

The
Stride
400
Series

From $2900 to $60,000+

As you can see below, the Stride 400 Series has no shortage of features. We've recently added RAM expansion to 12M
bytes, low-cost high-speed graphics and a revolutionary hands-free NOD™ cursor control device. But there’s moreto
Stride Micro than hardware. We're an open company, sharing source programs and schematics with our users. That'sthe
reason Stride and Sage (our former name) machines are preferred by many leading p-System developers. It’s what we call }‘-
“Performance by Design™.™ —"!‘t'.

Stride 400 Series Technical Specifications

@ 70 MHz 68000 CPU ® Battery backed-up real-time clock @ NOD cursor control device
(12 MHz optional) ® 4K bytes of battery backed-up CMOS RAM ® FPU hardware floating point
® VMEbus interface ® 4 to 22 R5-232C serial ports ® Streaming " tape drive backup
® 256K bytes of parity RAM standard ® Omninet networking hardware ® MMU Memory management unit
Up to 12M bytes with no wait-states ® p-System IV.2 w/LAN software ® Stride configuration utilities
® 514" 640K byte floppy disk drives ® High speed low-cost monochrome ® TeleTalker communications software
® 10M to 448M bytes hard disk storage graphics (784 x 325 resolution) @ Centronics compatible parallel port

The Stride Multiuser p-SYSTEM

Stride provides a complete multiuser system standard with every machine. This unique system allows multiple p-System
(and CP/M-68K) operating systems to co-exist at the same time on a single machine. An easy-to-use beginner’s program
(MU.BUILD) will generate a multiuser system within minutes. Sophisticated users will appreciate the highly powerful and
flexible MU.UTIL program which allows an incredible level of customization of the multiuser system. It is a multitasking,
propriety BIOS developed in 1982 (the first commercial multiuser p-System), and has grown in strength and flexibility ever
since.

M e RE

: 'ﬂ Stride, ““Performance By Design’* and NOD are trademarks of
l = Stride Micro, 4905 Energy Way, Reno, NV 89502 (702) 322-6868, TWX 910-395-6073,

USUS News And Report
July, 1985 ' Number 14

DEPARTMENTS

Institutional Members

Officers, Board and Electronic Mail Contacts
Editorial, by Eliakim Willner

USUS Resource Directory

CLASSIFIED ADS

i3 Sage For Sale

USUS MEETINGS

i4 Baltimore Meeting Announcement
19 Salt Lake Meeting Minutes

ARTICLES

23 Electronic Meanderings, by Various USUS Members
25 Three Little Tricks in UCSD Pascal, by Jai Gopal Singh Khalsa
31 A Guide to the T199/4a p-System, by Steve Jacobs
36 An Overview of MOSYS, by Tom Cattrall
42 Implementing the Kernighan & Plauger Tools in Modula-2, by Dennis Cohen
43 Pascal Assistant, a Fancy ASE Macro Module, by Richard Karpinski
51 ASE Version Differences, by N. Arley Dealey
USUS SOFTWARE LIBRARY
59 A Proposed Library Database, by Harry Baya
62 Library Notes, by Jon Bondy
62 USUS Software Library Distributors
65 USUS Software Library Order Form

e ND R

Eliakim Willner Editor

The USUS News And Report is published by USUS, P.O. Box 1148, La Jolla, California, 92038. USUS News And Report is a direct
benefit of membership in USUS, This USUS News And Report was produced entirely with p-System software tools.

Inquiries regarding membership in USUS should be sent to the Secretary at the aforementioned P.O. Box. Newsletter correspondence
and advertising should be directed to the Editor,

Copyright 1985 by the USUS News and Report. All rights reserved.

Institutional Members

Apple Computer
Atin: Lance Saleme
20525 Mariani Ave
Cupertino, CA, 95014

Donnelly Marketing Information

Attn: Dr. Gary Meyer
13511 Washington Blvd.
Stanford, CT, 06502
(203) 357-8773

Haverford College

Attn; Ed Meyers,

Dir. of Academic Computing
Haverford, PA, 15041

Hayes Microcomputer Products
Attn; Dan McCutcheon

5835~ A Peachtree Corners East
Norcross, Ga 30092

{404) 449-8791

Japan Business Automation
Myojo Bldg. 3-50-11
Sendagaya, Shibuya-ku
Tokvo, 151, JAPAN
03/404-2221

NASA-Ames Research Center
Attn: W, Crawford

M.S. 233-15

Moffett Field, CA 94035

NCR Corporation
Attn: Ian Kaplan
11010 Torreyana Rd,
San Diego, CA, 92117
(714) 452-1020

Pinnacle Systems
10410 Markison Rd
Dallas TX 75238
(214)340-4941

SofTech Microsystems
Attn: Sharon Koehler
16885 W. Bernardo Drive
San Diego, CA, 92127
(619) 451-1230

Stride Micro Inc.
4905 Energy Way
Reno, NV, 89502
(702) 322-6868

Texas Instruments
Attn: B, Peterson
PO Box 226015
Dallas, TX, 75266

Xycom, Inc.

Attn: John Van Roekel
750 N. Maple Rd.
Saline, M1, 48176
(313) 429-4971

Officers, Board and Electronic Mail Contacts

Officers

President
Jim Harvison
4144 Red Bandana Way
Ellicott City, MD 21043
301/992-8831
Telemaii; President
MUSUS: 70320,165

Executive Vice President
Kathryn Hjorleifson
TDI Computer Systems, Ltd.
66 23rd Street
Toronto, Ontario
M8V-3N2 Canada

Vice President, Member Services

Carl Van Dyke
SPM Support Services
10210 Iron Mill Road
Richmond, VA 23235
804/320-0144 (eve.)
804/320-2561 (days)

Telemail: CVanDyke

MUSUS: 70376,1435

Secretary
Michael Hartman
P.O. Box 3277
Silver Spring, MD 20901
301/445-1583
Telemail: Secretary
MUSUS: 73075,1171

Treasurer
Bart Thomas
First National Bank of Central Jersey
1 West Main Street
Somerville, NJ 08876
201/685-8393
Telemail: Treasurer
MUSUS: 76703,1031

Board Members

Eli Willner (Chairman)

Eliacomputer

1510 East 4th Street

Brooklyn, NY 11230

718/336-4109

718/336-4834
Telemail: EWillner
MUSUS: 76703,500

Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/956-8559

Telemail: DCohen

MUSUS: 71076,1377

Gary Pritchett
Sof Tech Microsystems
16885 West Bernardo Drive
San Diego, CA 92127
619/451-1230

Telemail: GPritchett

Carl Van Dyke

SPM Support Services

10210 Iron Mill Road

Richmond, VA 23235

804/320-0144 (eve.)

804/320-2561 (days)
Telemail: CVanDyke
MUSUS: 70376,1435

USUS(UK) also covering Europe

Chairman
Mark Woodman
The Open University
Faculty of Mathematics
Walton Hall
MILTON KEYNES MK76AA
England
(0908) 653187
(0908) 653678
Telemail: UK Chair

Membership Secretary
Angela Grey
Stark Associates
Claremont Buildings
Salbrook Road
SALFORDS
Surrey RHI 5DY
England
(02934} 76747

Electronic Mail Contacts

MUSUS SYSOP
Bob Peterson
P.O. Box 1686
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Telemail ADMIN
(Contact Secretary for billing
information and new accounts)
Jai Gopal Singh Khalsa
MicroStrategies
Box 2278
Vineyard Haven, MA 02568
Telemail: ADMIN
MUSUS: 72355,1015

Local Groups

USUS Washington/
Baltimore Local User’s Group
Carl Van Dyke
SPM Support Services
10210 Iron Mill Road
Richmond, VA 23235
804/320-0144 (eve.)
804/320-2561 (days)
Telemail: CVanDyke
MUSUS: 70376,1435

SIG and Committee Chairmen

Advanced System Editor SIG
Samuel Bassett
34 Oakland Avenue
San Anselmo, CA 94960
415/454-7282
Telemail: SBassett
MUSUS: 71735,1776

Apple SIG
(Co-chairs)
Dennis Cohen
215 North Kenwoaod Street; #102
Glendale, CA 91206
818/956-8559
Telemail: DCohen
MUSUS: 71076,1377

John Stokes
9223 Skokomish Way NE; #2
Olympia, WA 98506
206/459-7598

Telemail: JPStokes

MUSUS: 70345,1256

Bart Thomas
First National Bank of Central Jersey
1 West Main Street
Somerville, NJ 08876
201/685-8395
Telemail: Treasurer
MUSUS: 76703,1031

Application Developers’ SIG
Harry Baya
565 Broadway; Apt. 2ZH
Hastings-on-Hudson, NY 10706
914/478-4241
Telemail: HBava
MUSUS: 72135,1667

By-Laws Committee

(Acting chair)

Bob Peterson

P.O. Box 1686

Plano, TX 75054

214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Communications Committee
Bob Peterson
P.O. Box 1686
Plano, TX 75054
214/995-0618 {(days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Communications SIG
Bob Peterson
P.O. Box 1686
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

DEC SIG
Henry Baumgarten
3325 Hillside Street
Lincoin, NE 68506
402/489-6441

Education SIG
Connie Gruber
Sof Tech Microsystems
§6885 West Bernardo Drive
San Diego, CA 92127
619/451-1230
Telemail: CGruber

Graphics SIG
Alan Freiden
Information Systems, Inc.
3865 Wilson Boulevard; Suite 202
Arlington, VA 22203
703/522-8898

IBM PC/Compatibles SIG

(Co-chairs)
Harry Baya
365 Broadway; Apt. 2H
Hastings-on-Hudson, NY 10706
914/478-424}

Telemail: HBaya

MUSUS: 72135,1667

John Blasquez

P.O. Box 305

Walnut Creek, CA 94596
415/935-9295

Meetings Committee
Dan Merkling
Mentor
P.O. Box 11881
Salt Lake City, UT 84147
801/969-7041
Telemail: Dmerkling

Modula-2 SIG
Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/956-8559
Telemail: DCohen
MUSUS: 71076,1377

Pinnacle SIG
If interested in chairing this,
contact Michael Hartman, Secretary

Publications Committee
Editor

Eli Willner

Eliacomputer

1510 East 4th Street

Brooklyn, NY 11230

718/336-4109

718/336-4834
Telemail: EWillner
MUSUS: 76703,500

Assistant Editor

Arley Dealey

Pacific Systems Group

3615 Security

Garland, TX 75042

214/349-1515
Telemail: ADealey
MUSUS: 70130,177

Stride/Sage SIG
Bob Peterson
P.0O. Box 1636
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Software Exchange Library
Distribution Chairman
Jon Bondy
P.C. Box 148
Ardmore, PA 19003
215/642-1057
Telemail; JBondy
MUSUS: 71545,2023

Review Chairman
Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/957-4411 (days)
Telemail: DCohen
MUSUS: 71076,1377

Technical Issues Committee
Temporarily Yacant

Texas Instruments SIG
Danny Cooper
1709 Fairfield
Plano, TX 75074
MUSUS: 70735,1122

USUS Archive
Archivist

David Ramsey

1510 S. Bascom Avenue; #8

Campbeil, CA 95008

408/377-6297
Telemail; DRamsey
MUSUS: 70076,1161

Word Processing SIG
Samuel Bassett
34 Oakland Avenue
San Anselmo, CA 94960
415/454-7282
Telemail: SBassett
MUSUS: 71735,1776

Editorial

By: Eliakim Willner

Hi there. Lots has happened in the p-System world
since the previous issue of the Newsletter. I'd like
to talk about some of those things but I hardly know
where to begin! The task is particularly difficult
since 1 personally have been involved in these
events.

As most of you are probably aware, SofTech
Inc., of Waltham, MA, announced that they were
leaving the microcomputer software business. Bids
were entertained for the purchase of SofTech
Microsystems. I and my associates submitted a bid
and were fortunate enough to have our bid
accepted.

So, as of this writing, it looks very much like I
will be one of the new owners of SofTech
Microsystems, We have great marketing and
development plans for the p-System product line,
but this is hardly the forum to discuss them. The
tentative name of our new firm is p-Cube
Microsystems, Inc. You’ll be hearing from us.

A key element in our plans, of course, is to
increase the p-System user base. This fact is
directly relevant to the health of USUS. Active
though our organization is, I hope and expect it to
become still more active.

Many of the new USUS members will be
UCSD Pascal novices. Many will be new to
programming. It will be our job to integrate these
folks into USUS and the p-System world in as
smooth a manner as possible. A vibrant and
imaginative USUS leadership is therefore very
important.

Elsewhere in this issue is an announcement of
the upcoming USUS elections, to be held at the
Baltimore meeting in October. Proxies will be
mailed to all members shortly (and may well be in
your hands by the time you read this). It is very
important for all members to become more active
participants in USUS at this juncture. At the very
least, fill out and mail in your proxies.

If at all possible, attend USUS meetings (the
announcement of the Baltimore meeting also
appears in this issue, and reminders will be sent to

all members). Participate in USUS SIGs -- if you
can’t conveniently travel to USUS meetings,
participate via our increasingly active Forum on the
CompuServe Information Service. Simply
subscribe to CompuServe by purchasing a
CompuServe Starter Kit at most any computer
store, log in and type GO PCS55. This will take you
to MUSUS, USUS’ very own CompuServe Forum.
Follow the easy online directions and leave a
message to SYSOP (Bob Peterson) indicating that
you are a USUS members and requesting to be put
on the online membership roster. That’s it! Within
a day, normally, you will have full access to an
extremely rich resource of information and
conversation.

As I mentioned in the previous issue, we are
always looking for interesting and informative
Newsletter material. Now is the time to put all
those intriquing thoughts that flow through your
head down on paper. Many a USUS member who
thought they had no writing talent were delighted to
discover otherwise. An article in the USUS
Newsletter may lead to bigger and better things
(and even if it doesn’t, at least you’ve got one article
under your belt!). If an article seems a bit
ambitious for you, write us a letter. As New York
City Mayor Ed Koch says, "How’re we doin’?".
Why not write to us and let us know!

The preferred means for getting Newsletter
contributions to me is via CompuServe or Telemail.
Please send plain text; T will insert the appropriate
editing directives. I can also accept Newsletter
contributions on Stride or IBM PC format diskettes,
or "standard" 8" UCSD format diskettes. My
electronic and physical addresses appear in the
USUS officer list in this issue.

We also welcome display and classified ads.
Our ad rates are quite reasonable and result in very
high quality leads, if you sell UCSD Pascal or p-
System related software or hardware. Contact me
for details.

I'm excited about this issue of the Newsletter.
Many members responded to my calls for articles in
the previous issue, and this month’s contributions
are substantial in both quality and quantity.

Granville Kirkup’s USUS Resource Directory
makes its first appearance in these pages. I expect
this to become a popular Newsletter feature; our
next issue will doubtless contain a much larger
Resource Directory.

We have an important article for p-System
beginners; one that our TI-99/4 users have been

requesting for some time. This article, by Steve
Jacobs, describes the features present {and those
absent) on the TI-99/4 p-System implementation.

Experienced Pascal programmer Jai Khalsa
(of EPA fame) empties his bag of Pascal
programming tricks (well, some of them, anyway)
for the benefit of his fellow USUS members.

Modula-2 aficionados will enjoy Dennis
Cohen’s article describing his implementation of
the Kernighan and Plauger software tools in
Modula-2, and Tom Cattrall’s overview of MoSys,
the Modula-2 Operating System from Robinson
Systems in England.

And ASE freaks will delight over this issue’s
two ASE-related articles: Arley Dealey’s notes
describing differences between the various ASE
releases and Richard "ASE Ace" Karpinski’s
column, which this issue presents his Pascal
Assistant macros, Dick’s macros enable a
programmer to generate the body of a Pascal
programming structure at the mere press of a
function key. Though I enjoy working on all
Newsletter articles, I confess to spending more than
the usual amount of time playing with this one!

Harry Baya’s article discusses his plan,
mentioned in the previous Newsletter, to design a
simple database applicaton that would assist us in
using the USUS software library.

Finally, to give our membership a taste of
what our electronic bulletin boards are like, we are
printing a small selection of message "threads"
drawn from MUSUS and Telemail. Some
interesting technical tidbits here!

An embarrassment of riches, as you can see,
but please -- keep em coming!

A number of individuals have asked me what
my personal plans are regarding a future role in
USUS. I will not remain chairman of the USUS
board of directors after my term expires in
October, though I do intend to run again for the
board. I want to remain an active USUS member
and would like to remain assistant Sysop of MUSUS
and Editor of this Newsletter. That, of course, is
up to the USUS leadership that emerges at the
Baltimore meeting.

Eli

10

USUS Resource Directory, 5/31/85

The purpose of the Resource Directory is to help
UCSD Pascal users, potential users or developers
locate available ‘resources’ - experts, consultants
and contractors with expertise in specific areas of
the UCSD Pascal system. The resource directory is
open to both companies and individuals, and
inclusion is not a recommendation or endorsement
by USUS.

This is an ’embryo’ version of the Resource
Directory, with some initial entries received mostly
from the CompuServe MUSUS group. If you have
services available to third parties in any area of
UCSD Pascal, you are urged to add your name to
the directory.

Samuel B, Bassett

Technical writing / Documentation

34 Qakland Ave. San

Anselmo, CA 94960

(415) 454-7282

* Five years experience in writing
clear English about microcomputers and
general electronics as a journalist,
contract technical writer and manual
creator.

* Familiar with UCSD Pascal and the p-
System, disk formats, RS-232 wiring,
Turbo Pascal, CP/M,; reading knowledge of
Modula 2 and exposure to most other
languages.

Felix Bearden & Associates. Inc.

Felix Bearden

1310 Larkview Drive,

Lilburn, GA 30247.

(404) 923-4825

Telex: 9103803560 FELIX BEARDEN

* Measurement & control applications
using micro & minicomputers. Mechanical
Stock Storage & Retrieval Systems
(MSRS). MSRS control & inventory
accounting systems. WIP product
tracking, color-graphics monitoring
systems for copper rod mills, jet engine
facilities, etc.

* 25 years experience in computer
industry, from compilers to product
development.

Dan R. Daniels

6212 Newberry Rd., #624,

Indianapolis, IN 46256.

(317) 841-0744

* Municipal Bond Portfolio Management
Systems.

* Using DOS-hosted IV.21 p-System on
IBM PC,

Eliacomputer, Inc.

Eliakim Willner,

1510 East 4th. Street,

Brooklyn, NY, 11230,

(718) 336-4109, (718) 336-4834

* Specifying and recommending Pascal
and p-System products.

* Providing Pascal and p-System
training,

* Custom Pascal and p-System systems
and applications. General consultation.

Endicott Consulting Inc.

Steve Endicott

1408 James Way,

Anaheim, CA 92801,

{714) 535-2416

* Commulnications, real time
applications, programming tools.

GK Microsystems Inc.
Granviile Kirkup,

PO Box 440412,

Aurora, CO 80044,

(303) 841-1719 (303) 841-2471

CompuServe: 74166,2230 Telemail: GKIRKUP

* Applications development contractor.
Completed projects include *Trim’
(Rental store management),
*Servicemanager’ (Service shop), Able-
1’ (integrated business) and Real-Estate
office applications.

