USOLS
LIBRARY COPY

U
n

S
eNEWS

AND REPORT

sssssssssss

Is your software
easy to use!

Maybe YOU think so.

Despite what you may
think, there may be times
when your software is hard to
use. But what if your soft-
ware could tell users exact-
ly what to do every time
they were confused? Then
people would start to agree
with you about “easy to use”.

And when everyone agrees with you,
prospective customers become eager buyers,
first-time users turn into confident users,
reviewers give you high marks, and sales
people enjoy demonstrating your software.
Quite simply, when everyone agrees
your software is easy to use, it sells.

SoftDoc™ is a module
which provides your software
with instantaneous context-
sensitive help, on-line refer-
ence facilities and interactive
tutorials. SoftDoc™ is com-
patible with windowing,
networking, touch screens,
mouse control and other
interface technologies.

Call or write Learning Tools today.
Find out how your software can become
easier to use, demonstrate, learn, document,
maintain, distribute, network, support,
review and sell. And ask for a SoftDoc™
demonstration disk.

SoftDoc” will get people to agree with you.

SoftDoc

by LEARNING
TOOLS) @

LEARNING TOOLS

686 Massachusetts Ave. Cambridge, MA 02139

Tel. (617) 864-8086

USUS News And Report

March, 1985 Number 13
DEPARTMENTS
4 Institutional Members
5 Officers, Board and Electronic Mail Contacts
9 Editorial, by Eliakim Willner
USUS MEETINGS
11 Toronto Meeting Minutes
ARTICLES
20 Data Flow Computing, by Tom DeMarco
30 Efficient p-System Code, by David Gelfand
34 Apple Guerilla Guide Update, by Bari Thomas
39 Intermediate UCSD Pascal Topics, by Robert W. Peterson
46 Fast Two-dimensional List Processing, by Jai Gopal Singh Khalsa
49 Apple /// Pascal Review, by Dennis Cohen
50 Hard vs. Soft Interrupts and the p-System, by Jon Bondy
51 ASE Macros, by Eric Eldred
53 Benchmarks on Turbo Pascal, by Stephen F.B. Pickelt
PRODUCT ANNOUNCEMENTS
55 Macintosh Development Software
CLASSIFIED ADS
56 Sages For Sale
USUS SOFTWARE LIBRARY
57 Library Notes
59 USUS Software Library Distributors
61 New USUS Software Library Volumes
65 USUS Software Library Order Form

Eliakim Willner Editor

The USUS News And Report is published by USUS, P.O. Box 1148, La Jolla, California, 92038. USUS News And Report is a direct

benefit of membership in USUS. This USUS News And Report was produced entirely with p-System software tools.

Inquiries regarding membership in USUS should be sent to the Secretary at the aforementioned P.O. Box. Newsletter correspondence
and advertising should be directed to the Editor.

Copyright 1985 by the USUS News and Report. All rights reserved.

institutional Members

Apple Computer
Attn: Lance Saleme
20525 Mariani Ave
Cupertino, CA, 95014

Donnelly Marketing Information

Attn: Dr. Gary Meyer
13511 Washington Blvd.
Stanford, CT, 06902
(203) 357-8773

Haverford College

Attn: Ed Mevyers,

Dir. of Academic Computing
Haverford, PA, 19041

Hayes Microcomputer Products
Attn: Dan McCutcheon
5835-A Peachtree Corners East
Norcross, Ga 30092

(404) 449-8791

Japan Business Automation
Myojo Bldg. 3-50-11
Sendagaya, Shibuya-ku
Tokyo, 151, JAPAN
03/404-2221

NASA-Ames Research Center
Attn: W, Crawford

M.S. 233-15

Moffett Field, CA 94035

NCR Corporation
Attn: Ian Kaplan
11010 Torrevana Rd.
San Diego, CA, 92117
{714) 452-1020

Pinnacle Systems
10410 Markison Rd
Datlas TX 75238
(214)340-4941

Sof Tech Microsystems
Attn: Sharon Koehler
16885 W. Bernardo Drive
San Diego, CA, 92127
(619) 451-1230

Stride Micro Inc.
4905 Energy Way
Reno, NV, 89502
(702) 322-6868

Texas Instruments
Attn: B, Peterson
PO Box 226015
Dallas, TX, 75266

Xycom, Inc.

Attn: John Van Roekel
750 N. Maple Rd.
Saline, MI, 48176
(313) 429-4971

Officers, Board and Electronic Mail Contacts

Officers

President
Jim Harvison
P.O. Box 3277
Silver Spring, MD 20801
301/593-2994
Telemail: President
MUSUS: 70320,165

Executive Vice President
Temporarily vacant

Vice President, Member Services

Carl Van Dyke
SPM Support Services
§i0210 Iron Mill Road
Richmond, VA 23235
804/320-0144 (eve.)
804/320-2561 (days)

Telemail: CVanDyke

MUSUS: 70376,1435

Secretary
Michael Hartman
P.O. Box 3277
Silver Spring, MD 20901
301/445-1583
Telemail: Secretary
MUSUS: 73075,1171

Treasurer
Bart Thomas

First National Bank of Central Jersey

1 West Main Street

Somerville, NJ 08876

201/685-8395
Telemail: Treasurer
MUSUS: 76703,1031

Board Members

Eli Willner (Chairman)
Eliacomputer

1510 East 4th Street
Brooklyn, NY 11230
718/336-4109

718/336-4834
Telemail: EWillner
MUSUS: 76703,500

Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/956-8559

Telemail: DCohen

MUSUS: 71076,1377

Gary Pritchett
Sof Tech Microsystems
16885 West Bernardo Drive
San Diego, CA 92127
619/451-1230

Telemail: GPritchett

Carl Van Dyke

SPM Support Services

10210 Iron Mill Road

Richmond, VA 23235

804/320-0144 (eve.)

804/320-2561 (days)
Telematil: CVanDyke
MUSUS: 70376,1435

USUS(UK) also covering Europe

Chairman
Mark Woodman
The Open University
Faculty of Mathematics
Walton Hall
MILTON KEYNES MK7 6AA
England
(0908) 653187
{0908) 653678
Telemail: UK Chair

Membership Secretary
Angela Grey
Stark Associates
Claremont Buildings
Salbrook Road
SALFORDS
Surrey RH! 5DY
England
(02934) 76747

Electronic Mail Contacts

MUSUS SYSOP
Bob Peterson
P.O. Box 1686
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Telemail ADMIN
(Contact Secretary for billing
information and new accounts)
Jai Gopal Singh Khalsa
MicroStrategies
Box 2278
Yineyard Haven, MA 02568
Telemail;: ADMIN
MUSUS: 72355,1013

Local Groups

USUS Washington/
Baltimore Local User’s Group
Carl Van Dyke
SPM Support Services
10210 Iron Mill Road
Richmond, VA 23235
804/320-0144 (eve.)
2804/320-2561 (days)
Telemail: CVanDyke
MUSUS: 70376,1435

SIG and Committee Chairmen

Advanced System Editor SIG
Samuel Bassett
34 QOakland Avenue
San Anselmo, CA 94960
415/454-7282
Telemail: SBassett
MUSUS: 71735,1776

Apple SIG
(Co-chairs)
Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/956-8559
Telemail: DCohen
MUSUS: 71076,1377

John Stokes
9223 Skokomish Way NE; #2
Olympia, WA 98506

- 206/459-7598

Telemail: JPStokes
MUSUS: 70345,1256

Bart Thomas
First National Bank of Central Jersey
1 West Main Street
Somerville, NJ 08876
201/685-8395
Telemail: Treasurer
MUSUS: 76703,1031

Application Developers’ SIG
Harry Baya
565 Broadway; Apt. 2H
Hastings-on-Hudson, NY 10706
G14/478-4241
Telemail: HBaya
MUSUS: 72135,1667

By-Laws Committee

{Acting chair)

Bob Peterson

P.O. Box 1686

Plano, TX 75054

214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Communications Committee
Bob Peterson
P.O. Box 1636
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/T1
MUSUS: 76703,532

Communications SIG
Bob Peterson
P.O.Box 1686
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/T1
MUSUS: 76703,532

DEC SIG
Henry Baumgarten
3325 Hillside Street
Lincoln, NE 68506
402/489-6441

Education SIG
Connie Gruber
Sof Tech Microsystems
16885 West Bernardo Drive
San Diego, CA 92127
619/451-1230
Telemail: CGruber

Graphics SIG
Alan Freiden
Information Systems, Inc.
3865 Wilson Boulevard; Suite 202
Arlington, VA 22203
703/522-8898

IBM PC/Compatibles SIG

(Co-chairs)
Harry Baya
565 Broadway; Apt. 2H
Hastings-on-Hudson, NY 10706
914/478-4241

Telemail: HBaya

MUSUS: 72135,1667

John Blasquez

P.O. Box 303

Walnut Creek, CA 94596
415/935-9295

Meetings Committee
Dan Merkling
Mentor
P.O. Box 11881
Salt Lake City, UT 84147
801/969-7041
Telemail: DMerkling

Modula-2 SIG
Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/956-8559
Telemail: DCohen
MUSUS: 71076,1377

Pinnacle SIG
If interested in chairing this,
contact Michae!l Hartman, Secretary

Publications Committee
Editor

Eli Willner

Eliacomputer

1510 East 4th Street

Brooklyn, NY 11230

718/336-4109

718/336-4834
Telemail: EWillner
MUSUS: 76703,500

Assistant Editor

Arley Dealey

Pacific Systems Group

3615 Security

Garland, TX 75042

214/349-1515
Telemail: ADealey
MUSUS: 70130,177

Stride/Sage SIG
Bob Peterson
P.O. Box 1686
Plano, TX 75054
214/995-0618 (days)
Telemail: BPeterson/TI
MUSUS: 76703,532

Software Exchange Library
Distribution Chairman
Jon Bondy
P.O. Box 148
Ardmore, PA 19003
215/642-1057
Telemail: JBondy
MUSUS: 71545,2023

Review Chairman
Dennis Cohen
215 North Kenwood Street; #102
Glendale, CA 91206
818/957-4411 (days)
Telemail: DCohen
MUSUS: 71076,1377

Technical Issues Committee
Temporarily Vacant

Texas Instruments SIG
Danny Cooper
1709 Fairfield
Plano, TX 75074
- MUSLIS: 70735,1122

USUS Archive
Archivist

David Ramsey

1510 8. Bascom Avenue; #8

Campbell, CA 95008

408/377-6297
Telemail: DRamsey
MUSUS: 70076,1161

Word Processing SIG
Samuel Bassett
34 Oakland Avenue
San Anselmo, CA 94960
415/454-7282
Telemail; SBassett
MUSUS: 71735,1776

Editorial

By: Eliakim Willner

So, now I’m an editor.

This issue of the Newsletter is, as usual, a bit
late. I won’t bore you with the reasons, but we
expect future issues of the Newsletter to be more
timely. For one thing, the jobs of editor and
publisher have now been combined; my trusty new
LaserJet is producing the camera-ready copy (with
the able assistance of ScenicWriter/HP) and the job
is being printed and mailed by an outfit local to me.

Issue number 14 should follow this one
shortly. Due to the lag in publication that preceded
this issue, I have plenty of material for number 14,
But there won’t be material after that unless you,
USUS member, contribute!

What kind of submissions are we looking for?
The aim is for contributions with substantial
content. This does not mean that we are looking
exclusively for advanced technical articles. We
solicit articles on all levels. Let the contents of this
issue be a guide as to the kind of submissions we are
looking for,

We want articles on all versions of UCSD
Pascal and the p-System. We are interested in
pieces on all the languages the Pascal system
supports. Share your discovery of "gotcha’s" and
interesting programming techniques. Share stories
and bits of humor you think might be of interest to
the USUS community.

Our present intent is to cut back on "fluff"
content such as the Software Source Directory and
the directories of the USUS Library disks. Not that
these aren’t important resources, but they are rather
bulky and don’t change dramatically from one issue
of the Newsletter to another. Directories of new
Library disks will always be published and the
complete Library contents, as well as the complete
SSD, will appear in the Newsletter on a periodic
basis. Note that both the library contents and the
SSD are available online at all times on MUSUS, the
USUS Forum on the CompuServe Information

Service (MUSUS has been referred to by some as

the lifeblood of USUS).

Letters to the Editor are also welcome. Your
letters will tell us whether or not the USUS News
and Report is on the right track.

The preferred means for getting Newsletter
contributions to me is via CompuServe or Telemail.
Please send plain text; T will insert the appropriate
Sprinter directives. I can also accept Newsletter
contributions on Stride or IBM PC format diskettes,
or "standard" 8" UCSD format diskettes. If you
have absolutely no way of sending your submission
in "soft" form then please send me a hardcopy. But
be forewarned that, since I will probably have to
type in hardcopy submissions myself, T will
strongly favor those articles that arrive in softcopy
form! My electronic and physical addresses appear
in the USUS officer list in this issue,

We also welcome display and classified ads!
Our ad rates are quite reasonable and resuit in very
high quality leads, if you sell UCSD Pascal or p-
System related software or hardware. Contact me
for details,

I would like to express thanks to Erik Smith
and Scenic Computer Systems Corporation for
providing the ScenicWriter macros that were used
for the production of the previous Newsletter; they
made my job much simpler. Erik graciously made
himself available over the phone for technical
assistance as I was bringing myself up-to-speed
with ScenicWriter. The p-System community can
be proud that ScenicWriter -- which, in my
personal opinion, is the best word-processing
software on the market -- is a p-System product.

Finally, some last-minute notes that I didn’t
want to defer until the next Newsletter:

Granville Kirkup is compiling a UCSD Pascal
Resource Directory of available p-System experts,
consultants and contractors - - including companies
and individuals. If you wish to be included, send
the details, including your area(s) of specialization,
to: Granville Kirkup, GK Microsystems Inc., PO
Box 440412, Aurora, CO 80044. We intend to
publish this list in the Newsletter.

There has been much confusion as to whether
overseas USUS members were permitted to access
the CompuServe Information Service, and thus
MUSUS. Some overseas members reported being
told that they were not eligible to use the system
after it was determined that they were not residents
of North America. Ihave been assured by a person
in a position of authority at CompuServe that this is
not the case, CompuServe welcomes subscribers
from anywhere in the world (except for a short list

of countries such as Cuba, North Vietnam, etc.)
provided they have an internationally recognized
credit card for billing purposes (such as Visa or
MasterCard). The CompuServe representative said
that if anyone was removed from the system the
action was taken in error.

Overseas USUS members may access
CompuServe via Tymnet, Telenet or local PTTs.
MUSUS is a rich and active resource; if any
member possibly can get on, they should do so.
Overseas members who still encounter difficulties
may contact me and I will attempt to intercede
through the aforementioned CompuServe official.

Speaking of CompuServe, USUS no longer
sells CompuServe Starter Kits; a variety of
distributors are selling them for less than we were
able to. One such distributor is Best Products, Inc.
Their price at the time of this writing was $27.97.
Best Products may be reached at (800)221-BEST.

USUS is now undertaking a drive to increase
the number of institutional members. Institutional
membership in USUS costs $500/year and provides
the institution with the benefits listed below:

m One free copy of the USUS mailing list on
Cheshire labels

m Unlimited internal use of the USUS library
software

m Five copies of each Newsletter issued during
membership term

m A 10% discount on all Newsletter advertising

® A CompuServe Starter Kit, including five free
hours of online time

m The right to establish a Telemail subnode for
your organization

" Prominent mention as an institutional
supporter of USUS in the front of each
Newsletter

We believe that these benefits, which include a
number that have never been offered before, make
institutional membership in USUS a potent bargain.
If you are a company that sells p-System sof tware,
USUS members represent the cream of your market
-- the mailing list alone might very well repay the
cost of institutional membership. So join USUS
and help yourself as well as your fellow UCSD
Pascal users. If you are already an institutional
member, renew and continue your benefits.
Contact Jim Harvison or Mike Hartman for more
information.

10

The following information on TI 99/4A p-
System availability status was supplied by Mike
Hartman.

"Over the past year, USUS has received
literally dozens of letters asking about the
availability of both p-code cards and p-System
software for the TI 99/4A. Many people were able
to find the cards in the wake of the cancellation and
just need the software, while others are looking for
both. I'm afraid the news is not encouraging, but
not hopeless, either. When TT cancelled the 99/4A,
it sold all of its rights to the machine, hardware and
software, to Triton Products Company. Given
sufficient interest, Triton could manufacture and
sell p-code cards, but they are not doing so now.
The p-System software is a trickier problem. TI
made certain modifications to the basic system sold
by SofTech Microsystems in order for it to run on
the 99/4A. It (and now Triton) had rights only to
these modifications; Sof Tech owns the rights to the
IV.x p-System itself, but has no rights to distribute
TI's modifications. Thus, for someone to legally
distribute the 99/4A p-System, an agreement must
be reached between Triton and Sof Tech. This will
happen only if Triton is convinced that there is a
market for p-System software among 99/4A
owners. So if you own a TI 99/4A and want to buy
a p-code card or p-System software for the
machine, I recommend you contact Triton directly
and let them know. Their address is:

Triton Products Company
P.O. Box 8123

San Francisco, CA 94128
(800) 227-6900

"USUS is also actively pursuing this matier. With
all of our efforts, there may be good news to report
in the next newsletter."

Much of the material in this issue of the
Newsletter was gathered by Ro Lutz-Nagey, who
was forced to resign as editor for personal reasons.

Eli

Toronto Meeting Minutes

. . N .
The meeting was called to order shortly after 2:00
PH.

Issues:
USUS Board on Telemail:

A poliecy to allow the posting of any messages to
the USUS board to be considered republishable was
proposed. This policy would be superceded by any
explicit copyright notice posted along with the
message. After discussion it was agreed that all
prospective articles would be submitted to the
author(s) for formal release for publication.

Newsletter "Typesetting”:

The committee passed a recommendation to the USUS
Board of Directors to buy a laser printer for the USUS
Sage computer to be used for the production of camera-
ready copy for the newsletter.

S1Gs and the Neuwsletter:

A recommendation will be forwarded to the USUS
Board to add a new item to the definition of a SIG
chairman's responsibilities. This would be that each
$IG chair must assure that their SIG produces an
article for each newsletter.

Advertising Rates:

The general feeling was that the newsletter
advertising rates are too low. The committee also
wants to offer some free advertisement space to
institutional members.

MUSUS :

Who owns the copy from MUSUS? Can a regular
column be added to the neusletter with the "Best of
Musus"?

iscussion:

It is Llikely that Scenic will print the next
newsletter.

Publishing dates need to be included in the
newsletter. The pertinent dates are copy cutoff, ad
cutoff, and date the newsletter is to be mailed.

Discussion occurred regarding the article proofing
policies of the newsletter. There does not seem to be
a written policy eurrently. There was concensus that a
formal policy should be developed. Ground rules are
that all authors will get a listing by MUSUS, Telemail,
or U.S. Mail of the final copy of their article and
will be requested to sign a release form for the
article.

The issue of publishing program source code in the
newsletter was discussed. [t was determined that the
membership should be surveyed for their preference.

Letters to the secretary were discussed and the
development of a question and answer section of the
newsletter was proposed. This will be added if
possible.

The meeting was then adjourned.

Minutes of ASE Sig (Unapproved)

1. Chairman Samuel Bassett was not present and no
permanent replacement could be found. He remains
chairman by acclamation in absentia, and David Lewis
agreed to be temporary secretary.

2. People wanted to know what the situation is
with Volition Systems. Dennis Cohen and George Symons
held forth. The relevant points for ASE users are: (a)
send bug reports to Arley Dealey; (b) there seems to be
no more funding of ongoing development work on ASE
other than a maintenance update and IV.2 version (by
Arley) and possibly versions for native-code 68000 and
the Mac; (c) VS's new address is: 4490 Fanuel St #208,
San Diego 92019, 619-270-6800.

3. Suggestions and concerns from the populace for
ASE development, roughly in order of priority:

a. Provide for entry and display of non-printing
characters such as those which invoke features of
printers and terminals ("raw" mode and monitor mode).

b. Support ANSI terminals and the ANSI function
key sequences on Televideo terminals.

c. Do an MS-DOS version. A rumor Was propogated
(originated?) that there is or will be a Turbo Pascal
version by authors unknown (or at least inaudible).
This evoked general skepticism on technical grounds.

d. Do windows. But, many believe that this would
make a different editor and require a substantially
different program, so we were just engaging in some
idle free association. It is controversial at best.

4. Lots of people want to learn to use ASE macros
but are insecure about cracking that nut. Several
others mentioned Karpinski's sample (and useful) macros
on MUSUS (and the diskette Library?). Karpinski
responds well to feedback and attention, it was said,
so give him some.

Respectfully submitted
David J. Lewis
1984 October 31

Minutes of Modula-2 SIG

SIG was called to order by the Chairman Dennis
Cohen at 6:20 PM

Attendees were: David Rhoads, Charlie Carman,
Michael Hartman, Jim Harvison, Henry Baumgarten, Edward
R. Powell, Chris Jewell, Grant Phipps, Howard LeVaux,
Karl Pleger, Alex Kleider, Alan Tompkins, Bill Bonham,
Marsha Roberts, Jim Ochs, David Lewis, Eric Hafler,

11

Ariey Dealey, Dennis Cohen and Herman Euwema.

Agenda Iltems:

Standardization Efforts.

Availability

Programming Techniques for Keyboard Entry.
Library Disks

MoSys

Favorite Bugs

Modula-2 Benchmarks

Introductions were made around the room.

Dernis reminded the SIG that the Chairman is
required to see that an article is submitted from the
SIG every other other newsletter and strongly
encouraged to submit an article for each issue.

Library Disks, Contributions have been made to
the library but there may have been a problem with the
submission form. Dennis will follow up to see that it
gets into distribution. The submission contains the
source to p-Shell, a 808 version of p-Shell and Libmap.
Contributions are encouraged and should include
documentation for the submission. $ubmissions shouid
be sent to Dennis Cohen at 215 Morth Kenwood Street,
#102, Glendale CA 91206,

Benchmarks. Dennis has run the Sieve with curious
results. On the Apple /// it ran 10% slower than
Pascal. On the Sage, faster. On the IBM it ran 8%
slower than NCI's p-System pascal. Bill Bonham has
been working on a Native Code version of Modula on the
Sage which was about 1.7 seconds, the same program on
the Stride ran in about 1.4 seconds. He heard of
another implementation which took about 4.3 seconds.
The system has been bootstrapped under IV.13 as a
loader but runs outside of the p- System. Bill has
written an assembler in Modula-2 and is pleased with
its performance. This is a two pass assembler and
handles around 7500 lines per minute on a SAGE and on a
Stride at about 17,000 lines per minute out of RAMDISK.
Chris Jewell reported on benchmarks and he will post
the results of the benchmarks on MUSUS and Telemail.

Availability. Volition: Sage, IBM PC standard p-
System and p- System under a MSDOS bubble, CPM, Apple
/7 for 1.1 1.2 and 1.2 128K and for the Apple ///.
Logitech: 8086 Native compiler for MSDOS and CPM8& and
a cross compiler for the VAX. This is basicly the
Lilith compiler which generages B8084/8088 code rather
than m- Code. MRI: PC, MAC, LISA, and Apple I1. This
version is also essentiaslly derived from the Lilith
compiler.

Dennis adjourned the meeting at 7:10 PM

The second meeting of the Modula-2 SIG was
convened on Sunday at 10:17 AM by Dennis Cohen.

Dennis Cohen, Chris Lee, Bill
Bonham, Verlene Bonham, Randy Bush, Kathryn
Hjorleifson, Henry Baumgarten, Eric Hafler, Herman
Euwema, David Rhoads, Alex Kleider, Jim Ochs, David
Lewis, Chuck Emery, Rendy Bush, Chris Jewell, Mable
Roberts and Jim Harvison.

Attendees were:

12

Velition Systems new address is: Volition Systems
4490 Fanuel 5t #208 San Diego, CA 92109 (619) 270-6800

Agenda Items:

Hore on product availability

More on the progress of standardization
Programming techniques for keyboard entry
MoSys

Favorite bugs

More on product avajlability. Volition: 68000
native code wifll move from alpha to beta test and will
be released on the Sage. Macintosh product will be
released 4th quarter of 1984, Cross compiling can oceur
from the Sage, files can be Inhaled and Exhaled, Bubble
Environment, will run on 512K Mac with separate code
and data, pricing should be less than current praduct
pricing, native code cross compilation will be possible
from the Sage to the Macintosh. Volition is alive and
well and living in San Diego.

More on Standardization., Twe main threads. Ad
hoc committee has been meeting around the world for the
past year and the definitions for the standard tibrary
modules have converged. Participants have been ETH
Zurich, Volition, Logitech, OCE (formerly Diser).
Structure of the Llibrary is most of what you would
expect, the difficulty has been files. There are
module files, texts, binary. Philosophy is you open
the file with FILES, if you then touch it with TEXTS
you don't then use BINARY. There is a module POS. No
constants exported, no variables exported just types of
procedures,

The 8ritish S$tandards Institute will meet next
menth to begin the definition Standards of Modula-2.
Potential problems or discussion items are: multi-
dimensional arrays, exponentiation operator, additicn
of more types in system VByte", "Addressinc",
"SizelnBytes”, YSet of Charv.

