‘TI-MIX 1983
International Symposium

- April 5-8, 1983
~ New Orleans Hilton Hotel

~ Session
Proceedings

Techniques & Concepts
for the Nontechnical or New User

TECENIQUES AND CONCEPTS FOR THE NONTECHNICAL OR NEW USER

TABLE OF CONTENTS

ADNEY, E.M.; LACKEY, RHONDA; POTTER, MITCH; AND SEIBERT, TIM
Texas Instruments, Austin, Texas
Survey of 990 lLanguages

BARLOW, BRUCE, Texas Instruments, Austin, TX
990 Hardware and Software Overview and Comparisomns

BURCKHARTT, DAVID, Texas Instruments, Auiﬁin, TX
‘ UCSD p—~System Overview

IMKEN, GARY, Texas Instruments, Austin, TX
' Introduction to SCI for the Nontechnical or New User

LANCASTER, RODNEY V., Texas Instruments, Austin, TX
A Link Editor Overview with COBOL Specific Applicatons

MILLER, ART, Texas Instruments, Austin, TX
Computer Systems Hardware

WATKINS, CHARLES F. AND GARDNER, ADRIENNE, Texas Instruments, Austin, TX
Your Part in Business System Documentation

TI-MIX (Texas Instruments Mini/Microcomputer Instruments Exchange) is an
organization for users of TI computers and related equipment. The purpose of
TI-MIX is to promote the exchange of information between users and TI.
Membership in TI-MIX is open to any person with an interest in TI computers or
peripheral equipment. The international symposium provides a vehicle for direct
interaction and information exchange with other users and with TI personnel.
Acceptance of TI-MIX member papers for presentation at TI-MIX 1983 does not
constitute an endorsement by TI-MIX or Texas Instruments Incorporated.

TI-MIX
M/S 2200
P.0. Box 2909
Austin, Texas 78769
(512) 250-7151

TI-MIX 1983

Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

TI-MIX 1983
Techniques and Concepts for the NonTechnical or New User
Survey of 990 Languages

SPEAKERS
INTRODUCTION MOIZE ADNEY LANGUAGES DEVELOPMENT
MANAGER
COMMERCIAL APPLICATION RHONDA LACKEY COBOL PROJECT TEAM
LANGUAGES/UTILITIES MEMBER
COBOL BASIC RPGII
SORTMERGE
SCIENTIFIC APPLICATION MITCH POTTER PASCAL PROJECT TEAM
LANGUAGES MEMBER
FORTRAN, PASCAL, C
PRODUCTIVITY SOFTWARE TIM SEIBERT QUERY PROJECT TEAM
DBMS, DD, QUERY, MEMBER
TIFORM, TIPE
SPEAKERS

This is the Languages section of the TIMIX 1983 Techniques
and Concepts for the Non Technical or New User.

The Languages speakers are listed above along with a
description of what they do back in Texas.

Rhonda Lackey is a member of the COBOL development project.
Her topic will be Commercial Languages.

Mitch Potter works with Systems Languages and will discuss
Pascal and C. Mitch is going to tell us about Fortran too.
Fortran is probably the best known scientific application
language.

Tim Seibert is a member of the QUERY 990 project team and
will talk about productivity software.

TI-MIX 1983
Techniques and Concepts for the Non Technical or New User
Survey of 990 Languages

CHRONOLOGY
STRUCTURED
PROGRAMMING
PRODUCTIVITY
SOFTWARE
saL
APPLICATION GENERATORS
PROGRAM GENERATORS
SYMBOLIC FORTRAN
SWITCHES MACHINE ASSEMBLY CoBOL c QUERY
& KNOBS LANGUAGE LANGUAGE BASIC PASCAL LANGUAGES
BC - 50 60 70 80's
PIONEERS MAINFRAMES MINIS MICROS
990’s
CHRONOLOGY

Before we begin exploring the individual languages, I would
like to give you some perspective on where we are today and how we
got there.

Although computation, assisted by symbolism and mechanical
devices, has been practiced for a long, long time = electronic
digital computers have, by comparison, only recently arrived on
the scene.

In something just over 40 years computers have evolved from
the pioneer class, programmed largely by switches and knobs, to
the situation of the 80’s where everyone in the industrialized
world has some daily interaction with computers large and small.
Todays computers are programmed in a variety of languages - most
of which are better suited for a particular, narrow set of
applications than for others. This matching of the language to
the application is a part of the information in the discussions
which follow.

BC, by the way, is "Before Computers".

Mr. Randy Hall, our session chairman, specifically asked us
to discuss symbolic assembly language and assure you that it has
not, like switches and knobs, become extinct....yet.

"Assemblers" as the programs that process assembly language
source statements are called, were among the first attempts to get
a computer to perform some of the more tedious tasks associated
with the intellectual process of writing a computer program.

TI-MIX 1983
Techniques and Concepts for the Non Technical or New User
Survey of 990 Languages

SYMBOLIC ASSEMBLY LANGUAGE

RELATIVE
LINE MEMORY MACHINE
NUMBER LOCATION LANGUAGE SOURCE STATEMENT
A A \

0028 207C L170
0029 207C 9880 cB RO.@FLAGS(R2) IF FLAGS {l}

207E 0026
0030 2080 130D JEQ 1260 =1, THEN 260
0031 >
0032 2082 Coc2 Mov R2,R3 PRIME=1+1+3
0033 2084 A0C2 A R2,R3 *
0034 2086 0223 Al R33

2088 0003
0035 *
0036 208A C102 MOV R2,R4 K=1+PRIME
0037 208C A103 L210 A R3,R4 *
0038 208E . 0284 Ci R4,8190 IFK>S$

2090 1FFE
0039 2092 1B03 JH 1250 THEN 250
0040 2094 D900 MoOvB RO,@FLAGS(R4) ELSE FLAGS(K)=0

2096 0026
0041 2098 10F3 JMP L210 GOTO 210, K=K + PRIME
0042 209A L250
0043 209A 0581 INC R1 COUNT=COUNT +1
0044 209C L260
0045 209C 0582 INC R2 t=1+1
0046 209E 0282 cl R2,S IFt <8

20A0 1FFF
0047 20A2 1AEC JL L170 THEN 170
0048 *
0049 20A4 0605 DEC RS IF LOOP COUNT
0050 20A6 16E1 JNE Lo10 < >0 THEN 10

— — / \ /
4 Vv
LABEL OPERATION OPERAND({S) COMMENTS

CODE

SYMBOLIC ASSEMBLY LANGUAGE

Here 1is an excerpt from an assembly language listing of a
program that implements one of the popular benchmarks for personal
computers.,

Note that the assembler has translated the operation codes
and operands into the corresponding machine language. Also note
how the assembler is allocating storage locations to the machine
language instructions and assigning values to the labels in the
source code. The comments are supposed to help other programmers
understand what the program is doing.

Assembly language offers maximum flexibility in program
implementation and arrangement of data. Decisions to minimize
program size or optimize execution speed are relatively easy to
implement in assembly languages, although the result may not be
easy to understand, even with the best of comments.

Fortunatley programming languages that operate at a "higher
level” have evolved and are now in widespread use.

Let me now introduce Rhonda Lackey who will survey some of
the first high level languages designed for commercial
applications.

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

COMMERCIAL LANGUAGES

INTRODUCTION

TERMINOLOGY

A BASIS FOR LANGUAGE EVALUATION
CHARACTERISTICS OF COMMERCIAL APPLICATIONS

SURVEY OF COMMERCIAL LANGUAGES
— BASIC

— COBOL
— RPG
SORT/MERGE

COMMERCIAL LANGUAGES

This presentation will describe a subset of the languages and tools
available on the 990. These languages are those that we group as 'Commercial
Languages'" since they are used primarily for business data processing
applications.

1’11 begin by defining some key terms that will be used.

Before examining specific languages, it will be useful to establish a

basis for comparision and evaluation. We will look at how languages differ and
what makes one preferable for a specific application.

We’1ll look qu 1ckly at some of the major characteristics that typify

paen—y 1
commerical app licati

We will examine each of these commercial languages in turn, moving from an
overview of the history and general characteristics to focus on features and
future directions specific to the TI implementation. A sample program fragment
of each will be shown, not for the purpose of detailed analysis, but merely to
demonstrate the general "flavor" of the language. Each language will also be
individually highlighted on an overall language comparison matrix which
reflects some of the key issues addressed in our "language questionaire'.

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

TERMINOLOGY

* PROGRAMMING LANGUAGE, HIGH-LEVEL LANGUAGE,
TOOL

¢ DATA STRUCTURE, OBJECT, VARIABLE, TYPE

¢ ALGORITHM, PROCEDURE, CODE, CONTROL
STRUCTURES

e COMPILER, INTERPRETER
* MAINTENANCE, (TRANS)PORTABILITY

TERMINOLOGY

A programming language 1is a formal notation for describing data and the
transformations we wish to perform on that data. A high-level language allows
these to be described above the 1level of primitive operations actually
available on a particular machine. This may be contrasted with a software tool
which may be used either directly or via a programming language to perform some
specific function or set of functions.

The descriptions of the representation and relationships between data are
referred to as data structures. A "piece" of data is an object (or variable)
whose type is that of its underlying structure.

An algorithm is a description of the steps required to transform the data
(solve the problem). This description may also be referred to as a procedure
or code. Control Structures are facilities provided by the language for
governing the order in which solution steps are executed. Most shampoo bottles
give an algorithm which wuses the control structure "Repeat" (and fails to
specify when to stop the cycle).

This notation is translated into machine-executable form by another
program called a compiler. A compiler produces an equivalent set of
instructions which may be directly executed by the target machine or way
require an interpreter to perform the indicated operations. A frequent trade-
off between the two is the superior execution speed of the directly-executable
program versus the ease of program development in an interpretive environment.
The interpretive environment typically provides nicer debugging facilities and
requires less time to rebuild a program after a change has been made.

Maintenance refers to the continuing process of changing an existing
program to correct problems, add new functions or improve performance.
(Trans)Portability is the ease with which a program can be made to run on a
different machine.

Many of the other terms used have meanings which often can be inferred
from their usage in more familiar contexts.

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

A BASIS FOR LANGUAGE EVALUATION

¢ LANGUAGE/TRANSLATOR-SPECIFIC

— Development support
. .Well-documented, stable translator
. .Tools available {&.g. debuggen
. .Ease of team deveiopment
. .Available programmer skills

— Future directions
.. . Maintainability
.. .Transportability
.. .Likelihood of continued improvements

e APPLICATION-SPECIFIC

— Expressive power for this task
— Existing base of similar applications
— Performance and size requirements

A BASIS FOR LANGUAGE EVALUATION

In choosing a language for a particular application, the characteristics
of both must be considered.

Strength of support for program development is critical and is very much
tied to a specific language and/or translator implementation. In addition to
the quality of the tramslator and its documentation, this includes factors such
as the availablity of development tools to facilitate program editing,
debugging, and test monitoring and support for combining and verifying
interfaces between separately developed program components. The availability
of programmers already familiar with a language can be a significant advantage.

Considerations for the future include ease of maintenance and
transportability, and the probability of continued improvements in both the
language and the translator (is the product "alive"?). Maintainability is a
product of many factors, but in general the more readable the language, the
easier it is to understand the code and quickly correct a problem without
breaking something else. Transportability is promoted by language standards.

An important application-specific consideration is the relative ease with
which the solution to a particular problem can be expressed in a particular
language. Although an application can usually be written in more than one
language, the code 1in one case may be significantly more clear, compact and
efficient if the features of one language are better suited to the problem. An
existing base of similar applications written in a particular language provides
both a clue as to the language suitability and a starting point for new
applications.

The performance and size (memory) requirements for borth the ftranslator and
the application must also be analyzed.

