All the New

BB X

William D. Smith, Editor

Sept/Oct 1989
ewslLetter
Copyright 1989 USUS, Inc.
h Fi We Prin Volume 3
Number 7

From the Editor
by William D. Smith

My apologies! This month the NewsLetter is late
because I didn’t get it done until October 6. 1
have just started a full time project. I haven’t
been working full time in the last 5 years and
therefor had time to do things of interest to me
like‘this NewsLetter.

I will be unable to do the NewsLetter after the
first of the year (barely getting it out now).
Anyone interésted in taking up the job may
contact me at (619) 941-4452 for more
information. I will put out the next NewsLetter
(“Nov./Dec. 89”) and hopefully help someone
put out the “Jan./Feb. 90” one.

Hays Busch will also be resigning at the end of
the year. We need someone (or more then one
person) to take over the work he is doing. Please
contact Hays at (303) 526-0057 for more details
on what he does.

Although we were planing to have the Board of
Directors elections this NewsLetter, the Board
postponed. them since we only had two candi-
dates. There will be a special mailing sometime
in November. If you at all interested in running
for the Board, contact Alex Kleider at (415) 327-
6197.

For those who use MUSUS, it will be changing
(maybe by the time you read this) to the “The
Portable Programming Forum”. If “GO
MUSUS” quits working, use “GO PASCAL”.

News from Millennium (August 8, 1989)
by Bill Bonham

Millennium Computer Corporatlon has acquired
the rights to build and sell the computer products
previously produced by MicroSage Computer
Systems. Millennium has recently moved to a
new location. Our new address is: Millennium
Computer Corporation, 954 Spice Island Drive,
Sparks, Nevada 89431 (702) 331-6000, Fax
(702) 331- 6088

Millennium has also begun shipping its own new
product called the SuperStride 740. It is a
25MHz 68030 based system available in ether a
vertical (tower) or horizonal (desktop)
configuration. The base system is a single board
computer with 16 serial ports, up to 16
megabytes of RAM, a SCSI Bus interface, and a
VMEDbus interface. RAM is expandable to 32
megabytes with a "Sky RAM Board" that
piggybacks on the main CPU Board. Up to 32
additional serial ports may be added on two "Sky
Port Boards" which also piggyback on the CPU
Board. A "Sky Ethernet Board" with thin and
thick cable Ethernet interfaces and 8 serial ports
may be substituted in place of a Sky Port Board.
Ethernet, however, is not supported under the
Power System.

The vertical chassis is smaller than the Stride 460
and for better cooling and reliability, is not
packed as full. Both the horizonal and vertical
chassis will hold one Winchester drive (up to 700
megabytes unformatted), one 150 megabyte
streaming tape drive, and one 5.25 or 3.5 inch
floppy drive. The SCSI Bus and Floppy
interface signals along with system power are
made available for external expansion through
connectors. Millennium will support External
Enclosures to house additional drives.

Complete system hardware testing facilities are
built into the resident PROMs. The drive
formatting and qualification routines as well as
Winchester partition management are in the
PROMs. Also available in PROM is a version of
the partition backup and restore facilities to
streaming tape.

Millennium supports the Power System and
UniStride (an implementation of UNIX) on the
740 product. The Power System runs under an
expanded 31 user Multi-User BIOS.
Improvements in configuration management,
system installation, and access to system level
functions have been made.

We Get Letters...

From W. Sheringo (#805)
re Vol. 3, No. 6

1. A package as proposed would be acceptable.

2. Idon't know whether “not renewal's” will
Tenew.

3. USUS w/ a journal??? — USUS w/o a
journal??? USUS??? When one expends
$$$, one expects to receive something of
value in return. What are we getting for the
buck? — more reading matter to see if there's
something of value in return? — or, problems
to divert our attention from what we are doing
before we started to read it? Are we going to
for business interests? — or are we going for
hacker/pastime interests? — Is USUS
another junk club trying to please a lot of
people? — does USUS wish to attract
intelligence/people-who-can-add-value/(fill in
the blank)?77 If we must, forget
Pascal/Ada/Modula2. Problems must be
formulated before they can be solved.

From Rick Osborn (#4070)
Mr. Spitzer,

In spite of the fact that my time, and soon my
house, are swamped by journals, I am voting for
the USUS membership bound with JPAM. The
package as presented is acceptable to me. Idon't
know any ex-members to query about whether
the package would draw them back.

Just another quick note regarding your Modula 2
String code in Vol 3, Issue 6 of USUS
NewsLetter. I am some what puzzled by your 21
Feb 89 patch to ‘copy’. I am assuming that this
change was to handle strings of length zero.
However, I cannot see any reason to handle zero
as a special case. The ‘IF HIGH’ test should
always fail. The ‘FOR’ loop should execute zero
times, and the ‘IF len’ test should be equivalent
to the special-case code included for len=zero. I
wouldn't make such a big deal out of it except for
the fact that the code looks right. If you had
problems with the strings of length zero, rigorous
code verification by inspection holds no hope for
improving code quality. Either that, or the
semantics provided by your compiler are very
suspect.

Bob’s reply
Page 2

To Rick Osborn,

Actually, I thought I had coded it OK, but
somehow one of the graduate students showed
me a case where it failed and made the changes
—there was a subtle case, maybe when the array
had 0 length (HIGH = 0), but the procedure
would check s[0] for a null and blow up with a
range error. I forget the details. If I have time and
can remember (both are becoming increasing
rare) I will try to check this. I am pleased that the
module is helpful (I hope), otherwise.

From William G. (Gordy) Kastner
TURQUOISE PRODUCTS
9648 E. Baker Street
Tucson, Arizona 85748
(602) 885-9671

USUS with a Journal JPAM would be great. I
have subscribe to JPAM for several years. It
would be a great magazine for USUS. I also
subscribe to Computer Language and Dr. Dobbs
and neither cover Pascal or Modula very well any
more. I don't know any language magazine that
does. They don't even mention that Modula2 is
really object oriented. All language magazines
are solid into C which is not near as good a
language for programming large programs as
Modula2.

$45 package for USUS membership and JPAM
would be great.

I will renew in any event.

I am a Modula2 programmer and would like to
see USUS into a lot more Modula2. I sell a large
estimating program to printshops with ads in
printing magazines. It is written in Logitech
Modula2. I also have a shareware program called
TURK TOOLS. It is just a simple little program
that has simple procedures like how to write to a
lineprinter, how to pick up the date from
hardware, and how to program reverses and a lot
more, most of which are not mentioned in most
books on Modula2 including the Logitech
manual. Sent a copy to USUS. Thank you.

MacWorld Trip
by Harry Baya and William Smith

My friend William Smith and I went to this big
Macintosh thing in Boston a few weeks ago and
we had a good time even though it rained a lot
and not everything was perfect all the time.

William drove me up in his truck. He came about
50 miles out of his way to get me but he said he
did not mind because when you are driving from
California to Boston 50 miles does not seem like
that much. We spent our one night in Boston at a
fraternity house at MIT and that was sort of
strange too but probably should be in a different
newsletter.

Because we belong to this club called USUS this
big company, Apple, invited us to breakfast one
morning with lots of people from other clubs and
they gave us a real nice meal with seconds and all
only I am on a diet and William is thin so we did
not eat all that much. I won a prize at this
breakfast, as did about 100 other people. Mine
was a Macintosh "Idea Processor" called
"Inspiration" which was interesting because I had
met the president of the company that made it
earlier and she seemed pretty nice -only sort of
busy. I have not used it yet but when I get some
ideas that need processing I will try it.

William did not win anything at breakfast, but I
got a business card that entitled me to a free copy
of something that came in a nice carry bag so 1
gave that to William and he seemed to like it, only
what was inside the bag turned out not be as
interesting as we had hoped. I think it was a
video tape saying how great something was or
something like that.

I wore a homemade button that said USUS on it
and Apple gave us tags that also said USUS and
almost no-one had ever heard of us. Even when
I told them who we were they did not get
interested, usually. I wore one of my buttons on
my Australian hat and maybe they were not ready
for such wild eccentricity — though not everyone
looked that normal there anyway.

We went to the exhibits, which were in two
buildings, miles apart and each bigger than a
football field and I never saw so many little
booths with such enthusiastic people. My
favorite one was a thing called "Cause" which
was sort of a cross between a database system
and a program making environment. It had a
graphic interface that allowed the user to build the
input and output screens by “dragging” things
around the screen and the man who showed it to
me made it look very easy. Only he was the
president of the company and I think he created
this thing so maybe it was a lot easier for him

than it would be for me and, besides, I'm not
sure about this “drag” stuff as people who are
into that sort of thing are sometimes a little too
weird.

We met one USUS professional member, Eric
Hafler, on the floor of the exhibit and we had a
good time talking about club things. I also met
Bob Platt who used to be active in USUS and
offered to help us if we needed it. Bob told me
his club, Apple Pi, had kicked him out of the club
even though he was the president which we both
agreed was very strange. He is in a new club
now and I hope he does well because he is one of
the smartest people I know and also he is a nice
guy and not strange at all, at least to me.

I also bought some things on Macintosh disks,
and I got some free disks too. When I got back
to work I put the disks into our Macintosh and it
ate two of them, including my favorite which was
a demo disk of “Mathematica” in color which
made this sort of three dimensional color graph
that looked a little like those plastic boxes that
have the ocean or something in them. “Bad, Bad
Macintosh” I said, but it was sorry and it was not
it's fault as one of it's cables was loose. I
forgave it because sometimes my cables are loose
too.

We drove back from Boston late at night and
William drove off in his truck.

We had a good time and I hope we can go on a
trip like this again.

As you can see from above, Harry has a slightly
off-beat sense of humor. On a more serious
note, one of the topics at the Apple user group
breakfast (BTW, Harry wasn’t watching and I
went back twice. The food was good.) was how
to get users to join and participate in the group.
We are in a slightly different position from all the
rest of the groups at the meeting. One, because
we are not strictly a Macintosh group and two
because we are not a local group but nation wide
(international). Some of the thoughts were the
need, not for more techies, but for more business
types to run the organization. Volunteer work for
fund raisers, charity events, etc. is a good way to
get free publicity. To get new members, you
have to let people know you are out there.

I found several things of interest. For the Mac, a
database program called “4th Dimension” which

Page 3

I've been using the last couple weeks. A parallel
printer card for a Mac II so that I can use my old
printer for dumping reports. A backup and
archiving program called “Retrospect”. This
wasn’t my first MacWorld so I wasn’t as
overwhelmed as Harry ©)

Administrator Says
by Hays Busch

Seems like I'm involved with the Software
Library a lot these days. This time, I have a very
sophisticated program to tell you about. It is
donated to USUS by David T. Craig (Mbr. #
4030), is called TIP, and is designed for the IBM
PC. As David says, “I realize the USUS IBM
PC SIG is not very active. Hopefully this
program will change this situation.”

