL).

8. SET the sets of integers between 0 and

MAX(SET).

Types 3 to 5 are integer types, 6 and 7 are real types,
and together they are called numeric types. They form a
hierarchy; the larger type includes (the values of) the
smaller type:

LONGREAL >= REAL >=
LONGINT >= INTEGER »= SHORTINT

6.2. Array types

An array is a structure consisting of a fixed number of
elements which are all of the same type, called the ele-
ment type. The number of elements of an array is called
its length. The clements of the array are designated by
indices, which are integers between (0 and the length mi-
nus 1,

$ ArrayType = ARRAY length {"," length} OF type.
$ length = ConstExpression.

A declaration of the form

ARRAY NO, N1, ... , Nk OFT

Page 9

is understood as an abbreviation of the declaration

ARRAY NO OF
ARRAY N1 OF ...
ARRAY Nk OF T

Examples of array types:

ARRAY N OF INTEGER
ARRAY 10, 20 OF REAL

6.3. Record types

A record type is a structure consisting of a fixed number
of elements of possibly different types. The record type
declaration specifies for each element, called field, its
type and an identifier which denotes the field. The scope
of these field identifiers is the record definition itself,
but they are also visible within field designators (see
8.1) referring to elements of record variabies.

$ RecordType = RECORD ["(" BaseType ")"]
FieldListSequence END.

BaseType = qualident.

FieldListSequence = FieldList {";" FieldList}.

FieldList = {IdentList ":" type].

IdentList = identdef {"," identdef}.

o B8 5 O

If a record type is exported, field identifiers that are to
be visible outside the declaring module must be marked.
They are called public fields ; unmarked ficids are
called private fields. Record types are extensible, i.e. a
record type can be defined as an extension of another
record type. In the examples above, CenterNode (di-
rectly) extends Node, which is the (direct) base type of
CenterNode, More specifically, CenterNode extends
Node with the fields name and subnode.

Definition: A type TO extends a type T, if it equals T, or
if it directly extends an extension of T. Conversely, a
type T is a base type of TO, if it equals TOQ, or if it is the
direct base type of a base type of TO.

Examples of record types:

RECORD day, month, year: INTEGER
END

RECORD
name, firstname: ARRAY 32 OF CHAR;
age: INTEGER;
salary: REAL

END

Page 10

6.4. Pointer types

Variables of & pointer type P assume as values pointers to
variables of some type T. The pointer type P is said to be
bound to T, and T is the pointer base type of P. T must
be a record or array type. Poinrter types inherit the exten-
sion relation of their base types. If a type TO is an exten-
sion of T and PO is a pointer type bound to T0, then PO is
aiso an extension of P.

$ PointerType = POINTER TO type.

If p is a variable of type P = POINTER TO T, then a call
of the predefined procedure NEW(p) has the following
effect (see 10.2): A variable of type T is allocated in free
storage, and a poirnter to it is assigned to p. This pointer
p is of type P; the referenced variable p” is of type T.
Failure of allocation results in p obtaining the value NIL.
Any pointer variabie may be assigned the value NIL,
which points to no variable at all.

6.5. Procedure types

Variables of a procedure type T have a procedure (or
NIL) as value, If a procedure P is assigned to a procedure
variable of type T, the (types of the) formal parameters
of P must be the same as those indicated in the formal
parameters of T. The same holds for the result type in the
case of a function procedure (see 10.1). P must not be de-
clared local to another procedure, and neither can it be a
predefined procedure.

$ ProcedureType = PROCEDURE [FormalParameters].

7. Variable declarations

Variable declarations serve to introduce variabies and as-
sociate them with identifiers that must be unique within
the given scope. They also serve to associate fixed data
types with the variables.

$ VariableDeclaration = IdentList ":" type.

Variables whose identifiers appear in the same list are ail
of the same type. Examples of variable declarations (re-
fer to examples in Ch. 6):

i, j, k: INTEGER
X, y: REAL

p, ¢: BOOLEAN
s: SET

USUS Newsletter Mar - Apr 1991

L

f: Function
a: ARRAY 100 OF REAL
w: ARRAY 16 OF
RECORD ch: CHAR;
count: INTEGER
END
t: Tree

8. Expressions

Expressions are constructs denoting rules of computa-
tion whereby constants and current values of variables
are combined to derive other values by the application
of operators and function procedures. Expressions con-
sist of operands and operators. Parentheses may be used
to express specific associations of operators and
operands.

8.1. Operands

With the exception of sets and literal constants, i.e.
numbers and character strings, operands are denoted by
designators. A designator consists of an identifier refer-
ring to the constant, variable, or procedure to be desig-
nated. This identifier may possibly be qualified by mod-
ule identifiers (see Ch. 4 and 11), and it may be fol-
lowed by selectors, if the designated object is an ele-
ment of a structure.

If A designates an array, then A[E] denotes that element
of A whose index is the current value of the expression
E. The type of E must be an integer type. A designator
of the form A[E1, E2, ..., En] stands for A[E1][EZ] ...
[En]. If p designates a pointer variable, p” denotes the
variable which is referenced by p. If r designates a
record, then r.f denotes the field [of r. If p designates a
pointer, p.f denotes the field f of the record p”, i.e. the
dot implies dereferencing and p.f stands for p".f, and
p[E] denotes the element of p” with index E.

The typeguard v(T0) asserts that v is of type TO, i.e. it
aborts program execution, if it is not of type TO. The
guard is applicable, if

1. TO is an extension of the declared type T of v, and if
2. v is a variable parameter of record type or v is a

pointer.

$ designator = qualident {"." ident |
$ "[” ExpLiSt II]“ | ||(" qua]idcnt II)F! | A }‘

$ ExpList = expression {"," expression}.

If the designated object is a variable, then the designator
refers to the variable’s current value. If the object is a

UsuUsS NewsLetter Mar - Apr 1991

procedure, a designator without parameter list refers to
that procedure. If it is followed by a (possibly empty) pa-
rameter list, the designator implies an activation of the
procedure and stands for the value resulting from its exe-
cution. The (types of the) actual parameters must corre-
spond to the formal parameters as specified in the proce-
dure’s declaration (see Ch. 10).

Examples of designators (see examples in Ch. 7):

i (INTEGER)
ali] (REAL)
w[3].ch (CHAR)
t.key (INTEGER)
t.left.right (Tree)

t(CenterNode).subnode (Tree)

8.2. Operators

The syntax of expressions distinguishes between four
classes of operators with different precedences (binding
strengths). The operator ~ has the highest precedence,
followed by multiplication operators, addition operators,
and relations. Operators of the same precedence associ-
ate from left to right. For example, x-y-z stands for

(x-y)-z.

$ expression = SimpleExpression [relatior*SimpleExpression].
$ relation = "="|"#"|"<"|"<="|">"|">="|IN|IS.

$ SimpleExpression = ["+"|"-"] term {AddOperator term}.

$ AddOperator = "+"|"-" |OR.

$ term = factor {MulOperator factor}.

$ MulOperator = "*"|"/" | DIV |[MOD | "&" .

$ factor = number | CharConstant | string | NIL | set |

$ designator [ActualParameters] | "(" expression ")" | "~" factor.
$ set = "{"[element {"," element}]"}".

$ element = expression [".." expression|.

$ ActualParameters = "(" [ExpList] ")".

The available operators are listed in the following tables.
In some instances, several different operations are desig-
nated by the same operator symbol. In these cases, the
actual operation is identified by the type of the operands.

8.2.1. Logical operators

symbol result

OR logical disjunction
& logical conjunction
~ negation

These operators apply to BOOLEAN operands and yield

Page 11

a BOOLEAN resuit,

p ORq stands for "if p then TRUE, else q”
p&q stands for "if p then g, else FALSE"
~Pp stands for "not p"

8.2.2. Arithmetic operators

symbol result
+ sum
- difference
* product
/ quotient
DIV integer quotient
MOD modulus

The operators +, -, *, and / apply to operands of numeric
types. The type of the result is that operand’s type which
includes the other operand’s type, except for division (/}),
where the result is the real type which includes both
operand types. When used as operators with a single
operand, - denotes sign inversion and + denotes the iden-
tity operation.

The operators DIV and MOD apply to integer operands
only. They are related by the following formuias defined
for any dividend x and positive divisors y:

x = (xDIVy)*y + (xMQDy)
0<={(xMODy) <y

8.2.3. Set operators

symbol result
+ union
- difference
* intersection
/ symmetric set difference

The monadic minus sign denotes the compiement of x,
i.e. -x denotes the set of integers between 0 and
MAX(SET) which are not elements of x.

X-y=X*(y)
x/y= (x-y) +(y-x)

Page 12

8.2.4. Relations

symbol relation
= equal
unequal
< less
<= less or equal
> greater
>= greater or equal
IN set membership
IS type test

Relations are Boolean. The ordering relations <, <=, >,
and >= apply to the numeric types, CHAR, and character
arrays (strings). The relations = and # also apply to the
type BOOLEAN and to set, pointer, and procedure types.
x IN 5 stands for "x is an element of s". x must be of an
integer type, and s of type SET. v IS T stands for "v is of
type T" and is called a type test. It is applicable, if

1. T is an extension of the declared type TO of v, and if

2. v is a variable parameter of record type or v is a pointer.

