Q\CewsLette

Copyright 1989 USUS, Inc.
the _News that Fits., We Print

July/Aug 1989

Volume 3

N3

William D. Smith, Editor

Number 6

From the Editor
by William D. Smith

I received two offers of help in checking out the
manuals donated to USUS by Dr. Thibaud. One
from Harry W. McMackin, III and one from
Bernard Perrenoud. Thanks to both, Since I
received Harry’s letter first, I sent him a copy of
the “Table of Contents”. His response was that
the manuals “...appeared to be a reference book
for first-year college students. It is unlike a
textbook in that it does not have problems to wok
through.” It is also specific for the Rainbow-100
system. If there is anyone out there who has a
use for these manuals, let me know.

The next issue of the NewsLetter (Sept/Oct 89)
will be the election issue. There are two
positions on the Board of Directors up for grabs.
USUS needs new people to bring new life into
the organization. Preferably those intrested in
structured languages, but not necessarily in the
p-System. If you are interested or know
somegne who is, please contact Alex Kleider at
ﬁl’ﬁ) 327-7916.

After’ domg this NewsLetter for a year and
producing it both every month (November thru
March) and every other month (May/Jun,

Tul/Aug, Sep/Oct), I have decided that producing
a NewsLetter every month takes up too much of
my time, therefore next year there will only be six
issues of the NewsLetter (Jan/Feb, Mar/Apr,
May/Jun, Jul/Aug, Sep/Oct and Nov/Dec).

Should USUS have a journal?
by A. Robert Spitzer

USUS membership and renewal rates have been
declining in recent years. One of the important
questions that comes up is, “what does USUS do
for its membership?” Obviously, many folks feel
the answer is “not enough”, and are ‘voting with
their feet’. Several proposals have been made in
this regard.

One such proposal is that we develop a formal,
official relationship with the Journal of Pascal,
Ada and Modula-2 (JPAM). The theory is that
most professional societies really only provide 2
major services to their membership. The first is
their publications, generally a professional
journal dealing with the membership’s major
interests, and often additional brief newsletters;
and the second is annual meetings.

A proposal has been made to make JPAM the
official journal of USUS. This would really
primarily mean that the journal would be bundled
in with the membership. Based on preliminary |
discussions, there are several approaches that
would be feasible. The specific proposal that T
made, is that all members receive the journal with
their membership. The journal now costs
$26/year. We can get it for $20/year. If we
raised the annual dues from $35 to $45 a year,
but included the subscription in that price, this
would leave $25 per member for USUS to use.

Obviously, the immediate effect is to reduce
USUS income somewhat, and raise dues
somewhat, But the benefits would be as follows
— The total package at $45 would be
significantly cheaper than the $61 it costs
separately. Members would have access to the
USUS libraries, MUSUS, the NewsLetter, the
annual meeting, AND the journal for that price.

There are 15,000 issues of the journal circulated.

We can also expect that some other readers would
find membership at $45 worthwhile, compared to
$26 for the journal alone. The readership is a

select group with an interest in Pascal and
Modula-2. The increase in membership could
offset the short-term loss of income. Increased
utilization of MUSUS would also increase USUS
income. And JPAM libraries may become
available to USUS members more directly.

I believe that the members who have ‘voted with
their feet” are saying that USUS without a journal
isn’t worth the price of membership. So now I
am asking a critical question of all members.

Is USUS with a journal what you want?

Would a package as proposed be
acceptable?

Would members who have not renewed
now renew?

We must have your answer. If there is a
significant positive sentiment, we can proceed
with negotiations immediately. If the sentiment is
roundly negative, the matter will be dropped. To
help you decide, we have arranged for all
members to receive at least one free copy of
JPAM. Review this copy, and see if you think
you would like this journal as one of your
membership benefits. If you did not receive a
copy, contact one of the Board of Directors and
we will try to get you one. We need all
members’ (and recent members’) responses. We
need to count ‘votes’ on this subject, so that we
know how to proceed. Votes from members
who did not renew will be especially important.

Send your response to the USUS post office box
or to me on CompuServe (PPN: 75226,3643).

Orphan Software Project (June 1, 1989)
by Beverley Henderson

Well, I'm finally ready with another report on the
Orphan Software Project. The responses have
slowed to a stop and I have only two returns to
give you this time. Both of them, however,
include several programs.

E. H. Henderson of Coach and Camper
Service in Bishop, CA has a Sage IV computer
using UCSD IV.1 and runs five Timberline
programs and a Pascal Development Program
from Sage. Four of the Timberline products are
accounting software and the other a spreadsheet.
He says, “Timberline no longer writes programs
which will run under the p-System.” He also

Page 2

reports that the authors of the modular accounting
package he uses dropped the p-System (BEFORE
completing the accounts payable and inventory
modules) and now use C.

Joseph Asling of Davis, CA uses a Sage II
with p-System 4.13. His reported software
includes Aladin Relational Data Base by ADI
America; Logicalc by Software Products
International; PDBase by IOTC; a Timberline
spreadsheet and Menu7 by Micro R&D. He also
has “a few odds and ends” including ACE v0.9,
Is this the ASE editor or something else?

He is very interested in looking at and possibly
exchanging software. I wonder how valid his
assumption that “no-one would get after us for
copying the truly orphaned software” will prove
to be. At any rate, he even offers to help with the
project. We accept, I'm sure. I only hope he is
not put off by the delay in reporting his letter.
His address is 17 W. Lakeside Place, Davis, CA
95616. The telephone is (916)758-5667.

He also asks where El Granada is, as the ZIP
code indicates it cannot be too far from Davis.
Just in case others are also curious, El Granada is
a small town on Highway 1 south of San
Francisco between the end of Devil’s Slide and
Half Moon Bay. In fact, for those of you who
have travelled the Coast Highway in this area, it
is opposite the harbor and tracking station at
Princeton. On the ocean side of the Highway the
town is Princeton — on the other side it is El
Granada. While there is not much to see right
along the highway, the town extends up into the
hills with a population density that is appalling
and growing every day. Most of the streets are
not paved and the house prices are astronomical
for the conditions.

So much for the real estate and geography
section, I will mail Joseph several copies of the
Software Information Request Form and ask
Frank Lawyer to be in touch regarding his offer
of assistance. Since I am always going to be
unable to devote much time to this project during
the first four months of the year (my primary
profession is tax preparation — enough said), I
would be very grateful to have a backup then.
Besides, all the help we can get will still leave
this a very large job.

The next stage in the project is to chose the form
in which we want to record the data so that it can
be regularly updated and readily accessible to
USUS members. This seems to require that we
use a p-System data base (and we’d prefer to
anyway, right?). Has anyone out there any
suggestions for the program that would handle a
fairly complex, fairly large database, is p-System
based and (ha ha) still supported somehow? It
would need to have the capacity to sort on
different fields for report purposes as we would
like to produce the list by vendor, by program
name and by program purpose (i.e., spreadsheet,
accounting, etc.). Please let us have some input
on this.

Another plea for participation: Do any of you
know others who, while not members of USUS,
are p-System enthusiasts? If so, would they fill
out our questionnaire if we sent them one? If you
will give me names and addresses for such
people, T'll send them the form with an
explanatory letter and we may be able to expand
our information. Of course, I should also include
some information about USUS and an invitation
to join!

Yet another plea: If you haven’t sent in the form
for your own p-System holdings, PLEASE do so
now. The more we have when we design the
data base, the less revision of the format will
have to be done later. And thank you to everyone
who has taken the time to help so far. We’ll
probably be knocking at your door again
someday.

We Get Letters...

I received the following letter from Greg Jahn,
Systems Programmer, Data Center, Boise State
University, Boise, Idaho 83725, (208)385-3891:

“We are looking for a Modula-2 compiler for our
system, and I was hoping that you may be able to
help us in this pursuit. I have tried to get
information from several network sources but
have so far been unsuccessful.

We are using an AT&T 3B2 Model 600 with
Unix Sys V, rel 3.1. We would be using
Modula-2 for general instruction in our Computer
Science courses, and a basic “vanilla” version
would be acceptable. Since we are a University,
cost is a significant factor in our consideration.”

I also received a letter from Bernard
Perrenoud, Ingénierur ET.S, 5, chemin de
Chdrenaya, 2013 Colombier, Switzerland.
Besides volunteering to look at the Rainbow
manuals, he says that he is interested finding
contacts in the USA who are interested in
computer science, aviation, aircraft and ship
models.

Administrator Says
by Hays Busch

I’'m going to start this out with some software
that has nothing to do with UCSD Pascal!
Instead it is written (I'm told.) in Turbo Pascal
and assembly, and is designed to run on IBM
PC’s. It’s called Finance Manager II, and is
“user supported software”. A fully functional
disk was sent to USUS for preview and I tried
it... and then I bought it!