What is TIP? The initials stand for The Image
Processor and the program allows the user to
work with both Terra-Mar and TARGA image
files to do image enhancement using various
image processing techniques. It runs on any
IBM PC, or workalike, which should have an
EGA or VGA monitor and must have a minimum
of 512K of memory. (NOTE: I tried it on my AT
workalike with a Hercules card and monochrome
monitor. I could not get the results in color, but
could see enough of the program to be very
impressed.) The program runs best if the
machine has a hard disk and a math co-processor.
Without the math chip some operations take
longer, but even then the program runs well at
12mhz clock speed. Altho Idid not try it, I think
it can be run from a 1.2mb floppy.

David wrote the program in Turbo Pascal 4.0. It
runs on my machine under MS-DOS 3.2. TIP
was his Senior Project at Texas A&M, and David
has donated it to USUS for non-commercial use
by USUS members and wants it included in the
USUS Software Library. We'll be happy to
oblige! But we are going to do it on a somewhat
exclusive and slightly different basis to start with.
Here is how this program will be made available
to USUS members for at least the remainder of
this calendar year.

The Run Only TIP Package consists of three 5

1/4 inch 360K disks and 18 hardcopy pages of
documentation. Disk One contains executable
code files for the program. Disk Two and Disk
Three disks contain a sample Terra-Mar Image

Page 4

file called ALIEN. (Disk Two and Three need to
be “concated” together to create a single image
file for the program. That's why a hard disk is a
good idea. This is easy to do.) With this
package, the program is fully functional. The
cost for this package is $10.00 which includes
everything mentioned above plus handling and
shipping. And this cost is in line with normal
SW Libe volume costs.

The Complete TIP Package consists of the above,
but adds one more 5 1/4 inch, 360K disk which
contains the source code files for TIP. And this
is the package I recommend you buy. The cost
of this package is $12.00 and if you are at all
interested in image processing, you definitely
want the source code! As David says, “the
program...contains several interesting image
processing algorithms...(and)...UCSD users
who wish to convert this program to work on
other systems should encounter minimal
difficulties”.

So, how do you order this? Well write me a note
and enclose a check made out to USUS,
Incorporated for the correct amount of the
package you want. Be sure to include your name
and mailing address when you write. Mail it all
to the LaJolla Post Office address and I'll take it
from there. You will be asked to sign the normal
USUS Software agreement and mail it back to me
as part of the deal. And that requirement is on an
“honor code” basis.

Why is this not going into the SW Libe as a
normal “Volume series” at this time? Two
reasons: One: It is for color (EGA VGA) IBM's
and “workalikes” only. Two: We don't have an
active IBM SIG to handle the details of getting it
into the SW Libe. Thus yours truely is handling
it and this is the fastest way to get it to you.

I don't know much about image processing, but I
was fascinated by this program. It is well worth
its cost even if you (like me) have never seen
anything like it before. (Even worth it on my
mono monitor, and it must be sensational on a
color monitor!) We did not offer a package
containing the source code and the image disks
because compiling the source is hardly worth the
extra $2.00 that you pay for the complete
package.

David has provided hardcopy for all the source
files of TIP. I can get this to you, but plan to
produce it only on an “if ordered” basis. This
means you would have to pay the cost of
Xeroxing it and the postage involved in mailing
it. I have no idea what this will run, but if you
want the listings, tell me so in your note and I'll
get a price back to you. (There are at least 79
one-sided sheets of 8 1/2 by 11 inch stock
involved here so it is a good size copying job. I
suspect the cost will be between $8.00 and
$15.00 for this.) Also since you can obviously
print out the source files on your machine and get
a similar listing, I didn't think there'd be much
call for this.

In a note from David Craig, he disagrees with
Hayes and recommends getting copies of the
listings, since they are printed on an Apple
LaserWriter and include line cover pages, line
numbers, complete cross-references, and a
complete list of procedurelfunction names

NOTE: International Members should add $2.00
to each of the above package prices to cover
Airmail handling. And all funds must be in US
Dollars on US Banks.

That's about all for this issue. I was impressed
by the variety of info in the July/August
NewsLetter. All you contributors, keep up the
good work! Also, let's hear from some of you
who have not contributed so far. Robert Geeslin,
our Publisher, apologizes for the late in mail date
of that issue. Seems the printer got messed up
and delayed the whole process.

The Prez Sez
by Alex Kleider

USUS as an organization is at a critical junction.
Its membership, which has I believe at one time
been over 5,000, has now dwindled to approxi-
mately 250 and all indications are that this trend
will continue. Reasons for this are varied.
Undoubtedly the fact that the UCSD p-System is
no longer THE microcomputer OS is the most
important factor. In an effort to circumvent this
problem the USUS leadership has been attempt-
ing to redefine the organization's purpose to

include all aspects of “portable programming”.
In concrete terms this has meant a greater
emphasis on Modula-2 since there is a lot of
interest in this language amongst our remaining
members and as things stand at the moment (and
this may change with the resurrection of
MODUS) there is no other organization that
caters to this interest. This is not to say that the
UCSD p-System is being abandoned. As long as
it exists, USUS will continue to include its users.

This brings us to the heart of the issue. Will
USUS continue to exist? There has been talk
amongst the leadership of closing down and
regrettable though it may be, to do so may prove
to be the only responsible course of action. The
main reason is simple. Not enough member
participation. There has been a nucleus of people
trying lately to hold the organization together but
the same members can not be expected to
continue indefinitely to give so heavily of their
time. You have all previously read in these pages
many pleas for members to get involved in all
sorts of ways such as 1. simply providing feed
back on what is published in the NewsLetter, 2.
submitting code for publication or submission to
the Library, 3. taking on the duties of an officer
or official. We soon must have an election to
replace two members of the Board of Directors so
to this list of functions we can add candidacy for
the BoD.

In summary then USUS needs two things to
survive. One is to maintain its current
membership (so renew if your time to do so is
up) and build it back up. The other is member
participation. Without a volunteer (or perhaps
several since the task is great) to take over Hays
Busch's work we can not hope to survive after he
steps down from his job of USUS administrator.
Similarly for the job of editing the NewsLetter,
William Smith will not continue this job forever.
These represent the biggest jobs and hence the
main “crises” but getting effective leadership on
the Board of Directors and into other USUS
posts is also a necessity. The members of USUS
must now stand and be counted not just for their
numbers but for what they are willing to
contribute to the organization if it is to continue.

Page 5

Treasurer’s Report (July 1989)
by Robert E. Clark, Treasurer

Treasurer’s Report (August 1989)
by Robert E. Clark, Treasurer

Bank Balance $5205.56 06-30-89 Bank Balance $5,883.78 07-31-89
Income - July 1989 Income - August 1989
Dues: (new/renew) Dues: (new/renew)
Student 0.00 0/0 Student 0.00 0/0
General 420.00 2/10 General 167.50 0/4
Professional 100.00 0/1 Professional 100.00 01
Institutional 0.00 0/0 Institutional 0.00 0/0
Other Income: Other Income:
Library fees 12.00 Library fees 2.00
PowerTools 164.90 CIS 30.02
CIS 30.01 e
_— Total Income: $299.52
Total Income; $726.91 Expenses - A 1989
Expenses - July 1 Administrator:
Administrator: CIS 140.81
CIS 0.00 Telephone 14.20
Telephone 18.81 Photocopies 6.60
Photocopies 2.10 Postage 67.89
Postage 38.49 Other:
Printing 53.79 Mail from La Jolla 8.80
Other: PowerTools Royalities 204.00
Mail from La Jolla 4.25 Bank charge 1.00
Refund 20.00 —_—
Misc. 0.25 Total Expenses $443.30
Bank charge 1.00 Bank Balance $5740.00 08-31-89
Total Expenses $138.69
Bank Balance $5,883.78 07-31-89 have always been aware of the need to write

Changes in USUS
by Eli Willner, on behalf of the USUS
Board of Directors

USUS is in the midst of undergoing some
changes. While this organization began as a
UCSD Pascal users' group, many of our
members —and many of the vendors that sell
UCSD Pascal and related products —have
broadened their scope. The USUS board of
directors feels that is time for USUS to follow
suit.

The trick is to broaden our scope without making
us a different organization, and while continuing
to serve the needs of our current, loyal members.
The uniting force that has driven our members
through the years has been the focus on software
portability. After all, portability has always been
the hallmark of the p-System. Our members

Page 6

software that is independent of hardware and
operating system platform.

A few years ago, common wisdom held that
portability was no longer a desirable trait in
software. IBM had entered the PC market and
many felt that it would become the entire
computer universe. This has turned out not to be
the case, and there is now a renewed and
widespread interest in portability.

Portability is now the primary focus of USUS.
We want to emphasize that UCSD Pascal will
continue to be an important aspect of our focus
on portability. But it will not be the only aspect.
We have seen a growing interest in Modula-2 in
recent months — both the p-System version of
Modula-2 and other versions, as well.

Many are relying on C to provide them with the
ability to freely move their applications from one
environment to another. Whether or not C is the

best medium to achieve portability —and how
one does achieve portability using C — will be
another area of interest.

MUSUS has a new name: “The Portable
Programming Forum”. A reorganization of
message and software library sections to reflect
USUS' new focus is in progress under the
stewardship of primary SysOp Harry Baya.
There has already been a tremendous influx of
technical conversation on issues of portability.
Much of this new conversation has been centered
around Modula-2. New members are joining
MUSUS. When our reorganization is complete,
CompuServe will be publicizing the “new
MUSUS” and we expect our activity to grow
even more. If you have not yet tried MUSUS,
or haven't been online for a while, we suggest
you try MUSUS again. The CompuServe
software underlying our Forum has been made
more powerful and easier to use and there are
now programs that can dramatically drop the cost
of CompuServe usage. You can find out more
about these programs once you are online.

Because so many of us have at least some interest
in Modula-2, talks are underway with MODUS,
the Modula-2 users' group, exploring how our
organizations might pool resources and work
together.

Because membership in USUS is not necessary
in order to access MUSUS, folks who haven't
previously heard of us are stopping by, and often
staying. When they realize the high level of
technical expertise our members enjoy, many of
these passers-by become USUS members.
Thus, our ranks are enjoying the contributions of
“new blood”. We expect this to increase once
MUSUS reorganization is complete. We hope
that these new members will volunteer to serve
USUS in various capacities. Especially, we hope
that some of these new members will consent to
stand for election to our board of directors.

We have postponed elections to the board
pending expressions of interest from members,
old and new to run. If you would like to run for
election to the board of directors, please notify
Alex Kleider at (415) 327-7916.

We anticipate and welcome your active
participation in the new USUS!