Assuming, for instance, that T is an extension of TO and
that v is a designator declared of type TQ, then the test "v
IS T" determines whether the actually designated
variable is {(not only a TQ, but also) a T. The value of
NIL IS T is undefined. Examples of expressions (refer to
examples in Ch. 7):

1987 (INTEGER)
iDIV3 (INTEGER)
~pOR g (BOOLEAN)
(i+1) * (i-)) (INTEGER)
s-4{8,9,13} (SET)

i+x (REAL)
afi+j] * ali4] (REAL)
(0<=i) & (i<100) (BOOLEAN)
t.key =0 (BOOLEAN)
kKIN {i. j-1} {BOOLEAN)
t IS CenterNode {BOOLEAN)

9, Statements

Statements denote actions. There are elementary and
structured statements. Elementary statements are not
composed of any parts that are themselves statements.
They are the assignment, the procedure call, and the re-
turn and exit statements. Structured statements are com-
posed of parts that are themselves statements. They are
used to express sequencing and conditional, selective,
and repetitive execution. A statement may also be empty,
in which case it denotes no action. The empty statement

USUS NewsLetter Mar - Apr 1991

is included in order to relax punctuation rules in state-
ment sequences.

$ statement = [assignment | ProcedureCall |

$ IfStatement | CaseStatement |

$ WhileStatement | RepeatStatement |

$ LoopStatement | WithStatement | EXIT |
3 RETURN [expression]].

9.1. Assignments

The assignment serves to replace the current value of a
variable by a new value specified by an expression. The
assignment operator is written as ":=" and pronounced
as becomes.

$ assignment = designator ":=" expressioi.

The type of the expression must be included by the type
of the variable, or it must extend the type of the
variable. The following exceptions hold:

1. The constant NIL can be assigned to variables of any
pointer or procedure type.

2. Strings can be assigned to any variable whose type is
an array of characters, provided the length of the string
is less than that of the array. If a string s of length n is
assigned to an array a, the resultis afi] =si fori=0..
n-1, and a[n] = 0X.

Examples of assignments (see examples in Ch. 7):
ii=0
pi=i=j
xi=i+1
k := log2(i+j)
F := log2
s:={2,3,5,7,11, 13}

afi] := (x+y) * (x-y)
tkey :=i
wli+1].ch := "A"

9.2, Procedure calls

A procedure call serves to activate a procedure. The pro-
cedure call may contain a list of actual parameters
which are substituted in place of their corresponding
formal parameters defined in the procedure declaration
(see Ch. 10). The correspondence is established by the
positions of the parameters in the lists of actual and for-
mal parameters respectively. There exist two kinds of
parameters: variable and value parameters.

USUS NewsLetter Mar - Apr 1991

In the case of variable parameters, the actual parameter
must be a designator denoting a variable. If it designates
an element of a structured variable, the selector is evalu-
ated when the formal/actual parameter substitution takes
place, i.e. before the execution of the procedure. If the
parameter is a value parameter, the corresponding actual
parameter must be an expression. This expression is
evaluated prior to the procedure activation, and the re-
sulting value is assigned to the formal parameter which
now constitutes a local variable (see aiso 10.1.).

$ ProcedureCall = designator {ActuaiParameters].

Examples of procedure cails:

ReadInt(i) (see Ch. 10)
WriteInt(j*2+1, 6)
INC(w[k].count)

9.3, Statement sequences

Statement sequences denote the sequence of actions
specified by the component statements which are separat-
ed by semicolons.

$ StatementSequence = statement {";" statement}.

9.4, If statements

IfStatement = IF expression THEN StatementSequence
{ELSIF expression THEN StatementSequence}
{ELSE StatementSequence]

END,

o5 B8 V5 o2

If statements specify the conditional execution of guard-
ed statements. The Boolean expression preceding a state-
ment is called its guard. The guards are evaluated in se-
quence of occurrence, until one evaluates to TRUE,
whereafter its associated statement sequence is executed.
If no guard is satisfied, the statement sequence following
the symbol ELSE is executed, if there is one.

Example:

IF (ch »>= "A") & (ch <= "Z") THEN
Readldentifier

ELSIF (ch >= "0") & (ch <= "9") THEN
ReadNumber

ELSIF ch = 22X THEN
ReadString

END

Page 13

9.5, Case statements

Case statements specify the selection and execution of a
statement sequence according to the value of an expres-
sion. First the case expression is evaluated, then the
statement sequence is executed whose case label list con-
tains the obtained value. The case expression and all la-
bels must be of the same type, which must be an integer
type or CHAR. Case labels are constants, and no value
must occur more than once. If the value of the expression
does not occur as a label of any case, the statement se-
guence following the symbol ELSE is selected, if there is
one. Otherwise it is considered as an error.

$ CaseStatement = CASE expression OF case

$ {"|" case} [ELSE StatementSequence] END.

$ case = [CaseLabelList ":" StatementSequence].
$ CaseLabelList = CaseLabels {"," CaseLabels}.

$ CaseLabels = ConstExpression [".." ConstExpression].

Example:
CASE ch OF
"A" . L™ ReadlIdentifier
| 0" .. 9™ ReadNumber
22X : ReadString
ELSE SpecialCharacter
END

9.6. While statements

While statements specify repetition. If the Boolean ex-
pression {(guard) yields TRUE, the statement sequence is
executed. The expression evaluation and the statement
execution are repeated as long as the Boolean expression
yields TRUE.

$ WhileStatement = WHILE expression DO
3 StatementSequence END.

Examples:

WHILE j > 0 DO

j:=j DIV 2;
=i+l

END

WHILE (t # NIL) & (t.key # i) DO
t = t.left

END

9.7. Repeat Statements

A repeat statement specifies the repeated execution of a

Page 14

statement sequence until a condition is satisfied. The

statement sequence is executed at least once.

$ RepeatStatement = REPEAT StatementSequence
3 UNTIL expression.

9.8, Loop statements

A loop statement specifies the repeated execution of a
statement sequence. It is terminated by the execution of
any exit statement within that sequence (see 9.9).

$ LoopStatement = LOOP StatementSequence END.

Example:

LOOP
IF t1 = NIL THEN EXIT END ;
IF k < t1.key THEN
12 := tl.left; p := TRUE
ELSIF k > t1.key THEN
t2 := tl.right; p := FALSE
ELSE EXIT
END ;
tl :=t2
END

Although while and repeal statements can be expressed
by loop statements containing a single exit statement, the
use of while and repeat statements is recommended in
the most frequently occurring situations, where termina-
tion depends on a single condition determined either at
the beginning or the end of the repeated statement se-
quence. The loop statement is useful to express cases
with several termination conditions and points.

9.9, Return and exit statements

A return statement consists of the symbol RETURN, pos-
sibly followed by an expression. It indicates the termina-
tion of a procedure, and the expression specifies the re-
sult of a function procedure. Its type must be identical to
the result type specified in the procedure heading (see
Ch. 10).

Function procedures require the presence of a return
statement indicating the resuit value. There may be sev-
eral, although only one will be executed. In proper pro-
cedures, a return statement is implied by the end of the
procedure body. Anr explicit return statement therefore
appears as an additional (probably exceptional) termina-
tion point.

An exit statement consists of the symbol EXIT. It speci-

fies termination of the enclosing loop statement and con-
tinuation with the statement following that loop state-

USUS Newsl etter Mar - Apr 1991

R ———

ment. Exit statements are contextually, although not
syntactically bound to the loop statement which contains
them.

9.10. With statements

If a pointer variable or a variable parameter with record
structure is of a type TGO, it may be designated in the
heading of a with clause together with a type T that is an
extension of T, Then the variable is guarded within the
with statement as if it had been declared of type T. The
with statement assumes a role similar to the type guard,
extending the guard over an entire statement sequence.
It may be regarded as a regional type guard.

$ WithStatement = WITH qualident ":" qualident
$ DO StatementSequence END .

Example:

WITH t: CenterNode DO
name := t.name; L := t.subnode
END

10. Procedure declarations

Procedure declarations consist of a procedure heading
and a procedure body. The heading specifies the proce-
dure identifier, the formal parameters, and the result
type (if any). The body contains declarations and state-
ments. The procedure identifier is repeated at the end of
the procedure declaration. There are two kinds of proce-
dures, namely proper procedures and function proce-
dures. The latter are activated by a function designator
as a constituent of an expression, and yield a result that
is an operand in the expression. Proper procedures are
activated by a procedure call. The function procedure is
distinguished in the declaration by indication of the type
of its result following the parameter list. Its body must
contain a RETURN statement which defines the result
of the function procedure.

All constants, variables, types, and procedures declared
within a procedure body are Jocal to the procedure.
The values of focal variables are undefined upon entry
to the procedure. Since procedures may be declared as
local objects too, procedure declarations may be nested.

In addition to its formal parameters and locally declared
objects, the objects declared in the environment of the
procedure are also visible in the procedure (with the ex-
ception of those objects that have the same name as an
object declared locally).

The use of the procedure identifier in a call within its
declaration implies recursive activation of the proce-

USUS NewsLetter Mar - Apr 1991

dure.

$ ProcedureDeclaration = ProcedureHeading ";"

$ ProcedureBody ident.

$ ProcedureHeading = PROCEDURE identdef

$ [FormalParameters].

$ ProcedureBody = DeclarationSequence

$ [BEGIN StatementSequence] END.

$ ForwardDeclaration = PROCEDURE """ identdef

$ [FormaiParameters].

$ DeclarationSequence = {CONST {ConstantDeclaration ";"} |
$ TYPE {TypeDeclaration ";"} |

$ VAR {VariableDeclaration ";"}}

3 {ProcedureDeclaration ";" | ForwardDeclaration ";"}.

A forward declaration serves to allow forward refer-
ences to a procedure that appears later in the text in fuil.
The actual declaration - which specifies the body - must
indicate the same parameters and result type (if any) as
the forward declaration, and it must be within the same
scope.