Programming Technigues for Keyboard Entry. How
are people handling keyboard entry with error handling.
Recommendation to read a character at a time and handle
it directly.

MoSys. 1s in development by TDI. Cost will be
about $500 for object. Four times that for Source,
Being developed for Sage and Pinnacle. This is an
operating system developed in Modula-2. This operating
system will provide full support for 32 bit systems and
improved user interface over Unix.

The S1G was adjourned at 11:04 AM.

Modula-2 newsletter is available from MODUS.

Write to:

Modus

PO Box 51778

palo Alto, CA 94393
Membership is $25.

Modus' next meeting will be coordinated with the
Edinburough meeting of USUS(UK).

The meeting was adjourred at 11:15 PM by Dennis
Apple S1G Meeting

Bart Thomas opened the meeting at 10:11 AM.
Attendees:

Bart Thomas, John Stokes, Dennis Cohen (co-
chairs), David Lewis, Jon Bondy, Herman Euwema, Alan
Tompkins, Bob Moody, Ron Stein, Henry Baumgarten, Jim
Harvison, Harry Baya, Chris Jewell, Ro Lutz-Nagey,
Michael Hartman, Carl Van Dyke, Eric Hafler, Glenn
#offman, arnd Peter Willtiams.

In the library room [at Torontol there were the
fixes to allow Apple FORTRAN to run With Pascal 1.2
(does not use 128K) and a fix to make the Profile
driver work correctly with the 128K system. Bart also
reported that & bug report for Tom Swan's Pascal Data
Base System (PDBS) and the fix for the bug was
available. The bug was related to large files of over
5000 records.

Dennis Cohen reported on Tom Swan's PDBS which is
a relational database system and judged to be very
good, It is published as a book containing source code
and commentary, with or without program disks.

Introductions were made around the room.

Bart reminded the SIG that as a group the SIG is
responsible for producing at least one article every
other newsletter and that it was desirable to have an
article every issue.

Cards to speed up the Apple // were discussed.
Many people indicated they had Titan's Accelerator Il
which seems to work well as long as you do not have any
DMA devices. There was one report that there seems to
be a timing problem With the new Accelerator //e and
some Apple II+s. This does not occur with all
Accelerator //es or with all Apple IIs, and can be
resolved by mix-and-match. One person reported that he
had the SpeeDemon from MCT, which seems to work well
also.

Randy Hyde's book "p-Source" was discussed, which
gives mostly good information on program optimization.

Bart reminded the SIG that if you are moving to
Apple Pascal 1.2, there are several files on MUSUS
which will be useful.

In general, the upgrade to 1.2 has been stow in
being delivered from Apple. Concern was expressed that
Apple dealers have not been doing their job in
informing users of the upgrade and follow-up/add-on
products to 1.2 such as SANE (the Standard Apple
Numerics Environment).

Comment was made that Apple should provided a new
consolidated set of manuals for Appie // Pascal rather
than the collection of updates and addenda which are
very cumbersome and discouraging to new users.

The SIG was very concerned that the Apple Liaison
to USUS, Lance Saleme, who had been invited to the
meeting did not attend, in the past Apple has been
well represented, and USUS should notify Apple that

their active participation is appreciated and
beneficial, and request that it continue.

The p-System on the Apple Macintosh was discussed.
1t is now available from SofTech Microsystems for
$195.00. It provides access to the QuickDraw routines
and the mouse. A UCSD Pascal compiler which runs under
the Mac's operating system is expected shortly from
SofTech.

Bart adjourned the meeting at 11:52 AM.
Library Committee Meeting

Meeting catled to order by Jon Bondy shortly after
12:00 noon.

Attendees:

Chairman Jon Bondy, Mike Hartman, Jim Harvisen,
Harry Baya, Artey Dealey, Al Tompkins, and Herman
EuWema.

Many of the distributors are having problems: not
providing reports, failing to distribute, disappearing
act. Six new volumes of the Llibrary have been
submitted recently.

Jon's experience has been to distribute 400 disks
in the first quarter. The breakdown of the types of
disks distributed is: 8-inch disks virtually none, 1BNM
and Sage the most, Apple next.

The Library has some very good programs. Reviews
of entire library disks or programs on the disks are
needed and should be done. Members should be
encouraged to review, submit bug reports and fixes, and
indicate their general experience with the library.
Harry Baya committed to doing the first library review.

An alternative to the current distribution
approach was suggested with the centralization of
ordering. This was discussed. It was agreed that the
Secretary would become a distributor for the Sage and
Apple formats.

SofTech wants to collect application development
tools for public-domain distribution.

Major Vendor Panel
Panel Members:

SofTech Microsystems (SMS) was represented by the
SM$ Liaison to USUS, Connie Gruber. DI was
represented by Mark Wiggin. NC] was represented by
Stephen Pickett, chris Jewell, formerty of Apple
Computer, agreed to try to respond to Apple questions.
(Lance Saleme, the Apple Computer Liaison to USUS, did
rnot attend.)

1. Wilt the December release of the SofTech
Macintosh p-system support the 512K Mac? Answer: Yes.

2. Please clarify the SofTech Mac products.
Answer: The current Mac p-System product will support
the 512K Mac in December. The new product {stand-alone
compiler) wilt support the 512K Mac at release. The
upgrade for the current product will be approximately
$50.

13

3. What computers does TDI support the p-System
for? Answer: Acorn, BBC, Commodore 64, and others [not
recorded] .

4. In the past SMS has been mostly marketing te
hardware developers; now it seems that there has been a
shift to individual software developers. 1s this true?
Answer: The OEM channel has changed and SHS is
directing their efforts to the retail market but has
not settled on a particular approach.

5. What is the level of cooperation between NCI
and SMS and can we expect compatibility? Answer: NCI:
Wishes to maintain compatibility. They expected to
have received IV.2x by now but have not. $MS: Beta-
test sites have been selected, and as soon as the
product is released from beta-test then Llicensees shall
receive it.

6. Is NCI one of the beta-test sites?
SMS: No.

Answer:

7. With the upcoming stand-alone Pascal compiler
for the Mac 0S, can we expect to see other operating
systems supported by SofTech? Answer: The Mac system
was a particular response to a market need. If there
seems to be B need in other areas they will consider
it.

8. What are TOI's markets? Answer: Stride,
Pinnacle, Victor 9000, p-System, adaptations to other
systems.

9. Who are TDI's major competitors in the
European market? Answer: There does not seem to be any
competition for the 68000 machines. There are no other
major p-System vendors in the UK.

10. Is the Advanced File System (AFS) dead? Is
Liaison not being pushed? Answer: AFS is not on a
schedule to be a product. Regarding Liaison, SMS is
very pleased that Liaison is included on the Stride.
SMS is very interested in talking with any manufacturer
who is interested, but they are not actively seeking
machine support. Stride is pleased to have the local-
area network supported end plans to continue support
for it. SMS has licensed the product to Olivetti. The
license is not specific to a piece of hardware.

11. Will we see COBOL on the p-System? Answer:
SMS has no plans. Stride plans to bring up a version
of RM/COS on the multi-user Stride.

12. Stride/Sage has been shipping the p-System
Wwith every box. Does Stride think that this will
change in the future? Answer: Stride hes every machine
licensed for the p-System. About 10% of the machines
do not have the p-System actually sent with them.
Idris hes been doing very well. 1f they are to move
away from the p-System, that will depend on what users
want. UNIX Version V should have greater popularity
than the current Idris.

13, Telt us about MOSYS. Answer: TDI: MOSYS is
a native-code &BO00 operating system running on the
Sage. It is written entirely in Modula-2. It is not
available at this time.

14

14. What is the current state of IV.x targeted
for the Apple //e with the extended memory? Ansuer:
SMS: This is not at the top of the Llist for
development.

15. Does MOSYS take direct advantage of the
address space of the 68000 and support files targer
than 16 megabytes? Ansuwer: Yes.

16. What are the prospects for the distribution
of MOSYS in the U.S.? Answer: TDI would like te do so.

17. Does SofTech have a policy on helping p-
System developers, and what can the developer expect?
Answer: SMS has an intent to do so but there is no
policy. Taking the application approach is ohe method
to assist along with the revised licensing plans. SMS
Will be announcing a p-System database package for the

Macintosh. SMS encourages developers to contact SMS to
discuss Ways to encourage mutually beneficial
arrangements,

18. Does SM5 have any plans to encorporate
"Caller", developed by NCI, with their system? Ansuer:
Mo, not at this time.

19. Are there any plans for an 8087 code

generator and any plans to generate additional native
code over what is currently done? Answer: HCI is
licensed for the BO87 native-code generator but they
have not seen it. SMS said they have just released the
8087 native-code generator and have improvements for
the current 8086 code generator.

20. Is NCI licensed for IV.2 or just 1V.i37
Answer: NCI thinks that 1V.2 is considered an upgrade
and therefore they should be ficensed for it. SMS
confirmed that this is the case,

21. The MS-DOS hosted p-System is an upgrade for
additional cost.

22. Have there bheen any changes to SMS
maintenance policies? Answer: Yes. Before there was
ongeing free support for any who made purchases

directly from SMS and not much support was available
for anyone else. Now for $75 any version IV.x owner
can get 12-month support and upgrade options.

23. Are there any improvements anticipated for
the 68000 native-code generation? Answer: Yo plans at
this time.

24. Are there any plans for HNCI to support any
processers other than the 8086/80B87 Answer: Yes, the
80286 (18M PC/AT).

25. Are there any plans for other native-code
generators, in particular the 65027 Answer: No. The
6502 p-code to native code expansion factor is about %
to 6. Other people have attempted to do a 6502 native-
code generator and have reached the same conclusion
that this makes the use of native code infeasible.

26. Does NCI have any plans to produce p-System
adaptations outside the Intel chip family? Answer: Not
this year.

27. whaet is the status of the VAX implementation
of the p-System? Answer: It has been alpha-tested but
is not close to being released. {At the time this
Newsletter went to press the VAX implementation wuas
being sold by TDI.] SofTech and TDI both have rights
to market it.

SofTech Presentation Notes

Connie Gruber - Manager of Marketing Support
Designer Series, new marketing strategy

They are trying to increase the marketability of
the environment. Includes: Editor, Filer, Utils, Run
time system, services, the Language Compilers are
optional, as are the Tools.

Choice of UCSD
Assembler.

Pascal, Fortran-77, BASIC,

Optional Tools: Symbolic Debugger, Native Code
Generator, Insight Window Designer, EDVANCE and KSAM.

Hosted Systems:

p-System and MS-DOS co exist; Applications can
concurrently use MS-DOS & p-System files; p-System File
Manager; p-system files on p-sys disks, p-sys virtual
volumes in MS-DOS. AtlL MS-DOS supported devices may
use standard p-sys drivers, generic ASCII Console
driver.

Macintosh: 50 MAC ROM routines, Quickdraw and
Mouse. 68000 assembler wth Advanced Development Tool
Kit.

There will be an article in the December Byte on
the p-System. Have shipped 500 copies at this point.

Mext product: Create UCSD Pascal programs using
MAC Operating System. p-system not apparent.
Includes: Mac Editor, UCSD Pascal Compiler Debugger and
access to 500 MAC ROM routines. Available mid
November.

UCSD Pascal Development System: Was $625 now $295
for p-System and MS-DOS $195 for p-System/Macintosh

Mew Upgrade Plan, Customer Support Policy:
Customer support plan: SKS will provide first level
support for the product 90 days free then $75 per year
there after. Wilt get a 10% reduction of future

products. Bug list for $15 each copy issued 4 times
per year.
Iv.21: Improved beot speed, sutomatic memory

configuration, multiple code pools suported, external
data areas supported, improved operating system
performance.

Multiple Code pools give the ability to use extra
memory With extra 64X code pools.

External Data Areas. Allows bringing extra data
segments swapping with the Stack/Heap.

Set Command Added: Allows specifying what volumes
the system files are on. MName work file. Improved
work file handling.

Pascal procedural parameters, Conformant arrays,
compatible with ali [V.1 releases. Available late
October. Softech still has goal to maintain source
code compatibitity.

Performance Tuning Tools: Have provided a Time
Profiler Occurrence and Time monitor and Fault Analyzer
to observe segment, stack, heap and pool faults.

Jack2: The Easy-to-use, integrated business
package. Four tools in one: Word Processor,
Spreadsheet, Graphs, Data Base. pPerfect for Basic
Business Needs. SMS has right for all machines other
than Apple and IBM. With the Jack?2 developers filing
chapter 11 there are negotiations for Apple and I1BM.
Cannot be used currently on a non video maped machine.
SM5 is interested in acquiring p-System products to

market.

Educational Software: Learning envirenments for
UCSD Pascal /FORTRAN-77. Create instructional programs
up to 2000 Lines and 6 units. Teach beginning
programming courses. Two options; unit purchase per
machine cost with rwmber of machines: $150 per copy.
Second plan; Llicense, cost is based on number of
students and sites. The cost starts at $795.

Standard product for educational software. Full-
featured UCSD Pascal or FORTRAN-77 Compiler. Teach
beginning through advanced couses. Develop programs
for instructional delivery. Teach/develop using both
languages.

1BM Apprentice program. $MS Pascal and FORTRAN
are the two languages included in the program.

Minutes Old Board

Bob Peterson called the meeting to order at 8:23
AM on Sunday

Board members present were Bob Peterson, Randy
Bush, Ariey Dealey.

Agenda

Election Committee Report

The results of the election were:
551 Ballots returned

Dennis Cohen 435
Carl Van Dyke 373
Herman Euwema 189

Ro Lutz-Nagey 355
Stephen Pickett 58
Gary Pritchett 373

ELi Willner 551
R.C. Carroll 5
Steve Pillot 1

Disincorporation 5

Less than 10 invalid proxies 4 people at meeting
substituted new proxy for old. Post card worked well,
Secretary should prepare two iabels one for the post
card and one for the envelope. These should be
prepared two up for correct posting. Ballots came in
at between 5 and 10 per day. 2 ballots asuthorized Bob

15

Peterson to vote them as they see fit.

Randy Bush moved to adjourn. Seconded and Passed.

The meeting was adjourned at 8:29 AM

Minutes New Board

The meeting was called to order at 12:23 PM by Ro
Lutz-Nagey on Sunday 10/14/84.

Present were: Ro Lutz-Nagey, Carl Van Dyke,
Dennis Cohen, Eli Willner, Gary Pritchett

Agenda:

Officers

Telemail Acct for ACD ect.
Bylaws Eomm

Meeting Comm

List of Objectives

Vendor Relations

Treas. Proposal

Library Proposal
Newsletter/Member Services

Eli Willner was elected chairman of the Board.

Candidates for Positions:

President: Jim Harvison, Herman Ewema.
Executive VP: John Stokes.

VP/Member Services: Carl Van Dyke.
Secretary: Mike Hartman.

Treasurer: Bart Thomas.

It was moved to appoint Jim Harvison, John Stokes,
Carl Van Dyke, Mike Hartman, Bart Thomas. Seconded and
passed Without opposition.

Dennis Cohen moved to affirm the creation of a
standing communications committee with the duties as
assigned by the executive committee (Duties being to
oversee the provision of Telemail and MUSUS services).
Seconded and Passed without opposition.

Bob Peterson was appointed the chair of the bylaws
commi ttee.

George Symons was appointed the chair of the
meetings committee.

All officers and board members shall be provided
copies of USUS corporation documents and bylaws by the
secretary,

Eli moved that the Board will support activities
which will strengthen the relationships and
participation of p-System vendors with USUS. Seconded
and approved.

Dennis Cohen moved to reaffirm the position of
USUS to be vendor independent. Seconded. Passed.

Carl Van Dyke moved to adjourn the meeting.
Seconded. Defeated.

Ro Lutz-Nagey moved to elect Dennis Cohen as Vice-
Chairman of the board. Seconded. Approved.

16

Ro Lutz-Nagey moved to adjourn the meeting.

Seconded. Approved.
The meeting was adjourned at 12:55 PM.
Minutes Old Executive Cormittee

The meeting was called to order at 4:05 PM on
Saturday October 12 by the President, George Symons.

The Attendies were: Dennis Cohen, John Stokes,
Bart Thomas, Ro Lutz-Nagey, Arley Dealey, Chris Jeuwell,
Carl Van Dyke, Alex Kleider, Bob Peterson, Jon Bondy,
Jim Ochs, Herman Euwemma, Edward R. Powell, Michael
Hartman, George Symons, Verlene Joyce Bonham, Chuck
Emery and Jim Harvison

Agenda Items:

Treasurer's report
Secretary's report

Laser Printer

SIG Chair

Advertising Rates

USUS(UK) news

Organization Structure
Telemail Publication Policy
Membership Renewals

DO N O W R

Members of the Exec Comm are Officers, SIG and
Committee Chairs.

Jon Bondy requested that in the future, all
Officers Reports and commitee agendas be submitted via
Telemail prior te the meeting.

Ireasurer's report; Jdon Bondy requested that the

Treasurer's report include data for the year.

Telemail receivables are a problem. We were slow
in billing and people slow in paying. There are about
100 Telemail users. Carl Van Dyke suggested that we
include an asmount for bad debts. [s there a breakdown
for the cost of Telemail for the organization? George
estimated that it was currently costing about $500 per

month. In the future an appropriate cost should be
$300 per month.
Secretary's report: The Secretary's report

included discussion of the new members and renewal
rate.

New New

Members Members
Month Renewals (Domestic) (Foreign)
November 83* 243 94 4
December 94 75 [
January B&4# 71 72 2
February 7 40 3
March 1 70 8
Apriti 4 43 1
May 27 73 8
June 51 54 2
July 18 b6 7
August 17 61 5
September é 41 6
October 0 13 1

549 702 53
*Corporate membership rencwal received
#New Corporate Member

Dennis Cohen moved that the membership secretary
request renewals as sooh 8s possible. Seconded.
Hotion Passed.

Bob Peterson moved that members be credited with
12 months of membership from the date they have
renewed. Seconded, Passed without oppesition.

USUSCUKY pews items: Next conference arcund April
1t in Edinburough. USUS{UK) has now become USUS(LK)
Limited. Current Chairmen Mark Woodman is on TeleMail
(Address: UKCHAIR} and fairly active there. Formal
communications with USUS will begin., Only problem has
been the tack of Newsletters #11 and #12. Would Llike
to get #13 out as soon as possible. Want to know how
much it Wilt cost to print 500 issues for USUS(UK).

Qrganization Structure: Arley suggested that a
communication committee be formed to address the
oversight of the Telemail and MUSUS on Compuserve. Ro
Lutz-Nagey moved that a standing Communications
committee be formed. Seconded. Discussion: Committee
would have oversight of the Electronic communications

services. Passed Unopposed. Bob Peterson was
appointed chair.
Laser Printer: Currentiy $1,500 per newsletter

issue for typesetting cost. Ro requested the consensus
of the executive committee for acquiring the printer.
Discussion: Bob suggested that the individual using the
printer may wish to purchase the printer and lease use
to the oroanization. Dennis suggested that any
decision should be delayed pending expected
announcements in new technology printers. The consus
of the commitee was that they would consider a proposal
to purchase or lease back a printer.

Advertising Rates: Ro reguested that rates be
raised. A full page black and white add costs approx
$250. Bart moved that the current advertising rates be
reised 25% not before issue 14. Seconded and Passed.

Jon moved that a 10% commission be paid on new
advertisements obtained. Secorded. Motion was
withdrawn.

Bart moved that the executive committee gives its
approval in principle for payment of commissions for
nes advertisements cbtained for the newsletter.
Seconded and Approved.

Jelemail Board: Ro moved that any messages posted
to the USUS beoard on Telemail would be considered
available for publishing in USUS News unless their is a
disciaimer included in the message otherwise.
Seconded. Motion was withdrawn.

Bob Peterson moved that every SIG chair see that a
article be prepaired for the newsletter at ifeast every
other newsletter and recommend that it be prepared for
every newsletter to begin with issue #14 and further a
cheir not meeting this requirement may be removed from
office. Seconded. Passed.

The meeting was adjourned by the President at 5:43
PM.

Minutes New Executive Committee
Attendees:

Jim Harvison, President

John Stokes, Executive VP and Apple SIG co-chair

Carl Van Dyke, VP Member Services and Board member

Michael Hartman, Secretary

Bart Thomas, Treasurer and Apple SIG co-chair

Henry Baumgarten, DEC SIG chair

Harry Baya, 18M SIG co-chair and Applications Developer's
Dennis Cohen, Board member, Apple $IG co-chair, and Modula
Bob Peterson, Communications and By-Laws Committees, Commu
George Symons, Meetings Committee chair
Ro Lutz-Nagey, Board member and Editor
Gary Pritchett, Board member

Eli Willner, Board chairman

Arley Dealey

Eric Hafler

Edward R. Powell

Agenda;

Secretary/Treasurer Staff Proposal
Library Proposal for Next Meeting
T1 99/4A Users' Problems

$1G Chair Reports

Committee Reports

Jim Harvison, President, called the meeting to
order at 2:20 PM.

Secretary/Treasurer Staff Proposal:

A written description of a new proposal by Jim
Harvison on paid clerical help for the Secretary and

Treasurer was distributed to committee members. It
recommended the creation of two salaried positions:
Membership Secretary and Correspondence
Secretary/Treasurer, The Membership Secretary would be
responsible for maintaining the USUS membership
database and for handling all correspondence on
membership status and newsletter receipt. The

Correspordlence Secretary/Treasurer would maintain the
uUsus official correspondence records, prepare and mail
all technical correspondence drafted by the Secretary,
and also handle all the clerical duties of the
Treassurer {except for Telemail billings). The
continuance and salary of both positions would be
reviewed at each semi-annual general meeting. This
proposal is made in order to assure continuous, smooth
maintenance of the membership database; to provide a
single contact peoint on membership questions for USUS
officers, members, and potential members; and to ensure
compilation of complete records of USUS expenditures
and receivables. Bart Thomas moved that the proposat
be adopted.

A discussion of the responsibilities of the
Treasurer was started by Eli Willrer; he pointed out
that the Treasurer would have the check-signing
respoensibilities; the Secretary would do only the
administrative jobs amd some of the clerical. Some

17

other officials do have check-signing authority; Jim
said he (as President) would not want it here. George
questioned whether there would be additional costs. It
seemed to those present that they would be similar to
those currently incurred for these tasks. Bob Peterson
raised the issue of whether USUS was effectively hiring
someone, whether such thing should be done, and
whether USUS should simply hire a full-time
administrator to hardle things. Arley Dealey said he
HWas not currently philosophicaily opposed to the
proposal offered, but practical matters such as cash-
flow might be a problem. Ro Lutz-Nagey felt the
proposal shoutd have been brought to the board, as it
involves substantial committment of funds. George
Symons and Bob (former officers and board members) said
the Executive Committee could commit the funds with the
concurrence of the board. Ro was also concerned about
the communications overhead of two people, instead of
one doing it all. He felt that due to the cash flow
the positions should be kept as hourly rate, not
salaried. Harry Baya suggested the amounts of money
proposed become upper limits, and that USUS get a
contracting agreement written.

Bob reported that Jerry Pournelle has told him
that L-5 and other societies hire retired military
persons to do administrative duties. These people
don't need high salary (have pension income) and have
other advantages. Bob moved that the motion be tabled
(Bert's motion to accept proposal in full). Bart
seconded, Discussion following indicated that the
proposal should be studied, and a decision on it
reached on at the next interim meeting. The motion to
table passed without opposition. George offered to
post on Telemail an article on what constitutes an
independent contractor,

Library Proposal:

Ro brought up a library proposal for quick mention
nowW, to be discussed further on Telemail. He wants to
improve visibility of the Llibrary in the Pascal
community at-large by preparing a sample diskette of
selected USUS Library software. This requires
permission of its authors to move those progrems into
the public domain. The disk would be distributed by
selected microcomputer user groups. Re moved this
proposal. Bob seconded it. Bart moved to table the
motion; no second. Eii said the software is specific
to the p-System; p- System groups already have some of
it, others will adapt it to their flavor of Pascal and
not help USUS. George said we should attend to the
current, growing membership, not spend energy on others
at this time. Some thought this is a library committee
fssue; Mike Hartman said the library is a key service
ard incentive for joining USUS, and its distribution is
of interest to ali. Ro moved to table the proposal to
the Interim Meeting; Bart seconded. Motion to table
passed unopposed.

LI 99/4A Users' Problems:

Jim says there is a large, growing segment of TI
$9/4A ouners in USUS who need basic p-System software.
A number of them have written letters to him as
Secretary. Many have p-System cards ¢(bought in close-

18

out sales), but no software for them. MNeither 7l nor
SofTech is or can currently distribute the software,
To meke the p-System run on the 99/4A, TI had to strip
down the system. Tl sold all its 99/44 rights,
including these software modifications, to Triton
Products Company. SofTech can distribute only the
basic, ummodified softwsre. George moved that the
Executive Committee direct the VP for Member Services
to pursue a solution to this Tl probiem, and in the
interim act as vendor liaison to Triton. Bob seconded.
The motion passed unopposed.