WDS Terminal I/O Unit
By William D. Smith

This is the unit which I use to do all my screen
I/O. It is written in a portable manner for a
specific terminal (in this case, a Wyse 60 or 50
terminal). To modify it for another terminal, you
need to change the Translate array, which
translates the control characters of the keyboard
into the defined constants. You also need to
change the Sc_Cmd array which writes the
different commands to the terminal (such as the
clear screen command). You also have to decide
how to handle the functions which are not
provided by your terminal (for example the info
line which need not be used, see next paragraph).

The screen consists of four areas, the terminal
status area, the information area, the data area and
the message area. The terminal status area is
maintained by and used by the terminal. The
only part the user can change is the time. This is
done by setting the terminal time with the S_Time
procedure (it writes the time to the terminal which
maintains it after that). The information area is at
the top right side and is not directly addressable.
The s_Info procedure writes the string passed to
this area along with some other information (the
date, memavail and varavail). Not all
terminals have this area. The message area is
defined as the last line on the screen. Use S Msg
and C_Msq to write and erase messages from this
area. Error and Err Msq also use this line to
display errors. The unit maintains a stack of
messages which are automatically pushed and
popped. The data area is the rest of the screen
and is dimensioned Width x Height. Itis
addressed as (0..width-1, 0..Height-1).

Output is either control or data. Control
procedures such as Beep (sound the bell) or c_sc
(clear the screen) do something to the terminal.
Data procedures (W_Char,W_Str,S Info,
S Msqg and Error) write information to the
terminal.

Input can be in the form of a command preceded
by an optional repeatcount (G_Char, G_Chars or
G_cmd) or a string followed by an accept or abort
character (G_Str). There is also provision for
checking to see if a character was typed
(InputWaiting) or if the user hit the abort key
(UserAbort)while an operation such as printing
was in progress.

Page 7

The G_str function has two parameters. On
input the string contains the default string
displayed and on output it contains the string as
entered/modified by the user. Len is the number
of characters the user is allowed to entered.
When the function starts, it displays the default
string and enough underline characters to fill out
to Len, leaves the cursor in the first position and
enters the start state. In the start state, if the user
types a character, the default string is cleared and
the character is left at the beginning of the string.
If the user types a control character, the string is
left as is for modification. The left and right
arrows move left and right one character, the tab
moves to the end of the string, the back tab
moves to the beginning of the string. The get
character key followed by a character moves to
the next occurrence of that character. The delete
character key deletes the current character and
moves the rest of the string to the left. The insert
character key inserts a space and leaves the cursor
in the same place. The insert mode key toggles
between insert and exchange mode. The delete
key deletes from the cursor to the end of the field.
The clear line key clears the whole field. The
retry key restarts the function with the default
string. The escape key terminates the function,
returning the default string. The accept keys

N

terminate the function returning the entered
string. Both the escape and accept keys are
returned as the function value. This is useful
when you have a page of information and want to
use the accept key to signify where to go next.
For example accept and go to the beginning of the
next line instead of the next field.

This unit supports 16 user definable function
keys. “AR” followed by the function key records
everything typed until the next “AR”. You may
nest the function keys. The only limit is the size
of the function key buffer (456 characters). You
may also save up to 10 sets of function keys. Of
the 16 function keys, only 15 are saved. The
date key is reset to the system date every time the
unit is initialized.

The figure shows a sample screen for a typical
application. Since the Wyse terminals use
embedded character attributes, the prompts and
message line have a space at both ends. This is
the attribute character. Py is incremented,
decremented or set (as in this case) to where you
want the prompt line to appear. Always restore it
to its previous value.

Note: The cursor status, keyboard lock status
and messgae lines are maintained on a stack.

OO~ WNEFHO

13| procedure ReadFile (InFile :
14 var StdIn : text;

15| begin

16 readln (StdIn, InFile)

17

18 while not (eof (StdIn)) do begin
19 { process the file }

20 end { while };

21 end { ReadFile };

22

23

Terminal Status line 00:00 |Addressable Info area

Prompt line: C(opy D (isplay Q(uit [1.00]
S = Srource file —-——> Sample.Text
T = Target file -——>

ppsitePage Q(uit

Str 23):

24|begin { main }
VSl Message line, <space> to continue B

{ WDS terminal input / output unit [1.16] --- 02 Aug 88 } { |xjmSd|nx|f8|e|.

{$0+}
{$C (¢) William D. Smith -- 1987 to 1988, All rights reserved.
{ File: T To U.Text Version 1.16 02 Aug 88
Author: William D. Smith Phone: (619) 941-4452
P.0. Box 1139 CISs: 73007,173
Vista, CA 92083
Notice: The information in this document is the exclusive
property of William D. Smith. All rights reserved.
Copyright (c) 1987 to 1989.
System: Power System version IV.2.2
Compiler: Power System Pascal Compiler
Keywords: WDS T _TIo U Terminal Input Output Unit

}
}

Description: WDS terminal input / output unit. This unit contains procedures

to handle all terminal I/O.
Change log: (most recent first)
Date Id Vers Comment

02 Aug 88 WDS
20 Mar 88 WDS
09 Mar 88 WDS
06 Feb 88 WDS
28 Jan 88 WDS
30 Dec 87 WDS
20 Oct 87 WDS
23 Sep 87 WDS
16 Sep 87 WDS
31 Aug 87 WDS
20 Aug 87 WDS
16 Jul 87 WDS
19 Jun 87 WDS
06 Jun 87 WDS
05 Jun 87 WDS
29 May 87 WDS
08 May 87 WDS

-16 In Initialize, called Set_ScSize to init V_, H Size.
.15 Put varavail in info line.

.13 Added NoMsg to C_Sc and C Eop. Moved M to Glbs U.
.12 Fixed so that Dbk can be entered in UserAbort.

.11 Fixed error in S Time when time is blank.

.10 Fixed S Time, changed values of clear commands.
.09 Added V_Size and H Size.

.08 Added several procedures

.07 Fixed for version IV.22.

.06 Added UserAbort.

.05 Put in version control.

.04 Used Cap from StrOps U. Updated X, Y in C Sc.

.02 Added G_Char Answer. Removed Ins/Delline, Bs and Fs.
.01 Finished conversion.
.00 From FDB2 T Io U [2.21].

FERRRRPRRERRPRRERRERRERRPR R R

{$I VERSION.TEXT} { Declares conditional compilation flags }

{SD CSR-} { Outputs cursor type }
{$D KBD-} { Outputs keyboard lock status }

unit T To U;
intexface {$ T Io U [1.16] 02 Aug 88 Wyse 60 }
uses Glbs U; { WDS globals unit }

const Vc T To U 8; { 09 Mar 88 }

([}

Vs T To U T To D*;

Nul = 0; { *@, null character }

Esc = 1; { abort, don't move }

Acc = 2; { accept, don't move }

Anf = 3; { accept, goto next field }

Apf = 4; { accept, goto previous field }
Anl = 5; { accept, goto next line }

Apl = 6 { accept, goto previous line }
Ach = 7; { accept, goto start<Home> }

.14 Added checks for sting overflow and Reverse to S _Prompt.

.03 Added Prompt to S Msg, Map to G ; Char, fixed some errors.

Page 9

Uk = 8; { up key }

Dk = 9; { down key }

Lk = 10; { left key }

Rk = 11; { right key }

{ Keys 12 to 31, and 127 are reserved for internal use. }

type Sc Size (SameSc, { Set Width or Height, don't adjust screen }

AdjustSc, { Adjust screen to match Width or Height }
SmallSc, { Small width or height }
¥SmallSc, { Alternate small width or height, if any }
LargeSc, { Large width or height }
XTLargeSc { Alternate large width or height, if any }
Yif

Sc_Color = (LightSc, { Black on white }
DarkSc { White on black }
)i

CrtTypes = (Unknown, Wyse50, Wyse60):

var Vv T Jo U : integer;

X : integer; r/o, current column on the screen }

Y : integer; r/o, current line on the screen }

Py : integer; r/w, current prompt line, inc/dec as needed }

{
{
{
Width : integer; { r/o, width of the screen, 1 based }
Height : integer; { r/o, height of the screen, 1 based }
V_Size : Sc Size; { r/o, vertical size, SmallSc..XLargeSc }

H Size : Sc Size; { r/o, horizontial size, SmallSc..XLargeSc }
Color : Sc _Color; { r/o, color of screen }

CrtType : CrtTypes; { r/o, supported CRT types }

{ The screen consists of three areas, the information area, the data area and
the message area. The information area is at the top right side and is not
directly addressable (use S Info). The message area is the last line on the
screen (use S Msg and C Msg). The data area is the rest of the screen and is
dimensioned Width x Height. It is addressed as (0..Width-1, 0..Height-1).
All characters returned by the input procedures are in the range 0..127 (7
bits).

}

{ Screen control procedures }

procedure Beep;
{ Ring the terminal bell. }

procedure SetXy (Xx, Yy : integer);

{ Set the cursocr position to Xx and Yy. If Xx and/or Yy are Null, they are
set to zero. Put the cursor at the position of Xx and Yy and update the
global values of X and Y. No checking is done.

}

procedure Set Sc Size (Vert, Horz : Sc_Size);
{ Set screen size. }

procedure Set Sc Color (Color : Sc Color);
{ Set_Sc Color. This procedures set the screen color. }

procedure C_Sc (NoMsg : boolean);

{ Clear the screen. The cursor is left at the home positien (0, 0). If NoMsg
is true, the message line is also cleared. This is used for writing to the
console as if were a file (ie. using Tx Io U).

}

Page 10

procedure C Eop (NoMsg : boolean);

{ Clear to end of page from the current cursor position. The cursor is not
moved. If NoMsg is true, the message line is also cleared. This is used
for writing to the console as if were a file (ie. using Tx Io U).

}

procedure C _Eol;
{ Clear to end of line from the current cursor position. The cursor is not
moved.

}

procedure C Eof (N : integer);

{ Clear to end of field. N defines the distance of the end of field from the
current cursor position. The cursor is left at the begining of the field
(ie. the cursor is not moved).

}

procedure S Rev (Len : integer);

{ Show reverse. Len spaces on the screen begining at the cursor position are
reversed. The cursor is moved forward one character position.

}

procedure S Dim (Len : integer);
{ Show dim. Len spaces on the screen begining at the cursor position are
dimmed. The cursor is moved forward one character position.

}

procedure S Unln (Len : integer);

{ Show underline. Len spaces on the screen begining at the cursor position
are underlined. The cursor is moved forward one character position.

}

procedure S RevDim (Len : integer):

{ Show reverse and dim. Len spaces on the screen begining at the cursor
position are reversed and dimed. The cursor is moved forward one character
position.

}

procedure C Atr (Len : integer);

{ Clear the attribute. ©Len spaces on the screen begining at the cursor
position are clear of their attribute (if any). The cursor is moved forward
one character position.