10.1. Formal parameters

Formal parameters are identifiers which denote actual
parameters specified in the procedure call. The corre-
spondence between formal and actual parameters is es-
tablished when the procedure is called. There are two
kinds of parameters, namely value and variable param-
eters. The kind is indicated in the formal parameter list.
Value parameters stand for locai variables to which the
result of the evaluation of the corresponding actual pa-
rameter is assigned as initial value. Variable parameters
correspond to actual parameters that are variables, and
they stand for these variables. Variable parameters are in-
dicated by the symbol VAR, value parameters by the ab-
sence of the symbol VAR. A function procedure without
parameters must have an empiy parameter list. [t must
be called by a function designator whose actual parame-
ter list is empty too.

Formal parameters are local to the procedure, i.e. their
scope is the program text which constitutes the procedure
declaratioa.

$ FormalParameters = "(" [FPSection {";" FPSection}]")"
$ [":" qualident].

$ FPSection = [VAR]ident {"," ident} ":" FormaiType.

$ FormalType = {ARRAY OF} qualident | ProcedureType.

The type of each formal parameter is specified in the pa-
rameter list. For variable parameters, it must be identi-
cal to the corresponding actual parameter’s type, except
in the case of a record, where it must be a base type of
the corresponding actual parameter’s type. For value pa-
rameters, the rule of assignment holds (see 9.1). If the
formal parameter’s type is specified as ARRAY OF T

Page 15

the parameter is said to be an open array parameter, and Function procedures:
the corresponding actual parameter may be any array
with element type T.

Name Argument type Resuittype Function
If a formal parameter specifies a procedure type, then the '
corresponding actual parameter must be either a proce- ABS(x) numeric type typeofx absolute value
dure declared at level O or a variable (or parameter) of ,
that procedure type. It cannot be a predefined procedure. ODD(x) nteger type BOOLEAN xMOD2=1
The result type of a procedure can be neither a record CAP(x) CHAR CHAR corresponding
NOT an array. capital letter

ASH(x,n) x,nintegertype LONGINT x*2n, arthmetic

Examples of procedure declarations: shift
LEN(v,n) v:amay LONGINT thelengthof vin
PROCEDURE ReadInt(VAR x: INTEGER); n: integer type dimension n
VAR i : INTEGER; ch: CHAR; . . .
BEGIN LEN(v) is equivalent with LEN(v, 0)

i:=0; Read(ch); MAX(T) T=basictype T maximum vaiue of

WHILE ("0" <= ch) & {(ch <= "9"} DO type T
i:= 10*i + (ORD(ch)-ORD("0™)); T = SET INTEGER maximum element
Read(ch) of sets

END ;

X =i MIN(T) T = basic type T minimum value of

type T
END Readlnt T =SET INTEGER 0
SIZE(T) T =any t int .ofb ired
PROCEDURE WriteInt(x: INTEGER); RS R e
(* 0 <=x < 1075 #)
VAR i: INTEGER;
buf: ARRAY 5 OF INTEGER; Type conversion procedures:
BEGIN i :=0;
REPEAT

buf[i] := x MOD 10; Name Argument type Result type Function

x = x DIV 10;

INC(i) ORD{x) CHAR INTEGER ordinal number of x

UNTIL x = 0; . .

REPEAT CHR(x) integer type CHAR chalracter with
DEC(i); ordinal number x
Write(CHR(buf[i] + ORD("0"))) SHORT(x) LONGINT INTEGER identity

UNTIL i = 0 INTEGER SHORTINT

END Writelnt LONGREAL REAL (truncation possible)
LONG(x) SHORTINT INTEGER identity
PROCEDURE log2(x: INTEGER): INTEGER; INTEGER LONGINT
VAR y: INTEGER; (*assume x>0*) REAL LONGREAL
BEGIN y := 0; .

WHIL])':E %> 1D0 ENTIER(x) real type LONGINT largt:st ltlllltegernot
x:=x DIV 2; greder Tan
INC(y) Note that ENTIER(i/j) = i DIV

END;

RETURN y

END log2 Proper procedures:
10.2. Predefined procedures Name Argument types Function
The following table lists the predefined procedures. INC(v) integer type vi= vl
Some are generic procedures, i.c. they apply to several INC(v, %) integer type Vim VX
types of operands. v stands for a variable, x and n for DE .)
expressions, and T for a type. DES:)X) :E:gg:; gg : f:i

Page 16 USUS NewsLetter Mar - Apr 1991

INCL{v, x} v:SET, x:integertype V=V + {x}
EXCL(v, x) v: SET; x: integertype v:=v-{x}
COPY(x,v) x: character array, steing ~ vi=X
v: character array
NEW(V) pointer type aflocate v*
HALET(x) integer constant terminate program
execution

The second parameter of INC and DEC may be omitted,
in which case its defaunit value is 1. In HALT(x), x is a
parameter whose interpretation is left to the underlying
system implementation.

11. Modules

A module is a collection of declarations of constants,
types, variables, and procedures, and a sequence of
statements for the purpose of assigning initial values to
the variabies. A module typically constitutes a text that
is compilable as a unit.

$ module = MODULE ident ;" [ImportList]

$ DeclarationSequence {BEGIN StatementSequence]
$ END ident "." .

$ ImportList = IMPORT import {"," import} ";" .

$ import = ident {":=" ident].

The import list specifies the modules of which the mod-
ule is a client. If an identifier x is exported from a mod-
ule M, and if M is listed in a module’s import list, then
x is referred to as M.x. If the form "M := M1" is used in
the import list, that object declared within M1 is refer-
enced as M.x.

Tdentifiers that are to be visible in client modules, i.e.
outside the declaring module, must be marked by an ex-
port mark in their declaration.

The statement sequence following the symbol BEGIN is
executed when the module is added to a system (load-
ed). Individual (parameterless) procedures can thereafter
be activated from the system, and these procedures
serve as commands.

Example:
MODULE Out;
(*exported procedures: Write, WriteInt, WriteLn*)
IMPORT Texts, Oberon;
VAR W: Texts. Writer;
PROCEDURE Write*(ch: CHAR);

USUS NewsLetter Mar - Apr 1991

BEGIN
Texts. Write(W, ch)
END Write;

PROCEDURE WriteInt*(x, n: LONGINT);
VAR i: INTEGER; a: ARRAY 16 OF CHAR;
BEGIN i:= 0
IF x < 0 THEN
Texts. Write(W, "-"); X 1= -x
END ;
REPEAT
a[i] := CHR(x MOD 10 + ORD("0"));
x := x DIV 10; INC(i)
UNTIL x = 0;
REPEAT
Texts, Write(W, " ");
DEC(n)
UNTIL n <= i}
REPEAT
DEC(i);
Texts. Write(W, a[i])
UNTILi=0
END Writelnt;

PROCEDURE Writel.n™;
BEGIN
Texts. WriteLn(W);
Texts.Append(Oberon.Log, W.buf)
END WriteLn;

BEGIN
Texts.OpenWriter(W)
END Out.

12. The Module SYSTEM

The module SYSTEM contains definitions that are neces-
sary to program low-level operations referring directly
to resources particular to a given computer and/or impie-
mentation. These include for example facilities for ac-
cessing devices that are controlled by the computer, and
facilities to break the data type compatibility rutes other-
wise imposed by the language definition. It is recom-
mended to restrict their use to specific low-level mod-
ules. Such modules are inherently non-portable, but eas-
ily recognized due to the identifier SYSTEM appearing
in their import lists. The subsequent definitions are ap-
plicable to most modern computers; however, individual
implementations may include in this module definitions
that are particular to the specific, underlying computer.

Module SYSTEM exports the data type BYTE. No repre-
sentation of values is specified. Instead, certain compati-
bility rules with other types are given:

i. The type BYTE is compatible with CHAR and
SHORTINT.

Page 17

2. If a formal VAR parameter is of type ARRAY OF ROT(x,n) x:integer type or SET typeofx rotation
BYTE, then the corresponding actual parameter may be n: integer type
of any type.
VAL(T,x) T,x: anytype T x interpreted as of
The procedures contained in module SYSTEM are listed type T
in the. followmg tab]eg. Thcy correspond tf) single in- Proper procedures:
structions compiled as in-line code. For details, the read-
er is referred to the processor manual. v stands for a
variable, X, y, a, and n for expressions, and T for a type. Name Argumenttypes Function
GET(a,v) a:LONGINT, v = Mem({a]
Function procedures: v: any basic type
PUT{(a,x) a: LONGINT, Memfa] := x
X: any basic type
Name Argument Result type Function MOVE(s, d,n) Mem{d] ... Mem[d+n-1]
& ypes pe s, &: LONGINT; :=Mem[s] ... Mem([s+n-1]
ADR(v) any LONGINT address of variable v n; integer type
BIT{a,n) a: LONGINT BOOLEAN bit n of Mema] NEW(v,n) v:any pointer type allocale storage block of n bytes
n: infeger type n: integer type assign its address o v
CC{n) integer constant BOOLEAN Condition n
(0 <=n<16)
LSH(x,u) X integer typeor SET typeofx logical shift File: OberonReport.Doc | NW 1.10.90
n: integer type
Oberon EBNF
ident = letter {letter | digit}.
number = integer | real.
integer = digit {digit} | digit {hexDigit} "H".

real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}.
hexDigit = digit|"A"|"B"|"C"|"D"|"E" | "F".

d}gi[= o l rqn I nan ! ng ‘ AN I ngt l Hg l o] tg" l ngu .
CharConstant = **’ character *"’ | digit {hexDigit} "X".

e

string = """ {character} .

jdentdef = ident ["*"].
qualident = {ident "."] ident.

ConstantDeclaration = identdef "=" ConstExpression.

ConstExpression = expression.

TypeDeclaration = identdef "=" type.

type = qualident | ArrayType | RecordType | PointerType | ProcedureType.
ArrayType = ARRAY length {"," length} OF type.

lengith = ConstExpression.