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

CHARACTERISTICS OF COMMERCIAL
APPLICATIONS

« HIGH-VOLUME INPUT/OUTPUT
e RECORD-ORIENTED PROCESSING
e RELATIVELY STRAIGHT-FORWARD CALCULATIONS

CHARACTERISTICS OF COMMERCIAL APPLICATIONS

The languages I will be describing are grouped as "Commercial Languages"
since they are used primarily for business data processing applications. These
applications are characterized by high-volume, record-oriented input and output
with relatively straight-forward processing requirements. This means that in
general large files are read and written, with calculations such as maintaining
totals done on a line-by-line basis. Commercial languages therefore tend to
emphasize file description and flexible input and output capabilities rather
than features for describing complicated algorithms. A classic example of a
commercial application is a payroll program.

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

BASIC

e PROMINENT CHARACTERISTICS
— Widely available

— Spans both scientific and business applications
.. . Built-in mathematicai functions
.. .Good string processing and screen /O

— Popular as a “first language”

— Easiest to develop and maintain smaller programs

e Tl SPECIFICS
— Strong portability path (standard plus additions)

— Friendly development environment

BASIC

The BASIC programming language was developed in the early sixties at
Dartmouth College and is now widely-available on micro- and mini-computers.
The language has features which make if attractive in both scientific and
business applications. Since it 1is relatively easy to learn and provides a
convenient development environment (usually interpretive), it 1is one of the
most popular languages for new computer programmers. Small programs can
usually be developed very quickly. Maintenance of large BASIC programs can be
more difficult than with other languages, since the language is not really
designed for large programs broken into components.

The specification for TI BASIC was jointly developed in 1978 by DSG and SC
Consumer Products. This accounts for a strong similarity in 990 BASIC and the
BASIC available on the TI Home Computer. In addition to the minimal ANSI-
standard BASIC, 990 BASIC includes many additional features such as virtual
arrays, improved VDT output, and the IF-THEN-ELSE statement. Support is also
provided for program creation, editing and debugging.

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

SAMPLE BASIC PROGRAM

100 PRINT ERASE ALL
110 PRINT = PRINT :: PRINT :: PRINT :: PRINT

120 ACCEPT “Time per ‘M’ile — — — Time for ‘Race — — — *Quit: ;A%
125 IF SEG$(A$.1,1) = “Q” THEN 490
130 _PRINT

160 IF SEG$(AS,1,1) <> “M” THEN 300

170 ! Kilometers and time input, Minutes per mile output
180 ACCEPT “Time for race — — — — Minutes: <M

190 ACCEPT “ Seconds: %S

200 M=M+(S/60)

210 MI=(1000*D)*(39.37/36)1760

220 PRINT

230 PRINT “ Miles in race: “;Mi

260 S=INT({(MPM — M)*60) + 0.5)

270 PRINT “Time per mile — — — — Minutes:“M
280 PRINT “ Seconds:*S
290 GO TO 110

300 IF SEG$(AS,1,1) <> “R” THEN 450

310 ! Time per mile and kilometers input, Time per race output
320 ACCEPT “Time per mile — — — — Minutes: “:M
330 ACCEPT ¢ Seconds: “S
340 M=M +(S/60)

350 Mi=D"62136994945 ! D * Miles per Kilometer
360 TIME=M*MI :

370 M=INT(TIME)

380 S=INT((TIME — M)*60) + 0.5)

390 PRINT

400 PRINT “Time for race — — — — Minutes:M
410 PRINT “ Seconds:*S
420 GO TO 110

440 ! Error
450 PRINT “Say what?”
460 GO TO 110

480 ! Exit
490 BYE

SAMPLE BASIC PROGRAM

This is a2 sample BASIC program. Notice that source statements
numbered, are fairly simple, and that program variables are not declared.

are

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

C F P R D D Q S T T

(o] (o] A P A B U (0] | 1

B R S G T|M}|E R F P

(o] T Cc A S R T (o} E

L R A Y I R

A L D M| M
N C R
T G

EASE OF DEVELOPMENT + + + + +2] + +
LEARNING CURVE + + | +/2 +
TRANSLATOR SPEED * | - + _
APPLICATION SPEED - * * x X x| X X X X X X
PORTABILITY * « 1413 —_ = = =] =
MAINTAINABILITY + - * -_ + + + +
SCIENTIFIC/IENGINEERING * -
SYSTEMS PROGRAMMING - +14] — —_ = = —] — |xxx
BUSINESS APPLICATIONS * —_ + + + + + + +
SCREEN MANIPULATION + — | -] - XXX/ XXX XXX|XxXX]| * [xxx
DATA MGMT/ACCESS + | = | = * * e | — | — | —
POTENTIAL + + | — + + + +

NOTES:
1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.
3 — WITHOUT Tl EXTENSIONS.
4 — WITH TI EXTENSIONS.

LANGUAGE COMPARISON MATRIX

This is the first of several appearances of the language comparison

matrix. Note that the columns are broken into two groups: languages and
tools. The notational conventions are: "%x" = axcellent, "+" = very good,
(blank) = average, "-" = poor, and "xxx" = not applicable.

The highlighted column for BASIC emphasizes some of the major strengths
and weaknesses of the language.

10

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

COBOL

* PROMINENT CHARACTERISTICS
— Very widely used
— Highly-standardized
— “English-like” syntax

* Tl SPECIFICS

— Strong portability path

— Interpretive, debugger available

— Promising future directions
...COBOL Program Generator
.. .Good chance for future upgrades

COBOL

COBOL (COmmon Business Oriented Language) is the most prevalent language
for business data processing applications. Originally developed in the early
1960’s, part of it’s success has come from widespread use in government
installations. One of the most colorful advocates of COBOL is Captain Grace
Hopper of the U, Se Navy, a key contributer to the original language
definition. A highly-developed language standard exists. The standard has
evolved over a period of many years and is a crucial factor in the popularity
and portablility of the language.

COBOL is characterized by English-like syntax intended to make the code
"self-documenting". Statements like '"SUBTRACT WITHHOLDING FROM GROSS—PAY
GIVING NET-PAY" make the code fairly easy to read and understand. The data
representations available are intented to facilitate the decimal computations
common in business applications.

990 COBOL is very similar to RMCOBOL, a widely—-available product. The
compiler is interpretive and a debugger is provided.

The future 1is attractive for COBOL users. Plans include a COBOL Program

Generator and the large user base promotes continued commitment to product
improvement.

11

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

SAMPLE COBOL PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. COMPRESS.
* This program deletes comment lines from a COBOL program
* and displays summary tallies. -
ENVIRONMENT DIVISION.)
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT SOURCE-FILE ASSIGN TO INPUT “SOURCE™
SELECT COMPRESSED-FILE ASSIGN TO OUTPUT “OUTPUT".
DATA DIVISION.
FILE SECTION.
FD SOURCE-FILE.
01 IN-REC.
03 FILLER PIC X(6).
03 INDICATOR PIC X.
03 FILLER PIC X(73).
FD COMPRESSED-FILE.
01 OUT-REC PIC X(80).
WORKING-STORAGE SECTION.
77 LINE-COUNT PIC 9(5) VALUE 0.
77 COMMENT-COUNT PIC 9(5) VALUE 0.
77 COMMENT-PERCENTAGE PIC 999V99 USAGE COMPUTATIONAL.
77 PERCENTAGE-DISPLAY PIC 999.99 USAGE DISPLAY.
77 HOLDTHAT-SCREEN PIC X.
PROCEDURE DIVISION.
INITIALIZATION
OPEN INPUT SOURCE-FILE.
OPEN OUTPUT COMPRESSED-FILE.
10-LOOP.
ADD 1 TO LINE-COUNT.
IF INDICATOR = “*”
ADD 1 TO COMMENT-COUNT
ELSE
WRITE OUT-REC FROM IN-REC.
GO TO 10-LOOP.
FINISH-UP.
COMPUTE COMMENT-PERCENTAGE ROUNDED =
COMMENT-COUNT * 100 / LINE-COUNT.
MOVE COMMENT-PERCENTAGE TO PERCENTAGE-DISPLAY.
DISPLAY “Total Lines = ” ERASE, LINE-COUNT.
DISPLAY “Number Comment Lines = 7, COMMENT-COUNT,
“ = 7, PERCENTAGE-DISPLAY, “%".
ACCEPT HOLDTHAT-SCREEN.

SAMPLE COBOL PROGRAM

This a sample COBOL program. Notice the extensive declarations and the
English-like sentence structure of the procedural code.

12

. TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B F|P|R D|D|Q@]| S| T]|T

A o|A]|P AlBlulo] I

S R|s| G T{M|E|R|FI|P

i T|c A|ls|RrR|T|O]|E

c R|A Yy {1/ |R

AL D MM
N c R
T G
EASE OF DEVELOPMENT | = + | + + w2 + | +
LEARNING CURVE * + + | +2 +
TRANSLATOR SPEED . P
APPLICATION SPEED - |- % % %|% % x x x x
PORTABILITY + v |4+ S I O B
MAINTAINABILITY - — |«] = + + + |+
SCIENTIFIC/ENGINEERING | + * -
SYSTEMS PROGRAMMING | — 4| — - = = =] = |xxx
BUSINESS APPLICATIONS + —_ + + + + + + +
SCREEN MANIPULATION + - —_ | - XX XXX x|xxxixxx| *« |xxx
DATA MGMT/ACCESS + . e A
POTENTIAL + | — + + + +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.

3 — WITHOUT TI EXTENSIONS.

4 — WITH TI EXTENSIONS.

LANGUAGE COMPARISON MATRIX

The highlighted column for COBOL in this table emphasizes some of the
ma jor strengths and weaknesses of the language.

13

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

RPG

e PROMINENT CHARACTERISTICS

— Features specifically tailored for Report Generation
— Cryptic input format is also powerful and compact

e Tl SPECIFICS

— Some menu assistance in specification entry
— Recent and future directions

... Available on DNOS

.. .Limited development and support

RPG

RPG (Report Program Generator) provides the capability for generating
reports given a compact description of the content and layout of the reports.
Originally developed by IBM in the mid- 1960‘s, the language features are
specifically intended to facilitate the specification of report properties such
as pagination conditions, summary calculations, and print positions. The

: . / . .
cryptic input format can be considered as both a postive and negative feature.

Reports can often be described and generated very quickly by an RPG expert, bhut
readability is limited.

Menus available on the 990 provide some assistance in preparing Report
Specifications.

RPG is now available on both the DX10 and DNOS operating systems, although
future development and support are limited.

14

TI-MIX 1983
Techniques and Concepts for the Non Technical User
Survey of 990 Languages

SAMPLE RPG SPECIFICATION

{g\ RPG Il OUTPUT SPECIFICATIONS
e 1 75767778 7980
PrOGRAM
[Frocrammer [oate] IDENTIFICATION
5
o] SKIP OUTPUT INDICATORS PRINT 2ERO
< NQ SIGN | CR ~ | X = REMOVE
; (v BALANCES PLUS SIGN
YES YES A J Y = DATE
ves o N o |« BN eoir
a
; NO YES 3 c L 2 = ZERO
S|~ NO NO 4 D ™M SUPPRESS
PaGE| LINE FILENAME e aND AND FIELD NAME gl _ewm
Szl |e =1 eosiTion
g1R 1|8 |8
2 ¥ lalw e ol
3 AR wlt
F w |, 3ls x
= el s . . Mt 3 CONSTANT OR EDIT WORD
H SR N & 19 si3 K
2 8| |2 2 g 2l <
AINID
1 2|3 4 516|7 8 9 10111213haf1shef17|18{19 2021 3{242926/27|28[29 3@3‘3233343535373539 40 41 42 43[44/45 46 47 48 49 50 51 5253545556 57 58 596061626364 656667 68 697071727374
T TY T T T
i i !
L [6[118]- PRITIFIT/L [M| | [2jof6[[[1T | EEEEE f
! \ — :
[loRld- oO|R ON

A
S|
-]

§9T£ :
|

RS [ge =

NS~
»
| P -
[2]
Fia)
~

]
%

I Gl ol ol e Kol Gl et ol el il ~ Y %EVFKGv
i
o
>
I3
m
L]

o
= |
[+]
-1
P
r
(%
Te
IS

6|¢)°[DS|K|F|T|L] ADID| 11

NUMBER OF SHEETS PER PAD MAY VARY SLIGHTLY.