I’'m pretty good with figures and can run a
spreadsheet with reasonable insight, but a
“bookkeeper” I'm not! So when I can use a
program, and without going to school set up a set
of books, the program’s got to be pretty good!
For home use, almost all data comes directly
from your checkbook. You can simply start
putting the checks in and allocating them to
whatever expense categories you want, and lo
and behold, you have a home bookkeeping
system! I’'m sure it would be equally easy to use
for small to medium size businesses.

You can test the program with the General Ledger
Module, and this is the one I can send to any
USUS member for $2.00 (charge covers disk
and mailing cost). From there on, you're free to
buy your own registered copy from Hooper
International, or decide you’re not interested.
I wound up buying the Reconciliation and
Financial Utilities Modules in addition to the
General Ledger Module. If you want them, you
can also get Modules for Payables, Receivables
and Payroll.

The entire program is menu driven and almost
self explanatory. (My only problem now is
which is a debit and which a credit!)
Documentation is excellent and explains some
bookkeeping facts, service is excellent and the
folks are very friendly and easy to talk to. I am
thoroughly impressed! If you want to try this,
drop me a note and enclose a check or money

Page 3

Treasurer’s Report (May 1989)
by Robert E. Clark, Treasurer

Treasurer’s Report (June 1989)
by Robert E. Clark, Treasurer

Bank Balance $5,594.71 04-30-89 Bank Balance $5,926.42 05-31-80
Income - May 1989 ' Income - June 1989
Dues: (new/renew) Dues: (new/renew)
Student 25.00 1/0 Student 0.00 0/
General 465.00 2/10 General 700.00 0/20
Professional 0.00 0/0 Professional 100.00 0/1
Institutional 0.00 0/0 Institutional 0.00 0/
Other Income: Other Income:
Library fees 13.00 Library fees 26.00
CIS 18.45 CIS 2591
Misc. 30.00 Misc. 20.00
Total Income: $551.45 Total Income: $871.91
Expenses - May 198 Expenses - June 1
Administrator; Administrator:
CIS 10.06 CIS 83.37
Telephone 55.67 Telephone 38.82
Photocopies 8.25 Photocopies 10.00
Postage 38.19 Postage 77.09
Supplies 88.55 Supplies 31.99
Other: Other:
Mail from La Jolla 10.02 Mail from La Jolla 1.95
Library Distributor 8.00 Printing NL (2) 404.60
Bank charge 1.00 Mailing NL (2) 781.28
—_— NL supplies 2.67
Total Expenses $219.74 Delaware Rep fee 70.00
Bank Balance $5,926.42 05-31-89 Bank charge 100
Total Expenses $1502.77
order for $2.00 made out to USUS » | Bank Balance $5295.56 06-30-89

Incorporated.

Got a nice note from Ed Livingston in North
Carolina. He’s volunteering to be State
Chairman for USUS down there. By the time
you read this, we will have decided what we can
do to reactivate some dormant USUS members in
his state. Ed also thinks USUS should continue
to work with JPAM on some basis since it could
reduce our publishing cost and get us a wider
audience.

When Arley Dealey opted to drop his MUSUS
SysOp chores, I got to be the head SysOp for a
short time, (Now, I’'m helping maintain the
MUSUS user listings.) All in all it was a very
interesting experience.

Now that MUSUS is an “open” Forum, we’ve
had 142 new people “visit” the Forum in a single
month! Many are interested in Modula 2 and

Page 4

Pascal and some of these are becoming
“regulars”. One does not have to be a member of
USUS to use MUSUS, but it is interesting that at
least 19 active USUS members have not used the
Forum since the first of this year. I can also
identify 22 inactive USUS members who use the
Forum fairly regularly!

But perhaps the most interesting statistic... about
210 USUS members may not have a
CompuServe PPN and thus can not even look at
MUSUS! If you are one of these and would like
to try CompuServe, I can help you. I have a
CompuServe brochure that tells all about the
service, gives you a temporary PPN and some
“free” connect time to test it all out. If you want
one, drop me a note. There is no charge.

Harry Baya is the new SysOp. He is doing a
complete revamp of MUSUS to bring the
Libraries and Message sections up to date and
make them more interesting. You can see some
progress now and more changes are in the offing.

Board of Directors Minutes (June 13, 1989)
by Samuel B. Bassett

MINUTES OF THE SPECIAL MEETING OF THE
BOARD OF DIRECTORS OF USUS, INC., HELD
IN ROOM 1 OF THE MUSUS FORUM TELE-
CONFERENCING FACILITY ON THE COMPU-
SERVE INFORMATION SERVICE, BEGINNING AT
10:10 PM EST JUNE 13, 1989,

Present at the meeting were:

User ID Name
76314,1364 Sam’l Bassett, Board Chaircritter
73447,2754 Henry Baumgarten,
Board Member
75226,3643 A. Robert Spitzer, Board Member
76703,500 Eliakim Willner, Board Member
72135,1667 Harry Baya, Primary SysOp
727473126 Robert Clark, Treasurer
71515,447 Alex Kleider, President
73007,173 William Smith, Assistant SysOp,
Newsl etter Editor
Matters dealt with were:

Nominating Committee for BoD Elections

Harry Baya nominated Frank Lawyer, who
wasn’t present to defend himself, to be a member
of the Nominating Committee. All present
assented.

Alex Kleider said that he’d be happy to serve on
the Committee, if Henry Baugartner would, too.
Henry said he’d be willing to try, but that he
would be out of town on vacation for a few
weeks, in a part of Minnesota that doesn’t have
electricity.

Everyone thought this was fine, especially after
Eli found out that he was not being volunteered
for anything.

William Smith announced that the deadline for
nominations is early September, so that ballots
can go out that month in the NewsLetter, get
back, and be counted in time to instail new board
members around the first of the year.

The Chaircritter stated loudly the he is NOT
running for re-election.

Annual Meeting

When asked by the Chaircritter, William Smith
said that there had been no response to the note in
the last NewsLetter, asking for member input on
the General Meeting.

Harry asked whether any location — East Coast,
West Coast, Midwest, or Florida would be
acceptable for a meeting. He was assured it
would.

Bob Spitzer proposed Detroit because it is an
airline hub, he thinks he might be able to
persuade the University he works for to provide
free meeting space, hotels are relatively cheap,
and he has a 2-mile long lake in his backyard for
recreation purposes. He also opined that we
should piggy-back the USUS meeting with some
other organization.

Harry volunteered to work with Frank Lawyer on
finding East Coast sites away from the high-price
zone. Bob Spitzer agreed to check on Detroit
arrangements.

Alex suggested that Harry and Bob Spitzer be
appointed to the Meeting Committee and report
back to the Board later.

Henry asked about the advisability of involving
JPAM in the planning or management, and Alex
said he’d talk to them.

Bob Spitzer suggested involving Eli Willner,
who was willing, so long as he didn’t have
anything to do with facilities, management, or
arrangements. He also said that Liaison and
Pecan would NOT be attending any shows this
year or next.

Alex moved that all meeting business be
remanded to the Meeting Committee, and that the
BoD Meeting adjourn. Bob Clark seconded the
motion,and it was carried unanimously.

Next Meeting

The Board agreed to again at 7 PM PST / 8 PM
MST /9 PM CST/ 10 PM EST July 11, 1989 in
Room 1 of the MUSUS conference facility

The Special Meeting of the Board on Compu-
Serve was adjourned at 11:09 PM EST on June
13, 1989.

Minutes submitted by:
Samuel B. Bassett

Page 5

The Chaircritter’s Soapbox
by Sam’l Bassett

You may have noticed that the N ominating
Committee for the upcoming Board of Directors
election and the Meeting Committee are staffed by
the “old familiar faces” (actnally names) that
you've been seeing over and over in the Board
Minutes you see here in the NewsLetter.

In a lot of organizations, that would mean that
there is a tight clique who is intent on keeping
power — not 50 in USUS. What it means here is
that there is nobody else that we can trick, coerce,
finagle, or tempt into doing the work. We did
manage to get an “outsider” as Secretary — after
much searching and jawboning — Howard
Sweet.

We would VERY much like to get some new
blood and new bodies into the administration of
this outfit, but if you keep on hiding your light
under bushel baskets, that leaves us tired old
hacks to do the work — how about giving us a
break, and taking on some of it???

You’d have our undying gratitude

Apple SIG Doings
by Frank Lawyer

New Members...

Welcome to new members Harry McMackin
and Fred Nelson. Please let me know if there
is any help you need. In the case of Harry, he
has already sent a letter! Answers in progress.

Welcome Disks...

The welcome disks have been updated to
07/01/89. There were only minor changes in the
files, but there were changes on the order form
for library disks. Some older “archive” disks
have been withdrawn, since the programs have
been converted to run on the Apple2 series of
computers, and are now available on the Apple
specific volumes. If you intend to order library
disks, please get new welcome disks and use the
order form on them, or send to me for a current
order form.

Library Disks...