RecordType = RECORD ["(" BaseType "}*] FieldListSequence END.
BaseType = qualident.

FieldListSequence = FieldList {";" FieldList}.

FieldList = [IdentList ":" type].

Page 18

USUS Newsletter Mar - Apr 1991

IdentList = identdef {"," identdef}.

PointerType = POINTER TO type.

ProcedureType = PROCEDURE [FormalParameters).
VariableDeclaration = IdentList ":" type.

designator = qualident {"." ident | "[" ExpList "]" | "(" qualident ")" | "*" }.
ExpList = expression {"," expression}.
expression = SimpleExpression [relation SimpleExpression].

relation = "=" | g | "t I Wt I e 1 Mot I IN | 1S.
SimpleExpression = ["+"|*-"] term {AddOperator term}.
AddOperator = "+"|"-"|OR.

term = factor {MulOperator factor}.
MulOperator = "*"|"/" | DIV | MOD | "&" .
factor = number | CharConstant | string | NIL | set |
designator [ActualParameters] | "(" expression ")" | "~" factor.
set = "{" [element {"," element}] "}".
element = expression [".." expression].
ActualParameters = "(" [ExpList] ")" .
statement = [assignment | ProcedureCall |
IfStatement | CaseStatement | WhileStatement | RepeatStatement |
LoopStatement | WithStatement | EXIT | RETURN [expression]].
assignment = designator ":=" expression.
ProcedureCall = designator [ActuaiParameters|.
StatementSequence = statement {";" statement}.
IfStatement = IF expression THEN StatementSequence
{ELSIF expression THEN StatementSequence}
[ELSE StatementSequence] END.
CaseStatement = CASE expression OF case {"|" case}
[ELSE StatementSequence] END.
case = [CaseLabelList ":" StatementSequence].
CaseLabelList = CaseLabels {"," Casel.abels}.
CaseLabels = ConstExpression [".." ConstExpression].
WhileStatement = WHILE expression DO StatementSequence END.
RepeatStatement = REPEAT StatementSequence UNTIL expression.
LoopStatement LOOP StatementSequence END.
WithStatement

1l

ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
ProcedureHeading = PROCEDURE ["*"] identdef [FormalParameters}.
ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.
ForwardDeclaration = PROCEDURE """ ident ["*"] [FormalParameters].
DeclarationSequence = {CONST {ConstantDeclaration ";"} |
TYPE {TypeDeclaration ";"} | VAR {VariableDeclaration ";"}}
{ProcedureDeclaration ";" | ForwardDeclaration ";"}.
FormalParameters = “(" [FPSection {";" FPSection}] ")" [":" qualident].
FPSection = [VAR] ident {"," ident} ":" FormalType.
FormalType = {ARRAY OF} (qualident | ProcedureType).
ImportList = IMPORT import {"," import} ";" .
import = ident {":=" ident].
module = MODULE ident ";" [ImportList] DeclarationSequence
[BEGIN StatementSequence] END ident "." .

USUS NewslLetter Mar - Apr 1981

WITH qualident ":" qualident DO StatementSequence END .

Page 19

Oberon Availability

Public Domain Oberon (from ETH)

Oberon - the successor of Modula-2 - is both a programming
language and an operating system designed by N.Wirth and
J.Gutknecht at ETH Zurich. It is available as public domain
software from ETH. Cumently there are implementations for
Apple Macintosh II, Digital Equipment DECstation, and Sun
SPARCStation. Implementations for IBM PC (OS2) and IBM
RS6000 are under development. The following lists some
characteristics of the Oberon system and describes how to get
it.

Language

- Strong type checking

- Modules with type checked interfaces and separate
compilation

- Type extension

- Support for run-time type tests

- Compatibility between ail numeric types (mixed
expressions)

- String operations

Compiler
- Generates native code; no separate linking
necessary
- Speed: more than 1000 lines per second on a
SPARCStationl

System
- Single-process multitasking
- Automatic garbage collection
- Commands: procedures that can be calied like
progrants
- Linking loader
- Dynamic loading (adding modules to 4 running
program}
. - Tiling window system
- Text as built-in abstract data type
- Tools for text and graphics editing

Literature

The primary- source about the Oberon System, describing the
standard module library and how to use the system is the
book

M.Reiser: The Oberon System. User Guide and Program-
mer’s Manual. Addison Wesley, 1991, ISBN 0-201-54422-9

Other literature about the Oberon language, about implemen-
tation aspects of the system, and about the Oberon System on
Macintosh and SparcStation:

. N.Wirth: From Modula to Oberon and The Programming
Language Oberon. Software - Practice & Experience,
18, 7 (July 1988)

- N.Wirth, J.Gutknecht: The Oberon System.

Software - Practice & Experience, 19, 9 (Sept.1989), 10-
18

Page 20

- M.Franz: MacOberon Reference Manual, Report 142,
ETH Zurich, Departement Informatik, 1990
- J.-Templ: SPARC-Oberon - User’s Guide and Implemen
tation. Report 133, ETH Zurich, Departement Infor
matik, 1990

Books about the Oberon language and the Oberon project (in-
cluding main parts of the implementation in source form) are
in preparation.

How to get Oberon

Oberon can be obtained via anonymous internet file transfer
ftp (at no charge) or on floppy disks (send 20 Swiss Francs or
20 US Dollars to the address below and specify the desired
version of Oberon). If you obtain Oberon via fip, documenta-
tion is included in machine-readable form. If you order it on
floppy disks, the basic documentation is included in paper.

Hostname: neptune.inf.ethz.ch

Intemet Address: 129.132.101.33

Login Name: anonymous

Password: <your e-mail address>

Directory: Oberon (there are subdirectories named Macll,SPARC
and DECstation)

For any further questions please contact

ETH Zuerich, Institut fuer Computersysteme (Sectetary)
CH-8092 Zuerich

Tel.: +41-1-254 7311

Fax: +41-1-262 3973

Electronic Mail: goerlitz@inf.ethz.ch

OBERON-M(tm) version 1.1 ANNOUNCEMENT

This is to announce the immediate availability of Oberon-M
version 1.1.

This package presents the Oberon programming language for
the MSDOS environment, on [ntel 80x86 processors.

Version 1.1 has some language changes to keep pace with
Niklaus Wirth’s Oberon revisions (see below). Documenta-
tion has been increased, and a mature modular example of
Oberon’s unique features has been added.

Oberon, as you may already know, is a second-generation lan-
guage past Pascal with most {maybe all}) of the clumsiness of
its ancestors removed, with the added power of type exten-
sion and object oriented programming features available.

This release contains the following items:

compiler, library modules, updated documention,
language report, new/old examples, utility programs

USUS NewsLetter Mar - Apr 1991

EXAMPLE FILES: a new, robust set of five modules are in-
cluded to illustrate Oberon’s unique type extension and object
oriented programming features. They make a fairly good
teaching tool about Oberon’s strengths. The well-received
Abu program and the original library modules are still present.

HOW TO GET Oberon-M version 1.1
The locations below have the new Oberon-M package. It can
be obtained by anonymous FTP, or by mail-message glue-and-
uudecode, depending on the location.

FTP formats

The package file name on an FTP location is either

oberonm

EXE file
oberonmz

- self unzipping
- zip files (not self-unzipping)

Either must be fetched using FTP in BINARY mode. Once
downloaded to an MSDOS machine, put the following file
name extensions on the respective file you obtained:

oberonm ---> oberomm.exe (run it to unzip)
oberonmz ---> oberonmz.zip (use PKZIP on it)

The cberonmz form is provided for those distribution locations
that prefer zip data files versus executable ones. Both files
otherwise are identical.

MAIL MESSAGE FORMATS

For locations that have the package in mail-like ASCII files (6
files), you must use an editor to concatenate all the files where
shown, use undecode to bring it back into a binary image, then
download and use PKZIP (or an equivalent utility) to unpack
all the files of the Oberon-M package. Only the zip-data form
of the package is included in the mail-like format (ie: it is the
oberonmz file mentioned above}.

LOCATIONS TO OBTAIN THE PACKAGE

1) SIMTEL20
machine name: WSMR-SIMTEL20. ARMY.MIL
Internet address: 26.2.0.74, 192.88.110.20
subdirectory: pdl:<msdos.pgmutl>
file names: OBRONMI1LZIP
(* NOTE special form of name here*)
fetch how: anonymous FTP
unpack how: PKZIP under MSDOS

2) UCSD
machine name: ucsd, ucsd.edu, pop.ucsd.edu
Internet address: 128.54.16.1
subdirectory: pub
file names: oberonm.exe
fetch how: anonymous FTP
unpack how: For oberonm.exe: binary transfer
to MSDOS, then execute (seif unzipping files)

3) ETH Zurich

machine name: neptune.inf.ethz.ch
Internet address: 129.132.101.33
subdirectory: Oberon/80186

file names: oberonm.exe, oberonm.info

USUS NewsLetter Mar - Apr 1991

fetch how: anonymous FTP

#** Note: ETH has not tested this package extensively and
does not claim or disclaim its validity relative to the ETH
Oberon System. Keeping the files here is only being done as a
courtesy to European users who want to fetch it from a closer
location.

4) comp.binaries.ibm.pc
machine name: Usenet newsgroup
Internct address: N/A

file formats: 6 uuencoded "mail" messages
fetch how: capture the messages
unpack how: Instructions are at the

head of the first message.

3) alt.sources
(same as in comp.binaries.ibm.pc , but available here also by
request from many users)

6) wuarchive

machine name: wuarchive.wustl.edu

Internet address: 128.252.135.4

subdirectory: /mirrors/msdos/pgmutl

file names: obronml1.zip

(* NOTE special form of name here*)

fetch how: anonymous FTP

unpack how: binary transfer to MSDOS,

then unzip/decompress using PKZIP or equivalent.