(B)137950(1/2)

SAMPLE RPG SPECIFICATION
RPG programs are written on 'specification forms" which separate the

descriptions of input, calculations, and output. This is an example of an
output specification for a sales report.

15

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

Bl]Cc|c|F]|P p|lDlQ@]| S| T|T

A o|lo | A AlBJluUu]|] O]l |

S B|R|S Ti{M|E|R|F]|P

| o|T|C Als|R|{T|O]|E

c LR | A Yy{ /|R

AL D M| M
- N c R
) T G
EASE OF DEVELOPMENT * + + + w2 + | +
LEARNING CURVE * + + | +12 +
TRANSLATOR SPEED + o | = + | =
APPLICATION SPEED — |« =1 %] = x % x|x x x X x x
PORTABILITY + * * * +/3 -— _ — _— —_
MAINTAINABILITY S I e + + + | 4+
SCIENTIFIC/ENGINEERING | + *
SYSTEMS PROGRAMMING | — | * | — 4 — = =1 = = |xxx
BUSINESS APPLICATIONS | + . | = PN P S B P
SCREEN MANIPULATION + —_ + _ | = XX XXX x|XXxX[xxx| * |[xxx
DATA MGMT/ACCESS | =+ =1|- el sl =] =1 =
POTENTIAL « | + + + P N B
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.

3 — WITHOUT TI EXTENSIONS.

4 — WITH TiI EXTENSIONS.

LANGUAGE COMPARISON MATRIX

The highlighted column for RPG in this table emphasizes some of the major
strengths and weaknesses of the language.

16

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

SORT/MERGE

e PROMINENT CHARACTERISTICS
— More a tool than a classical language
— Multiple usage contexts
.. .Stand-alone
.. .Subroutines called from application program
— Cryptic interface

e TI SPECIFICS
— New release in 1983
.. ¥Friendly” front-end
.. .Sequence-preserving sort

SORT/MERGE

The SORT/MERGE package provides the capability to produce files which have
been re-ordered or combined based on "key" values. In addition, other features
such as tallies and reports are available. Although SORT/MERGE is not
considered to be a language in the usual sense of the term, it loosely fits our
definition of a mechanism for describing an algorithm for input transformation.
The package can be used in a stand-alone fashion or (more frequently) linked
with an application program and called as a subroutine. These programs
(usually written in COBOL) can receive records for processing in sorted order.

The current interface to SORT/MERGE consists of a series of cryptic fixed-

format control lines. During 1983, a more natural interface will be provided,
although the existing input format will be supported for compatibility.

17

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

SAMPLE SORT/MERGE CONTROL FILES

CURRENT FORMAT

00000HSORTR 42A 42 12000
00001DOS@PROC@
00002DA00420256

00003DWEDSO01
00004DIS@PROC@

00008DA0042 400

00010FNC 1 42

I*

PROPOSED ALTERNATIVE FORMAT

Field CCID contains integer from 1 to 8
Field NAME contains characters from 10 to 50
Sort using file NAMELIST
on ascending CCID ascending NAME
return file NAMESOUT

SAMPLE SORT/MERGE CONTROL FILES

Sample SORT control files are shown here, the first wusing the current
input format, and the second in the new and improved format. The new front-—end
will actually allow a command file consisting of only the word "SORT'" which
would sort a default input file based on the value of entire lines. Although
the existing input format will still be supported, this new format provides
notation to cover all current SORT/MERGE options.

18

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B|C|C|F]|P|R DID|aQ Tt

A (o] (o] A P A B u I |

S B R S| G T M E F P

| 0 T c AlS R (o} E

C L R A Y R

A L D M
- N c
(V)] T
EASE OF DEVELOPMENT * + + + + + +
LEARNING CURVE * . + + +
TRANSLATOR SPEED + | - + -
APPLICATION SPEED - * | = * * X X XX X X X X X
PORTABILITY + * * * | 43 — | = = —
MAINTAINABILITY - + + —_— * —_ + + + +
SCIENTIFIC/IENGINEERING | + * -
SYSTEMS PROGRAMMING | — * - +14 | — - - - — xxx
BUSINESS APPLICATIONS + * - + + + + + +
SCREEN MANIPULATION + — | + — | = = X % x| X X x| X X % * Ixxx
DATA MGMT/ACCESS + | = ¢+ | - | = * * * - =
POTENTIAL * + + | — + + +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.

3 — WITHOUT Tl EXTENSIONS.

4 — WITH TI EXTENSIONS.

LANGUAGE COMPARISON MATRIX

The highlighted column for SORT/MERGE in this table emphasizes some of the
major strengths and weaknesses of the tool.

19

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

PSYCHOLOGICAL VARIATION IN
PROGRAMMERS BY LANGUAGE

LANGUAGE-DEPENDENT SOCIAL
PREFERRED LANGUAGE ADJUSTABILITY INDEX [LDSAI] (*)

BASIC 0.68 = Star Trek fanatic

C : 0.97 = expediency over idealism
COBOL 0.80 = extroverted, verbose
FORTRAN 0.18 = dresses funny

PASCAL 0.44 = self-righteous

RPG 0.02 = introverted, brusque

(*) Expressed as normalized ratio of deviation.
© 1983 RCL. All retraction rights reserved. Limited credibility.

PSYCHOLOGICAL VARIATION IN PROGRAMMERS BY LANGUAGE

The management of computer programming is not a well-understood process.
Researchers continually attempt to answer questions such as:

In what ways can we measure programmer aptitude?
How do we deal with the programmers we have?

Is matching programmer and language as important
as matching application and language?

The Language-Dependent Social Adjustability Index (or "LDSAI" for short)

seems to provide a useful device both for recognizing programmer potential and
communicating with those who have it.

29N

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

SCIENTIFIC AND SYSTEMS LANGUAGES

INTRODUCTION

CHARACTERISTICS OF SCIENTIFIC APPLICATIONS
CHARACTERISTICS OF SYSTEMS IMPLEMENTATIONS

SURVEY OF SCIENTIFIC AND SYSTEMS LANGUAGES
— FORTRAN

— PASCAL

- C

SCIENTIFIC AND SYSTEMS LANGUAGES

This portion of our talk will consist of a very brief
overview and comparison of three high level languages designed
for scientific applications and systems implementation
programming. These languages are FORTRAN, Pascal, and C.
FORTRAN and Pascal are available on the Texas Instruments 990
computer systems. C is not currently implemented on the 990, but
has so much potential it is included for reference.

Before we get into the specifics of these three languages we
will first look at some of the characteristics of scientific
applications and systems implementations,

We will then look at some of the features of each of the
languages that make them suitable for their particular
applications. As in the commercial language part of our
presentation, I will show you some simple programs, not to teach
you the detailed syntax, but simply to give you a feel for the
language. I will also talk briefly about the history of the
language, and about some specific Texas Instruments features.,

21

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

CHARACTERISTICS OF SCIENTIFIC
APPLICATIONS

e LARGE NUMBER OF NUMERICAL CALCULATIONS
o EXECUTION SPEED AND EFFICIENCY ARE CRITICAL

e PROGRAMMING DONE BY ENGINEERS AND
MATHEMATICIANS

CHARACTERISTICS OF SCIENTIFIC APPLICATIONS

The most significant characteristic of scientific
applications 1is the large number of numerical calculations
usually involved. These are quite often done in real or floating
point arithmetic. Because of this emphasis on calculations or
number crunching as we call it, a compiler which produces code

that is efficient and rums fast is critical. This obviously
rules out wusing an interpretive language such as BASIC or COBOL
for these types of applications because interpretive languages
execute much slower than compiled languages. Another

characteristic of these applications is the programming is quite
often done by engineers or mathematicians. Therefore using a
language that engineers commonly know would be a big asset
because it would reduce the learning curve element of writing
programs. A typical example of a scientific application 1is
computing the trajectory of a missile.

22

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

CHARACTERISTICS OF SYSTEMS
IMPLEMENTATIONS

e COMPLEX ALGORITHMS

e LOW LEVEL INTERFACES ARE NECESSARY

e BIT LEVEL MANIPULATION REQUIRED

e EXECUTION SPEED AND EFFICIENCY ARE CRITICAL

e LITTLE EMPHASIS PLACED ON 1/0

* PROGRAMMING DONE BY COMPUTER SCIENTISTS

CHARACTERISTICS OF SYSTEMS IMPLEMENTATIONS
Systems implementations involve the most difficult kind of

programming. The programs are typically so 1large and the
algorithms so complex that one person can usually understand only
pieces of the total implementation. This makes a type of
programming called structured programming a necessity.

Structured programming is a modern technique of breaking up a
program into small pieces with well defined inputs and outputs,
and 1is considered the best way of writing complex programs.
Languages suitable for systems implementations should encourage
the wuse of structured programming techniques. Because parts of
systems implementations need to be writtem in assembly language
for one reason or another, the high level language you use needs
to be able to easily interface with these 1low 1level routines.
Many assembly language routines can be eliminated if the high
level language has facilities for bit level manipulation of data.
Often pieces of a systems implementation need to operate wunder
extreme speed or space constraints. Therefore, as with
scientific applications, a language that produces code that is
efficient and ruus fast 1is critical. A sophisticated 1I/0
capability is one of the least important features required by a
systems implementation language. Often systems implementation
programs are written by people with a strong computer science
background. Some typical pieces of a systems implementation are
operating systems, compilers, and communication software.

23

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

FORTRAN

PROMINENT CHARACTERISTICS

— Designed and implemented in late 1950’s
— First accepted high level language

— Scientific applications

— Efficient execution

— Well known

— Easily learned

— Libraries

— Simple syntax weak in control structures
* Ti SPECIFICS

— Migration path between FORTRAN 66 and FORTRAN 78
— Excellent quality code produced

— Extra debug features

3

FORTRAN

FORTRAN, designed and implemented in the late 1950’s was the
first widely used high level programming language. Before this
time all serious programming was done in assembly language
because no available high level language could produce efficient
code. FORTRAN 1is widely wused for scientifiec and numeric
computing. This is true in part because its primary design goal
is one of execution efficiency. The 1language is well known
because it has been around for such a long time and is a required
language in most engineering schools across the country. This
feature has two important consequences. Engineers writing new
scientific FORTRAN applications will in many cases already be
familiar with the language, therefore little time needs to be
spent on this learning process. In addition many routines to do
commonly needed tasks have already been written and are readily
available., These types of routines are refered software
libraries. For the programmer who does not already know FORTRAN,
the language 1is easily 1learned due to its simplicity. The
disadvantage of this 1is although the syntax of FORTRAN is
sufficient for most scientific applications, the fact that it is
weak in control structures hinders structured programming.

The most modern version of FORTRAN is called FORTRAN 78. An
extremely good feature of the Texas Instruments FORTRAN compiler
is it allows ©you to <combine programs written in an earlier
version of FORTRAN called FORTRAN 66 with the modern version.
This means that you «can still conveniently use all those old
FORTRAN programs you may have while taking advantage of newer
features. The Texas Instruments FORTRAN compiler also produces
excellent quality code. Therefore, programs compiled with TI
FORTRAN should run as fast and as efficiently as possible. The
Texas Instruments FORTRAN also provides some debug capabilities
not normally found in a coumpiler of this kind.

24

TI-MIX 1983
Techniques and Concepts for the Non-Technical or New User
Survey of 990 Languages

SAMPLE FORTRAN PROGRAM

PROGRAM RTRANG

CHECK FOR RIGHT TRIANGLE

OO0

READ (1,6)A,BC

WRITE(2,7)A,BC

IF(ABS(A*A + B*B — C*C) — 1) 20,5,5
IF(ABS(B*B + C*C — A*A — .1)20,10,10
IF(ABS(C*C + A*A — B*B) — .1) 20,1515
WRITE(2,8)

GO TO 1

WRITE(2,9)

FORMAT(3F10.5)

FORMAT (1HO,3F10.5)

FORMAT(29H THIS IS NOT A RIGHT TRIANGLE)
FORMAT(25H THIS IS A RIGHT TRIANGLE)
END

SAMPLE FORTRAN PROGRAM

Here 1is a sample FORTRAN program. Notice that some of the
source statements have labels and that there are GO TO statements
jumping to these labels. This is an indication that the language
does not encourage the use of structured programming techniques.