SIG chair Reports:

Tl ard Word Processing S$iGs did not meet this
time. Application Developer's tried but didn't. DEC
SIG didn't either partly due to Eli's schedule; Henry
Baumgerten will chair DEC now due to this and to Elit‘s
business involvement with the p-System for ©DEC
machines. Cert Van Dyke asked who determines the SIG
scheduling, and stated that the IBM SIG was hurt by
being held at the end of a long day. Bob reported the
formation of & new Education $1G; Connie Gruber may be
the new chairman (this is the 3rd incernation of the
S1G). Reports from other SIGs which did meet,
including ASE and Stride (formerly Sage), were not
received due to the shuffling of the meeting time.
Full reports on the Apple and Modula-2 $IGs appear
elsewhere in this issue.

Committee Reports:

The Meeting Committee reported that the next
Interim meeting will be hetd on February 9-10, 1985 in
conjunction with Stride Faire {Technical Issues
Committee will meet on the 9th). The next general
meeting will be in Dallas [since changed to Salt Lake
Cityl in late April or early May. The exact date witl
be known in 2 weeks when hotet arrangements have been
firmed up. The Meeting Committee is Llooking for
suggestions on the following interim and general
meeting sites, A suggestion was made that the fall
1985 general meeting be in Baltimore or Washington.

There were 68 paid attendees at this USUS meeting,
38 of whom pre-registered. There were $3300 Canadian
taken in from registration, library disks, and 20-30
newsletters. Forty blank disks were sold at cost.
Meeting attendees had 30 rooms in the hotel, yielding
the mid-level rate for the conference rooms. This
saves $600. The meeting cost about $2000 US, so that
makes about 3540 US (%700 Canadian) in profit. Bob
points out that some people stayed four nights, not
two, which may help us with the hotel fees.

The Llibrary committee met. The President or
Secretary will be added as a USUS institutional
distributor for Sage, Apple, and IEBM formats. Also,
library prices for certain formats will be
standardized.

Arley reported that the Publications Committee
met, and boasted a big turncut. He commended the new
editor, Ro, for his work. The development of a
newsletter staff to assist the editor was suggested.
Artey will be the first assistant editor.

Eric Hafler asked sbout the availsbility of
mailing lists for geographic areas to assist in forming
local users' groups (LUGs). He was told to write the
Secretary; mailing Llists will be provided at no cost
for this use. Jim said USUS might also underwrite the
cost of the first mailing to organize an area's LUG.

Arley reported that a Communicaticons Committee was
formed with Bob as its chairman. The committee will
handle the MUSUS and Telemail functions of USUS. Carl
raised the issue of unpaid Telemail accounts; we need
to recover these expenses through prompt billing and
asggressive collection. Carl made a motion to enforce
the poiicy of terminating access to Telemail for
accounts for which payment has not been received 30
days after invoicing. This may be waived upon contact
between the Treasurer and the accountee, MNo second was
offered since this is current USUS policy. Artey
belioves Telemail collection is progressing and action
on delinguent accounts is being taken. He was not
clear on whether USUS policy is suspension or
termination of delinguent accounts.

Bob Peterson agreed to serve as acting chair of
the Bylaws SIG. A permanent chair will be sought.

tart moved to adjourn; Eli seconded. Passed

unopposed at 3:15PM.

Notes on Expert Users! Panel
The Panel began at 11:21 AM on Sunday.

Panel members were: Chris Jewell, Gary Pritchett,
Barry Demchak, Rardy Bush.

Randy Bush reported on what he observed on a
recent trip to Japan. Observations were: 1965
approach, COBOL, FORTRAN and BASIC, No programmihg
teams, one or two programmers working on a project,
almost no penetration of Pascal. When you tatk to or
about MITA regarding the fifth generation and how the
software technology be applied to the hardware
technology they indicate they recognize the problem but
have no solution. Low numbers of computers per student
for schools, only "poor® students use computers for
remedial work. Cooperation does not seem to be as
extensive as we are led to believe. IBM is predominant
mainframe wvendor in Japan. Prolog is the Llanguage
being used for the fifth generation. Randy witl be
writing & paper for US publication as well as Japanese
publication.

1. Are the conformant arrays offered by SofTech
in IV.2x in compliance with the 150 standard and if
not, why not? A: There was an intent to make them
conform and if they don't, reason not known.

2. Can the wsy procedural parameters are handled
be discused? A: MNo, not enough information to respond
to the question.

3. What is & conformant array? Az Allous
writing routines that do not need to know the size of
the array.

4. Initialization does not seem to work with OSI
p-System. A: Initialization was added with Version
I1.1, the problem with is I1.0.

5. Has a document on how muitiple units are
initialized been made available? A: Has not been
formally released for public distribution. Hou
initialize is handled is likely to change from version
to version.

6. 1s it possible to implement a "SideKick" lLike
capability in Version IV and if not is there an
intention to provide it? A: HNot a current feature of
the p-System. Could it be done?

7. Can a process that is waiting be swapped out
of the code pool? A: Yes. Randy suggested that an
application could be substituted for the System spooler
to similate what the 8Borland “"SideKick" product does.

8. Are there any plans to allow the user to
install units in the operating system that will be
initialized by the operating system at boot time? A:
No such plans.

9. If gotoxy has an initialization section will
it get called? A: Units in SYSTEM.PASCAL do not have
initialization code invoked.

10. Please describe the way IV.2x supports data
beyond the normal stack/heap date space. A: A set of
units will be provided to allow the user to find out
how much unused memory is available and allow moving
data to and from the stack heap.

11. 7?7 A; uhen a data segment is altcocated it is
allocated as a memlocked code pool segment (it is not
position locked).

12. What is being done to fix the bugs in the
chaining process? A: Priorities are set by user
requests to fix problems. There have been few requests
to fix the chaining bugs.

13. On a Apple with 1.2 is it possible te use an
interrupt-driven communications program with a mouse
active at the same time? A: Chris could not see why it
would not work.

14, In reference to Apple Pascal, is CALLER
relevant? A: There is a version of celler for Version
11.0 in the Library which should work with Apple
Pascal.

15. How can {$U-} be used? A: There is a Unit
on HUSUS done by Arley Dealey which altows use of the
features of {$U-} in relatively safe ways.

19

Data Flow Computing

By: Tom DeMarco, Atlantic Systems Guild

From the October 1983 USUS Meeting
Keynote Lecture

First, I want to say I am very pleased to be
here. TI've followed this organization, and the
system that it is concerned with, for all this time,
and | have a great deal of fondness for what’s going
on here. I want to thank Winsor Brown, Randy
Bush and Bob Peterson for their very kind
invitation.

There is a little problem about being a keynote
speaker: I guess one is supposed to hit the ’key’
notes. The keynote in this gathering has to do with
UCSD p-System, its history and its evolution.
Unfortunately, Jeff Clark hit that keynote exactly
on the center [in a "commercial” presentation given
earlier] and you held his feet to the fire. Not only
that, but you have a very long history of doing this.
For instance, any of you that were in Dallas a year
ago, or the meeting before that when Doug Ross
had the temerity to turn up, saw that he had his feet
held to the fire.

Therefore, 1 decided that, given that
everybody in this room would know more about the
p-System proper than I do, despite my five years
use of it, I decided not to hit exactly a keynote, but
rather a gracenote. So what we are going to have
here is a gracenote’ presentation, on a subject that
you will see is in many ways akin to what’s been
going on in the entire Pascal revolution; which has
to do not just with a different way of computing, a
different way of constructing software systems, but
has to do with extending the already different way
of thinking about software that was started some 15
years ago with the block-structure language
revolution. That is the topic of data flow
computing, Something which has enormous
advantage to me, since I know more about it than
you do. So that you can’t hold my feet to the fire
too severely,

What I want to do is begin by talking about
paradigms... I'll talk about paradigms for systems
construction, one of which is what I call the data
flow paradigm, and then give you four instances of
that. Then I'll go on into the future, very slightly,
to talk about what kinds of methods I think are

20

right around the corner -- are already happening
somewhere and are very likely to be happening to
you semetime in the near future.

Having made use of this word paradigm I
suppose I am obliged to define it. A paradigm is a
sort of mental model. It turns out the human brain
is not capable of thinking about all the things that
are capable of being true. The human brain has
certain built-in ’pigeon-holing’ schemes, mental
models if you will, that make it possible and easy to
think about some things particularly well. For
instance, clearly the human mind is a very
adequately put together structure, internally
organized to deal with things like Ianguage.
Bertrand Russell, a philosopher, commented on
this. He said, "The thing I don’t understand is how
I come to understand so much". And, in particular,
referring to the idea of language. He concluded
that the brain was very precisely organized so
things clicked into place into subsequent language.
Other subjects, art, for instance, and music...
we’ve have much more difficulty clicking things
into place, at least some of us do.

Another story about paradigms: in the voyage
of the Beagle, Charles Darwin wrote down that the
natives of Tiera Del Fuego were incapable of seeing
the Beagle. The Beagle was a 94 foot brigantine
with four or three masts, and it parked 400 yards
off the shore and the natives couldn’t see it. They
looked out there, and didn’t see it. They missed it.
Yet the moment a little skiff put out behind it and
came around, all of a sudden they all started
shouting and pointing at the skiff, that they could
see. They didn’t have a paradigm, they didn't have
a mental classification system for this great huge
ship and therefore, they couldn’t think about it
very well,

One of the most evident paradigms of the last
10 years has been the top-down paradigm. We
changed gears, around 1970, and started to think
about things top-down. Some people think that
they understand top-down implementation. For
instances, they think a top-down implementation is
just implementing with your 'top’ down. That
turns out not to be true [Laughter]. It has much
more to do with this idea that’s consistent with
everything that you do when you do a Pascal
program, of having a main program which invokes
lower level functions, and those lower level
functions and procedures invoke still lower level
functions, so that the readability at the top is very
evident in terms of the abstract components that
make up the program. When you look at one of

those components, you get a little more detail. You
look at the lowest level component and you get all
the detail. That is the top-down paradigm.

1 think the top-down paradigm is one of three
paradigms that are kind of interesting if you build
software. One of them is the control hierarchy
concept. The top down paradigm was preceded in
time by a control-flow paradigm. By that I mean,
when we thought about software when I broke into
this field in 1960, we put ourselves squarely in the
position of a computer. When we thought about
how a program would work you would say, "How
does the computer think about this program, in
particular, what is its order for dealing with
things". First it does this, then it does that, then it
does the third thing... and that’s why so many
programs were designed right up front with an
initialization section. Today we don’t tend to do
that so much, because we don’t think about things
in the order that the computer thinks about them.
That turns out to be a rather trivial order, because
the first thing a computer deals with is very
insignificant in terms of what the whole system of
programs is trying to do.

So the control-flow, or the flow-chart
paradigm, is one that persisted for a while. Up
until about 1965, you saw people writing flow
charts. Then all of a sudden everybody heaved a
great sigh of relief and threw the damn things
away. Well, not everybody... I was at an
organization just recently that is selling a product
which helps people keep their flow-charts up to
date, and I said, "What people?". They said, "Well,
we have this company that has tens of thousands of
flow charts that they have got to keep up to date." 1
thought, "They not only missed the 1970’s, they’ve
seemed to have missed the 1960’s, as well". They
are the last people on earth that you could sell a
copy of *Auto Flow’ to.

Today, we are much more inclined to deal
with a "control hierarchy’. That is a structure chart
or HIPO diagram, that's the way we tend to think
about systems, whether we actually draw it or not.
The way you write code, with a main part at the top
and the lower level routines which invokes still
lower level routines, shows that you are making use
of this control-hierarchy paradigm. An idea
which, as I say, was rather new in 1965. It was
actually brought to us by an obscure Dutch
professor named Edsger Dijkstra. The man is
obscure but not gentle. When he says something
you know its been said. He has been characterized
by a friend of mine as being 70% intellect and 30%

bile. He had very strong feelings on the subject of
control-flow paradigm. He felt that it was wrong
and that procedures and languages that didn’t
support the new paradigm, the hierarchical top-
down paradigm, were wrong. In fact, he was fond
of torturing his undergraduates, that petitioned to
be let in to his course, by asking the question; "Have
you ever written a FORTRAN program?". If they
said "Yes" he said "Out". They were not allowed to
take his course because their minds had been
irrevocably destroyed.

The idea of a control hierarchy, here I am
going to be using some exhibits prepared by some
of my fellow guild members (they are called
Guildoons) James and Susan Robertson, who are
part of our London office. Here you see a
hierarchy in graphic form. The idea of this is just
the graphic way to say that this module at the top
invokes these three subordinate modules, has no
visibility to anything beneath them. These
subordinates invoke these two or, in this case, those
four. So you can imagine what the code would look
like. The code inside here would have three other
modules, external modules, that it invoked. And
this one would have four other ones that it invoked.
The items shown along the invocation path are
passed parameters. In the world of Pascal, the idea
of passing parameters seems only normal, it’s no big
surprise. In the world of COBOL, when you
introduce this idea, it seems like you are shaking
the world apart. But I think for most of you the
control hierarchy has become something fairly well
understood and fairly universally endorsed.

Well, I think that this is not the final
paradigm. I think this took us very nicely through
the 1970%s and into the 1980’s, but I don’t think it’s
going to be the all-important paradigm, the way to
think about software construction toward the end
of the 1980’s. I think that we are going to start
thinking about things not so much in terms of what
control does, what the stream of consciousness of
the computer does, but we are going to start
thinking about it in terms of what the data does.

In order to introduce that idea, I'm going to
show you a simple notation for presenting a system
from the point of view of the data and then give
you four rather widely spaced instances of the use
of this thought pattern. As you will see, one of
these is very close to some of the work that I've
been doing, but the other three come out of left
field, at least from my point of view.

The notation is a very simplistic notation, it
simply represents a system in terms of subsystems.

21

The subsystems may be represented with a lower
level partitioning in terms of sub-subsystems and
the sub-subsystems in terms of sub-sub-
subsystems, and so forth. Making use of the
network graphic, which I will call a data-flow
diagram. Of course, I presented it very abstractly,
but if you keep in mind that each one of these
connecting arrows is movement of a particular
known data item. By known, I mean its internal
composition must be known. And each one of these
bubbles represents some sort of a transformation in
which incoming data is transformed into outgoing
data according to some set of rules. The rules are
typically laid down by the user of a piece of
software. Now you see what I mean by data flow
diagram.

I'am going to introduce a rule that each one of
the data items ought to be described with a name.
We ought to give a name to the data items, so that
we could say, some place else, precisely what that
data item consists of.

For instance, instead of using the abstract "S"
that I have used here, lets call this data flow
"Service Request”, and of course we are going to go
back and read each one of the other data items and
give it some sort of a name, so that at some point in
time we can build a dictionary of sorts. So that, at
some point, in time we can go back and define a
service request in terms of its components. Then
we will go back and define its components perhaps,
in terms of their components.

So here 1 jotted down a simple definition that's
says, a Service Request is always made up of the
following three items; a customer id number, 2
machine number, and some set, zero or more
iterations of a modification description. Here we
have a function partitioning notation, which has
come to be known as a data-flow diagram and
complemented by some sort of a data dictionary.

Now, after having introduced that notation,
Pm going to show you a number of different places,
actually four different places, where this notation
or this idea, invited by that notation, has come to be
seen as significant enough so that someone set his
mind to thinking in that pattern and came up with
something.

One instance is, the sudden arrival of a brand
new kind of computer architecture. An
architecture which doesn’t have a processor, but
has practically inexhaustible resource reservoir of
processors, probably small processors, that can be
linked together dynamically into any kind of a

22

network,
computers.

These are called data-flow super-

They break down the essential concepts of
both the control-flow paradigm and the control-
hierarchy paradigm. That is, the idea that we have
only a single stream of consciousness working on
our behalf inside a system... because data-flow
super-computers have multiple streams of
consciousness -- multiple as in truly asynchronous
processes in work at any given time,

Here I have just given you two references on
the subject of data-flow supercomputers. The first
is the current communications of the ACM, an
issue given entirely over to Japanese fifth-
generation architecture, which is a data-flow
architecture. It doesn’t have a single processor, it
has a configurable array of small processors which
are intended to work in legion, in order to
accomplish any given thing. We will go back and
talk a little bit more about what the insides of a
program might look like that would run on a data-
flow computer a little later.

But, let me, first of all, talk about a second
instance of the data-flow paradigm, coming from a
totally different source: the idea that it is
convenient to think about systems in terms of
moving the data around, rather than in terms of the
flow of control. That is a discipline which,
unfortunately, was given a grandiose name by a
person who will remain nameless; modesty forbids I
even mention who he was. In his youth, he gave the
name Structured Analysis to this discipline, a very
grandiose name, and structured analysis is a
discipline for dealing with problems of user-
analyst or user-developer communication. A
technique which also makes use of data-flow
methods. Let me just take those two and go back
and show you two very different instances of how
they work in detail. Two very different instances
of this paradigm, this way of thinking about
systems in terms of the perception of the data as it
moves through the system.

I will start off with the first one: the data-
flow super-computer and mention that a data flow
super computer takes advantage of a certain
amount of restructuring. Take any old program,
and if you read the Dennis article in Computer
Magazine for 11/80 on Data Flow Super
Computers, he takes a very simple FORTRAN 77
program. Me says it happens to have been written
using the human paradigm of control flow. It
happens to be written as a sequence of N processes,
or N components, of the program which are

executed one after the other by a conventional
computer, He said it doesn’t have to be
implemented that way. In fact if you superimpose
on top of this the perception of the data, and you
ask the questions: what data goes into A and what
of it comes out; where does that data go? Does it go
directly to B or does some of it go to C, and is it
ignored by A? If you look at the locality of all of
the data then, in data flow terms, you could
restructure that to look like this. There are four
processes which are data related in this sense -~
which for a supercomputer has some rather
interesting connotations because it shows you some
of the possibilities for paralielism, A data- flow
computer is going to be very inclined to set up not a
single process running this, but four processors
running it with B and C operating in a high degree
of parallelism because they are not strongly data
related. The data that passes through B is not
strongly related to the data the passes through C.

In Dennis’s article, in 11/80 Computer
Magazine, the IEEE computer magazine, he cites
this as a great advantage. That the computer
operates using the data-flow paradigm, but the
programmer operates using the control-flow or the
control-hierarchy paradigm, and never has to
worry about the possibilities or the potential for
parallelism,

Well, the second instance of this paradigm is
one that says that maybe we should think about it in
terms of parallelism. Maybe we ought to think
about it in the perception of the data itself. That’s
what structured analysis is all about, a totally
different approach but one that comes up with,
remarkably, almost the same answer.

It addresses the problem that you, the builder
of systems, talk to a user and come to some
conclusion about what the user wants. Then you
deliver exactly what you think he wants, and you
are rewarded thusly. Because that wasn't what that
user wanted at all. What that user wanted is a
system that sounded like what he said, but didn’t
sound at all like what you built. Therefore, we
have this user-developer gap, that many of us
professional software developers have come to
identify as a communications difficulty between
the wuser community and the development
community. Well you get the idea from this picture
because it’s complicated. You see, there it is a
uneasy relationship between the user and the
snakes-in-the-grass who are approaching her, they
are the developers. Or looked at the other way, the
poor developer, here all nude and innocent, and the

snakes-in-the-grass are the users. A very
complicated relationship between those of us who
build software and those of them who use the
software, who determine, frankly, the final success
of the software project.

I came to the conclusion, some of years ago,
prior to writing this book, {oh, by the way I didn’t
mention, modesty T guess forbade, that this is my
book]. Prior to writing this book, I was studying
analysis methods and communications methods and
I was coming to a conclusion, over a 10 year period,
starting in the late 60's, that maybe we ought to
think about systems, not from the point of view of
how the computer perceives them, nor from the
point of view of how the user perceives, but from
an intellectually neutral point of view. That is how
the data perceives the system.

We ought to think about systems in terms of
the ways that the data visits the system (this will not
took outrageously new to you) and build a kind of a
model, a data-flow model, The data-flow model
presents the whole system in terms of its subsystems
and then presents each one of those subsystems.
For instance, number 1 up here, which is the
transformation of some 5 inputs into 6 outputs; a
lower level partitioning it, again from the data’s
point of view, to describe the system. Here you
will see some of the same inputs and outputs
(reservations, lists, equipment coming in, letter for
non-returft going out), that you saw in the more
global view up here, (rental equipment list,
notification of returns, letter for non returns, and
so forth). 1think you saw it at the lower level.

We came to a conclusion that you could model
a system in terms of the way the data sees that
system. And by the way, when I say system, I'm
talking about not just the part inside the computer,
but also the part immediately outside--both the
automated and the manual portions of the system.
We could model it in terms of what the data sees as
it passes through the system, by building a data-
flow diagram describing the system,

First of all, at this high level abstraction,
breaking the system down into lower level pieces,
breaking those pieces down into pieces of pieces
and the pieces of pieces broken into pieces of pieces
of pieces... Each time we have an interface, we
give it a convenient name and then we give a data
dictionary definition of that interface so that
everybody knows exactly what that data 15 what
the component items of data are that flow in
between them. Just as an added level of elegance
having this model of the system (having built, in al}

23

practicality, an architectural model of the system
(both automated and manual)), in terms of its
functions (its transformations of data), data that
flows along those component functions, we can
now write a specification using that model as a kind
of a visual table of contents.

So instead of building one great, huge
specification, we write one specification for each
micro piece, each incremental piece, and the set of
data flow diagrams and a data dictionary that ties
those together. This effectively shows how the
whole is made up of the sum of pieces. Writing that
kind of a specification using this kind of a model,
in order to have the user and analyst make a better
understanding of what the system is going to be,
before they build it, is the technique which I called,
in 1975, "Structured Analysis", today I would call it
"Analysis by Model Building" or "Specification of
Pieces", or some such thing.

Two instances of the data flow paradigm.
Let’s look at some more.

Recently, we are becoming to believe that the
great revolution of the late 1960°’s and 1970's which
brought us block-structured languages might be
nearly ended. In fact, I believe as do many of the
people that I know in this room that we have come
to the end of block- structured languages. The noxt
generation will be what is called an object-oriented
language and I can think of two instances of these,
Simula and Smalltalk. I didn’t give reference on
this but, for instance Smalltalk, there was a whole
issue of Byte magazine dedicated to object
languages in particular Smalltalk, that was August
1981 as I remember.

The idea of an object language, here I focus on
Simula because I think it’s the prototype of all of
them, is a simple one; it says, "When you build a
software system, invariably that system, no matter
how you think of it, it is a simulation of some other
systems". A particular software system is always a
simulation of something that happens outside the
machine. One example, when you walk in and you
do some interaction in your bank there is a
automated system which simulates that interaction.
So you, a real person, go to a real teller, you
exchange a real deposit slip or real check for real
money. That teller takes real money out of the cash
drawer and puts some sort of an update into the
cash drawer to keep a balance so that he or she can
quote that work at the end of the day. Meanwhile
or slightly later, an automated system goes through
all the exact same steps. There is something in
there that simulates you, that’s an account. There is

24

something in there which simulates the teller, thati’s
a position. There is something in there that
simulates a exchange of check for dollars, that’s a
transaction.

So the idea of object languages is to think of
all software systems as simulations, not just think
of simulations as simulations, but, think of all
software, all applications, as simulations and then
build them that way. So when you build this
banking system that I’ve just described to you, if
you build it in Simula, you would actually have
something , an object, which stood for the person
making the transaction. You would have a object
which stood for the check and object which stood
for a packet of money, an object which stood for
the teller, an object which stood for the cash
drawer. Each one of these objects is now defined
in terms of its stimulus-response characteristic.

The object that stands for client, when given
money, smiles and goes away, or something like
that. The object which stands for teller when it
receives money, gives back a receipt, updates the
cash drawer, things like that,

Now, each one of these objects is allowed to
send messages to the other, along a well-defined
kind of network and now you can see how this ties
in because that network is effectively an instance of
the data-flow paradigm. You never actually write
the program that decides who does what and when,
you simply define each of the objects, you connect
them together and you stand back. A program that
has no puppet master (well, the operating system, |
suppose, which arbitrates the flow of data is, in a
sense, a puppet master), but the way you think
about it has nothing to do with control, you can
never say who's boss —-- which program is in charge
of which other program. All you can say is that I
have created a number of more or less equal
entities, objects, a facility for them to send
messages to each other, a characteristic of finding
each one, and then I get out of your way. In a
sense, I implement from the outside and allow them
to interact as they work. A third instance of the
data-flow paradigm.

The fourth instance, which is a little bit more
familiar and considerably more limited, is the idea
of UNIX. In particular, a clever idea of UNIX is
the pipeline. Many of you are already familiar with
pipelines, but if you aren’t I encourage you to go
out and get the current Byte magazine, October
1983. The defining article was in the Bell Systems
Technical Journal for July 1978, The obvious
UNIX pipeline is this; it says you, at JCL time, at

command time, can set into motion not just one but
several processes. Well, that’s nothing new --
we’ve been able to do that for vears.