7) University of Ulm
machine name: titania.mathemalik.uni-ulm.de
Internet address: 134.60.66.21
subdirectory: soft/foberon/oberonm
file names: oberonm.exe, oberonm.info
fetch how: anonymous FTP
unpack how: For oberonm.exe: binary transfer
to MSDOS, then execute (self unzipping files)
For oberonm.info: ascii transfer for human reading

-- E. R. Videki
erv@k2.everest.tandem.com
IP address 130.252.59.153

Oberon for the Amiga

A version of Oberon is available for the Amiga running Ami-
gaDOS. Information on it may be obtained by writing to:

A+LAG Or: Tenera Merx Productions Pty Lid
Im Dideriz 61 Unit 1, 25 Buckingham Drive
CH-2540 Grenchen Wangara WA 6065

Switzerland

Copies of Oberon-M for MSDOS, and a demo version of the
Amiga Oberon, are available in lib 3 of the USUS forum on
Compuserve. The forum (formerly called MUSUS), may be
reached by GO CODEPORT, or GO MODULA.

Special thanks to Nicklaus Wirth for giving permission Lo
reprint the 2 papers on Oberon.

Page 21

Interupt Routines in JP! Modula-2
by Mike Hughes

I had earlier asked some questions about writing interrupt
driven routines in JPI Modula-2. Here are the answers I fi-
nally came up with and which seem to be correct in practice.

1. The module "priority" is a bit mask representing the in-
terrupt controiler chip’s mask register. Bit zero controls
IRQ 0, etc. Setting the bit to a one DISABLES the corre-
sponding IRQ when the module is entered. 1 suspect that
this is really implemented only in IOTRANSFER, although
it should be a part of the entry and exit code of every routine
in the module. Setting the word to FFFF will block all inter-
rupts during the execution of the routine. A value of 18H
will disable IRQ 3 and 4, both serial ports.

2. The "Interrupt Vector", which is a parameter in [O-
TRANSFER, refers to what the BIOS manuals usually call
the "Interrupt Number". This is an index into the jump table
located at memory address zero, and has values such as OCH
for COM1, OBH for COM2, etc. Most books on the BIOS
or DOS have lists of these things.

3. IOTRANSFER does not un-mask the IRQ associated
with the interrupt vector. This is unfortunate since the rou-
tine assumes the normal relationship between them for other
purposes, and could have done this for us as well. Oh well,
maybe version 3...

To do this, create a bit mask with a zero bit only in the posi-
tion cotresponding to the JRQ you want to enable. AND
this mask with the current contents of the Interrupt Mask
Register located at port address 21H. Save the old value of
the mask to restore before leaving the module. It is a good
idea to disable the interrupts while modifying the mask to
avoid possible weirdness. The procedure is roughly as fol-
lows:

TYPE BYTESET : SET OF SHORTCARD[O0..71;
(* 8 bit equivalent of BITSET *)
VAR Mask, OldIMR : BYTESET;

Mask := BYTESET{0..3,5..7};

(* Enable IRQ 4 (COM1) *}
SYSTEM.DI;
O1dIMR := BYTESET(SYSTEM.In(21H));
SYSTEM.Out (21H,SHORTCARD (O1dIMR*Mask)) ;
SYSTEM.EI;

The original mask should be restored before leaving the pro-
gram:

SYSTEM.Out (21H, SHORTCARD (O1dIMR) ;

4, The compiler does not generate code to restore the inter-
rupt vector to its original address before leaving the pro-
gram. If you execute an IOTRANSFER you must do this or
your system will crash the next time something happens on
that IRQ!

Page 22

VAR
Vectors {0:0] : ARRAY [0..255] OF
LONGCARD;

SaveVector i1 LONGCARD;
gaveVector := Vectors{InterruptVector};

Vectors[InterruptVector] := SaveVector;
Yes, I know, these things should really be pointers to proce-
dutes, but that introduces all sorts of meaningless distinc-
tions and this code is system dependent anyway. So long as
it has 32 bits.

5. JOTRANSFER does take care executing the End of Inter-
rupt instruction when given interrupt vectors (08H to OFH.
Praise the Maker!

6. A driver will usually be placed inside a local module to
establish the interrupt priority and will have the following
form:

MCDULE InterruptModule([priorityl];

IMPORT
(* All variables required
from outer module *)

EXPORT Driver;

PROCEDURE Driver;
BEGIN
LOOP
IOTRANSFER(DriverProcess,
SourceProcess,
InterruptVector);
(* Interrupt handling code here *)
END
END Driver;
END InterruptModule;

After hardware initialization:

NREWPROCESS (Driver, ADR{Driverstack),
SIZE(DriverStack), DriverProcess);
TRANSFER(SourceProcess, DriverProcess)

Note that the TRANSFER causes only the IOTRANSFER to
be executed in the driver routine. This returns control back
to the initialization routine, but sets up the interrupt trap.
Entry to the driver will then only occur through the inter-
rupt. If you have separate control of the hardware interrupt
(as with the Interrupt Enable register in a serial port chip),
this should be enabled as the very last thing.

Also note that the Version 2 compiler requires a FarADR as
the second parameter of NEWPROCESS.

Best of luck to anyone else quixotic enough to want to do
this stuff!

USUS Newsbetter Mar - Apr 1991

HE new 32 Bit VLM (Very Large
machines) Power System is now
available and is currently helping
many clients to overcome the ﬁmjtation
of 64K of Stack/Heap.

The standard 32 Bit VLM can be
configurated from 256K Stack/Heap
area Lo many Megabytes of Stack/Heap
Memory space.

The MS-DOS version of 32 Bit VLM is
currently restricted to 640K RAM,
however 2 version taking advantage of
the Intel 80386/80486 and memory
extensions is under final development.

The SCO UNIX version of VLM for Intel
based computers will also utilise the
same memory software technology to
address machines with large program-
ming memory and also incorporate
window functions.

Ring now for the latest product details
and price list,

An additional 20,000 units of Pecan Power
System software, with a retail value of £1.4
million, have been purchased by the Open
University for operation during the 1991
and 1992 academic years.

The decision by the Open University to apply
2 contract purchase option for additional
quantities is based on the experience, quality
and excellent operational results of the sofrware
during the initizl academic years.

The contract was won by Pecan despite
competition from a number of major Pascal
vendors.

An important facror in the decision making to

continue with the Power system is that there is
no record of product faillure being reported
by any of the 12,000 plus students.

Ken Helps, Managing Director of Pecan
Software Furope Lid says,"It's very satisfying to
help contribute significantiy to the raising of
computing standards and to receive confirma-
tion that the Power system has proved itself
through the use of thousands of students”.

“The UGCSD Pascal programming course is the
most popular 2nd year course at the
University”, states Gordon Davies acting Head of
Computing at the University.

ra s
bbby 4T

e b mml

The New Power System User
Interface as indicated above
supports pop-up, pull down
menus, help screens, windowing
plus much more.

Upgrade to the new MS-DOS version
of the User/Interface for only £100 +
VAT, ptp.

MSA customers will be supplied free
of charge.

We will even include the pop-up
Hibrary routines and a demonstration
disk with source code free of charge.

SCO XENIX/UNIX
VERSION OF
UCSD PASCAL

The Unix marketplace is growing by 45% p.a.,
yau can now enter that marketplace with your
UCSD based software.
See inside pages.

0S/2 VERSION OF UCSD
PASCAL :

Yas another new product and platform for all
UCSD based software to be ported and
running within hours. See inside pages.

.

PASCAL LIBERATOR

Move your Turbo Pascal programs to SCO
XENDC/UNIEX quickly and easily using UCSD
Pascal and our new liberator product.

See inside pages.

UCSD INSTALLATION
PROGRAM

At last the first easy to use install program for
the UCSD development system available for
MSA customners. See inside pages.

SWAPPING COMPILER

A version of UCSD Pascal designed specifically
for the writing of very large programs and with
increased functions. See inside pages.

PC-CHECKDISK / VIRUS
DETECTOR

This product is designed for the non-computer
person to help dotect general Viruses and as a
prevantive maintenance system for the actual
hard disks in computers and all wrtten in
UCSD Pascal. See inside pages.

BULLETIN BOARD

News, views, information, upgrade/details,
samplggmgrams. programmming hints, all
provided free of charge, (ED. does the boss
know we're giving this away}.

PORTING CENTRE

For those clients wishing to port UCSD
softwars to new hardware platforms/operating
systems and require help and assistanca, come
on down to Pecan's officas, details inside page.

The famous Cliton suspansion bridge located near
the centre of Bristel and built by isambard Brunel

necroased office space, new pecple,
Iplus new producis are but part of

the planned expansion of Pecan.
Pecan’s offices are located in the south
west part of the UK in Bristol which is 1.5
hours traveliing time to Londan. Our
officas are 10 mins from both the M5 & M4
motorways,with excellant raiiway and
airport links. Bristol is a high tech city and
is famous for designing anc building the
Concorde,the Inmos transputer and
historically famous for tobacco, wine and
the slave trade. (so what's changed boss)

Maitbew Porton

He is at present an Undergraduate at Bristol
Polytechnic studying for a degree in Systems
Analysis and enjoying the experience and
benefits of industrial placement for one year.
His technical expertise in the application of
software coupled with personalinterest in total
marketing is an asset.

Duncan Rooth

He is a graduate of Cardiff University in the
discipline of Computer Sclenca and has
industriallcommaercial application experience.
This experience has allowed Duncan to
become proficient in bath 'C" and Pascal
programming at an advanced leve! and he is
applying his Tl knowledge as a member of
the development team.