25

TI-MIX 1983
Techniques and Concepts for the Non-Technical User

Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B Cc C P R D D Q S T T

A 0 A P A B u o | 1

S B S G T M E R F P

1 (o} C A S R T 0 E

(o] L A Y 1 R

L D M| M
= C R
U] T G
EASE OF DEVELOPMENT * + + + + +2]| + +
LEARNING CURVE * + + | +/2 +
TRANSLATOR SPEED + —_ + —
APPLICATION SPEED - * - * X X X|X XX X X X
PORTABILITY + * * +13 _ = = = =
MAINTAINABILITY - + + * — + + + +
SCIENTIFIC/ENGINEERING | + -
SYSTEMS PROGRAMMING | — * - +14) — - = | =] = | = |xxx
BUSINESS APPLICATIONS + * + + + + + + +
SCREEN MANIPULATION + —_— + [XX R XX XIXXX[XxXX| * [xx%X
DATA MGMT/ACCESS + —| + —_ * " w | — | =] =
POTENTIAL * + + | - + + + +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.

2 — WITH NEW INTERFACE.

3 — WITHOUT TI EXTENSIONS.

4 — WITH Tl EXTENSIONS.

26

TIMIX 1983
Techniques and C. pts-for the NonTechnical U
Survey of 990 Languages

PASCAL

PROMINENT CHARACTERISTICS
— 1968 offshoot of ALGOL
- G !
Systems applications
- Block d |
User defined types
En g d prog ing
Verbose
Strongly typed
= Well known
« Tl SPECIFICS
— Enables low level interfacing
— Bit level manipulation
- Possible to override strong typing

PASCAL

Pascal was designed and implemented in 1968 by Niklaus Wirth
as an offshoot of Algol 60, another high level language. Pascal
is a general purpose language suitable for a wide wvarity of
applications. It is used heavily by university computer science
departments because its powerful structures lend themselves to
the teaching of structured programming concepts. Pascal subsets
are often used as systems implementation languages. For example,
several of Texas Instruments”’ compilers, much of our
communication software, and many of our operating system
utilities are written in a stripped down version of Pascal that
produces very high quality code. Pascal’s most notable features
are block structured control statements and user defined types.
Although this makes Pascal more difficult to learn than FORTRAN,
these features were designed specifically to encourage the use of
modern sitructured programming techniques., Pascal is a verbose
language whose syntax uses many english sentence constructions.
It also encourages the use of long descriptive variable names.
These two features combined cause programs in Pascal to be self
documenting. Why, even managers can understand Pascal programs!
This will save you money in the long run. Pascal is a stroungly
typed language. This means that there are many restrictions
placed on operations between objects of different types. This is
actually a double edged sword. It keeps the programmer from
making mistakes in manipulating objects. These kinds of mistakes
can be very time counsuming to track down. However, it can be
overly restrictive in the sense of hindering the knowledgable
programmer from performing 1legitimate operations on objects of
unlike types. Like FORTRAN but to a lesser degree, Pascal is a
well known and commonly wused language. This gives users of
Pascal the benefit of available software library packages
containing wuseful fuanctions and a high probability that their
programmers will already be familiar with the language.

Texas Instruments Pascal enables you to interface with 1low
level routines and do bit level manipulation of data, which is
required for systems implementation programming. It also
provides a way of overriding the strong type checking feature of
the language.

27

TI-MIX 1983
Techniques and Concepts for the Non-Technical or New User
Survey of 990 Languages

SAMPLE PASCAL PROGRAM

PROGRAM SHIFT;
(* PURPOSE: Shift lines 4 spaces to right and number *)

CONST = 4
MaxColumn = 80;
MinColumn = 1;

VAR Buff: PACKED ARRAY [1..80] OF CHAR;
LineNum: INTEGER;
Stat: INTEGER;

BEGIN
RESET(INPUT);
REWRITE(OUTPUT);
LineNum := 1;
WHILE NOT EOF(INPUT) DO
BEGIN
READLN(Buff);

Buff[Column + NumberOfSpaces] : = Buff[Column];
ENCODE(Buff, 1, Stat, LineNum: NumberOfSpaces);
WRITELN(Buff);

LineNum := LineNum + 1;
END;
END.

SAMPLE PASCAL PROGRAM

Here is a sample PASCAL program. Notice how many of the
constructions wuse words in the way they are used in sentences,
For example, "FOR" the current column being equal to the maximunm
column minus the number of spaces to shift "DOWNTO" the minimum
column, "DO" this line of <code. Also notice the descriptive
names like "NumberOfSpaces".

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

O—un>rw

M

rOwoOO

ZP»DV—-DV$VOT

[+ Bws)

>->»0

00

NnE WO

<ImMmCO

OIDE-~--DOWV

TV$OM——

m o - —

EASE OF DEVELOPMENT

+/2

LEARNING CURVE

+/2

TRANSLATOR SPEED

APPLICATION SPEED

X XX

PORTABILITY

MAINTAINABILITY

SCIENTIFIC/ENGINEERING

SYSTEMS PROGRAMMING

BUSINESS APPLICATIONS

SCREEN MANIPULATION

XXX

DATA MGMT/ACCESS

POTENTIAL

NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE

29

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

C

e PROMINENT CHARACTERISTICS

— Early 1970’ as part of UNIX
— General purpose language
— Systems applications

— Similar to PASCAL

— Loosely typed

— Source level optimization

— Bit level manipulation

— Concise

— Designed for the expert user

C

C was designed and implemented about the same time as Pascal
by Dennis Ritchie for wuse on and development of the UNIX
operating system. Most of UNIX and the tools that run on it are
written in C. C, 1like Pascal, is a general purpose language
suitable for many different kinds of applications. Unlike
Pascal, it is not a teaching language heavily used by computer
science departments, but instead was conceived specifically as a
systems implementation language. In other words, it is more
utilitarian in nature. C has many of the same features as Pascal
which encourage the use of structured programming. In contrast
to Pascal, it is not a strongly typed language, which gives the
programmer more flexibility in manipulating objects. In addition
C has features which allow more control over the machine code
being produced at the source level, and some features to do bit
level operations. In these respects C is more of a bridge
between an assembly language and a high level language, thus its

excellent suitability for systems implementations. Another
interesting characteristic of C is its emphasis on concision,

which is very much in line with the UNIX philosophy of tools
designed for the expert wuser rather than the novice. This
feature allows the experienced C programmer to develop
applications more quickly than with a verbose language such as
Pascal at the expense of some program readability. C is mnot as
well known as Pascal but it is currently receiving much attention
due in part to its association with the UNIX operating system.

30

TI-MIX 1983
Techniques and Concepts for the Non-Technical or New User
Survey of 990 Languages

SAMPLE C PROGRAM

#define YES 1
#define NO 1

main ()
/* PURPOSE: Count lines, words, and chars in input */
int ¢, nl, nw, nc, inword;

inword = NO;
while ((c = getchar() ! = EOF) {
++NC;
if ¢ == "In)
+4+ni;
ifc ==""1lc =="InM |l c ==t}
inword = NO;
else if (inword == NO) {
inword = YES;
++NW;
}
}

printi(“%d, “%d, “din”, ni, nw, nc);

SAMPLE C PROGRAM

Here is a sample C program. Notice how it much more cryptic
than Pascal. These symbols are equivalent to the "BEGIN" and
"END" that were in the Pascal program. Also notice some of the
conciseness the language gives you such as setting all three of
these variables to zero in one statement.

31

Ti-MiX 1983
Techniques and Concepts for the Non-Technical User

Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

O—-—nrm
rOwmoOO
Z>PIVHDTOTM
r>0O0nr» o

Oo>

00 »—->»0

n=Ewo

<ITmMmCcCO

OVE~—4D0W0m

SEIOMNM—-

mo—-

EASE OF DEVELOPMENT

+

+12

LEARNING CURVE

+/2

TRANSLATOR SPEED

APPLICATION SPEED

X X X

XXX

PORTABILITY

MAINTAINABILITY

SCIENTIFIC/IENGINEERING

SYSTEMS PROGRAMMING

+14

X XX

BUSINESS APPLICATIONS

SCREEN MANIPULATION

X X X

XXX

X X X

DATA MGMT/ACCESS

POTENTIAL

3 — WITHOUT Tl EXTENSIONS.
4 — WITH TI EXTENSIONS.

32

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

SUMMARY

e HIGH LEVEL VERSUS LOW LEVEL
— Greater ease of development
— Greater maintainability
— Greater portability
— Generally acceptable efficiency and execution speed

SUMMARY

In summary I have tried to hit on some of the highlights and
primary uses of three important high level languages. In going
over these features you should begin to see some of the
advantages of using one of these 1languages over an assembly
language, even for an application where execution speed and
efficiency are important counsiderations. You need to keep in
mind when choosing a language for an application, the importance
of ease of development, maintainability, and portability which
translate 1into dollars saved during the life cycle of a program.
All three languages are vastly superior in these areas than an
assembly language while maintaining an acceptable level of speed
and efficiency.

33

PRODUCTIVITY SOFTWARE

Greater Productivity
Not More Programmers

* Greater Productivity = Not More Programmers

This section of the presentation will show how five products
can bring greater productivity to a company’s data processin

34

PRODUCTIVITY AIDS

Operating System

3 b b

4 y v A

Application
Program

Data
Base

* Productivity Aids - Centered around the application

These five products work with Texas Instruments operating
systems. They work closely with the applicaton program.

35

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

TECHNIQUES AND CONCEPTS FOR
NONTECHNICAL USER

e DATA MANAGEMENT

— Problems concerning a DP manager
— DBMS-990

— Query-990

— DD-990

 PRODUCTIVITY BOOSTERS

— TIFORM
— TIPE

* Techniques and Concepts for Nontechnical User

This section of this presentation will cover two different
areas. First I will discuss data management. I will describe
some of the problems that face a data processing manager. Then I
will propose some solutions wusing Texas Instruments products.
These products are DBMS-990, Query-990, and Data Dictionary=-990.
Next, I will cover two products that can greatly improve the
productivity in a given department. The products are TIFORM, the
TI screen management package, and TIPE, the TI word processor.

36

PRODUCTIVITY AIDS

Operating System

3 3 3 3

_ N
Application

DBMS-990
Program

1

Data
Base

y

*# Productivity Aids - DBMS-9990

The first product to be discussed is DBMS-990. This product
will be referenced several times throughout the presentation.

37

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

DATA MANAGEMENT

* PROBLEMS FACING A DATA PROCESSING MANAGER

— Amount of data, currently and in future

— Amount of time spent retrieving information from
data in its current form (eg. searching through file
cabinets)

— Number of times data will be inserted, deleted,
or updated

— Amount of redundancy in data in its current form
(eg. the number of times employees names and
addresses are printed on various documents)

— Necessity for security measures
— Necessity for some transaction rollback function

* Data Management -~ Problems facing a Data Processing
Manager

There are several problems invloving data management that a
manager ought to be concerned with. The amount of data he or she
must keep track of is a major problem. If a business is doing
particularly well, the sheer quantity of data may increase

dramatically. Another big problem might be the amount of time
spent extracting data in its current format. Data redundancy can
also be a big problem. For example, an employee’s name and
address may appear on every document that involves that

particular employee or his dependants. If the employee changes
his or her address, each of the documents would need to be
modified. This also brings up a similar problem : data
verification. If there is a great deal of redundancy, it would
be difficult to insure that all the data is accurate. Security
can also a major worry., There may be some files containing
sensitive information not for common access. There 1is also a
ma jor need for keeping track of all the transactions that are
performed on the data. This is useful in the event that you need
to "un-do" an operation. These are all 1important problems a
manager may have to face.