There is one new library volume this time,
APP2UO5, which is a utility volume. By next
time I can see that there will be at least one more

Page 6

volume available. I seem to be falling behind
with conversion and review efforts. As always,
help would be gleefully accepted. My original
goal was to convert all the old disks to new Apple
specific disks in an 18-24 month period. It looks
like I better work harder.

Volume APP2UO2 has been updated with a new
program, and anyone who purchased APP2UQ2
during 1989 is therefore entitled to a free update.
Just send me your original disk and I will update
it for you. The same applies to APP2U04, which
has updated dictionaries for the SPELLER
program. Several files were added to APP2106.
Listings, as usual, should be found elsewhere in
this issue, by the grace of our Editor.

I haven’t mentioned it in a while, so it probably
bears repeating. If you order the new series
(APP2XXX) disks, I expect them to work on
your equipment, provided you use Apple v1.3. If
they don’t, or you have difficulty compiling etc.
then I will help you if you call or write me and
tell me what problem you are having. I have
compiled and tested all the programs on the disks
now, and although I can’t say I have tested every
feature of every program, I want the programs to
work correctly. In general, I am willing to fix it if
it is broken.

The Apple specific library volumes currently
available are:

Information volumes:

APP2I01, APP2102, APP2I03, APP2I04,
APP2I05, APP2I06

Utilities:

APP2UO1, APP2U02, APP2UO03, APP2U04,
APP2U05

Games:
APP2G01, APP2G03, APP2G04

In Retrospect...

It’s hard for me to believe that this column is a
year old now. As a penance, I forced myself to
read all my old columns from the past year. This
is like being locked in a room with a life
insurance salesman! I have had fun, although
sometimes it seemed that I would never have
enough material to fill the next column. I have
been in contact with a number of you, and have
gotten letters and contributions from a reasonable
number (who counts?). Lately I have fallen

behind on my correspondence with some of you
out there, so if you wrote me a letter two months
ago, and didn’t hear yet, don’t give up!

USUS has just passed (June) its ninth
anniversary, and it looks to me like we will make
ten. Somebody out there should start thinking of
stealing this job away from me.

Utilities...

When I download messages from MUSUS, 1
usually do a small bit of editing, then save the
files as a historical record, in case I want to find
something later. From what people on MUSUS
have said in the past, others do this also. It tends
to fill disks up pretty rapidly, but there is some
valuable information there. The real problem is
trying to find what you want, when you
remember that the answer to someones question
is out there, or you want to review all the banter
regarding issues of “public domain” that we
batted around over the months. Or maybe you
want to find all the messages from a particular
person. Over time, I have experimented with
various methods, but they all involved extra work
or my part. It’s easy to find a key word or
phrase with the editor F(ind command, but when
you have several hundred files contained on a
number of disks, it becomes daunting. What [
really needed was a program that could locate
items of interest with as little manual intervention
as possible. I put it on my “write someday” list.

Well, I recently remembered seeing an article by
Jon Bondy in an old USUS News and Report
(#7) where he had the same problem, and he
wrote a program to solve it. SCANNER will run
through all the files on a volume, looking for the
set of strings that you enter into a file called
SCAN.DATA.TEXT, and will display the file
name and the text portion that contains the string.
I just knew I wouldn’t have to re-invent the
wheel. As a beneficial side-effect, SCANNER
locates the desired strings anywhere on the
volume, so it makes it handy to find where that
mistakenly erased file is hiding out. 1 put
SCANNER on volume APP2UQ2, in case you
need it too. Thanks Jon!

I’'m going to use SCANNER to help me with the
library review. There are a lot of programs out
there, and even though I know a pretty fair
amount about what IS in the library, I get

questions that require some browsing through the
disks. This will help me locate programs much
more quickly.

Programming Project Ideas...

I have asked the kindly editor to reprint a column
by Robert Platt, a USUS member, author of a
book on Modula-2 and Editor of the “Perfect
Pascal Programs”. Bob writes a monthly column
for the Washington Apple Pi Journal. In this
column he has several interesting ideas on Pascal
programming projects, and he asks the WAP
members to show their interest. Since the Apple
SIG members have pretty much identical
interests, I thought we might get interested also.

I agree with all the suggestions that Bob makes
for programming projects, but the two which are
most interesting to me are the “glue” routines,
and the project to support various fonts. If you
are at all interested in these as co-operative
programming projects, please drop me a line, or
give me a call.

Frank Lawyer, 126 Demott Lane, Somerset, NJ
08873; (201) 828-3616

“Pascal News” (reprint from WAP Journal)
by Robert Platt

The following is the text of Robert Platt’s
Pascal column, “Pascal News” , which appeared
in the March 1989 issue of the WAP Journal, the
monthly magazine of the Washington Apple Pi.
It is reproduced with permission granted by their
general provision for computer clubs to reprint
their articles.

I GS Wish List

At present, an Apple Pascal programmer seeking
to port p-System programs from the Ile to the
IIgs faces a serious dilemma. On the one hand,
he can stay with the p-System. Pecan Software
sells a p-System hosted under ProDOS 16.
Apple Pascal 1.3 will also run on the IIgs {in 2e
mode - fl}. Yet, neither system permits direct
calls to the TIgs ROM tools. On the other hand,
new Pascal programming environments have
appeared. Apple’s APW features Pascal
compilers from TML and ORCA/M. Stand-alone
Pascal systems are also available from TML and
ORCA which feature their own “shells”. Such
shells make debugging much easier and eliminate
the delays caused by disk accesses between

Page 7

program editing and compilation. Needless to
say, these programming environments support
fully the IIgs ROM tools. Of course, converting
UCSD Pascal source to run under these
environments is a little like pulling teeth. There
are two possible solutions to this problem, and
hence my wish list:

e Someone could write a translator to
convert UCSD Pascal source into TML or
ORCA Pascal source files.

@ A set of glue routines written under the
p-System Assembler which would permit
calls to the Ilgs ROMs should be fairly
straightforward. These were promised by
Pecan when they first released the ProDOS
16 version of the p-System. We need
them!

@ One of the neatest features on the Ilgs is its
support of fonts. The font files on the
I1gs are similar to those on the Macintosh.
The Apple Pascal p-System has tradi-
tionally supported bit-mapped fonts under
the Apple II’s hi-res graphics. The only
font supported was stored in a file called
SYSTEM.CHARSET. An interesting
programming project would be to modify
the WSTRING and WCHAR routines in
the APPLESTUFF library to display fonts
from any Ilgs font file rather than just
from SYSTEM.CHARSET.

Perhaps one of the above wish list items would
make an interesting group programming project
for the PIG {Pascal Interest Group of WAP}.
How about it?

Note for Hc Plus owners

Apple Pascal 1.3 is available from APDA on a
3.5" disk format. Don’t miss out on this
programming bargain. I would be interested in
hearing from a Ilc plus owner who would be
willing to run benchmarks to see whether
performance improves when running Apple
Pascal on this new accelerated machine.

TI SIG News
by Ken Hamai

As promised, more disk drive information. This
time we go to the more exotic stuff, what to do
with 4 disk drives, and Myarc disk controllers.
Let’s start off with Myarc,

Page 8

The latest rage from Myarc is the hard disk
controller. With your TI and this controller, you
can run your Pascal system boot disk (Unit #4)
from the hard drive. This tip came from new
member, Ed Livingston, of Lenoir, NC, and
was published in the Micropendium. Ed says, to
use the hard disk, put all of your system files, ie.
editor, filer, compiler, etc., on this one emulate
file and your system will then recognize it as Unit
#4. Before you power up the p-System, do a call
MDM through Basic and turn on your DSK1
emulate file. When the system initializes, it will
use the emulate file as Unit #4. Your disk drive
DSK1 then becomes Unit #5, and DSK2
becomes Unit #9. Thanks for the tip Ed! By the
way, Ed also says he is willing to help anyone
who wants help with firing up the TI p-System
and invites you to write him at 244 Walt Arney
Rd., Lenoir, NC, 28645.

Working independently, new member Frank
Aylstock of Placentia, CA tells me that he set
his emulate file up for quad density emulation,
which gave him 1440 blocks! This is 8 times
larger than what the standard TI format was back
in 1983. He said with the hard disk, the compiler
just zooms through compilation! Another good
excuse to buy that hard disk controller!

The hard disk controller can also use floppies,
but let’s think of more exotica... Using the 3-1/2
inch disk drives! These drives now cost
anywhere from $35 to $85 and they are almost a
plug in for the TI. Many are now sold with face
plates and adapter cables so that they will fit
where you once had your half height 5-1/4. With
the Myarc controller, you can use this type of
drive in 80 track, double density, which gives
you 2880 sectors, or 1440 blocks. If you can
find them, you can also use the 80 track 5-1/4
disk drives and get the same 1440 blocks.

What about the guy with the Myarc floppy disk
controller. He’s got a different problem., Myarc,
in their infinite wisdom(?) decided that their
standard format for double density was to be 16
sectors per track. So their disk controller default
is 16 sectors. If you used their optional 18
sectors per track, the controller placed this
information on a track O of the disk. Just so
happens that the p-System doesn’t ever look at
this track! So now what happens is the Myarc
system assumes that you have a 16 sector disk!