Ron Greenaway

He is an experienced businessman, having
worked with Multi-national organisations at
senior management and director level for
many years. Contributions to the many aspects
of marketing and administrative contral
mechanisms are being implemented with
resultant benefits to business and customer
growih.

OPEN SYSTEMS

The discussions of software portability via
intermediate formats ta produce shrink
wrapped softwara has only just started
with a number of offerings, namely -

Unix, 4GL based products and ABI; the
world at the moment is ignorant of UCSD
Power System, but walch this space.

Wa would welcome customer opinions of
these offerings to achieve poriable
softwars, our own views are as follows -

UNIX

Unix, is becoming the multi-user standard after at
least 10 years of hard selling and many millions
of &'s spent on hype, and yet Unix versions are
still incompatible and many articles have been
written endorsing the true nawre of Unix and
not the message on thelr advertisements. We find
it 2 great source of amusement collecting the
wisdom and comments written about Unix, of
course we have a Unix based product atready,
o true software compatibility is offered under
the Unix hosted version of The UCSD Power
System.

4GL CASE TOOLS

The theory being that the developer uses one of
the many 4GL products, having produced the
product he ean port data and file stuaure to
other computers quickly.

But alas the dreaded joumalists are penning their
views of poor produdtivity with increased
program errors to name but a few problem
areas.

A recent survey conducted at [BM sites in
Holiand rejected the adoption of 4GLs as a
de facto standard development tool.

The concept is reasonably good, one of the main
problems is lack of any industry standards, each
4GL offering, has il's own command structure
and functions which are toully different and
incompatible with other 4GL products, also the
developer is limited to specific hardware.

ABl

A.B.I Application Binary Interface 2 good
concept of portable software committed to
specific families of processors with no compat-
ibility between each family of

processors ie lntel - Motorela - Risc and at the
momenst still a specification not a working
product.

When and the produa reaches the market znd
is accepted we witl actuaily utilise the
technology for future products, producing
even greater portability of UCSD based software.

Yet another new service from Pecan helps
software devaiopars port their programs to
diftarent hardware and operating systems
0.g. Pecans Unix based Power System.

We have a wide range of machines in
house. “Our Customers can now familiar-
ise themselvas without the setup cosis”,
siates Ken Helps. The service is aimed at
providing the resources and knowledge to
transfer programs quickly, therefore open-
ing yot another hardware market for davel-
opers. All at a cost of £250 per day.

Blyth Software’s Omnis 3 which is (approx)
a 50,000 line UCSD Pascal program was
recently ported from a stride environment
to an NCR Tower running UNIX in one
hour, and the programwas fully functional.

A Bulletin Board Is a way of transferring
Information and files from one computer
to another using the standard telephone
line, a modem and a piece of Comms
software, such as the shareware program
PROCOMM.

Al Pecan Software Europe Ltd we have recently
opaened our own board, (sometimes called a
BBS) 1o aliow our customers and pecple
interested in the Power System to have access
to up-to-date information and producis 24
hours a day. We also have a number of
interesting files from MS-DOS utiities 1o
UCSD Pascal programs that are available for
downloading. The Main menu consists of
various choices such as Help Level,
Questionnaire, etc. As well as these choices,
there is also access to further menus, such as
the Massage menu, File Menu ,Bulletin Menu.

The Bufletin Board number is 0272 248076,
We currently support V21, V22 & Va2bis
speeds, and the file transfer pratocols we
support are ASCIH, XModem CRC, XModam-
1K, YModem Batch, ZModem, Kermit, Sealink
and Megalink,

The new Power System Upgrade is full of new
features such as:-

« REVAMPED DYNAMIC SEGMENT
MANAGEMENT. Allows double the number
of Segments

43/50 LINE DISPLAY ON VGAEGA

64 VIRTUAL VOLUMES CAN BE
MOUNTED

NATIVE CODED PASCAL COMPILER. Can
double compilation speed

NEW INSTALL PROGRAM

Don't delay Upgrade todayil

SR

This makes the initial setup of the
Power System far easier and faster
than ever before. It creates the
volumes necessary for the Power
System 1o run your hard disc drive,
and then copies the Power System
files into these volumes.

Accompanying the program is a
short set of instructions, although on
screen instructions are produced at
the necessary times.

The program is free {except for
postage) to those users who have a
valid Maintenance and Service
Agreement as part of the upgrade to
IV.3, simply send us your old discs
and we will send you updates by
return post.

Moving your MS-DOS based Turbo
Pascal programs to UNIX quickly aod
easily with our new innovatory Pascal
Liberator product.

« Converts Turbo Pascal code to UCSD Pascal
running under SCO Xenix/Unix, or any of
the foliowing MS-DOS, CPM, 05/2, APPLE
the choice is yours.

+ Pascal Liberator is designed with a
friendly user interface, pop-up menus,
help screens and splii screen windowing
1 display differences between Turbo
Pascal and UCSD Pascal command
strctures.

+ UCSD Pascal produces an intermediate
format and poriable programming code.

Liberate yowur software for only £230

The Power System supporting UCSD
Pascal is now available hosted under
SCO Xenix or S3CO Unix for IBM based
80286, 80386SX, 80386, 80486 or
compatible computers.

Portabliity

16 bit source and object code developed
under Pecan product is upward compat-
Ible to the SCO Xenix/Unix versions.
UCSD Pascal or any other Pecan lan-
guage produces P-Codae, an intarmadiate
format which allows the developer to
port programs fo other machines in a very
cost effective process. 50,000 line
application programs are transferrad
and operating on tha target computer in
just a couple of hours.

Alternative mathods of porting software
would require a complete rewrite usuaily
taking 3/6 months of time and substan-
tial cost.

Development Environment

The UCSD Power System integrated
development environment working under
SCO Xenix or Unix is identicai to all other
versions currently available.

Tech Spec/Benefits

Available on ali IBM PC and PS/2's and
compatibles, running SCO Unix or
SCO Xenix. Runs under B0286, 80386,
803865SX 80486 processors, wa advise
clients to opt for 80386/80486 based
development hardware.,

uUnix Access

These are units to procass Unix files, work
with Unix pipes, check user names, ity
names elc.

Files can be transferred from Power
System volumes to Unix and vice versa.
One option available even allows you to
include your awn Unix 'C’ code.

Pricing

The professional development system
with UCSD Pascal cost £1,200, licensing
options are available which include

12 months support free upgrades and
preferential pricing for future purchases
are available at £3,000.

'

-

T he OS/2 Power System was
daveloped from the successiul
SCO Unix/Xenix Power System.
it shares many of the same
features including: access to OS/2
files, printing via OS/2 spooler, the
ability to incorporate your own ‘'C’
code intothe Bios (lo access
Presentation Manager routines for
axample). The interpreter is written
in assembler for maximum perform-
ance and the screen updating
methods are designed for maximum
performance.There is of course full
ponability of code and data from all
our other Powser System implemen-
tations. This is the quick, easy and
efficient way 10 1ap into the growing
0S/2 market.

This version of UCSD Pascal keeps
the symbol table memory-resident
as long as possible, for speed, but
swaps it to disk when memory is full,
this overcomes problems associated
with stack overflows.The swapping
compiler does not replace the
axisting compiler, since it's larger
therefora compiler spead is
reduced, and is offered as a separale
product for clients with a Power
develcpment system.

PC-Checkdisk/Virus Detector is an
easy-to-use tool for monitoring hard disk
performance and detecting viruses
returning easy to understand error
messages in the case that something was
wrong.

Performance Testing

The four automated tests are : Disk
efficiency, Rotation speed, Verify, and
Virus detection. The menu driven software
can be used by anybody who can switch
on a computer.

The results of the performance test are
saved to disk and automatically com-
pared against previous lest results,
differences between tests are high-
lighted via waming messages and a
recommended course of action.

The product is now complete and has
been discussed on both local radio and
BBC World Service. One final point is that
it is slightly quicker than Nortons DT which
is written in 'C* Assembler.

Datafite the Liverpoot based software house have
recently been accredited with the GOLD AWARD for
their accounting software by the leading UK computer

publication Micro Decision.

Datafile products were judged superior o Pegasus, Sage, Tetra
- plus many more established names.

Steve Ashcroft, devalopar of Datatile programs was happy
1o say that “This proves that application software written in
UCSD Pascal can be tha bast”. Steve also states that ‘the
portability of UCSD programming code has helped keep us
ahead of the campetition and saved time on porting software
to other systems. This saving of time and cost has been
spent on improving our products”.

Datafila have a compiete range of powerful and
flexible managemant accounting software and a number
of database products.

We are pleased to be associated with Datatile, a very
valuad customer and offer our congratulations.

DATAFILE

SOFTWARE

Datafile Software Limited
Brunswick Enterprise Centre
Brunswick Way

Liverpool L3 4BD

Tel: 051 709 0929

Fax: 051 709 2070

The following personn
with your enguiries:-

Sales: Ken Helps
Matthew Porton

Technical: Gordon Wilkie
Adam Stevens

PEZ=:

-

Pacan Software Europe Ltd Victoria House, 10 Kellaway Avenue, Bristol BS6 7XR. England.
Fax: (0272} 245000, Telephone: (0272) 42501 2 Bulletin Board: (0272} 248076.

USUS (U Ltd, the UCSD Power System Users' Society,
will be holding their 10th anniversary conference at
Lancaster University on Friday 12th and Saturday 13th
April 1991, Both members and non-members from all
European and Commonwealth countries are welcome,
The theme for the conference is ‘Escaping from DOS".
The Friday will be of a2 commercial nature with pres-
entations about the experiences of the presenters in
porting their software to non-DOS platforms, while
Saturday will be designed more along the lines of a
technical workshop. Attendance can be for either one

or both days.

