March 1989

Copyright 1889 USUS, Inc.

he New

Hg NewsLetter

that Fits. We Print
William D. Smith, Editor

Volume 3
Number 3

From the Editor
by William D. Smith

Welcome to our new officers and staff. USUS
now has a new President, Alex Kleider, a
Secretary, Howard J. Sweet and a publisher
Robert Geeslin. Robert will handle printing
and mailing the NewsLetter, taking some work
off of Hays' hands.

The middle section of this Newsletter is the

- current USUS directory as of March 1st, 1989.

It is setup so that it can be removed and used
separately.

Thanks Alex for submitting one of his modules
for inclusion in this NewsLetter.

This NewsLetter is a little bigger then normal,
partly because of the directory and partly from the
postage cost. For first class mail, which is what
we are sending out the NewsLetter as, it cost 25¢
for the first half ounce and 20¢ for each
additional half ounce. Twelve pages make up a
half ounce, so I to make the Newsletterend up a
multiple of twelve pages, usually 24. With the
directory and the stuff Alex submitted, I was over
24 pages so aimed for 36. This did not leave
enough room for one of my units I was going to
put in (string ops), so it will appear in the next
NewsLetter.

Q& /|A?..

Robert Spitzer (CIS: 75226,3643) posted the
Jollowing question to MUSUS:

Anyone have any suggestions about the
following problem? 1 will post my solution
(kluge) later; I am sure one of the gurus here has
come up with a neater one, though. It is the case
of the mysterious vanishing GOTO

Consider initializing a large, complex, multi-
tasking program (for example, a 43,000 line
operating system). You need to go through a very
careful sequence of initialization. This could fail
at any step. If it does, you want to backtrack

exactly through a de-initialization sequence. You
do not want to deinitialize stuff that wasn't
initialized (like semaphores, tasks, etc) because
this can blow up. Dr. Wirth, in a massive
triumph of "purity of thought" over practicality,
has eliminated the GOTO from Modula. The
"structured coding" disaster would look like this:

init (a);

IF fail to init (b), DE-init (a);

IF fail to init (c), DE-init (b), DE-init (a);

IF fail to init (d), DE-init (c), DE-init (b),
DE-init (a);

(notice the endless duplication!)

and so on (yes, one does outgrow structured
coding!). Short of kluging a "computed GOTO"
(remember FORTRAN?), I have come up with a
crude way to simulate it; but I am wondering if
there is any elegant solution, short of abort/hit
reset switch?

I suggested the following (the iterative method):
How about: (rough pseudo code)
I := FirstInit;

repeat
case I of
FirstInit : Ok := Init (a);
FirstInit + 1 : Ok := Init (b);

Lastlnit : Ok := Init (z);
end { cases };

if Ok then I:=1+1;
until not ok or (I = LastInit);

if not Ok then
for I := I down to Firstlnit do begin
case I of
FirstInit : De-init (a);
FirstInit + 1 : De-init (b);

Lastlnit : De-init (z);
end { cases };
end { for };

Jim Merritt (CIS: 76703,3030) responded with:

William Smith has already given you an iterative
solution to the problem if you can make the
assumption that failure to initialize module n
requires the backwards de-initialization of
modules 0..n-1 without any gaps in the
sequence. Sometimes, of course, you can plod
along even if some of your modules do not
initialize properly (i.e., graceful system
degradation). You will still have to deinitialize
the ones that were OK in backward order. I like
to put de-initialization "orders" on a stack
(usually implemented as a linked list), which I
unwind whenever the time for deinitting comes.
If you don't like to do it with a stack, then you
could perhaps keep track of the successful; inits
with a bitset (or a larger set, if your
implementation permits), and in a de-init loop
similar to Bill's, check to see if any particular
module is in the set of initialized-module set.
When you get a "hit," you call the appropriate de-
init routine. The latter kind of strategy works
well for me in both Pascal and Modula. I am
curious to learn how you solved your problem.

Tom Cattrall (CIS:72767,622) also answered.

*Bob-- It's possible to do that in a clean manner
without goto's. First, allocate an array or list of
elements containing procedure variables. Then
whenever code anyplace does something that it
later wants to have undone, it calls the terminate
module with a procedure variable to add to the
list. At termination your code calls the
termination module which walks the list in the
proper order making the various calls.

I prefer the procedure variable list to a set or
some other flag mechanism because it is open
ended and the termination module needn't change
as modules are added or deleted from the system.

On any unexpected terminations you insert a call
to the DoAliTerminations procedure besides the
call you'd have on normal exit (if any) from the
program. Another extension is to pass a priority
along with the procedure variable. This would
affect the order of the terminations.

The top level of your system then looks like:

IF DoAllInits THEN
GetToWork;
END;

Page 2

DoAllTermination;
(* call termination module *)

The function DoAlllnits looks like:

IF NOT InitA THEN
RETURN FALSE;

END;

IF NOT InitB THEN
RETURN FALSE,

END;

IF NOT InitX THEN
RETURN FALSE,;

END;

RETURN TRUE;

The various Init* procedures do the required
initialization and put any needed terminate
procedure calls into the terminate list.

Administrator Says
by Hays Busch

I hope all of you find the USUS Member Roster
interesting and helpful. (The last full listing was
published in January, 1982, so it's been a long
time since there's been a new one!) Now you
can find out if there are any other USUS
members in your town, county, state or country.
And in some areas, you may well be the only
member! But, that very fact gives each of you a
chance to help USUS get back some of the
members it has lost over the years. Here are a
few ways you can do this,

1) For those of you who have been members for
some time, scan the list for names of members
you recall from the past. If you don't find them
listed and know how to get in touch with them,
give them a call or drop them a note telling them
what USUS is doing now. If you don't know
how to reach them, chances are pretty good I
have them on one of our "Expired Member
Lists". Give me their last name for sure (first
name if you can...and city or state) and [MAY be
able to get you their last know address and
telephone number. My experience is that a
personal contact is the best way to get back a
member who has dropped out but is st
interested in UCSD Pascal.

2) We tried the idea of having a "State Delegate”
for USUS about a year ago. I have no idea if it
worked, since the fellow who volunteered to do
it, flunked out on me. He either did not get any
results, or never gave them to me if he did! The
concept was that the State Delegate would write
all expired members in a state to see if they would
be interested in becoming USUS members again.
Since I have all the stuff from the last try, we
sure could give it another "shot”. This has to be
done on a "one state at a time" basis. If we get
results from the first try, we can on to another
state. All I need to get this started is a note from
you saying you'd be willing to become a "State
Delegate”. Earliest postmark gets the first crack
atit. How about it?

3) If you are planning to sell some stuff at a local
computer swap, USUS might be able to gain
some members if you would set up a
demonsiration of the System and the Language.
Several USUS members have done this in the
past and a couple are planning to do such a swap
in Washington in the next few months. Let us
know at least a month in advance, and we can get
stuff to you that can help. This could include a
demo of PowerTools and programs from the
SWLibe. Each situation varies, so lets work out
the details. '

4) If you belong to a local computer club, some
of the other members may be interested in Pascal
or Modula2. Ask around. If you get enough
who want to join, a "user group discounted
membership fee" can be approved by the USUS
Board. In the past, this activity has worked quite
well for the TT 99/4a group.

USUS still needs one member to take charge of
New Membership Development. If that's
something you would like to take on, USUS can
sure use your help for this kind of activity. With
Board of Directors approval, we can spend small
amounts of money for this kind of activity. The
real test is getting enough new members from the
effort to cover the cost of the effort. If that
happens, the activity is worthwhile!

USUS now has a new "Publisher” for the
NewsLetter. His name is Bob Geeslin. He took
over the responsibility for printing and mailing
this issue and will continue to do this for some

time to come. Saves me about a day per month
and I appreciate his help very much.

A note about mail turn-around time. It takes
about two weeks for me to get mail you send to
the La Jolla P.O. Box. This is because William
Smith, our NL Editor picks it up about once a
week and forwards it to me in Colo. So
depending on the workload, I may not get back to
you for 4 to 6 weeks from the time you mail
something to me. (I try to stay within 4-weeks,
but its not always possible.) So, if something is
in a "hurry" you can always write me at my home
address (see Roster listing) or call information for
my telephone number. I'm home most days and
evenings.

Treasurer's Report (Jan 1989)
by Robert E. Clark, Treasurer

Bank Balance $7,183.79 12-31-89
Income - January 1989
Dues: (new/renew)
Student 0.00 010
General 785.00 2/19
Professional 100.00 0/1
Institutional 0.00 /0
Other Income:
Library fees 7.00
CIS 44 84
Total Income: 936.84
Expenses - January 1989
Administrator:
CIS 27.27
Telephone 6.25
Photocopies 1.35
Postage 234.07
Printing 320.14
Supplies 12.05
Other:
Mail from La Jolla 5.20
Bank charge 1.00
Total Expenses $607.33
Bank Balance $7,513.30 01-31-89

Page 3

Board of Directors Minutes (Jan. 17, 1989)
by Samuel B. Bassett

MINUTES OF THE SPECIAL MEETING OF THE
BOARD OF DIRECTORS OF USUS, INC., HELD
IN ROOM 1 OF THE MUSUS FORUM TELE-
CONFERENCING FACILITY ON THE COMPU-
SERVE INFORMATION SERVICE, JANUARY 17,
1989.

Present at the meeting were:

User ID Name
76314,1364 Sam'l Bassett, Board Chaircritter
73447,2754 Henry Baumgarten,
Board Member
72401,1417 Frank Lawyer, Board Member
70260,306 A. Hays Busch, Administrator
72747,3126 Robert Clark, Treasurer
73007,173 William Smith, Assistant SysOp,
NewsLetter Editor
72135,1667 Harry Baya, Member
71515,447 Alex Kleider, Member

Matters dealt with were:
Ratification of Minutes

'The Chaircritter moved that the minutes of on-line
Board meetings up to and including the December
1988 meeting, as published in Data Library 1 & 8
of MUSUS and in the NewsLetter, be accepted
as official.