* Complete database-based software
applications design & implementation.

11

*IBM PC/XT/AT. DOS-hosted p-System.
Substantial p-System to C conversions.

K3 Software Inc.

Kent K. Kobuchi

80-B Belvedere Street, Suite 2,

San Rafael, CA 94901

(415) 258-9166

* Analysis, design and programming
services.

* Apple Pascal, UCSD IV.2 Pascal on
Stride 440.

* Experience in engineering/scientific
and commercial applications.

Kingdom Computer Concepts

Curtis Sjolander

POB 182

St. Johnsburg Center, VT 05863

* Computer consulting and contract
programming

* Computer graphics, simulation,
database programming, etc.

* Apple I, Macintosh. Pascal, Modula-
2, assember.

James A. Mullens

5524 Quter Drive

Knoxville, TN 37921

(615) 691-7957 (eves) CompuServe 70255,1346

* Experienced with p-System versions
ITand IV, assembler

* PDP-11, Apple II, Sage II, IBM PC

* Communications, device handlers,
graphics & system functions

* Extensive low-level p-System
interface experience

Art Nelson

State Rd,

W. Tisbury, MA 02575

(617) 693-3007

* 6 years experience in UCSD Pascal
* Volition Modula 2

Peterson & Associates

Bob Peterson

P.O. Box 1686

Plano, Texas 75074

(214) 596-3720 (answering machine)

* UCSD Pascal, mostly version IV.
Familiar with some of the system
internals. Have worked with terminal
emulation and database software quite
extensively. *Consulting is a part-time

12

effort’.

Software Construction Inc.

Barry Demchak

3252 Holiday Ct, Suite 104,

La Jolla, CA 92037.

(619) 457-1595

* p-System experts & designers.
Participated in Version IV p-machine &
0O.S.

* Native code generator designers.
Adaptable p-System designers.

* NEC APC and APC III BIOS, NEC APC
graphics subsystem designers.

* Operating system, networking, BIOS &
graphics implementations.

SPM Support Services

Carl Van Dyke

10210 Iron Mill Rd,

Richmond, VA 23235

(804) 320-2561

CompuServe: 70376,1435 TeleMail: CVanDyke

* Transportation, Simulation,
Operations Planning and Modelling,
Railroads.

* Apple Pascal, I'V.x Pascal, IBM
Pascal/VS.

Cye H. Waldman, Ph.D.

Consultant.

515 Hermes Avenue,

Leucadia, CA 92024,

(619) 942-3016

* Modeling of physical systems:
combusion, fluid mechanics, chemical
kinetics, multiphase flow, transport
phenomena, systems analysis;
deterministic and stochastic modeling.

* Ph.D. in engineering; over 15 years
experience.

USUS Resource Directory Form

Please add the following entry to the directory:

Name, Title

Company (if work address)

Number and street

City, State, Zip, Country

Phone

Areas of specialization

Additional remarks

Mail to: Granvitle Kirkup
GK Microsystems Inc,
PO Box 440412,
Aurora, CO 80044.

Your entry will also appear in future editions of the Resource Directory.
Please amend your entry when any future changes are required.

Classified Ads

For Sale: Sage II with dual 640K floppies, Freedom
100 terminal, and compiete cabling. p-System,
CP/M,; assorted development software, Contact
Jim Camp or Brooks Parker at Vega Trading
(212)777-0444.

13

Baltimore Meeting Announcement

The USUS Fall National Meeting will be held at the Omni International Hotel in Baltimore’s Inner Harbor.
The meeting will start the morning of Friday, October 25, 1985, and run through mid- afternoon on Sunday,
October 27, 1985. The theme of this meeting will be "A Workshop on the UCSD p-System Family." We plan
to have experts in the areas of applications development, Pascal, Modula-2, communications, data bases,
word processing/text formatting, and using UCSD Pascal and/or Modula-2 on specific hardware such as the
Apple II, MacIntosh, IBM PC, Sage/Stride, and TI 99/4A. Planned sessions include:

m Writing communications software in the p-System
] Design of a data base management system

m Writing software for the Mac environment

m Writing software for the MS-DOS environment

] Text processing and the p-System

m How to use ASE macros

] The TI 99/4A and the p-System

(] Workshop on Apple Pascal 1.2

In addition to these special "theme" sessions we will also hold meetings of a large number of "Special
Interest Groups." Meetings centering on Apple, IBM PC, and Sage/Stride computers are expected along
with such topical areas as communications, applications development, the Advanced System Editor (ASE),
and the software library. Attendees often find that the opportunity to exchange information at these
meetings (and in the hallways) can be extremely rewarding, and can alone justify the time and expense of
attending the meeting.

As always, the USUS software library will be available for copying by USUS members. The library
will be available at a cost of $1.00 per volume plus the cost of media. You can either supply your own disks,
or purchase disks at the registration desk (at cost). We plan to have equipment available to copy the library
in Apple 11, Sage/Stride, and IBM PC formats. As of this writting, it appears that we will also have the
library and machines to reproduce both T199/4A and Macintosh disks as well.

The meeting will also be an opportunity to conduct the business of USUS. A new board of directors
will be elected; both the old and new boards will hold meetings, as well as the Executive Committee. All
board and Executive Committee meetings are open to the general membership, and represent an excellent
way for you to get actively involved in USUS,

The national meeting will be hosted by the now one and one-half year old USUS
Washington/Maryland/Virginia local users’ group, or LUG as it is affectionately known. Members of LUG
will be supplying the computers needed to copy the USUS library, and manning the registration desk. In
addition, we are teaming up with members of the local Washington area TI users’ group to present at least
one session on using the p-System on the TI 99/4A.

With the uncertainty surrounding Sof Tech Microsystems and the future of the p-System, the role of
USUS as a promoter and educator for the p-System and UCSD Pascal has never been more important. Our
fall meeting should be an important opportunity to catch up on the latest news about the p-System, and
provide a forum for serious discussions of the p-System’s future.

THE LOCATION

The meeting will be held at the Omni International Hotel in Baltimore’s Inner Harbor. The Omni is a
first class hotel and will provide us with an extremely pleasant environment to hold our meeting.

14

Baltimore’s Inner Harbor is the cornerstone of a revitalized inner city, with the magnificant glass
enclosed Harbor Place containing over 140 shops and restaurants as its centerpiece. There are numerous
sites and attractions convenient to the hotel including the National Aquarium, the US Frigate Constellation,
the submarine USS Torsk, the Baltimore Clipper reproduction Pride of Baltimore, the Babe Ruth
Birthplace, the B&O Railroad Museum, the Baltimore Museum of Art, the Baltimore Zoo, Streetcar
Museum, Edgar Allan Poe House and grave, Fort McHenry National Monument, and numerous eateries,
Needless to say, opportunities to sample Chesapeake crab and oysters, two of the area’s most famous
delicacies, abound. In addition, there are harbor cruises leaving from the inner harbor around the clock.

CALL FOR SPEAKERS

As always, we are looking for speakers to add to the meeting roster. We are planning to have a number
of panel and individual presentations on practical p-System topics. These include developing specific types
of programs such as communications or data base software, and writting software for specific machines such
as the Apple I1, IBM PC, Sage/Stride, or Macintosh. If you would like to speak on a particular topic, or
would like to suggest someone as a speaker, please contact Carl Van Dyke.

SPONSORS WANTED

Meetings cost money. To keep meeting costs, and registration fees low, USUS has avoided providing a
number of traditional amenities such as coffee breaks, luncheons, etc. at past meetings. One amenity sorely
missed by the many caffeine addicts in our membership is the coffee break., We are trying to find a way to
provide approximately five coffee breaks for the fall meeting. To this end we are looking for companies (or
even individuals) willing to sponsor morning and afternoon coffee breaks. Companies or individuals can
also choose to jointly sponsor coffee breaks as well. Sponsorship of a break costs $150.00. If you are
interested please let us know!

MEETING REGISTRATION DETAILS

Registration for the entire three day conference is $25.00 in advance, $35.00 at the door. There are also
a number of special registration rates as follows:

] 3-day registration
m $20.00 students (advance or at the door)
m 1-day registration
m $18.00 regular (advance or at the door)
m $10.00 student (advance or at the door)
Students must present a current college or high school ID to obtain the reduced registration fees. Table
space is also available in the demo room at $50.00 per 3’ x &’ table.

An advance registration form follows this announcement. This form along with a check made out to
USUS, Inc. must be received no later than October 15 to obtain the reduced registration fee. Please note
that you must make hotel room reservations directly with the Omni International. Registering for the
meeting does not reserve a room for you at the hotel, nor does it guarantee availability of a room.

I hope all of you will give serious consideration to attending. If you have any questions please contact
Carl Van Dyke, a USUS board member and officer. He can be reached through the USUS mailing address
or at 804/320-2561 days, and 804/320-0144 evenings. Please do not call after 9:30 PM eastern time.

HOTEL RESERVATION DETAILS

The meeting will be held at the Omni International Hotel in Baltimore’s Inner Harbor area. Special
room rates have been arranged of $64.00/night for a single, and $80.00/night for a double plus applicable
local and city taxes. A charge of $16.00 will be added for a third person sharing a double room. Children 17
years and under may share the same room with parents at no additional charge.

These reduced rates are available for the nights of October 24, 25, and 26, 1985. You may reserve a
room either by calling the Omni, or by sending the form that follows this announcement directly to the

15

Omni. Do not send the hotel reservation form to USUS. You must make all hotel arrangements directly
with the Omni.

Should you decide to make a telephone reservation, you must call the Omni International Baltimore
directly. The Omni can be reached as follows:

Omni International Hotel
101 West Fayette Street
Baltimore, MD 21201
301/752-1100

You must identify yourself as attending the USUS/UCSD Pascal Users Society meeting to obtain the
reduced rates. Preferred rates and space in our block of rooms cannot be confirmed through any "800" toll-
free service. Rates cannot be changed at check-in or check-out for guests who fail to identify their
affiliation at the time the reservation is requested. Make sure you tell the reservation agent you are with
USus!

All reservations, whether by telephone or mail, must be made no later than September 24, 1985 to
obtain the preferred rates. Reservation requests made after September 24, 1985 will be accepted on a space
available and a rate available basis. If you make a reservation by mail please use the form provided here;
this will guarantee you will obtain the correct room rate. Please make your reservations early as space is
limited.

TRANSPORTATION

Baltimore can be reached in by numerous modes including car, train, and air. If you are flying you
should use the Baltimore- Washington International Airport (BWI). Inexpensive scheduled limousine
service is available to the Omni. Baltimore is also a major stop on Amtrak’s Northeast Corridor, with hourly
service throughout the day from points south and north. The train station is a short cab ride from the Omni.
If you are arriving by car you should check with the hotel about parking arrangements and fees. Numerous
attactions are within walking distance or accessible by public transportation from the Omni, as a result you
should not need a car during your stay in Baltimore.

MEETING UPDATES

We plan to do a first class mailing to all USUS members with additional details on the meeting in late
August., This mailing will be combined with the proxy ballots for the annual board election. The August
mailing should include a specific meeting schedule and list of presentations and speakers.

16

USUS Baltimore Meeting Registration Form

Name, title

Company (if work address)

Number and street

City, state, Zip, country

Day telephone

Please register me for the USUS Fall Meeting as follows:
__ Regular Advanced Registrant ($25.00)

3-day Student Registrant ($20.00)

____ l-day Regular Registrant ($18.00)

I-day Student Registrant ($10.00)

I'am a member of USUS: Yes No
I have made a room reservation at the Omni International Hotel: Yes No

I'am interested in sponsoring a coffee
break or in demo room space, please contact me: Yes No

Please enclose a check made out for the appropriate amount payable to
USUS, Inc. Mail this form to:

USUS

Fall Meeting Registration
P.O. Box 3277

Silver Spring, MD 20901

USUS MUST RECEIVE THIS FORM NO LATER THAN OCTOBER 15, 1985 TO OBTAIN
THE ADVANCED REGISTRATION RATE.

Note: All student registrants will be required to present a current school ID at the door.

17

USUS Hotel Registration Form

Please reserve hotel accomodations as circled.

Name, title

Company (if work address)

Number and street

City, state, Zip, country

Day telephone

Arrival date

Departure date

Length of stay (nights)
Please submit only one registration form per room request. Reservations are held

until 6 pm unless guaranteed by American Express, Diners Club, Carte Blanche, or one
night’s deposit. All guaranteed rooms must be cancelled 72 hours prior to arrival date.

Type of credit card

Credit card number

Expiration date

Signature

Reservations received after September 24, 1985 will be accepted on a space available basis.
Please circle requested rate:
$64.00 Single $80.00 Double
NOTE: If a room at the requested rate is unavailable, one at the nearest available
rate will be reserved. Room charges subject to applicable local and city taxes.
Mail this form to: Omni International Hotel
Reservations Office
101 West Fayette Street
Baltimore, MD 21201

Questions concerning your reservation? Call our Reservations Office at 301/752-1100.

18

Salt Lake Meeting Minutes

Advanced System Editor SIG

The Advanced System Editor SIG met on April 26,
1985 at 11:00 AM. The meeting, chaired by Carl Van
Dyke, was attended by approximately 10 individuals and
tasted approximately one hour. Attendees included
Arley Dealey, author of the ASE editor, and several ASE
distributors. Volition Systems, the primary ASE
vendor, was not represented.

Agenda items included:

ASE Version 1.0
Bugs/Requested Changes
Future of Volition Systems
ASE Upgrade Policy
Edvance/SofTech
Availability of Bug List
Lineage of ASE

o 00 0000

A new version of the ASE editor is now available
from Volition Systems. This version is designated 1.0
and contains many new features and fixes several bugs.
Artey described those changes he could recall. He also
indicated that a more detailed description could be
supplied to the HNewsletter with a Llittle "gentle
persuasion." Versions of ASE are commercially
available for Apple Pascal 1.1 and 1.2, IV.0 through
IV.21, and Volition's I1.2. It was noted that IVv.21
required a different version than IV.0 through IV.14
(IV.14 is NCEi's extension of IV.13). wWhile ASE 1.0
works on atl wversions I.5 and above, 1t is not
commercially available for all versions.

Changes include:

o 12-20% Reduction in Code Size

o Increased Terminal Requirements

o Does Not Clear Bottom of Screen if Terminal Supports
"insert Line" (i.e. your text no longer disappears
when you insert stuff in the middlie)

o Altows $ Wildcard in Destination File Name

Name of Work File Changed from .ASE! to .MEST

o Under IV.27 ASE knouws how to use increased compiler
info, will automatically obtain correct file name

©

The increased terminal requirements include
commands to clear to the end of Line, and clear to the
end of the screen. In addition, an 80 column by 24
line display is required. Note that the unenhanced
Apple 11/IF Plus/Ite has a virtual B0 x 24 screen and
can thus use ASE 1.0. A number of other changes were
mentioned in general terms including changes to blank
line handiing and bug fixes.

Other bugs, and a number of suggested changes were
discussed. Jon Bondy indicated that Arley's '"fixes®
removed features he found useful, once again proving

some old adage about pleasing people. 1t was noted
that ASE will not work with MS DOS wvolumes in the
hosted system, but shoutd work with p-System virtual
volumes. The common request of a version that does not
create a back-up file was mentioned. Arley said this
was unlikely ever to be implemented, but he was not
adverse to thinking about it for a price... Arley
indicated that & bug Llist existed, but was not
releasable under his agreement with Volition.

Some time was spend discussing a problem one user
was having using ASE with a RAM disk. It seemed that
ASE worked fine on all volumes except the RAM disk.
Use of the RAM disk hung the system. Arley stated that
ASE would write information in the last block of a
volume when it opened the back-up file. Often, RAM
disks are slightly mis-sized in the directory, but
nothing ever writes to the last block so the problem is
not detected. ASE is very good at finding this bug iIn
the 05 implementation because it does write to the last
block.

Volition is currently selling ASE, and is offering
an upgrade for $20.00. This is the case as of the end
of Aprit. Volition is in bankruptcy, and the status of
ASE may change shortly. The final resotution of who
will be supporting and distributing ASE in the future
(if anyone) is unknown. Please standby for
announcements... In the meantime, Volition is shipping
promptly.

At one time SofTech distributed a version of ASE
called Edvance. 1t was the groupts understanding that
sofTech no longer was selling this product. Verlene
Bonham thought that an article on the history and
lineage of ASE would be interesting. she indicated
that she might be persuaded to write such an article
for the Newsletter.

Upon reaching noon it was generally agreed there
was not much else to say without bringing on a law suit
from somebody, so the meeting was adjourned.

Communications SIG
Ariey Dealey reviewed some of the new changes in

the MUSUS software.

Most of the session was spent discussing
differences among the various communications packages
on the p-System.

The following are based on the use of REMUNIT:

TERMINAL Bob Peterson

TELETALKER Randy Bush

MAIL F. Whittington

EDDOWES Arley Dealey, for Appte III

REMCOM TICOM

LOGON only for 300 baud; not recommended
EPA MicroStrategies, the REMUNIT has been

very much changed in this program.
Others:
CROSS-TALK Not real

P-TERM Novations (?)} for the Apple and 64K
systems only.

19

INTERLINK concurrent support

DATALINK Link Systems. Also for Apple 111

Datalex

N.C.I

Kermit Library, Bob Peterson, V. Borham very
minimal implementation, no file server
yet. A good article on Kermit is
available in back issues of BYTE magazine.

CONVERS A. Dealey. Has script language, availahle
on vol 29 or 30 from USUS Llibrary.

XMODEM Bob Peterson is working with XMODEM

protocol and may contribute something to
library soon.

A need for a message taking program was discussed.
A Bulletin board system is available on MOG for the
Apple II1. Craig Vauhn offers SOFTWARE SORCERY.

A program that could take messages 1in the
background was discussed. An idea to put the task in
GOTOXY described using illegal position values such as
GOTOXY (-1000,-1000) to call the message procedures.

Another idea from Bill Bonham was to put a new
unit into SYSTEM.PASCAL. One problem with this is that
initialization must be done by a program run by the
user since there is no way to guarantee the order of
initialization of units in the p-System.

Modula-2 SIG

The Modula-2 SIG meeting was called to order by
Chairman Dennis Cohen. Attending were Dennis Cohen,
Mark Luker, Tom Haag, Gary Pritchett, Jon Bondy,
William Smith, B8ili Bonham, Verlene Bonham, Arley
Dealey, and Jim Harvison.

The agenda was:

1) Scenic/Volition Native M2 compiler for the Sage/Stride.

2) Macintosh Moduta-2 implementations.

3) Modula-R

4) Interface Technologies Modula-2 for IBM-PC
5) Library Standardization Effort

&) Madula-2 volume in USUS library

Bill Bonham gave a brief presentation on the first
topie. It runs "on top of the p-System" -- the only
interface is a file/I0 access module which handles
requests from executing Modula-2 programs. The compile
speed is about 500 lpm. The compiler is approximately
650 blocks and is unsegmented. Slightly more that 512K
of memory is required for even the smallest module to
be compiled; however, 750K should be sufficient for
almost anything. Some pieces of the library need work.
The bugs are not fatal, but they do exist. Bill did
all of the neat graphics demos on the Stride using this
compiler.