TI-MIX 1983
Techniq and C pts for the Non-Te ical User
Survey of 990 Languages

DATA MANAGEMENT

Reduce data redundancy
Insure data accuracy
Implement security measures

* DBMS-990 ALLOWS A USER TO:

— Define logical construct to base the data organization
— Easily insert data to allow the data base to grow with

| T I |

the quantity of data R s '_ P to DBMS files
— Produce reports on the data, quickly and accurately .. .Useful in transaction rollback
using various utilities and application programs .. .Used for backups in the event of a system crash
* Data Management - DBMS-990 Allows a User to ...

A data base management system is a system for consistent
organization of data. With DBMS-990, users can organize, store,
retrieve, and modify their data by means of a logical construct.
The user can group together related information, give the group a
meaningful name, and reference all the information in that group
through that name. DBMS-990 allows the user to select the pieces
of information he or she wants to group together. As stated
earlier, the amount of data you need to keep track of can be a
major problem, as is the possibliity for growth in the future, A
data base management system can grow easily with the quantity of
data. It is also easy to see that the cost of converting to a
data base system will increase as the quantity of data increases.
The amount of time you spend searching for data and putting it in
some form that makes sense can be noticeably reduced using DBMS~-
990, There are powerful utilities that interface with DBMS-990,
most notably Query-990. I have already shown how Query-990 may
be used to produce a report in a few minutes that may have taken
hours using non-DBMS methods. As for the amount of redundancy
existing in your data, DBMS-990 may be wused to set up links
between related information instead of having to duplicate the
information. If we go back to our first example, the employee’s
name and address need only appear once instead of appearing many
times on many documents. Links could be established to all other
necessary information. The problem of data verification
disappears also, since the fact that the data appears once
insures that any updates to the data will update all occurrences.
As for security, DBMS-990 offers a good set of security features.
Certain files can be made to require certain passwords to allow
access. It may take one password to imsert data, and a different
one to delete data. These specifications can be made by the
user. DBMS-990 has an automatic transaction logging capability.
This 1is useful in the event of machine failure. For example, if
a bank was supposed to withdraw one hundred dollars from your
savings account and deposit it into your checking account, and
there was a machine failure at some time during the transaction,
the logging facility will tell exactly which parts of the
transaction were successfully completed. If the part that
withdrew the money was completed, but not the deposit, then you
certainly wouldn’t want to have a second one hundred dollars
withdrawn from your savings account, Transaction logging can
insure that this doesun’t happen.

39

presentation

particularly

TI-MiX 1983
Techniques and Concepts for the NonTechnical User

Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

fast

in execution,
the business applications category.
the data management-data access category.
were explicit design intentions.

40

B{Cc|c|F]|]P]|R D Ql s}t Tt | T
A (o] (o] A P A u (o} | |
S B R S G T E R F P
1 (o] T C A R T (o] E
C L R A Y / R
A L D MM
- N c R
)] T G
EASE OF DEVELOPMENT * + + + + +/21 + +
LEARNING CURVE * + + | +2 +
TRANSLATOR SPEED + * — +
APPLICATION SPEED — | x| =] x| % % X X x x
PORTABILITY + * * * | 4+/3 - - - -
MAINTAINABILITY - + + - * - + + + +
SCIENTIFIC/ENGINEERING | + * -
SYSTEMS PROGRAMMING | — * - +14 1 — - —_ | = | = |xxx
BUSINESS APPLICATIONS + * — + + + + + +
SCREEN MANIPULATION + — + - =] - X X X XX X[XXX[* |XXX
DATA MGMT/ACCESS + - + - | - * * - - -
POTENTIAL * + + — + + + +
NOTES:
1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.
3 — WITHOUT Tl EXTENSIONS.
4 — WITH TI EXTENSIONS.
Language Comparison Matrix - DBMS-990
This 1is the same 1language comparison chart from the
on scientific languages. It will be shown after
each of the products is presented. We can see that it 1is not

but DBMS-990 is rated highly in

It is also strongly rated in
This is because these

PRODUCTIVITY AIDS

Operating System

3] 3

)

R

Application >\ DBMS-990

Program
11 | AN

Data
Base

i

* Productivity Aids - Query-990

Our next product is Query-990.

41

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

DATA MANAGEMENT

¢ QUERY-990
— Powerful retrieval system
... Non-procedural language
.. .English-like syntax
.. .Insert, delete, and update a file
... Report formatting capabilities

— Two modes of operation
.. .Interactive
...Batch

— Guided Query
. . . Beginning Query-990 user
.. .User-friendly format
. . . Extensive help facilities

* Data Management - Query-990

Query-990 1is a powerful retrieval system. The major design
objective was to produce a tool for extraction of data from DBMS-
990 files. 1In a later release, the facility to retrieve data
from conventional files was added. Conventional files that
Query-990 can access are key 1indexed files, relative record
files, and sequential files created by DD-990, the Texas
Instruments Data Dictionary. Query—-990 is a non-procedural
language. Its English-1like syntax makes Query-990 easily
understood by programmers and non-programmers alike. With proper
preparation, queries like "LIST EMPLOYEE-NAME EMPLOYEE-SALES FROM
SALES-INFO-FILE WHERE COMMISSION > 5000 SORTED BY JOB~SALARY" can
be run, producing results that <can be understood by almost
anyone. Query-990 allows a wuser to modify files. A user can
insert data into a file, delete data, or change existing data.
Query-990 also has report formating capabilities to allow a user
to produce output including totals and averages of data in the
report. Query-990 has two modes of operation : an interactive
mode, and a batch mode. In the interactive mode, also referred
to as the stand alone mode, the user can build a query statement,
execute the query, save the query statement in a file for
execution at a later time, and save the output from his query in
a file. In interactive mode, the user may edit a query statement
from a previous session, and re-execute the new query statement.
In the batch mode, Query-990 may be called from an application
program written in COBOL, Pascal, FORTRAN, or BASIC. Query-990
also has a utility that is desiguned for the first time |user,
called Guided Query. Guided Query provides a user friendly
format with concise directions during the session, and extensive
help facilities, making it an excellent learning tool.

42

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B Cc C F P R D D S T T

A o (o] A P A B 0 | 1

S B R S G T M R F P

I [e] T C A S T| O E

C L R A / R

A L D M| M
- N c R
(1) T G
EASE OF DEVELOPMENT * + + + + +2] * +
LEARNING CURVE * + +/2 +
TRANSLATOR SPEED + * —_ + -
APPLICATION SPEED - * - * * X X X|X X X X %X X
PORTABILITY + * * « | +/3 - = S
MAINTAINABILITY - + + - * - + + +
SCIENTIFIC/IENGINEERING | + * -
SYSTEMS PROGRAMMING | — * - +/14 1 = - - — | - |xxx
BUSINESS APPLICATIONS + * - + + + + + +
SCREEN MANIPULATION + | - | + - -] - X X X|x x x XXX % XXX
DATA MGMT/ACCESS + —_ + —_ - * * — | =] -
POTENTIAL * + + | - + + + +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.

2 — WITH NEW INTERFACE.

3 — WITHOUT TI EXTENSIONS.

4 — WITH TI EXTENSIONS.

* Language Comparison Matrix - Query-990

In looking at Query-990 in the comparison matrix, we see
that Query gets rated highly in the learning curve category.,
This is because of the Guided Query utility. It is also rated
highly in the maintainability category, as well as the business
applications and data management and access categories.

43

TI-MIX 1983 Ti-MIX 1983

PRODUCTIVITY BOOSTERS PRODUCTIVITY BOOSTERS

LIST 01 FROM CUST program TESTQUERY,

TERESA LOWEREY 2163151223 3 2 8 type

JOHN TORTERELLA 2166545656 5 2 79

ALICE BERTRAND 2165458471 2 4 80 CONTROL BLOCK = record
RENALDO NOCON 5123454655 s 2 re PSWD : packed array [1. . 4] of char;
KIM BARNES 5126543322 1 2 8 FNCT,

ROBERT MACDOWELL 4196545658 H E ™ STAT : packed armay [1. . 2] of char,
NANCY MONACHINO 5124887544 3 19 8 DBFL,

JEFFERY THOMAS 2163535411 10 [l 8 Loct,

FRANCIS DIGBY a1 6 10 7

ocz,
KYID : packed amay [1. . 4] of char,
KEYV : packed amay [1. . 6] of char,
TERM : integer;

end;

UNE LIST = record
LL: packed aray [1. . 50] of char:
TERM : integer;

end:

DATA AREA = record
NAME : packed anay {1. . 20] of char;
PHON : packed armay 1. . 10} of char:

CB : CONTROL_ BLOCK:

DA : DATA_AREA;

LLIST ; LINE_LIST,

BUFFER : packed array [1. .BO)] of char;

S integer;

ENDLINE boolean;

procedure DBMSYS (var CONT_.BLOCK : CONTROL BLOCK; var CBE : integer:

varL LIST : LINE. LIST, var LLE - integer;
var D_AREA : DATA_AREA: var DAE : integer; extemal;

BEGIN (* TESTQUERY)

rewrite{OUTRUTY

DBMSYS(CBCB. TERMCB. TERM: :LINE LISTCB. TERM,
CB. TEAM: :DATA AREACE. TERM):

il CBL STAT <> '** then
begin

for i := 110 80 do BUFFER(l:=
encode(BUFFER1.80pen Error :
encode(BUFFER 14 SCB. STATY
Write{OUTPUTBUFFER)

end;

ENDLINE : = false;

encode{LLISTLLAS, 'LINE = 0T):
encode(LLISTLLAS, "}
encode(LLIST.LL09.S, 'NAMEY,
encode(LLIST PHONY;
IST MOY:

(LLISTLL.25,S, ADVRY;
encodefLLISTLL29.5. ™**“RLSEY:
while not ENDLINE do
begin

DEMSYSCACE. TERM.LLISTLLIST, TERM.DA.DA, TERMI;
encode{BUFFER1S.0A NAME)
encode(BUFFER 23,8,0A. PHON):
encode(BUFFER, 355,DA. ADMOY:
encode{BUFFER, 415,04, ADDA)
encode(BUFFER45.S.DA. ADYRY

write(OUTPUT,8UFFER)
if CRLOC2 = ™*** then ENDLINE : = true;
end;
CBFNCT := 'CF:

DBMSYS(CBCR. TERM, CBL TERM: :LINE LISTCB. TERM.
CB. TERM: :DATA AREACB. TEAM):

END.

* Data Management -~ Query-990 Example vs. Application
Program With DBMS Call

To show a small example of how Query-990 may increase
productivity, I have two illustrations. The first one is
probably the shortest query statement that cam be writtem, one
line 1in 1length. The output from this query is also dislayed.

The second illustration is a one hundred 1line Pascal program
using a call to DBMS-990 to extract data from a DBMS file. Both
segments of code produce the same output. This example 1is not
meant to indicate that there is always a 1:100 ratio of size of
Query-990 statements to application program size. It is only an
example of probably the simplest query statement and the
application program needed to produce the same results.

44

PRODUCTIVITY AIDS

Operating System

3 3

A

< \ N NN
DBMS-990 -

Application
Program

A

\DD-990
WL

Query-990 \\

*# Productivity Aids - DD-990

Data Dictionary, called DD-990, is the next product.