The motion passed by a unanimous vote of the
Officers & Directors present.

Budget

The Board discussed the proposed Budget,
predicated on 250 members, posted in Section 8
of MUSUS by Bob Clark. Frank was concerned
that USUS would have enough money to publish
9 NewsLetters, and that there were no big
expenses hiding in the bushes. He was assured
that there was, probably wasn't, and the Budget
was accepted by vote of all present.

The President Problem

The Chaircritter announced that he had not been
able to contact Weber Baker, and that USUS was
thus officially without a President, as per the
Resolution adopted at the December meeting.
Bob Clark mentioned that Alex Kleider had said
he would be willing to serve if asked, Frank

Page 4

Lawyer asked why he had to be asked -- wasn't
he willing to volunteer? Henry Baumgarten
formally nominated Alex, and Bob Clark
seconded the nomination. The Chaircritter
proposed the following motion:

"The Board of Directors of USUS, Inc, hereby
asks Alex Kleider, who had indicated his
willingness to do so, to accept the duties of
President of USUS, Inc."

The motion was carried unanimously

The Secre Problem

USUS is also without a Secretary, and Harry &
Frank had volunteered to get in touch with
Howard Sweet, and find out if he were willing to
accept the post (or the duties, for that matter).
When asked by the Chaircritter whether they had
done so yet, Frank said he had tried calling, but
had gotten no answer. He said that he would
continue trying. After some more general chat,
the Chaircritter ruled the matter "still pending”
and moved on to:

Harry's Statement of Policy on Opening Up

MUSUS /USUS (following these minutes)

. . . which had been posted in Section 8. The
Chaircritter opined that he rather liked it, and that
when asked earlier, Henry had said that his only
worry was that USUS might lose exclusively
p-System types. Harry said he would like to post
the motion to Section 1 to invite comment by
other members, and Henry opined that it should
also go into the next newsletter. The Chaircritter
agreed, and tried to ask William to take care of
both matters, but found that he had dropped out
of the conference (my CompuServe node went
down). Frank said that since USUS and
MUSUS are now effectively open, why bother
with being so formal? The Chaircritter replied
that since USUS has had the reputation of being a
tight, closed little group, he wanted to do
something formal to change that. At this point,
the motion was tabled, pending further comments
from the membership.

Alex is asked

At about this time (11:15 EST) Alex Kleider
joined the conference, and was brought up to date
about being asked to be President. He replied
modestly that he probably ought to chat with the

Directors directly before giving an answer.
Frank said he thought Alex should just accept
forthwith, and before he and- Alex could get into
it, the Chaircritter told the two of them to goina
corner and discuss it off-line, clearing the board
for discussion of:

Bob Spitzer's motion in regard to JPAM

In a series of messages on MUSUS, Bob Spitzer
had argued that USUS should approach the
publisher(s) of the Journal of Pascal, Ada, and
Modula-2 (JPAM), with the purpose of making
JPAM the "Official Journal of USUS". the two
chief advantages of this idea are: 1) No expense
or hassle of editing, printing, and mailing
Journals; and 2) Exposure of USUS to a large
number of users of other Pascals and Modula-2s.
The Chaircritter put it that the issue was whether
to go ahead with the approach to JPAM to see
where it leads, and to find someone to do the
approaching.

A long discussion ensued, in which no one
expressed a great deal of either enthusiasm or
antipathy for the idea, and it turned out that
Henry was willing to talk to Prof. Weiner, the
Editor, and try to contact the Publisher. the
Chaircritter distilled the discussion into a motion:

“That the Board of Directors of USUS, Inc.,
feeling that an association with JPAM might be in
the best interests of both parties, authorizes
discussions to begin which may lead to a wider
and more concrete definition of that association."”

This wording was accepted by all present.

Having run out of Agenda items and steam, the
Board resolved to adjoumn until 7 PM PST / 8 PM
MST /9 PM CST / 10 PM EST February 7th,
1989, and did.

The Special Meeting of the Board on
Compuserve was adjourned at 12:00 midnight on
January 17/18th, 1989,

Minutes submitted by:

Samuel B. Bassett

Harry's statement as posted to MUSUS and
refered to in the preceding minutes.

Fm: Harry Baya, 72135,1667
10-Jan-89 07:44:13

To: Usus Members
Sb: Broaden USUS/MUSUS

This is a first draft of a motion reflecting USUS's
intent to broaden its scope to include a wider
range of programming languages and
environments than it has in the past. I found it
difficult to be very specific about this and have
tried to use the broadest possible wording.

Up until this date the primary stated focus of
USUS, and its CompuServe Forum, MUSUS,
has been UCSD Pascal and the UCSD micro-
computer development environment, It is now
our desire to broaden our focus to: (a) reflect our
interests and activities related to the Modula-2
language and (b) include other programming
languages in the Pascal/Modula-2 family.

Toward that end (a) we note that USUS has in
the past provided resources and support to the
community of users of UCSD Pascal and the
UCSD micro-computer development environment
and (b) we now state that USUS will now
provide those same resources and support to the

‘community of users of all variants of Pascal,

Modula-2 and closely related languages. Being
aware that this wording is very broad, USUS
retains the right to include or exclude under its
focus umbrella any particular computer language
or related activity that it chooses.

We state further that it is not our intent to usurp
or replace the activities of other existing user
groups or CompuServe Forums, but rather to
meet needs not met elsewhere and to support the
needs and interests of a community which
includes both the individual users of included
languages and other related user groups.

Board of Directors Minutes (Jan. 17, 1989)
by Samuel B. Bassett

MINUTES OF THE SPECIAL. MEETING OF THE
BOARD OF DIRECTORS OF USUS, INC., HELD
IN ROOM 1 OF THE MUSUS FORUM TELE-
CONFERENCING FACILITY ON THE COMPU-
SERVE INFORMATION SERVICE, BEGINNING AT
10:09 PM EST FEBRUARY 7TH, 1989,

Present at the meeting were:
UserID Name

76314,1364 Sam'] Bassett, Board Chaircritter
73447,2754 Henry Baumgarten,

Page 5

Board Member
72401,1417 Frank Lawyer, Board Member
70260,306 A. Hays Busch, Administrator
72747,3126 Robert Clark, Treasurer
73007,173 William Smith, Assistant SysOp,
NewsLetter Editor
72740,66 Howard Sweet, Secretary-
Designate

The meeting started at about 10:15, the Chair-
critter showed up at 10:25, and came to order
(with the appearance of Henry) at about 10:35
EST.

- Matters dealt with were:

The Secretary Problem

In the interim since the January meeting, Frank
Lawyer had done a heroic job of arm-twisting,
and persuaded Howard Sweet to take over the
duties of the Secretary. Most of the first half of
the meeting was involved in the Chaircritter
trying to get a straight & explicit answer (on the
record) from Howard that he was indeed willing
to be USUS Secretary -- he was and is, and with
defining what the Secretary needs to do -- make
up a paper Book of Minutes, and how that might
be accomplished. Having done all of the above,
the Board congratulated Howard on becoming
Secretary, and moved on to:

The President Problem

In the interim since the January meeting, Alex
Kleider had accepted the job of USUS President,
and continually asked for direction on what duties
were expected of the person in that post. After
very little discussion, it was determined that the
most important tasks for the President to
accomplish in 1989 were: 1) Increase USUS
Membership; 2) Form an IBM/PC SIG; and 3)
Arrange for a 1989 General Meeting.

This was agreed to by unanimous vote of the
Board and Officers present, and the President
was 50 instructed.

The JPAM Question

This was Old Business, continued from the
January meeting, about what kind of a
relationship should be formed with the publisher
of the Journal of Pascal, Ada, and Modula-2.
Henry reported that he had talked with both Prof.
Weiner, the Editor, and with the Publisher, who

Page 6

had made an offer of terms which Henry posted
in Section 8. He evinced a willingness to
continue discussions with the Publisher, but not
without direction from the Board on what
directions to go, and what positions to take.
Since several of the Board Members and Officers
(notably including the Chaircritter) had not had an
opportunity to read the offers, the matter was
tabled pro tem, and all agreed to read the offers
off-line and get back to Henry as soon as
possible.

The meeting then broke up (in several senses --
the Chaircritter's computer printed garbage &
refused to straighten out) with a vague agreement
to meet again soon, and certainly on the 2nd

Tuesday of March.

The Special Meeting of the Board on Compu-
Serve was adjourned just before midnight EST
on February 7th, 1989,

Minutes submitted by:
Samuel B. Bassett

WDS Environment (more background)
By William D. Smith

As 1 stated earlier, I didn't have room to include
my string ops unit {StrOps_U) in this
NewsLetter. I will be putting it in the next
NewsLetter. In the NewsLetter after that I will
be talking about my operating system interface
unit (OpSys_U). This unit provides an interface
to the system. With very few exceptions, none
of my programs or other units use any of the
system units. The operating system interface unit
does require the interface of the units Kernal,
DirlInfo, FileInfo, SysInfo, Attribute, ScreenOps
and Transfer (from Pecan) to compile. You may
want to review the interface of these units before

then.

For development work, I use a Sage IV with a 40
megabyte hard disk and 4 meg of memory. The
4 meg of memory provides a enough room for a
large enough external code pool to put all the
code in memory at once and also leaves enough
for a 7700 block ramdisk.

The target environment consists of a version of
the p-System (AOS, IV.13, V.21 or IV.22) and
a Wyse 50 or 60 terminal.

These environments have influenced the way I
have designed the units and organized the files in
what I call the "WDS Environment”. To support
the different versions of the p-System, I have
tricd to isolate both system and hardware
dependant stuff in a few units.