Enguires about the conference or USUS membership
should be addressed 10

A istrator TYPES OF MEMBERSHIP

USUS (UK) Ltd ndividual - €15pa.

PO BOX 448 (non Compeny address)
Chelmsford Cotporate f_lnﬂltullonll -.ETS P
M2 8 Q'B (Thesa membership rales are valid until 31.3.91)

To utilise the benefits derived from the Power System in
your application software 2 runtime license is required
when selling or copying for other compulters..

Runtime pricing is very competitive and wilh quantity
discounts royalty costs can be reduced 1o 2 few pounds.

Pecan now offers a range of flexible solutions to cater
for customer requirements, such as:-

« Bespoke systerms and application programming
« Systems Design and Consultancy

« Training Courses

¢ Performance Program

« Program oplimising for performance and speed

Editorial articles and news are aiways welcome, please send 1o
The Editor c/o Pecan Software Eurcpe Ltd,

Please notify Pecan of change in address or should you wish 1o
te kept on or taken off the mailing list.

All prices quoted are in UK pounds sterling and are
axclusive of post & packaging and local purchase tax (VAT).

All trademarks acknowledged

MILLENNIUM
COMPUTER
CORPORATION

740LC

Advanced 68030 UNIX Computer

DESCRIPTION

The 740LC is based upon a state of the art,
complete, single board 68030 based CPU card.
Optimized for the multi-user UNIX environ-
ment, the 740LC offers superior price/perfor-
mance ratio. The single board CPU provides the
major features required for the system. An
onboard, high speed hardware floating point
coprocessor is optionally available. The 68030
CPU running at 50Mhz, combined with up to
32Mb of RAM and up to 48 serial ports pro-
vides the power required in today's sophisticated
multi-user environments. The built in SCSI
interface provides over 1.2Mbytes/sec sustained
transfer rate from the hard disks in the UNIX
environment. The optional Ethernet/Cheapernet
"sky" board, provides for a high performance
Ethernet interface.

Tape backup is provided with a 150Mb, or
optionally a 600Mb, digitial data cassette drive.
In addition to the tape drive, there is room for
one full height, or two half height 5-1/4" SCSI
peripherials allowing up 1.5Gb of internal
storage. The external SCSI connector allows
connection to optical drives/jukeboxes, DAT
tape drives. and other SCSI devices.

X-WINDOWS

A comprehensive support package for the
X11.4 windowing system is provided. This
allows multi-user graphics applications such as
WYSIWYG word processing and picture
databases. Drivers are provided to display
picture fields from popular databases such as
Unify and FoxBase, as well as "C" library
routines to display and print TIFF format files.

THE MILLENNIUM 740LC

FEATURES
68030 CPU operating at 50Mhz
Unix 3.2 compatable operating system
X-Windows X11.4 support
Multi-user Graphics
Up to 32Mb of Parity checked RAM
Up to 48 serial ports
Protection hybrids for all serial lines
Ethernet/Cheapernet option
Optional 68882 hardware FPU
256Kb of on board EPROM
Batterv backed up Real Time Clock
Environmental sensors tor power supply
voltages. temperature. and air flow
CPU is +5v operation only
Advanced state of the art surface mount
construction
Rugged heavy gage steel chassis
"Excess Baggage" certified shipping con-
tainers

Millennium Computer Corporation, 1275 Kleppe Ln. #5, Sparks NV. 89431 TEL (702) 331 6000 FAX (702) 331 6088

Board Meeting Minutes (March 13, 1991)
By Keith R. Frederick

Minutes of the Board Meeting of USUS, Inc., held in room
1 of the MUSUS forum teleconferencing facility on the
CompuServe Information Service, March 13, 1991.

Present at the meeting were:

User ID Name

72747,3126 Bob Clark (BobC)
72230,1601 Gary Gibb (Gary)
71016,1203 Stephen Pickett (sfbp)
74076,1715 Felix Bearden (felix)
72767,622 Tom Cattrall (TomC)
73447,2754 Henry Baumgarien (Henry)
73760,3521 Keith Frederick (KeithF)
73007,173 William Smith (Wm)
76702,513 Harry Baya (Harry)

The meeting started at 6:37 PM ‘PST. Topics discussed
were:

1. Election Results

Gary Gibb, Keith Frederick, and Felix Bearden won the
three open Board of Director positions.

The change to the bylaws was passed overwhelmingly and
the decision to keep Computer Language Magazine was
split roughly even both for and against.

IL. Computer Language Magazine (CLM)

Tom Cattrall said with the CLM vote so close he wasi’t
sure exactly what USUS should do.

Henry Baumgarien asked whether there have been any re-
sponses to the advertisement in CLM and Felix Bearden re-
sponded that there had been about 50 responses but he
hadn’t yet sent letters since he was waiting for stationary.
Felix then noted that he hadn’t sent out renewals yet be-
cause of the uncertainty with CLM.

Henry said that something must be done promptly on the 50
requests for information and that a decision on CL.M should
be made now.

Stephen Pickett indicated that he felt that the ad responses
justify our giving CLM the benefit. Felix agreed.

Felix then motioned to "continue with CLLM for the fiscal
year of 1991." Henry and Stephen Pickett seconded and
Henry then called for a discussion. There was none and a
vote was called.

William Smith, Felix Bearden, Stephen Pickett, Harry
Baya, Tom Cattrall, Gary Gibb, and Keith Frederick ail vot-
ed in favor with none opposing. The motion passed.

Page 28

[I1. Renewals, Inquiries, and New Officers

Henry started by saying that three issues still stand: 1). new
officers, 2). getting out renewal letters ASAP, and 3). an-
swering inquiries to the ad ASAP.

Felix Bearden said that as adminisirator he would get the
renewals out and respond to the requests; effectively taking
care of 2 and 3.

Tom Cattrall asked which officer are needed, noting that
Administrator, Secretary, someone to chair the meetings,
and Treasurer secem to be the essentials. Tom then asked
Keith Frederick if he would be willing to continue as secre-
tary. Keith said he would.

Henry then questioned whether, according to the bylaws, a
BOD member could serve as an officer. William Smith and
Felix Bearden both answered yes.

Henry then considered the Treasurer position and asked
about Bob Clark’s preferences. Tom Cattrall noted that Bob
sounded as if planned to continue as Treasuret. [NOTE :
Bob Clark had to leave early so he wasn’t present to answer
] Tom then said that until it is known for sure, that it is best
to assume he will continue.

Henry responded saying if there weren’t any objections that
would be his preference as well. There wete no objections
and Henry then continued to the position of Administrator,

Felix Bearden said he would continue as long as needed
and noted that the job requires more time than he can give
it. Felix commented that he had offered a motion to grant
the Institution who assumed the duties an institutional
membership so a administrator could be recruited but the
motion was never acted. Felix noted that he believed the
idea was stiil a good one.

Tom Cattrall stated to Felix that perhaps he could think of
some of the duties that could be split between the adminis-
trator and another volunteer.

Henry asked for other comments, there were none and Hen-
ry continued to the position of Chair of the BoD meeting.
Henry started by saying that a President can be elected to
preside or one of the BOD members can be chosen to serve
as chair and then asked for comments.

Felix stated that a Chairman of the Board be elected since
that position is described in the bylaws and is subject to
BoD attendance criteria. Felix then moved to elect a Chair-
man of the Board. Henry asked for comments, there were
none and a vote was called.

William Smith, Stephen Pickett, Harry Baya, Stephen Pick-
ett, Gary Gibb, and Keith Yrederick all voted in favor, with

USUS NewsLetter Mar - Apr 1991

none opposing. The motion carried.

Henry asked for nominations. William Smith and Felix
Bearden both nominated Tom Cattrall. Tom Cattrall then
nominated Stephen Pickett. Stephen Pickett then seconded
the nomination of Tom Cattrall.

Henry then asked whether Tom or Stephen are willing to
run.

Tom indicated that he didn’t feel qualified since he does not
know the rules of order and also, he added, thought that
Stephen Pickett would do a good job.

Stephen said he would accept only if someone would be
President and absorb some of the duties.

Gary then, after some contention whether a second was
needed for nominations, seconded Stephen Pickett.

Henry asked for any comments, there were none, and then
Henry asked to vote for either Stephen Pickett or Tom Cat-
trall as Chairman of the Board.

Felix Bearden, Keith Frederick, Stephen Pickett, and

William Smith voted for Tom Cattrall.
Tom Cattrall and Gary Gibb voted for Stephen Pickett.

Tom Cattrall was elected as the new Chairman of the
Board. Henry asked if Tom would like to elect a President.
Tom responded that the discussion of that be tabled until
next meeting. Felix seconded. Henry called for a vote.

All voted in favor, with none opposing and that business
was tabled.

After brief discussion, the SysOp positions were reconsid-
ered and Harry Baya and Tom Cattrall were selected as pri-
mary and secondary SysOps for the coming year.

NEXT MEETING

The Board adjourned at 9:09 PM PST and agreed to meet
again at 6:30 PM PST / 7:30 MST / 8:30 CST / 9:30 EST
April 10, 1991 in Room 1 of the MUSUS conference facil-

ity.
Minutes submitted by: Keith R. Frederick

Board Meeting Minutes (April 10, 1991)
By Keith R. Frederick

Minutes of the Board Meeting of USUS, Inc., held in room
1 of the MUSUS forum teleconferencing facility on the
CompuServe Information Service, April 10, 1991.