45

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

DATA MANAGEMENT

 DD-990
— Provides centralized interface to all data definition

— Two modes of data definition
.. .Interactive : Interactive Data Librarian
.. .Batch : Batch Data Librarian

— Allows complete data access to all file types
...DBMS-990
.. .Key indexed files
.. . Relative record files
.. .Sequential files

Extensive utilities

.. .FD section of a COBOL program from file definition

.. .Cross reference on a particular field defined in the
dictionary

* Data Management - DD-990

DD~990 is the Texas Instruments data dictionary. It
provides a centralized interface to all the data definitions in
an environment. DD-990 has four categories of entities that it
recognizes. They are fields, groups, files, and programs. DD-
990 keeps track of which files and which programs reference which
fields and groups. This 1is extremely important in the event that
a particular field needs to be alterred. Using a cross reference
utility, you can obtain a listing containing all the occurrences
of a particular field, or of all fields. There are two methods
of making definitions in DD-990. You may interactively insert
the definitions, wusing the Interactive Data Librarian, in which
you are prompted for the necessary information needed at. a
particular time. Or vyou may make definitions in a batch mode,
using the Batch Data Librarian. In either case, data definitions
may be made for DBMS-990 files, or any of the three coaventionl
file types : key 1indexed files, relative record files, or
sequential files. DD~990 has extensive facilities to generate
reports on the information stored in the library, that is the
collection of data definitions and their relationships. A good
example of a powerful wutility is the cross reference utility.
With it, a user can get a 1listing containing every wuse of a
certain field, group, or file wused 1in any <context 1in the
dictionary. Another powerful and wuseful wutility 1is the GCB
utility. With it, a user can generate the FD section of a COBOL
program for any file in the dictionary.

46

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B|C|cC F P R Dl aQ S| T T

A o0 A| P B u 0 | I

S B R S| G M E R | F P

1 (o} T c S R T| O E

C L R A Y / R

A L MM
(U] G
EASE OF DEVELOPMENT * + + + 21 + +
LEARNING CURVE * + | +/2 +
TRANSLATOR SPEED + » | — —
APPLICATION SPEED — | x| =] = * % X X
PORTABILITY + * * * | 4+13 _ =] = =
MAINTAINABILITY - + + - * -_ + + +
SCIENTIFIC/ENGINEERING | + * -
SYSTEMS PROGRAMMING | — | « - +4] — — = = — Ixxx
BUSINESS APPLICATIONS + * —_ + + + + + +
SCREEN MANIPULATION + — + — | -] - * Ixxx
DATA MGMT/ACCESS + - + — | - * * — | - —
POTENTIAL « | + | = + |+ | +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.

3 — WITHOUT Tl EXTENSIONS.

4 — WITH Tl EXTENSIONS.

* Language Comparison Matrix - DD-990

DD-990 is rated highly 1in ease of development, in the
learning curve, and 1in the translator speed. It is easy to
become familiar with wvarious utilities. It executes very
quickly, and it allows the expert wuser to develop complex
applications. It is strong in business applications and data
management and access. It is also has a great deal of potential,
since there 1is <currently work being done on the committee to
produce a standard for data dictionaries, and one of the members
of this committee works at Texas Instruments.

47

PRODUCTIVITY AIDS

Operating System

[3 » b [y

4 K

Y

Application KN pBMS.990

Program . »R

Data
Base

\"_——l,>

Query-990

* Productivity Aids - TIFORM

Getting away from data management products, our next product
is TIFORM, the Texas Instruments screen management package.

TIFORM PROCESSES

Interactive
Generation Form Definition
Edit
sﬁfrte ¢ Additional
Functions
ISGE)
Screen
TIFORM |e
Compile |
Language ‘
Interactive Dr%rerg TIFO_RM
Form Tester Runtime
TIFORM
Screen ! .
cosoL | [perecive
FORTRAN
Pascal
Subroutine TIFORM
Interfaces Screen

* TIFORM Processes

This is a pictoral view of the components of TIFORM. Each
of these components will be discussed in greater detail in the
next section. The components 1include the Interactive Screen
Generator and Editor, the Form Definition source, the Form
Definition Compiler, the Form Tester, the High Level Language
Interface Package, and the Form Executor.

49

Ti-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

COMPONENTS OF TIFORM

FORM DESCRIPTION LANGUAGE (FDL)

— Block structured language used to specify VDT screen layouts
FORM DESCRIPTION LANGUAGE COMPILER (FDLC)

— Converts FDL into a program file for the Form Executor
INTERACTIVE SCREEN GENERATOR AND EDITOR (ISGE)

— Allows user to design screen layouts on blank screen

HIGH LEVEL LANGUAGE RUNTIME INTERFACE PACKAGE (HLLIP)
— COBOL — FORTRAN — PASCAL

FORM EXECUTOR

— Run time package that executes the commands issued by
the application

FORM TESTER

— Allows user to view and test screen layouts without the
application program

* Components of TIFORM

TIFORM is the Texas Instruments screen management package.
It is designed as an interface for applications requiring input
and output to a video display terminal. The components of TIFORM
include the following. First is the Form Description Language,
called the FDL. This is a file containing the specifications of
the screen layouts written in a block structured language. Next
is the Form Description Language Compiler, FDLC. This is a
compiler that translates the FDL statements into a program file
containing the commands for the Form Executor. The Form Executor
is a run-time package, meaning that it is used at the time of
execution. This package actually executes the comands as they
are issued by the application. The next element of TIFORM needed
is the High Level Language run-time Interface Package. This is
the link between the application program and the Form Executor.
The HLLIP 1is a set of subroutines called by the application.
TIFORM has interfaces for three languages : COBOL, FORTRAN, and
Pascal. A final element of TIFORM is the Interactive Screen
Generator and Editor (ISGE). This wutility allows a user to
design screen layouts on a blank screen. In this manner, the
user gets a better feel for where the fields will be. The ISGE
utility will take the design specifications, build the FDL, and
if desired, compile the FDL.

50

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

BENEFITS OF USING TIFORM

e ALLOWS A PROGRAMMER TO SEPARATE THE CODE THAT
SPECIFIES SCREEN DEPENDENT INFORMATION FROM THE CODE
THAT ACTUALLY MANIPULATES DATA RECEIVED FROM A VDT

— Screen dependent information, ie. physical location
on the screen (column and line number), is removed
entirely from the application
..eg. If a user has a 5000 line COBOL program ac-
cepting data from a VDT, and the user needs to
move one input field 2 spaces to the left, he need
only modify and recompile a 100 or 200 line
TIFORM FDL, instead of the entire COBOL
program
— Terminal specifications are handled by TIFORM
.. .eg. If the same user wants to transfer the applica-
tion to a different type of terminal, the application
need not be modified, only the TIFORM FDL

* PERFORMS A LARGE AMOUNT OF DATA VERIFICATION ON THE

INTERACTIVELY SUBMITTED INFORMATION

* Benefits of Using TIFORM

There are several benefits of wusing TIFORM. One of the
ma jor benefits is that TIFORM separates the code that specifies
screen dependent information from the code that actually

manipulates the data recieved from the VDT. By screen dependent
information, I mean physical location of a field on a screen,
such as 1line and column number. This information is handled
entirely in the FDL. For example, if a user has a five thousand
line COBOL program accepting data from the screen, and a field
must be moved two spaces to the left, the user doesn’t have to do
anything to the COBOL program. He need ounly modify and recompile
a one- or two-hundred line FDL, In this manner, the user can cut
the development time of an application by as much as thirty
percent. Another part of the screen dependent information is the
terminal type. This can also be handled entirely by TIFORM. For
example, if the same user has developed his aplication on one
type of terminal, and must move the application to another type
of terminal, nothing need be doune to any part of the application.
TIFORM <can be set to automatically poll the terminal for its
type. TIFORM also provides a great deal of data verification.
For example, the FDL can stipulate that a certain field may ounly
accept numeric data, or that only members of a certain table can
be entered for another field. This frees the application of many
data checking duties.

51

TI-MIX 1983
Techniques and Concepts for the NonTechnical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B|C|C|F|P|R p|jolals
A olol|ajvP A|lB|uUu]| O
S B|R|S|G T{M|E]|R
c LIR|A '
AL D M
- N C R
v T G
EASE OF DEVELOPMENT * + + |+ + 12
LEARNING CURVE * + s | +12
TRANSLATOR SPEED + o | = + | -
APPLICATION SPEED — | s | =] =] = X X X|X X X X x %
PORTABILITY # | « | «| = |43 = =] =
MAINTAINABILITY - + + —_ * — + + +
SCIENTIFIC/ENGINEERING | + * -
SYSTEMS PROGRAMMING | — | * | — +l4| = - =1 =1 - x x
BUS|NESS APPL'CAT|ONS + * —_ + + + + + +
SCREEN MANIPULATION s l=1l+|=]-=1- x x x X x X
DATA MGMT/ACCESS | =+ | == A R A —
POTENTIAL « | o+ + | = + + +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.

3 — WITHOUT TiI EXTENSIONS.

4 — WITH TI EXTENSIONS.

* Language Comparison Matrix - TIFORM

TIFORM is rated high in ease of development. It is not
difficult to write complicated forms. TIFORM is also rated
extremely high in screen manipulation. There is great potential
for TIFORM, since Texas Instruments also has a member on the
committee for a screen management standard.

52

m] B

WWW%M
L

* TIPE (illustration)

This is how the project leader of TIPE likes to envision our
last product in the presentation. While it is certainly not the
same as just shoveling letters into the computer, TIPE, the word
processor for TI computers, comes quite close.

53

PRODUCTIVITY AIDS

Operating System

3 3 [3 b 3

})

S
\\\\ \\\\\\\ NHHN

TIFORM Application N DBMS-990
Program

A

A

* Productivity Aids - TIPE

TIPE currently does not interface directly with any of the
other products covered today, but it is very important to the
productivity of a company.

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

TIPE

 PROVIDES COST EFFECTIVE WAY TO ADD WORD
PROCESSING TO 990 COMPUTERS

e EASY TO LEARN, EASY TO USE
e MENU AND PROMPTING ORIENTED

* TIPE

TIPE 1is the Texas Instruments Page Editor. It is designed
to be an add-on package to TI’s operating systems. It 1is not
meant to compete with stand alone word processors. However, it
is a cost effective way to add word processing to Texas

Instruments computers. TIPE provides a large subset of word
processing features. These will be covered briefly later in the
presentation. TIPE 1is easy to learn, and easy to use. A self

instruction manual and an exercise manual are available when TIPE
is purchased. TIPE is menu and prompt oriented and designed to
interface easily with other Texas Instruments software and file
strucutres.

55

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

COMPONENTS OF TIPE

OPERATIONS

UTILITIES
— SCI utilities
— Submenu utilities

FUNCTIONS

FORMATTING FEATURES
* Components of TIPE

There are nearly fifty different features to TIPE. Instead
of trying to list and explain all of them, I will cover the four
groups that best name similar features. The first group 1is the
set of TIPE operations. TIPE operations are displayed on the
main menu and represent major categories of the TIPE program.
These operations are used to develop, revise, print and maintain
TIPE documents. Next is the group of TIPE utilties. There are
nine TIPE utilities. Seven are displayed on the utility submenu.
The other two are only available through SCI. A TIPE utility
does in general one of two things. The utility either provides
information, such as displaying the status of a document in the
print queue or displaying the contents of a directory, or the
utility automatically performs some task, such as converting a
document produced on an earlier version of TIPE to the newest
version of TIPE. Next are the TIPE functions. These functiomns
allow a user to manipulate text and move through a document.
Examples of functions are commands that display the next or
previous page of a document, insert text between existing lines,
search thru text and replace a string of characters with another
string of characters. Finally are the formatting features. The
TIPE formatting features are wused during a create or edit
operation to format the text. This is done by embedding special
codes (called ENTER <codes) 1into the text. These codes denote
functions which will occur when the document 1is printed.
Examples of the formatting features are siangle and double
underscore, single, double, triple and line and a half spacing,
subscript and superscript, and boldface type. These and all the
other features make TIPE a fine addition of word processing to TI
computers. TIPE may also be integrated with other TI products at
various levels. For example you may use Query-990 to generate
data that may go into a form letter written with TIPE.