The following unit is used so that I don't have
problems like those in the system units (Dirinfo,
Filelnfo, etc). In each of these units, there is a
type for a date record (also LongString). The
structure is the same but the names are different.
This means, assigning a date of one type to the
other is not allowed. You have to use a variant
record or the pmachine instruction to do it.

WDS Globals Unit
By William D. Smith

This unit contains constants, types, a few
variables and one procedure used by all my other
programs and units, Two of the constants
(Ve_Glbs U,Vs_Glbs_U), one variable
(vv_G1bs_U) and the procedure (Ck_Version)
are used for version control. Version control is
only implemented for IV.22 since it depends on
the order in which units are initialized,guaranteed
by IV.22 and AOS, but not the other versions.
AOS provides version control at the system level
so it need not be done by the programmer. There
is a bug in QuickStart which initializes units in
the wrong order, so I do not use QuickStart
(don't miss it since all the programs I use are
resident in a sub volume on my ramdisk).

How does version control work? 1In the
initialization section of each unit, the version
variable (vv_Glbs_ U in this case) is set to the
version constant (Ve _Glbs U). The compiler
embeds the value of the constant in the code (5
for this unit). When the code is executed at

runtime, the variable is set to 5. The client unit or
program makes a call to Ck_Version passing it
the same constant and variable. As before when
the compiler compiles the call, it embeds the
constant 5 in the code. Ck_Version compares
the variable and constant and if they are not the
same, give a message and aborts the program.
Now when the interface of the unit changes, the
version is incremented. When the call to
Ck Version is compiled, the constant 6 is put in
the code. When the program is run, if an old
version of the unit is used (with constant 5 in its
initialization section), the version variable and
constant will not be the same and the program
will abort.

The constants in this unit are mostly error codes
and the value of Null (a blank or not used value).

The types are for the common lengths of strings I
use (all odd length since the compiler allocates
even number of bytes for a string and the length
byte is not counted). I declare CharSet so that
when variables of type "set of char" are declared I
can use this instead. CharSet uses § words, "set
of char” uses 16 words. Charset only supports
7 bit characters. OnOf£f is used for a stack of on
and off values. YesNo is a four way toggle.
FibPtr is used to handle dynamic file allocation
such as "array of file". More when I present my
file [/O units. DateRec and TimeRec are declared
here so that the different units which will use
dates and times use the same record type. It
matches the structure of the system date and time
record.

The variables are used for very low level inter-
unit communication (ScUsed, Debug) and
variables (Closed, NullTad) which should be
constants but are not allowed by Pascal.

{ WDS Globals unit {1.13] -—— 09 Mar 88 } { [xmSd|nx}f8ie|. }
{50+}
{$C {c) William D. Smith -- 1988, 198%, All rights reserved. }
{ File: Glbs U.Text Version 1.13 09 Mar 88
Author: William D. Smith Phone: (619) 941-4452
P.0O. Box 1139 CIS: 73007,173

Vista, CA 92083

Page 7

Notice: The information in this document is the exclusive
property of William D. Smith. All rights reserved.
Copyright (c) 1988 to 1989.

System: Power System version IV.2.2
Compiler: Power System Pascal Compiler
Keywords: WDS Glbs_U Glcbals Unit
Description: WDS globals unit. This unit éontains the stuff used by the other
WDS units.
Change log: (most recent first)
Date Id Vers Comment

09 Mar 88 WDS 1.13 Added Direction and CmpType.

14 Feb 88 WDS 1.12 Added FibPtr, Closed and ScUsed.

08 Feb 88 WDS 1.11 Added M NoHeap.

06 Feb 88 WDS 1.10 Added CopyRight message and M _ errors.
23 Oct 87 WDS 1.09 Added Str 1.

20 Oct 87 WDS 1.08 Added Vs Glbs U.

16 Sep 87 WbDS 1.07 Added SysFib type.

20 Aug 87 WDS 1.06 Put in a readln after message.

16 Jul 87 WwWpS 1.05 Put in Ck Version.

12 Jun 87 WDS 1.04 Added YesNo, ¥nSet and OoSet,

02 Jun 87 WDS 1.03 Added Byte.

28 May 87 WDS 1.02 Added Str 31.

27 May 87 WDS 1.01 Added TimeRec, TadRec, and OnOff. MNullDate to NullTad.
08 May 87 WDS 1.00 Started creating this unit.

{$I VERSICON.TEXT} { Declares conditional compilation flags }
unit Glbs U;
interface {$ Glbs U [1.13] 09 Mar 88 }

const V¢ Glbs U = 5y { 14 Feb 88 }
Vs_Glbs_ U = 'Glbs U';
CopyRight =
' (c) Copyright 1983 to 1989 by William D. Smith. All rights reserved';
Null = =] { Blank or not used value }
M NoError = 0; { No error or message }
{ Errors 1 to 31 are I/0 errors and are

the same as the system I/C errors. }

M Empty = 43; { File is empty }

M Bof = 44; { At begining of file }

M Eof = 45; { At end of file }

M Unknown = 46; { Unknown I/0 error }

M NoHeap = 47; { No more room on the heap }

M ExecErr = 48; { BErrors 49 to 79 are execution errors and
are the system execution errors offset by
48. There are 32 possible. }

M UserErr = 80; { Exrors 80 to 255 are user defined errors }

Page 8

type Byte

var

procedure Ck Version (Vv, Vg
This procedure compares Vv and Vc.

{

Str 1
Str 3
Str 5
Str 7
Str 9
Str 15
Str 23
Str 31
5tr 63
Str 81
Str 133
Str 255

CharSet

CnOff
CoSet

YesNo
¥YnSet

CrapType

FibPtr

Direction

DateRec

TimeRec

TadRec

Vv_Glbs U
ScUsed
Debug
Closed
NullTad

T | | N 1 | N I |

i o

([

0..255;

string [1}]:;
string [3]:
string [5]:
string [7];
string [9]);
string [15];
string [23]:
string [31]:
string [63]:
string [81];
string [133]:
string {255];

set of ' ',."~";

{ 7 bit chars, 8 words in set }

(on, Off, Pop, Toggle, Show); { Stack values }

set of OnCff;

{(Neither, Yes, No, Cnly};

set of YesNo;

{ Three or four way toggle }

(it, { Less then }

Eq, { Equal }

Gt { Greater then }

):

~integer; { Initialize to Closed }
(F_What, First }

P What,

N What,
L What
):

packed record
Month : 0..12;
Day : 0..31;
Year : 0..100;

end { DateRec };

packed record
Min : 0..59;
Hour ; 0..24;

end { TimeRec }:

record
D : DateRec:
T : TimeRecg;
end { TadRec }:

integer;

{
] { Previous }
C What, { Current }
{ Next 1}
{ Last }

boolean; { Set when low level stuff uses screen (Rv_U) }
: boolean; { Controlled by T To U }
: FibPtr;

TadRec;

integexr;
If they are different, an errcr message

Vs User, Vs_Used : Str 15);

is output, the procedure waits for a return to be typed and then the program
halts. Vv for each unit should be the first variable. Vs User is the user

program or unit name.

Vs Used is the used unit name.

Page 9

implementation

procedure Ck Version { (Vv, Vc : integer; Vs User, Vs Used : Str 15} };
begin o -
{$B IV22+}
if vv <> V¢ then
begin
write {'ERORR: "', Vs User, '" uses wrong version of "',
Vs Used, '" <ret> T");
readln; '
exit (program):
end { if };
{3E 1V22+)
end { Ck Version };

begin { Glbs U }
Vv Glbs U := Ve Glbs U;
ScUsed := false;
Debug := false;

Cleosed := nil;

fillchar (NullTad, sizeof (NullTad), 0}:;
NullTad .T .Hour := 24; { To match system time standards }

*Khk -

end {3Q- Glbs U }.

The following three Modula2 modules where submitted by Alex Kleider. They show the use of a
stand alone module, ListOps, both the definition and implementation part (similar to a p-System unit)
and a test module, TestListOps (similar to a p-System program). As you are reading, note the use
of the conditional compilation features of Modula2 ($VAR, $SET, $IF and $END statements) for
embedding test code in the modules . Alex has another module which handles lists implemented as
files stored on disk. The TestListOps presented here was derived from the module to test that and the
messages make references to files. When it says file, think list. These modules where developed with
Volition’s Modula2 and later ported to Senic's Modula2 on a Stride. When "«++" ends a line and
begins the next line, these two lines must be combined and the "s+"s removed to compile.

MODULE ListOps (definition)
by Alex Kleider

(* ListOps : definition of doubly linked circular list module.
(c) copyright by A. Kleider, 1984-89. All rights reserved.

An amalgamation of the original <lists> module (developed in 84) and the subsequently (Aug 85)
developed circular doubly linked list. Implemented as a doubly linked circular list that can serve as
a stack, a queue, or any sort of a list.

Before a variable of type tList can be used it must be initialized with <initList>. When finished
with its use, do a <freeList>.

The client is strongly advised to use each freshly initialized <tList> as one and only one of the
following and restrict him/herself to the appropriate associated procedures:

{ insertLeft/Right { headPosition
(R)ound List { putNode } { listPosition }
{ appendLists } { delete }
} { getNode }
(O)rdered List) } { waverseLeft/Right } { init/freeList
% { empty

} { place { headPosition

Page 10

} { mergeLists

(P)riority Queue }
) removeQ

(Q)ueue insertQ }
(S)tack push
pop

When using (round) lists, the client must guard against traversing (<traverseLeft> or
<traverseRight>) and empty list. Also watch that you don't unbeknowingly go traversing past the
head either to the left from head to tail or to right from tail to head. A similar problem can arise with
the inserts.