}

procedure Cursor (Want : OnOff);

{ Cursor display control. The cursor is turned on (Want = On), turned off
(Want = Off), toggled (Want = Toggle), or reset to the previous value (Want
= Pop). (Want = Show) readjusts the cursor.

}

procedure LockKeyboard (Want : OnOff):

{ Lock keyboard. The keyboard is locked (Want = On), unlocked (Want = Off),
toggled (Want = Toggle), or reset to the previous value (Want = Pop). (Want
= Show) readjusts the keyboard.

}

Screen output procedures. For each of the following procedures, the output is
written to the screen at the current cursor position, the cursor is left at
the end of the output and the global value of X is updated to reflect the new
cursor position. The output does not wrap to the next line.

procedure W _Str (S : Str_255);
{ Write the string S to the screen. }

procedure W_Char (C : char);
{ Write the character C to the screen. }

Page 11

{ Miscellaneous procedure. }

function Ck Accept (Ch : char) : booclean:

{ Check accept. This function returns true if the character is one of the
accept characters. It returns false otherwise.

}

procedure FlushKeyboard;

{ This procedure throws away all input typed ahead at the keyboard. It also
cancels function execution.

}

{ Keyboard input procedures. Chars must not contain lowercase letters. }

function G_Char (Chars : CharSet; Flush, Map : boolean) : char;

{ Get a character. This function reads the keyboard until a character in the
set of characters Chars is typed. If Flush is true, all characters already
typed and not read are thrown away (including characters in a currently
executing function key). If Map is true, lowercase are mapped to uppercase
characters.

}

function G _Chars (Chars : CharSet; Map : boolean) : char;

{ Get a character or control key. This function reads the keyboard until a
character in the set of characters Chars or a control key is typed. If Map
is true, lowercase are mapped to uppercase characters.

}

function G _Cmd (Chars : CharSet; wvar Count : integer) : char;

{ Get command. This function reads the keyboard until a character in the set
of characters Chars is typed. Count is returned as a valid positive number
typed immediately preceding a valid command character. If Infinity ('/') is
typed, Count is returned as Null. A Cancel ('.') cancels the repeat count.
Cancel and Infinity can not be in Chars. This procedure is case
insensitive.

}

function G_Str (var S : Str 255; Len : integer) : char;

{ Get string. The user is allowed to enter a string up to Len characters
long. S initially contains the default string. The function returns the
terminating control character.

}

function InputWaiting : boolean:

{ This function returns true if there is a character waiting to be read from
the keyboard. The character is not read.

}

function UserAbort : boolean;

{ This function returns true if the abort key was typed. It returns false if
nothing was typed or if any key besides the abort key was typed.

}

{ Prompt, information, message, and error procedures }

function S_Prompt (Prompt : Str_ 255; Version : Str 7;
Reverse : boolean) : integer;

{ Show prompt. The prompts are written on line Py (global). Prompt is the
string written and Version is a string written on the far right side of the
screen. If Reverse is true, the prompt is shown with a S Rev attribute.
The first and last column on the line are used for the attributes. The
function returns the X location of the end of the prompt string (where the
cursor would normally be plus one space). If Prompt won't fit on the
screen, it is truncated.

Page 12

procedure S Info (S : Str_255);

{ Write information line. This procedure displays the string S on the
information line on the screen. If the string is too long, it is truncated.
It also displays the date, memavail and varavail.

}

procedure S Time;
{ This procedure sets the terminals time. }

procedure S5 Msg (Prompt, Attention : boolean; S : Str 255);

{ Show message. If Attention, the message line is blinking and the terminal
bell is rung once. If Prompt, the cursor is left at the end of the message.

}

procedure C Msg (Msgs : integer);
{ Clear messages. Msgs tells how many messages to clear (0 clears all). }

function G_Char Answer (Chars : Char_Set; Flush : boolean;
Attention : boolean; M : Str_255) : char;
{ Get character after showing message. This function displays the message M,
reads the keyboard until a character in the set of characters Chars is
typed, and then clears the message.

}

procedure Error (S : Str 255);
{ Error. This procedure displays the string S on the message line on the
screen and waits for the user to type a space.

}

procedure Err Msg (Msg : integer; S : Str_253);

{ Error message. This procedure displays a message cooresponding to Msg on
the screen message line and waits for the user to type a space. S is
appended to the message. If the error is an I/O error, S should be the
filename the error occured on.

}

procedure Set ErrFiles (SysErr, UserErr, SoftKeys : Str 23);

{ Set error file names. This procedure sets the name of the error files., If
the strings are empty, the names are not changed. The default names are
'WDS.ERRS', 'WDS.ERRS', and 'WDS.KEYS'.

}

implementation
uses StrOps U, { WDS string conversion ops unit }
F Io U, { WDS file I/0 unit }
OpSys_U; { WDS to operating system interface unit }
const Bel =17; { bell }
Eol = 13; { return }
U Kbd Ch = 14; { unlock keyboard character }
L Kod Ch = 15; { lock keyboard character }
C Sc Ch = 26; { clear screen character (Wyse 60) }
Pki = 27 { prefix key from keyboard (Wyse 60) }
Pko = 27; { prefix key to screen (Wyse 60) }

{ Field editing keys 12, 13, 14, 15 not used }

Tk = 16; { Tab key, move to end of field }

Btk = 17; { BackTab key, move to start of field }
Ick = 18; { Insert char key }

Dck = 19; { Delete char key }

Imk = 20; { Insert mode key }

Dmk = 21; { Delete mode key }

Del = 22; { Clear to end of line key }

Clk = 23; { Clear line key }

Rtk = 24; { ReTry key }

Page 13

Geck = 25; { Get char key }
Gak = 26; { Get again key }
Cfk = 27; { Cancel fist key }
{ Miscellanous keys }
Ftk = 28; { Flush toggle key }
Recd = 29; { Record toggle key }
Dbk = 30; { Debug key }
Ofk = 31; { Read/write function keys }
Infinity = '/"; { Repeat count = Null in G _Cmd }
Cancel = '.'; { Cancels repeat count in G Cmd }
Fen D Len = 8; { Length of the Date in chars }
Fcn Date = 446; { Start location of the current date }
Fcn Max = 453; { Last entry in function buffer }
Fen F Key = 128; { First function key }
Fcn L Key = 143; { Last function key }
P Bias = 128; { Prefixed key bias }
Console =1;
SysTerm = 2;
H Small = 80; { Horizontial screen size, X = extra }
H XSmall = 80;
H Large = 132;
H XLarge = 132;
V _Small = 24; { Vertical screen size, X = extra }
V _XSmall = 25;
V_Large = 42;
V XLarge = 43;
Msg File = 'WDS.ERRS'; { Name of the error message file }
Key File = 'WDS.KEYS'; { Name of the soft function key file }
Max Csr = 15; { Maximum depth of the cursor stack }
Max Kbd = 15; { Maximum depth of the keyboard stack }
Min Msg = 0;
Max Msg = 3; { Maximum number of messages in the stack }
Msg StrSz = 81; { Maximum length of Msg string, Make Msg S agree }
TaMin = 0; { Type ahead stuff }
TaMax = 15;
type Fcn Rec = record { 2 words }
Fcn First : integer; { Beginning of function defn }
Fen Last : integer; { End of function defn }
end { Fcn Rec };
Sc_Cmmd = packed array [0..3] of char;
Sc_Cmds = (Sc_Beep, Sound the bell }
Sc C Sc, Clear the screen }
Sc_C Eop, Clear to the end of page }
Sc C Fol, Clear to the end of line }
Sc C Atr, Clear attribute }

Reverse attribute }

Dim attribute }

Undeline attribute }
Reverse and Dim attribute }
Normal attribute }

Sc_Rev_Atr,
Sc Dim Atr,
Sc _Unln Atr,
Sc_RevDim,

Sc_Norm Atr,

e e e e e e e s e e R e]

Sc_S Csr, Show the cursor }

Se € _Csry Clear (hide) the cursor }
Sc U Kbd, Unlock the keyboard }

Sc L Kbd, Lock the keyboard }

Page 14

var

Msg Rec
8 bits }
6 bits }
1 bit }
1 bit }
41 words}

Flush On
OnlyOne
Csr Stack
Csr_ Tos

Kbd Stack
Kbd Tos

ReverseSc

OneErrFile:

UseTa
TaIdx
TaLast
Ta

Fcn Ex
Fcn Rcd
Fcn Ch
Fen K Ex
Fecn K Red
Fcn I Ex
Fen Stop
In Ofk

date.
[445].

Fcn Keys
Fon I Red.
Fcn Buf

up to here }

Translate :
Sc_Cmd

Smsg File :
Umsg File :
Fcn File

Init Msg :
InfoWidth :

)i
= packed record

Sc_S Horz,
Sc L Horz,
Sc Xs Horz,

Small
Large
Extra

horzontial screen (80 columns) }
horzontial screen (132 columns) }
& small horzontial (not used) }

}

{
{
 Xs_ {
Sc X1 Horz, } { Extra & large horzontial (not used) }
Sc_S Vert, { Small vertical (24 rows) }
Sc_L Vert, { Large vertical (42 rows) }
Sc_Xs Vert, { Extra & small vertical (25 rows) }
Sc_X1 Vert, { Extra & large vertical (43 rows) }
Sc _Light, { Light screen, dark characters }
Sc Dark { Dark screen, light characters }

{ 42 words }

0ld X : Byte; { X loc before S Msg }
0l1d Y : 0..63; { ¥ loc before S Msqg }
Msg P boolean; { Message prompt }

Msg A boolean; { Message attention }
Msg S Str 81; { Make Msg StrSz agree }

end { Msg Rec };

boolean;
boolean;

{ Controls type ahead flushing and async reads }

{ Used by UserAbort and Next Char }

packed array [0..Max Csr] of boolean;

integer; {

: packed array [0..Max Kbd] of boolean;

{ Cursor stack }
Cursor top of stack }

{ keyboard stack }

integer; { Keyboard top of stack }

boolean; { Screen is reversed }

boolean; { Sys and User have the same filename }
boolean; { Use type ahead buffer }

integer; { Index into type ahead buffer }

integer; { Last valid character in type ahead buffer }
packed array [TaMin..TaMax] of char;

boolean; { Executing a function? }

boolean; { Recording a function? }

boolean; { Char came from a function, not input }
integer; { Function being executed }

integer; { Function being recorded }

integer; { Index in Fcn Buf of function being executed }
integer; { To catch infinite loops }

boolean; { Reading/writing function keys }

{ The following data is read from a file.
The first function key (FO, 2 words) and the last 8 bytes
read or written to the function key file.