Present at the meeting were:-

User ID Name

72747,3126 Bob Clark (BobC)
72230,1601 Gary Gibb (Gary)
71016,1203 Stephen Pickett (sfbp)
72767,622 Tom Cattrall (TomC)
73447,2754 Henry Baumgarten (Henry)
73760,3521 Keith Frederick (KeithF)
76702,513 Harry Baya (Harry)

The meeting started at 6:38 PM PST. Topics discussed
were:

I. New Officers Needed

Tom Cattrall started off by asking if an attempt should be
made to elect new officers. Keith Frederick replied, asking
if the members knew that new officers are needed. Tom an-
swered that he doesn’t believe so and questioned if the
Board shouid solicit in the next Newsletter.

USUS NewslLetter Mar - Apr 1991

Stephen Pickett asked what officers are needed. Keith an-
swered, a new secretary wouldn’t hurt and Tom Cattrall
said a new President is needed and that Felix Bearden
would be happy to have help and a successor for adminis-
tration.

Tom Cattrall, due to the lack of any ideas, suggested
putting a notice in the Newsletter and then seeing what hap-
pens. Keith Frederick then mentioned that using CodePort
(formerly MUSUS) to get the world out would help as well.

Stephen Pickett suggested there be a general and permanent
ad in any publication of USUS stating that assistance is
needed. Also, he said, that CodePort would probably be
more productive due to the lag time in the Newsletter.
Stephen then asked what kind of response Felix has re-
ceived, noting that about 200 people requested information
on USUS.

Tom Cattrall replied that with a standing request, people
would quickly learn to ignore it. Tom then asked for addi-
tional ideas, there were none.

II. Administration Status

Bob Clark initiated by saying that USUS has about $5000
in the bank but that in the last month there was no income

Page 29

and not much mail processed, at {east, Bob said, he didn’t
receive any reports. Bob continued to say, that unless the
current membership is supported USUS won’t last too long.

Stephen Pickett and Henry Baumgarten both indicated that
were concerned that they just received renewal notices
while their membership tan out several months ago. Tom
Cattrall responded that the reason for this delay was not
lack of administration but rather the issue with Computer
Language Magazine and the Journal of Pascal, Ada, and
Modula-2. However, Tom did say, that since Felix Bearden
has so little free time the administration is a problem.

Bob Clark expressed his concern about the PO Box in La
Jolla indicating that Felix called him the day the rent was
due to say he received the noticed but hadn’t processed the
mail for about two weeks. Bob said he told Felix to pay the
fee directly and he would be later reimbursed. Bob then
commented that the mail is not being processed as it should
be under the current system and that while he (Bob)} knows
Felix is busy, the problem must be solved.

Tom Cattrall said that Felix had given him some material to
put in the Newsletter regarding soliciting some help. Tom
then asked for further suggestions.

Gary Gibb asked what type of mail is received. Bob Clark
said that while he doesn’t receive the mail, the mail wouild
consist of any mail sent to USUS. Tom noted that this
means renewals, bills, inquiries, junk mail, etc.

Gary then asked if, other than checks, is there anything of
importance. Bob Clark answered "yes" since information on
membership, the library, and anything else a member may
need to know is handled via mail.

Stephen Pickett then indicated that he had several requests

for iibrary materials but that none of them had been in the
proper format and asked what he shouid do. Bob Clark an-
swered that the requests should be submitted on the USUS
and then the filled form be sent to me [Bob Clarkj and you
[Stephen Pickett] will be reimbursed according to the pay-
ment schedule.

Tom Cattrall then said that older issues of the newsletter
had order forms and instructions and noted that it might be
time to publish the rates and rules again.

Tom asked for more ideas regarding the administrators
function. Gary replied that maybe a paid secretary may be
needed to get the job done, but also noted that the funds do
not permit this.

After several minutes of no solid ideas regarding the admin
position, Tom Cattrall ask for a vote to adjourn the discus-
sion to section 16 over the next couple of weeks. Stephen
Pickett moved it. Stephen Pickett, Gary Gibb, Keith Freder-
ick, and Harry Baya (for the record) all voted in favor with
none opposing, the vote passed.

Stephen Pickett got in a last word, saying that if there is
anything practical that can be done to relieve Felix, it
should be done and that perhaps Casey Blank might be
asked to start sending mail to one of us for the time being.

NEXT MEETING

The Board adjourned at 8:12 PM PST and agreed to meet
again at 6:30 PM PST / 7:30 MST / 8:30 CST / 9:30 EST
May 8, 1991 in Room 1 of the MUSUS conference facility.

Minutes submitted by: Keith R. Frederick

Announcements

New Pascal User Group by Doug Chamberlin

I have started a Pascal SIG within the Boston Computer Society. We meet on the third Mondays of each month, except for
August. The May 20th meeting will be in Peabody, 15 miles North of Boston. The June and July meetings will be at the

BCS IBM PC User Group office/classroom in Newton, MA.

Most of our members use Turbo Pascal, but we are interested in any Pascal versions - P-system, VAX, Unix, Macintosh,

etc.

Millennium 740L.C

Millennium Computer Corporation announced the new 740LC line of low cost multi-user computer systems. The 740LC is
based on a single board 68030 based CPU card running at 25 or 50mhz. Millennium has priced the line to compete with
the existing SCO Xenix/Unix PC based platforms, but deliver an "{ndustrial Strength” Unix to that market.

Optimized for the multi-user Unix environment, the line also runs Unix-hosted p-System, Native p-System and the NSI-
DANIEL (Modula-2 based) operating system developed by Nervous Systems, Inc. for high speed data acquisition applica-

tions.

Also available in the new Unistride (Unix) version is Mac/PC NFS which can be used as a fileserver application to opti-
mize storage in a networking environment using the 740 for the server.

Page 30

USUS Newsletter Mar - Apr 1891

Treasurer’s Report
by Robert E. Clark, Treasurer

February 1991

March / April 1991

Bank Balance $5,055.89 1-31-51
Income -~ February 1991
Dues:
(new/renew)
Student 0.00 0/0
General 180,00 1/3
Professional 0.00 0/0
Institutional 0.00 0/0
Other Income:
CIs 49.34 (2 months)
Library fees 21.45
JPAM 96.00
Total Income: $ 346.79 Expenses -
Faebruary 1991
Bank charges 1.76
Newsletter 0.00
Mail from La Jolla 0.00
Refunds 0,00
Reimbursements 12.07
Total Expenses $ 13.83
Bank BRalance $5,388.85 2-28-91

Bank Balance $5,388.85 2-28.91

Income -~ March/April 1991

Dues: (new/renew)
Student 0.00 0/0
General 0.00 0/0
Professional 0,00 0/0
Institutional 0.00 0/0

Other Income:

CIs 0.00
Library fees 0,00
Total Income: $ 0.00

Expenses - March/April 1991

Bank charges 3.48
Newsletter 386.65
Mail from La Jolla 0.00
Refunds 0.00
Reimbursements 85.40

Total Expenses $ 475.53

Bank Balance $4,913.32 4-30-91

Submission Guidelines

- Submit articies to me at the address shown on the back cover.
Electronic mail is probably best, disks next best, and paper
copy is last. If your article has figures or diagrams, | can use
encapsulated Postscript files in any of the disk formats listed
below. If you can’t produce encapsulated Postscript, then paper
copy is probably the only practical methed for submitting
graphics.

You can send E-Mail to my Compuserve ID: 72767,622, or in-
directly from internet: 72767.622@compuserve.com. For disks,
I can read Sage/Stride/Pinnacle format disks. Also, any MS-
DOS 5.25 or 3.5 disks, and 3.5" Amiga disks. If anyone wants
to send Mac format disks [could probably get someone to
transiate them into something I can use. Whatever you send,
please mark on the disk what format it is. That will save me a
lot of guesswork.

Text should be plain ascii rather than a word processor file. It

USUS Newsl etter Mar - Apr 1991

can_have carriage returns at the end of all lines or only at the
ends of paragraphs. What you send doesn’t have to look pretty.
[will take care of that. My spelling checker will take care of
spelling errors too. If you want special formatting use the fol-
lowing conventions:

1. _Underline_, put an underline character at each end of the
section to underline.

2. *Bold*, put a star at each end of the section to boid.

3. *alics®, put a caret at each end of the section to be set in
italics.

4. 77Special requests??, such as ??box next paragraph?? should
be surrounded with "?? 77",

Page 31

NewsLetter Editor : Tom Cattrall USUS Membership Information
Amity Software inc.

7600 Seawood Road SE

; Student Membership $ 30/ year
chgg,sg_rfgfg 97101 Regular Membership $ 45 /year
Compuserve : 72767,622 Professionai Membership $ 100 / year
Internet : 72767.622@compuserve.com

tomc@techbook.com $15 special handling outside USA, Canada, and
Mexico.

NewsLetter Publisher : William Smith
Write to the La Jolla address to obtain a member-

ship form.
USUS Board of Directors P
Felix Bearden 74076,1715
Tom Cattrall 72767,622
Keith Frederick 73760,3521
Gary Gibb 72230,1601
Stephen Pickett 71016,1203
USUS Officers
President: . .
Treasurer- Bob Clark 72747,3126 NewsLetter Publication Dates
Secretary: Keith Frederick 73760,3521 5 -
ue Date For
USUS Staff Issue Newsletter Material
Administrator: Keith Frederick 73760,3521 May / Jun 1991 May 1, 1991
t Legal Advisor; David R. Babb 72257,1162 Jul / Aug 1991 July 1, 1994 et —— i
b, _ Librarian: Stephen Pickett 71016,1203 ‘

Sep / Oct 1991 September 1, 1991
. NewsbDes-1991 - NOVEmBer-tei 00 wmm ~=m== ~===

MUSUS Sysop: Harry Baya 76702,513

[O SR e——

1
. N
5
NP
'\:\ (1)
- T "ADDR
e

— q |