If using an ordered list or a priority queue: the client module will have to define a procedure of type
vtCompare. An example follows:

PROCEDURE compare { itemA, itemB : ARRAY OF WORD)} : INTEGER;
VAR pA, pB : POINTER TO rtItem (* the data structure to be listed *};
BEIN
PA := ADR (itemA }; pB := ADR (itemB };
IF pA~.<key> < pB*.<key> THEN RETURN -1;
ELSIF pA~.<key> = pB~.<key> THEN RETURN 0:
ELSE RETURN 1;
END;
END compare;

Asin all generic modules, there is little in the way of type checking and the client must take
responsibility for never using any data type in conjunction with a particular list except for the type
with which that list was initialized. My personal view/bias is that this is a responsibility that
should not be beyond the abilities of those who might become clients!

*}

(*$PRINTERRORS := TRUE;*)

DEFINITION MODULE ListOps;

FROM SYSTEM IMPORT WORD;

EXPORT QUALIFIED tList, tListPosition, vtCompare, initList, freeList, empty, headPosition,
push, pop, insertQ, removeQ, delete, getNode, putNode, place,
traverseleft, traverseRight, insertLeft, insertRight, mergeLists, appendLists;

TYPE tList; tListPosition;

viCompare = PROCEDURE (ARRAY OF WORD, ARRAY OF WORD) : INTEGER;

PROCEDURE initList (VAR list : tList; altem : ARRAY OF WORD);
(* 1initializes the data structure as an empty linked list/stack/queue *)

PROCEDURE freeList (VAR list : tList; altem : ARRAY OF WORD);
(* Releases the memory used by the <list> structure. Uses the data item, <altem>, parameter just as
a holder. #)

PROCEDURE empty (list : tList) : BOOLEAN;
(* returns empty if the linked list is empty *)

PROCEDURE headPosition (list ; tList) ; tListPosition;
(* Returns the head of the list. The list head is initially defined as the first item inserted into the list.
It can subsequently be changed by deletion, pushing, poping, removeQ, etc. *)

PROCEDURE push (altem : ARRAY OF WORD; VAR stack : tList);
(* inserts altem to the top/head/front of the stack/queue/list onto the top of the list, replacing the head

*)

Page 11

PROCEDURE pop (VAR stack : tList; VAR altem : ARRAY OF WORD);
(* pops off the top; same as rermoveQ *)

PROCEDURE getNode (list : tList; loc : tListPosition; VAR altem : ARRAY OF WORD);
(* pulls the data out of the list item at loc and into altem list is not changed *)

PROCEDURE putNode (altem : ARRAY OF WORD; VAR list : tList; loc : tListPosition);
(* converse of getListData: replaces the data at loc with altem length of <list> remains unchanged but
the data at <loc> ofcourse is. *)

PROCEDURE insertQ (altem : ARRAY OF WORD; VAR q: tList);
(* inserts altem at the bottom/end/rear of the stack/queue/list *)

PROCEDURE removeQ) { VAR q : tList; VAR altem : ARRAY OF WORD),
(* same as a pop ¥)

PROCEDURE insertRight { altem : ARRAY OF WORD; VAR list : tList;
VAR loc : tListPosition);
(* Inserts altem into the linked list to the right of the item at loc. <loc> takes on the new position.*)

PROCEDURE insertleft (altem : ARRAY OF WORD; VAR list : tList;
VAR loc : tListPosition);
(* I <list> is <empty>, then simply adds <altem> to the list; Otherwise Inserts <altem> into the
linked list to the left of the item at loc, <loc> takes on the new position. <listHead> remains
unchanged so <insertLeft> relative to head of list is same as <insertQ>, not <push>. *)

PROCEDURE delete (VAR list : tList; VAR loc : tListPosition;
VAR altem : ARRAY OF WORD);
(* Deletes the item at loc from the linked Iist. The data in the deleted item is left in altem. If the list
head is deleted then list head is reset to the item that was on its right. <loc> is set to position of
item to right of the one deleted. *)

PROCEDURE traverseRight (list : tList; VAR loc : tListPosition,;
VAR altem : ARRAY OF WORD; VAR bLastltern : BOOLEAN);
(* Traverses the linked list, right to left; reads the data at loc into altem and then resets loc to the next
item in the list. If the <altem> read is the last in the list then <lastltern> will be set to TRUE, else it

is false. *)

PROCEDURE traverseleft (list : tList; VAR loc : tListPosition;
VAR altem : ARRAY OF WORD; VAR bFirstltem : BOOLEAN);
(* traverses the linked list, left to right; reads the data at loc into altem and then resets loc to the next
item in the list. If the <altem> read is the first item in the list (i.e. the head) then <bFirstitermn> will
be set TRUE, else it is set FALSE. *)

PROCEDURE mergeLists (listA, listB : tList; VAR newList : tList;
compare : viCompare; aA, aB : ARRAY OF WORD);
(* Assumed: listA & listB are ordered lists; newList is already initialized. <listA> and <listB> are left
as is. <newList> will be ordered combination of both listA & listB. aA & aB serve only as
holders, they must be of appropriate type. *)

PROCEDURE appendLists (listA, listB : tList; VAR newList : tList;
altem : ARRAY OF WORD),
(* <listA> & <listB> remain unchanged. <newList> <== listA plus listB. <newList> is assumed to
have been initialized. <altem> is only a holder and must be of appropriate type. *)

PROCEDURE place (altem : ARRAY OF WORD; VAR list : tList; unique : BOOLEAN;
VAR altemB : ARRAY OF WORD; compare : vtCompare);

(* places altem into the ordered List; if the <altem>'s key (as detected by <compare>) is already in the
list, then further action is determined by the boolean parameter <unique>: if TRUE: the data item
(with that key) that was in the list is put into <altemB> and replaced by <altem>; if FALSE: there
will end up being two data items in the list, both sharing an identical key. NOTE: altemB and

Page 12

altem MUST BE TWO SEPARATE VARIABLES of identical type. DO NOT USE THE SAME
VARIABLE FOR BOTH PARAMETERS. *)

(* The number of items allowed in a list is limited by memory availability and by MAXCARD (i.c.

64K). (This should not pose any serious problems; if it does, the implementation can be
recompiled with one type declaration modified to have a LONGCARD CARDINAL field.) *)

END ListOps.

MODULE ListOps (implementation)

(*

by Alex Kleider

IMPLEMENTATION of ListOps MODULE
An amalgamation of the original <lists> module (developed in 84) and the subsequently (Aug 85)
developed circular doubly linked list.

(c) copyright by A. Kleider, 1984-89. All rights reserved.

To give credit where credit be due: let it be known that the subjects of stacks, queues and linked
lists were studied from the 1981 edition of the book "Data Structures Using Pascal" by Aaron M.
Tenenbaum & Moshe J. Augenstein published by Prentice-Hall, Inc., Englewood Cliffs, New
Jersey 07632. There are however many data structure text books that cover this material; this just
happens to be the one available at the time development of these routines was begun (in 1984.)

<AdrsPerWord> was originally imported from Volition System's <SystemTypes> Module which
isn't provided with the ScenicSoft system and hence is just declared a Constant of 2.

The DL (for debug listOps) compile time option is/was for debugging this module.

The DC (for debug client) compile time option is included with the expectation that a version with
this option set to TRUE would be used during program development but that a finished product
would import a version compiled with the option set to FALSE. The error handling procedure
(errorTerminates) is set up the way it is to allow others to reimplement it as one that will report the
nature of the error to the user and then allow the user to set the function result to either TRUE
(indicating a desire to terminate the process) or FALSE (indicating a desire to carry on). Of course
the response/result could be ignored by the client program, or this procedure could override what
the client user wants and cause the program or process to halt regardless, depending ofcourse on
the nature of the error.

*)

$VAR DL : BOOLEAN,; TYPE

$SET "Include listOps debugging aids? " DL tListPosition = POINTER TO rtNode;

$VAR DC: BOOLEAN; _

$SET "Include client debugging aids? " DC “Ef&ijgggg?&

IMPLEMENTATION MODULE ListOps; pLt, pRt : tListPosition,

FROM SYSTEM IMPORT END; (*rtNode*)
ADDRESS, ADR, WORD, tList = POINTER TO rtList;
CARDTOADDR, TSIZE; rList = RECORD

FROM Storage IMPORT pHead : tListPosition;
ALLOCATE, DEALLOCATE; ninfoSize : ADDRESS;

$IF DC OR DL THEN Eg%ﬁ;fﬁlfgm‘m

FROM InOut IMPORT » VTEAS
WriteLn, WriteString, WriteHex, Read,;

$END:;

CONST

AdrsPerWord = 2;

Page 13

$IF DL THEN
TYPE
rtDatum = RECORD
name ; ARRAY [0..27 JOF CHAR;
number : ARRAY [0.. 13] OF CHAR;
END;
VAR
list : tList;
rList : rtlist;
rNode : rtNode;
datum : rtDatum;
positionA,
positionB,
positionC : tListPosition;
waitChar : CHAR;

PROCEDURE show
(subject : ARRAY OF CHAR,;
value : ARRAY OF WORD);
VAR i: CARDINAL;
BEGIN
WriteLn; WriteString (subject);
FOR i :=0 TO HIGH (value) DO
WriteHex (CARDINAL (value [i]),5);
END;
END show;
$END;

PROCEDURE move
(A, B : ADDRESS;
nMemoryLocations : LONGCARD);

(* A "smart" procedure which does a <move-
Left> or <moveRight> as appropriate. *)

VAR 1: LONGCARD;
n : ADDRESS;
step : LONGINT;