This is fine if the disk is truly 16 sector. But
what if you were a rational man and wanted to
use the maximum available, 18 sectors? Well,
you had to get the Myarc controller to read track 0
of each disk in each of the disk drives. This was
easy enough to do with a little Pascal startup
program, but you still had the problem with the
boot disk in Unit #4. It had to remain at 16
sector because remember at boot up, the
controller hasn’t been told yet that you have the
18 sector disks! This can be a real pain in the
you know what!

Jerry Coffey figured out how to fix this
problem with a trick startup disk that had the
startup file crammed into the 16 sector portion of
a specially formatted disk. If you need this
information, send me $3.00 for the disk, I take
out postage and disk cost and give USUS the
change, and you get the disk. Or leave a message
for Jerry Coffey on CompuServe. He can tell
you what file you need to download.

Ok, one more problem to cover... What to do
with DSK4? Well, believe it or not, that has also
been taken care of with a system startup file. The
information comes from Anders Persson of the
Swedish Pascal Interest Group. He has a startup
file with an assembly program that pokes in the
codes needed for the p-System to recognize Unit
#10 as a disk drive. This information is also
available on CompuServe. Or you can get the
disks from me, Jerry Coffey or the Boston
Computer Society TI group. If you want the
whole package, which consists of the Myarc file,
plus all the info on the Anders Persson disk, send
me $5 and ask for the Myarc and Swedish disks.
Of course, any money left over after postage and
disk costs go to USUS.

Well, that’s it for disk drives. While I’'m at it, I
also wanted to tell you about what is going on
with the USUS library. So far, I'm down to
about volume 7 and have found several programs
that compile, many that don’t, and out of those
that do, only a few are really useful. This is the
equivalent of what we had with the TI back in
1982 when people were only hacking away with
their consoles and tape recorders writing prime
number generators and cpu speed tests. Well, to
tell you the truth, that sucks! Therefore, I will be
compiling all of this together and will be making
up special disks for the TI only, and uy to

separate the trash from the good stuff. When |
have enough for a 640 block Volume, I'll let you
know. I’m about half way there now.

In the meantime, the TI Pascal SIG organized by
the Brea Users Group here in California is
cooking along. We even get homework (Ugh!).
And thanks to Bob August, we have a slick
LISTER program that lists text files to printer or
screen, along with line numbers (optional). Bob
also discovered another odd thing. He wrote a
program that works fine if it’s named
SYSTEM.WRK.CODE, but change that name to
any other name and the system comes up with the
dreaded STACK OVERFLOW - REBOOT! I
don’t know what’s causing it yet. Must be
something about how the system allocates
memory. It must be doing it differently when
running a SYSTEM.WRK.CODE file versus any
other named file. 1 guess this is aimost the
equivalent of the problem where you have a Basic
program that is too big to run from disk but
works fine from tape. That extra memory used
by the disk buffer cuts back the overall program
size and array sizes. If anybody has any ideas
what the problem is, please let me know. Bob
says that the program is a name and address
program that sets up an array in memory. Looks
like the array 1s a little too big, Bob.

One more thing, if you’re new to the p-code
system and want to know more about how it
works, member Ron Williams of the Boston
Computer Society writes excellent articles
covering various aspects of Pascal programming.
All of his past articles are available on disk.
Write Ron at 14 East Street, Aven, MA (2322,

I got a call the other day from member, Ed
Livingston himself, in response to my last USUS
article. Ed called to let me know that I had been
incorrect in saying that there were no other
compilers for the TI p-code card besides Pascal.
He said that he had a FORTRAN 77 compiler and
it ran on the TI! Well, well, I don’t know were
this came from, but I’m certain it wasn’t from TL
In any case, Ed tells me that the compiler works
fine and is closer to being like the “real”
FORTRAN than the other TI version,
99-FORTRAN. Only problem, he hasn’t been
able to get the compiler to accept the TI units
which access the graphics, sprites and sound. It
looks like sometime in the past, someone (maybe

Page 9

it was Batman or the Lone Ranger) ported the
compiler over to the TI from another system. If
this is workable, maybe someday, we can get a
BASIC compiler also ported over. Somehow, I
get the feeling that this is on the verge of being
illegal. Maybe this time, we’ll let Ollie do it. Or
maybe we’ll let Ollie’s boss do it, whoever
THAT may be. HE can get away with anything!

From Andrew Becker in Jamaica, NY comes
more news of his success with connecting a
video terminal to the TI and having the p-System
run the terminal. This is the poor man’s answer
to the 80 column bugaboo. So, if you can get
your hands on a terminal, you too can have 80
column screens when running the p-System.
Andy tells me that he wants to donate his work to
the USUS library to let the other people try it.
He has files for running a VT52 and ADM3A
terminals. If you have another type of terminal
that does not have either emulation, the work that
Andy did would still be useful to you. As I
understand it, you would need to change the
MISCINFO and GOTOXY files to your terminal.
One major problem, according to Andy is the
long screen update time even with the terminal
and RS232 set at 9600 baud. He guesses that it
is due to the TI's slow method of redirecting
output in the p-System and the p-code interpreter
not helping out any. We have a copy of Andy’s
work in the SIG library. If you want a copy,
send me $2.00 and tell me you want the
BOOT.VT disk. I take out the cost of the disk
and mailer and USUS gets the change. Andy, a
great big thanks for your work!

Till next time, keep them p-cards warm.

Ken Hamai, 11508 Mollyknoll Ave., Whittier,
CA 90604; (213) 943-1194

UCSD-like string operations in Modula-2
by A. Robert Spitzer MD
Wayne State University

Modula-2 is a more powerful, flexible language
than Pascal, created by Niklaus Wirth to be used
as a “real” programming language, by experi-
enced programmers. The concept of Pascal was
originally a teaching language, and many of the
restraints that experienced programmers find
frustrating are relaxed in Modula-2,

Modula-2 was also designed to be much more
portable that Pascal. Actually, Pascal is one of

Page 10

the least portable languages around. (UCSD
Pascal is no exception — it gets around the
problem by creating its own environment on
every machine it runs on, and there are NO
UCSD compilers outside of p-System. If you
want a really portable language, use
FORTRAN-77!) One of the major reasons for
this is the extensive definitions for I/O in Pascal.
Wirth sought to address this problem by
(paradoxically) eliminating from the language
definition anything superfluous or possibly
machine dependant - with considerable success.

This has created a situation in which many novice
programmers, who are reaching some of the
limits of Pascal, shy away from the switch
because of the gap that must be bridged. One
such gap is a significant difference in string
handling. Modula-2 does not contain any
“string” type, nor any string manipulation
procedures. Rather, it merely supports ARRAYs
of various types, including “ARRAY OF
CHAR.” An array of CHAR is merely an array
of characters. There is one common convention,
namely that (scanning from left to right), the
presence of null character (CHR(0)) indicates the
end of meaningful content in the array. This is in
contrast to UCSD Pascal (and most other
Pascals), in which the leading character indicates
the length of the string. Note that a Modula-2
string can be longer than 255 characters — it can
be as long as you want!

I provide the following module to help
individuals bridge the gap from Pascal to
Modula-2; in the process, one can learn how to
manipulate Modula-2 “strings”; and one can
develop an appreciation for the power of
Modula-2, namely that “low level” operations
such as these are gntirely legal and do not require
any sort of tricks, do not require trick records, do
not require range- or type-checking suppression,
etc. This module should also illustrate that once
one has mastered the language a bit, developing
modules to support many of the seemingly
mystical and complex functions that are “built in”
to other languages (and seem to be “missing”
from Modula-2) is actually quite trivial.

by StringOps.

<length> returns the length of the meaningful
contents of an ARRAY OF CHAR. This is not

the array length, which may be larger. The
length is 1-based, i.e “0” means no meaningful
characters are in the string. All characters,
including non-printing characters, are potentially
valid, except the Modula-defined NULL
terminator. If the array is entirely full,
HIGH(s)+1 is returned (this is the correct value).

<concat> concatenates contents of “source” onto
the end of “dest”.

<scan> searches “s”, starting at position “start”,
until “substr” is found, then returns its position.
“start” is useful for repeated sequential searches,
or part-string searches. If the returned position is
greater than HIGH(s), the substring was not
found. For short strings, the algorithm is trivial;
for ‘long’ strings (a compile-constant definition),
the search uses a high speed Boyer-Moore
algorithm.

[1P%2

<insert> inserts “substr” into “s” at position
“index”.

<delete> removes “size” characters from position
“index” in s.

<strCompare> does a lexical comparison, using
whatever numbering base is inherent to your
machine (usually ASCII), and returns an
enumerated type indicating the result of the
comparison operation.

<xtract> copies a substring of length “size”,
beginning at position “start”, from string “from”
to string “result”. This is useful when building a
string parser, manipulating file and volume
names, etc.