Jon Bondy made negative comments concerning
support by Volition/Scenic of the beta-test Macintosh
product. This was echoed by Dennis. Dennis also told
of good experiences with the Modula Corporation system
for the Mac. He stated that it compiles to m-code, but
the Toolbox interface was very goocd and that true
Macintosh programs spend most of their time in the ROM

20

and therefore most of his programs were rumning at
60-70% the speed of native coded Pascal. Besides that,
he purchased the package when it was still $90 and felt
that their documentation was so good that it was aimost
worth the price by itself.

Modula-R is a topic of interest to Bill Borham --
he would like more information on it. So far, all that
is known by anyone in attendance is that it is M2
extended to support database primitives and that it was
pubtished in a peper from ETH. Anyone wWith more
information is encouraged to contact both Bill and
Dennis.

The Interface Technologies Modula-2 was fairly
roundly condemned by those few in attendance who had
used it. Almost all of the complaints were based on
the forced use of the syntax-directed editor, which
does things its own way (and nobody liked its style).
However, the compiler is very fast and generates fairly
tight native code. The $80.88 offering was described
as inadequate to do anything with.

BS! is reported to be working on a draft standard
as published in the MODUS newsletter. MODUS will be
having their first meeting on this side of the Atlantic
in the San Francisco/Palo Alto area this September.

Major issues are function styles, how errors are
passed back, lack of some notation for scientific and
math applications, lack of matrix operators, how to
handle "side effects" or avoid same in implementations,
ard static vs. dynamic linking.

Dennis reported that Volume 33 is now in the
Library and is an all Modula-2 volume. 1t consists of
a Volition submission -- the source to the p-Shell and
related utilities and documentation that they shipped
with their Modula-2 systems -- and a submission from
Joseph Folse that was a rework into Modula-2 of the 8-
tree items on Volume 16 (15?). He reported that he was
still trying to track down another submission, the
LIBMAP utility shipped with the Volition package and
that he would welcome any other M2-related submissions.

There is a project management system written in M2
called Timeline.

Many oil refinery simulations run under the p-
System.

SofTech expressed their interest in Modula-2.

Discussion of Borland's Modula-2 (not vyet
released) provoked major concern from the attendees
since it is rumored that the M2 will not concern itself
with many of the standards and that its ability to do
modules Will be limited.

Other comments can be summarized: "One problem in
the M2 community is the lack of a leader who would take
a firm stand on the M2 standard's issues. Wirth has
stepped back from many of the hot topics and no one
else has any clout.¥

IBM S1G

Attendees: Richard Guenzi, Carl Van Dyke, Paul
Buhr, J.Dennis Green, Norman Cannon, William Burns,

Chartes Schwarz, John R. Cluff, Joseph A. Ladyka, dr.,
Jon Kevins, Harry Baya,

The following notes reflect my sense of what was
said during the SIG meeting rather than an accurate
sunmary. 1 {(Harry Baya) have added comments of my
oun. I hope this is of some use in framing what
questions you should be asking in dealing with these
areas.

Most of the discussion dealt with the UCSD Pascal
p-systems put out for the IBM-PC by HNCI (Network
Consulting Inc.) and SMS (SofTech Microsystems). Jon
Mevins and Carl Van Dyke have been working with DOS-
hosted 4.2.1 p-System from SMS and are very pleased.
Both had some prior experience with NCI. Harry Baya
has been working with NCI's version C1.f and has just
begun experimenting with NCI's version C2.0.

Any comments about SMS version 4.2 is alse true of
4.2.1.

Several participants expressed the view that NCl's
version of the p-System had been clearly preferable to
that put out by SMS up until SMS version 4.2. The p-
System put out by IBM (an early SMS version) has
received bad evaluations by several USUS members who
have tried it. Jon and Carl feel that version 4.2.1 is
as good or better than the NC1 version they had been
using.

The complete 4.2.1 development system can be
purchased as an upgrade for about $200. Owners of NCI
systems qualify for this upgrade price.

There wag & iot of discussion of the new features
cvailakie in &.7.1 and how these differ from earlier
varsions. e of the comments were:

4.2.1 = - permits larger code pool segments
impiroved access to data space outside the 64k data
space (though this 1is somewhat clumsy, it is an
improvement. One user estimated that access time was
as much as 10 times faster than with a file in ram
disk) - Improved Mative code generator o supports 8087
o native code now runs much faster than p-code in most
situations. This is an improvement. Native code seems
to take advantage of 8087 board. o Quickstart is
impressive, it even guickstarts the operating system.

- Due to changes (eg to the FIE / file information
block) some programs that ran with NCI's p-System will
not run with 4.2.1, most notably ASE (Advanced Systems
Editory.

- Yolition Svstems has 2 version of ASE that will
Fun oundey 4.2 and tasw are still selling it now. As
they ste in the prouess of dissolving the firm this may
net continue to be so.

- 4.2.1 has instructions that will permit reading
in the 10-sector floppy disks created on the NCI!
system, but those formats are not supported and SMS p-
System users work in 9-sector format. The 9-sector
format disks can be copied with standard DOS disk
copiers, the 10-sector cannot. The 10-sector format
holds 800 blocks, the 9-sector holds 720.

- The 4.2.1 system runs urder the DOS operating
system and does not require that a p-System partition
be created. The system uses a virtual p-System volume
which appears as a single file in the DOS fite system.
The wvolumes in the p-System partition can still be
accessed from the DOS hosted system.

- 4.2.1 can create, write to and read from files
in the DOS partion. (i.e. non-contiguous files)

- 4.2.1 permits input and output to go through the
same drivers used by DOS (eg to printer or to hard-
disk)

- programs compiled under 4.13 (eg NCI} will run
under 4.2.1 without recompiling but programs compiled
under 4.2 will not always run under 4.13.

My overview of the two systems (NCI 2.0, SMS
4.2.1) as it relates to the standard IBM PC DOS
enviroment are:

- Both systems permit setting up applications that
can be run from a DOS environment and which use DOS
files for dats or text. The user need not use any p-
System commands.

- The SMS version will often be easier to set up
because it can run on a hard-disk without a p-System
partition and because it can use the DOS drivers
directly.

- There are other strengths and weaknesses of the
two systems and my guess is that NCI witl release the
next upgrade. This could put them ahead again if,
indeed, they are now behind.

NCI Version 2.0

- The transition from C1.f to C2.0 is relatively
easy. Harry Baya had to call NCI twice in the process
of learning how to create and use files and programs
stored in the DOS partition.

- The DOSOPS unit in SYSTEM.PASCAL uses up at
least 3k of data space. It can be removed if the DOS
interface stuff is not used. This loss of data space
can be a serious problem if an application is already
very tight on data space.

Using pDS files rather than files in a p-System
Partition (both NCI and SMS):

- The good news: The non-contiguous file
structure on DO$ permits a single file to be written in
more than one contiguous space on a disk. This means
that the full DOS partition is avaitable for files at
atl times and that there is no need to “k)runch" files
as we do in p-System partition.

- The bad news: If a hard disk has a large number
of such non-contiguous elements it is possible for the
system to permanently loose all or part of a file. To
reduce the chance of this occurring you must
periodically reduce the number of non-contiguous file
sections on the disk. One way to do this is to off-
load alt files, reformat the disk and the load all the
files back in file by file.

21

- The Pascat filer will not deal correctly with
files in the DOS partition. The program DOSFILER is
used for this purpose and permits transferring files
back and forth between the p-System partition and the
Dos partition.

IBM PC-AT
- SMS version 4.2.1 will run on the IBM PC AT

- NCI has a special release of the p-System for
the AT but this is not considered an upgrade for
pricing purposes, i.e. you have to pay full price for
this system. NClI is in the process of developing an
upgrade from version 2.0 that will run on both the PC
and the AT.

Ctocks in the I8M PC.

- SMS and NCI provide ways of accessing hardware
clocks in the PC - The standard machine does not have a
hardware clock Several add-on cards for the PC
include a hardware clock. - The DOS environment has a
software clock but this is not available from within
the p-System as far as I know.

Application Development SIG

Attendees: Richard Guenzi, Carl Van Dyke, Paul
Buhr, Joseph A. Ladyka, Jr., Jon Mevins, Kelly Ward,
Jim Harvison, Dennis Cohen, Ed Kyte, Harry Baya,
J.Dennis Green

These notes should not be construed as the
verified truth. These communicate what I think 1 heard
and are intended to help others get a flavor of the
discussion.

In particular, any statements concerning
particular vendors or products should be verified
before using them as a basis for decisions.

doe Ladyka was elected as the new chairperson of
this SIG.

Part of the discussion dealt with the versions of
the p-System available for the IBM PC. These are
covered in the notes of the IBM SIG meeting and are not
included here.

Creating applications that can use a variety of
printers:

For simple setups most applications have a setup
program that asks the user to enter the printer control
characters for their printer.

This is normally done only once when the
application is initially configured by the end user,
eg. "Enter character pattern to start condensed print
" “Enter character pattern to end condensed print%

Karry Baya stated that he would tike to see a high
quality package that could be used to interface any
epplication with the most common printer/printer
interface. (eg. an IBM PC Printer interface unit).
No one in the group was aware of such a package being
available to application developers for inclusion in
their package.

22

UcsD p-System TEXT files:

There was some discussion of the file format of a
UCsD Text file. This is covered somewhere in the USUS
library and is also covered in disk #33, the latest
addition to the libary. Disk 33 is a Modula-2 disk.

Among the items mentioned were:

Twe leading blocks that may be used by the p-
System (i.e they do not contain the text information
written to the file and do contain such information as
the length of the file)

Hdle esc" sequences to more efficienty store
sequential blanks in a text file

Text files are composed of contiguous two-block
pages. A line cannot cross a page boudary.

The unused portion of a page is filled with nutl
characters.

future of the p-System:

The future of the p-System was discussed. Some
attendees felt the system was dying while others saw it
as still healthy and growing.

One attendee felt the 64k data space limitation
was particularly limiting now that many machines (eg
all new IBM PC's) come with 256k or more of ram).

Another feit that the Unit structure and the
dynamic segment swapping more than compensated for
other shortcomings of the p-System.

Several attendess commented that the p-System's
availability on several machines has permitted them to
support their applications on several machines with a
minimum of fuss.

There was some discussion about the ease of use of
the system for naive end-users.

There was no clear consensus. Several people felt
that the system was not suitable for unsophisticated
user. The filer was specifically mentioned as
something some developers would like to hide from their
unsophisticated users.

Other Information:

Though this may be covered elsewhere I am going to
include some notes from the major vendor's pannel that
may be of interest to application developers:

SofTech currently supports the p-System on the
following machines:

- IBM-PC and AT

- Applte Maclntosh

- TI Professional

- Wang PC (DOS-Hosted only}

SofTech also has relationships with other vendors
that permit those vendors to provide $Soffech based P-
systems. These include, among others:

- Stride Microsystems (formerly Sage)

- Network Consulting Inc.

- Eliacomputer (for DEC machines)
- Radio Shack

- PCD

- Tenheco

Texas Instrument has dropped its support of the p-
System and is thought to have sold its rights to NCI.

The Mac XL can use SofTech's Pascal to access up
to 2-meg of ram (via ram disk) and can deal with files
on the hard disk.

Electronic Meanderings

By: Various USUS Members

The Programmers’ SIG
Sb: parthogenetic Pascal
Fm: Steve Brecher 70365,164

To: All

program self; O

var O
i1 integer; 8]
s: array[0..9) of packed arrayl1..62} of char; O

begin O
s[0] := 'program self; Oy
s[1] := 'var O
s[2] := 1 1i: integer; (8 3
s[3] := ' s: array[0..9] of packed arrayll..62} of char; a1
s[4] == 'begin O
s[51 == ' for i := 0 to 4 do writeln{s[il); O;
s{6] :=' for i i:= 0 to 9 do writeln{@ si@,i:1,0] := QOQ,s[i],Q00Q;Q);";
s[7]1 ;=% for i := 1 to 62 do if ord(s[6,i1)=81 then s[6,i]l:=chr(3%) ;';
s8] :="' for i :=5 to @ do writeln{s[il); {0
s[%1 := tend. 0O
for i :=0 to 4 do writeln(s[il); O
for i :=0 to 9 do writeln{? sE',i:1,'] = vt g[i],7V9;%);
for i = 1 to 62 do if ord(s[6,i1)=81 then s[6,i]:=chr{39) ;
for § =5 to 9 do writeln{s[il); O

end. 3

From: EWILLNER

To: EDITOR (REC)

CC: us.us

Subj: Patch for Buggy DEC RX02 Bootstrap

The pre-Eliacomputer release of the DEC p-System has a bug in the bootstrap for the RX02 (double
density disk) device. The test for density does not work properly. The result is that the user can only boot a
single density disk; attempts to boot from a double-density disk result in a system crash,

This is untortunate because most users with double density drives will of course prefer to boot of a
double density, rather than a single density disk! (Note: The bug is in the bootstrap, not the driver -- once
the system boots properly disks of either density may be used.)

Currently shipped systems do not have this problem. The patch which follows will not cure the bug,
but will reverse it -~ it will produce a bootstrap that will boot ONLY double-density, NOT single-density
disks. If the user keeps a copy of both a patched and an unpatched RX02 bootstrap he will have something

23

that will work on both kinds of disks.

The patch is implemented as follows: Run the PATCH utility. Read in block 0 of the RX02 bootstrap,
which is distributed as DYBOOT. MAKE SURE YOU HAVE BACKED UP THIS FILE FIRST!!! Examine
location 36 (decimal). It should contain the value 0303 in byte-flipped hex. If it does not contain this value,
DO NOT ATTEMPT THE PATCH. You have an older version of the bootstrap, and offsets are no longer
the same. Otherwise, Change the 0303 to A000, which is a NOP instruction. Save your change and exit
PATCH.

Use the ABOOTER utility to copy your patched bootstrap to a double- density disk with system files,
and boot it. Good Luck!

Eli Willner

From: UKCHAIR
To: USUS
Subj: Compiler Listing Pagelength

This fix [to change the lines/page of a compiler listing] is courtesy of the USUS(UK) mail system...

From: Hans Kasche <USUS.AVERSAL>
Subject: telemail: compiler listing
To: usus.mwooedman

Pascal compiler IV.13, segment BACKEND, procedure 5 contains a LDCB 60 instruction at offset 63
decimal. Change this to suit your wishes. Also if you want the header of each page to be at top-of -form
(and not two lines down) delete, i.e. substitute p-code nop (9C hex), instructions at offset 24 dec to 36 dec
inclusive in segment BACKEND, procedure 28. These begin with LCO 99 and end with SCIP1 5. regards

Jeremy Morton

From: TPOWELL

To: UKChair

CC. USUS

Subj: Compiler Listing Pagelength

Jeremy,

Many thanks for the tip. I'll be using it! Since I'm still using IV.1, my compiler is; Pascal Compiler
IV.1 ¢55-2 The LDCB 60 is at offset 63 in this version also, but it is in procedure 4 of BACKEND, rather
than procedure 5. For those who have this version, the 60 (= 3C hex) may be found in block 86, at (decimal)
offset 82. (To be sure you have the right spot, the context is: AD82 FE80 3CB3.)

Ted
From: EWILLNER
To: UKChair

CC: USUS
Subj: Compiler Listing Pagelength

Jeremy -- Thanks much; I'll be using it regularly too! For Version IV.13 users, the patch location is block
10, offset 270, same context as Ted mentioned.

Eli

24

Three Little Tricks in UCSD Pascal

By: Jai Gopal Singh Khalsa

Copyright 1985 by Jai Gopal Singh Khalsa. All Rights Reserved

Two of the greatest benefits to programming in a high level language are readability and portability.
Pascal, in particular, is often used to illustrate algorithms as it is readily understood even by those who
commonly use a different programming language. Still, vast numbers of C programers who populate the
pages of professional journals insist that their nearly incoherent language is superior to Pascal because it is
less restrictive and allows (forces?) greater intimacy with the code at the bit/byte level. And the
experienced and/or creative Pascal programmer will admit that the strong type- checking that normally
saves us from careless mistakes can be extremely frustrating at times,

Fortunately, the original implementors of UCSD Pascal were practical people who added a few *low-
level’ intrinsics to the language that the venturesome programmer eventually discovers and employs to
alleviate some of the restrictions of standard Pascal. This article will explore three of these intrinsics,
SCAN, MOVELEFT, and PMACHINE, and in the process, demonstrate three techniques that may apply to
‘common’ programming problems. It will be seen that, at the expense of somewhat reduced readability,
significant gains in speed and flexibility are possible using these intrinsics.

Trick #1 - SCANning a Boolean Index:

The SCAN function is intended for quickly scanning a packed array of characters to locate a particular
character. The formal declaration from page 216 of my User’s Manual is;

FUNCTION SCAN{(length, partial expression, array): INTEGER;

’length’ is an integer, ’array’ is usually a PACKED ARRAY OF CHAR, and ’partial expression’ is a
‘<>’ or = followed by a single character in quotes.

SCAN scans ’array’ for 'length’ characters, or until it finds a character that satisfies the ’partial
expression’ (whichever comes first). It returns the offset from the position in 'array’ to the point at which it
stopped.

The manual goes on to give examples and details including the fact that:

1) ’array’ may be subscripted to indicate a starting position for the scan and 2) "length’ may be negative
in which case the scan will be from ’right-to-left’ instead of ’left-to-right’,

For our purposes here, though, the interesting key word in the above definition of the ‘array’
parameter is *usually’. It points to one of the most delightful and liberating discoveries regarding these low-
level UCSD Pascal intrinsics; that is, no type-checking is performed While *array’ is usually a PACKED
ARRAY OF CHAR, it can actually be a variable of any type!

Consider, for example, the following data type:

VAR boollndex: packed array[0..4095] of boolean;

It might be used as an index to keep track of 'used’ records within a file (or blocks on a volume in a
non-contiguous file system); deleting a record would be as simple as marking its corresponding boolean
element to FALSE. Then, when space for a new record is needed, the array of booleans is searched for a
FALSE element indicating an unused record position. A single block (512 bytes) can manage 4096 records.
(NOTE: There is nothing sacred, of course, about 512 bytes... index ’pages’ can be any convenient size and
there can be as many as necessary; a mere 25 blocks will maintain a free space index for 102,400 records.)
The fact that a *packed array of boolean’ in UCSD Pascal packs eight elements to a byte is a crucial bit (no
pun intended) of practical knowledge, not only for saving space, but also for utilizing the SCAN function in

25

the unconventional way that follows.
The straightforward (and most readable) approach to searching boollndex is:

k = -1;

repeat k 1= suce(k);

until (k = 4095) OR not boolIndex([k];

if not boolindextk]l then recNum := k
else RecNotFound;

Unfortunately, this method can be rather slow when 'k’ is large; it helps only a little to disable range
checking.