Do not change w/o changing file.
(4 words) are not
They always contain the current

Only 256 words are read or written, from Fcn Keys [1] to Fen Buf

packed array [0..Fcn Max]

array [Fcn F Key..Fen L Key] of Fcn Rec; { 32 words }
integer; { Next loc to record into } { 1 word }
of char; { 228 words }

{ 261 words }

packed array [0..255] of 0..255;
packed array [Sc Cmds] of Sc Cmmd;

Str 23;
Str 23;
Str 23;

Str 5;
integer;

WDS system error message filename }
User error messdge filename }

String written to terminal to start a msg }

{

{

{ Soft function key filename }
{

{ Width of info line

(user part)

Page 15

Info : Str 31; { Displayed by S _Info }

InfoStr : Str 81; { What is displayed currently }

In G 5tr : boolean; { In G Str on Msg line }

Gtmp : .Str 255; { Work string for G Str }

L Chars : CharSet; { Legal display chars }

C Chars : CharSet; { Control characters }

S Chars : CharSet; { String input/editing characters }

Msg X : integer; { Message column number }

Msg Y : integer; { Message line number }

Clr Msg : boolean; { Used only by S Msg, C Msg and Ck Msg }

Msg Tos : integer; { Msg top of stack (next location to use))}
Msg Stack : array [Min Msg..Max Msg] of Msg Rec;

procedure Control (Sc : Sc_Cmds); forward;
procedure Set Info; forward;
procedure Ck Msg; forward;

segment procedure Initialize;
var Ss : Str 23;

procedure Init Translate; { Wyse 60 }

var I : integer;

begin
fillchar (Translate, sizeof (Translate), Nul):
for I := ord (' ') to ord ('~') do Translate [I] := I;
Translate [3] := Acc; { %C }
Translate [4] := Dbk; { *D }
Translate [7] := Gck; { G}
Translate [8] := Lk; { “H or <backspace> }
Translate [9] := Tk; { "I or <tab> }
Translate [10] := Dk; { ~J or <down> }
Translate [11] := Uk; { "K or <up> }
Translate [12] := Rk; { "L or <right> }
Translate [13] := Anl; { ™M or <return> }
Translate [18] := Rcd; { "R }
Translate [26] := Dbk: { ~2 }
Translate [29] := Lk; {] or <left> }
Translate [30] := Ach; { ~shift~ or <home> }
Translate [31] := Ofk:; { ~_ or ~ }
Translate [127] := Del;
Translate [128] := Fcn F Key + 8; { Ctrl F1 }
Translate [129] := Fcn F Key + 9;
Translate [130] := Fcn F Key + 10;
Translate [131] := Fcn F Key + 11;
Translate [(132] := Fcn F Key + 12;
Translate [133] := Fcn F Key + 13;
Translate [134] := Fcn F Key + 14;
Translate [135] := Fcn F Key + 15; { Ctrl F8 }
Translate [155] := Esc; { <esc><esc> or <F12> }
Translate [161] := Fcn F Key + 0; { F1 }
Translate [162] := Fcn F Key + 1;
Translate [163] := Fcn F Key + 2;
Translate [164] := Fcn F Key + 3;
Translate [165] := Fcn F Key + 4;
Translate [166] := Fcn F Key + 5;
Translate [167] := Fcn F Key + 6;
Translate [168] := Fcn F Key + 7; { F8 }

Page 16

{1}

{2}
{2}
{2}

{1}
{3}

{3}
{3}
{3}
{3}

{4}

{$B
{5E
{4}
{$B
{SE

{2}
{2}
{$B

{SE
{3}

{3}
{3}

{3}

Translate

Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate
Translate

[183]

[197]
[199]
[201]
[202]
[203)
[208]
[209]
[210]
[212]
[215]
[231]
[241]
[242]
[254]

| | | [{1 | 1

Anf;

Imk;
Gak;
Btk:;
Apl;
Anl;
Apf;
Ick;
Dmk;
Clk:
Dck;
Gak;
Cfk;:
Rtk;
Ftk;

end { Init Translate };

procedure Init Sc Cmd;

begin

fillchar (Sc_Cmd,

Sc_Cmd

Sc Cmd
Sc_Cmd
Sc_Cmd

Sc Cmd
Sc_Cmd

Sc_Cmd
Sc_Cmd
Sc_Cmd

Sc_Cmd

Sc_Cmd

CSR+}
CSR+}

Sc_Cmd

CSR+}
CSR+}

Sc Cmd

Sc Cmd
KBD+}

Sc Cmd

Sc_Cmd
KBD+}

Sc_Cmd

Sc_Cmd
Sc_Cmd

Sc_Cmd

[Sc_Beep,
[Sc C Sc,
[Sc_C_Eop,
[Sc C Eol,

[Sc C Atr,
[Sc_Rev Atr,

[Sc_Dim Atr,

[Sc_Unln Atr,

[Sc_RevDim,

[Sc_Norm Atr,

[Sc_S Csr,

[Sc_C Csr,

[Sc U Kbd,
[Sc_L Kbd,

[Sc_U Kbd,
[Sc_L Kbd,

[Sc_S Horz,

[Sc L Horz,

[Sc_S Vert,

[Sc_L Vert,

L R W e E e W B e e B B e B e T e e T

<esc>7

<esc>E
<esc>G
<esc>I
<esc>Jd
<esc>K
<esc>P
<esc>Q
<esc>R
<esc>T
<esc>W
<esc>g
<esc>g
<esc>r

or
or

}

or
or
or
or
or
or
or
or
}

or
or

<send> }

<INS Line> }

shift<Tab> }
<PAGE Prev> }
<PAGE Next> }

<Print> }

<INS Char>
<DEL Line>
<CLR Line>
<DEL Char>

<Ins> }
<Repl> }

~shift }

sizeof (Sc _Cmd),

0]

0]
0]
0]

0]
0]

0]

0]

0]
0]

1]
1]

0]

0]

0]

Il

I

Il

{ Wyse 60 }
0);

chr (Bel);

chr (Pko); Sc Cmd

chr (Pko); Sc Cmd

= chr (Pko); Sc Cmd

chr (Pko); Sc Cmd
Sc Cmd

chr (Pko); Sc Cmd
Sc Cmd

chr (Pko); Sc Cmd
Sc_Cmd

chr (Pko); Sc Cmd
Sc Cmd

chr (Pko); Sc Cmd
Sc_Cmd

chr (Pko); Sc Cmd
Sc Cmd
Sc Cmd

chr (Pko); Sc Cmd
Sc Cmd
Sc Cmd

chr (U Kbd Ch);

chr (L Kbd Ch);

L |

1+l’-

chr (Pko); Sc Cmd
Sc_Cmd

chr (Pko); Sc Cmd
Sc_Cmd

chr (Pko); Sc Cmd
Sc_Cmd

chr (Pko); Sc Cmd
Sc_Cmd

[R —

[Sc C Sc,
[Sc C Eop,
[Sc_C Eol,

[Sc_Rev Atr,
[Sc_Rev Atr,
[Sc_Dim Atr,
[Sc Dim Atr,
[Sc_Unln Atr,
[Sc_Unln Atr,
[Sc_RevDim,

[Sc_RevDim,

[Sc Norm Atr,
[Sc_Norm Atr,

[Sc S Csr,
[Sc S Csr,
[Sc_S Csr,

[Sc C Csr,
[Sc C Csr,
[Sc C Csr,

[Sc_S Horz,
[Sc_S Horz,

[Sc L Horz,
[Sc L Horz,
[Sc_S Vert,
[Sc_S Vert,

[Sc L Vert,
[Sc_L Vert,

1]
1]
1]

1]
2]
1]
2]
1]
2]
1]
2]
1]
2]

1]
2]
3]

1]
2]
3]

1]

1]
2]

1]

1]
2]

Il

| | B

[Tl

([

Il

'IGI:
Ttl;

L
’

Page 17

{3}
{3}

{4}

{4}

Sc_Cmd [Sc_Xs Vert, 0] := chr (Pko); Sc Cmd [Sc_Xs Vert, 1]
N Sc_Cmd [Sc Xs Vert, 2]
chr (Pko); Sc Cmd [Sc X1 Vert, 1] :=

Sc Cmd [Sc X1 Vert, 2]

Sc_Cmd [Sc X1 Vert, 0]

Sc_Cmd [Sc_Light, 0] := chr (Pko); Sc Cmd [Sc Light, 1]
Sc Cmd [Sc Light, 2] :=
Sc Cmd [Sc Light, 3] :=
Sc_Cmd [Sc_Dark, 0] := chr (Pko); Sc Cmd [Sc Dark, 1] :=
Sc Cmd [Sc Dark, 2] :=
Sc_Cmd [Sc Dark, 3] :=
end { Init Sc Cmd };
procedure Init Fens;
var Tad : TadRec; Ss : Str 9;
begin
Fecn Ch := false; Fcn Red := false;
Fen Ex := false; Fen I Red := 0;
Fcn T Ex := 0; Fcn K Red := Fen F Key;
Fen K Ex := Fen F Key;
In Ofk := false; Fcn Stop := 0;

fillchar (Fcn Keys, sizeof (Fcn Keys), 255 { Null });
fillchar (Fcn_Buf, sizeof (Fcn Buf), chr (Nul));

Get Sys Tad (Tad):;

Ss := '00-00-00";

D into S (Tad .D, Ss, 1);

moveleft (Ss [1], Fcn Buf [Fcn Date], length (Ss)):

with Fcn Keys [Fcn F _Key + 7] do begin
Fcn First := Fcn Date;
Fen Last := Fen Max;
end { with };
end { Init Fcns };

procedure Init Msgs; { Wyse 60 }
{ Height and Width must be initialized before calling this procedure
var S : Str 5;

begin
Msg X := 0; Msg Y := Height;
Clr_Msg := false; Msg Tos := Min Msg - 1;
{1234}

Init Msg := '"*G4 '; Init Msg [1] := chr (Pko);
{12345678 1 2345678 2 2345678 3 }
{ *10 00-00-00 00000 00000 }

Info := "*A30*F L

Info [1] := chr (Pko):; Info [5] := chr (Pko):

InfoWidth := Width - 59; { Wyse 60 }

InfoStr := '';

Set Info;

end { Init Msgs };
procedure Init CrtType:

var I : integer;
Ch : packed array [(0..1] of char;
S : Str 81;
Words : array [0..29] of integer;
begin

LockKeyboard (On):
unitstatus (SysTerm, Words, 1);

Page 18

le'l’.
l)l;

IeI;

l+l;

!Al;
!Ol’.

l'4l;
|Al:
'IOI'-

-}

R, LSS T

if Words [0] > 0 then

begin
UseTa := true;
TaIdx := TaMin; Talast := Words [0] - 1;

if Talast > TaMax then TalLast := TaMax;

unitread (SysTerm, Ta [TaMin], TaLast + 1);
uniteclear (SysTerm);
end { if };

W_Char (chr (Pko)):; { ask for terminal type }
W Char (' ');