BEGIN
IF (A =B) THEN RETURN; END;
IF B < A THEN
step := AdrsPerWord;
ELSE(* A<B*)
step := - AdrsPerWord;
n := { nMemoryLocations - AdrsPerWord);
A=A+n
B:=B+n;
END;
i:=0;
REPEAT
BA = AN
A = A + ADDRESS (step);
B =B + ADDRESS (step);
i:=1+ AdrsPerWord;
UNTIL i >= nMemorylLocations;
END move;

PROCEDURE size
(aWords : ARRAY OF WORD) :
ADDRESS;

BEGIN
RETURN CARDTOADDR
(AdrsPerWord * (HIGH (aWords) + 1));
END size;

$1IF DC THEN

PROCEDURE errorTerminates (errorNumber : CARDINAL) : BOOLEAN;
VAR string : ARRAY [0.. 591 OF CHAR; ch: CHAR;

BEGIN
CASE errorNumber OF
0 : string := (‘Failure to create Semaphores in <termIO> initialization. s
1:;
2,

I
l
| 10: string := ('Parameter size mismatch in <LListOps.freeList>.)
| 11 : string := ('Attempt to <ListOps.getNode> from an empty list. K
| 12 : string := (Parameter size mismatch in <ListOps. getNode>.)
| 13 : string := ("<ListOps.delete> received an unallocated <loc> pointer.

| 14 : string := ('Parameter size mismatch in <ListOps.putNode>.

| 15 : string := ('Parameter size mismatch in <ListOps.insertRight>.

| 16 : string := (‘Parameter size mismatch in <IListOps.insertleft>.

| 17 : string := (‘Parameter size mismatch in <ListOps.delete>.

| 18 : string := ('Attempt to delete from empty listin <ListOps.delete>.

Page 14

p—
- s wae w3

\../_/\../-\./\./
-

s

19 : string := ('Atempt to <ListOps. traversenght> through an empty list.
20 : string := ('<ListOps. traverseR1ght> glven <NIL> pointer.

21 : string ;= ('Parameter size mismatch in <ListOps.traverseRight>.

22 : string := ('Attempt to <ListOps.traverseleft> through an empty list.
23 : string := ('<ListOps.traverseLeft> given <NIL> pointer.

string := ('Parameter size mismatch in <ListOps.traverseLeft>.

25 : string := (‘'Parameter size mismatch in <ListOps.mergelists>.

26 : string := ('Parameter size mismatch in <ListOps.appendLists>.

27 : string := ('Parameter size mismatch in <ListOps.place>.

I
l
l
f
I
| 24:
!
i
!

ELSE
(* do nothing; undefined as yet *);
END; (* case *)

- - e we we s

[P NEE - -JS N N N N W)
-

-

WriteLn; WriteString (string); WriteLn; WriteString ("any key to continue");

Read (ch);
RETURN TRUE;
END errorTerminates;

PROCEDURE sizeOK (altem : ARRAY OF WORD; list : tList) : BOOLEAN;

BEGIN
RETURN size (altem) = list*.nInfoSize;
END sizeOK;

SEND;

PROCEDURE newNode
(list : tList) : tListPosition;
VAR pNode : tListPosition;
adr : ADDRESS;

BEGIN
ALLOCATE (pNode, TSIZE (rtNode));
ALLOCATE (pNode?.pInfo, list*nInfoSize);
adr := pNode/.pInfo;

pNode/.plt := NIL;
pNode”.pRt := NIL;
$IF DL THEN

rNode := pNode?,
show ("<newNode> returns:", pNode);
show (" and rNode is:", rNode);
$END;
RETURN pNode;
END newNode;

PROCEDURE initlist
(VAR list : tList;
altem : ARRAY OF WORD),
(* initializes the data structure as an empty linked
list/stack/queue *)
BEGINI
ALLOCATE (list, TSIZE (rtList));
listA.pHead := NIL;
list".nInfoSize := size (altem);

list*.nSize := 0;
END initList;

PROCEDURE freeList
(VAR list : tList;
altem : ARRAY OF WORD);
(* Releases the memory used by the <list>
structure. Uses the data item, <altem>,
parameter just as a holder. *)

BEGIN
$IF DC THEN
IF NOT sizeOK (altem, list) THEN
IF errorTerminates (10) THEN ;
END;
END;
$END
WHILE NOT empty (list) DO
pop (list, altem);
END; (* while nSize # 0 *)
DEALLOCATE (list, TSIZE (rtList));

"END freeList;

PROCEDURE empty (list : tList) : BOOLEAN;
(* returns empty if the linked list is empty *)
BEGIN

RETURN list*.nSize = 0
END empty;

Page 15

PROCEDURE headPosition
(List : tl.ist) : tListPosition;

(* Returns the head of the list. The list head is
initially defined as the first item inserted into
the list. It might be changed by deletion,
pushing, poping, removeQ, etc. *)

BEGIN
RETURN list*.pHead;

_ END headPosition;

PROCEDURE push
(altem : ARRAY OF WORD;
VAR stack : tList);

(* inserts altem to the top/head/front of the
stack/queue/list onto the top of the list,
replacing the head *)

VAR plLoc : tListPosition;

BEGIN

insertLeft (altem, stack, stack”.pHead);
END push;

PROCEDURE pop
(VAR stack : tList;
VAR altem : ARRAY OF WORD);

(* removes the data from the top/head/front of the
stack/queue/list and puts into altem, pops off
the top; same as removeQ *)

VAR plLoc : tListPosition;

BEGIN

delete (stack, stack”.pHead, altem);
END pop;

PROCEDURE getNode
(list : tList;
loc : tListPosition;
VAR altem : ARRAY OF WORD),
(* pulls the data out of the list item at loc and into
aftem *)

BEGIN
$TF DC THEN

IF list*.nSize = 0 THEN
IF errorTerminates (11) THEN ;
END;

END;

IF NOT sizeOK (altem, list) THEN
IF errorTerminates (12) THEN ;
END;

END;

$END;

Page 16

$IF DL THEN
show ("/a move in getNode. loc", loc);
$END
move (loc”.pInfo,
ADR (altem), list*.nInfoSize);
END getNode;
PROCEDURE putNode
(altem : ARRAY OF WORD;
VAR list : tList;
loc : tListPosition);

(* converse of getNode: replaces the data at loc

with altem *)

BEGIN
$IF DC THEN
IF NOT sizeOK (altem, list) THEN
IF errorTerminates (14) THEN ;
END;
END;
$END
move { ADR (altem),
loch.pInfo, list*.nInfoSize);

END putNode;

PROCEDURE insertQQ
(altem : ARRAY OF WORD;
VAR q: tList),
(* inserts altem at the bottom/end/rear of the
stack/queue/list *)
VAR pLoc : tListPosition,
BEGIN
pLoc := g".pHead;
insertLeft (altem, g, pLoc);
END insertQ);
PROCEDURE removeQ
(VAR q : tList;
VAR altem : ARRAY OF WORD),
(* same as a pop *)
VAR pLoc : tListPosition;
BEGIN
pLoc := g".pHead,
delete (q, pLoc, altem);
END removeQ;

PROCEDURE insertRight
(altem : ARRAY OF WORD;
VAR list : thist;
VAR loc : tListPosition);

(* Inserts altem into the linked list to the right of
the itemn at loc. <loc> takes on the new
position. *)

VAR pNew : tListPosition;

BEGIN

$1F DC THEN

IF NOT sizeOK (altem, list) THEN
IF errorTerminates (15) THEN ;
END;

END;

$END

pNew :=newNode (list);

IF listh.nSize = 0 THEN
pNew”.pLt := pNew;
pNew”.pRt := pNew;
list*.pHead := pNew;

ELSIF list*.nSize = 1 THEN
pNew/.pLt :=loc;
pNew”/.pRt :=loc;
loch.pLt := pNew;
loch.pRt := pNew;

ELSE ~
pNew?.plt := loc;
pNewA.pRt := locN.pRt;
loch.pRi~.pLt := pNew;
loc™.pRt := pNew;

END;

loc :=pNew;

INC (list*.nSize);

putNode (altem, list, loc);

END insertRight;

PROCEDURE insertleft
(altem : ARRAY OF WORD;
VAR list : tList;
VAR loc : tListPosition);

(* Inserts altem into the linked list to the left of
the item at loc, <loc> takes on the new
position. <listHead> remains unchanged so
<insertLeft> relative to head of list is same as
<insertQ>, not <push>. *)

VAR pNew : tListPosition;

BEGIN

. $IF DC THEN

IF NOT sizeOK (altem, list) THEN
IF errorTerminates (16) THEN ;
END;

END;

$END

pNew :=newNode (list);

IF list*.nSize = 0 THEN
pNew”.pLt ;= pNew;
pNew/.pRt := pNew;
listA,pHead := pNew;

ELSIF list*.nSize = 1 THEN

pNew”.pLt := loc;

pNew”.pRt := loc;
locr.pLt ;= pNew;
loc™.pRt := pNew;

ELSE
pNew”.pLt := loc”.pLt;
pNew”.pRt :=loc;
loch.pLtA.pRt := pNew;
loc~.pLt :=pNew;

END;

loc := pNew;

INC (listA.nSize);

putNode (altem, list, loc);

$IF DL THEN
rNode := loch,
show ("In insertLeft, loc? after putNode:",
rNode);
$END;
END insertleft;

PROCEDURE delete
(VAR list : tList;
VAR loc : tListPosition;
VAR altem : ARRAY OF WORD);

(* Deletes the item at <loc> and leaves it in
<altem>. *)

VAR rNode : itNode; bHead : BOOLEAN,;
BEGIN
$IF DL. THEN
show (“"Entering delete with loc:", loc);
$END;
$1FF DC THEN
IF NOT sizeOK (altem, list) THEN
IF errorTerminates (17) THEN ;
END;
END;
(* There are 3 special situations:
The FIRST is an error condition if the list is
empty. *)
IF (listA.nSize = 0) THEN
IF errorTerminates (18) THEN ;
END;
END;,