Another way to view the boollndex variable is the 'raw memory’ approach more commonly practiced in
assembly language. In this view, it is simply an array of bytes (or words as we shall see). Recalling that
there are eight bits to a byte and that all eight bits set to TRUE (binary 11111111) is equal to decimal 255, it
would seem that finding the first byte not equal to 255 would put us very close to the first FALSE (i.e., zero
bit) element. In practice, word boundaries and byte-sex enter the picture and the code to search the boolean
index using the SCAN function is:

k := SCAN({sizeOf(boolIndex),<>chr(255),boollndex);
if k < sizeOf({boollndex) then
begin
k = (k DIV 2) * 16;
while boolindex[k]l do k := suce(k);
recNum := k;
end
else RecNotFound;

The SCAN function returns the byte offset of the first byte in boollndex that is not equal to 253, i.e.,
that contains at least one zero or FALSE bit. Since microprocessors generally address memory in words
rather than bytes and the order of bytes within a word differs depending on the CPU (ie., the 8086 and
68000 have different *byte-sex”), it is necessary to convert the byte offset returned by the SCAN function to
a word offset and then search the entire word for the zero bit. Thus, the first possibly FALSE element of
boollndex is the byte offset (k) DIV the number of bytes per word (2) times the number of bits per word
(16). There is no need for a bounds check in the WHILE statement as the SCAN function has guaranteed
that a FALSE element will be found within the word (i.e., a maximum of 16 iterations of the WHILE loop in
this case). :

The difference in speed between these two approaches can be dramatic. To find the 4000th element of
boollndex, the SCAN function is 571 times faster than the straightforward approach (yep, 57100 percent)!
Times are as follows:

Straight REPEAT loop........ 953 ms
Range checking disabled..... 827 ms
Using the SCAN function....... 1.67 ms

For an excellent discussion of the use of bitmaps for list comparison and file searches (including a
fascinating bitmap compression technique), see Eric Sohr's article Bitmaps Speed Data-Handling Tasks,
October 1983 Byte, pg. 480.

The NonZero Function and A WARNING!!!:

A technique similar to the above may be used to discover non-zero elements in an ARRAY OF
INTEGER but, since type-checking is not performed on the *array’ parameter, you must take special care
not to reverse the ‘length’ and *array’ parameters. In a particular application, I was using a large, one-
dimensional array (swBuffer) to maintain variable sized two-dimensional arrays and needed a "NonZero’
function to quickly tell me if a specified subrange in 'swBuffer’ contained any non-zero elements. I spent
an embarrassingly long time trying to figure out why the following expression always (and erroneously)
returned TRUE:

26

NonZero := (SCAN(swBuffer[FirstEntryl,<>chr(0),numBytes) < numBytes);

The answer was that I had switched the ’length’ and ’array’ parameters and the SCAN function was
happily scanning my *numBytes’ variable for the length indicated by my starting element in the array! This
happened to be zero which, of course, was less than 'numBytes’ so "NonZero’ always returned TRUE. If I
hadn’t indicated a starting element in the array or had used an expression or the *sizeOf” function instead of
an integer variable for the ‘length’ parameter, the compiler would have caught the mistake. There are
undoubtedly many other clever uses of the SCAN function but be careful!

Trick #2 - Fun and Games with MOVELEFT/RIGHT:

The MOVELEFT/RIGHT intrinsics are also byte-oriented functions that accept parameters of any
type. They are defined on page 210 of the User’s Manual as:

PROCEDURE MOVELEFT(source, destination, length);

*source’ and destination’ are any sort of arrays. Or (as with BLOCKREAD/WRITE and FILLCHAR)
they may be of any other type, as well. If either is an array, it may be subscripted, and if either is a record,
it may have a field specification.

‘length’ is an integer. Moves ’length’ bytes from ’source’ to ’destination’, starting at the left.
(MOVERIGHT does the same but starts at the right!)

What are these things good for? At first, I used them only on PACKED ARRAY OF CHAR, in
particular for fooling with text buffers. Given a large buffer, one can quickly 'remove’ a specified
character at position 'k’ by doing:

movelLeft(buffer [succtk)] ,buffer kI, numChars - k); numChars := pred(numChars);

When writing the buffer to a text file, it must be broken up into *pages’ of less than 1023 characters
each and padded with NULs. SCAN (with a negative ’length’ parameter) is used to find the first carriage
return before buffer[1023] and then MOVELEFT is used to move those characters into a *OnePage’ buffer
that is written to disk (using BLOCKWRITE). (NOTE: A more complete discussion of the peculiarities of
UCSD text files is left for another article).

Another fairly tame application of MOVELEFT is the case where you want to place a substring into
another string at a particular position, For example, if you want to right-justify a number (131) within a
fixed length string, the following will do:

st := 'Number of Students....... 1. {initialize string}
str{numStudents,st2); {convert 'mumStudents' to string}
moveleft(st2[1],st[sucellength(st) - length(st2))],length(st2));

results in 'st* having the value ’Number of Students....131".

The above examples are quite obvious because the data being manipulated are explicitly declared as
bytes (PACKED ARRAY OF CHAR and STRING). What took a little longer for me to realize was the
flexibility implied in the definition of ’source’ and ’destination’ by the words ’they may be of any other
type, as well’. For example, suppose you want to store a Pascal record of arbitrary size starting at byte zero
in block eight (8) of a file (there are other things in blocks 0-7). One way to do this is as follows:

VAR paremfFile: file;
OneBlock: packed array[0..511] of char;
OneParam: Paramio;
begin
{$1-3 reset(paranfile,Skusindex);
if (blockRead(paramFile,OneBlock,1,8) = 1) then
begin
movekeft (OneBlock,OneParam, sizeof (OneParam)};

27

The opposite is done when writing the record:

moveleft{OneParam,OneBlock,sizeof(OneParam));
if (blockWrite(paramFile,OneBlock,1,8) = 1) then...

The Insertion Sort Revisited:

Now for some real fun... well, programming fun anyway. The straight insertion sort is perhaps the
most basic method of sorting. It is the method a card player normally uses to put his cards in order if he/she
picks them up one at a time. It is also the method often used to maintain an ordered list. A programmer,
however, can not quite so easily place an item between two other items, especially if the items are stored in
an array. (NOTE: There are many variations of linked lists that will do this job nicely but that is beside the
point of this example.) A space must first be made by moving all the items above the insertion point (ptr)
*up’ in the array, starting with the last item and traversing 'down’. For example:

numltems := succ{numitems);
for k := numltems DownTo succ(ptr) do itemlkl := itemlpred(k)l;
itemiptrl := newltem;

Similarly, if item[ptr] is to be removed:

numltems := pred{numltems);
for X := ptr to numltems do item{k]l := itemIsucc(k)];

The same thing can be accomplished using MOVELEFT/RIGHT. In fact, this is the first opportunity
to demonstrate the need for and use of MOVERIGHT. Notice that when the insertion is made, array
elements are moved up starting at the *top’ (i.e., item[numltems]); when a deletion is made, elements are
moved down starting at the 'bottom’ (i.e., item[ptr]). Thus, the insertion method requires MOVERIGHT:

numitems := succ{numltems);
moveRight(itemlptrl, item[succ(ptr)l,(numitems - ptr) * sizeOf(ItemRec));
itemiptr] := newltem;

While the deletion method requires MOVELEFT:

moveleft{item[succ(pNum)],item{pNum]),(numltems - ptr) * sizeOGf(ltemRec));
numltems := pred(numltems);

Note here that the ’source’ and ’destination’ parameters are not explicitly byte-oriented; in this case,
they are arrays of type 'ItemRec’ which can be any type including a Pascal record definition. The UCSD
Pascal intrinsic *sizeOf” returns the number of bytes allocated for any given data type and multiplying this
value by the number of elements to be moved supplys the ’length’ parameter to MOVELEFT/RIGHT.

The principal factors that influence the speed of insertion are the size of the array elements and the
number being moved. Other factors affecting only the conventional technique include whether or not
range-checking is disabled and whether or not the iteration variable of the *for’ loop is declared in the first
16 words of the procedure block (see David Gelfand’s article in USUS News #13, page 32). As the
following table indicates, a significant gain in speed may be achieved in many cases using
MOVELEFT/RIGHT: '

Speed Ratio of MOVELEFT vs. FOR loop

Size/ | MNumber of Elements Being Moved
bytes | 10 50 200 100C 10000
...... b
2 | 6.7 19.2 29.1 35.4 36.2
0 | 4.5 6.7 7.6 7.8 %
30 | 25 2.8 2.9 30 @ *
0 | 1.2 1.2 1.2 o+ *

Trick #3 - Goodbye Type-Checking:

28

The fact that SCAN and MOVELEFT/RIGHT accept parameters of any type allow for some powerful
and flexible uses of these functions. Occaisionally, you may wish to write procedures of your own that
allow data of any type to be passed as a parameter. Unfortunately, UCSD Pascal does not go quite so far as
to provide a standard type called *'AnyType’ for use in procedure parameter declarations... There is a way,
however, to implement the equivalent of the following:

PROCEDURE MyProc(VAR data: AnyType);

Note that a VAR (or variable) parameter simply passes the address of the data... so all that is needed is
the ability to obtain the address of the data being passed. The UCSD intrinsic PMACHINE provides this
capability (and many more!). Since the p-System’s address space is limited to 16-bits, an integer will serve
to hold the address. The code required is as follows:

CONST STO = 196; {the PMACHINE 'Store Indirect' opcode}
VAR OneRec: RecType;
orAddr: integer; {address of OneRec}
begin
pMachine(*orAddr, “OneRec, ST0);

Now the integer 'orAddr’ may be passed as a parameter in place of the actual data variable. A general
purpose disk IO procedure might look like this:

FUNCTION diRead(VAR filelD: diFIB; {type FILE}

address, {pMachine address of data}
numiWords, {# of words to read)
startBlk, {0..pred(filelength)}
startWord: integer {0..255)

): boolean; {success or failure)

Note that 'address’ doesn’t even have to be a VAR parameter; the procedure is accepting a memory
address of data of any type. To use this address within the procedure, a variant record is declared with one
variant being an integer and the other being a pointer to any convenient data type. In this case, it may be
useful to treat it as an array of word (i.e., INTEGER):

TYPE uBuf = arrayf0..32765] of integer; {i.e., word}

ptririck = record
case boolean of
TRUE : (intAdr: integer);
FALSE: (bufPtr: “uBuf);
end;
VAR userData: ptrTrick;
buffer: packed array[0..511] of integer; {two blocks}
begin
diRead := FALSE; wuserData.intAdr := address;
if blockRead(filelD,buffer,2,startBlock) = 2 then
begin
diRead := TRUE;
movel eft(buffer {startiord] ,userData.bufPtr”,numWords * 2 {bytes!});
end;
end; {diRead}

(NOTE: For simplicity, the above example will work only if 'TnumWords’ <= 256. Also, if the address is
wrong or the variable pointed to by *address’ is too small for the number of words read, disaster will result.)

A similar construct can be used for handling variable sized multi-dimensional arrays. The following
function assumes the user data is a one dimensional ARRAY OF INTEGER to be treated as a two-
dimensional array with dimensions [1..colMax,1..rowMax]. It returns the value of the cell who's coordinate
is *col,row™

FUNCTION cellGet{address,colMax, rowMax,col, row: integer): integer;
{TYPE and VAR declarations as above)}

29

begin

userData. intAdr := address;

cellGet := userData.bufPtr*[pred(col) * colMax + roul;
end; {cellGet}

For convenience, functions ¢can be be written to return the address of commonly used data types:

FUNCTION IntAdr{VAR intVar: integer): integer;

VAR temp: integer;

begin {returns address of 'intVar'}
pMachine("temp, ~intVar,5T0); IntAdr := temp;

end; {IntAdr}

FUNCTION StrAdr(VAR strVar: string): integer;

VAR temp: integer;

begin {returns address of strvar'}
pMachine(~temp, *strvar,ST0); StrAdr := temp;

end; (StrAdr}

FUNCTION myAddress{VAR myRecord: myType): integer;

VAR temp: integer;

begin {returns address of ‘myRecord'}
pMachine{"temp, “myType,5T0); myAddress := temp;

end; {myAddress}

These functions are then used in place of the *address’ parameter. ’intVar’ or *strVar’ may be the first field
in a record in which case the address of the record will be returned. NOTE: This only works if the first field
of the record definition is not in a variable list. For example:

TYPE GoodRec = reccrd
fieldl: integer; {This will work fine}
field2: integer;
field3: string;
etc.
end;

BadRec = record
fieldl, {This will NOT work!}
field2 : integer;
field3 : string;

ete.
end;
if diGet({filelD,IntAdr(GoodRec.field?),recNum) then... (0K}
if diGet(filelD, IntAdr(BadRec.field?),recNum} then... {Bad news!i11}
Conclusion:

For those who dare and, at the same time, are very, very careful, there exists a degree of freedom
beyond ‘given’ limitations, even in UCSD Pascal.

30

A Guide to the Tl 99/4a p-System

By: Steve Jacobs

Copyright 1985, Steve Jacobs. All Rights Reserved
Introduction

When TI discontinued the machine in October, 1893, few of the over two million 99/4 owners were
using the p-System; if all 99/4 owners felt like orphans, we p-System users were doubly so. But however
isolated we seem there are advantages; the p-System on the 99/4a is a full implementation of a "serious"
operating system and as such we are able to do much more with it than TI-BASIC. Also, we can get help
from any p-System user, regardless of their hardware. Finally, when the day comes when our machines
either die or are outgrown, our programs will be portable to virtually any other machine on the market,

The purpose of this guide is to orient the TI 99/4a user to the p-System in general, and point out the
special considerations about its implementation on our machine. It is hoped that this guide will be of value
to all who are interested, from the serious programmer to those who are considering purchasing the p-
System

Overview of the p-System

The p-System is an operating system -- a set of programs to run the computer and allow us to write and
run programs. It is not a language; any language might be available under the p-System. While only Pascal
is currently available to us, other users of the p-System can use BASIC, FORTRAN, and Modula-2.

This concept is confusing to many TI 99/4 users because TI Console and Extended BASIC have the
operating system built in -- including text editors, disk management programs, etc. -- all in the ROM
containing BASIC. In the p-System one addresses all these functions separately, and most are on disk.

The essential part of the p-System for the TI99/4a is the p-Code card (or the old p-Code peripheral).
The p-Code card contains some of the system programs in ROM. You must also have the 32K memory
expansion. There is currently no way to use the extra 96K RAM available in the 128K card manufactured
by Foundation. Another manufacturer has recently announced a 128K card for the TI 99/4a. This card
supposedly is sold with a RAM disk simulation program. This might be usable under the p-System and
would be very useful for storing programs which heavily use the disk -~ especially the Pascal Compiler.

A disk is not absolutely necessary for using the p- System, as programs can be loaded and run from
cassette. However, I do not know of any cassette programs, nor do I know of anyone who has used a cassette
with the p-System.

The p-Code card includes, in ROM, the p-Code interpreter. This program accepts the user’s and
system programs in p-Code and executes them by interpreting them into 9900 machine instructions.

Anyone serious about the p-System will have to have at least one and preferably two disk drives. The
p- System will support double sided disk drives. If you is going to make use of the p-System for writing
programs, then you will find that in a single drive system that your drive had better be double sided; two
drives are better and two double sided drives are best. I see little use for a third drive. Does anyone know if
the Corcomp double density controller allows double density disks on the p-System (360 single sided, 720
blocks double sided)?

A printer 13 certainly useful for the serious p-System user and can be fully accessed through the RS§232
(and PIQ) card. Has anybody had experiences with other RS232 and PIQ cards, peripherals, etc. -- by 3rd
party manufacturers?

There are several programs that are important parts of the p-System. One is the Pascal compiler, the
program that takes Pascal programs and translates them to p-Code, so the p-Code card can run them. This

31

program comes on disk and is necessary if you want to write your own programs. You do not need the
compiler to run someone else’ programs.

Another disk contains two important programs: the Editor and Filer. The Editor is used to edit
documents and programs; you only need this to write your own programs although it can even, to some
extent, be used for word processing. The Filer manages the disks; virtually any user of the p-System needs
this program. Also on this disk are a number of utility programs which are of much value to most users.
Any user of the p-System needs this software.

The last disk contains the Assembler and Linker, both of which are necessary to do assembly language
programming, ,

Learning to use the p-System

The TI manuals that come with the system components are pretty good as manuals go, but are not
designed to teach the basic use of the system. There are many books about the UCSD p-System and Pascal.
Two very useful books are: "Introduction to the UCSD p-System" by Grant and Butah (Sybex), and "The
UCSD Pascal Handbook" by Clark and Koehler (Prentice-Hall). The former is an excellent introduction to
the use of the p-System. This guide will describe the unique aspects of our implementation by comparing
the TI 99/4a system to that described in this book. The latter book is a relatively technical guide to UCSD
Pascal with very good examples. There are a number of good books that teach Pascal; a discussion of them is
beyond the scope of this guide.

USUS (the UCSD p-System Users’ Society) is a good source of help in the use of the system. Many of
its members can easily be reached via the MUSUS SIG on Compuserve (PCS-55). The beauty of the p-
System is that it, at least in theory, acts exactly the same on all systems; thus, you can get help from any
knowledgeable p- System user; MUSUS is a good place to find such people.

The Filer

The Filer works pretty much as described by Grant and Butah. The major exceptions are that some of
the prompts are shorter and the TI 99/4 only displays 40 columns at once. To see the whole 80 column
display one uses the FCTN-7 and FCTN-8 keys (screen left and right).

It should be noted that disks may be physically in the drives but cannot be addressed by their volume
names unless they were present at startup of the p-System, or reinitialization (I command) or by invoking
the V (Volumes) command of the Filer. This command doesn’t just list the on-line diskettes, but formally
recognizes them so that they can be accessed by volume name in user programs. If you want to use the
FILER but didn’t have it in a disk drive at start up, then you have a problem. You cannot invoke the FILER
V command to get the system to recognize the disk - because you can’t run the FILER. The solution to this
catch-22 is to use the system I command and restart the system. On restart, the p-System looks anew at the
disk drives, and will then recognize the diskettes loaded in them, and know where to find the FILER,
EDITOR, etc. If the p-System is started with FILER disk in the root drive (DSK.1) -- and no diskette in
other drives (DSK 2, DSK 3), then you cannot access these drives, even by number (#5:, etc). The system can
be made to recognize that these drives exist by running the FILER V command. It directs the system to look
at all possible disk drives. Once the system has recognized that the drive is there you can use it normally -
even changing diskettes, etc,

The Z (zero) command sets up a new (or zeros an old disk) after it has been formatted by the
DFORMAT utility program (or the Disk Manager Cartridge). Single sided disks have 180 (512 byte) blocks,
double sided disks are twice that size. Using duplicate directories consumes 4 extra blocks but will often
avert disaster when disk failure occurs.

The Editor

The Editor for the 99/4 is that which Grant and Butah call the "Screen Oriented Editor" -- the Editor
that is discussed at length in their book. In general the Editor works just like that of Grant and Butah with a
few differences that could probably be best described as bugs. The "S" (Same) option of the "F" (Find) and
"R" (Replace) command does not work. The copy buffer seems to be emptied at times for reasons that are
not obvious. After repeated insertions and deletions of a given page on screen, often the screen image is not
correct. The actual text is different. As a result, it is best to use the "V" (Verify) command when in doubt -

32

it re-displays the current screen page. The fact that the Verify command exists indicates that this problem
is known to the designers of the p-System.