But, what is a little bit different about UNIX
is that you can set those things in motion in a form
of a pipeline and that pipeline looks like this:

I
v

L 2
1Al
-t -t
| | A
v -t
|
| B | v v
-t R B SRR
I ===> | B8] }C|
v R B IEET
o
| €| v v
+-- +---+
I o]
v PR
oo+
£ D |
B &

It looks like 3 asynchronous processes in the
data flow notation in which the output of one
becomes the input to the next one, and that output
of that next one becomes the input to the
subsequent one. In UNIX, you request that that
structure be set in motion with those 3
asynchronous operating components or tasks, I
guess there is only one processor here, but the 3
asynchronously operating components can be set in
motion passing data from one to the other along
these pipelines. You do that by a simple request
say, "Process A, Piped into Process B, Piped into
Process C" those 3 are now set up as 3 separate
processes, but you look at it as one. You, sitting at
the terminal, feed in your net input and the net
output comes out to your screen. You are really
communicating through 3 asynchronous processes.

Well, if you need more, because B might itself
be defined at a lower level to be made up of some
of those other components. Bl piped into B2, piped
into B3, piped into B4. So vou can see, when you
ask for the execution of this process, this pseudo
process, "A piped intd B piped into C", you might
really be setting in motion 6 asynchronous
processes. What vou really asked for is that A start
up and pass its output to Bl which passes its output
to B2 which passes its output to B3 which passes its
output to B4, which passes its output to C which
passes its output back to you. So now you can enter

some line in and go through all those 6 processes
and the process result comes back to you.

Now of course what works at 2 levels works at
3 or 4 so for instance B2 might itself be defined to
be made up of B2.1 piped into B2.2 and so forth.
What you have, under UNIX, is a simulation of a
direct implementation of a data-flow diagram, of
the data-flow paradigm. So it says, "Do you think
about systems that way?" If you think about
systems as I have and negotiation/specification
time in terms of the movement of the data, if you
have, why don’t we build them that way? Just to
direct implementation of the data flow model,
constructed allocating one process for each level in
the data flow model.

Well, unfortunately, UNIX can't do that,
direct implementation of a level data-flow model.
Unless it begins to get a little bit non-linear. So
really you could do a direct implementation under
UNIX provided only that all your networks are
strings, all your networks are absolutely linear.
Making this a fascinating irrelevancy, because of
course, you never have a real life function which is
a entirely linear network of pipeline processes. So,
in fact, UNIX turns out to be tantalizingly close to
what you would like to have.

What you would like to have is a kind of
UNIX that, if you buy this idea and it’s nice to
think about systems in terms of data flow, which
allowed you to set this kind of structure in motion.
And also to be able to say that this is only the top
level, that level C really consists of a lower level of
3 or 4 connected subprocesses which transform Z’s
into F's and G’s, whatever those things are, those
obviously have to be defined in real terms, But, if
you could do that, you would have a two-
dimensional UNTX, if you will,

I will lay down why you can't have that.
Reason 1 is that UNIX has a job control language
structure, a command structure. Language is
intrinsically one-dimensional. You see, as long as
you are required to convey the network form by
giving 1,000 words, that’s equivalent to the picture,
you’re really going to be limited to linear networks.
Because language is intrinsically linear.

There’s been a lot of talk recently about the
idea of a non-procedural language. Isubmit to you
that the idea of non-procedural language is a total
contradiction in terms, because of the way the
human brain is structured. We’ve got {wo parts of
the human brain; one part which is intrinsically
procedural, that’s the left side of the brain that

25

deals with language. The other part is intrinsically
non- procedural, the part that's used for pictures,
that deals with holistic concepts, that deals with
relationships, that’s the right side of the brain.
Therefore, a non-procedural language is, in a way,
a contradiction in terms.

What you would like to have, that could
honestly deliver on the bankrupt policy, the
bankrupt promise, of the non-procedural Janguage
is a non-procedural non-language. By that I mean
a non-procedural approach that involves entirely
deserting the language approach and going directly
to pictures. Instead of having a representation in
language of this network, we will now draw the
network.

So reason number 1, why you can’t presently
have the two-dimensional UNIX is that up until
now we haven’t had the possibility of dialoguing
very nicely in pictures with a computer. Of course,
there are a lot of computers that put out pictures,
but invariably they put out pictures after you type
in 1000 words that are the equivalent of pictures.
What we haven't had until very recently is a
computer that is easy to put picture requests into.

If you have such a mechanism, then you could
not tell the computer what you wanted to do, but
you could show it what you wanted it to do by
drawing that network in view of a job control
request. You would be drawing, not writing, a job
control picture. One of the reasons that we haven’t
been able to do this so far is the lack of good
facilities for graphic input.

Another one of the reasons is that our
languages have really not been happy about the idea
of asynchronousing. Oh, sure you print something
like the 'Attach’. That is a donkey trying to do a
horses work. It is just something which is difficult
to think about, difficult to work with, difficult to
develop. It was not really intended as part of the
original Pascal language, it was not thought out, it
was kind of an add-on.

So one problem is language and one problem is
the idea of the job control picture -- the graphics.

The closest thing we’ve got has been the
simulation languages which solved one of the two
problems in that they did allow you to nicely and
elegantly have the ability to set up this network of
asynchronous processes, each one simulating
something. This is a language developed by Aurel
Soceneantu at Brigham Young University called
Sencro and the language is a simulation language
where each one of these is some sort of a simulated

26

activity, then these are conditions. One of the
principle conditions is flow of data. Thus back to
the data-flow paradigm.

This introduced two more problems, the first
15 that while it can implement that structure there is
no nice way to tell it to implement that structure
except by typing down in network connection
terms connect if you want to receive word before it
connects P! to C4 to P4 and connects P1 to C3 to P3
which could drive anybody bananas. We can’t show
it what to do, we can only tell it what to do.

In addition, it introduced a second problem
which is: this is a language, the whole thing is a
fanguage. That means that in addition to building
the ability to asynchronise all of these components,
you also have to build the ability to do what each
one of the components does. By the way, Smalltalk
works exactly this way. It’s an elegant way to set a
structure of asynchronous objects in motion
communicating with each other, but God save you
when you have to write the definition of one of
those objects. The language is very nice for
showing the interaction of the object, but is a
disaster for describing the objects themselves.

Therefore, starting in 1972, working with
members of the Systems Guild, we started to
investigate the following split. We said, "let us
allocate to the operating system or the shell of the
operating system the business of showing how the
various components communicate, what data flows
among them, and to the language, the definitions of
the insides of those processes." So instead of having
a language that does both, we allocate the
interaction to build these and, setting in motion of
the network, we allocate that function to the
command shell and we allocate that function of the
inside to a language.

Well, now we can use any of the number of
languages. Let me first of all show what machine
we put this on. We put it on any of this new
generating or half generation of hardware that
started to come along. One of these devices that’s
got huge processor, typically a bit-sliced processor,
like Lilith, Star, Apollo, or even Lisa, with your
primary fat lines here to show a very wide front-
end interface between the processor and a high

- resolution bit-mapped vidédb screen, which allows

you to put out elegant graphics, and a cursor mouse
that allows you to put in quality graphics, and a
printer that allows you to print those graphics, and
a network that connects you together so that you
can pass these things, both graphic and text, back
and forth,

This is the kind of a processor that you are
seeing today in many different places. Here, I'll
show you just a screen taken off of the Lilith
processor. It is a window-managed screen that
allows us to deal with... the screen is filled with a
set of windows and each one of these could be used
to put something different in, each one has a
separate scroll bar so you could work the cursor
over here with the mouse and scroll this list thing or
you can scroll through the data then you can pop
this window onto the top. I'm sure you have seen
window-managed screens... that’s just the side
effect of what you get when you have one of these
machines, you also got a very nice possibility for
graphics. So here we have some graphics. It shows
hew a bit mapped image in memory can be
transmitted to the screen. Since I'm interested in
the whole idea of data-flow modeling, let me show
you a data-flow model.

What 1 want to talk to you about is something
that allows you to draw these data-flow diagrams,
then does them for you. So not just a graphics
system, but an execution system.

So now we get the hardware, typically the
cursor mouse has the ability to put pictures in as
elegantly as we can put pictures out. What we need
now is a language that supports that, and it turns
out that half a generation of languages afoot, 3 of
which are Ada, Mesa, and Modula-2. Ada from the
United States Department of Defense. Mesa is a
yvet-unreleased product, probably never to be
released product from Palo Alto Research Center..,

There’s a kind of interesting story about the
development of not Ada, but a language that was
until the 1960’s what Ada is perhaps in the 1980’s
and that is Algol 68. Niklaus Wirth was actually
part of the committee, and the enormous
deliberating body whose charter was to develop the
uitimate block-structured language to be called
Algol 68. The modus operandi which was that he
was to get everybody in a room like this to lay their
wishes on the table and implement the union of all
wishes.

?, Niklaus Wirth and a number of others were
part of a very famous ? that walked out one
emotional afternoon, and Wirth is a person who is
not given to outbursts, he made the following
mistake whether out of emotion or not I don’t
know, he seems like a very calm man to me. He
said you people are profoundly misdirected you are
trying to design a language by committee, A
committee with a hundred people in a room sitting
around a great huge table, he said you are

profoundly misdirected you can’t design languages
by committees.

Wirth said only one person, one mind can
build a harmonious language and I will build it, I
will go on and I will develop the language the one
that you should be developing. I will come up with
the things that you wouldn’t be able too. I will code
it, I will debug it, I will deliver it, I will make free
tapes available for anybody who sends me a piece
of software and document it elegantly and I will be
finished before this committee can meet again.
Thus was formed Pascal. What ever happened to
Algol 687

Comes the late 1970’s, the language was born
in ? mind called Ada. How did he develop this
language? Well two fundamental rules in
developing this language; I is that it ought to be a
Pascal based language, because everybody knows
Pascal is harmonious and beautiful because it’s got
the thinking of one very clear thinking individual,
that’s rule number 1 it will be Pascal based.

Rule 2, is we will conduct a huge committee,
get all our ideas out on a table and we will
implement all the ideas. They asked Wirth to
participate in this, and he did in fact participate in
Ada for a second or two, at which point he said
hey, you guys I mean you are headed in profoundly
the wrong direction. You just can’t build languages
by a huge committee and throwing a list on the
table, only a singly harmonious mind can build a
language, [will go and I will build the language that
you people should be building and T will specify it
(that they had so much trouble doing)}, I will specify
it and 1 will code it and I will debug it and 1 will
deliver it with a distribution tape and fairly elegant
documentation and I will have it done before this
huge committee can meet again. Thus was born
Modula-2. Born between the ? specification and
the ? specification.

So if history repeats itself, I say Modula-2 is to
Ada as Pascal was to Algol 68. Perhaps that’s true.
In any event I can say Modula-2 is up and running,
is workable today it is implemented on dozen of
different machines - on UNIX on Lilith machine
on the Apollo on any number of 8 bit machines and
16 bit machines on the Sage on the IBM PC -
through many different organizations ?
Particularly, Volition Systems a very elegant
implementation of Modula-2, p-machine running
on the Sage processor among others.

Among those languages I think the one that is
most interesting to me for my purposes was the

27

Modula-2 language. So we set out working with
some students at Brigham Young University,
students who are fairly star and willing to work for
peanuts, helped us to construct a new kind of a (1
won’t say a operating system) a commang processor
one which allows you to implement directly this
structure. A kind of two- dimensional UNIX,

We set to work to build a command structure
in which components themselves, coded in
Modula-2 a language which supports elegant
asynchronism, an operating system which allows us
to set 3 or n of these at work passing data along
named pipelines, data of known composition ali of
them operating together that allows us to set the
structure in motion not by telling it what to do but
showing it what to do.

So, vou sit down at your screen you've go a
high resolution bit mapped video screen like a
Lilith, Diser, Lisa or Apollo and working with the
mouse you begin to draw your requests. The
requests are in the form of a network; you put ?
connections among components of the network.
The elements of the network are themselves
Modula-2 processes.

Modula-2 is nice for two reasons, all these
forth generation or third and a half generation
languages are nice for two reasons. One is they
support ? synchronism and the second reason is the
idea of encapsulation. You can provide a set of
highly concealed facilities for intercommunication,
you can export that to alternate producers. I export
to you, you write a process for me, ? to ready
process 7. 1export a set of facilities to you, they are
known to you in kinds.

There is one of two modules, the definition
module that says what the contract is between the
two of us. The contract is there are five
procedures; ? name pipe, ? name pipe, 7 name pipe
and so forth. You use those procedures, you
restrict the conviction, you pass the parameters
exactly as it says in the contract module, and I who
have built the semiprivate implementation moduile
will make sure that your hearts desires are carried
out. I export that ? you imported for me and the
actual details on the ?.

So the language has good asynchronism and a
good possibility for sharing of communications
facilities that ought not be make public to
everyone. Nobody has any right to know what
Pipeline is. I've defined a type of Pipeline I export
that to you. It’s an opaque type, that means I won't
say anything about it. You can define something to

28

be of type Pipeline, you can name it but you can’t
tinker with it. Frankly just between us, whether
it's got an integer and a pointer and a 7, that’s none
of your business. You can operate a product using
these imported facilities from me. This allows you
to write something which interacts with me and
Pipelines.

Once you have written that process, and we
have written a2 whole bunch of them, we've built
ourselves a library of these. Then I can sit down at
my terminal at my workstation and I can begin to
draw a job control request. I can call up a menu
which allows me, selecting with the cursor, to place
anywhere on the screen processes or icons
representing devices and files or literals or
connections between those things,

So in particular, what I can do is I can set up
this procedure I can set that procedure in motion by
pulling it and saying go. (I’m going to come back
and talk to you about the details of that procedure).
Just in general what that procedure is, is 5
asynchronous tasks connected to the other through
named Pipelines; the input seems to come from the
kevyboard and the output seems to go to a printer. I
have made a job control picture, if you will, and
asked for that to be done. I have a good drafting
facility to draw it, but more important I’ve also got
a command shell that starts that in motion that
starts up those 5 asynchronous tasks and passes the
data among them. By the way none of the activities
none of the tasks knows anything about the
topology of the network.

Notice that each connection, unlike the
convention that I introduced earlier where each
data flow has got a single name which refers to the
data that goes over it. In the implementation each
connection has got two names, it's the connection
of two ports. One of the ports is the name as known
inside here and the other one is the name known
inside here. Who knows that the output that this
procedure calls copy2 is connected to the input that
this one calls ? Because I made that connection with
my little cursor mouse. I’'m the only one that knows
what the topology of the network is; well I am now
being command processor that actually starts that
moving.,

Let me build that process for you little by
little. Imagine yourself sitting at the screen and
using this menu to select icons and now you are
going to select and connect three of them to build a
very simple text processor. I'm going to a example
of a text processor, because I don’t have to explain
to vou what text processor does. I mean you know

you type in text and it come out in some printable
format. I don’t have to explain what that process is
all about. I am going to show you a very simple text
processor buili up little by little.

The first version of this makes use of only one
process it's called form pages. When this process is
on all it does is read in lines and spit out lines, only
it knows its talking to a printer or some such thing
that leaves some blank space at the top and the
bottom so you don’t print over the perforation
that's it nothing else.

Page i.ength

*
{ Keyboard |------- ! Forms |--+---- | Printer |
EAREEEEEEED + lines | Pages | lines #--------- +

I connect a keyboard to its input port, I
connect the printer to its output port, I neglect to
connect this third port which means it takes a
default. A default is what ever the default the
printer is defined to be. It doesn’t know there is a
printer out there put it has a built in default. I
could also connect the page lengths to the keyboard
and it would ? the page length. I could connect it to
a file that has the page length in there. Another
process that knows the page length or I could even
put a literal in there, As you cans see a very simple
a very dumb wordprocessor. I sit at my keyboard,
many thousands of dollars worth of hardware tied
up in this, and enter line after line after line and
they all come out on the printer except it never
prints over the perforation, that’s all it does for me
besides that the output is identical to the input.

I could now add another process into this
network, and the other process I am going to add in
is one that concatenates. Now instead of typing in
text I type in file names, it finds those files
concatenates chapter 1 with chapter 2 with chapter
3, if those are the names I put in, forms a huge
document puts it out a line at time into formed
pages which allows it to be out on the printer. Now
that’s a slightly more elegant textprocessor, but I'm
not done yet.

I'm going to construct something a little bit
more elegant. I'm going to add a little value into
this, to say my limitation length is not 66 but 35,

| Pages | 4--------- +

Now that’s very nice if I reconnect this so instead of
going to the printer it goes to a screen which has 35
lines on it. Now in my job control request I actually
specify a literal value. Well that’s good, it puts out
a 400 page document in pages very quickly though,
so you can’t read it to well. So what I'm going to do
next is add some sort of a process which puts on
hold the output until I say, "Go ahead I've read this
one." So now I have exactly the same two processes
and I've added the display page at a time. You
could write the code for that in your head, I mean
while you are sitting here. You know what it does
it reads in a line, puts it on the screen, then it waits
on the keyboard for a character to let the thing go
ahead.

I'm going to go back to the printer and again
add some of the features that we all know and love
in text processors. Still notice the concatenation,
pages are still the same but now I've got one that
fills it also needs to know the line length but I've
left that to the default in this particular case.

When you add filling you might as well add
adjusting and I guess that brings me over to here.
So here I've got the filling and adjusting and I want
the same line length to go to both but I only want to
enter it once, so I use the copy process. Now I've
got five processes which together cause it to
asynchronous implementation with a very simple
text processor.

You could implement the simple text
processor with a hierarchy, there is no question
about that. But there are some very nice reason
why this is so much better. One of the reasons, if
any of you are familiar with what Michael Jackson
calls a structure clash, there is a terrible structure
clash in the text processor and it is rather neatly
right here. T won’t go into that.

Since I'm running a little short on time, let me
just say that each one of these processes could be a
Modula-2 program or a Modula-2 process which
imports ? one facilities. Each one could be but in
fact some of them are not. Some of them are
defined as low level networks. So take that facility
called fill which does text filling which realigns the
lines so that they are to the left, is in its self defined
as a lower level network which splits the text into
words and then recomposes the words into filled
lines,

Alternately, it could be defined a little bit
more elegantly using the same splitter and more or
less the same filler with a hyphenator to create a
filling process which does hyphenation as well.

29

Then again I think you could see what the code at
the very bottom level would look like for each one
of these.

Let me add one last piece of information and
that is a reference for you to read about what I
think is the worlds first two-dimensional operating
system or two-dimensional command shell, it’s a
paper written by myself and ? called "Synchro: A
Dataflow Command Shell for the Lilith/Modula
Project". Now I’'m being a little optimistic in telling
you when it is going to be published because it has
only been tentatively accepted; I expect it to be
published in the Orlando Conference, The 7th
International Conference on Software Engineering.
If it’s not published there I'l make sure it's
published somewhere else.

Efficient p-System Code

By: David Gelfand, Ferox Microsystems, Inc.

From the October 1983 USUS Meeting

There are a number of ways to measure
efficiency: compact code, execution speed,
memory usage, program structure, disk usage and a
lot of others as well. I am going to address the issue
of compact code; how do you write a program that
is as compact as possible and still performs the job
it is supposed to perform?

The benefit of compact code is less disk space
required for the program. A lot of times less disk
space is not important because you're not
developing big programs -- until the program
grows and eventually you run out of disk space or
you want more space on the disk for files. So you
should not wait until you need the room before you
start worrying about efficiency. You should try to
adopt efficient practices so that as you develop
your program it is initially more efficient.

Other benefits of compact programs are that
during the execution less disk swapping occurs.
The p-System is going to swap code segments in
and out as it needs to, and if these segments are
more compact there will be less need to swap. In
some cases writing compact programs results in
faster execution.

The cost of compact code may be to sacrifice
efficiency in other areas,

30

The {irst thing that you have to address is how
to measure alternative methods of doing things to
determine which of the alternatives is more
efficient. One possibility would be to learn how
your compiler works and take a look at what p-
codes are going to be generated by whatever
statements you are using in your program., You
could measure alternative methods that way, but
that is rather difficult.

A simpler method is to write a test program,
Within that test program declare two segment
procedures, each using an alternative method to
accomplish the some thing, Compile the program
and use the library program to look at how big each
one of those segments are and then compare the two
methods to see which is more efficient.

Just to show you how I did it -- I wanted to
compare the use of "+1" with with the successor
function ("SUCC").

PROGRAM test add;

SEGMENT PROCEDURE use_add;
VAR x : INTEGER;
BEGIN
X =X+ 1;
END;

SEGMENT PROCEDURE use_succ;

VAR x : INTEGER;
BEGIN
X = succ{x);
END;
BEGIN
END.

I'wrote a program called test_ add that has two
segments. In one I used addition and in the other I
used SUCC. That’s all the program has to do; you
then execute the program and look at its
componants.

Using LIBRARY.CODE:

1, Execute "LIBRARY",

2. Enter "DUMMY" for the output file.

3. Enter the name of your compiled test program for t

4. The components of your test program will appear o
the screen.

5. Type "A" to abort.

Here’s how to use the library. First you
execute program LIBRARY. It does not matter
what you name the output file because you're not
actually going to be outputting to the file. Then
enfer the name of your compiled test program for

the input file; the components of your test program
will appear on the upper half of the screen. For
example:

0 p TESTADD 18
1 s USEADD 20
2 s USESUCC 20

The first one is the program itself, there are 18
words of code associated with program testadd. In
this case the two segment procedures, useadd and
usesucc, came out to be 20 words so neither method
is more efficient. You should then abort from the
library.

Case statments.The first thing I look at are
CASE statements. When you use a CASE statement
in your program the compiler is going to build a
table in your code file and it’s going to allocated
one word for every element between the lowest and
highest value that you mentioned in your CASE
statement. So if you had a CASE statement that has
I, 2 and 3 as its cases it is going to build a table of
three words.

The advantage of a CASE statement is that it
has faster execution than an IF statement. If you
avoid using case statements you are going to be
sacrificing some execution time.

Below are three different procedures that
accomplish the same thing, using CASE and/or IF.

SEGMENT PROCEDURES case_1 { in_ch : CHAR);
{76 Words}
BEGIN
CASE in_ch OF
Y, 'y! g owriteln;
WY, 'n' : writeln;
END;
END;

SEGMENT PROCEDURE case_2 { in_ch : CHAR);
{60 Words)
BEGIN
IF in_ch IN ['a'..'z'] THEN
in_ch := chr (ord(in ch) - 32);
CASE in_ch OF
1o: writeln;
IN' & uriteln;
END;
END;

SEGMENT PROCEDURE case 3 (in_ch
{51 Hords)
BEGIN
IF in_ch IN ['Y', *y']l THEN
writeln
ELSE
IF in_ch IN ['N', 'n*'] THEN
writeln;

: CHAR);

END;

In case ! there are two possible cases, 'Y’, ’y’
and °N’, ’'n’. This is going make a table from *N’
through to the 'y’. So it will allocate space for all
possible characters between N’ to 'y'. One way to
make that more efficient would be to capitalize the
letter before using it in the CASE statement - that
is what the second procedure does. It checks to see
if it is lower case; in that case it subtracts 32 from
it. In case_3 I used an IF statement. Here, it
turned out the IF statement was more efficient.
That's going to depend on how wide a range there is
between the lowest and the highest value in the
CABSE statement.

Other examples of CASE statements:

SEGMENT PROCEDURE case 4 (in_num :
{1041 Words)
BEGIN
CASE in_num OF
G @ writeln;
1 : writeln;
2 1 writeln;
999 : writeln;
END;
END;

INTEGER);

SEGEMENT PROCEDURE case 5 { in_num :
{47 Words)
BEGIK
IF in_num = 999 THEN
writeln
ELSE
CASE in_num OF
0 : writein;
1 : wWriteln;
2 : writeln;
END;
END;

INTEGER 3;

Case 4 is very bad programming practice
because 1041 words are created in the code file. In
Case_ 5 all I did was make an exception for the 999
and then jump to the CASE statement,

Range checking. When you leave range
checking on during compile, extra bytes of code are
generated every time you address an array or sub-
range. Those extra bytes are going to add space to
yvour code file and aiso slow the program down.

The benefit of range checking is that it helps
you to trap errors during the development of the
program, but turning it off results in faster
execution. For example:

SEGMENT PROCEDURE range_on:

3!

{23 Words)

VAR dummy_array : ARRAY [0..2] OF INTEGER;
(3R+}

BEGIN

dummy_array[1]
END;

= 100;

SEGEMENT PROCEDURE range off;

{22 Words}

VAR dummy_array : ARRAY[O..2] OF INTEGER;
{3R-}

BEGIN

dummy_arrey {11
END;

= 100;

The first procedure turns range checking on,
"(3R+}" which is the default value for the range
checking compiler option. If you want to turn it
off, use the second procedure with "{$R-)".

Low-level intrinsics. Another thing to look
for is the opportunity to use some of the low-level
intrinsics. A lot of people become familiar with
these when they have been working with the system
for a while. They are very efficient and very fast;
their execution is much quicker than the way you
would generally program it. The danger is that no
range checking is performed using these operations.

FILLCHBAR will fill an array with a given
value, MOYELEFT and MOVERIGHT are usec to
move a string of values from one array to another.
Some examples are below.

SEGMENT PROCEDURE init_ala_loop;

{31 Words)

VAR init_array
i

BEGIN

FOR i := 0 TO 10 DO

init_array [i] == 0;

END;

ARRAY {0..10]1 OF INTEGER;
INTEGER;

SEGMENT PROCEDURE init_ala_fFILLCHAR;
€21 Words}
VAR init_array : ARRAY [0..10] OF INTEGER;
i : INTEGER;
BEGIN
fillchar (init_array, sizeof (init_array), 0);
END;

The first procedure initializes an array of
integers to zero with a FOR loop. The FOR loop
requires 31 words of code. The second
init_ala_ FILLCHAR; gave it the array name, the
number of bytes that you want to fill, and the value
of the character that you want it filled with.