Page 17

IF (loc = NIL) THEN
TF errorTerminates (13) THEN ;
END;

END;

$END

IF (list*.nSize = 0) OR (loc = NIL) THEN
RETURN;

END;

Naode := loch;

IF loc = list*.pHead THEN

bHead := TRUE;
ELSE

bHead := FALSE;
END,;

getNode (list, loc, altem };
DEALLOCATE (loc, TSIZE { rtNode));

(* The SECOND is situation in which there is
only one item in the list.. *)

IF list*.nSize = 1 THEN
list*.pHead := NIL;
loc :=NIL;
ELSE
(* Finally, all other situations can be handled the
same way.. *)

IF bHead THEN
list*.pHead := rNode.pRt;
END;

loc := rNode.pRt;
rNode.pLt*.pRt :=rNode.pRt;
rNode.pRt".pLt := rNode.pLt;

END;

DEALLOCATE (rNode.plnfo,

listA.nInfoSize);
DEC (listA.nSize);
END delete;

PROCEDURE traverseRight
(list : tList;
VAR loc : tListPosition;
VAR altem : ARRAY OF WORD;
VAR bLastltem : BOOLEAN);

(* Traverses the linked list, right to left; reads the
data at loc into altem and then resets loc to the
next item in the list. If the <altem> read is the
last in the list then <lastitem> will be set to
TRUE, else it is false. *)

BEGIN
$IF DC THEN

Page 18

IF list*.nSize = 0 THEN
IF errorTerminates (19) THEN ;
END;

END;

IF loc = NIL THEN
IF errorTerminates (20) THEN ;
END;

END;

IF NOT sizeOK (altem, list) THEN
IF errorTerminates (21) THEN ;
END;

END;

$END

getNode (list, loc, altem);

loc :=locM pRt;

IF loc = listM.pHead THEN
bLastItem := TRUE;

ELSE
bLastltem := FALSE;

END;

END traverseRight;
PROCEDURE traverselLeft
(list : tlist;
VAR loc : tListPosition;
VAR altem : ARRAY OF WORD;
VAR bFirstltem : BOOLEAN);

(* traverses the linked list, left to right; reads the
data at loc into altem and then resets loc to the
next item in the list. If the <altem> read is the
first item in the list (i.e. the head) then
<bFirstItem> will be set TRUE, else it is set
FALSE;, #*)

BEGIN

$IF DC THEN

IF list*.nSize = 0 THEN
IF errorTerminates (22) THEN ;
END;

END;

IF loc = NIL THEN !
IF errorTerminates (23) THEN ;
END;

END;

IF NOT sizeOK (altem, list) THEN
IF errorTerminates (24) THEN ;
END:;

END;

$END

getNode (list, loc, altem);

IF loc = list®.pHead THEN
bFirstitem := TRUE;
ELSE
bFirstltem := FALSE;
END;

loc :=locA pLt;
END traverseleft;

PROCEDURE mergeLists
(listA, listB : tList;
VAR newL.ist : tList;
compare : vtCompare;
aA, aB : ARRAY OF WORD);

(* Assumed: listA & listB are ordered lists;
newList is already initialized. <listA> and
<listB> are left as is, <newlL.ist> will be
ordered combination of both listA & listB. aA
& aB serve only as holders, they must be of
appropriate type. *)

VAR xCompare : INTEGER;

iA, iB : CARDINAL;
pPA, pB : tListPosition;
bEndA, bEndB : BOOLEAN,;
BEGIN
$IF DC THEN
IF (NOT 5izeOK (aA, listA)) OR
{ NOT sizeOK (aA, listB)) OR
(NOT sizeOK (aA, newList)) OR
(NOT (HIGH (aA)=HIGH (aB)))
THEN
IF errorTerminates (25) THEN ;
END;
END;
$END
freeList (newList, aB);
initList (newList, aB);

IF (listAM.nSize =0) OR
(listB~.nSize = 0) THEN
appendLists (listA, listB, newList, aA);
RETURN;
END;
pA := listAM.pHead;
pB :=listB/.pHead;
traverseRight (listA, pA, aA, bEndA);
traverseRight (listB, pB, aB, bEndB);
LOOP
xCompare := compare (aA, aB);

IF xCompare < 1 THEN
insertQ (aA, newList);

IF bEndA THEN
WHILE NOT bEndB DO
insertQQ (aB, newList);
traverseRight (listB, pB, aB, bEndB);
END;
insertQ (aB, newList);
EXIT;
ELSE
traverseRight (listA, pA, aA, bEndA);
END;
ELSE (* xCompare > 0 *)
insertQ (aB, newlL.ist);

IF bEndB THEN
WHILE NOT bEndA DO
insert(} (aA, newList);
traverseRight (listA, pA, aA, bEndA);
END;
insertQ (aA, newList);
EXIT;
ELSE
traverseRight (listB, pB, aB, bEndB);
END;
END; (* ... ELSE xCompare > () *)
END; (* LOOP *)
END mergeLists,

PROCEDURE appendLists
(listA, listB : tList;
VAR newlList : tList;
altem : ARRAY OF WORD);

(* <listA> & <listB> remain unchanged.
<newList> <== listA plus listB. <newList> is
assumed to have been initialized. <altem> is
only a holder and must be of appropriate type.
*)

VAR i: CARDINAL;

pPos : tListPosition;
bEnd : BOOLEAN;
BEGIN
$IF DC THEN
IF (NOT sizeOK (altem, listA)) OR
{ NOT sizeOK (altem, listB)) OR
(NOT sizeOK (altem, newList)) THEN
IF errorTerminates (26) THEN :
END;
END;
$END

Page 19

freeList (newList, altem);

initList (newList, altem);

pPos := listA”.pHead;

FOR i := 1 TO listAA.nSize DO
traverseRight (listA, pPos, altem, bEnd);
insertQQ (altem, newList);

END;

pPos := listBA.pHead,

FOR i := 1 TO listBA.nSize DO
traverseRight (listB, pPos, altem, bEnd);
insertQ (altem, newList);

END;

END appendl.ists;

PROCEDURE place
(altern : ARRAY OF WORD;
VAR list : tList;
unique : BOOLEAN;
VAR altemB : ARRAY OF WORD;
compare : vtCompare);

(* places altem into the ordered list; if the data's
key (as detected by <compare>) is already in
the list, then the boolean parameter <unique>
determins if that data item is put into altemB
and then replaced by altem (when unique is
true) or if the new data is simply added to the
list (when unique is false). NOTE: altemB
and altem MUST BE TWO SEPARATE
VARIABLES OF IDENTICAL TYPE. DO
NOT USE THE SAME VARIABLE FOR
BOTH PARAMETERS. *)

VAR xCompare : INTEGER;
pLoc, pPrevious : tListPosition;
bEnd : BOOLEAN,;
BEGIN
$IF DC THEN
IF (NOT sizeOK (altem, list)) OR
(NOT sizeOK (altemB, list)) THEN
IF errorTerminates (27) THEN ;
END;
END;
$END
IF list*.nSize = 0 THEN
push (altem, list);
RETURN,;
END;
pLoc := list*.pHead;
LOOP
pPrevious = pLoc;

Page 20

traverseRight (list, pLoc, altemB, bEnd);
xCompare := compare (altemn, altemB);

IF xCompare = -1 THEN
insertLeft (altem, list, pPrevious);

IF pPrevious*.pRt = list*.pHead THEN
list?.pHead := pPrevious;

END;

RETURN;

ELSIF xCompare = 0 THEN

IF unique THEN
putNode (altem, list, pPrevious);
RETURN,;

ELSE
insertRight (altem, list, pPrevious);
RETURN;

END;

ELSIF bEnd (* & xCompare = 1 *) THEN
insertRight (altem, list, pPrevious);
RETURN;

END;

(* if xCompare = 1 but bEnd = FALSE then
continue looping *)
END; (* loop *)
END place;

BEGIN (* ListOps *)
$IF DL THEN
initList { list, datum);
rList := list;
show ("After <initList>, list is", list);
show ("and rList is", rList);
datum.name :=" ;

tt

datum.number ;=" ;

push (datum, list);

rList := list®; rNode := rList.pHead";

show ("After 1ST <push>, list is", list);

show ("rList is", rList);

show ("and rNode is", tNode);

Read (waitChar);

push (datum, list);

rList := list®; tNode := rList.pHead";

show ("After 2ND <push>, list is", list);

show ("rList is", rList);

show ("and rNode is", tNode);

show ("About to enter <freeList> with list",
list);

rList ;= listh;

show ("and rList ", rList);

freeList (list, datum);

$END;

Read (waitChar); END ListOps.
MODULE TestListOps 1'Q":id = "Queue
by Alex Kleider I"8":id := "Stack :
. ELSE
MOD[J]_‘E TCS'[LIStOpS; Id = "type not lmpl";
FROM SYSTEM IMPORT END; (* case *)
WORD, ADR, ADDRESS, END fileType;
ADDRTOLONG; (* THE FOLLOWING ARE "DIRTY
ClearScreen, GotoXY: PROCEDURE nilPosition
FROM I.rlOut IMPORT (pOSitiOﬂ . tLiStPOSiﬁOn) : BOOLEAN,
WriteString, WriteCard, Read, BEGIN

ReadString, ReadCard, WriteLongHex;

FROM Strings IMPORT
CompareStr;

FROM ListOps IMPORT
tList, tListPosition, initList, freeList,
empty, headPosition, push, pop,
getNode, putNode, insertQQ, remove(QQ,
insertLeft, insertRight, delete,
traverseleft, traverseRight, mergeLists,
appendLists, place, vtCompare;

TYPE
tlistld = RECORD
type : CHAR;
pointer ; tList;
position : tListPosition;
END;
rtDatum = RECORD
name : ARRAY [0..27] OF CHAR;
number : ARRAY [0 .. 13] OF CHAR;
END;
atld = ARRAY [0.. 13] OF CHAR;