The 99/4a’s small RAM size allows only a little more than 12k characters in the text buffer. If you
need to break down a larger file the AUTOPSY program in the USUS library can be of help. Programs can
be written in several parts and strung together with the Pascal compiler {$I} (include file) command.

Compiler

The TI 99/4a Pascal compiler is a full Version IV.0 implementation. It seems to be identical to the
compiler described by Clark and Koehler. In its TI version, the Compiler appears to be in four parts: 1) the
start-up code; 2) the code to process the Declarations, 3) the code to process the body of procedures, and 4)
the code to produce p-Codes. Parts 2 and 3 are swapped in and out for each procedure in the program,
making compilation a good time for a coffee break. The swap parameters described by Grant and Butah
seem to be inoperative on the TIL; I suspect that the compiler is set for maximum swapping to accommodate
the TI’s limited RAM. Making a listing causes the already slow compiler to run much slower still , so one
should be sparing in using this function. Also, if errors are found by the compiler it may not make a listing,
even if the user keeps continuing compilation to the end. It may even hang with the error STACK
OVERFLOW*REBOOT. At this point, one must turn the console off and on again and to restart.

The compiler would be the ideal candidate for the use of a RAM disk program -- if one could be made
to work on the system. The excessive swapping would be made painless if done at RAM speed.

The degree of swapping experienced by the Compiler could be reduced by decreasing the number of
Procedures and Functions. One could replace them, to some extent, by frequent use of GOTO statements.
In other words, by avoiding the use of "structured programming" one could speed the compilation of
programs. This is certainly contrary to the philosophy of Pascal and would make the programs much harder
to maintain. So it is much better to put up with slow compilation of good programs then fast compilation of
bad programs!

The TI 99/4 version of Pascal includes a number of extensions that allow the use of the special
capabilities of the machine. These extensions are in the form of procedures included in the "TEXAS
INSTRUMENTS UNITS", which are in the system LIBRARY. These include the routines to change screen
color, use graphic modes (bit map, multi-color, etc), sprites, sound, joysticks and speech. The use of these
routines will allow the sophisticated user to do in a high level language what otherwise was previously only
possible in Assembly, TI FORTH posesses these capabilities as well. Please note, however, that the use of
these procedures will make the program machine dependent, and thus not portable. One cannot, for
example, expect a program using sprites to run properly on an APPLE, because that machine lacks the
hardware to produce them. To keep a program portable, one should avoid using the facilities in the TEXAS
INSTRUMENTS UNITS.

Among the routines included in these UNITS, I have only used the procedures for random number
generation and screen color definition. These procedures work as specified. I welcome input from others
who have used the other facilities.

For program development, it is desirable to be able to quickly go from compiler to editor, so it is good
to have both programs on one disk or both on different disks on different drives (in a multi-drive system).
Also, put the file SYSTEM.PASCAL on the ROOT volume so that meaningful error messages are displayed.

Utilities
There are a number of valuable programs included with the Editor and Filer disk. This guide will
discuss the most useful of these programs.

DFORMAT formats new disks (or reformats old ones). It serves the same function as the Disk
Manager module in this function. It can format double sided disks but usually fails (I was told by TI that
they knew of this bug) but works fine on single sided disks. For double sided disks, one can always use the
Disk Manager 2 module if available. The Z)ero command in the FILER must still be used in either case
before a disk is usable.

33

MARKDUPDIR and COPYDUPDIR are useful in dealing with duplicate directories on disk, whose
use is highly recommended.

MODRS232 alters the device definition associated with REMIN: and REMOUT: (these use the same
definition) and PRINTER:. TI has kindly included the source code for these programs. If you use a printer
whose definition is different from the default (R8232/2.BA=9600.DA=7.PA=0.EC -- this probably isn’t
what you’re using), you can alter the source code to make the printer definition without user prompting and
run it as SYSTEML.STARTUP. The rules for describing the RS§232 or PIO communication setup are the same
as used by BASIC.

RECOVER is useful if an both directories are blown (or you foolishly used only single directories). It
can help restore lost files. PATCH will allow repair of individual files. You have to be 2 very expert user to
use PATCH, however.

SETLTYPE allows one to force a program when loaded from disk in RAM to be run to reside in RAM
rather than YDPRAM. Its stated purpose is to declare whether a program is in p-Codes or native code
(machine language). Machine language programs must reside in RAM; p-Code programs may be in RAM or
VYDPRAM as the p-System selects (usually in VDPRAM).

To understand the significance of the use of SETLTYPE you need to understand how the TI p-System
manages RAM. The system views both VDPRAM and RAM as one large space to be filled with programs
and data, It will store data down from the high end of RAM and programs up from the low end of
YDPRAM until RAM or VDPRAM is filled; then it will overflow into the other space (i.e. programs will
overflow in RAM or data into VDPRAM). Apparently, the p-Code interpreter must operate on p-Codes in
RAM (this is certainly the only way such a program could work within the architecture of the 99/4 system).
In order to run a p-Code program the interpreter must first direct that each code be copied from VDPRAM
to RAM before it can be operated upon. Thus if a p- Code program is placed in RAM it will run faster by
avoiding the copying from VDPRAM. One can use SETLTYPE to force a program or segment to be in
RAM. If this is done it will run somewhat faster, but may impinge on (and thereby limit) the area for data.
As mentioned above, assembly language programs must be put in RAM with SETLTYPE,

Using the p-System

Several notes can be made about using the p-System on the TI99/4a. First, you cannot use the TI
LOGO cartridge on a system with the p-Code card in place. The p-System will work fine; LOGO will, in
certain circumstances, loose control to the p-Code card, destroying what you were doing with LOGO. If
your p-Code card has an on/off switch, all will be well if you turn the card off before using LOGO.

When a 99/4 is powered up with the p~-Code card is in place (and turned on) the p-System initializes
and then displays the p-System greeting. The p-System remains active until the user stops if; thereafter it
will not restart without using the technique below (or turning off the system). To get from the the p-System
to the BASIC environment is simple - use the p-System H’ command. To go from BASIC to the p-System,
you need to have one of the following cartridges in place on the console:

1. Extended BASIC
‘2. Editor/Assembler
3. Mini Memory

From console or Extended basic, execute the following command: CALL LOAD(14586,0,0) and then
type fctn-= (Quit) or the BASIC command *BYE’. The p-System will then operate as if you had turned the
system off and then on again. Some programs and cartridges seem to have the same effect as the CALL
LOAD listed above. Exiting TI-WRITER, MULTIPLAN, or the COMPANION word processor will lead to
restart of the p-System. Likewise, some of the commands in the DISK MANAGER will reset the p-System
so that it will become active again upon leaving this module.

Speed is an issue of interest to all potential users of the p-System. If computing speed is the reason for
the TI BASIC programmer to consider the p-System, the following facts apply: Because the p-System is
interpreted, it is relatively slow compared to compiled Pascals (such as Microsoft and TURBQ Pascal on
MSDOS and CP/M systems). Compared to other machines, the p-System on the 99/4 is quite slow - I

34

!
i

believe it is the slowest implementation of the p-System around. TI BASIC, however, can be benchmarked
with a sundial, so it is easy for the p-System to beat. Number crunching programs Pascal can run up to 60
times faster than their BASIC counterparts, especially if put in RAM (see SETLTYPE). Programs doing
mostly screen I/O can be slower than BASIC, however. Disk I/0 seems a little faster with the p- System --
perhaps because of the simpler file system, leading to less searches for the next block, etc. 1 have no
experience with FORTH, but know that it too is faster than BASIC. The programmer desiring speed above
all else should compare the p-System to FORTH.

On running the V command in the FILER program, you will notice that there is a device #14 called
*0S:’. If you do not have a disk in drive one (the usual root device), one will find that the "PREFIX’ and
"ROOT’ devices are defined as '0S’. This device includes files that are in ROM and are used for booting the
system. You can read and examine these files but not, of course, modify them. To change the PREFIX
definition, use the FILER P command; to change the ROOT definition you must use the system I (warm
start) command.

Compatibility with other Machines

The p-System on the 99/4 is very compatible with other p-System implementations. Source code
developed on the 99/4 can and does run without modification on most other machines if you avoid using the
TEXAS INSTRUMENTS UNITS included with the Pascal Compiler. The 99/4 is less able to run programs
from other machines due to it’s relatively small RAM size. If the program is properly segmented, however,
there will be no problem. The Pascal compiler, for instance, is 99 blocks long -- 49.5K. It runs on the 99/4
(with a lot of disk swapping). The only other problem in running program from other machines on the TT is
the presence of a 40 (rather than 80) column display. The TI will display all 80 columns with the SCREEN
RIGHT and LEFT keys, but you will probably want to modify the display (if possible) to fit the screen. In
the file SCREENOPS.CODE on device #14 (see above) is a description of the TI screen size. This file can be
read by a program. This file tells the program in the case of the TI that the screen is 40 columns, Clever
programs will adapt themselves to the size of the screen.

A larger problem is physically transferring programs to and from the 99/4a. The TI p-System lacks
any functional communications program at this time. Files can be exported from the 99/4a easily by using
the FILER to T)ransfer to REMOUT:.

There is good but not complete compatibility with other (non UCSD) Pascals. I have programs which
were written on the TI p-System which I ported to an MSDOS (IBM PC or compatible) machine and
converted to Turbo Pascal. Little modification was necessary. Has anybody had experience with other
Pascals?

Software for the TI p~-System

I know of no commercial software for the TI p-System. I suspect that if enough interest could be
shown, then the whole spectrum of existing p-System software would be made available.

USUS maintains a large library of programs, most of which are not machine dependent. These volumes
are available to USUS members for a small fee - in TI format. Most programs have not been modified to
run on the TL. If you modify a USUS program to run on the 99/4, you are requested to send a copy back to
the USUS TI distributor.

Wish List

The p-System on the TI 99/4a is powerful but remains largely undeveloped. What follows are my
suggestions for software development which would greatly aid the use of the system.

FORTRAN: could someone port this compiler to the TI? There would surely be great interest in this
language on the 99/4, Likewise, many would welcome Modula-2,

Terminal Emulation: There have been programmers who have had TE programs "almost working".
This is probably the highest priority for the p-System. A TE program would allow porting of other
programs to the TI without re- keying the source code.

A good Data Base: there are no high quality data base programs available for the 99/4 at all - not in any
operating system. Several excellent programs are available on the p-System. One could one be ported easily

35

to the 99,
HELPM!

The information in this guide is essentially all from my own meager experiences with some help from
MUSUS and Compuserve TI Forum members.. Like most p-System users on the 99/4a, I doubt that I have
ever seen another user. This guide has been written, therefore, in a vacuum. Its purpose is to catalyze
discussion, debate, and the creation of a better guide to the TI p-System.

To improve on this guide, I need the experiences of other users, both the sophisticated and the novice.

This guide could be improved with the following information: Is there anybody out there who can help
with machine language programming on the system? How about how to change character sets? Anybody
have any suggestions or other tricks for use of the p-System? I solicit your comments, suggestions, and
criticisms, If you feel the urge, trash this guide and write your own. We all will benefit by the interchange
of information and ideas.

" An Overview of MOSYS

By: Tom Cattrall

Copyright 1985, Tom Cattrall. All Rights Reserved
Introduction

MOSYS was put together from pieces developed by Robinson Systems Engineering Ltd, TDI Ltd, PRG
Oxford University (all in England) and ETH & ETZ Institutes Zurich. It is marketed by 32DOS Ltd in
England and by Pinnacle Systems and Maritime Infosystems in the U.S.

I have had MOSYS for about 4 months but my experience with it is not extensive because of other
projects. This article therefore concentrates more on what is available rather than a thorough evaluation of
every feature in the MOSYS system.

What You Get
My system came from Pinnacle and consists of the following:

Four floppy disks: MOSYS boot disk
MOSYS release files (2)
MOSYS BIOS and utilities

Four Manuals: Users manual
Programmers manual
Editor manual Document
processor manual

Pinnacle specific release notes,

Installation consists of configuring the MOSYS BIOS using the Pinnacle p- system UTIL program and
then transferring the boot disk to a partition reserved for MOSYS. You then boot up from that hard disk
partition and type in a series of commands to initialize the file system and to configure for the correct
terminal. The system comes set up for 2 minimal terminal and they supply modules for four other terminals
(Qume QVT 102, Wyse WY50, Butel KDS7362, and DEC VT100). The last step in generating a system for
another terminal is to do 9 file renames. The instructions only gave 7 names. MI100A and DPI00A must be
added to the top of the list. You then copy the two floppy disks of files to the winchester disk as the last

36

step.

I have a Wyse WY-75 and use the VT100 option. My only experience with any of the other terminal
options is some brief use of the WY-50 system running at Stride Faire. Source is supplied for the minimal
terminal keyboard and screen modules so it is possible to create modules to support other terminals using
these modules as a basis.

The major pieces of the MOSYS system are:

Command line user interface

Menu mode user interface using overlapping windows

File System

Screen Editor

Modula-2 native code compiler based on ETH Zurich compiler
Linker and Debugger

Document Processor that formats text (ie. for manuals or reports)
EBNF processor that validates Extended Backus Naur-Formalism files
Macro processor used to define and manipulate keyboard macros
PATCH: display and/or change files

PSYSTOMOSYS: copy files from p-system disks into MOSYS
XREF: produces cross referenced listings of program source files
Definition Module source for much of the system

26 utility programs (commands)

The File System

The file system is a giant step up from the p-system. Files are labelled with a device name (3
characters:floppy drive number, winchester partition, or ram disk), a qualifier (6 characters), description
(11 characters), and extension (3 characters).

Example; wi0:AL100A /WindowsDemo.mod

This file is on winchester partition 0 with a qualifier of ALI00A and name of WindowsDemo. The
mod extension is the standard extension for Modula-2 source files. There are 23 extension conventions but
you can use any 3 characters, Notice that filenames are case sensitive (as is Modula-2). My little fingers got
used to it a lot faster than I expected.

You specify the number of files on a device with the init command (I have 2000 on wi0:) and then just
create them as needed using qualifiers to group them, A qualifier can have as many files as you need: 1 or
1000. MOSYS doesn’t care.

MOSYS has a very useful search device feature that is a superset of the p- system Prefix. You can
define pseudo devices that contain a list of real devices and qualifiers. Then whenever a filename is given to
the system without a qualifier the file system tries device/qualifier pairs from the assign list until it gets a
match,

Wildcard characters are supplied for any sequence of characters (*) or an individual character (%). I
sometimes "lose" files on the p-system. That is, I know the name but can’t find which subvolume holds it,
As near as I can tell the only way to find it is search each subvolume. In MOSYS 1 just do:

DIR */name.*
and it checks all qualifiers and shows a listing entry for each one it finds,

The file directory list shows date/time of last modification, backup and protected flags, size, and
location on disk. No backup utility is supplied (I use copy) and as far as I can tell there is no command to set
or clear the file protected flag. It would be a simple thing to write such a command using the supplied
procedures in the module Files.

) Commands are supplied to do the normal things such as create, delete, rename, copy, directory list,
initialize, consolidate (Krunch). I couldn’t get the utilities that configure the disk drive or format floppies

37

to work. I use the p-system to format floppies and then do an init in MOSYS to write a MOSYS directory. 1
used the p-system UTIL to configure the disk drive to 1600 block format and have not tried any other
format.

The User Interface

MOSYS has a normal command line mode where it issues a prompt "=>" and then waits for you to type a
command, To delete a file you would type:

delete Prog/transp.mod
Commands are not case sensitive.

The other mode is the menu user interface. This consists of a series of menu windows in a tree
structure. Commands that are used together are grouped in the same menu. Some functions such as file
system commands that are useful in many environments appear in several different menus. The main menu
and the program development menu are shown below to give an idea of the structure. You select a menu
option by going to the desired line with up and down arrow keys and then press right arrow to select that
option. You can also type the number of the desired menu item and it is automatically selected. The >
symbol on some items says that that item is another menu rather than a command. When you select another
menu it overlays the existing one in such a manner that you can see where you came from. The maximum
stacking level is 16 windows. To return to the previous menu press the left arrow key. Atany time you can
access a universal menu by pressing the space bar, or call up a help screen by pressing the help key.

MOSYS 1.00a > PROGRAM DEVELOPMENT
. System Restart Directories and Files >
. User Environments g£dit a File

system Closedown
Program Development
Document Processing
System Configuration
Develop User Interface

. Command Line Environment
. Execute Command Fite

Compile a Mcdule

Link a Program

. Execute a Program

. bebug a Program -4
. Cross Reference a Module

~ TN =

D0~ O P A Y e
¥V ¥V V¥

The main menu on the left is what you see when first entering menu mode. Selecting item 4 would give
you the program development menu shown on the right. It would overlay the main menu on the screen,
Notice in the program development menu that items 1 and 6 would select another menu level while the
remaining items are all commands that execute directly.

A dialog window appears when the menu item selected is 2 command that needs parameters. Prompts
show what is needed and limited editting of the parameters is allowed. Parameters are remembered and
often times all you do is hit return to accept the existing parameters. An example: after entering a file name
to edit it is not necessary to reenter it for subsequent edit, compile, link, or execute steps.

The menu interface has the curious "feature" that it tends to ignore alternate commands. Edit, compile,
link, execute can be run in order without a problem, but trying to execute several times in a row only works
every other time,

This user interface allows a newcomer to MOSYS to do things almost immediately and yet it is also very
useful to the experienced user. I prefer the command mode for a few things but use the menu interpreter
most of the time. All of this is done using an interpreted language that you type into a text file and then run
through a preprocessor. Similar systems could be set up for user application environments. The source for
the MOSYS interface is supplied and you could add to it or do a new one. I like the concept so well that I
plan to implement a similar scheme on another computer system where computer illiterate people have to
manage an extensive set of commands and parameters.

The Ediior

I am not very fond of the editor. If MOSYS is to prosper I feel that it needs a better editor. Itseems to
be patterned after DEC’s EDT. Commands are entered by operating control keys on the keyboard. For

38

VT100 terminals this means the PF1-PF4 and numeric keypad keys. The Wyse WY-50 uses the function
keys on the top of the keyboard. With a minimal terminal you hit escape and then another key. My first
complaint is having to remove my hand from the keyboard to hit a pair of keys on the keypad. The second
complaint is that there aren’t very many commands once you get there. In VTI00 mode several of the
commands don’t work but the whole thing is so primitive I don’t even miss them. Maybe I shouldn’t be so
negative about it. Back in the good old days I edited Fortran code on 026 keypunches and got by. This is a
definite improvement over that.

Anyway, the commands are:

movement : arrows for up, down, left, right
word left/right, line left/right, line next/prev
page next/prev, tab

home (doesn't work on VT100)
delete: char left/right, word left/right, line left/right
line, undelete
cut/paste: mark, cut, paste (don't work on VT100)}
find/replace: define search string (doesn't work on VT100)
Find next/prev (might work if I could define string)
find error next/prev {nicest feature in the editor)
replace ¢might work if I could define string)
escape: escape to menu window that gives commands below:

abort, end-edit, write file,

Top of file, bottom of file, centralize
read/write text from/to file

5 misc and utility commands

The editor is always in insert mode, there is no overwrite mode. It pushes existing text along without
making a gap first as the p-system editor does. This makes it less than clear what you are doing while
entering new code. I often create an extra blank line or two and then go back and do my insert before the
blank line. When done I delete the blank line. If the cursor is in column 70 and you press the down arrow
the cursor moves down to the next line with something in column 70. This could be 2 lines later or 200. The
manual says this "may be slightly surprising to the novice user”. After 4 months of putting up with this
"feature” I must say surprise isn’t the emotion I feel when this happens.