32

Examples of moving:

SEGMENT PROCEDURE move ala_loop;

{36 Words)

VAR source : PACKED ARRAY [0..20]1 OF CHAR;
dest : PACKED ARRAY {0..10] OF CHAR;
i : INTEGER;

BEGIN

FOR i == 0 to 10 DO

dest[il := sourceli];

END;

SEGMENT PROCEDURE move_ala MOVELEFT;

{22 Words}

VAR source : PACKED ARRAY [0..201 OF CHAR;
dest : PACKED ARRAY {0..101 OF CHAR;
i : INTEGER;

BEGIN
moveleft (source, dest, 11);

END;

Move-ala-loop just moves values from one
array to another using MOVELEFT. Again, the
first example is a FOR loop, I am moving some
elements from source to destination. The FOR loop
required is 36 words and MOVELEFT required 22
words and will execute much faster; consider using
these procedures.

Variable ordering. The order that the
variables are declared can effect the efficency of
yvour code file, The first 32 bytes of variables
declared in a given block can be addressed with a
short load p-code. What should be done in the
program is try to determine which of the variables
are most often used throughout the procedures and
declare those in the first 32 bytes of the declaration.
This will make the code file smaller and also result
in faster execution.

SEGMENT PROCEDURE misplaced;
{25 Words}
VAR dummy str : STRING;

X, Y, Z - INTEGER;

BEGIN
x = 1;
y 1= 2;
Z::=X+y;
END;

SEGMENT PROCEDURE well_placed;
{22 dWords)}
VAR X, ¥, = 5 INTEGER;
dunmy_str : STRING;
BEGIN
X
Y
z:
END;

.o
n nn
wr wa

1
2
X +y;

In misplaced four variables are declared; a
dummy string, X, y, and z. Dummy_ str is going to
require 82 bytes so that is going to push it beyond
32 bytes right there. By just reversing the order, as
in well placed, making the x, y, and z declared in
the first 32 bytes cuts off 3 words.

String constants, One misconception that
people have is that string constants can be used to
cut down on code space if you are going to be
writing them out over and over again, This is not
true, the compiler is going to recreate the string in
the code file every place it is used.

SEGMENT PROCEDURE no_const_write;

{66 Words)

BEGIN
writeln("TEST STRING');
writeln{ 'TEST STRING');
writeln{ *TEST STRING');

END;

SEGMENT PROCEDURE const_write;
{66 Words}
CONST test_string = 'TEST STRING!;
BEGIN
writeln(test_string):
writeln({ test_string);
writeln{ test_string);
END;

No_ const_ write and const_ write compile out
to the same number of words, My recommendation
here would be to declare a dedicated procedure if
you are going to give a message out many times
throughout a program,

Sets. Another possible tradeoff is using a SET
versus using an IF statement, the tradeoff is going
to be determined by how many possibilities there
are. in the example below there are only two. If
there were ten possibilities the IF statement would
be less efficient.

SEGEMENT PROCEDURE use SET;
{35 Words)
VAR ch : CHAR;
BEGIN
IF {ch IN [*Y!, 'y']) THEN
writeln;
END;

SEGMENT PROCEDURE use OR;
{27 Words?
VAR ch : CHAR;
BEGIN
IF (ch = 'Y') OR (ch = 'y*) THEN
writeln;

END;

External procedures. Another common
mistake I see occurs when people develop a
program that uses external procedures. When two
different units are going to use the same procedure
many people will compile the units separately and
LINK in the external procedure separately to each
unit. when they add that unit to their program that
external procedure is going to appear twice. My
next example illustrates this.

UNIT unit_1;
INTERFACE
PROCEDURE unit_1_stuff;
IMPLEMENTATION
PROCEDURE osm_stuff; EXTERNAL;
PROCEURE unit_1_stuff;
BEGIN (unit_1_stuff)

osm_stuff;

END;
BEGIN {unit_1)
END.

UNIT unit_2;
INTERFACE
PROCEDURE unit_2_stuff;
IMPLEMENTATION
PROCEDURE osm_stuff; EXTERNAL;
PROCEURE unit_2 stuff;
BEGIN {unit_2 stuff}

osm_stuff;

END;
BEGIN {unit 2}
END.

These two wunits use the same external
procedure osm_stuff. In this case you should use a
middleman unit such as in the example below.

UNIT middle_man
INTERFACE
PROCEDURE do_osm_stuff;
IMPLEMENTATION
PROCEDURE osm_stuff; EXTERNAL;
PROCEDURE do_osm_stuff;
BEGIN {do_osm_stuff}
asm_stuff;
END;
BEGIN {middle_man}
END.

This middle _man unit gives all other units
access to that procedure. This unit might be
nothing else but call that external procedure. By
making this middle man procedure you can

33

compile once, link once and then your other units
will use the middle _man unit, so that the code for
the external procedures only appears once, as
follows:

UNET unit_t;
INTERFACE
PROCEDURE unit_1_stuff;
IMPLEMENTATION
USES middle_man;
PROCEURE unit_1_stuff;
BEGIN {unit_t_stuff}

do_osm_stuff;

END;
BEGIN {unit_1}
END.

UNIT unit_2;
INTERFACE
PROCEDURE unit_2_stuff;
IHPLEMENTATION
USES middle_man;
PROCEURE unit_2 stuff;
BEGIN {unit_2_stuff}

do_osm_stuff;

END;
BEGIN {unit_2)
END.

Some miscellaneous items. Unnecessary use of
segment procedures. Every time that you create a
segment procedure the compiler is going to want to
put it at the beginning of a block. Lots of segment
procedures are going to result in a lot of filling of
the end of the previous block, a lot of unnecessary
code space. Also, additional overhead code is going
to be created for the segment procedure.

Also, unnecessary use of native code should be
avoided. This is because native code increases the
size of the code file and it doesn’t always result in
faster execution.

Finally, avoid unnecessary use of big units to
do little tasks. A lot of times you will buy a p-
System that will have some great units in it that do
all sorts of things with your machine, but it might
not be necessary to use those units to accomplish
that. What you are going to do is add that entire
unit just to get at that one procedure. A
misconception is that the selective USES statement
will take care of that situation, but it is not true, a
selective USES statement will only affect the
identifiers called in during compilation; during
execution the entire unit is still there.

34

In summary, in order to have compact code
you should: check your use of CASE statements,
turn off range checking, don’t SEGMENT
unnecessarily, don’t use unnecessary native code,
only link in external procedures once, use low level
intrinsics when possible, consider the order of
variable declarations, selective USES won’t help,
and consider your use of others’ units.

Guerilia Guide Update

By: Bart Thomas

Copyright 1984 by Bart Thomas
DAMAGE CONTROL

There are a number of things that can go
wrong with the p-System, just as with any
operating system. While you may insulate your
software from most of these, it can (and will)
happen sooner or later, whether due to disk
problems, power glitches, or whatever. When these
do happen, keep certain things in mind,

1. Keep your Cool! Perhaps, even to the
extent of, after following rule 2, putting the whole
project aside, and doing something else, while you
run your options through vour mind.

2. Before you do anything else, make a clean
copy of the disk where you had the problem (say, a
lost file). Then do everything else on the copies (I
find the more copies I make, the easier the problem
fixes... Probably because I have time to think while
making the copies!)

3. If your file has become lost, it may only be
lost to the Disk Directory. Before you start playing
around with disk editors, try some options in the
Filer!

4. Even if you wind up with two files of the
same name, (Yeah, I thought that couldn’t happen
either!), You can use the Filer to help you out!

This all happened to me once, using Quickfile,
which depends upon a file called QF.FC to do its
own file handling. Apparrently, this file is open
while you are running the program. At any rate,
for reasons I do not understand, I was saving an
updated file, when the message "Cannot read File
disk" came up on the screen. After trying
everything I could think of from within the
program, I quit and loaded up Pascal to see what

i

had happened.

I compared the disk I had with other Quickfile
File disks. (I had not been backing up as much as [
should have!) The disk was missing the QF.FC file
and the DataFile QFF,I was shown twice in the disk
Directory. All this meant was that I was faced with
the potential of having to rekey a mailing list of
some 200 clients! Then I noticed that there was a
"hole" of 2 blocks in one group of files... Just the
length of QF.FC! On a COPY, I went into the filer,
and using M)ake, Made a file, QF.FC on that spot
(this is well documented in the OpSys Manual), and
tried it. It worked!

That left me with the double file on the disk.
Since I had had the problem while saving a file
which had had only a minor change, I was not too
concerned with which version I deleted. (QF does
not use a Filer type dating system!) Using the Filer
again, and COPY disks, I transferred the files to
another disk, using the T)ransfer option and File
Name. Whenever I gave an Instruction for one file,
it applied to both, so I wanted to get them onto
another disk. As the first one transferred, all went
well. Then as the second got ready to go, I was (of
course) asked if I wanted to delete the old version
{on the destination disk). All I had to do was hit 'Y’
and the file was by itself!

Later, experimenting, with a suggestion from
Jim Harvison, I found that I could just as well have
used the R)emove command, with the file name
foliowed by a ’?’. Answering 'Y’ to one prompt,
and 'N’ to the other, worked just as well.

PRINTING.

This is a lot better than the solution I showed
in the first version of this guide. In a Program, you
use the following commands; (Thank Arley Dealey
for this elegant approach!)

PROGRAM Xyzzy;

Var: Printer : INTERACTIVE ;

BEGIN { Xyzzy)
RESET { Printer, 'printer:') ;
WRITELN(OUTPUT, 'This prints on the console.') ;
WRITELN{ Printer, 'This prints on the printer.’) ;
CLOSE(Printer }

END { Xyzzy 3 .

Arley points out that closing QUTPUT is
questionable form. (You could get locked out of
using the console!) He also points out that
Interactive is a UCSD extension, so if you are
taking an ISO Pascal Course and doing homework
on the Apple, you could substitute TEXT. INPUT
and QUTPUT are predeclared in Apple Pascal

itself and must not be redeclared by the user.

Note also that the second parameter to RESET
is a string. Therefore, the statement must be in the
form above (with the string included in (Pascal}
(i.e, single) quotes, as above.

FILER STUFF.

The first Filer watchout is be careful when
copying disks, etc. If you get the message "warning
vols 4; and 5: have the same name" {or words to that
effect), before you do ANYTHING else, if you
have not changed disks, you should take steps to
avoid having the system confuse which disk is
which!

In the words of Randy Bush (USUS News vol
9/10 p.45), you have just left the real world!!

You MUST NOT bluff it through by using
only volume numbers, as in, following a T)ransfer
command, #4:zzzyyy.text,#53% . Sooner or later,
you will have a disaster doing this!

Rename one of the disks, using the C)hange
option. Once you are done, you can remove the
original and then rename the destination, by again
using the Change option., While this is being done,
it i3 a good idea to have the door to the drive of the
disk vou do not want changed opened, to prevent
an overwrite!

If you just want to see a textfile, it is not
necessary to get it into the Editor. From the Filer,
you can transfer it to #1: , which is the Console and
see it on the screen. Control-S will toggle scrolling
on and off so you will have time to read it.

If you are transferring a file under the same
name, you can use the $ sign to move both text and
code files. Thus, if you have files Bopper.text, and
Bopper.Code, you can (in response to the Transfer?
Prompt) type: Bopper=_#5:3 to transfer both files.

DISK PROBLEMS!!

While we are dealing with the FILER, an
ALERT!! If you start getting messages to the
effect of volume went off-line, or a V)olumes
command from in the FILER does not show the
disk volume you have in a drive, you may have
formatting problems.

These are insidious. As most of us keep a
supply of formatted disks on hand, consider this
scenario: As a careful owner, you take your drives
in for a check-up. The techie fixes them up and
reports that he corrected an alignment problem, or
recalibrated, etc. You should ask him if that will
have affected disks formatted by that drive! In my

35

o
|
|

case, it was the Carriage Limiter.

If he says it will, mark all your blank
formatted disks as UNFORMATTED !! I did not
do this, and started getting the sort of errors 1
mentioned. Another source of this sort of error is
the centering of the disks, so into the dealer I went
to have the drives checked! You guessed it! The
problem was that the disks had been formaited
when the drive was bad!

MORE LANGUAGE!

Another quickie... Tve noticed that very few
working programmers bother with the distinction
between normal ends of lines and those preceding
*End’ . The compiler will accept the line ending *;* ,
and having it there will avoid having to stop in the
middle of the compile to insert it because vyou
forgot to when you added more lines to the
program.

Once vou've started to get a feel for how the
language works, vou will find it worthwhile to
browse around in LM. among other things you will
note that anything in printed commands in that
manual or in file names that appears in the in the
square [..] brackets, may legally be omitted.

EOF and EOLN.

Beware of the different ways in which EOLN
is handled in text vs interactive (keyboard vs. disk)
files. It can screw up your error checking routines.
(LM 30, 34) What happens is that EOLN from the
keyboard is read as a space { ' *). If what you want
to do is check for EOLN, you must specifically do
that! This can be accomplished with code such as
this:

var CH : Char; { In both samples)

Read {CH);
If (CH = ' ') AND (EOLN) then
{Whatever you plan to do at EOLN }

whk Op Rk

Read (Keyboard, CH) ;
IF EOLN { Keyboard) THEN
{rest of code...?

Although I have not tried it, this could also
precede a CASE statement to handle other
responses.

IF (EOLN) then
Exittest = True;
Else

Case (CH) of
Ig! = ate.

36

DISK FILE /0.

Note that it is also possible to set up a ‘menu’
to select which files are used. Then you can simply
use a CASE structure to select the filename as
below.

Case F of
1: Inneme := 'DISK:Filel.text!;
2: Inname := 'DISK:File2.text';
End { Case } ;

One hazard is that you must not leave a
cosmetic space between the Disk volume name
DISK: and the filename, as the space will be
interpreted as part of the name,

THE COMPILER.

If you get any error message in the compiler, a
code file will not be generated! Thus, you cannot
expect to have a code file, even if there has been a
Iast minute message before you exited, unless the
compile has been clean! (This is particularly
painful {and sneaky) in the case of unsatisfied
forward references!!)

If you are compiling a longish file, and wish to
generate a List file (compiler option L+). This
needs a LOT of room on the root volume, You
should use the technique shown in the //e file to
make a disk to use in place of the normal root
volume. For that use, you only need the
System.Pascal and System.Library files on the
substitute root volume, but the Syntax and Charset
files are handy and do not take up that much room.
For even longer files, you may find it simpler to
send the List to the Printer using the L Printer:
option. After all, you are going to print it sooner or
later anyway, and this is much simpler than trying
to squeeze those last few blocks onto a crowded
disk.

PARAMETERS.

While the subject of parameters is covered
fully in most texts, there is a little gotcha associated
with them, so let’s review for a moment.

A variable parameter is used when we want to
be able to change the value of a variable. A value
parameter is used when we do not want the value of
the variable to be changed by the procedure we are
passing it to. We distinguish between these by
preceding variable parameters with VAR in the
header of the procedure in question. So far, so
good.

In our dedication to protecting our variables,
however is a pitfall! Remember that a procedure

can alter the value of a value parameter, but cannot
return the changed value for use outside itself!
Now suppose one of your variables is a file of
addresses which uses about 5k of memory, and you
dutifully pass it as a value parameter. Since its
value can be changed for use within the procedure,
Pascal protects the original value by reserving
enough space for the whole file in the beginning of
the procedure. (If you use the L option in the
compiler, you’ll see that 5k being used!) If this is
done enough times, your program will crash with a
Stack overflow!

The answer, which appears in some of the
texts is to pass your files, if they are held in
memory, as Variable parameters. If you don’t
change them, they'll stay intact! Besides, now vour
program will run!

STILL MORE LANGUAGE:

Another potential gotcha lies in the handling
of Integer variables. We all know that if you mix an
integer and a real in a calculation, the result is a
real, right ? Well, it would seem that if you were to
do this in the process of assigning a value to a real
variable, there should be no problems, but, there is
a problem here, too!

In a long program, dealing with interest rates,
I had the following variables:

Var Face, Tsc : Integer;
Value, Cpn, : Real;

Cpn := 12.0;

Face := 777? < This is the Joker >
Tsc := 60;

Value := (Face * 1000) * (1-(Cpn* (Tsc/360)));

I found that while this worked alright at
Face=10, but if I set Face := 100 or 1000, my results
were garbage! The simple fix was to change the
first part of the expression to read (Face * 1000.0)!
I had been sailing past MAXInteger!! {And the
System will NOT give you an Error message on this,
Only garbaged results!). Note that the same thing
can happen with Long Integers. If you set
something like this:

Long := Integer * 1000

The same thing happens. It is best to do this in
two steps.

Long := Integer;
Long := Long * 1000

PREDEFINED IDENTIFIERS.

On page 135 of the Pascal 1.1 Language
Manual is a list of Predefined Identifiers. These are
not Reserved words, but they should be treated as
though they were.

You can use these words, such as "str' as
variables, but once you have done this, you lose the
use of that function! For example, 1 changed a
program to use Long Integers, which, Using the
STR function and other String handling built-ins,
will enable vyou to print numbers as
$10,987,654.395. But -- NOT if you have a
variable "Str", or "Length”. You will get a somewhat
confusing compiler error message at the point you
first invoke the function: "error in variable". The
message is actually correct, but when you see itbya
function, it is confusing! In the case of such a
message, if all else looks OK, check your list of
variables!

PRINT FORMATTING.

Although one can format the way reals appear
in output by using the suffixes as in * RealVar:5:2°,
where 5 is the length of the string, and 2 is the
number of decimals, This does not work
satisfactorily when you are working with large
numbers. At that point, it is time to work with
Long Integers, which are well documented in the
Language Manual, Note also the sections covered
under String Intrinsics that show how to convert
Long Integers into strings, putting decimal points
wherever you may want them, etc. You should look
at routines such as XKYBDSTUFF (On Call
A.P.P.L.E. In Depth) (cited in PBooks), where there
are routines to convert a string into a numeric value
to go the other way.

Though it does not appear so in the
documentation, you c¢an format the printing of
Strings. It works just like with numbers,
Remember that Integers and negative String output
of Long Integers, may have one more space than
you see (to provide for a’-’, if needed).

MISCELLANY,

Among the limitations of Apple Pascal, one
that is most irritating is the 38 block file limit of the
Editor. There are several ways to work around this,
such as using the Include file option in the
Compiler. (This can be a useful step in testing some
code before setting it up as a separately compiled
Unit.) An easier, but not cheap way is to replace
the System.Editor with the Advanced System
Editor (from Volition Systems, Del Mar, CA).
There are many other benefits to this besides file
size. I use it; take a look.

37

Both the Apple Editor and ASE (see above)
have a handy little item that I didn’t notice until I
had been working with Pascal for over a year. If
you look at the first character on the Command
line, you will notice that it is ">". Now try changing
direction in the Editor by either using + or - or the
> < keys. Cute, eh? Handy, too. Note that the ><
keys are NOT case sensitive.

Do check out the syntax in the demo programs
on APPLE3: particularly DISKIO, which is good on
both file I/O and the two binary tree files, Tree and
Balanced, which along with DISKIO, give a good
view of the use of pointers.

There are good Public Domain programs {o
transfer files between DOS and Pascal. I use
Huffin and Puffin from the Call APPL.E. in
Depth disks. Huffin is in Applesoft and is slow. If
you use it, cold-boot your Apple before trying to
do anything else, even save a file to disk, as the
program does not clean up after itself!

A primary resource for improving one’s Pascal
techniques has to be USUS (The USCD Users
Society) Their dues are $25 per year And a Great
Bargain, particularly if you can access their
MUSUS bulletin board on CompuServe. That is
where I got 90% of the information and code
included in this file. I had been somewhat
apprehensive about joining this group, since I was
afraid that they were all hard-core advanced Pascal
programmers, and that my queries might be
resented, or the answers would pass right over my
head!

I was partly correct. Some of the members
have forgotten far, far more about Pascal than most
of us will ever know! However, They are most
helpful and take pains to make sure that the asker
of a question really understands the answer, often
taking the time to make sure that they are being
clear or leaving code to illustrate the point.

One of the real pluses for an Easterner, is the
ability to leave a summary of the problem that had
kept me up till the wee hours, just before I crashed,
with a good shot at finding answers when I got up
the next morning!! (For westerners, 1 guess, the
answer would be there when they got home from
work!)

Some readers have been misinterpreting these
files to the effect that 1 am an expert on Pascal.
That is not the case.

There are some very experienced people who
have been kind enough to support this effort. Their

38

names appear below.

Special thanks to the following contributors:
Arley Dealey, David Ramsey, John Stokes, John
Baxter, Chris Jewell, Bob Peterson, Randy Bush,
Eli Willner, Dennis Cohen, Jim Merritt, Jim
Thompson, and all those to numerous to mention,
who yelled "Stop !", when I was going astray.

SUPPLEMENT ON BOOKS AND SOURCES.

Since the last publication of the Guerilla
Guide, the following sources of information have
come to light.

Jim Merritt’s excellent column in Softalk has
been very useful for me, as he often approaches
difficult points a little differently than others. This
is worth buying back issues to get, but it will come
out as a book in 1984,

While not a text, you might also wish to take a
look at the Link Sampler, which is a group of well
documented programs aimed at helping you learn
Apple Pascal. The disk and documentation are not
cheap at about $60, but are well done.

Other Ideas from Dennis Cohen:

"For Standard Pascal, I would recommend
Introduction to Pascal (2d ed.) by Welsh and Elder.

For Apple Pascal Examples, The fwo best I
have seen were both written by Tom Swan and
published by Hayden:

Pascal Programming for Business
Pascal Programming for Games and Graphics

There are excellent examples in these books,
but they are both at least at the level of Lewis, so
the user should go through the level 1 stuff first.”

And, From Arley Dealey:

*You should run, not walk to your book-seller
and get Advanced Pascal Programming Technigues
by Paul A. Sand (Osborne/McGraw-Hill, 1984,
ISBN 0-88134-105-3). I've got my differences
with the author in some places (some of them quite
strong differences) but over-all 1 think this is
definitely the best second text on Pascal I've seen
yet." {Ihave just gotten this, and while I have not
yet gotten "down and dirty’ in it, I am quite excited
by it. 1t leads to real-world uses, and has what
appear to be the most painless way into file
structures and use of pointers I have yet seen! 1
have a ot of respect for Arley’s advice! BT)

Intermediate UCSD Pascal Topics

By: Robert W. Peterson

Copyright 1983, 1984 Robert W, Peterson
All rights reserved

SUBJECTS TO BE COVERED

Pointers and their uses

e File I/0, including declaring and using
various file types

Separate compilation (units)

Variables declared in the VAR part of a
procedure or function are allocated memory space
in what is called a "stack”. Each time a routine is
referenced, a new area of the stack is allocated for
that procedure’s variables. Each routine’s variables
are allocated at the "top of stack”, that is, at the next
available location. When a routine terminates, the
stack storage allocated is thrown away,

In Pascal, PL/I, Modula-2, and some other
languages there is a second area in which variables
may be allocated and this second area is called the
"heap". . Variables are allocated on the heap using
explicit requests instead of the implicit request of
calling a routine. Stack variables exist only until
the routine containing their declaration terminates.
Heap variables exist until explicitly removed.

The routine doing the heap allocation returns
the location of the allocated memory so that the
area can be referenced. In Pascal the variable
returned is placed into something called a pointer
variable or, more commonly, a pointer.

A pointer, like any Pascal variable, is able to
represent only a specific type. That is, a pointer to
an integer cannot point to an array.

MEMORY ALLOCATION

VAR variables are allocated in the stack when a
routine is entered and deallocated when the routine
exits,

Heap variables are allocated explicitly by the
programmer and remain allocated until explicitly
deallocated.

Memory references

VAR variables are referenced as a
displacement from the beginning of a stack frame,

Heap variables are referenced using a pointer.
Pointers behave very much like machine

registers: They provide a baseline from which
fields are referenced with base/displacement
addressing.

The only difference between a pointer
declaration and any other type or variable
declaration is the addition of an up arrow or caret,
For example:

VAR
a @ integer ;
b : “integer ;

The declaration of a will cause an integer to be
allocated space on the stack. The declaration of b
will cause a pointer to be allocated space on the
stack but will cause no allocation of space for an
integer.

A more interesting example of a pointer
declaration is;

TYPE
ptr_index = “index_type ;
index_type = RECORD
key : STRING[11} ;
recnumber : integer ;
next : ptr_index ;
prior : ptr_index ;
end ; (* index_type *)
VAR
ptr : ptr_index ;
index_anchor : ptr_index ;

Several new ideas are illustrated above:

The declaration of ptr__index uses index__type
before index type is declared. This kind of
forward reference is allowed only in pointer
declarations.

Next and prior are pointers to index_ type;
that is, index__type contains pointers which point to
index__type.