VAR
alist: ARRAY [0..9]OF tListld;
i: CARDINAL;
item : rtDatum;

PROCEDURE fileType
(type : CHAR; VAR id : atld);

BEGIN
CASE type OF
"R":id := "(round) List “;
| "O": id := "Ordered List ";
| "P": id := "Priority Queue”;

RETURN (ADDRESS (position) = NIL);
END nilPosition;
PROCEDURE nilList
(list: tList) : BOOLEAN;

BEGIN
RETURN (ADDRESS (list) = NIL);
END nill ist;

PROCEDURE setPositionToNil
(VAR position : tListPosition);
VAR adr : POINTER TO ADDRESS;
BEGIN
adr := ADR (position);
adr” .= NIL;
END setPositionToNil;

PROCEDURE setListToNil
(VAR list : tList);
VAR adr : POINTER TO ADDRESS;
BEGIN
adr := ADR (list);
adr® ;= NIL;
END setListToNil;

PROCEDURE writePointer
(pointer : tListPosition;
n: CARDINAL);
TYPE
rtTrick = RECORD
CASE BOOLEAN OF
TRUE : pointer ; tListPosition;
| FALSE : long : LONGCARD;
END;
END;
VAR 1Trick : rtTrick;

Page 21

BEGIN
rTrick.pointer := pointer;
WriteLongHex (1Trick.long, n);
END writePointer;

PROCEDURE getRec
(VAR rec : rtDatum;
x,y : CARDINAL);
BEGIN (* may require up to 71 characters *)
GotoXY (x, vy);
WriteString (Moo "y,
WriteString (Moo \");
GotoXY (x, ¥)%
WriteString ("Enter Name:);
ReadString (rec.name);
WriteString ('; Enter number: ");
ReadString (rec.number);
END getRec;

PROCEDURE clearLine (y : CARDINAL);
BEGIN
GotoXY (0,v);

WriteString (" "%
WriteString (" ¥
END clearLine;
PROCEDURE showRec
(rec : riDatum;

X,y : CARDINAL),

BEGIN (* may require up to 59 characters *)
GotoXY (x, ¥);
WriteString (Movevvviiniiiinininninn "
WriteString (Moo \");
GotoXY (X, ¥)
WriteString ("Name: ");
WriteString (rec.name);
WriteString ("'; Number: *);
WriteString (rec.number);
END showRec;

PROCEDURE compare
(a,b: ARRAY OF WORD):
INTEGER;

VAR pA, pB : POINTER TO rtDatum;
BEGIN

pA:=ADR (a);
pB:=ADR (b);
RETURN (CompareStr (pA~.name,
pBA.name));
END compare;

Page 22

PROCEDURE pickAList
(prompt : ARRAY OF CHAR;
x, v : CARDINAL) : CARDINAL;

(* Returns index of first active member of the
array. Out of range if none exists. *)
VAR i: CARDINAL;
choice : CHAR;
empty : BOOLEAN;

BEGIN
empty := TRUE;
FOR1:=0TO9%DO
IF NOT nilList (aList [i].pointer) THEN
empty := FALSE;
END;
END;
IF empty THEN
RETURN (9+1);
END;
LOOP
GotoXY (x, ¥);
WriteString (prompt);
Read (choice);
IF (choice >="0") AND
(choice <="9") THEN
i := (ORD (choice) - ORD ("0"));
IF (NOT (nilList (aList [i].pointer))) THEN
RETURN i;
END;
END;
END;(*loop*)
END pickAList,

PROCEDURE pickASpot () : CARDINAL;
(* Finds an unused spot in the array. Returns ont
of range if none exists. *)
VAR i: CARDINAL,;
BEGIN
FORi:=0TO9DO
IF nilList (aList [i].pointer) THEN
RETURN i; -
END; (*if*)
END;(*for*)
RETURN (9 + 1); (* array is full *)
END pickASpot;

PROCEDURE listLists;

VAR 1,y : CARDINAL,
id : atld;
empty : BOOLEAN;
BEGIN |
empty = TRUE;
GotoXY (60, 5);
WriteString ("Active Lists:");
GotoXY (60, 6);
WriteString ('===== "y
y:=T,
FOR1:=0TO9DO
IF al.ist { i J.type # OC THEN
empty := FALSE;
GotoXY (58,y);
WriteCard (i, 3);
fileType (aList [i J.type, id);
WriteString (": ");
WriteString (id);
IF NOT nilPositton (aList [i].position) THEN
WriteString (" *");
END;
INC(y)
END; (*if¥)
END:; (* for *)
IF empty THEN
GotoXY (62,v); .
WriteString ("none™);
ELSE
INC (y);
GotoXY (60,y),
WriteString ("* = marked");
END;
END listLists;

PROCEDURE terminate
(x,y: CARDINAL;
message : ARRAY OF CHAR);

VAR ch: CHAR;
BEGIN
GotoXY (x,vy);
WriteString (message);
WriteString (" Any key to continue. ");
Read (ch);
END terminate;

PROCEDURE newLlist;

VAR i:CARDINAL;
ch : CHAR;
datum : rtDatum;

BEGIN
ClearScreen;
listLists;
i := pickASpot ();
GotoXY (10, 10);
WriteString ("Beginning a new List:");
GotoXY (10, 11);
WriteString (“ ")

IFi>9 THEN
terminate (2, 13,
"No room for list; must <giveUpList>."),
RETURN;
END;
REPEAT
GotoXY (2,13);
WriteString ("What type: R(oundList, ");
WriteString ("O(rderedL.ist, Que, ");
WriteString ("P(riorityQue, S(tack: ");
Read (ch);
IFORD (ch) >=0ORD ("a") THEN
IFORD (ch) <=0ORD ("z") THEN
ch:=CHAR (ORD (ch) -
(ORD ("a") - ORD ("A")));

END;
END;
UNTIL (ORD (ch) >= ORD ("O")) AND
(ORD (ch) <=ORD ("S"));

aList [1].type :=ch;

initList (aList [i].pointer, daturn };

setPositionToNil (aList [i].position);
END newList;
PROCEDURE giveUpList;
VAR1: CARDINAL;

ch : CHAR;
rDatum : rtDatum;

BEGIN

ClearScreen;

listLists;

GotoXY (10, 10);

WriteString ("Deleting an existing list:");

GotoXY (10, 11);

WriteString

(" =1 ;
i:=pickAList ("Which Lst to delete? ", 10, 13);
IFi>9 THEN
terminate (10, 15,
"No list is currently active.");

ELSE

Page 23

freeList (aList [i].pointer, rDatum);
aList [i).type :=0C;
setListToNil (aList [i J.pointer);
setPositionToNil { aList [i].position);
terminate (10, 15,
"Specified list has been eliminated.™);
END;
END giveUpList;
PROCEDURE mergeAppend;

VAR a, b, c: CARDINAL,;
item, itemA,, itemB : rtDatum;

BEGIN'-
ClearScreen;
listLists;
GotoXY (10, 10);
WriteString ("Combining Lists");
GotoXY (10,11);
WriteString ("= "%
GotoXY (5, 14);
WriteString ("Note that destination list must ");
WriteString ("exist but will be reinitialized.");

a := pickAlList ("First List: ", 11,16);
b := pickAList ("Second List: ", 10,17);
¢ := pickAList ("Destination: ", 10, 18);

IF(a>9)0OR(b>9)0OR(c>9)THEN
terminate (5, 21,
"Not enough files currently active.");
RETURN;
END;
IF (alist[a].type="R") &
(aLlist[b].type = "R") THEN
appendLists (aList [a].pointer,
aList [b }.pointer,
aList [¢].pointer, item);
setPositionToNil (aList [¢].position);
terminate (5, 21, "Lists were <appended>.");
ELSIF ((aList[a].type = "O") OR
(aList[a].type="P")) &
((aList[b J.type ="0") OR
(aList [b].type ="P")) THEN
mergeLists (aList { a].pointer,
alist [b].pointer,
al.ist [¢].pointer,
compare, itemA, itemB);
terminate (5, 21, "Lists were <merged>.");
ELSE
terminate (0, 21, "Lists were incompatable s
=s«for merging or appending.”);

Page 24

END;(*ifthenelsifelse*)
END mergeAppend;

PROCEDURE showSpecs;
VAR id: atld; i : CARDINAL:
BEGIN
ClearScreen;
listLists;
i := pickAList (
"Show specifications of which file? ", 5,5);
IF (i>9) THEN RETURN; END;

fileType (alist{i].type,id);
GotoXY (10, 10);
WriteString ("File #");
WriteCard (i, 1);
WriteString (" is of type ");
WriteString (id);
GotoXY (10, 11);
WriteString ("-itis ");
IF NOT empty (aList [i].pointer) THEN
WriteString ("not "),
END;
WriteString ("empty.");
GotoXY (10, 12);
WriteString ("-its <headPosition> is ");
writePointer { headPosition
(aList [i].pointer), 6);
GotoXY (10,13);
WriteString ("-there is ");
IF nilPosition (aList [i].position) THEN
WriteString ("NO ");
ELSE
WriteString ("a ");
END;
WriteString ("marked position.");
terminate (10, 15, "That's all!™);
END showSpecs;

PROCEDURE addltem;
VAR i: CARDINAL;

ch : CHAR;

rec, recB : rtDatum;

BEGIN
ClearScreen;
listLists;
GotoXY (10, 10);
WriteString ("Adding to an existing list:");
GotoXY (10, 11);
WriteString

(ﬂ ");

i := pickAList ("Add to which Iist? ", 10, 13);
IFi>9 THEN

terminate (10, 15,

"No list is currently active.");

RETURN;
ELSE

getRec (rec, 0, 15);