<copy> copies “from” into “to”.

Some notes on error checking, and a bit of
philosophy.

“When there is no error, there is no need for error
checking.” —— Gary Knott 1986

You may notice in my code that error checking is
minimal or non-existent. For example, if I hit the
end of an array, my code just stops (RETURNS),
with no error message. There are some very
good reasons for this.

#1) It is impossible to bypass low level error
checking higher up. Specifically, error checking
is slow. Often, error checking actually takes
more time than the code itself. You can NEVER
regain this speed in you higher level code. Error

checking code is executed even if there is NO
error. Often, checking is slower if there is no
error than when there is an error, because all
characters are checked, whereas if an error is
detected early-on, processing is aborted
immediately. This may seem trivial at first, but
when you are processing a 1000-page document
it can save hours of processing time.

Theorem 1. It is faster not to check for errors.

#2) To check for errors, you must know what is
an error. At first this seems trivial. But
remember again, that the definition of an error
low down can never be changed by code higher
up. For example, lets say you want to write a
file-transfer program, and your low-level code

decides to filter all non-printing characters from

strings, because these characters “must be an
error”. With that kind of low level module, you
will NEVER be able to decide that certain control
characters are legitimate and should be sent.
What if your file contains <Ctrl-Z>s, but they are
NOT end-of-file markers!

Theorem 2. It is hard to know what the
definition of an error will be.

#3) If you check for errors, you must know what
to do about them. OK, you found an error, what
now? Often, the decision is made in the low level
code. This results in horrible disasters that can’t
be fixed higher up. For example, try to use the
p-System string-handling procedures to read
input from the user. If you try to read an integer,
and the user types an invalid character, the
system blows you entire program out of the
water, and prints an obscure message on the
screen. Imagine this happening inside some
complex database program you wrote, and you
application dies with open files, partially updated
records, invalid temporary pointers, etc.. You
could kill the entire database! And even if that
doesn’t happen, imagine error messages popping
up at random all over you nicely formatted,
windowed screen. Not good. What if you
would rather log errors to a file? No, you want
to trap the errors and handle them higher up!

Theorem 3. Decisions about how to handle an
error must be made high up. Corrolary 3. Error
reports should NEVER go to the screen. The
should be passed upstairs in the program for
handling.

Page 11

Therefore, philosophically, error checking is
really always a HIGH level operation, as close to
the user interface as possible.

Further consider Spitzer’s rule of errors.

“Errors are always your fault.”
Corrolary: “Errors should not happen”.

There are two kinds of (software, not hardware
faults) errors. An error condition might arise
because of a bug in your program. This is clearly
the programmers fault. One uses error checking
code to test for these during development. Once
development is complete, and all the bugs are
gone, production code does not need error
checking,

The only other error that can occur is because of
“incorrect data”. For example, the user may have
entered “July 2, 1986 when the input required
was of type “money”. This could cause incorrect
processing at a lower level. If that happens, it is
also the programmers fault. If it is possible for a
data error to occur, YOU should check that
before calling the low level procedures (for
reasons I listed above). Once you have decided
that the data is correct up front (at a very high
level), there is never any need to waste time
checking it a each lower level. For example, if an
operation will require a division somewhere, you
better check your divisor for zero before you call
that procedure.

For those situations where these two cases do not
apply, I strongly urge that your procedure merely
have a safety-default, or return a simple “error
code”, which can be processed higher up, for the
aforementioned reasons (2 & 3).

If this has encouraged you to switch rather than
fight, I also hang out on MUSUS, and try to help
with Modula-2 language questions (sorry, but I
know nothing about any of the IBM or Apple
specific implementations, as regards their
machine or library-specific details).

Regards and happy coding. Bob Spitzer.

Page 12

‘s

DEFINITION MODULE StringOps;

{(* Copyright (c) 1987
A. Robert Spitzer MD
Change log: 18 Nov 87
4 Mar 1987 Created,

*)
(* 5/23/89: may be published by USUS
for use by members only. Compiled code
may used by members. Source may be
redistributed by USUS only. All other
rights reserved. *)

FROM Globals IMPORT relative;
(*
TYPE relative

(lessThan, equals,
greaterThan,
lessOrEqual,
greaterOrEqual);

*)

EXPORT QUALIFIED length,
concat,
scan,
insert,
delete,
strCompare,
xXtract,
copy;

PROCEDURE length

{s:ARRAY OF CHAR) :CARDIMAL;

concat

(VAR dest
source :

PROCEDURE
: ARRAY OF CHAR;
ARRAY OF CHAR);

scan
(s,

substr : ARRAY OF CHAR;
start : CARDINAL) ;CARDINAL;

insert

(substr :

VAR s :
index :

delete
(VAR g
index,
size

PROCEDURE

PROCEDURE
ARRAY OF CHAR;
ARRAY OF CHAR;
CARDINAL) ;

PROCEDURE
: ARRAY OF CHAR;

: CARDINAL);

strCompare

(s1,

s2 : ARRAY OF CHAR
}:relative;

Xtract
{(from :
start,
size
VAR result :
PROCEDURE copy

(VAR from,
to :

PROCEDURE

PROCEDURE
ARRAY COF CHAR;

: CARDINAL;
ARRAY OF CHAR);

ARRAY OF CHAR);
END StrinaCps.

IMPLEMENTATION MODULE StringOps;

(* Copyright {c) 1987
A. Robert Spitzer MD
Change log: 21 Feb 89

21 Feb 89 corrected 'copy' to
deliver the correct
nurber of bytes and a
null string.

25 May 87 Included straight and B-
M string search.

4 Mar 87 Created.

*)

FROM Globals IMPORT relative;
(*

TYPE relative = (lessThan, equals,
greaterThan,
lessOrEqual,
greaterCrEqual);
*)

CONST null = CHR(O0);

PROCEDURE smaller
{a,b:CARDINAL) : CARDINATL;

BEGIN

IF b < a THEN RETURN b ELSE RETURN a

END

END smaller;

PROCEDURE: length

{s:ARRAY OF CHAR) ; CARDINAL;
VAR 1 : CARDINAL;
BEGIN

FOR i:= 0 TO HIGH(s)

Do IF sfi] = null
THEN RETURN i
END

END;: (* for *)

RETURN (HIGH({s) + 1)

END length;

PROCEDURE concat

(VAR dest : ARRAY OF CHAR;

source : ARRAY OF CHAR);
VAR 1, j,socurceLen : CARDINAL;
BEGIN
i:= length(dest);
sourcelen:= length (source);
j:= 0;
WHILE (i <= HIGH(dest)) &
{3} <= sourcelen)

DO dest[i]:= sourcefi]:
INC (1):
INC (3)

END; (* while *)

IF i <= HIGH(dest)
THEN dest[i]:= null
END (* if *)

END concat;

PROCEDURE scan
(s,

substr : ARRAY OF CHAR;

start : CARDINAL} :CARDINAL;

{* search procedures modified from
Wirth:Algorithms & Data Structures
1986

*)

CONST
longStr = 64:; (* dividing line
between straight and B-M search *)

VAR
ir jrkr
lenS, lenSub :
ch : CHAR;

d : ARRAY[OC,.177C] OF CARDINAL;

BEGIN

lenS:= length(s);

IF start <= lenS THEN
lenSub:= length (substr);

Ir (lens - start) > longStr THEN
{(* long string,
do Boyer-Moore search *)

FOR ch:= 0C TO 177C bO

dfchl:= lenSub

END;

FOR J:= 0 TO lenSub-2 DO
d[substrf{j]]:= lenSub-j-1
END;

i:= lenSub + start;
j:= lenSub;
WHILE (j > 0) & (i < lenS) DO

ji= lenSub;

k:i= 1i;

WHILE (3>0) &

(s[k-1] = substr([j-1]) DO
ki= k-1; j:i= j-1
END;
ir= 1 4 dfsfi-1]]
END; (* while j>0 *)
IF j = 0 THEN RETURN k
ELSE RETURN lenS
END
ELSE (* short string, just do
straight string search *)
i:= start;
REPEAT
j:= 0:
WHILE (j < lenSub) & (sg[i+j] =
substrfj]) DO
INC(])
END;
INC (i)
UNTIL (j = lenSub) OR
(1 > (lenS-lenSub));
IF (j = lenSub)} THEN
RETURN (i-1) (* position at
which found *)
ELSE RETURN lenS (* not found,
return end of string *)

CARDTNAL;

END

Page 13

END (* if lenS *)
ELSE (* can't start beyond end of
string *)
RETURN lenS
END (* 1f start *)
END scan;

PROCEDURE insert

(substr : ARRAY OF CHAR;
VAR s : ARRAY OF CHAR;
index : CARDINAL);
VAR 1, lenS, lenSub : CARDINAL;
BEGIN

lenS:= length{s);
lenSub:= length(substr}:;
Ir (lenSub > 0) & {(index <= lens)
THEN IF lens = 0
THEN IF lenSub <= HIGH(s)
THEN s[lenSub]:= null
END
ELSE i:= lenS;
WHILE (1 > 0) & (i >= index)