56

TI-MIX 1983
Techniques and Concepts for the Non-Technical User
Survey of 990 Languages

LANGUAGE COMPARISON MATRIX

B clcC F P R D D Q S T
A (o] (o} A P A B U (o} I
S B R S G T M E R F
| (o] T C A S R T o}
C L R A Y / R
A L D MM
- N Cc R
U} T G
EASE OF DEVELOPMENT * + + + + +/2] +
LEARNING CURVE * + + | +12
TRANSLATOR SPEED + | = + —_
APPLICATION SPEED - * - * * X X X|% % X
PORTABILITY + * * * | 413 —_ = = =] =
MAINTAINABILITY - + + - * - + + +
SCIENTIFIC/IENGINEERING | + * -
SYSTEMS PROGRAMMING | — * - +14 | — - =] ===
BUSINESS APPLICATIONS + * —_ + + + + + +
SCREEN MANIPULATION + - + —_] -] - XX XX X X|X X X|%xx%XxX| *
DATA MGMT/ACCESS + | =] + | = | - * > * - | =
POTENTIAL * + + | - + + +
NOTES:

1 — INCLUDED FOR REFERENCE ONLY.
2 — WITH NEW INTERFACE.

3 — WITHOUT TI EXTENSIONS.

4 — WITH TI EXTENSIONS.

* Language Comparison Matrix - TIPE

TIPE is rated high in ease of development due to the TIPE
editor. It allows a user to develop complex documents using the
TIPE features. It is also user friendly and therefore is rated
highly in the learning curve category.

57

Mr. J.W. Woodridge
35775 Williamson Drive
Universal City, CA 91608

Dear Mr. Woodridge:

This example of a business letter was created and printed by the
new version of the Texas Instruments Page Editor.

Some of the features of TIPE-990 are illustrated in this letter.
naturally, a letter cannot tell you everything there is to know
about our new version of this software package, but a Texas
Instruments representative is available to answer any questions
you have.

TIPE offers several features during creation/editing operations
that make the job of keying text and formatting so easy for a
typist. Some of the features include automatic word wrapping,
block copy, move, reformat, delete and store operations, a free
moving cursor, and horizontal scrolling to 240 characters. TIPE
also offers a column copy, move, delete and erase function, in
addition to automatic centering and a background paragraph
assembly capability. Other editing features which TIPE provides
include a Global Search and Replace capability and a Direct Page
Access function which eliminates the need to perform scrolling to
reach a page of text.

TIPE features that are available during printing include bold
printing, automatic underscoring (either single or double), fully
automatic repagination which includes widow/orphan functionality,
variable line spacing (single space, space and a half, double and
triple spacing), stored print instructions for each document,
headers and footers, page numbers, subscripts/superscripts, a
character overstrike capability, which allows special characters
to be formed such as #, and even more.

TIPE-990 is designed with the operator in mind. There are a
series of conversational messages to help the operator in the
performance of specific functions. The variety of functions that
can be performed demonstrate the powerful versatility of the
package. TIPE-990 is casy to learn, and cven casier Lo use!

Thank you for your interest in the TIPE word processing system.

Sincerely,

* TIPE example Kris Rogers

This is an example of a form letter produced on TIPE. Some
of the features are highlighted, for example ©boldface type and
underscoring.

58

PRODUCTIVITY AIDS
SUMMARY

Operating System

F 3 [3

4 1L L A

. . N A\
TIPE TIFORM Application DBMS-Q\QO\

Program
N\ NN 71 AN

A

Data
Base

!
'E

y

* Productivity Aids = Summary

Now, you have a good idea of the power and time saving
potential of some of the tools available with the 990 computer
line. 1If you have any further questions about any of these
products, I suggest you attend the presentations based entirely

on the particular product.

59

Ti-MiIX 1983
Techniques and Concepts for the Non Technical or New User
Survey of 990 Languages

CHRONOLOGY

FOURTH GENERATION
INTEGRATED SYSTEMS

ARTIFICIAL INTELLIGENCE

QUERY
LANGUAGES

80’s 90's 2000 H c c

CHRONOLOGY

You have heard a rather complete overview of where we are in
Languages capability inmn 1983 with regard to standard, readily
available software. The future looks very exciting and although
"programming" will remain an intellectual exercise for an
indefinite time, the tools keep getting better. For example we
are already able to see how fourth generation languages,
integrated systems and artificial intelligence techniques will
reduce programming effort and help make systems more user
friendly.

Computer hardware required to operate future software will be
different from the off the shelf systems of 1983. It will be
interesting to see if these future computers approach the HAL
Class Capabilities already predicted for 2001.

60

990 HARDWARE AND SOFTWARE
OVERVIEW AND COMPARISONS

A presentation for TI-MIX 1983
Techniques and Concepts for the

Nontechnical or New User Session
by

Bruce Barlow
Texas Instruments
April 1983
Austin, Texas

ABSTRACT

This presentation will consist of three parts aimed at
familiarizing the novice or non-technical user with
computers and operating systems in general and the 990
hardware and software in particular. The first session will
deal with the fundamentals of computer hardware and the
general characteristics of computer operating systems. The
specific features of the various 990 computer architectures
will also be discussed in this session. The second session
will deal specifically with features of the DX10 operating
system 1including memory structure and system files.
Finally, the DNOS operating system will be discussed in a
similar manner to DX10 and a comparison of DX10 and DNOS
characteristics will be given.

GENERAL HARDWARE AND SOFTWARE OVERVIEW

Computers have undergone dramatic changes in size,
speed, complexity and price in the 1last 20 to 30 years.
Despite this evolution, the relationship of the computer
hardware and the systems’s software which supports it has
remained fairly constant. Granted, there have been
multitudes of computer hardware implementations and
corresponding operating systems to support them but the
primary characteristics of the basic computer have changed
very little.

Fundamentally, computer hardware consists of three main
components:

l. A central processing unit which may range from a
giant mainframe to a tiny microprocessor.

2., A hierarchical storage system for programs and
data which ranges from very high speed Random
Access Memory (RAM) to disk storage to tape
storage. Types of data storage vary dramatically
in access methods, capacity, and price and these
factors determine a particular storage medium’s
place in the hierarchy. Typically, the faster the
access the higher the cost-per-bit of storage.

3. An interface to the outside world which can be as
simple as a speed sensor on a microprocessor
driven cruise control or as complex as a
sophisticated color graphics Video Display
Terminal (VDT).

An operating system also has certain fundamental
characteristics which have remained constant over time.
These are:

1. Operating systems provide the direct interface to
external hardware devices such as VDTs, disk
drives, tape drives and communication devices.
That is, each user of a particular computer does
not have to understand the hardware interface of a
particular device in order to do i/o with that
device. The operating system translates a higher
level command from a user program into particular
hardware 1interface commands to actually perform
the desired function.

2. A benefit of providing a uniform access method to

hardware devices is that the operating system can

also control the usage of these devices. It is
not desirable, for instance, for multiple users to
write to a specific device simultaneously. The

operating system controls allocation and sharing
of resources.

3. The operating system provides common services for
user written programs which prevents each
individual user from having to provide that

feature in his own program. Perhaps the best
example of this 1is support for "file" oriented
access to a disk device. Even 1if a wuser has

access to a physical disk, it 1is still desirable
to have data he wishes to access logically grouped
into "files" and not to be bothered with where
that data actually resides on the disk. All
general purpose operating systems provide some
sort of file management service.

In summary, computer hardware provides for the storage
of data and the execution of programs. An operating system
is a program that executes on the computer hardware and acts
as an intermediary between user programs and the actual
hardware devices counnected to the computer. Of course, this
is a very simplistic view of a computer system but the
concepts are the same for the vast majority of computer
systems in the world today.

There are 3 basic CPU types

990 COMPUTER ARCHITECTURE

in the 990 hardware 1line:

the /10, /10A and /12. To a customer of Texas Instruments
the primary difference in these computers is cost and speed
but the underlying architectural characteristics are

samees

1.

These characteristics are:

A 16 bit address space - Essentially, this imposes

2 limit of 65536 (64K) bytes of program and data
area that can be directly accessed by any program.

A segmented addressing system - The 64K program
just mentioned can be partitioned in from 1 to 3
segments anywhere 1in physical memory. These

segments can be of varying size but the total of
the three cannot exceed 64K. This is wusually of
little concern to the average system user unless
he is developing an extremely large application.
A brief discussion of how operating system design
is affected by this feature will follow later.

CRU and TILINE input/output devices = Certain

devices with relatively slow access rates (line
printers for instance) can have their i/o entirely
controlled by a program running in the CPU. That
is, each character must be traunsferred through a
Communications Register Unit (CRU) by executing

instructions in the CPU. Typically, each
character i/o through this type of interface
causes an interrupt to the CPU when processing is
completed for that character . On the other hand
high-speed devices, such has disk drives, would
cause too great a burden on the CPU to be handled
in this manner and therefore use a TILINE
interface to transfer data. The data 1is
transferred in large blocks which happens
concurrently with CPU execution of other programs.
An interrupt is generated to the CPU after the
entire block is transmitted.

There are many other features that are common to

different 990 architectures but the ones listed above
central to understanding program and device limitations

the 990 systems.

the

the
are
on

990 OPERATING SYSTEMS ARCHITECTURE

The operating systems which runm on the 990
architectures also have common features in their
construction. Of course, the overriding constraint on this
commonality is the hardware design itself and even though
DX10 and DNOS have external functional differences there are
many underlying similarites.

As was mentioned above, programs executing on the 990
are limited to 64K bytes of address space at any given point
in time. This constraint applies to the operating system as
well. However, both DX10 and DNOS require that more than
64K of code and data to be resident in memory at all times
in order to guarantee good response time to user requestse.
This seeming paradox is not as severe as it might appear
because there are no system operations which require all of
the memory-resident code and data for its execution. Each
operation the user requests usually requires a specific and
predetermined portion of the memory resident code. For
instance, a call to read from a VDT device would not requre
access to the code that reads from disk files.

The segmentation feature of the 990 hardware allows the
operating system to "map in" the particular portion of code
required by a given user request. Remember that three
address segments are provided which may total up to 64K.
Figure 1 shows how this feature is used by the operating
system to insure that the right code is mapped in. By
controlling the segmentation feature of the 990, an
operating system may be larger than 64K bytes yet still
provide fast access time to required code and data. Even
with this control there are still practical limitations on
operating system sizes and the number of different i/o
devices which can be supported.

Each i/o device in a particular confguration has its
own unique characteristics and state information which must
be maintained by the operating system. This information is
kept in a memory-resident table referred to as a Physical
Device Table (PDT) and there is one of these for every
device "genned" into an operating system. In order to
guarantee good response time to all i/o requests it is
imperative that all PDT’s be immediately accessible to the
operating system; that is, they are all "mapped in"
simultaneously. Given that the code which controls the
device (the Device Service Routine or DSR) and the user’s
data buffer must also be mapped in at the same time it can
be seen that there are a finite number of devices which can
be supported in a 64K address space. Since the second and

third segment are of a fixed size the first segment cannot
grow beyond a certain physical limit without exceeding the
64K address boundary.

THE DX10 OPERATING SYSTEM

DX10 has been the mainstay operating system on the 990
product line for several years. It has evolved into a
stable, reliable, high-performance system and continues to
receive excellent response from the user community. One of
the chief reasons for its popularity is the System Command
Interpreter (SCI) which executes "on top of" the operating
system. SCI takes high 1level commands from a user and
translates them into primitive operations which the
operating system processes. In the strictest sense, SCI is
not part of the "operating system" but is an integral part
of the DX10 product.

DX10 1is a general-purpose system suitable for a wide

variety of commercial applications. It is a multi-user
system and is capable of supporting a maximum of 15 to 20
terminals in a general application environment. The

specific characteristics of the application 1itself
(particularly the kinds of files and number of files
accessed) will determine the maximum number of simultaneous
users on a DX10 system. A closer look at the memory
resident structure of DX10 will demonstrate why this 1is
true.

The PDT structures for all of the devices on a given
system reside in an area known as DXDATA (see Figure 2).
The area which adjoins DXDATA 1is the System Table Area
(STA). This is an area of memory from which structures to
support file and device access are dynamically allocated.
Structures exist as long as the file or device is being used
and are deallocated when processing is complete. The next
adjoining area contains System Routines required for almost
all types of user operations. These three areas always
comprise the first segment of the operating system map
space.