Easily the best feature of the editor is the way it interacts with the compiler for compile time errors. If
the compiler encounters errors it writes an error file that contains a list of error numbers and the line and
column where each one occurs. When you go back to the editor it reads the error file and puts a mark
(default is @) at the location of each error that the compiler found and positions itself at the first one. The
text for that error message is displayed on the bottom line of the screen. The find error keys will position
the cursor at the next or previous error in the file. At each error the corresponding error message appears at
the bottom. The same thing happens if you move to an error location using the arrow keys. When you leave
the editor the @ characters are removed and the error file is deleted. With this feature you can fix a lot of
stuff with each compile.

The Compiler, Linker, and Debugger

Many compilers for small systems come without a full manual. They only have a description of the non
standard or missing features in the compiler. The MOSYS compiler doesn’t even have that. You get a
description of what parameters you need te invoke the compiler, a list of the various files that go in and out
during compilation, a list of the compiler options that may be imbedded in the source, and a short blurb on
module keys and what happens when they don’t match. I haven't really felt a need for any further
documentation since everything seems to be there, The only trial and error 1 did was to discover that the
compiler only allows 64k of data. I wasn’t ambitious enough to see how much code you can have. The books
by Wirth and Gleaves have done the job. The only compiler error I have run across is minor (it says TYPE

39

short= ~32767..32767; is too big for it). My experience with it hasn’t been very extensive and I have seen
others find more serious bugs.

The code produced is relocatable native code that goes into the linker. It does an uninspired but decent
job of generating code. Integers and cardinals are only 16 bits now but they plan to support 32 bit data types
as well as 32 bit address space. Code not using reals seems to run around 10 times faster than the equivalent
p-code. Reals are 32 bits supported by software and are faster than the p-system reals using 64 bit software
by a factor of 4.,

Two utilities are supplied that disassemble compiler output files. DECLNK converts link files into
assembly code and DECSYM converts symbol files (output from a DEF mod compilation) back into
Modula-2.

The compiler is multipass and isn’t especially fast but the ability to get all errors reported at once helps
alot.

The linker combines compiler output files into an executable object file. It does module key checking
along the way. There are options for getting a map, including information for the debugger, and creating a
file that is to run in a standalone mode at a specified address.

Dumps may be taken when a program aborts by turning on a dump mode. After you geta dump, the
debugger is used to analyze it. The debugger lets you look at the aftermath through 4 different windows:

P window: shows chain of activated procedures at moment of crash

D window: view actual values of variables belonging to a procedure
or a module,

T window: view source file of a seperate module,

C window: view dump file core image

I haven’t done enough with the debugger to know if it all works as advertised. A full blown run time
debugger that allows breakpoints and source level interaction would be a nice next step for MOSYS.

Application Programs
MOSYS supplies 7 programs that the manuals call application programs. They are:

TEXTPROC takes files prepared using the editor, and using imbedded
commands produces a formatted output file. I haven’t used
it but as all of the manuals were done with it [assume
it works. Any line beginning with a decimal point is
a command line. The command groups are: Page format,
Pagination, Line layout, Line spacing, Text heading,
special characters, and macro commands.

DOCPRINT Used to print files produced by TEXTPRQC. Bold and
underlining attributes are supported by the printer
modules. The printer module source is provided so that
special needs may be provided for.

EBNF This will read an EBNF definition file and verify it.
A cross referenced listing is also produced. See Appendix
1 of Programming in Modula-2 by Wirth for an example.

MACROSOPS The system supports keyboard macros of the form \x where
x is an upper case letter. These 26 macros are defined
and manipulated using MACROSOPS. They supply a default
set that includes many Modula-2 words and phrases, You
can of course define sets of your own.

40

PATCH Enables you to examine and change a file in hex, ascii,
or characters using a screen editor type arrangement. !
haven’t had occasion to use it but there have been many
times I wished I had something like it on other systems.

PSYSTOMOSYS Allows p-system files to be copied to MOSYS. There is
no equivalent to go the other way.

XREF Takes as input a Modula-2 source file and produces a
line numbered listing and an identifier cross reference
listing.

Supplied Modules

MOSYS comes with source for 50 or so DEFINITION modules. Most of them are commented well
enough that you could make use of them in your own programs. I was going to produce some kind of
comparison chart between MOSYS, Wirth’s book, Volition, and the proposed MODUS standard. After some
study I gave it up as a lost cause. A few things like SIN and COS were the same across all 4 but usually I
couldn’t find even two that would agree. Let’s hope that the proposed MODUS standard sweeps the
Modula-2 world like wild fire and ends this nonsense. Brian Kirk of Robinson Systems is participating in
MODUS so I assume that MOSYS will reflect the standard some day.

InOut is close enough so that simple terminal I/O can be handled with no conversion. Unfortunately,
reading (ReadString, ReadlInt, ReadCard) doesn’t work. They produce varying results such as bus errors or
instantly returning with a zero value. Switching to TextIO gave similar results. I finally found that by
setting the proper terminal mode I could read a character at a time. Using this and some string to number
conversion modules in M2Conversions [wrote my own ReadString, ReadInt, and ReadCard. Writes work
OK except that WriteReal gets an out of range trap when writing a value of zero in scientific notation.

Modules are supplied to handle file names and MOSYS style command string prompts and decoding as
well as windows and three types of schedulers for concurrent programming,

They supply IMPLEMENTATION module source for the keyboard, screen, and printer drivers. The
keyboard and screen sources are for the minimal terminal but with your terminal manual and a little work
almost any terminal could be supported. One of these days I'll get tired enough of the VT100 bugs and
keyboard layout to make a version more to my liking. The initialization section of the minimal terminal
driver prompts for the key to do a home cursor and the key to do non destructive right space. So if you use a
terminal with at least those two features you should be able to run MOSYS, After its up and running you
could switch to one of the standard terminal types or roll your own.

Support

Nobody at Pinnacle seems to know much about MOSYS so bug reports go from me in Oregon to
Pinnacle in Texas and then on to the MOSYS people in Bristol England. So far this has been a one way path.
I take it on faith that the bug reports arrive at the other end and are acted upon, I did get to talk to Brian
Kirk at Reno and he was already aware of some of the same things that I had found. Maybe they are
working frantically on a new version of MOSYS that fixes all of the problems.

Documentation

The documentation consists of four small manuals. They are written in a very minimal style and tell
you just enough (or sometimes almost enough) to allow you to do something. That may sound like I don’t
like them but that’s not the case. When I want to look something up I can find what I’'m looking for right
away and the explanation is short and to the point with no fluff. In some cases a little more explanation is
needed but not much more. I much prefer these manuals to the p-system manuals where you have to read
whole pages (or sometimes chapters) to find out the most trivial thing. I'm a newcomer to the p-system as
well as MOSYS but have used lots of other operating systems before. A dyed in the wool p-system user may
have a different opinion.

41

The only documentation supplied with the modules is in the form of comments in the DEF mod source.
Some modules have sufficient comments while others have none. If they assign someone fo fill in the gaps
that would be enough to keep me happy.

Future Yersions

Nothing concrete to report here. They seemed quite emphatic about wanting to have 32 bit data and
addressing in a future version. I also heard talk of better code generation such as better use of the 68000s
registers. Just using registers for local variables usually gives about a factor of two speed improvement on
the 68000. I heard mention of an assembler and multitasking. Of course I'm hoping for fewer bugs.

Summary

MOSYS has quite a few bugs right now. In addition to those mentioned elsewhere, running programs
have a tendency to abort with a bus or address exception. One time it became solid and I finally had to
reboot. I haven’t been able to come up with a reproducible case that fails. Actually there probably aren’t as
many bugs as it seems. 1 have just become somewhat gun shy. In any case I wouldn’t try to do production
work with the present system.

MOSYS needs a better editor. To change 25 occurences of writeln to WriteLn requires that you enter
28 commands rather than one as in most editors. [can’t see MOSYS getting very far in the world with this
editor.

Except for the editor, the MOSYS development environment is very nice. The menu and file systems
are the bright spots in MOSYS and are definite improvements over the p-system,

With MOSYS you can’t get spreadsheets, spelling checkers, data base packages, accounts receivable,
Basic, C or adventure. MOSYS is for people that produce software not for people that use software. Given
Modula-2 and the menu system you could develop some nice turnkey systems without a lot of hassles. I
work with real time standalone process control systems and Modula-2 along with the MOSYS ability to
produce standalone code would make MOSYS a good tool for developing systems which are then transported
to a target computer.

The current Pinnacle BIOS (4.0) doesn’t support MOSYS. If you get MOSYS for a Pinnacle make sure
you get the 3.0 BIOS or the 5.0 when it becomes available,

MOSYS was bundled in with my Pinnacle system and didn’t really cost any extra. I hadn't expected to
use Modula-2 for 6 months or so and now it looks like it’l be farther off yet. So I have been able to play
with MOSYS without the pressure of needing it to get a job done. The current version has some problems
but I still like the system, ‘

A future MOSYS system with fewer bugs, a decent editor, and the ability to use the 68000°s memory
addressing capabilities will be a very nice tool for Modula-2 developers,

Implementing the (Enhanced) Kernighan & Plauger Tools in Modula-2

By: Dennis Cohen

Most of us that are interested in programming have come across at least one of the books "Software Tools"
and "Software Tools in Pascal" which were written by Brian Kernighan and P.J. Plauger and published by
Addison-Wesley. They are generally considered to be excellent iltustrations of modular software
construction with useful resultant programs. Because of this, I decided that Modula-2 would be even
superior to Pascal as an implementation language for these tools and proceeded to test my hypothesis. As a
quick preview, I succeeded beyond my wildest expectations.

Because the K&P tools are primarily versions of U**x utilities and because I had the source to the
pShell (from doing the Apple /// {SOS} port), which was a mini-unix, 1 decided that I had a good starting

42

point.

The first thing that I wanted to change from the K&P implementation was the treatment of characters.
They added an extra layer of translation at all points by treating characters as their ASCII values and
manipulating them as integers. This is probably due to their C and FORTRAN backgrounds. 1 wanted
characters to be manipulated as characters and to eliminate the extra layer of translation on input and
output. Besides all this, Volition had done a good job of implementing their Library and I felt that it would
be foolish not to take advantage of this work.

After I had gone through the procedures and functions which K&P classed as "primitives" and
"utilities," I determined that most of them were going to need rewriting almost from scratch. This was not
surprising considering the amount of diversity between the Pascal implementations; however, 1 did not
expect them to differ as much from the UCSD Pascal implementation as they did. At any rate, I paced my
way through "Software Tools in Pascal” redesigning the low-level interfaces as I went. Fortunately, the
interface was not where the majority of the differences lay. Because of this and Modula-2’s support of
piece-wise development, I was able to rewrite some of the simple tools using the newly-created definition
modules and finding out how to improve the interface.

From there I went for the throat -- the text-formatter. At this time I started implementing the
primitives and utilities. Within one week, 1 had the defmods and impmods for the primitives and utilities
and a couple of simple tools operational. By the end of the second week, I had completed the task that I had
set for myself -- I had the tools that interested me (format, ar, more, translit, change, sort, and uniq)
implemented, including most of the recommended enhancements. When bound into one code file with the
pShell this all came to only 42K (84 blocks). This compares with over 100 blocks under UCSD Pascal and
there I did not have the piping and redirection provided by the pShell nor the other utilities, I had also
reimplemented grep to provide real pattern- matching as well as a few output options.

If you are interested in this material, contact Volition Systems (or whoever acquires the rights from
them) as they have purchased the distribution rights. I still maintain publication rights and am continuing
enhancement as time permits. Because of this, you might find an article or series appearing someday with
the source listings (if there are any publishers interested).

Pascal Assistant, a Fancy ASE Macro Module

By: Richard Karpinski

Copyright 1985, Richard Karpinski. All Rights Reserved

Volition’s Advanced System Editor (ASE) is a descendent of the popular screen editor native to UCSD
Pascal. In addition to handling files of unlimited size, ASE exhibits many other improvements. Perhaps the
most interesting new feature is the provision for user defined function keys. Whena function key is loaded
with a sequence of ASE commands and data to be executed by a single command, it is said to hold a macro-
instruction. These macros are the subject of this series of columns.

Abstract: Model statements and a skeleton programs are provided which,
together with the ASE macros, assist the programmer in creating
readable, indented Pascal programs.

From time to time one or another programmer builds a text editor for programs which assists in the
construction of proper (syntactically correct) programs. Usually, the result is not seen as very handy for
programmers to use. There may be many reasons, but often it is that improper programs are never
permitted. Thus many modifications are made more difficult than with a conventional editor.

43

This column offers some convenience features, but not the constraints usually associated with language
knowledgable editors. It implements a set of model statements in the Pascal language by using "macro” or
"function keys" provided by the Advanced System Editor under the UCSD Pascal system.

Sample result

Figure 1 shows an example with each assisted statement. The indenting style and all shown comments
are built into the model statements (see below). You will have the opportunity to change them for your style
of indenting, or to assist with some other language, or for some other function entirely.

The created program has no particular meaning. In fact, since functions without value are not
permitted, the program is not even correct. It is however, fairly tidy. It was very easy to do. Each addition
was made by pressing function key 2, typing a single letter to select the statement, and pressing function key
3.

Each such addition was immediately followed by tailoring. A R(eplace command was automatically
begun to supply the name or expression needed in this instance. (You also type the closing " \".)

------------------- Figure 1 - Sample «=--------ve-----meees
procedure MyOwnProcedure;

function MyOwnFunction{) : ;
begin { MyOwnFunction }
if Copdition-X
then begin
while Cond-Y do begin
end { while Cond-Y 3;
end {True Condition-X}
else begin
repeat { until Cond-Z)
untit Cond-2;
end {False Condition-X};
end { MyOwnFunction };

begin { MyOwnProcedure }
case Quantity-Q of
Val-A :
begin
end { Val-A);
val-B :
begin
end { val-B };
end {case Quantity-G };
end { MyOwnProcedure };

------------------- Figure 1 - Sample ----=r---------eom--n-

Notice that each structured statement reminds the reader at the end about how it began. This is
intended to make the reader feel secure about understanding the structure of the program as the details are
investigated. It is this repetition which aids the reader that can be effortlessly added by means of an
automated program builder. Perhaps it will be easier to write programs which are easy to read.

Menu selection mechanism

This particular program builder uses two function keys to perform a menu selection. The menu page
itself which is visible while the selection is made can be quite arbitrarily arranged. It can even mislead, on
purpose as well as by the usual accidental route. Most importantly, however, the page may easily be
changed by the user, using only the familiar tools of ASE itself. In fact, the entire mechanism is
(necessarily) visible and accessable for change to anyone who studies it appropriately.

44

The two key menu selection could be used for other purposes. Perhaps, some time in the future, when
hard disks are a matter of course, on line help in using or learning ASE could be supplied by such menus.
For now, it is enough to see that separate menus, sub-menus and other extensions of that sort are easy to
accomplish.

Since the macros have to be saved anyway, it may be appropriate to put a little work into a standard
skeleton for a program. The point of this exercise is to build a framework which contains all the standard
{(boiler- plate) stuff to preserve copyright and so forth. It should serve as a checklist for your style of
building programs. Change it at will. The macros under discussion are at the end.

Skeleton Pascal Program

program Prog; { Example skeleton program for starting from. }

const

Title = 'Skeleton sample UCSD Pascal program for ASE.'; { These lines 3}
Author = 'Richard H. Karpinski'; { are printed)
Version = '23 Jul 85 for exemplary use!; { at the beginning 3}
Motice = !Copyright 1985 R. H. Karpinski!'; { of each output report }
Rights = 1ALl rights reserved.'; { made by this program.)

(* Table of Contents:

- Title, Author, etc. (above)

- Table of Contents (this part)

- Log of changes

- $PROFILE and housekeeping

- Table of markers

- Marker setting macros

- The program itself
- Global constants, types & variables
- Globat functions & procedures
- The outer program block

- Model statements for ammending program

(see marker setting macros below)
Log of changes made: (the marker $LOG should point here)

01 Jun 85 Improved UPCASE and locase to use comma/blank Llists
01 Jun 85 Tailored for column in USUS Neuws
16 Apr 83 $profile gets NF, U{pcase & L{owcase simplified
17 Nov 82 Many minor changes, menu paragraphs added, tail extended %
06 Oct B2 Moved seiection screen below $forms to avoid reverse scroll. j
03 Oct 82 Noted problem with U(pcase and L{owcase long function key chain.
03 Oct 82 Got "pPcar"® off user selection screen.
03 Oct 82 Upcase and Lowcase added: chains of function key definitions
03 Oct 82 First draft complete. Markers and function keys defined.

These remarks are requested by ASE at the end of a session.

(see marker setting macros below)
$PROFILE and housekeeping: (the marker $PROFILE should point to first "|".)

This defines function key 1 whenever this document is edited.

|s~ J{ Real spaces shown as ~, others are for readability)
|"profile® |{ Hame the function key for the prompt line }

Ix |{ Execute this definition whenever it is "taken up" 3}
NF | € Ensure definitions in page buffer by Next Forward }

1* [f2 |* |f3 |{ Take up function keys 2 and 3 ¥
JM $version {n |{ Find version constant for program }
X|f8 |e |€ eXchange todays date (in function key 8) on top of old one }

45

277? {{ Show function key names on user's prompt line }

["use form"|s~

<f2> : ignore spaces, title the function key 3

I<
SM $uwhere |n |¢ set marker at point where statement belongs)
JM 3forms |n | go to "picker¥ }
4 |nu { go up to show prompts for direct user editing }
ge~~ 1 { go to after the “:" and leave user inserting }
|-
|"select" s~ {{ <f3> : escape the insertion of users selection)
1 { escape the insertion of users selection)
JM $forms |n { go to where the "picker" is }
g%~ CB { go to after "X", and insert users choice }
b |* |fé |[{ ge to beginning of line and take up as <fé> 3
b g%~ Dg/ |e |[€ go to after "%*, delete users choice and accept }
|6 [{ execute key 6

Table of markers:

(see marker setting macros below)
(% marks predefined markers so you can use plain names)

$CURSOR marks the cursor location when editing was last suspended

$EQUAL marks the other end of what Z{ap would delete
$FORMS marks the "picker" function key definition for model statements
$LAST {not in use) marks the cursor location at last Q{uit so that

editor automatically prepares to resume there next session

$LOG marks
$PROFILE marks
$TAG marks
$TAIL marks
$WHERE marks

the top of the log of changes made

the initialization function key definition

the last place marked by S(et T(ag, used by J(ump T{ag
the end of the last macro selected with select & picker
the place where a new statement form is to be installed

Marker setting macros (for those who download this)

|s~ |x ST JF |{ auto-execute me, set tag (marker $TAG), go to top)
F/$PROFILE~should/ |€ find a string 2

F/||s/ = 1€ find the beginning of the profile macro 2

SM SPROFILE |n |{ set marker $PROFILE there }

JT|* | fe [€ return to marker setters and takeup the next }

|s~ |x ST JF [{ auto-execute me, set tag (marker $TAG), go to top }

F/$LOG~shoutd/ |{ find a string 3
2 In sM $LOG |n J{ down 2 tines and set marker $LOG there)
JT|* |1 | return to marker setters and takeup the next }

|s~ |x ST JF |C auto-execute me, set tag (marker $TAG), go to top }
F/'picker"~FCT/ |{ find a string 2

B SM $FORMS |n |{ 9o to beginning of line and set marker $FORMS there >
JT |* | f1 |€ return to marker setters and takeup the next)

|.

|s~ |x ST JF |{ suto-execute me, set tag (marker $TAG), go to top }
F/Version-=~'/ |{ find a string 3

SM SVERSION |n {{ set marker SVERSION there }

JT|* {1 [€ return to marker setters and takeup the next }

46

end of housekeeping comment *)

{ Glohal censtants {(continued))}
{ comment about the significance of each const you add)

ProgramName = 'Prog'; { For identifying this program as responsible 3

{ Global types 2}

type { comment about signifcance to program of each new type }
Rec = record { used for disk data file)

1D : integer; { matches number on form @)

Bal : real; { brownie points accumulated to date }

end;

{ Global variables }
var { comment about signifcance of each variable definition }
Buf : Rec; { holds record from old master file)
NewRec : Rec; { record being built for new master file }

procedure Initialize; { show Title, Author, ete. 3

begin { Initialize }
writeln;
writeln(Title);
writeln;
writeln{ Author);
writeln;
writeln{ Version);
writein;
writetn{ Notice);
writeln;
writetn{ Rights);

{ add initialization code here 3}
end { Initialize 3;

begin { Prog 3
Initialize;

{ put main line, or top level, code here }
end { Prog }.