DO IF (1L + lenSub) <=
HIGH(s}
THEN s[i+lenSubl:= s[i]
END;
DEC (i}
END; (* while *}

IF (index = 0) &
(lenSub <= lenS}
THEN s[lenSub]:= s[0}
END
END; (* if lenS *)
FOR i:= {0 TO smaller (lenSub-1,
HIGH (s)—-index)
DO s([index+i]:= substr[i]
END (* for 1 *}
END (* if index<=lenS *)
END insert;

PROCEDURE delete

(VAR s : ARRAY OF CHAR;
index,
size CARDINAL) ;
VAR i, Jj, lenS CARDINAL:
BEGIN
lenS:= length(s):;
i:= index:;
WHILE (i + size) <= lenS
DO s[i]:= s[i + size]:
INC{1i}

END; (* while *)

IF i <= HIGH({s}
THEN s[i]:= null
END

END delete;

PROCEDURE strCompare
(s1,
82 : ARRAY OF CHAR

Page 14

}:relative;

VAR i, sllength,sZlength : CARDINAL;
BEGIN
ir= Oy
sllength:= length({sl}:
s2length:= length(s2);
WHILE (i+1 <= sllength) AND
(i+l <= sZlength)
jale IF sli{i] > s2]il}
THEN RETURN greaterThan

ELSIF si[i}] < s2[i]
THEN RETURN lessThan

END; (* if *)

INC (i)

END; (* while *)

IF sllength > s2length

THEN RETURN greaterThan

ELSE IF sllength < s2length
THEN RETURN lessThan
ELSE RETURN equals
END

END (* if *)

END strCompare;

PROCEDURE xtract

(from : ARRAY OF CHAR;
start,
size : CARDINAL;
VAR result : ARRAY OF CHAR);
VAR i, 3 ,fromLen, tolLen : CARDINAL;

BEGIN
fromLen:= length{from):
iF start <= fromLen
THEN i:= start;
J:= 0;
WHILE (j < size} & (i <= fromLen)
& (] <= HIGH(result))}
Do result{j]:= from[i];
INC (i):
INC (J)
END; (* while *)
IF j <= HIGH({result)
THEN result{j]:= null
END (* if 3 *}
END (* if start *)
END xtract;

PROCEDURE copy

(VAR from,
to : ARRAY OF CHAR);
VAR i, len : CARDINATL;
BEGIN

len:= length(from):
IF (len = Q) & (HIGH(toc) > 0)
THEN to[0] := null;
RETURN
END;
IF HIGH(to) < len
THEN len:= HIGH(to)} + 1
END;

FOR 1i:= ¢ PO 1en - 1
DO teoli]:= fromiil

END;

IF len <= HIGH(to)
THEN to[len]:= null

END

END copy:

END StringOps.

WDS OpSys Unit
By William D. Smith

This is the unit which I used to interface to the
operating system. No other units or programs of
mine use any of the system units. Too bad the
last statement isn’t completely true. As you can
see from last months column, F_To_U does use
the Kernel. Also since this is an ongoing project,
I do have some programs (well one big one, my
AltFiler program), written before this unit was
developed which uses the Dirlnfo unit.

This unit was written so that I would not have to
use all the system units in my other units or
programs {i.e. isolate the my stuff from the
system). I also only use a small number of items
from each unit. When you are compiling a
program which uses this unit instead of three or
four system units, the compilation goes faster
(slightly) since only one interface needs to be
read.

The NoBreak function is used to disable the
p-System break key. I use this in my startup
program so that the user can not access the
system until they first enter their password (or
boot from a floppy).

The screen size procedures are use to get and set
the screen size. This allows dynamic re-sizing of
the screen without rebooting (after using Setup to
change the screen size parameters). I use a
Wyse-60 which can used several different heights
(24, 25, 43 and 44) and two widths (80 and
132). My FlipScreen program lets the user
choose what screen size they want, sets the
terminal to that screen size and then changes the
values maintained by the operating system. My
terminal I/O unit (covered next NewsLetter, 1
think) reads the screen size from the system when
it starts. This allows my programs to be written
in a screen size independent way. Another use is
to enlarge the screen (number of columns) when
printing a report to the screen and then returning
it to its original size.

The time and date procedures are used to get and
set the system time. The volume procedures read
or write the volume names choosen. CopyFile
makes a copy of the named file. Get DirInfo
returns a list of files in the same manner as
D Dirlist of the birInfo unit, except it doesn’t
return any pattern matching info. If only one
item is returned, the time is return in the record
correctly. If two or more item are returned, the
time is set to the NullTad .T. 1do this since the
only way to get the timestamp is to open the file
(a very slow process if the list is of any length at
all).

The Get MyFile name procedure was described
in the Sept/Oct 88 issue of the NewsLetter.

Imported from Kernel are ToRs1tWd an integer
variable; Alpha a type of packed array [0..8] of
char; E_Rec_P a pointer type which points to an
E_Rec; SysCom a variable which points to the
system communication area; and UnitList a
variable of type E_Rec_P which points to the unit
list.

Before this unit can be compiled, the interface
sections of the SysInfo, Transfer, ScreenOps,
Wild and DirInfo units needs changed. All
references to a date record type (such as
D_DateRec) need changed to DateRec. Ina
similar manner, time records (such as
D_TimeRec) need changed to TimeRec, string
needs changed to Str_81 and long strings (such
as D_LongString) need changed to Str 255.
The type declarations need removed and a “uses
G1lbs_ U; ” needs added to the beginning of the
interface. I used my advanced patch program to
make these changes. If you don’t have a patch
program which allows you to insert and delete
bytes, use Decode or LibMap to extract a copy of
the interface, modify it so that it is compilable,
make the changes and recompile it. Then use this
interface when compiling this unit.

Page 15

{ WDS operating sys interface unit [2.00] —--- 07 Mar 88 } { |xjmSd|nx|f8|e|. }
{50+}

{$C (c) wWilliam D. Smith -- 1987 to 1988, All rights reserved. }
{ File: OpSys U.Text Version 2.00 07 Mar 88
Author: William D. Smith Phone: (619} 941-4452
P.O. Box 1139 CIS: 73007,173

Vista, CA 92083

Notice: The information in this document is the exclusive
property of William D. Smith. All rights reserved.
Copyright (c) 1987 to 1988S.

System: Power System version IV.2.Z2
Compiler: Power System Pascal Compiler
Keywords: WDS OpSys U Operating System Interface Unit

Description: WDS operating system interface unit. This unit contains
the procedures which interface to the operating system.

Change log: {most recent first)

Date Id Vers Comment

07 Mar 88 WDS 2.00 Move all the file access procedures to the F_Io U.
07 Feb 88 WDS 1.10 Added Get MyFile and Get_MyHelp.

06 Feb 88 WDS 1.09 Added Get DirInf and DiDispose,

20 Oct 87 WDS 1.08 Added Vs OpSys U and its use.

16 Sep 87 WDS 1.07 Added Get &Set Filename, did some cleanup werk.
31 Aug 87 WDS 1.06 Fixed for version IV.22.

i Jul 87 WDS 1.05 Put in version control, added Get , Set LastByte.
19 Jun 87 WDS 1.04 Fixed so Tad need not be changed,

05 Jun 87 WDS 1.03 Rounded seconds to nearest minute in get TAD.

28 May 87 WDS 1.02 Added CopyFile.

27 May 87 WDS 1.0l Added more procedures and finished the others.

08 May 87 WDS 1.00 Started creating this unit.

{$I VERSION.TEXT} { Declares conditional compilation flags }
unit OpSys U;

interface {$ OpSys U [2.00} 07 Mar 88 }

uses Glbs U; { WDS globals unit }

const Vc OpSys U = 8; { 07 Mar 88 }
Vs OpSys U = 'OpSys U':
type FileKind = {(FkErr, FkVol, FkSvol, FkDir, FkCode, FkText, FkData);
DiPtr = “DiRec;
DiRec = packed record { 18 words }
Next : DiPtr;
Kind : FileKind:
Blocked : boclean;
Filler : 0..15;
UnitNum : Byte;
Volume : Str 7;
Title i Str 15;
Size : integer;
Start : integer; { 1f Kind = Vol, Start is 4 files }
Tad : TadRec;
end { DiRec };
var Vv _OpSys U : integex;

Page 16

function NoBreak (DoWhat : OnCff) : boolean;

{ This function returns the current status of the p-System NoBreak variable.
DoWhat is what to do before the status is read. On turns on NoBreak (ie. no
break allowed). Off turns off NoBreak (ie. break allowed). Toggle toggles
NoBreak. All other values of DoWhat return the status of NoBreak without
changes.