I :=20;
unitread (SysTerm, Ch [0], 1):

while Ch [0] <> chr (Eol) do begin
I:=1I+1;
S [I] := Ch [0];
unitread (SysTerm, Ch [0], 1):
end { while };

S [0] := chr (I);
LockKeyboard (Pop):

if S = '50' then CrtType := Wyse30
else if S = '60' then CrtType := Wyse60
else CrtType := Unknown;

end { Init CrtType };

begin { Initialize }
Vv_T To U :=Vc T To U;

Ck_Version (Vv_Glbs U, Vc Glbs U, Vs T | Io U, Vs _Glbs U);

Ck Version (Vv_StrOps U, Ve . StrOps | U, Vs T To U, Vs StrOps U);
Ck Version (Vv_F Io U, Vc F To U, Vs T Io U Vs F To U);

Ck Version (Vv OpSys U, Vc OpSys U, Vs T Io U, Vs OpSys U):

L Chars := [' '.."'~"];
C Chars := [chx (Esc), chr (Acc),
chr (Anf), chr (Apf), chr (Anl), chr (Apl), chr (Ach),
chr (Lk), chr (Rk), chr (Dk), chr (Uk)]:
S Chars := L Chars +
C Chars +
[chr (Tk), chxr (Btk), chr (Gak), chr (Gck),
chr (Ick), chr (Dck), chr (Imk), chr (Dmk),
chr (Rtk), chr (Del), chr (Clk), chxr (Cfk)]:
Set ErrFiles (Msg File, Msg File, Key File);

OnlyOne := false; { used by Next Char and UserAbort }

Flush On := true;

Csr_Tos := 0; Csr_Stack [Csr _Tos] := true;
Kbd Tos := 0; Kbd Stack [Kbd Tos] := false;
Width := Get Sc Width: Height := Get Sc Height - 1;
UseTa := false;

Init Sc Cmd; Init CrtType:

Init Translate; Init Fcns;

Init Msgs;

Py := 0; ReverseSc := true;

C_Sc (false); S5 _Time;

Set Sc Size (SameSc, SameSc);

Control (Sc_S Csr); Control (Sc_U Kbd):
end { Initlallze }:

Page 19

procedure Control { (Sc : Sc Cmds) };
begin
unitwrite (Console, Sc Cmd [Sc], sizeof (Sc_Cmmd), , 12):
end { Control };
procedure Beep;
begin
Control (Sc Beep);
end { Beep }:

procedure SetXy { (Xx, Yy : integer) };

begin
if (X <> Xx) or (Y <> Yy) then
begin
if Xx = Null then X := 0
else X := Xx;
if Yy = Null then Y :=0
else Y := Yy;

gotoxy (X, ‘Y);
end { if };
end { SetXy };

procedure Delay;

var I : integer;
begin
for T := 0 to 300 do ;

end { Delay };

procedure Set Sc Color { (Color : Sc_Color) };
{ ?? need to adjust atributes }
begin
if Color = LightSc then Control (Sc Light)
else { if Color = DarkSc then } Control (Sc Dark);

ReverseSc := Color = LightSc;
end { ReverseSc };

procedure Set Sc Size { (Vert, Horz : Sc Size) };
var I, J : integer; S : Str 9;
begin
C Sc (true);
I := Height:;
case Vert of
SameSc,
AdjustSc : begin
Height := Get Sc Height;
if (Height <> V Small) and (Height <> V _Large) and
(Height <> V XSmall) and (Height <> V_XLarge) then
begin
Height := V Small;
Vert := AdjustSc;
end { if };
end { if };

SmallSc : Height := V Small;

XSmallSc : Height := V_XSmall;
LargeSc : Height := V Large;
XLargeSc : Height := V XLarge;

end { cases };

if Height = V_Small then V _Size := SmallSc

else if Height = V _XSmall then V Size := XSmallSc
else if Height = V_Large then V Size := LargeSc

else { if Height = V _XLarge then } V_Size := XLargeSc;

Page 20

if Vert > SameSc then
begin

case V_Size of
SmallSc : Control (Sc_S Vert);
XSmallSc : Control (Sc Xs Vert);
LargeSc : Control (Sc L Vert);
XLargeSc : Control (Sc X1 Vert);

end { cases }; o

Delay;
end { if }:
case Horz of

SameSc,

AdjustSc : begin
Width := Get Sc Width;

if (Width <> H Small) and (Width <> H Large) and
(Width <> H XSmall) and (Width <> H XLarge) then
begin a
Width := H Small;
Vert := AdjustSc;
end { if };
end { if };

SmallSc : Width := H Small;

XSmallSc : Width := H XSmall;

LargeSc : Width := H Large;

XLargeSc : Width := H XLarge;
end { cases };

if width = H Small then H Size := SmallSc
else if Width = H XSmall then H Size := XSmallSc

else if Width = H Large then H Size := LargeSc
else { if Width = H XLarge then } H Size := XLargeSc;
if Horz > SameSc then

begin

case H Size of
XSmallSc, SmallSc : Control (Sc S Horz);
XLargeSc, LargeSc : Control (Sc I Horz):
end { cases };

Delay:
end { if };
if (Vert > SameSc) oxr (Horz > SameSc) then
begin _
Set_Os_Sc_Size (Height, Width);
if ReverseSc then Set Sc Color (LightSc); { Fix Wyse60 error }
if CrtType <> Unknown then
begin
{ Make message areas on Wyse 60 normal } { Fix Wyse60 error }
S := "*A20*A30"';
S [1] := chr (Pko):; S [5] := chr (Pko):;
W Str (S): X =X - 8;
if not (V_Size in [XSmallSc, XLargeSc]) then
begin
S [0] := chr (4); { delete last 4 characters }
S [3] w= Y1t
W Str (S);
X =X - 4;
end { if };

end { if };

S Info (InfoStr);
end { if };
if I <> Height then
begin
Msg Y := Height;
for J := Min Msg to Msg Tos do begin
if Msg Stack [J] .0ld Y = I then
Msg Stack [J] .0ld Y := Height;

end { for };
end { if };
Ck Msg;

end { Set Sc Size };

procedure C_Sc { (NoMsg : boolean) };
begin
Control (Sc C Sc): X :=0; Y 5= 0;
if not NoMsg then Ck Msg;
end { C Sc }:

procedure C Eop { (NoMsg : bocolean) };
begin

Control (Sc_C Eop);

if not NoMsg then Ck_Msg;
end { C Eop };

procedure C Eol;
begin
Control (Sc C Eol);
end { C Eol };
procedure C Eof { (N : integer) };
var Xx : integer; Spaces : packed array (0..133] of char;
begin
Xx 1= X;
fillchar (Spaces, N, ' ');
unitwrite (Console, Spaces, N, , 12);
X := X + N; { So that the next SetXy works 1}
SetXy (Xx, Y);
end { C Eof };

procedure Cursor { (Want : OnOff) };

var Have : OnOff;

begin
if Csr Stack [Csr Tos] then Have := On
else Have := 0Off;

if Want = Show then { Force cursor on/off }

begin
Want := Have;
Have := succ (Have);
end { if }
else if Want = Pop then
begin
if Csr Tos > 0 then Csr Tos := Csr_Tos - 1;

if Csr_Stack [Csr_Tos] then Want := On
else Want := Off;
end { if }
else
begin
if Want = Toggle then
if Csr Stack [Csr Tos] then Want := Off
else Want := On;

if Csr Tos < Max Csr then Csr Tos := Csr_Tos + 1;

Page 22

Csr_Stack [Csr Tos] := Want = On;
end { else };

if Have <> Want then
if Want = On then Control (Sc_S Csr)
else Control (Sc C Csr)
{SB CSR+} -
| else
begin
W Char ('=');
X =X - 1;
end { else }
{SE CSR+}

end { Cursor }:

| var Have : OnOff;
begin
if Kbd Stack [Kbd Tos] then Have := On
else Have := Off;

procedure LockKeyboard { (Want : OnOff) };

if Want = Show then { Force lock/unlock }

begin
Want := Have;
Have := succ (Have);
end { if }
else if Want = Pop then
begin

if Kbd Tos > 0 then Kbd Tos := Kbd Tos - 1;

if Kbd Stack [Kbd Tos] then Want

else Want := Off;
end { if }
else
begin

if Want = Toggle then
if Kbd Stack [Kbd Tos] then Want

else Want := On;
if Kbd Tos < Max Kbd then Kbd Tos
Kbd Stack [Kbd Tos] := Want = On;

end { else };

if Have <> Want then
if Want = On then Control (Sc L Kbd)
else Control (Sc U Kbd)
{SB KBD+}
else
begin
W Char ('='):
X =X - 1;
end { else }
{SE KBD+}

end { LockKeybocard };

:= On

1= Qff

:= Kbd Tos + 1;

procedure Control Atr (Len : integer; Atr : Sc Cmds);

begin
Len := Len - 1; SetXy (X + Len, Y):
Control (Sc Norm Atr); SetXy (X - Len, Y);
Control (Atr): X =X+ 1;

end { Control Atr };

procedure S Rev { (Len : integer) };
begin

Page 23

Control Atr (Len, Sc_Rev_Atr);
end { S Rev };

procedure S Dim { (Len : integer) 1};
begin

Control Atr (Len, Sc _Dim Atr);
end { S Dim };

procedure S Unln { (Len : integer) };
begin

Control Atr (Len, Sc Unln Atr):
end { S UnLn };
procedure S RevDim { (Len : integer) };
begin

Control Atr (Len, Sc_RevDim);
end { S RevDim };

procedure C Atr { (Len : integer) };

begin
Control (Sc_C_Atr); SetXy (X + Len - 1, Y);
Control (Sc C Atr):; SetXy (X - Len + 2, Y);

end { C_Atr };

procedure W_Str { (S : Str 255) };

begin
unitwrite (Console, S [1], length (S), , 12):
X := X + length (S);

end { W Str };

procedure W Char { (C : char) };
var Ch : packed array [0..1] of char;

begin
Ch [0] :=C;
unitwrite (Console, Ch [0], 1, , 12);
X=X+ 1;
end { W Char };
function Ck_Accept { (Ch : char) : boolean };
begin

Ck Accept := ord (Ch) in [Acc, Anf, Apf, Anl, Apl, Ach, Uk,

end { Ck Accept };
procedure FlushKeyboard;
begin
Fcn Ex := false;
unitclear (SysTerm);
end { FlushKeyboard };

procedure Next Char (var C : char) ;
var Ch : char; Done : boolean;

function ReadCh : char;
var Ch : char;
begin
if UseTa then
begin
ReadCh := Ta [TaIdx]:; Taldx := Taldx + 1;
if TalIdx > Talast then UseTa := false;
end { if }
else
begin
LockKeyboard (Off); read (keyboard, Ch);
if eoln (keyboard) then ReadCh := chr (Eol)
else ReadCh := Ch;