Material after the "M (like this) is ignored by the UCSD Pascal compiler.

Pascal Assistant:

Finally, after a few comments and the picker macro, we see the selection menu as it will appear on the
screen. The "use form" and "select” macros were shown above in the housekeeping section of the skeleton
program. The remaining (model statement) macros follow the display.

The macro which follows is used to pick one of the following forms by typing a single letter (or word)
and pressing <f3>.

[s~ |"picker™ FCT/%/ {n |* |f7 SM $tail |n JM Swhere |n |f7 |.
User Selection screen:

You want g screen title, maybe?

47

Your choice: -

INSTRUCTIONS: 1. Choose one of the following list.
2. Type the first letter of your choice.
3. Press function key 3. (Many things happen here.)
4. Complete the R(eplace (if any) with the intended value.
5. Type a backslash " \" to let the replacement happen.

N{othing

resume editing, 1 didn't mean it

Ptrocedure install a new procedure where I showed you
F(unction install a new function there

1(f insert an if then else statement

W(hile insert a while loop

R(epeat insert a repeat loop

C(ase insert a case selection

V(alue insert a case element

U{pcase revise keywords to be UPPER case (it could take an hour)

L{owcase revise keywords to be lower case

#N %n
js~ ["nothing" |.

WP %p

js~ |"procedure"

I |n

procedure~Proc; |n

~~wbegin-{~Proc~} |n
~nnpnd~{~Proc~};

In |n |e

3R\Proc \\
|-

*F %f

{s~ |"function®

I |n

function~Func{~~)~:i~;

~~~begin-{~Func~3 |n
~~mgnd-{~Func~3;

jn In je

3R\Func \\
|-

%1 %i

[s~ |*if then else"
I

if~C |n
~~=then~begin |n

wemgnd={True~L} |n

|b|b|betse~begin |n

je =
3R\C W\
l.

e
|s~ |"while"
I

while~Condition~do~begin jn

48

I£

I<

You can change this yourselfi

Nothing

Procedure definition

Insert a bunch of text }

In is a return, ~ is a space }

more text }

more text )

two returns and accept the insertion }

go back to the beginning of the procedure }
replace the 3 "Proc! instances wWith a name )

Function definition

Insert a bunch of text

more text 3

more text )

more taxt 3

two returns and accept the insertion }

go back to the beginning of the procedure }
replace the 3 "Func" instances with a name 3

1f then else statement

Insert a bunch of text }
more text )

I{ more text 3
1€ more text 3
| more text ¥
~~~end~{False~C}; |n |{ more text }
|{ accept it and return to the beginning }

I€

replace the 3 "C" instances with an expression }

While statement

}{ Insert a bunch of text }

|C more text)


~~~end~{~while-Condition~}; |n }{ more text }

|e = € accept the text and return to its start }

2R\Condition \\ }{ replace the 2 "Condition's with an expression }

|-

AR A Repeat statement

|s~ |"repeat®

I |€ Insert a bunch of text }

repeat~{~until-Condition~} [n |{ more text 3

~~~until~Condition; |n i more text )

le = |C accept the text and return to its start)

2R\Condition \\ {€ replace the 2 “"Condition"s with an expression }

|-

%C e Cagse statement

s~ |'case"

I }{ Insert a bunch of text)

case~Expr~of |n [€ more text >

~~~end~{case~Expr~}; |n |{ more text }

|e = |€ accept the text and return to its start }

ZRAEXpr \\ | replace the 2 "Expr¥s with an expression )

|

WAy value for case statement

Is~ "value of casel

I |€ Insert a bunch of text 2

Value~: |n | € text 2