In UCSD Pascal implementations prior to
Version IV.0, the implementation of the heap looks
much like a manually managed stack. When using
this "stacklike heap", the programmer inserts a
place marker into the heap using a standard
procedure called MARK. One or more allocations
are made on the heap using NEW. (The amount of

35

space required by each allocation is determined by
the compiler.) To recover the space taken up by the
NEW allocations since the last MARK, a RELEASE
is issued. Using the stack-like heap, deallocation of
a single heap entity is not possibie.

In UCSD Pascal Version IV.0 and above, a
standard heap implementation is available, as well
as the stack-like heap with its MARK and
RELEASE. To deallocate a single heap element in
Version IV.x, DISPOSE is implemented.

MARK and RELEASE take as an argument 2
pointer to an integer. The argument passed to NEW
and DISPOSE is a pointer variable.

Like other Pascal variables, pointers are not
automatically initialized. Unlike other Pascal
variables, uninitialized pointers can have
disasterous results, such as corrupting the system
and causing a system crash.

Thus the skeleton of an example of the use of
pointers is:

TYPE
ptr_index = “index_type ;
index_type = record
key : stringf111 ;
recuamber : integer ;
next : ptr_index ;
prior : ptr_index ;
erd ; (* index_type *)
VAR
ptr : ptr_index ;
index_anchor : ptr_index ;
marker : “INTEGER ;
BEGIN
ptr = NIL ;
index_anchor := NIL ;

MARK(marker) ;
use_the pointer(index_anchor) ;
(* to be defined *)
RELEASE(marker) ;
END ;

PROCEDURE use_the_marker{ var anchor : ptr_index) ;
BEGIN
MEW(anchor) ;

anchor”*.next = NIL ;
anchor®.prior = NIL ;
anchor” . key HoL
anchor®.recnumber := 0 ;

*

END ; (* use_the_marker *)

This procedure simply allocates on the heap
something of type "ptr__index", returns the location
of that allocation in the pointer variable "anchor",
and initializes the record now on the heap. The
first part of the initialization sets the two pointers

40

within the record to NIL, that is, to having no valid
value. The latter part sets the string to an empty
string and the record number to zero.

Pointers can be used to solve several common
programming problems:

The UCSD Pascal compiler uses the heap to
build the symbol table for each procedure it
compiles. As each routine’s variables are allocated,
they are placed on the heap after the older variables
already stored there. An identifier is looked up by
searching the heap, beginning with newest entries
and moving toward the entries for the oldest
procedure. This way the scope of identifiers is
simple to maintain,

The heap can be used to contain a list of items,
much like an array, without requiring prior
knowledge of the number of items in the list. A
cross reference program is a2 good example. The
number of variables as well as the number of
references to each are not known ahead of time.
Using the heap allows a limited amount of self-
configuring: programs with a large number of
variables but limited references and programs with
a small number of variables with lots of references
both have use of the entire heap, but use the space
in different ways.

Trees, allocated on the heap, are frequently
used by indexing schemes for storage of keys. One
method of sorting uses the heap for intermediate
storage.

UCSD Pascal supports several different types
of files:

TEXT
INTERACTIVE
TYPED
UNTYPED

In addition, UCSD Pascal supports random access
of typed and untyped files.

We will not discuss UNTYPED files.

IORESULT is an integer-valued function.
The value of the function reflects the termination
status of the most recent I/O operation.

IORESULTs purpose is to allow the
programmer to monitor the state of an I/0
operation. However, this is possible only when
combined with the compiler’s option that turns off
the automatic result checking normally inserted

automatically:

(*$1-%)

file operation

(*$1+%)

if IORESULT <> 0 then error_procedure ;

Later on there will be some examples of how
IORESULT might be used.

In order to do manipulate information using a
file, the file must first be made ready for use, or
opened. Pascal does this with the RESET and
REWRITE verbs.

RESET opens a file which already exists.
Parameters to RESET are the name of the file as
declared in the VAR part of the block, and,
optionally, a string containing the name of the disk
file to be accessed. RESET without the string
parameter will "rewind" an already open file, i.e.,
the next record read will be the first record of the
fite. A RESET will fail if the specification in the
string is not valid.

REWRITE creates a2 new file on disk and
initializes it for output. Like RESET, REWRITE
takes as its first parameter the file name declared in
the VAR part of the block. Its second parameter is
a string containing the name of the disk file to be
created. If the file already exists, the REWRITE
will delete the existing file and create a new
(empty) file with the same name.

CLOSE indicates to the system that access to
the file is no longer required. CLOSE takes one or
two parameters. The name of the file as declared in
the VAR area is required. The second parameter is
the type of close needed and is optional.

If the close type is not specified, a NORMAL
close is done. That is, CLOSE simply sets the file
state to closed. If the file was opened using
REWRITE and is a disk file, no entry is made in the
disk directory and the file is not saved. A file
opened with RESET remains after a NORMAL
close.

The LOCK option will cause the disk file
associated with the open file to be made permanent
in the directory if the file is on a block- structured
device and the file was opened with a REWRITE.
If the file was opened with a RESET, a NORMAL
close is done.

The PURGE option removes the file from the
directory, effectively deleting the file.

The CRUNCH option LOCKs the file and
truncates it to the point of last access. "The point of
last access" is the position in the file of the last I/O
operation,

CLOSE on a closed file causes no action.

A TEXT file is a file of character divided into
lines by end of line characters. This type of file is
suitable for input to the various system programs
such as the text editor and the Pascal compiler,

In addition, & UCSD Pascal TEXT file has an
internal structure;

The first two blocks are used by the Editor.

Characters are stored in block pairs: Each

block pair ends at a line boundary.

Any extra bytes are filled with nulls (binary
zeroes).

When the file is opened, an initial READ is
executed.

An INTERACTIVE file is a special case of a text
file. The standard files INPUT, QUTPUT, and
KEYBOARD are of type INTERACTIVE and are
automatically associated with the display/keyboard
devices. In general, applications will not need to
declare any INTERACTIVE files and if they do,
INTERACTIVE files behave much like TEXT
files. The major exception is that there is no
implied READ when an INTERACTIVE file is
opened. There are also minor differences in how
the EQF function behaves with an INTERACTIVE
file.

For example;

VAR
a_text_file : TEXT ;
crt 1 INTERACTIVE ;
listing : TEXT ;
BEGIN
RESET(CRT, 'CONSOLE:*) ;
REWRITE(a_text_file, 'peterson.text') ;
{* #6: is a reference to the printer device *}
REWRITE(listing, '#6:') ;
END ;

In this example, file CRT is associated with
the system console, a_text_file is linked to a file
named ’peterson.text’, which is stored on the
default disk drive, and listing is a file associated
with the printer port.

TEXT and INTERACTIVE files are accessed
for input using the READ and READLN verbs.

4]

During the following discussion assume the
following declarations:

VAR
ch : CHAR ;
i, j, k, L : INTEGER ;
r, q : REAL ;
s : STRING ;

READ(ch) will read from the keyboard the next
character and display it on the console. This is how
the system reads commands without requiring a
carriage return.

READ(s) will read characters until return is
typed but will not include the carriage return
character.

READ(i) will expect an integer constant
followed by a space. Anything other than a digit or
space as the initial character will cause a run-time
error. After the first digit is found, any non-digit
will cause the input of the integer to terminate.

READ(i, j, k) will behave as above but will
read three integers instead of one.

READ(r) will read a real constant, with
restraints similar to reading an integer.

READLN, which stands for "read a line",
causes the program to ignore all input until a
carriage return is typed.

READLNC 1, j) ;
is equivalent to
READC i) ;
READC j) ;
READLN ;

Both READ and READLN take as an optional first
parameter a file id. When the file id is omitted, the
default file INPUT is assumed.

READLNC i, j) ;
is assumed to be
READLNC INPUT, i,]) ;

since INPUT is the default input file.

Two Boolean functions are available for use
with text files: EOF and EOLN. Both these
functions take as an optional parameter a file id. If
the parameter is left off, the standard file
QUTPUT is assumed.

EOF stands for "End Of File". EOF is true
when the end of file character is read from the
keyboard or the end of a disk file is reached.
Attempting to read beyond the end of a file is a

42

run-time error.

EOLN is true whenever a READ(INPUT) is
terminated by a carriage return or, for a disk file,
when the end of line character is encountered.
Doing a READ(CH) when EOLN is true places a
space into CH, not an end of line character or
carriage refurn.

The PAGE verb can be applied to TEXT and
INTERACTIVE files. The parameter is a file id.
The PAGE verb causes a FormFeed character to be
output. On many printers this will cause the printer
to slew to the top of the next page. On some
terminals, PAGE will cause the screen to clear.

Where TEXT files allow only characters to be
read and written, typed files allow any type of data
to be read and written and, in addition, allow
random access to any record in the file. Typed files
are, however, useful only for files stored on disk.

The RESET, REWRITE, CLOSE, and EOF
routines function with typed files just as they do
with TEXT files.

For example:

PROGRAM typedio ;
TYPE
t_str = stringl40] ;
t_nad = record
name : t_str ;
addr1, addr2, city : t_str ;

state : STRING[2] ;
zip : STRING[91 ;
VAR
hame : t_str ;
nad_file : file of t_nad ;
nad_rec : t_nad ;
BEGIN

RESET(nad_file, ' name.addr.data') ;

CLOSE(nad_file, lock) ;
END. (* PROGRAM typed *)

Input and output of a typed file’s records uses the
concept of a "window" variable. The window
variable allows the program to see a single "scene"
or record of the entire file. The window variable in
Pascal is the declared name of the file, in our
example, "nad_file".

To reference the record currently in the
window variable, the file variable is used as if it
was a pointer variable. For the previous example,

name

:= nad_file*.name ;
nad_file®.zip :

174075 ;

To make a record available at the window,
Pascal supplies the GET verb. Get takes as its
single parameter a file id.

To place the current contents of the window
variable into the file, Pascal supplies the PUT verb.
PUT also has as its single parameter a file id.

Using the above declarations, the following is
a valid sequence of statements:

GET{ nad _file) ;

READLN(name) ;
nad_file".name := neme ;
READLN(nad file*.eddr1) ;
PUT{ nad file) ;

The above fragment would load the window
variable with the contents of the next record of the
file, change two fields of the record and place the
record back into the file in the same place. (This
assumes the file already existed and was RESET.)

Each GET reads the next record of the file,
Each PUT writes the next record of the file. The
GET and PUT locations for the same file are
independent of each other, Doing a GET when
EOF is true results in an error, but a PUT is valid if
there is room on disk to write the record.

UCSD Pascal provides SEEK to randomly
position the GET and PUT locations within a file.
SEEK takes as parameters the file id and an integer
which specifies the record number to be located.
The next GET will fetch that record and the next
PUT will replace that record. A GET or PUT must
executed between every pair of calls to SEEK.
SEEK sets to false EOF and EOLN for the
referenced file.

Records in a file are numbered, for the
purposes of SEEK, from zero.

Note that SEEK works only for typed files.
SEEK is not legal for files of type TEXT or
INTERACTIVE.

A good example of using the IORESULT
function is how to open a file without crashing the
program if the open fails. The following code
fragment itlustrates this:

REPEAT

READLN(file_name) ;
(*$1-%)
RESET(phyle, file_name) ;
(¥I+¥)
result := [ORESULT ;
if result <> 0
THEN
BEGIN

REWRITE(phyle, file_name) ;
result ;= IORESULT ;
END
ELSE

BEGIN
result := 1 ;
WRITELN(file_name, ' exists!') ;
END ;

UNTIL result = 0 ;

The loop will exit only when a new file is opened
and the new file will not overwrite an existing file.

Many times a programmer or group of
programmers will wish to develop an application in
sections. This may be required if the application is
too large to be compiled as a single chunk because
of space or time constraints or if different
programmers are assigned different portions of the
project.

Or they may wish to develop a number of tools
for use across several applications. Such a tool
might be a formatted screen utility, file access
routines, a math package, or a database manager.

In the UCSD Pascal language environment
separate compilation is accomplished by using a
language construct called a UNIT. A UNIT is made
up of two parts; an INTERFACE section and an
IMPLEMENTATION section. A Unit can be
compiled by itself, as part of a group of units, or as
part of a Pascal program. If it is not compiled as
part of a program, the resulting code file is
frequently combined with other units into a library,

A separately compiled UNIT might look like

this:
UNIT thisone ;
INTERFACE
VAR
device_status : INTEGER ;
FUNCTION keystatus : BOOLEAN ;

PROCEDURE clear_iline(line :
IMPLEMENTATION
VAR

integer } ;

device_address : INTEGER ;
FUNCTION keystatus ;
BEGIN

(* the body of the function *)

END ;

PROCEDURE clear_line ;
BEGIN

(* the body of the procedure *)
END ;

END. (* thisone *)

Declarations which will be referenced by the
program wusing the UNIT are declared in the

43

INTERFACE part of the UNIT. Such declarations
can include references to other units, constants,
types, variables, and routines. Items which occur in
the IMPLEMENTATION part are private to the
UNIT; they cannot be referenced or used in any
way outside the UNIT’s IMPLEMENTATION part.

Routines declared in the INTERFACE part
are assumed to be declared FORWARD but do not
require the keyword FORWARD., This means that
the body of the routine cannot be in the
INTERFACE part but must be in the
IMPLEMENTATION part. It also means that any
parameters must be included in the INTERFACE
declaration and not mentioned in the
IMPLEMENTATION routine heading. In versions
prior to IV.0, a unit could not contain SEGMENT
(or overlay) routines; this restriction has been eased
in Version IV.0 and up. In no version of UCSD
Pascal can an INTERFACE routine be an
EXTERNAL machine code routine,

Constants, types, variables, and additional
routines may be included in the
IMPLEMENTATION part if needed. In version
IV.0 and up, a UNIT can reference another UNIT
in the IMPLEMENTATION part. Prior to Version
IV.0, another unit could be referenced only in the
INTERFACE section of a unit.

A UNIT is referenced by a program or another
unit with the USES keyword followed by a list of
one or more unit names:

PROGRAM testunit ;
USES thisone ;
VAR
prog_variable : INTEGER ;
BEGIN (* testunit *)

END.
The effect of the USES keyword will be as if
the program text looked like this:

PROGRAM testunit ;
VAR

device_status : INTEGER ;
FUNCTION keystatus : BOOLEAN ;
PROCEDURE clear_Line(tine : integer) ;
VAR

prog_veriable :
BEGIN (* testunit *)
END.

Observe that if the unit had had a variable
"prog_ variable" the compiler would have detected
a duplicate declaration error when it encountered

INTEGER ;

44

the second "prog_ variable". Also note that the
ordering restrictions for declarations are relaxed
when a unit causes declarations to be copied.

When a UNIT is referenced from another
unit’s INTERFACE section, the compiler requires
that the program reference both units and do so in
the correct sequence, If the unit "secondone"
references the unit "firstone”, then the program’s
USES phrase looks like:

PROGRAM unittest ;
USES firstone, secondone ;
VAR
prog_variable : INTEGER ;
BEGIN
END.

The default library in which the compiler
attempts to find the named unit is
SYSTEM.LIBRARY. If the code of "firstone” is in
the library FIRSTLIB.CODE, the code of
“secondone" is in WORKLIB.CODE, and "os_ stuff”
is in SYSTEM.LIBRARY, then the option library
specification of the USES clause is used:

USES
(*$U FIRSTLIB.CODE *) firstone,
(*3U WORKLIB.CODE *) secondone,
(*$U SYSTEM.LIBRARY *) os_stuff ;

At compile time, the compiler assumes all
units are stored in *SYSTEM.LIBRARY, and
searches there for units’ INTERFACE sections.
The compiler does not automatically search any
other library if a unit cannot be found.

The compiler U option is available and allow
the programmer to specify an alternate library of
units.

The compiler always searches in the most
recently named library, or if none has been
specified, in *:SYSTEM.LIBRARY.

Multiple libraries can be named in a USES
clause, and/or multiple units can reside in a single
library.

USES
a,
(*3Y #9:firstlib.code *) ¢,
{*3U worklib.code *) g, b,
(*$U *:SYSTEM.LIBRARY *) os_stuff ;

Version IV.0 and later offer a variation on the
USES clause called selective USES. Sometimes a
compile will get so large in terms of the number of
symbols that the compiler cannot successfully
complete the compile. To relieve this problem

when a large number of units are referenced, the
compiler aliows only parts of a unit to be included
in the symbol table,

For example:

USES ScreenOps(SC_CLR_SCREEN)

will cause only the identifier SC_ CLR_SCREEN
to be entered into the symbol table, even though the
unit’s INTERFACE section contfains many other
identifiers. This capability is especially useful for
programs that make use of the IV.0 KERNEL unit.

A program must reference units in a specific
sequence and must reference all units referenced in
unit INTERFACE sections.,

A unit that does not reference another unit in
its INTERFACE section does not need to be in any
particular sequence in the program’s USES clause.

A unit that references another unit in its
INTERFACE section requires the program to order
the units in the program’s USES clause. Each unit
must be listed in the program’s INTERFACE clause
before another unit references it. This is actually
the old "define before use" rule. For example;

Assume unit "secondone" references unit
*firstone" in secondone’s INTERFACE section.
Then the program’s USES statement must be

USES firstone, secondone;

In order to execute a program which uses one
or more separately compiled units, UCSD Pascal
versions prior to version 1V.0 required the unit’s
code must be linked with the main program’s code.
IV.0 and up do not allow or require units to be
linked prior to running the program. Version II
Units are linked using Linker, the system’s link
editor.

If all the units referenced are stored in
*SYSTEM.LIBRARY, the program may be R{un.
R(un will automatically invoke the Linker before
executing the program.

If one or more of the units referenced are not
in *SYSTEM.LIBRARY the Linker must be
explicitly invoked and the required libraries
named.

The Linker is invoked by typing an L at the
system’s main command prompt. The Linker will
ask first for the file containing the main program’s
code. Following that the Linker will prompt for the
library files to be used to resolve references to

units,

Using the above units and assuming that the
main program has just been compiled (and as a
resuit 15 in *SYSTEM.WRK.CODE), the
interaction with the Linker will look like this
(typed in information is underlined):

Host file? testunit

Opening *SYSTEM.WRK.CODE

Lib file? firstone

Opening firstone.CODE

Lib file? worklib

Opening worklib.CODE

Lib file? *

Opening *SYSTEM.LIBRARY

Lib file? (return)

Map name? printer:

Reading ... Here the Linker writes as it works

Output file? (return for »:SYSTEM.WRK.CODE
fil jing in .CODE)

A response to "Host file?" of carriage return
will cause Linker to use the work file as its input
file. The response to "Host file?" must be a code
file containing a program. A code file containing
only units is not a valid response.

Responding to "Lib file?" with an asterisk is a

shorthand way of specifying
*SYSTEM.LIBRARY.
Responding to "Qutput file?" with only a

carriage return causes the Linker to place the
linked output file into *:SYSTEM.WRK.CODE. A
file name is a legal response but it must end with
"code". The Linker does NOT append ".code" and
a file created without the ".code" suffix is not a
code file!

Jensen, K, and Wirth, N., Pascal User Manual
and Report, Springer-Verlag, 1975, 167 pages.

Wirth, N., Algorithms + Data Structures =
Programs, Prentice-Hall, 1976, 366 pages.

Ledgard, H.F., Hueras, J.F., and Nagin, P.A_,
Pascal with Style: Programming Proverbs, Hayden,
1979, 210 pages.

Clark, R., and Koehler, S., The UCSD Pascal
Handbook, Prentice-Hall, 1982, 356 pages.

45

Fast 2-D List Processing

By: Jai Gopal Singh Khalsa

LIFE Revisited - A Fast Two-dimensional
List Processing Technique

"Conway’s Game of Life is a simple rule for
successive populations of a bitmap. The rule
involves the neighbor count for each cell - how
many of the eight adjacent cells are occupied. Each
cell will be occupied in the next generation if it has
exactly three neighbors, or if it was occupied and
has exactly two neighbors." (Smalltalk-80 The
Language and Its Implementation, p, 412)

I did my first implementation of the LIFE
game when reading the Smalltalk-80 book during
the summer of 1983. I was fascinated by the idea of
a bitmap as a Pascal record (packed
array[0..79,0..23] of boolean);, it seemed vaguely
relevant to the USUS discussions going on at that
time about windowing algorithms... and it was the
first example in the Smalltalk book that I could
actually play with using UCSD Pascal and my no-
graphics CRT. Although the particular
Smalltalk-80 example algorithm was not at all
applicable, the ideas about object-oriented
programming presented there contributed strongly
to the current implementation.

The game starts with a blank screen and the
prompt line:

{move cursor) S)et cells, Begin, <ESC> to quit ?

Typing 'S’ causes the cell under the cursor to
be toggled between '’ (empty) and @' (occupied).
When a satisfactory pattern has been created, the
'Blegin’ option invokes a continuous loop that
computes the resulting pattern for the next
'generation’ based on the current pattern and
Conway’s rule,

That first program actually visited every cell
on the screen and counted its neighbors; straight-
forward but very laborious. Next I narrowed it
down somewhat by flagging only those columns and
rows where an occupied cell was known to exist
along with its two adjacent columns and two
adjacent rows to be checked for possible *births’ in
the next generation. Still rather slow but it worked

46

and I tired of the game and left it at that.
Improving the Algorithm:

During the summer of 1984, Mel Saffren on
MUSUS asked for LIFE implementations and so [
dusted mine off and uploaded it to him. He
complained it was slow and uploaded his own
version which was five times faster than mine!
Also, his had wrap around, reflect, and two-sided
plane topologies where I had just let things die as
they went off the edge of the screen. His
implementation of the various topologies, however,
was treated as an exceptional condition and caused
a very noticeable slow-down. This was particularly
evident when a single crawler was racing across the
screen and then hit the edge, slowing to a tedious
pace. (NOTE: see below for explanation of the
*crawler’ pattern.)

The significant features of Mel's
implementation (besides the various topologies)
were:

a} he visited the occupied cells and
incremented the neighbor count of all eight
adjacent cells. Then he looked for cells whose
neighbor counts fitted Conway’s rule for Life. This
in itself was a lot less work than actually counting
neighbors for every cell (at 8 operations per).

b) he limited his search by keeping a
'boundary’ record which held the leftmost,
rightmost, topmost, and bottommost positions of
occupied cells {(updated as births and deaths were
computed). This defined a constantly varying
rectangle which had the effect of speeding the
search when the area was small but dramatically
slowing it when the population spread across the
screen. This was true even when there were few
occupied cells as is the case when you have two
crawlers on opposite sides of the screen.

The first of these features was the crucial one
as I already had a method for narrowing the search
for occupied cells, As an example of its effect,
consider a screen pattern who's rectangular
boundary is 15 by 40 {600 cells) where only 30 of
the 600 are actually occupied. Counting the
neighbors of all 600 cells requires 600 times 8§ *if®
statements or 4800 operations plus the additions
performed when the ’if* statements are TRUE
(another 240 operations?) for a total of 5040
operations. Incrementing the neighbor count of all
eight cells adjacent to occupted cells requires 600
’if” statements (to see if occupied) plus 8 additions
for each of the 30 occupied cells for a total of only
840 operations. This ratio alone (5040 to 840) may

account for the five-fold increase in speed of Mel's
implementation over my original. In both cases, the
entire rectangular area must be re-examined after
the neighbor counts are computed to apply
Conway’s rule.

The Fast List Algorithm:

It became evident that the next major
improvement in the algorithm would be to further
limit the time spent counting neighbors and testing
for births/deaths in those cells that couldn’t
possibly be affected by the previous generation. A
super-fast two-dimensional list was implemented
using a ‘listObject’ to keep track of cells within a
column and a ’graphObject’ to keep track of
"listObjects’ (i.e., columns) that contain cells,

The main advantage of the °listObject’ and
'graphObject’ approach is that I visit only occupied
cells rather than all those in a rectangular space; in
the process of incrementing the neighbor count of
all adjacent cells, I construct a second graphObject,
‘toExamine’, that consists only of those cells that
have three (or more) neighbors plus all those that
were occupied before. I then quickly *traverse’ this
two-dimensional list and apply the rule of Life. If
the new value is different than the previous
generation, i.e., the current state of the bitmap, 1
update the screen (liveChar or deadChar) and
bitmap and add or subtract the cell to/from the
‘occupied’ graphObject list. The effect is that I can
have two crawlers ’'racing’ around the screen at a
speed independent of their screen position and
proportional only to the number of occupied cells
on the screen. Also, wrapAround and reflect are
ireated as a normal function of range checking and
so there is no slow-down when the edges are
encountered.

The two-dimensional list was implemented
using the following record structures:

CONST xtow = 0;
xHigh = 79;
yLow = 0;
yHigh = 22;

TYPE listObject = record
numCells : 0..24;
cellList : packed array[1..24] of ylLow..yHigh;
cellindex: packed arraylylLow..yHighl of 1..24;
end;

graphCbject = record

numCols : 0..80;
collist : packed array[1..80] of xlLow..xHigh;
collndex : packed array[xLow..xHighl of 1..80;

colObject: array[xLow..xHighl of ListObject;
end:

The 'numCells’ field of listObject indicates
how many cells are in 'cellList’. Zero indicates that
the object (i.e., column) has no cells in its list;
otherwise, the elements }.numCells of cellList
comprise the list of cells (i.e., rows) contained in
the object. The ’celiIndex’ field is used for speedy
location and removal of a cell (i.e., row) from the
cellList array.