CASE al.ist [i].type OF
"R": IF empty (alist [i].pointer) THEN
push (rec, aList [1].pointer);
ELSE
terminate (10, 17,
"Wrong file type.");
RETURN,;
END;
1"Q",
"P": place (rec, aL.ist [i].pointer,
FALSE, recB, compare);
I "QQ": insertQ (rec, aList [i J.pointer);
I "S": push (rec, aList [i].pointer);
| OC : terminate { 20, 5, "This list is inactive.");
RETURN;
ELSE
terminate (20, 5,
"Something is very wrong!"};
END;(*case*)
showRec (rec, 1, 15);
terminate (10, 16,
"The above item has been added.”);

END;
END additem;
PROCEDURE removeltem;
VAR 1: CARDINAL; ch : CHAR; rec : rtDatum;
BEGIN
ClearScreen;
listLists;
GotoXY (10, 10);

WriteString ("Removing from an existing list:");
GotoXY (10, 11);

WriteString (" "Y;
WriteString (" "y;
i ;= pickAList (

"Remove from which list? ", 10, 13);
IFi>9 THEN

terminate (10, 15,
"No list is currently active.");
RETURN,;
ELSE

CASE aL.ist [i }.type OF
“R"’ i
"Q": terminate (10, 15, "Wrong file type.");
RETURN;
| "P",
"Q": removeQ (aList [1].pointer, rec);
["§": pop (aList [i |.pointer, rec);
ELSE
terminate (10, 16, "File type error.”);
END;(*case*)
showRec (rec, 1, 15);
terminate (10, 16,
"The above item has been removed.");
END;
END removeltem;

PROCEDURE manipulate;
TYPE tLeftOrRight = (left, right);

VAR locA, locB : tListPosition;
a, b : nDatum;
direction : tLeftOrRight;
i, nPastFirst : CARDINAL,;
ch : CHAR;
lastTtemn, firstltem : BOOLEAN;

PROCEDURE leftOrRight () : tleftOrRight;
BEGIN
LOOP
Read (ch);

IF (ch="L') OR (ch ="1") THEN
RETURN left;
END;

IF(ch="R'")OR (ch="r") THEN
RETURN right;
END;
END;(*loop*)
END leftOrRight;

BEGIN (* body of <manipulate> *)
LOOP
\ClcarScrecn;
listLists;
GotoXY (10,2);
WriteString ("Manipulation of list.");
GotoXY (10, 3);

WriteString
(ll “);
i := pickAList (

"Pick a list to manipulate: “, 8, 5);

Page 25

IFi>9 THEN
terminate (8, 6,
"Appropriate file doesn't exist.");
EXIT;
END;

IF empty (aList [i].pointer) THEN
terminate (2, 6, "File is empty, must ***
+ssadd a record before traversing.”);
EXIT;
END;

GotoXY (8,6);

WriteString ("Traverse right or left? *);
direction := leftOrRight();

locB := headPosition (aList [i].pointer);
nPastFirst :=0;

IF direction = left THEN

1L.OOP
locA :=locB;
traverselLeft (alist [i] pomter

JocB, a, lastltem);

GotoXY (8,7);
WriteString ("Node follows:");
showRec (a, 2, 8);
GotoXY (10,9);

WriteString (" "%
GotoXY (10,9)
WriteString ("Mark this location? ");
Read (ch);

IF (ch ='y')OR (ch ="Y") THEN
aList [i].position := locA;
END; (*if*)

TF firstitem THEN INC (nPastFirst); END;

IF nPastFirst >1 THEN EXIT; END;

END;(*loop*)

ELSE (* direction = right *)

LOOP
locA :=1locB;
traverseRight (aList [i].pointer,

locB, a, lastltermn);

GotoXY (8,7);
WriteString (“Node follows:");
showRec (a,2,8);
GotoXY (10,9);
WriteString (" B
GotoXY (10,9);
WriteString ("Mark this location? ");
Read (ch);

Page 26

IF(ch =y)OR (ch="Y") THEN
alist [i].position := locA;
END;(*if*)
IF lastltem THEN EXIT; END;
END;(*inner loop*)
END;

IE NOT nilPosition (alist [i].position) THEN
GotoXY (10,12); '
WriteString ("There is a marked node.");
GotoXY (9, 14);
WriteString ("0: Continue w/o any action.");
GotoXY (9,15);
WriteString ("1: Get the record.”);
GotoXY (9,16);
WriteString ("2: Delete.");

IF aList [i].type = "R" THEN
GotoXY (9,17);
WriteString ("3: Put a record.”);
GotoXY (9, 18);
WriteString ("4: Insert to right."”);
GotoXY (9,19);
WriteString ("5: Insert to left.");
END;
GotoXY (5,20);
WriteString ("Choice? ");
Read (ch);
IF (aList [i].type # "R") AND
((ORD (ch)-ORD ("0")) >2) THEN
terminate (5, 21,
"Wrong file type for this operation.");
ELSE
CASE ch OF
"1": getNode (aList [i].pointer,
aList [i].position, a);
GotoXY (5,21);
WriteString
("The following record was obtained.");
showRec (a, 1,22),
| "2": delete (aList [i].pointer,
alist [i].position, a);
GotoXY (5,21);
WriteString
("Deleted record is/was as follows.");
showRec (a, 1, 22);
1"3": GotoXY (5,21);
WriteString
("Provide a record to replace existing entry.");
getRec (a,1,22);

putNode (a, al.ist [i].pointer,
aList { 1].position);
1"4": GotoXY (5,21);
WriteString
("Provide a record to insert to right of e«
sesgxisting entry.”);
getRec (a, 1, 22);
insertRight (a, aList [1].pointer,
alist [i].position);
["5": GotoXY (5,21);
WriteString
("Provide a record to insert to left of sse
escpxisting entry.");
getRec (a, 1,22);
insertLeft (a, al.ist [1].pointer,
al.ist [1].position);
ELSE;

(* loop again until input fits the choices *)

END;(*case*®)
END;(*inner if then else*)
END;(*if*)
GotoXY (0,0);
WriteString ("Exit <manipulate>? ");
Read (ch);

IF(ch="y")OR (ch="Y") THEN
EXIT;
END;
END;(*loop*)
END manipulate;

PROCEDURE mainMenu () ;: CARDINAL;
VAR choice : CHAR;

BEGIN
LOOP
ClearScreen;
listLists;
GotoXY (13, 3);
WriteString
("Test ListOps Module/Main Menu");

GotoXY (13, 4);
WriteString

GotoXY (15, 6);

WriteString ("0: Terminate program");
GotoXY (15, 8)

WriteString ("1: Initialize a List");
GotoXY (15,10);

WriteString ("2: Destroy a List");
GotoXY (15,12);

WriteString ("'3: Merge/Append Lists");

GotoXY (15, 14);
WriteString ("4: Show Specs of a List");
GotoXY (15,16);
WriteString ("5: Manipulate a List");
GotoXY (15,18);
WriteString ("6: Add an item");
GotoXY (15, 20),
WriteString (""7: Remove an item");
GotoXY (5,22);
WriteString ("Enter choice: ");
Read (choice);
IF (choice <= "7") AND
(choice >="0") THEN
EXIT;
END;
END;(*loop*)
RETURN (ORD (choice) - ORD ("0"));

END mainMenu;
BEGIN

FOR1:=0T0O9DO
alist [i J.type := 0C;
setListToNil (aList [i].pointer);
setPositionToNil (al.ist [i }.position);
END;

1L.OOP

CASE mainMenu () OF
0 : EXIT;

[1:newList;

|2 : giveUpList;

{3 : mergeAppend;

| 4 : showSpecs;

| 5 : manipulate;

| 6: addltem;

P7 : removeliem;

ELSE (* nothing *) ;

END; (*case*)
END; (*loop*)

FOR1:=0TO9DO

IF NOT nilList (alist [i J.pointer) THEN
freel.ist (aList [i].pointer, item);
END;

END;,
END TestListOps.

Page 27

judy Buiwos 1e)leISMeN 1XaN

JUSTOS *TSopmy . SWHOg/epoy
omefl DN ™, oypond _ otepong

68/07/01 68/ET/01" 68/10/0T- =68 JOQUISAON:=={t-
68/10/60 68/ST/30 . 68/S1/80 68 10OAdSS
68/L0/LO 68/0€/90 68/ST/90 -~ 68 Zny/Amf
68/50/S0 4 68/8T/¥0 [68/ST/H0 68 Sunf/Ae

- B.Z..J

—_ SaJe(] UOHBINQN NI TSMIN
11 Surpear a1nox pug
IOPIATY X[V Aq
sdOIsrTIsa L, S[poy 12
(uoneuswadur) sAONSTT SMPOIAL ¢l
(uopruyap) sdQsT SMPOI 01
g wennm Aq
() sfeqo[d Sam i
(PunoI8xoeq SI0UX) JUSWUONAUY SAM 0
(6861°L1 "UB[) SIINUTJA SI0I0SII(JO pIreoyg S
SNS Surpuedxe uo juswalels s ALY c
(6861°L1 "Uef) SAINUIA SIOI0SIL(JO PIeog ¥
podoar s JoInseary, €
sAeg IO1eNSTUTIIPY -
REAAVE Xe) I
g " Wenm
IONPH U] WOL] 1
SNy 358g

€ JoqunN JoNp3 ‘yNwsS ‘d Welim

£ awnjop paaasay siybly |1y
"oul ‘SNSN ‘6861 WbuAdo
19339775Mm3
6861 Yolep

CA 92038

USUS
P.O BOX 1148
LA JOLLA,

ADDRESS CORRECTION REQUESTED

2
z
%
4
O
<
0
<
w-

|

alo Bill Cody

	20100107181851164.pdf
	20100107182227244.pdf