~~~begin |n [€ more text 3

~~~end~{~Value~); |n |{ more text )

le = {{ accept the text and return to its start }

2R\Value \\ |C replace the 2 "Walue"s with an expression }

|-

FAR A Lowcase keywords

|"*locaser¥}s~

d¥ $tail |n |¢ come back here to get the list & macro }

|* |5 |n |n j{ takeup <f5» below and skip down to its Llist 3

99 |f5 € do it 99 times or until the <f7> value is empty )

i,

|"locase"|s~ |{ locase makes a list of words lower case }

SM $list |n € set a marker there }

D {bg, |t {( delete to & comma and escape (copy it to buffer) )
the initial backspace allows for zero length element }

i* ¢ {7 | € takeup copy-buffer into <f7> 3

JM $forms {n < |{ start from bottom of program and go backwards 3

JRCTT? | forever replace case-insensitive token-mode <f7> <f7> 3

[€ i.e. find a <f?> and put <f7> there instead }
[€ e.g. find & CASE and put case there jnstead }
> JM $list |n |{ return to the list to get the next element }
g, ~~ |]€ skip the one we did and its comma and blank (or return) }

procedure, function, while, repest, if, case, begin, end, do,
until, then, eise, of, for, to, ,{ends the list)

FA T UPCASE keywords

|MUPCASER" {5~

JM $tait |n | come back here to get the list & macro )

I* {5 |n |n |{ takeup <f5> below and skip down to its iist 3

99 |5 € do it 99 times or until the <f7> value is empty }
}.

|"upcase" | s~ | € upcase makes a list of words UPPER CASE )

49




SM $list In |{ set a marker there }

D |bg, ! |€ delete to a comma and escape (copy it to buffer} )
{ the initial backspace allows for zero length element X
I* ¢ |7 i€ takeup copy-buffer into <f7> }
JM $forms |n < |{ start from bottom of program and go backwards }
[RCTT7 |{ forever replace case-insensitive token-mode <f7> <f7> 3}

i i.e. find a <f7> and put <f7> there instead }
|¢ e.g. find a case and put CASE there instead }
> JM $list |n |{ return to the list to get the next element >
g, ~~ }€ skip the one we did and its comma and blank (or return) }

PROCEDURE, FUNCTION, WHILE, REPEAT, IF, CASE, BEGIN, END, DO,
UNTIL, THEN, ELSE, OF, FOR, TO, ,(ends the list)

Known problems.
There are already known problems with using macros in this way:

1. They are slow running without ramdisk.
(Write smaller pieces, using UNITS and $Includes.)

2. The models use an indenting style that you may not prefer.
(Change the models.)

3. A function key definition which lies across the main memory buffer
boundary cannot be taken up.
(Try NF before |*.}

4. Upcase and lowcase stop whenever a replacement fails due to finding
no instances to replace.
(Arrange to put a copy of the full list at, say, the beginning.)

Please send any new problems, workarounds, solutions, and suggestions to:

BITNET :dick@ucsfcca USPS: R. Karpinski
TeleMail: RK arpinski Modula Assured Quality Software
Work :(415) 666-4529 (12-7) 6521 Raymond St.

Home :(415)658-6803 (9am - 11pm) Oakland, CA 94609
MUSUS : Dick Karpinski{70215,1277] (415) 658-3797 (ans. mach.)
USENET :...ucbvax!ucsfeglicca.ucsfldick

Use any method that is convenient for you, copy the page or write on it and mail it or mention the
section or however you like, but if you don’t tell me then I won’t ever fix it.

50




ASE Version Differences

By: N, Arley Dealey

Copyright 1985, N. Arley Dealey. All Rights Reserved
Notable differences between 0.9 and 1.0 versions of ASE 25 Feb 85

* Terminal requirements
- Display must have at least 24 lines and at least 80 columns
(should actually work on smaller screens but the prompts
and menus make no concessions to tubes less than 24x80)
{Note: A virtual screen is ok, therefore standard Apple //s without any
80 column hardware are ok since Apple implemented a virtual 80 column
display in the BIOS)
- Terminal must support both ClearToEndOfLine and ClearToEndOfScreen
- Your GOTOXY when passed an X parameter beyond the right hand edge of
the screen must place the cursor at the right hand edge (as recommended
in the gotoxy specs). This is not actually a new requirement but is,
1 believe, the first time it has been documented.

* File specification in Init
- Now supports wildcards in the destination file spec. A *$’ actsasa
'right'hand’ wildcard in either the volume or filename fields. This
means that the right hand portion of the corresponding field in the source
file spec will be appended to any chars preceding the wilcard in the
destination field. Examples:
AVOL:THISFILE,*$ --> *THISFILE
AVOL:THISFILE, THATS$ --> THATFILE
AVOL:THISFILE $:% --> AVOL:THISFILE
AVOL:THISFILE .B$:NEXTS$ --> BYOL:NEXTFILE
Note also that forms like:
?.#5:%
and
A?,#5B$%
and even
A?=Gadzooks,#5.B$
are legal and handled appropriately (or you can append the wildcarded
destination after the selected filename is inserted into the response
field if you prefer)
- On IV.2= versions, if editor is invoked from the compiler error prompt and
the error is in an include file, the include file name is passed to the
editor as the default file to edit.
- On all versions, if the editor is invoked from the compiler error prompt
and you select the wrong file you may issue a Q(uit E{xit A(nother command
sequence and the $Syntax marker info will be carried over into the new file,

* Insert
- On terminals with InsertLine capability displays full screen context. This
probably still has some kinks in it so please scream early and often when
you run across them. Upon abandoning a complete line of the insertion

51




(either via <DEL> or by backing up to the previous line) it gives up and
reverts to clearing the bottom portion of the screen. Someday it’ll
handle this too, but not for now...

* Replace
- Verified replaces repaint the screen only when necessary

* Kolumn & Adjust
- Are no longer direction sensitive
(If direction was *<’ then <space> used to adjust/kolumn left and <backsp>
went right)

* Zap
- No longer issues the message "You are about to Zap a lot", etc.
The rationale is that the zapped text either will fit into the copy buffer
or not. If it will, it can easily be recovered by C(opy B(uffer and so
the warning is not really necessary. If it won’t fit you will geta
warning to that effect and be asked for verification anyway so this one
was redundant.

* WordMove
- Now behaves the same forward & backward.
- No longer stops at illegal chars when moving forward.

* Delete
- Supports P(age and O(ppPage movement commands

* Environment
- Main menu has been rearranged
- DeleteMarkers has a new look

* Nested edit
- The nested edit file name suffix has been changed from *ASE!" to "NEST".
(°" is not actually a legal file name character )

* Quit
- C({hange Name "sticks" if you R(eturn or <esc> from Q(uit
- C(hange Name discourages attempts to change the volume name and complains
if you persist

* general display
- Screen updates are smoother, flashing has been lessened

* Initialization
- Emits about a zillion dots during initialization. Don’t panic, this
is a concession to make polled type-ahead (particularly on the Apple)
more reliable.

* Byte sex issues
- Text file headers are now flipped transparently. This means that you will
no longer lose all of your markers and other environment information when
you transfer a text file to a machine of the other gender (for example, a
Stride and an Apple)
- Opposite gender directories are now handled as appropriate when a file
menu is requested. This means that under IV .= the directory is now

52




displayed properly and under other versions an error message is displayed
(the os would not be able to open any file in the directory at any rate).

* Size
- Code file size is 10 to 15% smaller
- Edit buffer is much larger on combined code & data systems

* Bug fixes
- Over 100 known bugs have been fixed. Some of these are highlighted below.

some notable differences between 0.8a and 0.9r versions of ASE 25 Feb 85
(included for the edification of those running 0.8a and 0.9q)
(note: this list is {probably) not comprehensive)

* P(age
- No longer displays a partial page at the end of the buffer if there is
more text in the file.

* Fn Keys
- CopyDown now places the key name in the text form,

BUGS CONSIDERED FIXED IN ASE 1.0a (& 0.9r):

This is a list of some of the bugs fixed in the 1.0 release of ASE, This is
an abbreviated list so if your favorite bug is not here, ask. Chances are
quite good that it has been fixed.

[ASE]

Illegal commands should ring the bell. - rb 26 Jun 84
Ok, ok. It was silenced because of user complaints (& besides it saved a few
bytes). So now its back by ’popular’(?) demand in A.Of 30 Jul 84

Sometimes clears & rewrites the same prompt. - RGoldthwaite 01 Oct 83
fixed in 0.9r 05 Nov 83

The error messages STINK.. Stuff like 'Error: Bad file name or no room in

directory’ is ridiculous. It should give the proper msg for each error, not

some multiple choice test. Messages like "can’t read page zero" and "cbuf in

buf” not only don’*t but shouldn’t mean anything to the end user and should be

replaced with something that does tell them something useful. - everyone
much improved in A.0a

Far too many errors are considered fatal. - everyone
improved in A.0a

Can we clean up the files from a crash? - rhk 30 May 82 #201
This is in reference to the fact that most programs if they crash with files
open do not leave those file entries in the directory. This is an OS function
and the editor MUST make sure the file in edit is locked into the directory
to accomodate shared disk environments where any user booting will __remove __
all temporary files from the root volume with ensuing disasterous effects. .

53




Therefore, no, we cannot clean them up as requested. Sorry.

[entry]
Escape from the file name prompt leaves a promptline on the screen.
- RGoldthwaite 15 Sep 83

fixed in 0,9r 07 Nov 83

[A{djust]

UpArrow changes the default direction (within Adjust) to <-, causing subsequent

<space>s to adjust in an unexpected direction. - Ro Lutz-Nagey 05 Nov 83
"Fixed® in A.Of because Adjust is no longer direction sensitive

When direction is set to *<’, tab still goes *>’. -acd 06 Aug 82
fixed’ in A.Qe. Direction ignored in Adjust now.

[C(opy B(uffer]

may leave cursor in wrong place. ~ dt 25 May 82 #173
Believed FIXED! in A.0f 30 Jul 84 This one was tough to track and tougher to
test so it may not be completely clean yet, PLEASE let me know if it
resurfaces.

If copy buffer with a repeat count aborts prematurely with a *buffer almost
full’ message it does not update the screen properly. - acd 16 Feb 83
believed to be fixed in A.Of

[C(opy F(ile]
indentation: the first line of the text copied in is at the indent level of the
line at which copying was invoked, and vice versa. -rb#11

Believed fixed in A.Of

Copy File into middle of a line. Congratulations! You’ve just corrupted your
file with a mid-line <dle> sequence. -acd 04 Sep 84
Fixed in A.Of

Croaks the buffer in 0.9q if marker is not present or file is opposite byte sex.
FATAL! fixed in 0.9r 04 Nov 83

C(opy F(ile <esc> double flashes the screen. - rb 26 Jun 84
Fixed in A.0f 30 Jul 84

If choose too big a file, you get the proper error message, but afterward, the
screen not refreshed. -atate 12 Mar 82 #167
fixed in 0.9

[Clopy fnkey]

Why does CopyDown sometimes put null comments into the textform? -Karp
to protect significant blanks which might end up as the first char of a line
and therefore be lost to indentation
fixed in 0.9r which lays down a [s~ as it could have all along

C(opy <fkey> generates a spurious <cr> in front of the function key text form.

-rb 6 Oct 82
fixed in 0.9r 08 Nov 83

54




[D(elete]
Page and OppPage, please. -cdc
Added in A.Of, please report any problems. -acd 22 Sep 84

D/<cr><etx>, then <cr> to get to next buffer load; congrats, you have just won
a free blank line! - es 06-Jan-82#139
another of f-by-one aggravated by Richard’s indecision over which line the
<CR> belonged to (the one preceding or following it)
FIXED!! in A.0a

When deleting chars off the right edge of the screen (yes, thats right) left-
arrow back onto the screen will screw up the right hand column or two. -acd 18
Sep 84
Fixed in A.Of and (as far as I can tell) the fix has not screwed-up anything
else... -acd 19 Sep 84

D(elete L(ineEnd on a line which is flush right on the screen leaves the last
char still on screen until <acc>. -acd 18 Sep 84
Fixed in A.Of -acd 18 Sep 84

[DelChar]

On a line which extends beyond the right edge of screen, G(et a char off the

right edge of the screen then D(eleteChar... Bang! - TSiep 16 Oct 83
FATAL! Fixed in 0.9r, IV.x unitwrite bug... count is treated as unsigned!

[F(ind & R(eplace]

default fkey during parameter entry is fatal. - 27?7 10 Oct 83
happens on NCI where <takeup> is <esc>C, the <esc> gets dumped, the C accepted
as Caselnsensitive & it loops in a fit of infinite recursion! FATAL!
Fixed (albeit crudely) in 0.9 07 Nov &3

[F(ind]
F(ind // finds the next occurrance of the delimiter (although Set Environ shows
the search string properly as null) and a subsequent F(ind S(rch also finds the
delimiter. - rb 26 Jun 84

Fixed in A.Of 30 Jul 84 Specifying a null search string is now an error.

When direction is "<", and the <srch_ string> is multi-token, and it finds a
token_anagram; F(ind S(ame sticks to the first one found. Try F(S( after
taking this up: |xb<f/"</|. - rb 19-Dec-81 #119

Actually only happens if the left-most token in the search string is a word-

delimiter

Fixed in A.0f 21 Aug 84

In Token mode, only the last occurance of a non-word token will be found in any
sequence of that token. Example:

|x£/./l.
should find this one-->....<--but actually finds this one

fixed in A.0f 07 Aug 84

The message 'Pattern not in the file’ may be misleading. The pattern is not in
the portion of the file that was searched.
fixed in 0.9r, now says 'Pattern not found’

[function keys]

55




Column] in a fnkey does not CopyDown correctly. - BPeterson 20 Nov 83
fixed in A.Oa

Record misplaces the cursor in Xchange. - RBush 12 Oct 83
fixed in 0.9r 04 Nov 83

When a function key overflows during takeup the function key name is retained
although the definition is aborted. - BPeterson 11 Jul 83
fixed in 0.9r 07 Nov 83

[editor initialization]

If File.NEST exists then errors out with file already in edit.

- tb 26 Jun 84
Something in the back of my mind says that there is an obscure situation that
makes this behaviour desirable.
Ah, ves! Shared disk volumes, LANs, Liaison, etc. Gotta stay this way. -
acd 18 Sep 84

Filenames can spill over onto directory listing on line two, Tacky!
fixed in A.Qa

Quick flash of copyright notice is found to be annoying. - Eric Smith
fixed in A.Qa

If I start to pick a wrong file, when I get the right one, the $syntax info is
lost. -rhk 06-Oct-81 #99
fixed in A.Qa

[I(nsert]
Going into I{ may flash screen unnecessarily when it thinks it has donea™.."
and it hasn't. dt 25 May 82 #174

Believed to be fixed in A.Of -acd 18 Sep 84

when you type a printable in col 80 {rmargin} then a <cr>, the char in col 80
is left blank - jm 31-Dec-81 #127
Believed fixed in A.Of -acd 18 Sep 84

With Filling & AutoIndent true, if the last character of a word falls exactly
on the right margin that character gets blanked when the cursor is moved to the
next line. ~acd 25 Aug 82

Should be better (maybe fixed?) in A.0f -acd 18 Sep 84

With filling on, on a line with a long last *word’, insert a stream of
characters near the end of the last word then escape. Characters are lost! -
JK halsa 24 Oct 83
2 characters are lost at the point of the aborted insertion, The line is not
stitched back together, which Jai would like, butis _not__ going to be
implemented.
FIXED in A.Of & it even stitches the blasted line back together for ya. -acd
18 Sep 84

carriage return wipes too much screen. It’s scary to user. -acd

Fixed for InsertLine-capable terminals in A.0f. Alas, 'tis not practical for
non-InsertLine tubes. -acd 18 Sep 84

56




‘Buffer almost full’ msg doesn’t beep and <space> is a common char so error is
often cleared before user is aware of it. - KBalke 10 Oct 83
"fixed’ in 0.9r, the err msg is really obnoxious about it now 05 Nov 83

[InsertLine]

InsertLine fails on some VT52 emulators - BNR 9 Oct 83
probably overrunning the tube
believed to be fixed in 0.9r. Delay after InsertLine is now controlled by
the value of FillCount from miscinfo. 03 Nov 83

[K{olumn]
When moving down and buffer boundary coincides with indentation change, the
indentation is altered. - RBush 01 Oct 83

fixed in 0.9r

[M(unch]
Changes "word -12 word" to "word - 12 word". That is, it inserts a <space>
after ’-* when it perhaps should not, -acd 30 Aug 84

fixed in A.Of

If the command Char is defined as " " {yep, that'’s a blank}, munch will munch
one and only one line whether it should or not. -- rb 02-Dec-81 #114
I believe the bug 1s better stated as, when RunOffCh is " ", munch will munch
lines with leading blanks Otherwise, the behaviour seems correct to me
Believed to be fixed in A.0f 30 Aug 84

[nested edits])
filename:="foon=", tries to jump to ** and does <TakeUp> from front of file. -
rb 04-Feb-82 #149

fixed in A.Oa

In nested edit, selecting *xyzzy:foon,fubar:dontcare’ ALWAYS fails and reports
’Ran out of disk room.” regardless of how much space is available on the
destination volume. - rb 6 Oct 82

FIXED in A.0a

[P(age]

if it reaches the end of buffer displays a partial page. - 06-Jan-82 #139
fixed in 0.9r, it cost me 64 bytes of buffer space that I'd rather not have
lost but I gather many folks will be much happier now - acd 09 Nov 83

if it causes buffer movement, it seems to do a V{ rather than putting the
cursor and screen at the proper place - 06-Jan-82 #138
fixed in 0.9r

[Q(uit]

Q(uit Cthange should warn user that volname can’t be changed.
it does in A.0a. Inaddition the new screen formatting discourages the entry
of a volume name

C(hange doesn’t stick if you R(eturn or <escape> from log entry. -jbondy #29
fixed in A.0a

Q(uit E(xit Y(es leaves the quit menu on the screen. - RGoldthwaite 01 Oct 83
fixed in 0.9r 05 Nov 83

57



[R{eplace]
If a fnkey contains unprintable chars then R/barf/n where 'n’ is the fnkey
number will put bad characters into the text. - acd 07 Nov 83
fixed in 0.9r, but I've put it on a compiler conditional and currently
disabled the fix. Many folks have screamed, begged and pleaded for a way to
corrupt their files with illegal chars. This is baroque enough, and they
-- BUFFER FULL - COPY OFF --
will
have to work hard enough to do it, that I am of the opinion that we should
leave it as is and tell people how to use it. - acd 07 Nov 83

e, removes a dot. Then "rrs" does too. - thk 07 Jul 82 #181
yet another off-by-one, obviously...
Fixed in A.0f 31 Jul 84 Null search string is no longer legal & complains

Flashes the screen needlessly during verifies. - acd
Fixed in A.Of 30 Jul 84

Replace string with embedded <ret>s can really foul up a file.
<ret> dis-allowed in A.O0a

[S(et M(arker]
S(et M(arker <ret> creates null marker. - rb 02 Sep 83
fixed in 0.9r 05 Nov 83

[unit]
The ASE unit should release the heap on exit. -ADI
fixed in 0.9r

[V{erify]

In a function key still does a Verify, not a prompt for continued execution.

Probably should be a DIFFERENT command anyway. - acd 04 Nov 82
fixed in A.Of though it still should be a different command

[W(ordMove]
/WordMove still leaves yon at the beginning (rather than end) of the last line.
-rb 26 Jun 84

Fixed in A.Of - moves to last token, would eof be preferable?

[X{chg]
I notice that the right screen border is more severe than for Insert. It feels
like they should treat both the borders the same, but in fact neither side is
treated the same by the two modes. -rhk 27-Sep-81 #72

Believed fixed in A.Of -acd 18 Sep 84

<ret> onto blank line places cursor at left side of screen instead of at indent

level of line, - acd 08 Mar 83
fixed in 0.9r 04 Nov 83

58




A Proposed Library Database

By: Harry Baya

Id like your help in designing a simple database applicaton that would assist us in using the USUS disk
library. If successful it should have a number of other uses.

The system would permit users to use keywords to search for programs available in the USUS library.

The concept is quite similar to the Data Libraries we now use on MUSUS on Compuserve. The main
differences are that this system would:
(a) be designed for use on Micro-computers using the p-System
(b) would permit users to add comments to the stored data
(c) would be a public domain program (or freeware)

My assumption is that the large number of programs now in the USUS Library makes it difficult for
new users of the library (and some older ones) to find the ones that best meet their needs.

I think of the USUS library as a collection of applications. Each application consists of one or more
files. Each application would be one "ITEM" in this data base. Each ITEM would consist of a title, a longer
description, and a number of comments by users.

Let’s assume that you are looking in the USUS library for a program to do telecomunications on an
Apple ][. You would put the program disk in one drive and the data disk in a second drive and ask the
program to for information about ITEMS associated with the keywords "communications" and "apple". The
system would then tell you which programs in the USUS library were associated with both those keywords.

This seems simple enough and I intend to have a version of the system that does this much, together
with a data disk containing USUS library titles, available at the USUS meeting in Baltimore this fall. The
abilitiy to add comments may take a little longer. Actually the whole thing may take a lot longer, but I
thought I would be optimistic.

This article is intended to accomplish the following goals:
- encourage the development of some sort of USUS Library reference system available on disk.

- Engender some specific suggestions as to what the system should do and/or how it should be
implemented. Ideally, someone will simply identify a public domain program that could be easily modified
to do all that is needed.

- communicate a rather simple concept that interests me and may be of interest to others.

- help me to decide how much effort to put into this and to determine how much help I can get from
others.

EASE OF USE AND PORTABILITY

These two goals will dominate the design. A number of other goals, such as faster execution speed and
being able to handle as many ITEMS as possible, can be compromised to make the system easier to use and
more portable. I am also very interested in minimizing the number of man-hours of my time needed to
develop this system. I will use the K.I.S.S. approach whenever possilble.

One of the design goals would be to permit adding or deleting new ITEMS, and keywords associated
with ITEMS, as easily as possible. I would like the system to be such that it could used in applications where
non-technical first time users would find it of value.

I would like to make the source code publicly available and I would like to have debugged versions that
will run on:

59




- the Apple ][,
- the Apple /// (since I have one)
- the IBM PC using both Softech Microsystem’s and NCI's version of the p-System.

We will make every effort to make the source code easily portable to most other p-Systems
implementations.

HOW WOULD IT BE USED?

The program disk and the data disk would be added to the USUS library. The data disk would be
updated as needed to reflect additions to the USUS libraray and made available to USUS members. The data
disk might also be updated to comments from users of the library.

ADDING COMMENTS TO THE STORED DATA

The system would permit users to enter comments associated with any ITEM. Users could also enter
comments associated with other comments,

Users of the library acquire knowledge about the programs they use. This system would collect that
knowledge and make it accessible, just as the library does with programs,

I assume that those library programs that prove useful will collect useful comments, At present there is
no way to determine which programs have indeed been sucessfully used by USUS members after they were
put in the library. Identifying good, but seldom used, programs will continue to be difficult, though the
keyword search will make things a little easier.

To see how this might work, assume that you discover that a particular telecommunication program (in
the USUS disk library) is designed for an IBM PC, but will run nicely on an Apple ] after only minor
modifications. You would then add the keyword "apple" to those associated with that program. You would
also enter a comment explaining what changes were needed.

In order to make this ability to add keywords and comments valuable to other USUS members we
would need some way of collecting them. Someone would have to be responsible for deciding what would
be added to the USUS data disk. Over time some comments would either be dropped out or moved to a
lower priority data disk.

My hope is that this system, or something like it, will also prove useful to clubs with their own base
computer which they make available to users, as might be the case in a local user’s group. A public domain
telephone BBS implementation would also be attractive.

I would appreciate your letting me know of public domain packages similar to this, either as a stand
alone database system or as a BBS.

ONE CUT AT THE DATA STRUCTURE

My first pass at the design is given below. My best guess is that this is a relatively primitive and
inefficient approach. It's main appeal to me is that I think it would be easier to program than the other
approaches I have come up with. My hope is that readers will suggest better approaches.

Each ITEM in the database would have:
- a title of up to 40 characters
- a description consisting of up to about two type-written pages (normally less than 6 lines)

- up to 100 associated keywords of up to 16 characters each (usually less than 10 keywords per ITEM)
- Up to 25 comments (normally less than 5) with the same size limitations as the description.

Each comment would be treated like an ITEM. (i.e it would have a title, text/description, keywords
etc.)

60




Data Structure:
The data would be stored in three files of fixed length records:
- keywords

- 40 character records
- association records

Each ITEM in the database would consist, at a minimum, of a 40 character title and one association
record.

Each association record would associate an ITEM with one of the three kinds of records:
- a keyword record

- the first record in a linked chain of decription records
- the first record in a linked chain of comment records

To see how this might work consider that in order to associate a new keyword with an ITEM,
(a) the keyword would be added to the keyword file

and

(b) an association record would be added to the file of association records.

SEARCHING:

Any search using keywords would search through the association records to find those ITEMS which
met the selection criteria.

Each record in each of these three files (keywords, 40-character records, association records) would be
identified by the record # of the record it occupies in the file. Eg. if the keyword "game" were stored in
record # 18 of the keywords file, then we would say that it’s "file address” was 18. An association record
indicating that a particular ITEM was associated with "game" would contain the number "18" rather than the
word "game".

Lets look at the way this "file address” would be used in a typical search of the database. Assume that
user wants a list of the programs associated with the keywords "communications" and "apple".

(1) The system would first search through the keywords to find the record addresses of these two
keywords.

(2) the system would then search through the association records to identify those ITEMS associated
with both keywords.. It would do this by identifying those ITEM record addresses associated with both of
the keyword record addresses.

The following should make this search process a little clearer.

Consider that the system could collect together all those records that associate

(a) the record address of the keyword "apple"

with

(b) the record address of an ITEM title.

The system could then collect a second group using the keyword "communications".

It would then find whether there were any ITEM record addresses that were in both groups. If an
ITEM title record address occured in both groups the system would read the record from that address and
display the title to the user.

I think it would simplify the system if the 40 character title were stored as the first record in the linked
chain of records that make up the longer description. An ITEM with a title and no description would be a

61




chain that is only one link long.
Comments would be handled similarly.

This is the conception of this application. I wonder whether it will survive gestation and if so, how
long it will take. Perhaps we should plan a birthday party and leave the date open.

Please send comments or suggestions to:

Harry Baya

565 Broadway, 2H
Hastings-on-Hudson, NY, 10706
Compuserve # 72135,1667

USUS Software Library

From Jon Bondy
Note our two new Macintosh distributors, and that Marc Wigan’s address has changed.

Prices have been standardized for all of those formats which are distributed by more than one person.
IBM, NCI, and Sage prices have been set at $6 (1 volume/disk), $7 (2 volumes/disk), or $8 (3 volumes/disk
10-sector) (all 80 track). 8" disk prices have been set at $5 each. Apple ][ prices are set at $8.00 for a two
disk volume.

If you have problems with a distributor, first contact them directly to see if the problem is a
misunderstanding or some "reasonable" delay (death in the family, computer hit by lightning, etc). It is
reasonable to expect a distributor to send you disks within 4 weeks of an order: delays longer than that
should cause you to investigate further. If you don’t get satisfaction, please WRITE to both them and
myself, describing the circumstances.

- Jon Bondy

USUS Software Library Distributors

Distributor Disk Format(s)/Prices

Mark Bailey Macintosh at $7.00/volume.

1942 Linden Ave, #D IBM PC and Apple ][ at standard prices.
Highland Park, IL 600335

312-433-7697 (h)
312-937-4206 (w)

Henry Baumgarten Standard Sage and 8" prices; see above
3325 Hillside Street

Linceln, NE 68506

402-489-6441 (h)

402-472-3301 (w)

62




Jon Bondy

Box 148

Ardmore, PA 19003
215-642-1057 (h)

Clark Gestring

4643 W Oberlin Place
Denver, CO, 80236
303-797-6739 (h)
303-694-8797 (w)

Kenneth K. Kam
P.O.Box 3112
Torrance, Ca.
90510

Distributor

Standard Sage and 8" prices; see above

Subtract $4/disk if you send him properly
formatted and zeroed Sage disks. Subtract
$3/disk if you send him formatted SSSD 8" disks

TIS9/4A

SSSD 35 TK @ $13/4 disk volume.
SSSD 40 TK @ $11/3 disk volume.
DS SD 35 TK @ $10/2 disk volume.
DSSD 40 TK @ $10/2 disk volume,

Heath H-89 5-1/4 inch disks for $17/tri-disk vol.

Disk Format(s}/Prices

Dick Karpinski
6521 Raymond
QOakland, CaA, 94609
415-666-4529

Jim Harvison

Northstar disks for $15/dual single-sided disk volume,

Standard Sage and Apple prices; see above

4144 Red Bandana Way
Ellicott City, MD 21043

301-992-8831

David McFarling
3815 Adams Street
Lincoln, NE 68504
Rockville Md, 20850
402-467-3591

George Schreyer
Box 1645

Standard IBM and NCI disk prices (specify format

and number of blocks); Apple // disks at standard
prices; Sof Tech Universal Medium disks at
$8/vol. (two disks); Macintosh at $7.00/volume

8-inch disks for $10/volume.

Redondo Beach, CA 90278

213-371-0198

Marc Wigan
Wigan Associates
Box 233
Heidelberg
Victoria 3084
AUSTRALIA
03-459-9671

8-inch disks and Sage disks. Pricing unknown.

Who Supplies What:

“Std" 8"
Apple 11
Heath-89
TI

IBM

NCI

Henry Baumgarten, Jon Bondy, George Schreyer, Marc Wigan
Mark Bailey, Jim Harvison, David McFarling

Ken Kam

Clark Gestring

Mark Bailey, David McFarling

David McFarling

63




Sage
NorthStar DD
SMS Univ Med
Macintosh
Victor 9000
CSI 6809

OSI

Henry Baumgarten, Jim Harvison, Jon Bondy, Marc Wigan
Dick Karpinski

David McFarling

Mark Bailey, David McFarling

Nil

Nil

Nil

64




USUS Software Library Order Form

Use this form to order the USUS Library volumes of your choice. Send the order DIRECTLY to the
distributor, and make your check out to him/her, NOT to USUS.

Thirty-four volumes are now available. All 8080-specific code and CRT terminal data on Volumes 1,
2A, and 2B have been removed to form a single Volume ! for the Apple. Volume 2B is normally shipped in
CP/M format and has little utility for anyone without CP/M. Volume 21 is Apple-specific. A special
Western Digital (WD) format disk contains a Mapper program, allowing owners of WD machines to read
DEC-format disks, the USUS standard 8-inch format. WD owners CANNOT obtain double-density disks
from USUS; ask WD for help converting single to double density on your machine. DEC format begins on
track 1/sector 1, with interleave 2 and skew 6.

NAME, TITLE

COMPANY (if work address)

NUMBER AND STREET

CITY,STATE, ZIP, COUNTRY

SYSTEM (PLEASE fill in)

DISKETTE FORMAT REQUIRED (circle one):
Standard 8-inch SSSD  NorthStar Apple OSI

Heath H-89 IBM PC IBMPC TI SAGE

YOLUMES REQUESTED {circle one or more):
1 2A 2B 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 UK3 UK4

Price per volume (see distributor list) $

Total for disks $

Sales tax (if intra-state sale) 3

TOTAL AMOUNT ENCLOSED ($§U.S.)$

{NOTE: ALL orders MUST be prepaid!)

IMPORTANT: PLEASE READ AND SIGN THE AGREEMENT ON THE FOLLOWING PAGE,
OR YOUR ORDER CANNOT BE PROCESSED!

65




Software Order Agreement

I will not permit the Programs I receive pursuant to the foregoing order to be published for profit in

whole or in part or to be transferred to any person who is not a member of USUS, without the express
written consent of the author identified in the files of the Library. Further, lacking such author’s consent, I
will ensure that the following items have been submitted to the designated individual (for now the USUS
Treasurer, USUS Library Chairman, or a Library Distribution Subcommittee Chairman) before transferring
any Program(s) to another USUS member: a) the current Software Order Agreement signed by the software
recipient; and b) $1 per volume or fraction of a volume received.

I acknowledge that neither USUS nor any of its representatives nor the author makes any warranty

with respect to the Program, particularly NO WARRANTY OF FITNESS FOR ANY PURPOSE, and that
the Program may require extensive alteration by an expert in programming before it will suit my needs.

(Signed) Date

66




o

u
3

Gl

T

el

s

e

S
e L
o e

i

=

Piatnioan

G







	USUS Newsletter V1N14 1985-07A.pdf
	USUS Newsletter V1N14 1985-07B.pdf