‘graphObject’ is identical in function to
listObject except that it maintains a list of
listObjects (i.e., columns) rather than cells (i.e.,
rows). Their use can best be understood by looking
at the following two procedures that are used to
maintain the two-dimensional list. Note that
’cellindex’ and °collndex’ are maintained by the
‘cellAdd’ procedure but are actually used only in
the ’cellRemove’ procedure. These indexes allow
the element being removed to be directly replaced
by the last element of the list without any time-
consuming search for the element being removed.
This is an excellent example of the speed vs.
memory tradeoff that one often encounters in
programming; the penalty of sixteen extra bytes in
the listObject structure (nearly doubling its size) is
compensated by the fact that you always know
exactly where in cellList to find a particular cell. If
memory is more critical than speed, a linear search
of cellList will tell you the same thing,.

PROCEDURE cel lAdd{col,row: integer;
VAR OneGraph: graphCbject);
begin
with OneGraph.colObject [col) do
begin
numCells := succ{numCells);
cellListlnumCells] := row;
cellindex[row] := numCells;
if numCells = 1 then with OneGraph do
begin
numCols := succ(numCols);
coltist[numCols] := col;
cotIndex{coll := numCols;
end;
end;
end; {cellAdd)

PROCEDURE cel lRemove{col,row: integer;
VAR OneGraph: graphCbject);
begin
with OneGraph.colObjectcol] do
begin
cellindex[celllist [namCeils]] := cellindex[row};
celllisticellindex[rowl] := celtList[numCells];
numCells ;= pred(numCells);
if numCells = 0 then with OneGraph do
begin

47

collndex[colList [numColsll := collndex[col};
coltisticolIndex[eolll := collistinumCotsl;
numCols := pred(numCols);
end;
end;
end; {cellRemove)

Traversal of the two-dimensional list is
accomplished as follows (‘toExamine’ is of type
*graphObject’):

with toExamine do for ¢Ptr := 1 to numtols do
with cotObjecticollisticPtrl] do
for yPtr := 1 to numCelts do
CheckCetl(cellList {yPtr]);

Note that neither celllList nor colList are
ordered lists; consequently, screen updates appear
haphazard,

Performance Enhancement:

Closely intertwined with a good algorithm are
the implementation details that affect speed. The
‘cellindex’ and ‘collndex’ are examples of this.
While they improve the ability to quickly maintain
the "occupied’ graphObject (where celis are added
and removed), they actually slow down the process
of creating the 'toExamine’ graphObject since, in
the current version of the program, cells are never
removed from the toExamine list; the overhead of
maintaining these indexes is therefore a waste of
time.

In addition to the details of the list algorithm,
other details have important effects. At first the
various topologies (offEdge, wrapAround, reflect)
were done as part of the bounds check within the
incrNeighbor procedure. It was then a simple
matter to call that proc eight times for each
occupied cell:

incrNeighbor{pred(x},pred(y));
incrNeighbor(X ,pred(y));
incrNeighbor(succ(x),pred(y));
incrNeighbor(pred(x), Yy);
incrNeighbor({succ(x), VR H
incrNeighbor({pred(x),succ({y));
incrieighbor(x ,succly));
incrNeighbor(succ(x),succi{y));

This, though, requires a minimum of 4 ’if’
statements within incrNeighbor. I realized that by
moving the topology algorithm out of
incrNeighbor, x need only be checked once per
column and likewise, pred(x) and succ(x) need only
be computed once per column. Similarly, pred(y)
and succ(y) need only be computed conce per cell

48

rather than three times and if they were off the
edge of the screen, one ’if” statement would suffice
where three were required before. The resulting
code looks a bit messier but is significantly faster.
It was discovered later, however, that another
interesting topology, the Klein bottle (wrapAround
with a twist) does not apparently lend itself to these
same shortcuts although is quite easy if done within
incrNeighbor. The solution is to have two (or
more) different procedures to do the calls to
incrNeighbor: *PROC fastWrap’ would be as is
found now in the code and 'PROC KleinBottle’
would be as above with its own version of
incrNeighbor to apply the topology algorithm
within the incrNeighbor procedure.

The LIFE Benchmarks:

In order to evaluate the performance of
various algorithms and program enhancements,
benchmarks are required. I used the two patterns
below:

Crawler Smalltalk

aaa a8
a aa
@ a

The term ’crawler’ is my own and simply
describes the apparent behavior of that pattern. It
takes four generations to cycle back to its original
shape and in the process, moves diagonally one cell.
Note that 0 & 2 and 1 & 3 below are identical; they
are simply rotated 90 degrees on the surface of the
plane and 180 degrees in 3D. The aspect ratio of
the screen disguises this fact,

2 aa aa [
Eia aa aa ad a
a aa] a a
Q
generation 0 1 2 3 4

I call the other one the Smalltalk pattern
because it was suggested in the Smalltalk-80 book.
An interesting symmetrical pattern 1 have
discovered that goes a long time with wrapAround
is the following:

aa 29
a2 a
aga

The benchmarks now stand as follows on my
Sage (thanks to Mike Berg for the NCI p-System
and TURBO Pascal times on his IBM PC):

Generations Ratio
Test (wrapAround) Time JGS Mel JGS/Met
1 minute 71 622 1.24
1 minute 477 62 7.69 (1)

Single crawler
Two crawlers (A)

" " 8) 1 minute 477 108 4.42 (1)
" " (A) 3 minutes 1425 277 .14 (D
" " (8) 3 minutes 1425 203 7.02 (1)

Smalltalk pattern 3 minutes 203 173 1.17

smalltalk pattern, no wrapAround, first 50 generations;
J6S = 14.4 seconds Mel = 12.6 seconds JGS/Mel = 1.14
{(drat!)

NOTE: The two crawlers were separated
vertically by half a screen to avoid collision, one
going upleft and the other upRight. Test (A)
started the crawlers on opposite sides of the screen
while test (B) started them in the middle, one above
the other.

Commenting out the screen updates (per
Randy Bush’s suggestion), I got the benchmark
times below (column headed ’'no I/0°). The
program is certainly pushing on the I/Q barrier
and, contrary to my expectations, more so when the
screen is heavily populated. As the LIFE
algorithms improve(?), testing without IO wili be a
must,

Generations

Test (wraphround) Time with 1/0 no 1/0 *1/0
Single crauler 1 minute 771 926 17%
Two crawlers 3 minutes 1425 1796 21%
Smaiitalk pattern 3 minutes 203 256 21%

Smelltalk pattern, no wrapAround, first 50 generations
{seconds) 14.4 10.6 26%

Conclusion:

Some may be interested in the LIFE game for
its own sake, for the effects of the various
topologies, and as a stepping stone into the larger
field known as ‘cellular automata’. My own

‘fascination is with the opportunity it gave for
exploring, in a very limited way, the object style of
programming inspired by Smalltalk, In that
language, an object is a combination of data and the
methods appropriate for operating on that data.
Within UCSD Pascal, a closer representation would
be a unit designed to operate on the listObject type
and allow ’instances’ of listObject to be created.
Additional features (besides ’add’ and ’remove’)
such as "cellGet’, *cellPut’, "listSort’, *celiNext’, etc.,
could be added and would be especially useful if
they could handle variable size data objects

(records). For example, it is often the case in
applications programming that a list of one
hundred items (0..99) is needed for payment and
shipping methods, transaction types, etc. A unit
designed to handle such a list with the record size
specified at runtime would be very handy.

This, of course, is way beyond the needs of a
speedy LIFE implementation but I hope the germ
of the idea is sufficiently illustrated here to
stimulate further exploration of the object-
oriented style of programming abstraction. The
source code for this version of LIFE can be found
in the MUSUS X A3 database as LIFE. TXT and will
hopefully find its way into the USUS software
library. In any case, enjoy LIFE!

Apple /// Pascal Review

By: Dennis Cohen

Apple /// Pascal 1.2 is a rather interesting
milestone in the history of the Version II p-System.
Those of you familiar with the Pascal for the Apple
/// are aware that there is a Version II system
which gives most of the advantages ascribed to the
Version IV systern without sacrificing the
advantages of Version II. With Apple /// Pascal
1.2, Apple has come even closer to an idyllic blend.

There are two Pascal compilers available
under 1.2, the native 1.2 compiler and one labelled
as 2.0. The 2.0 compiler will be discussed later as it
merits quite a bit of verbiage.

The first thing that I noticed about 1.2 was the
user interface. The last program executed (or
edited) is remembered and just about everything
has a default up with the prompt which you can
edit. One of the nicest features of ASE (which still
doesn’t exist for the ///) is the way you can do a
directory list when vou forget a filename. Well,
with the 1.2 Editor, you get a similar capability via
a pop-up window on the right side of the screen
(similar to that available via System Utilities). This
same interface is available at the X(ecute prompt,
the C(ompile prompt, the A(ssembler prompt, and
many others. About the only thing that doesn’t
have the new interface is the Filer. I guess this
makes sense, since you already have all the
wildcard capabilities (and a lot of people rename
the System Utilities as SYSTEM.FILER and have
the interface there as well). The routines for this

49

interface are even included in SYSTEM.LIBRARY
(as DIRSTUFF), so that you can use it in your
programs as well, a very nice touch on Apple’s part.

The 2.0 compiler is unique. It not only has the
user interface that I mentioned above, it has even
more. For the first time the Pascal compiler need
not be named SYSTEM.COMPILER, it can be
named PAS.CODE (for example) and executed.
There is an options file that comes with it that
allows you to set all sorts of options at the time you
compile without having to embed compiler
directives in the source. The ongoing display of
progress is a lot more informative than we have
been used to up to this time. It tells you what
source line of the program it is currently compiling
as well as the line of whichever include file is active
(and they can now be nested to a depth of three, ¢
la Version IV). If there is an error and you select to
go to the editor, the system remembers which file
was active and goes to the proper line in the proper
file. Another nice touch is that by pressing
<Escape> during a compile, you are given the
option of cleanly terminating the compilation. If
you want the compilation to continue to the end
regardless of errors, one of the options allows you
to have the errors logged in a file and for the
compilation to complete. There are two major
advantages to this scheme: the first is if you just
want a complete list of all the errors that were
found and don't feel like typing <space> to
continue each time; the second is when there might
be just one or two isolated errors and you want to
test the unaffected code. Also available are
displays of the symbot table and listings that detail
the generated p-codes.

The language has also been extended
somewhat to get slightly closer to a blend of ISO
Pascal and Modula-2, You may now have constant
expressions, and may (via a special notation) embed
control codes in string constants. Numeric
constants may be designated in either binary,
decimal, or hexadecimal. While AND and OR work
as always, you can now use & and | to denote short-
circuit evaluation. The similarity to Modula that 1
mentioned is in the relaxed order of declaration.
You can now group and intermix declarations and
procedures to reflect their logical relationships.
Those of you who (like me) despise enumerating
case label lists can now use subranges (and we still
have OTHERWISE). Looping constructs now have
two new reserved words related to them, CYCLE
and LEAVE, which do what their names indicate.
Another similarity to Modula and to ISO Pascal is
that you can now, finally, have formal procedure

50

parameters.

The only drawback that I have found to 1.2 is
that everything is bigger, which makes for less disk
space. The memory space limitations have never
come close to biting me on my 256K system;
however, my 1.5 MB of disk gets chewed up rather
quickly (especially with all of the Toolkit utilities
online). Oh yeah, there is one more limitation -- if
you use the 2.0 compiler, you cannot generate code
to run on the Apple //s. I guess that’s what the 1.2
compiler is for.

If all of this discussion hasn’t whetted your'
appetite, I don’t know what will,

Hard vs. Soft Interrupts

By: Jon Bondy

Copyright 1984 by Jon Bondy

The following article was written as a result of
a series of discussions between the author, Randy
Bush, and [indirectly] Bill and Verlene Bonham.
The author does not claim these ideas to be his own
original thoughts...

The introduction of the concurrency facilities
of the II1.0 and IV.0 systems provided the p-System
programmer with the ability to run multiple
processes simultaneously while controlling their
synchrony with semaphore variables. The
introduction of the Attach facility has allowed
synchronization of service processes with external
events; with interrupts. This paper discusses some
problems which have arisen in the utilization of
interrupts under the p-System.

As on all other computers, in the p-System
interrupts are serviced at the end of 'instructions’.
Because p-System interrupts are really p-codes, p-
System interrupts are really pseudo-interrupts; they
occur at the end of p-codes, not at the end of
physical machine instructions. The interpreter
acknowledges an interrupt at the completion of
execution of a p-code, but not during that
execution. Some p-codes, such as UnitRead and
UnitWrite to floppy disk, can take hundreds of
milliseconds to complete, so the interrupt latency
(the time from occurrence of a physical interrupt to
its being serviced) can be quite long on even the
fastest of p-System hosts. When one is servicing a
9600 baud CRT, lapses of hundreds of milliseconds

simply won’t do.

The ’sclution’ io this problem is to create a
piece of software (usually in assembly language)
called a Basic Input Ouiput System (BIOS) to
execute under the interpreter, buffer the
interrupts, and provide I/0 services. The “hard’
interrupts which the hardware generates are fielded
by the BIOS and queued for processing by the p-
System when the next p-code completes. In effect,
the BIOS converts hard’ interrupts into ’soft’
interrupts. In the case of some devices, such as a
CRT, the actual hardware services are provided by
the BIOS, and the p-System just sees a buffer of
characters from the device: the p-system does not
in fact perform physical hardware device services
at all.

When one Atiaches an interrupt to 2a
semaphore, the usual expectation is that a process
will wait on that semaphore and serve as an
interrupt service routine {ISR) for that interrupt.
The question which arises at this point is whether
one desires the Attached interrupt to be a hard one
or a soft one. Amnother way to put this is to ask
whether we want an interrupt when a character
moves between the p-System and the BIOS or
between the BIOS and the hardware?

Consider the following. Normally, when one
gets an interrupt from an output device, such as a
UART serving a CRT, that interrupt signifies the
completion of the previous output operation and
the availability of the device for another operation.
This is the hard interrupt, and if it is sent in to the
p-System a bit of confusion may result. As
described above, the p-System code sees the CRT
as being at the end of a long buffer of characters,
and the fact that a physical output event has
completed is of no interest io it. What the p-System
code is interested in is when the output buffer has
enough room in it that a "write" to that buffer will
be successful without hanging up. Clearly, the p-
Sysiem programmer desires soft interrupts when
s/he performs an Attach.

In a similar fashion, on input, the p-System
programmer is interested in knowing when a
character is available in the input buffer, not when
the key is struck. There is no purpose served in
signalling a semaphore furiously as keys are struck:
if the program was unable to respond to the initial
signal, it will still be unavailable. What is needed
instead is for a signal to be created whenever 1) a
character enters an empty input buffer from the
keyboard, and 2) a character is removed from a
non-empty input buffer.

This seems natural enough, but some current
BIOS implementations have provided soft
[buffered] 1/O to the p-System programmer while
at the same time providing hard interrupts to the
Attach facility. The point seems clear: p-System
BIOSes should be specified to generate soft
interrupts, or rather, to generate interrupts as data
transitions between the p-System and the BIOS, not
between the BIOS and the hardware.

ASE Macros

By: Eric Eldred

Here are two ASE macros vou guys asked for, to
place page end markers in your text a la WordStar,
assuming you have a formatter such as ITP which
allows a non-printing line in your text.

4
|{ Take this up into say <f1> of else make }
|€ into autotakeup 3

{"UnPaginate" {s~
| € ASE 0.9r; uses <f7>, teg; by Eric Eldred 30 Jan 84)
| deletes page end markers after each 59 lines)
|¢ do this before Paginate }

st see |f7 / \comment~--~page~end|n/ |e
{{ replace with any non-printing Line}
1{ or you could even put in a command to force)
{{ a page break }

~jfi|nje lubaealL |e i |7 |ed In |e jf /r7// |.

{ Chaircritter Note: For ASE Versions 0.8x
and before, change ’see’ in the second executable
line to 'sew’, and the two instances of ’jf* in the
third to 'ns’. The BackSlash (\) is the *ignore this
line’ character in Jim Gagne's ITP text formatter --
other formatters, such as Sprinter, will use other
characters for this purpose ~-- check vyour
documentation }

[2]
§{ Take this up into say <f2> or else make into }
|€ autotakeup)

|*Paginate”|s~
| € ASE 0.9r; marker in <f7>; by Eric Eldred 30 Jdan 84)
|{ sets non-printing page end markers after 59 lines }
|€ unPaginate first 3
|{hit <f2> for each page end: gives you a chance to }
|€ fix widows }

59 |di |7 |e
{{ when finished, J(ump to T(ag and resume editing } |.

51

Actually [1] is very tricky, as it includes a
<return> character as part of the <f7> macro. When
1 tried to do a global replace of <return> characters
by say "<return> 3" in 0.9q or even earlier UCSD
editors, I managed to wipe out my files, occasioning
Arley’s [when he was still with Volition] sending
me ASE 0.9r, which won’t allow R(eplacing CTRL.-
Ms -- except by means of the cleverly placed
backdoor exemplified by "/r7//".

{ Chaircritter Note: I learn something every
day -- the "/r7//" means:

"/* -- Repetition factor -- effectively 'infinity’
"r" -- Replace
"7" -~ the contents of Function Key #7 (}{7) --

I didn’t know you could do this! It’s not

in my documentation!
"/ /" -~ with nothing!

Effectively, "Search the whole file, and every
time you find whatever is in ’f7°, delete it." Pretty
slick!

A better way to do this, I think, would be to
define a *$PROFILE’ macro as follows:

{x]*|f7| " f2{*11].

{'Page End' \Comment -- Page End|nj.
|'Paginatet [s~5¢ |d i [f7 le |.

| 'UnPaginate’ [s~ st ne 1 {f7 |e ns /r 7 // jt|.

You put the cursor on the ’|' before the ’x’,
press S(et M(arker, type in "$PROFILE" (without
the "™s) and hit <Return>, Whenever you edit the
file, ASE will jump to the macros and take them
up, and they’ll be ready to use any time you want
them.

The first line says: "Take this line up in f1,
and execute it -- take up the next line, put it in 7,
take up the one after that, and put it in f2, and the
nextin f1."

The second line is the non-printing string to
load in £7,

The third (in f2) goes down 59 lines and
inserts the contents of f7, and sends an ETX
(Control~C or equivalent).

The fourth line S(ets the T(ag wherever the
cursor is sitting, puts a copy of the contents of {7 at
the end of the file (so it can find at least one copy
of it when it is deleting), jumps to the beginning of
the file, deletes "f7" wherever it finds it, and jumps
back to where you started.

The only problem I can see with this is that if
you have non- printing lines or printing commands

52

in the file, they take up a line on the screen, but not
in the printed version, and the non-printing
comment line will need to be adjusted accordingly
to reflect the actual end of the printed page...)

Benchmarks on Turbe Pascal

By: Stephen F.B. Pickett

Copyright (¢) REC Software Inc., 1984

Alright, you wanted it! So you got it! I have run the famous Bondy benchmark on Turbo Pascal and a
variety of p-code systems, The results were all obtained on a TIPC, running at the same clock frequency as
an IBMPC, so the results may be regarded as interchangeable with the IBM results previously reported by
myself and Jon Bondy. I have therefore restricted myself to highlights, in order to illustrate the points.

1. As expected, Turbo is fast.

2. All times for 32000 loops, in seconds. I discovered afterwards that these times (except for Turbo
which I did by hand as there is no "time" function) are "slower” than the IBM’s, tho’ I am told that the TI runs
a little faster than the IBM. The discrepancy comes, I believe, from the real time clock, which on the TI
really does tick exactly every 100 milliseconds. On the IBMPC it ticks every 55.5 but I corrected it as it it
were every 50 msecs. Unfortunately, all the programs were ready to run for the IBM and 1 couldn’t find the
source. So there is a built in 10% margin of error or fudge factor!

3. Turbo uses 3-word reals. My p-code results are for 4-word reals. 2-word reals are about 2 t0 2.5
times as fast as 4-word reals. Turbo doesn’t have 8087 support yet(it’s promised), but they may have
difficuity implementing 3-word reals! (subtle technical joke)

8ench Number & name IV.%1 p-code Turbo IV.1 BOB7 Iv.1 NCG IV.1 87NCG Notes

1. For Loops | 5.72] 1.00 | 0.98 | |
(ALL times below have loop subtracted out) } |

6. Integer Add | 3.19 | 0.40 | [0.66 | |

7. Integer Mul | 4.40 | 1.21 | | 176 |

8. Integer Div | 4.62 | 1.46 | 1.87 | |

10 Real Acict | 28.58 | 32.41 | 15.60 | 2.75 | e
1. Real Mul | 46.30 | 80.74 | 15.72 | 2.75 |
12. Real Div | 77.93 |140.90 | 16.38 | 3.52

13. Integer Xfers | 1.87 | 0.23 | 0.55 |

14. Int arr Xfers | 15.06 | 1.06 | | 11.87 | | a)
17. Int rec Xfers | 3.41 | 0.38 | | 0.55 |

18. Rea rec Xfers | 7.6%9 | 2.80 | 7.80 8.7 | 1.54 | b
19. Int IF | 2.86 | 0.35] 0.46 | |
21. Case | 5.06 | 0.77 | | 1.32 | |
22. Procedures | 10.33 | 2.20 | | | | ©
26. Set Unions | 28.03 | 25.46 | ! | | &)
29. Pointer Xfers | 4.07 | 0.74 | | 0.66 | | d)

Key to Notes:

‘& Bill Bonham has already shown the p-System’s inferior performance can be greatly increased in all
cases by running (F$R-*). Turbo runs without range-checking unless you specify, which I didn't since
the original benchmark didn’t specify either way!

b. Hooray, we actually won one, by cheating in 2 different ways!!
¢. Everybody knows that sets and procedure calls don’t native-code well!

d. p-System wins without cheating.

53

e. Interesting conclusion - in an interpretive situation, the best a floating point chip will do for you is to
speed * and / up to the same speed as +and -. I have observed this to be also true for Z80/AMD9512.

The code file BENCH.COM was 30 blocks long. BENCH.CODE was 15. The results more or less speak
for themselves. I should fill in with some impressions of using Turbo, however limited they may be. The
preparation of the benchmark was easy. I had to do three things to my text file once it was T(ransferred
onto an MSDOS diskette:

1. Make all num__loops and numloops the same. Turbo distinguishes.

2. Take out all references to RepFile. I couldn’t be bothered to

learn the syntax to Assign, which is much more [ike MS-Pascal
than UCSD reset/rewrite

3. Give a string a size. There are no default string sizes in Turbo

It must be pointed out, in all fairness, that the interactiveness (as defined by Barry Demchak) on
compiler errors is amazing, since you hit <esc> and find yourself in less than a second sitting in a Wordstar
look-alike with the cursor at the right(sic) spot. Also Borland have solved in one the ANSI cursor
positioning problem, by defining a single parameterisable sequence to handle EVERY terminal known to
man including ANSI. If only SMS had been smart enough to do that!

Except for the above changes, it was 50 easy to compile and run that I had an executable MSDOS COM
file almost before I knew it had started compiling. You can run the program in memory, without leaving the
Turbo environment. This is quicker but you cannot then save a .COM file, a (quick) recompile is necessary.
From the bench marks, and the relatively simple program environment (I didn’t say it was good, just simple}
you can guess how quick the (one-pass) compilation was. It hurts me to quote the statistics.

There is a very crude assembly language interface supplied with the documentation, specifying the
parameter passing conventions, and it seems moderately obvious that these are in fact the ones Turbo uses
itself. They even have a trick way to handle interrupts in PASCAL, though it’s rather dumb and involves
dropping the machine code to save the registers INLINE inside the pascal routine as a set of HEX digits.
ABSOLUTELY NOTHING is written on how to LINK (or even ASSEMBLE) machine language routines. |
am afraid this could turn into just another hacker’s paradise as a result, since transportability is no way
assured at any such interface.

1 leave the rest in tabular form, perhaps there will be expanded entries or more of them when someone
delves further into a neat little system. If only we could have started with this 4 years ago! Then perhaps all
the present nice features could have been added without speed cost? Certainly it’s worth bearing in mind if
anyone ever redesigns a I'V.x upwards-compatible p-machine. No, please don’t tell me about ILx, it runs
much slower than TV.x on the IBM, and if "tweaked" would only be marginally faster.

TURBO PASCAL

Speed Lousy real support

COM files No UNITS, therefore NO LARGE PROGRAMS (yet)
(they promise 'overtays')

Cheap Mo PACKED arrays(packing occurs, but at random}

Semi-compatible No Dispose
Mo Get and Put, untyped files are 128 bytes not 512
Underscore is significant in names
Editor is slow, ASE badly needed
Assembly language is undocumented
Larger code files

P-SYSTEM

Small code files Slower rumning
More flexibility Larger overheads (0/S etc)

54

Hore portable Cannot run stand-alone

pe facto standard Develepments hindered by backwards compatibility issues

8087 in interp
Real support

Expensive (finally becoming less so)

But combined with the DOS-Files p-System I have (and will be releasing shortly, I hope), it would be
very tempting to do all quickie programming under TURBO. Except for the ASE problem. I know people

who use the p-System purely for ASE’s convenience, and everything else under M*-#%§,

It really is

dreadful to have to go back to W*#**#¥ with its hokey little control characters just after I finally got to use
all my extra keys up! Many people who have tried using MS-PASCAL will think this is so fantastic, though,
that someone who could offer an ASE-like editor to run as a TURBO program would be permanently and
gainfully employed. Who knows, perhaps I'll even do it myself!?