}

function Get_Sc Width : integex;
{ Get screen width. (1 based) }

function Get_Sc Height : integex:;
{ Get screen height. (1 based) }

procedure Set Os_Sc Size (H, W : integex);

{ Set op system screen size. This procedure sets the height (H) and width (W)
of the screen size maintained by the operating system. Both H and W are one
based. If either is Null, it is not changed.

}

procedure Get Sys Tad (var Tad : TadRec);
{ Get system time and date. }

procedure Set Sys Tad (Tad : TadRec);

{ Set system time and date. If either the time or date is null, it is not
changed.

}

procedure Get Pref Vol (var S : Str 7);
{ Get prefix volume. }

procedure Set Pref Vol (S : Str_7);
{ Set prefix volume. }

procedure Get Sys Vol (var S : Str_7);
{ Get system volume. }

procedure CopyFile (Src, Dest : Str_23; wvar Msg : integer);

{ Copy file. This procedure coples the file named in Src to the destination
Dest. Msg is M NoError or the last loresult. If Dest exists, it is purged.

}

function Get_DirInfo (Src : Str 255;
var Ptr : DiPtr;
var Msg : integer) : boolean;

{ Get directory information. This function returns the directory information
of the file(s) named by Src. The file(s) need not be open. The function
returns true if Msg = M NoError, otherwise it returns false.

}

procedure DiDispose (var Ptr : DiPtr; All : boolean);

{ Dispose DiRec. This procedure disposes the record pointed to by Ptr. If
All is true, it disposes all the records in a the list where Ptr points to
the first node.

}

procedure Get MyHelp (Prog : Str 15; wvar Name : Str 23);

{ Get my help filename. This procedure returns the name of a helpfile based
on the name of the file that the program was started from or on Prog if the
filename did not contain ".CODE"™ and was too long. If a help filename can
not be built, Name is returned empty.

}

procedure Get MyFile (Prog : Str_15:; wvar Name : Str 23};
{ Get my filename. This procedure returns in Name the complete name of the
file from which the program named in Prog was started.

}

Page 17

implementation

uses Kernel (IoRsltWd, Alpha, { System kernel unit }
E Rec P, SysCom, Unitlist),

SysInfo, { System information unit }
Transfer, { System file transfer unit }
ScreenOps, { System screen control unit }
wild, { System pattern matching unit }
DirInfo, { System directory info unit }
StrOps U, { WDS string ops unit }

F To U; { WpS file I/O unit }

function NoBreak { (DoWhat : OnOff} : boolean };

{ Uses Kernel unit }

begin

with SysCom”® de begin
if DoWhat = On then MiscInfo .NoBreak := true
else if DoWhat = Off then MiscInfo .NoBreak := false
else if DoWhat = Toggle then
MiscInfo .NoBreak := not MiscInfco .NoBreak;

NoBreak := MiscInfo .NoBreak;
end { with }:
end { NoBreak };

function Get Sc_Width { : integer };
{ Uses ScreenOps unit 1}
var T Port : Sc_Tx Port;
begin
Sc Use_Port (Sc Get, T Port):
Get Sc Width := T Port .Width + 1:
end { Get Sc_Width };
function Get_Sc Height { : integer };
{ Uses ScreenOps unit }
var T Port : Sc_Tx_ Port;
begin
Sc Use Port (Sc_Get, T Port):
Get_Sc Height := T Port .Height + 1;
end { Get Sc Height };
procedure Set Os_Sc Size { (H, W : integer) };
{ Uses Kernel and ScreenOps units. The screen size is maintained by the
system in the global data sections of both the Kernel and ScreenCOps units.

}
var T Info : Sc Info Type; T Port : Sc Tx Port;
begin
if (H <> Null) and (W <> Null) then
begin
Sc Use Info (Sc_Get, T Info);
Sc_Use Port (Sc_Get, T Port);
with SysCom” .CrtInfo do begin
if H <> Null then BHeight := H;
if W <> Null then Width := W;

T Info .Misc Info .Width := Width - 1;
T Port .Width := Width - 1;

T Info .Misc Info .Height := Height - 1;
T Port .Height := Height - 1;

Sc ErrorLine := Height - 1;
end { with };

Sc _Use_Info (Sc_Give, T Info);
Sc Use Port (Sc_Give, T Port);

Page 18

end { if };
end { Set Os_Sc Size };

procedure Get Sys Tad { (var Tad : TadRec) }:
{ Uses SysInfo unit }
var H, M, S5, T : integer;
begin
Tad := NullTad:
Si Get Date (Tad .D);:
S5i Get Time (H, M, §, T);

if S > 30 then M := M + 1;

with Tad do begin
T .Hour := H;
T .Min := M;
end { with };
end { Get Sys Tad }:

procedure Set_Sys Tad { (Tad : TadRec} };
{ Uses SysInfo unit }
var H, M : integer;
begin
with Tad do begin
H := T .Hour;
M :=T ,Min;
end { with };

if Tad .D <> NullTad .D then Si Set Date (Tad .D);

if Tad .T <> NullTad .T then Si Set Time (H, M, O,
end { Set Sys Tad };

procedure Get Pref Vol { (var S : Str 7) };
{ Uses SysInfo unit }
begin
Si_Get Pref Vol (S):
end { Get Pref Vol };

procedure Set_Pref Vol { (S : Str 7) };
{ Uses SysInfo unit }
begin
51 Set Pref vol (S):
end { Set Pref Vol };

procedure Get Sys Vol { (var S : Str_ 7} };
{ Uses SysInfo unit }
begin
8i Get_Sys Vol (8};
end { Get Sys Vol };

procedure CopyFile { (Src¢, Dest : Str 23; wvar Msg
{ Uses Transfer unit }
begin

T Transfer File (Src, Dest, Msg):
end { CopyFile };
function Get DirInfo { ¢ Src : Str 255;

var Ptr : DiPtr; wvaxr Msg

{ Uses DirInfo unit (which uses Wild unit) and F Io U }
var P, 0 : D ListP; Pptr ; DiPtr;

procedure Get Tad (var Ptr : DiPtr);
{ Uses F To U }
var 5 : Str 23; F : FibPtr; Msg : integer:
begin
with Ptr* do begin
S := concat ("#000:', Title):
I into S (UnitNum, S, 2, 3):

0}:

integer)

integer)

}:

boolean };

Page 19

if OpenFile (F, 5, BlkFile, true, Msg) then
begin
Get File Tad (F, Tad):
CloseFile (F, false):
end { if }:
end { with };
end { Get Tad };
function SetKind (Kind : D NameType)} : FileKind;
begin
case Kind of

D Vol : SetKind := FkVol:;
D Code : SetKind := FkCode:
D Text : SetKind := FkText:
D Data : SetKind := FkData;
D Sveol : SetKind := FkSvol;
D Dir : SetKind := FkDir:

end { case };
end { SetKind }:;
begin { Get DirInfo }
Msg := M NoErrox;
new (Ptr); { Efficient heap usage {so flrst rec is not at top of heap) }
case D_DirList (Src¢, [D_Vol..D_Svol, D _Dir], P, false) of
D Okay : begin
Pptr := Ptr;
while P <> nil do begin
fillchar (Pptr~, sizeof (DiRec}, 0);
with P~, Pptr” do begin
Kind := SetKind (D_Kind);

Blocked := D_IsBlkd;
UnitNum := D_Unit;
Volume := D Volume;
if D IsBlkd then
begin
if D Kind = D Vol then Start := D NumFiles

else Start := D Start;

Title := D Title;
Size := D Length;

Tad .D := D Date;
Tad .T := NullTad .T;
end { if };

0 := D _NextEntry:
end { with };

dispose (P);
P =0
if P <> nil then
begin
new (Pptr”™ .Next}:
Pptr := Pptr” .Next;
end { if }
else Pptr” .Next := nil;
end { while };

if Ptr”~ .Next = nil then { one entry, get time }
if Ptr~ .Blocked then Get Tad (Ptr);
end { case D Okay };

D NotFound : Msg : ord (I _NoFile):;
D Exists : Msg := ord (I _DupFile):
D NameError : Msg := oxrd (I BadTitle);

([

Page 20

D _CffLine : Msg := ord (I _NoUnit};
D Cther Msg := M Unknown;
end { cases };

if Msg = M NoError then Get DirInfo := true

else
begin
DiDispose (Ptr, true);
Get DirInfo := false;

end { else };
end { Get DirInfo }:

procedure DiDispose {
var P : DiPtr;
begin
if All then
begin
while Ptr <> nil do begin
P := Ptr™ .Next;
dispose (Ptr):

(var Ptr : DiPtr; All : boolezn) }:

Ptr := P;
end { while }:
end { if }

else dispose (Ptr);
end { DiDispose };

procedure Get Unit (S Str_15; war Units : Str 5; var Blk : integer):

label 2;
var P : E Rec P; I : integer; A : Alpha;
begin

UnitS [0] := ¢chr (0}; { Unit8 :="'"; }

I := sizeof (A):

fillchar (A, sizeof (A), ' '};