Page 24

Dk];

LockKeyboard (Pop):
end { else };
end { ReadCh };

begin { Next Char }

repeat
Done := false;
if Fcn Ex then { Read from function }
begin
C := Fcn Buf [Fen I Ex]; Fcn I Ex := Fcn I Ex + 1;

Fcn _Stop := Fen Stop + 1; { for infinite loops }
if Fen I Ex > Fen Keys [Fen K Ex] .Fen_Last then Fcn Ex

Fcn Ch := true; { char came from a function }
end { if }
else { read from input }
begin

Ch := ReadCh;

if Ch = chr (Pki) then { Check for prefixed char }
begin

Ch := ReadCh; Ch := chr (ord (Ch) + P Bias);

end { else if }:

C := chr (Translate [oxd (Ch)]):

Fen Stop := 0; Fcn Ch := false;

end { else };
if C = chr (Dbk) then { Debug key }

begin
Debug := not Debug:;
Set Info; Done := OnlyOne;
end { if }
else if C = chr (Ftk) then { Flush toggle key }
begin
Flush On := not Flush On;
Set_Info; Done := OnlyOne;
end { else if }
else Done := true;

until Done;
end { Next Char };

false;

function G Char { (Chars : CharSet; Flush, Map : boolean) : char }:

label 2, 3;
var Ch : char; Done, Erased : boolean; Gx : integer;

procedure Start Recording (Key : integer);
var I, J : integer;
begin

with Fcn Keys [Key] do begin

if (Fcn Last <> Null) and (Fecn First <> Fcn Date) then { Krunch

if Fen_Last + 1 = Fen I Red then Fen I Red := Fen First
else
begin

moveleft (Fcn Buf (Fcn Last + 1], Fcn Buf [Fcn First],
Fcn I Red - Fen Last

J := Fen Last - Fen First + 1;
for I := Fcn F Key to Fcn L Key do begin
with Fen Keys [I] do begin
if Fen First > Fcn_Keys [Key] .Fen Last then

begin
Fcn First := Fen First - J;
Fen Last := Fen Last - J;
end { if };

= 1)y

Page 25

end { with };
end { for };

Fen I Red := Fen I Red - J;
end { else };

if Fen I Red <= Fcn Max - Fen D Len then

begin
Fcn K Red = Key:
Fcn First := Fcn I Red;
Fcn Last := Null;
Fcn _Red := true;
Set Info;
end { if };

end { with };
end { Start Recording };
procedure Do_Ofk:;
var Block, Msg : integer; Ch, KeySet : char; F : FibPtr;

begin
In Ofk := true; Erased := In G Str;
Ch := G_Char_Answer ([chr (Esc), 'L', 'S'], false, false,
concat ('[', Fcn File, '] L(oad S(ave function keys?')):
if Ch <> chr (Esc) then
begin
Key Set := G _Char Answer ([chr (Esc), '0'..'9'], false, false,

'"Enter function key set number (0..9)?2');

if KeySet <> chr (Esc) then
begin
Block := ord (KeySet) - oxd ('0');

F := Closed;

if OpenFile (F, Fcn File, BlkFile, true, Msg) then
begin
Block := BlockIo (F, Fcn Keys, 1, Block, Ch = 'L');
CloseFile (F, false);
end { if }
else Err Msg (Msg, Fcn File);
end { if };
end { if };

In Ofk := false;
end { Do Ofk };

begin { G_Char }
if Flush and Flush On then FlushKeyboard;

Done := false; Erased := false; Gx :

repeat
Next Char (Ch);

if Map then Ch := Cap (Ch);

if Ch in Chars then Done := true
else if Ch = chr (Rcd) then
if Fcn Red then { Stop recording }
with Fcn Keys [Fcn K Red] do begin
if Fcn I Red = Fen First then
if Fcn K Red = Fen F Key + 7 then

X

begin
Fcn First := Fcn Date;
Fcn Last := Fcn Max;
end { if }
else Fcn First := Null

else Fcn _Last := Fen_I_Red - 1;

Page 26

Fcn Red := false; Set Info;
end { if with }
else { Start recording }
begin
Erased := In G Str;
S Msg (true, false, 'Record what key (<F1>..<Fl6>)?");
Cursor (On);

3: Next Char (Ch);
if (oxrd (Ch) >= Fcn F Key) and (ord (Ch) <= Fcn L Key) then

Start Recording (ord (Ch))
else if Ch <> chr (Esc) then

begin
Beep; goto 3;
end { else if };
Cursor (Pop): C Msg (1) goto 2;

end { else }
else if (ord (Ch) >= Fcn F Key) and (ord (Ch) <= Fcn I Key) then
with Fcn Keys [ord (Ch)] do begin
if Fen Last = Null then Beep
else if Fcn Stop > Fen Max * 2 then

begin
Fcn Ex := false; Beep;
end { else if }
else
begin
Fen K Ex := oxrd (Ch); Fen I Ex := Fen First;
Fcn Ex := true;

end { else };
end { else if with }
| else if (Ch = chr (0Ofk)) and not In Ofk then Do Ofk
else Beep;

if Fcn_Rcd and not Fcn Ch then

begin
Fcn Buf [Fen I Red] := Ch; Fcn I Red := Fcn I Red + 13
if Fen T Red > Fen Max - Fen D Len then
begin o
Fcn Keys [Fen K Red] .Fen Last := Fen I Red - 17
Fcn Red := false; Beep;
end { if };

end { if if };
2
if Erased then
begin W Str (Gtmp); SetXy (Gx, Y); Erased := false; end { if };
until Done;

G Char := Ch;
end { G Char };

function G Chars { (Chars : CharSet; Map : boolean) : char };
begin

G Chars := G _Char (Chars + C Chars, false, Map);
end { G Chars };

function G Cmd { (Chars : CharSet; wvar Count : integer) : char };
var Ch : char; Num : boolean;
begin
Ch := Cancel;
repeat
if Ch = Cancel then
begin Num := false; Count := 0; end { if }

else if Ch = Infinity then

Page 27

begin Num := false; Count := Null; end { else if }
else if (Ch >= '0') and (Ch <= '9') then

begin
if Count = Null then Count := 0;
Num := true;
Count := (Count * 10) + oxd (Ch) - oxd ('0');

end { else if };

Ch := Cap (G _Char (Chars + [Cancel, Infinity, '0'..'9"'], false, true)):
until Ch in Chars;

if Num and (Count < 0) then Count := 1 { overflow error }
else if not Num and (Count = 0) them Count := 1;
G Cmd := Ch;

end { G Cmd };

function InputWaiting { : boolean };
var Words : array [0..29] of integer;
begin
InputWaiting := false;
if Flush On then { ok to check for input characters }
begin
unitstatus (SysTerm, Words, 1):

if Words [0] > 0 then InputWaiting := true;
end { if };
end { InputWaiting };
function UserAbort { : boolean };
var Ch : char;
begin
UserBAbort := false:;
if InputWaiting then
begin
OnlyOne := true; { used by Next Char }
if G Char ([chr (0)..chr (127)], false, false) = chr (Esc) then

UserAbort := true;
OnlyOne := false;
end { if };

end { UserAbort };
function G_Str { (var S : Str 255; Len : integer) : char };
label 2, 3;:
var Xx : integer; { Starting location }

Loc : integer; { Current location in Tmp, 1..length (Tmp) }

Ls : integer; { Length of string }

Ch : char;

GaCh : char;

First : boolean;

Done : boolean;

Srch : boolean; { Searching for Gck or Gak char }

InsMode : boolean;
DelMode : boolean;
TmpLoc : integer;
procedure W_Gtmp;
var Xx : integer;
begin
Xx = X;
X := Null; { So SetXy works }
unitwrite (Console, Gtmp [Loc], Ls - Loc + 1, , 12);
SetXy (Xx, Y):
end { W Gtmp };

Page 28

begin { G Str }
Xx 1= X;
In G Str := Y = Msg Y;
Cursor (On);
GaCh := chr (Nul):

Gtmp := S;
if length (Gtmp) > Len them Ls := Len
else
begin
Ls := length (Gtmp):;
fillchar (Gtmp [Ls + 1], Len - Ls, ' ');
end { else };

Gtmp [0] := chr (Len):

W_Str (Gtmp);
SetXy (Xx, Y):

Done := false;
First := Ls > 1;
Srch := false;
InsMode := false;
DelMode := false;
repeat
Loc := X — Xx + 1;
Ch := G _Char (S Chars, false, false);

if Ch in L Chars then
if Srch then

begin
GaCh := Ch;
3: {Gak} TmpLoc := Loc + 1 + scan (Ls - Loc¢, = GaCh, Gtmp [Loc + 1]);

if Tmploc <= Ls then
if DelMode then
begin
moveleft (Gtmp [TmpLoc], Gtmp [Loc], Ls - TmpLoc + 1);
TmpLoc := TmpLoc - LocC;

fillchar (Gtmp [Ls - TmpLoc + 1], TmpLoc, ' ');
W_Gtmp;
Ls := Ls — TmpLoc;

end { if }

else SetXy (TmpLoc + Xx — 1, Y)
else Beep;

Srch := false;
end { if }
else
begin
if First then
begin
fillchar (Gtmp [2], Ls -1, ' ");
Gtmp [1] := Ch;
W _Char (Ch);
Loc := 2;
W_Gtmp;
Ls := qi
end { if }
else if InsMode and (Loc <= Ls) then
if Ls < Len then
begin
Ls := Ls + 1;
moveright (Gtmp [Loc], Gtmp [Loc + 1], Ls - Loc);

|
!
|
Page 29

Page 30

Gtmp [Loc] := Ch;
W_Char (Ch);
Loc := Loc + 1;
W_Gtmp;

end { if }

else Beep
else if Loc <= Len then

begin

Gtmp [Loc] := Ch;

W_Char (Ch);

if Loc > Ls then Ls := Ls + 1;
end { if }

else Beep
end { else }

else if Ch in S Chars then

begin
Srch := false;
case ord (Ch) of
Uk, Dk,
Acc,
Anf, Apf,
Anl, Apl,
Ach : begin
while not Done do begin
if Ls = 0 then Done := true
else if Gtmp [Ls] = " ' then Ls :=Ls - 1
else Done := true;
end { while };
Gtmp [0] := chr (Ls);
S := Gtmp;
end { cases of accept }:
Cfk : First := false;
Imk : InsMode := not InsMode;
Dmk : DelMode := not DelMode;
Esc Done := true;
Rtk : begin
SetXy (Xx, Y);
goto 2; { ReTry }
end { case Rtk };
Lk if Loc > 1 then SetXy (X - 1, Y)
else Beep;
Rk if Loc <= Ls then SetXy (X + 1, Y)
else Beep;
Tk if Loc <= Ls then SetXy (¥Xx + Ls, Y)
else Beep;
Btk : if Loc > 1 then SetXy (Xx, Y)
else Beep;
Ick : if (Loc > Ls) oxr (Ls = Len) then Beep
else
begin
moveright (Gtmp [Loc], Gtmp [Loc + 1], Ls - Loc + 1);
Gtmp [Loc] := "' ';
Ls := Ls + 1;
W Gtmp;

end { else };