Product Announcements

MACINTOSH DEVELOPMENT SOFTWARE
AVAILABLE FROM SOFTECH
MICROSYSTEMS

San Diego, CA, August 6, 1984 -~ SofTech
Microsystems announced today that they will begin
shipping a full software development environment
for the 128K Macintosh microcomputer on August
22, 1984,

This announcement makes available the first
compiled Pascal and FORTRAN languages on the
Macintosh. The new release includes a complete
development environment with UCSD Pdscal ,
FORTRAN-77 and an advanced development tool
kit with the only 68000 Assembler available for the
Mac.

"We have been extremely enthusiastic about
the Macintosh since its introduction and knew that
our extensive development environment would be
ideal for the product," said Larry Allman, vice
president of marketing. "Our system provides not
only a wvehicle to write large and complex
applications on the 128K Mac but paves the way
for a host of UCSD Pascal applications to be made
available on the Macintosh very quickly," Allman
continued. The software packages offered include:

g UCSD Pascal Development System - allows
access (o mouse, graphics and text fonts
provided by Mac ROM routines, thereby
allowing the application to take advantage of a
popular set of Mac user interfaces for $195.00.

m FORTRAN-77 Development System -
provides the user with an ANSI-77 subset
FORTRAN with support for structured

programming and improved character types
for $295.00.

® Advanced Development Tool Kit - augments
the software development environment
provided with UCSD Pascal and/or
FORTRAN-77. The tool kit includes source
code for graphics/mouse interface, a symbolic
debugger, 68000 Assembler, and a linker. The
advanced development tool kit allows the
developer to analyze and optimize programs
during development. The cost is $150.00.

"Sof Tech’s strategy enables the company to
take advantage of emerging market trends as they
occur,” said Joe Taglia, product marketing manager
for system software. "We’re filling our obligation to
the Mac world by developing the software needed,"
Taglia continued,

UCSD Pascal and Apple Pascal are sufficiently
compatible so as to allow easy porting of Apple II
and II programs to the Macintosh. In addition,
UCSD Pascal applications running on other
machine types such as the IBM PC can also be easily
ported.

SofTech Microsystems, a subsidiary of
SofTech, Inc. in Waltham, Massachusetts, is a
feading supplier of microcomputer software
products. It’s major products are UCSD Pascal, the
de facto standard Pascal for microcomputers, and
the p-System , a popular microcomputer operating
system that runs on machines from all major
manufacturers including Apple, Hewlett Packard,
DEC, IBM, Sage, Texas Instruments, and Zenith.

55

UCSD Pascal is a registered trademark of the
Regents of the University of California. IBM is a
registered trademark of International Business
Machine Corporation. p-System is a trademark of
Sof Tech Microsystems, Inc, Apple Pascal is a
trademark of Apple Computer, Inc. Macintosh is a
trademark licensed to Apple Computer, Inc.

For f{further information please contact
Sof Tech Microsystems Customer Sales Department
at (619)451-1230.

Classified Ads

For Sale: Sage II with 512K RAM, dual 640K
floppies, Freedom 100 terminal, and complete
cabling. Available with complete development
software for $2500, or with Timberline business
software for $3000. Also, Sage IV with 18MB hard
disk for $3500 (development) or $4000 (business).
Contact Timberline Systems (503)684-3660.

A collection of utility modules ready to link inkto your programs and greatly speed
programming efforts and the operation of programs.

Each tool is supplied as a definition module with in-line documentation, an
implementation module with full source code and a ready-to-link object module. A fully-
linked ready-to-run test program with source cede is 1ncludegth

tmE:ach module is implemented using Logitech's Modula-2/86 ", Version 1.1 and HMS-DOS/PC-
DOS Version 2,0 or latﬁﬁ unless otherwise specified., All modules are upward cowpatible
with Microsoft's Xenix operating system as specified in the Microseft MS-DOS
Programmer's Reference Manual.

MemUtjils: high-speed memory utilities coded using B0B6 string imstructiens.
Eeyboard: a complete IBM-PC keyboard handler.
ScreenOps: high-speed routines for controlling IBM-PC text screen,

Based on ROM BIOS calls.
FileOps: direct access to MS-DOS file handling functions via DOS function calls.
DirOps: direct access to MS-DOS's hierarchial directories via DOS function calls,
DiskUtils: miscellaneous disk and drive utilities via MS-DOS function calls.
8ipgVD: calculates singular values of real-values matricies.
MicroMouse: direct access to all 16 Microsoft Mouse funtcions via mouse system
software function calls.

Memutils 529 Developed by: Thomas H. Woteki, Ph.D,
Keyboard $39 All three for $59

ScreenOps $39 Entire package of B
FileOps $39 modules — all with
DirOps $39 All three for $79% source code and
DiskUtils $29 test programs
MicroMouse $49 for $189

SingvD $89

Add 53/order shipping and handling VA residents add 4% sales tax

Call 703/ 522-8898 or send your order to: Information Systems Incorporated
1901 Ho. Fort Myer Drive, Arlington, VA 22209

36

—Quality Software At Low Prices- -Save Time With Expert Tools- ﬁ

USUS Software Library

From Jon Bondy

Anthony Pompa has not returned letters, and has been dropped as a distributor. We no longer have a
Victor distributor...

Henry Baumgarten is now distributing only Sage and 8" formats; a new distributor, Dave McFarling, is
taking over the IBM, NCI, Apple, and Softech Universal Medium formats. Thanks for the help, guys!

In addition, Jim Harvison is now distributing Sage and Apple formats as a "USUS" distributor, not as an
"individual®, When ordering from Jim, please make your checks out to UJSUS, not to Jim personally.

Prices have been standardized for all of those formats which are distributed by more than one person.
IBM, NCI, and Sage prices have been set at $6 (1 volume/disk), §7 (2 volumes/disk), or $8 (3 volumes/disk
10-sector) (all 80 track). 8" disk prices have been set at §5 each. Apple][prices are set at $8.00 for a two
disk volume.

If you have problems with a distributor, first contact them directly to see if the problem is a
misunderstanding or some "reasonable" delay (death in the family, computer hit by lightning, etc). It is
reasonable to expect a distributor to send you disks within 4 weeks of an order: delays longer than that
should cause you to investigate further. If you don't get satisfaction, please write o both them and myself,
describing the circumstances.

- Jon Bondy

From Harry Baysa

Some of you are doing it! Don’t deny it. You would be fools not to do it. Ido it myself. The time has
come to to admit it, to tell the world what you did, and why.

Telling the truth isn’t always easy, but sometimes it can be of value to others who face the same
temptations you did. We know they are going to do it - so lets make it easier for them,

The above text will be stored for future use in a letter to the "Kinks" section of Penthouse together with
some choice USUS comments on byte-sex and bit-fiddling. It’s function here is to ask you users of the
USUS library to share some of your hard earned wisdom with others .

Some of you have used the USUS program library. Your experience could be of value to others. What
were you particularly pleased with? What difficult situations deep in the Adventure game of UCSD Pascal
did the library help you to get through?

This note i3 intended to start a column called "LIBRARY USERS" in this newsletter. It's goal is "library
consciousness raising” within the USUS community,

The initial idea came up in a discussion at my first Library Committee meeting, in Toronto. We agreed
that we would like to find ways to make the program library more useful to members. A library users’
column can serve that purpose.

So, I am asking for your participation. Take out a piece of paper and jot down the programs that you
can recall using from the library.

In my case I have used or shared :
] remtatk

) adventure

57

a lisp
a combine

function enough_allready(level: integer): boolean;
begin
if (this is as far as you want to go
fn this exercise)
then

begin
Please send your notes to Harry.
enough_allready := true;

case level of
1: begin
My sincere thanks;
Actuatliy I would like more!
May you learn about recursion
the hard wayl
if enough_allready(1) then
you will never get to here;
end;
2: even more thanks;
3: can I buy you a drink?
4: eternal obligation
end; {(case)

end
else
begin {keep on truckin!}
enough_allready := false;
if level = 4 then
begin
Please send me your notes anyway.
you are a glutton for work!
calt mel
exit(reatworid); {don't worry, you were
Way down the recursive
stack to start with)

end;
end;
end; {enough_allready)
If not enough_allready(1) then :

Ahhh, you are still with me. Ok, Mark those programs that vou found particularly useful. If not
enough_allready(2) then mark any others where you could make useful, interesting or entertaining
comments,

In my case I found "remtalk" particularly useful and could make some comments about all four of the
programs I have used. I tripped out of this process at level= 3 in the next paragraph.

Now, if not enough__alleady(3) then pick one of the programs and write out your comments and send
them to me. I will include as much as possible in this column.

I would also appreciate any suggestions for other ways of making the library more useful. Here are a
few starters.

a "The all-time {ibrary hit parade"
a "Drop the rod before you catch the bird, but don’t stand directly under the bird"

m A periodically updated disk containing a data base program and data file that would help you find out
what is available and what you need to know about it. (e.g. will it work on an Apple][?)

58

My addresses are:

Harry Baya

The Pumpkin People

565 Broadway, 2H

Hastings-on-Hudson, NY, 10706

Telephone : (914) 478§-4241

Compuserve: 72135, 1667
Telemail : HBaya/USUS

In closing, I will be delighted to get a lot of response to this. My feelings will be hurt if I don’t get at

least one reply. If you don’t care about helping nameless masses, then help one needy individual.

If enough_allready(4) then
if you sent something then goody!

else

they also serve who read this far.

Good luck! - Harry Baya

USUS Software Library Distributors

Distributor

Disk Format(s)/Prices

Henry Baumgarten
3325 Hillside Street
Lincoln, NE 68506
402-489-6441 (h)
402-472-3301 (w)

Jon Bondy

Box 148

Ardmore, PA 15003
215-642-1057 (h)

Clark Gestring

4643 W Oberlin Place
Denver, CO, 80236
303-797-6739 (h)
303-694-8797 (w)

Kenneth K. Kam
P.O. Box 3112
Torrance, Ca.
90510

Standard Sage and 8" prices; see above

Standard Sage and 8" prices; see above

Subtract $4/disk if you send him properly
formatted and zeroed Sage disks. Subtract
$3/disk if you send him formatted SSSD 8" disks

TI99/4A

SSSD 35 TK @ $13/4 disk volume.
SS SD 40 TK @ $11/3 disk volume.
DS SD 35 TK @ $10/2 disk volume.
DS SD 40 TK @ $10/2 disk volume.

Heath H-89 5-1/4 inch disks for $17/tri-disk vol.

59

Distributor

Disk Format(s)/Prices

Dick Karpinski
6521 Raymond
Oakland, CA, 94609
415-666-4529

Jim Harvison

Box 3277

Silver Spring, MD 20901
301-593-29%4

David McFarling
3815 Adams Street
Lincoin, NE 68504
Rockville Md, 20850
402-467-3591

George Schreyer

Box 1645

Redondo Beach, CA 90278
213-371-0198

Marc Wigan
Wigan Associates
Box 281

Mt Waverley
Victoria 3149
AUSTRALIA

Northstar disks for $15/dual single-sided disk volume.

Standard Sage and Apple prices; see above

Standard IBM and NCI disk prices (specify format
and number of blocks); Apple // disks at standard
prices; Sof Tech Universal Medium disks at
$8/vol. (two disks)

8-inch disks for $10/volume,

8-inch disks and Sage disks. Pricing unknown.

Who Supplies What;

"Std" 8" Henry Baumgarten, Jon Bondy, George Schreyer, Marc Wigan
Apple Jim Harvison, David McFarling

Heath-89 Ken Kam

TI Clark Gestring

IBM David McFarling

NCI David McFarling

Sage Henry Baumgarten, Jim Harvison, Jon Bondy, Marc Wigan
NorthStar DD Dick Karpinski

Victor 9000 Nil

CSI 6309 Nil

OSI Nil

60

New USUS Software Library Volumes

USUS Library Volume 29

A script driven communications package and a weaver’s helper
{a USUS REMUNIT is needed for CONVERS. see volume #15)

YOL29:

DRAW4A TEXT 32
DRAW4A.1.TEXT 34
DRAWSA.TEXT 32

A simple pattern weave analyzer
an inchude file
A more complex pattern weave analyzer

DRAWSRA.1.TEXTan include file

DRAWDN.DOC.TEXT 26

OSMISC_II0.TEXT 12
OSMISC_IV.TEXT 14
TEXTIO IIC.TEXT 26
TEXTIO _Iv.EXT 14
SCRNOP_IIO.TEXT 14
CONV_TEST.TEXT 6
CONVDOC. TEXT 70
INSTALL. TEXT 26
CONVERS. TEXT 112
TERMINAL.TEXT 8
VOL2%.DOC.TEXT 6

Documentation for the weaversdesignpackage’
Misc routines for CONVERS for version I1.0
Same for IV.x

Text file routines for CONVERS for version ILO
Same forIV.x

An ersatz SCREENOPS for 11.0

A test script

Documentation for CONVERS

Installation notes for CONVERS

CONYERS itself

A dumb terminal emulator which can stand alone
You’re reading it

This volume was assembled by George Schreyer from material collected by the Library committee.

USUS Library Yolume 30

Softech Microsvstems' Performance Monitoring Tools, Part [

VOL30:
CLOCK.AST.TEXT 10
CMDCODES.TEXT 4
SAMPLE.TEXT 28
CONCURRENT.TEXT 12
PMINSERT.TEXT 22
DISASM.TEXT 16
PMA SAGE.TEXT 8
DISPLAY.TEXT 8
PMT.AST.H.TEXT 8
EXAMPLE.TEXT 4
FAULTCOUNT.TEXT 28
PMATTACH.TEXT 6
FLIPDICT.TEXT 4
PMS.IVL.TEXT 16
- FLIPSEG.TEXT 6
PMTIMER. TEXT 10
MONITOR.TEXT 28

Time Profiler utility program
Time Profiler replacement for IV.13 CONCURRE unit
Utility for inserting calls to Routine Monitor

Time Profiler PMATTACH unit for SAGE I1 (For 1V.2)
Displays contf ID translation file

Utility for cammulative fault history analysis

Time Profiler PMATTACH unit for IBM PC, (For IV.2)

IV.13 version of Time Profiler sampling task

Timer unit using p-System 60 Hz Clock
PERFOPS Start, End, Interact utility -

61

- OPTCONST.TEXT 10
PMA.PCIVI.TEXT 6
OPTFILE. TEXT 32
PMASG.IVI.TEXT 8
OPTPROCS. TEXT 44
PMDISPLAY.TEXT 18

OPTREFS. TEXT 10
PMPROBE. TEXT 8
OPTSEGS. TEXT 16

PMSAMPLE.TEXT 16
OPTUTILS. TEXT 16

PMT.SAGE.TEXT 8
PCODES. TEXT 10
REASM.TEXT 8

VOL30.DOC.TEXT 12

Time Profiler PMATTACH unit for IB PC (For IV.1)
Time Profiler PMATTACH unit for SAGE II (For 1V.})
Remote fault analyzer display program

Routine Monitor "probe" unit

Code for Time Profiler sampling task (For IV.2)

Timer unit using SAGE 11 clock

You're reading it

This volume was contributed to the USUS Library by Sof Tech Microsystems

USUS Library Volume 31

Softech Microsystems’ Performance Monitoring Tools, Part 11

VOL3I:
PERFOPS.TEXT 6
PERFOPS.A. TEXT 54
PERFOPS.B.TEXT 36
IV1.PSCLIO.CODE 11
IV1.REAL4.CODE 12
IV2Z.CONCUR.CODE 7
IV2.PSCLIOC.CODE 9
IV2.REAL4.CODE 13
CONCURRENT.CODE 3
DISPLAY.CODE 3
FAULTCOUNT.CODE 7
MONITOR.CODE 10
PERFOP.IVI.CODE 33
PERPS.CODE 33
PMA.PC.IV1.CODE

PMA SAGE.CODE
PMA.SG.IV1.CODE
PMATTACH.CODE
PMDISPLAY.CODE
PMINSERT.CODE 3
PMPROBE.CODE
PMS.IV1.CODE
PMSAMPLE.CODE
PMT.AST.CODE
PMT.SAGE.CODE
PMTIMER.CODE
SAMPLE.CODE
VOL3L.DOC.TEXT

MNOWWWAROWO R WLWW

Pt ot

Time Profiler replacement for I'V.13 CONCURRE unit
Displays contents of ID translation file

Utility for cummulative fault history analysis
PERFOPS Start, End, Interact utility

PERFOPS unit for use with aIV.1 p-System
Performance monitor unit, (IV.2/Liaison)

Time Profiler PMATTACH unit for IBM PC (For IV.1)
Time Profiler PMATTACH unit for SAGE 1I (For IV.2)
Time Profiler PMATTACH unit for SAGE Il (For IV.1)
Time Profiler PMATTACH unit for IBM PC (For 1V.2)
Remote fault analyzer display program

Utility for inserting calls to Routine Monitor
Routinitor "probe” unit

IV.13 version of Time Profiler sampling task

Code for Time Profiler sampling task (For IV.2)

Timer unit using clock on IBM PC AST board

Timer unit using SAGE II clock

Timer unit using p~-System 60 Hz Clock

Time Profiler utility program

You're reading it

This volume was contributed to the USUS Library by Sof Tech Microsystems

62

USUS Library Volume 32
Softech Microsystems’ Performance Monitoring Tools, Part III

VOL32:
TOOL.DOC.ATEXT 38 Documentation files which describe how to use
TOQL.DOCB.TEXT 7?7 the monitoring tools above. Printable using

TOOL.DOC.C.TEXT 22 PRINT.CODE, using the instructions in README. TEXT
TOOL.DOC.D.TEXT 28 The resulting document is about 60 pages long, so you
TOOL.DOC.ETEXT 40 might write it to a file and spool it if you dont
TOOL.DOCE.TEXT 32 want your computer tied up printing for a while...
TOOL.DOC. TEXT 4

PRINT.CODE 19 utility to print the documentation

README. TEXT 4 instructions on use of the print utility
PDOSTRANS.TEXT 36 Utility from Mike Berg which allows MS-DQS files to
PDOSOPS.TEXT 52 .. beread/written on PC or Sage or...
PDOSOPS.CODE 20

PDOSTRANS.CODE 14

LIFE.TEXT 28 Jai Khalsa’s version of the Game of Life as ...
LIFE.DOC.TEXT 36 ... discussed on MUSUS and TeleMail

LIFE.CODE 7

VOL32.DOC.TEXT 12 You're reading it

This volume was assembled by Jon Bondy from material collecied by the Library committee.

UCSD PASCAL ON DEC!

UCSD Pascal, the development environment that runs on more computers
than any other, is available for PDP/LSI-11 computers. Now you can
develop software on your PDP/LSI-11 for the microcomputer marketplace.
You can run the many fine and inexpensive UCSD Pascal packages on your
DEC machine.

The latest version of UCSD Pascal is available standalone, or under RT-11,
TSX+, R8X and RSTS. Prices for the operating environment range from
$275 to $500. The UCSD Pascal compiler costs $275. Other fanguages, as
well as a variety of software toois, are also available.

call today for more information,

__ p-System Sofiware Experiise

1510 East 4th Street ® Brookiyn, New York 11230
(718) 336-4109 63

“—_—,, R

| Take P-codes
in your Stride

Optimiser: polishes P-codes. Smaller faster programmes. Works atcode
file fevel, access to source not required. Maintains portability. Can insert
instruction to native code procedure. Can rediuce code file size by
10-20% (Pascal), 30-50% (Fortran,).
Analyser: provides information to improve programme performance.
g Tells you what your software is really up to. Variable and procedure
/ usage. Case table overheads. Uncalled procedures. Performance
- f monitor source.
" ==, Edip: P-code ediitor. Can edit code files direct, access to sotirce
notrequired.
Demonstration disc $ 15, contains excerpts from manual, example
programmes and demonstration Optimiser.
Eliacomputer, 1510 East 4th Street, Brooklyn, New York 11230, USA.
call {718)336-4834 or 4109.

~ Poptyser,

i O N Poptyser is produced by Knowladge Software Ltd, 32 Cove
o ~ Road Famborough, Hants GU 4 0EN, England. (0252} 520667
‘\\ (TMAIL KNOWLEDGE).
L]
A
Poptyser is a tracte mark of Knowledge Software.

USUS Software Library Order Form

- Use this form to order the TJSUS Library volumes of your choice. Send the order DIRECTLY to the
distributor, and make your check out to him/her, NOT to USUS,

Thirty-four volumes are now available. All 8080-specific code and CRT terminal data on Volumes 1,
2A, and 2B have been removed to form a single Volume 1 for the Apple. Volume 2B is normally shipped in
CP/M format and has little utility for anyone without CP/M. YVolume 21 is Apple-specific. A special
Western Digital (WD) format disk contains a Mapper program, allowing owners of WD machines to read
DEC-format disks, the USUS standard 8-inch format. WD owners CANNOT obtain double-density disks
from USUS; ask WD for help converting single to double density on your machine. DEC format begins on
track 1/sector 1, with interleave 2 and skew 6.

NAME, TITLE

COMPANY (if work address)

NUMBER AND STREET

CITY, STATE, ZIP, COUNTRY

SYSTEM (PLEASE fill in)

DISKETTE FORMAT REQUIRED (circle one):
Standard 8-inch SSSD NorthStar Apple OSI
Heath H-89 IBM PC IBMPC TI SAGE
VOLUMES REQUESTED (circle one or more):
1 2A 2B 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 UK3 UK4

Price per volume (see distributor list) §

Total for disks 3

- Sales tax (if intra-state sale) $

TOTAL AMOUNT ENCLOSED ($U 5.)$

(NOTE: ALL orders MUST be prepaid!)

IMPORTANT: PLEASE READ AND SIGN THE AGREEMENT ON THE FOLLOWING PAGE,
OR YOUR ORDER CANNOT BE PROCESSED!

65

Software Order Agreement

I will not permit the Programs I receive pursuant to the foregoing order to be published for profit in
whole or in part or to be transferred to any person who is not a member of USUS, without the express
written consent of the author identified in the files of the Library. Further, lacking such author’s consent, I
will ensure that the following items have been submitted to the designated individual {for now the USUS
Treasurer, USUS Library Chairman, or a Library Distribution Subcommittee Chairman) before transferring
any Program(s) to another USUS member: a} the current Software Order Agreement signed by the software
recipient; and b) $1 per volume or fraction of a volume received.

I acknowledge that neither USUS nor any of its representatives nor the author makes any warranty
with respect to the Program, particularly NO WARRANTY OF FITNESS FOR ANY PURPOSE, and that

the Program may require extensive alteration by an expert in programming before it will suit my needs.

(Signed) Date

R R

The
Stride
400
Series

From $2900 to $60,000+

As you can see below, the Stride 400 Series has no shortage of features. We've recently added RAM expansion to 12M
bytes, low-cost high-speed graphics and a revolutionary hands-free NOD™ cursor control device. But there’s more to
Stride Micro than hardware. We’re an open company, sharing source programs and schematics with our users. That's the
reason Stride and Sage (our former name) machines are preferred by many leading p-System developers. It's what we call

rroTm

“Performance by Design”.

Stride 400 Series Technical Specifications

@ 10 MHz 68000 CPU @ Battery backed-up real-time clock ® NOD cursor control device
(12 MHz optional) ® 4K bytes of battery backed-up CMOS RAM ® FPU hardware floating point
® VMEbus interface ® 4 to 22 RS-232C serial ports @ Streaming %" tape drive backup
® 256K bytes of parity RAM standard e Omninet networking hardware ® MMU Memory management unit
Up to 12M bytes with no wait-states ® p-System V.2 w/LAN software ® Stride configuration utilities
® 515" 640K byte floppy disk drives @ High speed low-cost monochrome ® TeleTalker communications software
® 10M to 448M bytes hard disk storage graphics (784 x 325 resolution) @ Centronics compatible parallel port

The Stride Multiuser p-SYSTEM

Stride provides a complete multiuser system standard with every machine. This unique system allows multiple p-System
(and CP/M-68K) operating systems to co-exist at the same time on asingle machine. An easy-to-use beginner’s program
(MU.BUILD) will generate a multiuser system within minutes. Sophisticated users will appreciate the highly powerful and
flexible MU.UTIL program which allows an incredible level of customization of the multiuser system. Itis a multitasking,
propriety BIOS developed in 1982 (the first commercial multiuser p-System), and has grown in strength and flexibility ever
since.

'D Stride, “Performance By Design” and NOD are trademarks of
: ’ : Stride Micro, 4905 Energy Way, Reno, NV 89502 (702) 322-6868, TWX 910-395-6073.

MR O

9LE ON lwlied
AN ‘UApjoolg
aivd
abeisod 's'N
3ley ¥ng

8£026 VI "ellor e
8Ll X08'0'd

». SASN

	USUS Newsletter V1N13 1984-07A.pdf
	USUS Newsletter V1N13 1985-03B.pdf