Crunch Str (5, 35);

CapStr (S):

if I > length (S) then I := length (S):

moveleft (5 [1], A, I):
P := UnitList;
while P <> nil do begin
with P~ .EnvSib”~ do begin
if SegName = A then
begin
UnitS := "#000:°;
I into S (VolInfo”™ .SegUnit, Units, 2, 3}
Blk := SegAddr:;
goto 2; { exit while }
end { if };
end { with };
P := P™ .NextRec;
end { while };

2:
end { Get Unit };
function Get File (S : Stxr T
Blk : integer:; war Name : Str 15) : boolean;

label 2, 3;
var Msg : integer; P : DiPtr; Ptr : DiPtr;
begin

Get File := false;

Name [0] := chr (0); { Name := ''; }

S [0] := suce (8 [0]1):

5 {length (8)] := '=';

Page 21

if Get DirInfo (S, Ptr, Msg) then
begin
P ;= Ptr~ .Next; { First file if any, skip volume record }

while P <> nil do begin
with P~ do begin
if (Blk >= Start) and (Blk < Start + Size) then goto 2
else if Blk < Start then goto 3;
end { with };

P := P~ .Next;
end { while };

2;
if P <> nil then
begin
Name := P™ .Title;
Get File := true;
end { if }:
3:

DiDispose (Ptr, true);
end { if };
end { Get File }:

procedure Get MyHelp { (Prog : Str 15; wvar Name : Str 23) };
var I : integer; UnitsS : Str_5;
begin
Name [0] := chr (0); { Name := *''; }
Get Unit (Prog, UnitS, I); { in case two volumes have the same name }

if length (UnitS) > 0 then
if Get File (UnitS, I, Name) then

begin
I := pos ('.CODE', Name):
if T = length (Name) - 4 then
begin
Name {0] := chr (I - 1); { deletes ".CODE" }
Name := concat (UnitS, Name, '.HELP'):;
end { if }
else if length (Name) <= 10 then
Name := concat (UnitS, Name, '.HELP')
else if length (Prog} <= 10 then
Name := concat (UnitS, Prog, '.HELP')
else Name [0] := chr (0); { NAME := ''; }
end { if };

end { Get MyHelp };

procedure Get MyFile { (Prog : Str_15; wvar Name : Str 23) };
var Blk : integer; UnitS : Str_ 5;
begin
Name [0] := chr (0); { Name := ''; }
Get Unit (Prog, Unit$, Blk): { in case two volumes have the same name }

if length (UnitS} > 0 then
if Get File (Units, Blk, Prog) then
Name := concat (UnitS, Prog);
end { Get MyFile };
begin { OpSys U }
Vv_OpSys U := Vc _OpSys_ U;
Ck Version (Vc_Glbs U, Vv _Glbs U, Vs_OpSys U, Vs | Glbs U);
Ck Version (Vc_StrOps U, Vv StrOps U, Vs OpSys | U, Vs StrOps U);
Ck Version (V¢ F Io U, Vv F To U, Vs OpSys U, Vs F . To U);
*k*x

r

end {$0- OpSys U }.

Page 22

New Library Disk Directories

What follows is a listing of the directory of the newly released Apple disk. The disks were developed
by the Apple SIG.

APP2U02;

L 4 A short but effective text printer with several options.
L.CODE........oivuunn Code file for above.

LINECOUNTR.TEXT...... Counts the lines of a textfile.
LINECOUNTR.CODE...... Code file for above.

PRIME1.TEXT.......... Generates primes by the sieve method

PRIMEL1.CODE... vuvuus Code file for above.

PRIMEZ.TEXT. .. 00uu.- Generates primes via the division method
PRIMEZ.CODE. Code file for above.

HEXOUT.TEXT.......... Prints the equivalent hex code for each keyboard key
HEXOUT.CODE.......... Code file for above.

SHELLMSORT.TEXT...... Shell-Metzner sort for a textfile, 80 char lines
SBELLMSORT.CODE, Code file for above.

PERUSE.PG.TEXT....... Peruse a text file a page at a time on your CRT
PERUSE.PG.CODE....... Code file for above.

COMPARE.TEXT......... A differential comparator for TEXT files
COMPARE.CODE.4, Code file for above.

DELETE.LF.TEXT....... Delete ASCIT linefeeds from a textfile.
DELETE.LF.CODE.......Code file for above.

SCANNER.TEXT......... Scan an entire volume leooking for string(s)
SCANNER.CODPE. Code file for above.

COMAPPZUOZ2.TEXT...... Comments on programs above
DIRAPPZU(Z.TEXT.%....You're reading it

APP2UO04: '

BASE.DICT.TEXT....... Base level dictionary for SPELLER, no suffixes
BIGG.DICT.TEXT....... Full dictionary for SPELLER, includes suffixes
COMAPP2UQ4 .TEXT. Comments on programs above

DIRAPPZUQ4L . TEXT...... You're reading it

APP2UQS5: "

CHAREDIT.TEXT........ Create or change character sets — use as SYSTEM.CHARSET
CHAREDIT.CODE. Code file for above

DOSCAT.TEXT..... e Read catalog of Apple DOS 3.3 disk

DOSCAT.CODE. .. .vv .. Code file for above

DOSUNIT.TEXT......... Unit to read DOS 3.3 disks from Pascal - contains DOSSTUFF
DOSUNIT.CODE. . i v o .. Code fille for above

DOSTRANS.TEXT........ Program using DOSSTUFF to transfer text from DOS to Pascal
DOSTRANS.CODE........ Code file for above

DOSTR.DOC.TEXT....... Documentation for DOSTRANS and DOSUNIT
COMAPP2UOS5,.TEXT...... Comments on programs above

DIRAPPZ2UOS.TEXT...... You're reading it

APP2I06;:

PASINI.TEXT. .. vvern.s Part 1 of the Bart Thomas Guerrrila Guide
PASIN3.TEXT. v v vees.e Part 3 of the GG

PASINZ2,.TEXT.......... Part 2 of the GG

PASZE.TEXT........... Special part of the GG for the AppleZe only
PBOOKS.TEXT. .. auu e Bart's compiled list of books

GG.DOC.TEXT: .. .uvu.n. Documentation for the files of the Guerrila Guide
INDEX.TEXT., .. vuvunnss Expanded index to Jensen and Wirth PASCAL USER MANUAL
WAP.P,8902.TEXT...... Text of Washington Apple Pi Pascal column 02/89
WAP.P.B904.TEXT...... Text of Washington Apple Pi Pascal column 04/89
. WAP.P.B905.TEXT...... Text of Washington Apple Pi Pascal column 05/89
R.TRANWARP.TEXT....., Review of the Applied Engineering Transwarp card
COMAPPZI06.TEXT...... Comments on the above files

DIRAPPZ2I06.TEXT...... You're reading it

NOTE: There are no program files or code files on an Information Disk. The files all contain text of
some sort, and can be printed out on your printer, or scanned with the Editor. In general, all new SIG
related articles, bulletins, NewsLetter articles etc. will go on these disks. Also, some older files which
appear on the Library disks will move here if they are still interesting or germane.

Page 23

wo/ndes Bulwod ISNOTSMON XN, .

06/61/¢0 06/T1/€0 06/S0/€0 06 \.Hm?l.
06/S1/10 06/80/10 06/T0/10 .= 06 GRAATES
68/LT/T1 68/01/11 68/TO/TT 68 903(T - .
68/02/01 68/¢1/01 68/10/01 —68-d2quu
IS Tous SOPOIy SUOI0/ap0)) . ToNINSAAN
S1ep ang speng awpeng "y
$91e(] UONBINqNJ JSNY [SMAN

11 Surpea a1,n0 x pug

SOLIOIAIL] JSIT ATRIqIT MON
g am%zw%n

U 9oBpIAIUT WAlsAS Suneado SO
QA PZdg 1290y 'Y

-eMmpojy ut suoneIado Summs ayI-ASON
Tetre ua3]

SMIN DIS IL
neld M=2q0y

(Tewmor v M woxy Jundar) SmoN [edssed,,
pAmeT Juely

sfuroq OIS 21ddy

xoqdeog s JanIoIey)) 2y,

(6861 ‘cT 2unf) samury god

spuodax s JaImseary,

sAeg I01RISTUTIUPY

“USIANT IR0 OM

(6861 aunf) 100f01g aremyog ueydiQ

{Tewmol e oAy §1S() PMMOYS

JIOYNPH 2y} Wox

Py

vi oo
-

g“i\—hﬁmmmvm\o\o ~ oo S

9 JoquwinN JOUpT ‘ynws g Welim
£ Qwn|oA panssay siybly |1y
*oul ‘snsn ‘g6t wbuAdo

123397752

6861 DOny/Anp

P.O BOX 1148
LA JOLLA, CA 92038
ADDRESS CORRECTION REQUESTED

USus

	20100311175848905.pdf
	20100311180126053.pdf