Dck : if Loc > Ls then Beep
else

begin
moveleft (Gtmp [Loc + 1], Gtmp [Loc], Ls - Loc);
Gtmp [Ls] := ' _';
W_Gtmp;
ILs :=Ls - 1;

end { else };

Del : if Loc > Ls then Beep

else
begin
fillchar (Gtmp [Loc], Ls - Loc + 1, ' ');
W_Gtmp;
Ls := Loc - 1;

end { else };

Gck : if Loc > Ls then Beep
else Srch := true;

Gak : if Loc > Ls then Beep
else if GaCh = chr (Nul) then Beep
else goto 3;

Clk : if Ls = 0 then Beep
else

begin
fillchar (Gtmp [1], Ls, ' '):
Loc := 1;
SetXy (Xx, Y):;
W_Gtmp;
Ls := 0;

end { else };

end { cases };
end { else if }

else Beep;

First := false;
until Done;

SetXy (Xx, Y);
W Str (8);

if Len > length (S) then
C Eof (Len - length (S)):;

G Str ;= Ch;

Cursor (Pop):

In G Str := false;
end { G Str };

function S Prompt { (Prompt : Str 255;

Version : Str 7; Reverse : boolean) : integer };
var Tmp, Xx, Yy : integer;
begin
Ax 1= X;
Yy i= Y;

Tmp := Width - length (Version) - 1;

if length (Prompt) > Tmp - 3 then
Prompt [0] := chr (Tmp - 3):

SetXy (1, Py):

W_Str (Prompt);
C Eol;

S Prompt := X + 1;

Page 31

SetXy (Tmp, Y):
W _Str (Version);

if Reverse then
begin
SetXy (0, Py):
S Rev (Width);
end { if }:

SetXy (Xx, Yy):
end { S Prompt }:

procedure Set Info;
{ This procedure sets the Debug and Flush indicator in Info.
It also sets the date.
}
var Tad : TadRec;
begin (12345678 1 2345678 2 2345}
{ 00-00-00 00000 }

if Flush On then {Flush Debug}
if Debug then Info [7] := '+' { On On }
else Info [7] := "' { On Off }
else if Debug then Info [7] := '-! { Off On }
else Info [7] := '*'; { Off Off }

if Fcn Rcd then

I into S (Fcn K Red — Fen F Key + 1, Info, 8, 2)
else

fillchar (Info [8], 2, " "):

Get Sys Tad (Tad):
D_into_s (Tad .D, Info, 11);

S Info (InfoStr);
end { Set Info };

procedure S Info { (S : Str 255) }: { Wyse 60 }
var Xx : integer;
begin
Xx = X;
fillchar (Info [20], 11, ' '):
I into S (memavail, Info, 20, 5):
I into S (varavail (''), Info, 26, 5):
W _Str (Info):
if length (S) >= InfoWidth then S [0] := chr (InfoWidth)
else if length (S) = 0 then
begin
S [0] := chr (1);
S [1] := chr (Eol);
end { if }
else if S [length (S)] <> chr (Ecl) then
begin
S [0] := succ (S [0]):
S [length (S)] := chr (Eol);
end { else };
W Str (S):
InfoStr := S;
X := Xx; { W Str changes X }
end { S Info };
procedure S Time;
var Xx : integer; Tad : TadRec; S : Str_ 7;
begin
if CrtType = Wyse60 then

Page 32

begin
Get Sys Tad (Tad);

if Tad .T <> NullTad .T then
begin {1234567} { Wyse 60 }
S := "*c80000"';
S [1] := chr (Pko);

with Tad .T do begin
I into S (Hour, S, 4, 2);
I into S (Min, S, 6, 2);
end { with };

Xx = X;
W Str (S):
X = Xx; { W Str changes X }
end { if }; -
end { if };

end { S Time };

procedure S Msg { (Prompt, Attention : boolean; S : Str 255) }; { Wyse 60 }
var Xx, Yy : integer;

begin
if not Clr Msg then
begin
if length (S) > Width - Msg X - 2 then
S [0] := chr (Width - Msg X - 2);
if Msg Tos < Max Msg them Msg Tos := Msg Tos + 1;
if Prompt then insert (' ', S, length (S) + 1);
if length (S) > Msg StrSz themn S [0] := chr (Msg StrSz);
with Msg Stack [Msg Tos] do begin
0ld X := X;
0ld Y :=Y;
Msg P := Prompt;
Msg A := Attention;
Msg S := S;
end { with };
end { if };
if Attention then
begin
Init Msg [3] := '2'; { Reverse blinking message }
if not Clr Msg then Beep;
end { if }
else Init Msg [3] := '0'; { Reverse message }
Xx = X;
Yy = X;

SetXy (Msg X, Msg Y);

W_Str (Init Msqg);

X := X - 2; { an adjustment for non-display characters in init Msg }
W _Str (S);

C:Eol:

if not Prompt then SetXy (Xx, Yy):
end { S Msg };

procedure C Msg { (Msgs : integer) };
var I : integer; Prompt : boolean;

begin
if Msg Tos >= Min Msg then { There is at least one message }
Prompt := false;

| begin
:
Page 33

if (Msg _Tos - Msgs < Min Msg) or (Msgs = 0) then
begin
SetXy (Msg X, Msg Y);
C Eol;
Msg Tos := Min Msg - 1;
I := Min Msg;
end { if }
else { if Msg Tos - Msgs > Min Msg then }
begin
Msg Tos := Msg Tos - Msgs;
I := Msg Tos + 1;

with Msg Stack [Msg_Tos] do begin
Clr Msg := true;
S Msg (Msg P, Msg A, Msg S):
Prompt := Msg P;
Clr Msg := false;
end { with };
end { else };

if not Prompt then
with Msg_Stack [I] do begin
SetXy (0ld X, 0ld Y);
end { with }:
end { if };
end { C Msg };

procedure Ck Msg:
var Xx, Yy : integer;
begin
if Msg Tos >= Min Msg then { There is at least one message }
begin
Xx :
Yy @
with Msg Stack [Msg_Tos] do begin
Clr Msg := true;
S_Msg (Msg P, Msg A, Msg S):
Clr Msg := false;
end { with };

SetXy (Xx, Yy):
end { if }:
end { Ck Msg }:

function G _Char Answer { (Chars : Char Set; Flush : boolean;
Attention : boolean; M : Str 255) : char };

X;
Y;

begin
S_Msg (true, Attention, M);
Cursor (On);
G Char Answer := G_Char (Chars, Flush, true);
Cursor (Pop):
C Msg (1);
end { G_Char_Answer };

procedure Error { (S : Str_255) }:
var Ch : char;
begin

if length (S) < Width - 12 then

insert (', <space>', S, length (S) + 1);

Ch := G Char_Answer ([' '], true, true, S)z
end { Error }:
procedure Err Msg { (Msg : integer; S : Str_255) };
const Msg Blk 8; { Messages per block }

Msg_ Blk M1 7; { minus 1 }

Page 34

“'.. ‘
3 L e g W
s 8 '
P é s ! L
i F var | F ; : FibPtr;
< % - Blk Reec : integer; { Block or record number }
: _ ' Ss ¢ s Stx 23;
g 5 - Block ¢ : array [0..Msg Blk Ml] of Str 63;
i 3 begin ‘
if 'OneErrFile then Ss := SmsgFile
else if Msg >= M UserErr then
begin

Ss := UmsgFile;
*Msg := Msg — M UserErr;

end { if }
‘else Ss := SmsgFile;
if OpenFile (F, Ss, BlkFile, true, Blk_Rec) then
begin

Blk Rec := Msg div Msg Blk;

if BlockIo (F, Block, 1, Blk Rec, true) = 1 then { block found }
Blk Rec := Msg mod Msg Blk
else Blk Rec := Null;

CloseFile (F, false);

end { if }
else Blk Rec := Null;
if Blk Rec <> Null then
begin
if length (S) + length (Block [Blk Rec]) + 1 >= sizeof (S) then
S [0] := chr (sizeof (S) - (length (Block [Blk Rec]) + 1));
insert (Block [Blk Rec], S, 1):
end { if } o
else { file not found or message empty }
begin
if length (S) + 11 >= sizeof (S) then
S [0] := chr (sizeof (S) - 11):

insert ('Err # i Y B 1)
I into S5 (Msg, S, 6, 3);
end { else };

Error (S):
end { Err Msg };

procedure Set ErrFiles { (SysErr, UserErr, SoftKeys : Str 23) };

begin
if length (SysErr) > 0 then Smsg File := SysErr;
if length (UserErr) > 0 then Umsg File := UserErr;
if length (SoftKeys) > 0 then Fcn File := SoftKeys;
OneErrFile := Smsg File = Umsg File;

end { Set ErrFiles };
begin { T Io U }

Initialize;

%k :

{ Clear info line, except date }

Info [0] := chr (19);
fillchar (Info [7], 3, ' '):
Info [19]_:= chxr (Eol):

W _Str (Info);
C Sc (true);
Control; (Sc: S Csr);
Control® (Sc U Kbd);

end {$0- T To U }.

Page 35

06/12/5S0 06/71/50
06/ST/10 o@\wo\ﬁo 06/10/10

6492

F T
== O WO\MO m.ung? .HQ{% o | - .
[

Sp ol aiep angy

—ce I1 Ekm %d/, s | & S Rt T
Spuy SWOIE) RPN

s 0. SR UOHEBITGN ISR TSMIN

alae

31 SurpRaI Q1IN0 L
g wermm 4q
) O/ U], SAM
IoUTI A 1T Aq
SNsN ut se3ueyy
suodai s zamsear],
Z3§ zald YL
sAeg JO1RDSTUTUPY

diry, prop e
*SIONYT 198 M

(6861 ‘8 ISN3NY) WNIUUS[IA WOY SMIN
IONpH 9 WOL]

Py

L isqunN Joyp3 ‘yuws ‘g Weljiim
€ SWNJOA pamasay siybiy v

"ou| ‘gNSN ‘6861 WBuAdo
101327 TSMA)\;

6861 120/des

Pug
L
9.
9
¢
14

T (o 0]

T (97

I o

ﬂ &

a%eq e

=0

1 [.Y

<

5

253

0O «

=0

ADDRESS CORRECTION REQUESTED

ﬁ_@oa 1900s

	20100325175715123.pdf
	20100325180138982.pdf