Once a system is generated, the sizes of DXDATA, STA
and the System Routines are fixed. The size of DXDATA is
primarily determined by the number of devices the user has
"genned" 1in. STA size 1is specified by the wuser during
system genertaion. The System Routines area is a constant
size. It can be seen that as the device count increases a
corresponding decrease in the maximum amount of STA will
have to take place. Similarly, if a large number of files
are required by each application program the number of
devices which can be physically generated is limited by the
size of the STA needed to support those files.

In addition to its memory resident portiom, DX10
requires a system disk to access less frequently used code

and data. This disk resident portion of the system 1is
contained on several "system files" which are briefly
detailed in the following list. The actual file name as

seen on the system disk is shown in parenthesis.

1. System Program File (.S$SPROGA) System tasks and
any tasks the user wishes to make memory resident
are contained in this file.

2. System Image File (.S$SIMAGES) This file contains
the memory resident parts of DX10 that are created
by the system generation process.

3. System Overlay File (.S$OVLYA) This file contains
code which "overlays" (temporarily replaces)
portions of system task areas when required for
that tasks execution.

4, Roll File (.SSROLLA) This file is wused to
temporarily save disk-resident task code which was
loaded into memory but then that memory was
required by a higher priority task.

5. System Crash File (.S$SCRASH) This file is
required to save an entire copy of memory if there
is a system failure (crash). This file can then
be examined to determine the cause of the failure.

6. System Loader File (.S$LOADER) This file contains
the code which 1loads the DX10 operating system
from the System Imqge File.

7. Diagnostic File (.SDIAG) This file exists on
every disk pack and is used by diagnostic programs
to isolate potential prolems on the disk without
affecting user data.

8. SCI Procedure Directory (.S$PROC) This is a
directory of files and each file is an SCI command
which the user may invoke. All the system
supplied SCI commands reside here and user-defined
commands may be added as well.

There are other files required by DX10 or SCI and these
are described in detail in the DX10 system documentation.

THE DNOS OPERATING SYSTEM

DNOS, 1like DX10, is a general purpose operating system
capable of supporting a wide variety of commercial
applications. In addition, DNOS provides direct support for
SNA and X.25 networking software which are not directly
supported on DXI10. Other specific differences between DXI10
and DNOS will be discussed in the next section.

DNOS 1is targeted toward the end-user who requires a
larger terminal capacity as well as sophisticated
communications capabilites. The maximum terminal capacity
for DNOS in a general application environment is 30 to 40
terminals. As with DX10, the maximum capacity depends on
the particular applications being run on the system. The
presence or absence of communications support also affects
this capacity.

‘The primary difference which allows DNOS to support a
greater number of terminals in similar environments is the
way file structures are handled. Remember that on DX10 the
file access structures are allocated in System Table Area.
In DNOS a separate area is allocated solely for the purpose
of containing these file structures. This allows the first
segment of the address space to contain more PDT structures
since it does not have to compete with file structures for

spacee. Other structures such as those which support task
execution were also removed from the STA to allow more room
for device structures. The tradeoff for this type of

approach is that more total space is required to contain
these separate and dedicated areas for file and task
structures. Also, more mapping changes are required to
access these structures which may have a negative effect on
response time but every effort has been taken to keep map
changes to a minimum.

DNOS requires certain disk files to be present on the
system disk as does DXI10. A list of some of the major files
required and a brief description is given below:

l. The Kernel Program File (.XXXXXXXX) This is the
program file containing the tasks, procedures and
overlays of DNOS. The name of this file is
supplied by the user at system generation time.
Notice that there is no separate overlay file on
DNOS.

2. The Shared Program File (.S$SHARED) This is the
program file where users may place memory resident
tasks or shared procedures.

- 10 -~

3. The Utilities Program File (.SSUTIL) This file
contains tasks and procedures for system utility
programs. These are generally invoked by SCI
commands.

4. The Swap File (.SSROLLD.S$ROLLA) This is the file
where task 1images are temporarily placed when
their memory 1is required by a higher priority
task.

5. The SCI Procedure Directory (.S$CMDS) The
directory of files which contains all the standard
SCI commands.

6. The User ID File (.S$USER) The directory which
contains user id’s defined for a given system and
their synonym files.

7. The Initializaion Batch Strean (.S$ISBTCH) This
file is a batch stream which is executed as soon
as the system is loaded. Any user initialization
procedures should be placed in this file.

8. The Messages Directories (.SS$SEXPMSG & +S§MSG) The
message directories contain files of expanded
error text to assist in explaining error codes and
to provide suggested corrective actions for
problems encountered.

The .S$CRASH and .S$DIAG files are also required on DNOS and
perform the same function as they do on DX10.

There are other memory and disk structure differences
between DNOS and DX10 but a comprehensive comparison of all
of them is beyond the scope of this presentation.

DX10 and DNOS COMPARISON

Following is a comparison table of DX10 and DNOS.

Characteristics are not evaluated in great detail but rather
given as suggested reference points for system evaluation.

CHARACTERISTIC DX10 DNOS
Terminal capacity 15-20 30-40
(application dependent)

Minimum memory required 128K 256K
Synonym space 864 bytes 12288 bytes
Resource allocation Terminal Job
oriented oriented
Full language support Yes Yes except
FORTRAN 66
Communication support 3270,3780 3270,3780
SNA,X.25
Task-to-task communication ITC IPC
facility
Accounting No Yes
Configuration utilities Sysgemn Sysgen
SCU
Print spooling No Yes
(LPS$x)
System Operator No Yes

facility

12 -

€000

DX10 MAPPING OVERVIEW

- - T A = e e wm = e o e e e - - - e e -

D000

R e e N el]

S . D v e S R e WE TR T e e e S e e e Wm M WD SR B mm ws e e A W

LINE PRINTER DSR

DISK DSR

- e e A O e M e e A e m e e S e e e 4 -

LHILTTTITE i ririiiilrrri
IHIHHTIT0iriirirrrrrnrrririlllirri
The appropriate segment 3 1is
"mapped in" depending on what
type of device is accessed.

FIGURE 1

- 13 -

beginning of segment 1
SEGMENT 1

end of segment 1

beginning . of segment 2
SEGMENT 2

end of segment 2

SEGMENT 3
SEGMENT 3

SEGMENT 3

EXPANDED VIEW OF SEGMENT 1

—— W e = e e e e W e e e e

DXDATA

—— e e - - —————— - -

SYSTEM

TABLE

AREA

. - - - = em e e e W e e e e e e e =

SYSTEM ROUTINES

- T ——— - - n e W W -

FIGURE 2

UCSD p-System Overview
Techniques and Concepts for the Nontechnical or New User

David Burckhartt

Texas Instruments, Inc.
P.0. Box 2909, M/S 2201
Austin, Texas 78769

Texas Instruments -1 -

UCSD p-System Overview

This presentation will attempt to answer 2 questions. The
first is what is the UCSD p-System and what makes it unique from
other microcomputer software systems that are on the market? The
second is how do I decide if the p-System is right for my usage
and if it is right, how do I get started?

What is the p-System? It is a complete, portable
microcomputer software development and execution system
environment. The next few paragraphs will explain this
definition in more detail.

(Foil 1): The p-System was developed at the Institute for
Information OSystems at the University of California at San Diego
(UCSD) in 1977. It was first implemented on large main frame
computers and then migrated down +to the microcomputer with
enhancements for the interactive environment. Being a non-profit
organization, the university was not allowed to market the
product at a profit. 1In order to insure the product would be
utilized, a third party was found to acquire distribution rights.
SofTech Microsystems, a part of SofTech acquired distribution
rights. They now develop, support, and market the p-System.

The p-System was designed to be transportable. That means
that it would function on most major microprocessors such as a
9900, 68000, 8083, etc. The P in p-System stands for pseudo
system...not Pascal system. Each program is written in a high
level language and compiled to pseudo code which is
transportable. The system derives its name from the utilization
of this pseudo code. Currently, Softech is claiming over 100,000
end users.

(Foil 2): The p-System provides the capability to write a
program once that will run on all computers for which a p-code
interpreter exists. Hardware independence is thus maximized
since the same code will run on different sets of hardware.
Development can then be performed on any machine which has a p-
System and the resulting code run on any other machine that has a
p-System. In addition, the various p-System languages: Pascal,
FORTRAN, and BASIC are integrated. Programs may be written in
any combination of these languages.

What is p-code? It is the native language or machine code
for the p-System. It is an interpretive instruction set or a
software computer. In other words, the p-codes are the same on
each machine. The difference from machine to machine is the -
code interpreter. Since the p-codes are interpretive, execution

Texas Instruments -2 -

speed is traded off for transportability. In general,
interpretive code tends to be smaller than native machine
code...thus, larger vrograms will fit in a smaller address space.
The concept of portability utilizing an interpretive instruction
set is used in the TI FORTRAN and COBOL compilers.

(Foil 3): What is portability? Creating software that will
execute —— today and tomorrow — on hardware systems other than
the system where it was developed. In other words, I want to
develop on any system today and continue fo run the same software
on other piece of hardware available today or tomorrow.

(Foil 4): Several approaches are taken to portability.
Since languages such as COBOL are defined by an ANSI Standard,
people talk about the portability of programs in terms of
language standards. At a minimum in general, the programs must
be recompiled and there may be changes required in things 1like
screen management.

(Foil 5): In fact, there are several problems with the
language approach to portability. The standard does not define
all the elements of the language. Some elements are undefined or
are implementor defined. In particular with COBOL, the assign
statement has portions that are implementor defined and the
internal precision of intermediate calculations in the COMPUTE
statement is implementor defined. There are differences in the
environment. Tor example one system may support 8 secondary keys
on keyed-indexed files while another might support 14. Screen
management is not defined by ANSI Standard so each implementor
has defined a different way of implementing this feature. Thus,
portability is not as good as one might wish.

(Foil 6): There has been a lot of press recently about
standard operating systems. This occurs when the functionality
of the operating system has been implemented on a number of
different machines. What is ignored in this case is the
transportability of the user program. If the program is in a
high 1level 1language such as COBOL, the user may be able to move
with minimal effort. In general, it is hard to provide all the
same functionality of any operating system across a series of
different hardware configurations.

(Foil 7): Several problems occur. There may be different
sizes of memory, different memory mapping requirements and
different capabilities of perpherials and the mircoprocessor
itself. Tor example, in the CP/M world, there is CP/M for the
8080 based machines, CP/M-86 for the 8086/8088 based machines,
and CP/M-68K for the 63000 based machines. Why three different
names? They are physically different. In the case of the p-

System, it is just the p-System,no matter what machine it is

Texas Instruments -3 -

executing on.

(Poil 8): The p-System takes the environment approach to
oortability. Since the entire system is interpretive, the 0S,
Host Interface, and the Program all are portable. This means
that all the compilers and utilities are also portable.

(Foil 9): Not only that, but this portability extends
across any microprocessor. The hardware is not the 1limiting
factor.

(Foil 10): How is this accomplished? The operating system,
compilers, utilities, and applications are all written in p-code.
The p-code is then translated by the interpreter written for the
particular target machine. The final piece of the system is the
Basic I/0 System or BIOS that is the low level code to interface
to the particular devices on a particular machine. As you can
see from the diagram, the running program is isolated from the
architecture of the particular machine by the interpreter and
BIOS.

(Foil 11): 1In fact, the applications developer can write
his program in any p-System supported language, use the p-System
compiler(s) to create p-code, and it will execute on any host
equipped with a p-System without change.

(Foil 12): Purthermore, a p-code object program can be
moved from one machine to another and executed without change if
the disk recording standards are the same or communications
capability is available — even if one CPU is a 780 and the other
is a 9900, 8088, etc. Its true. Too good to be true you say?
There are some restrictions... one must program for
transportability. If a program has taken advantage of some
hardware such as function keys on the keyboard, then the program
may not port without change. Most developers in the p-System
understand the differences that different sets of hardware may
provide and utilize methods parameterize their applications when
moving between hardware systems. Even so, moving a p-Systenm
program from one machine to another is easier than in any other
portability scheme.

(Foil 13): The next question is always what about
applications? There are software solutions available on the p-
System for most application areas. This chart shows a comparison
in several -catagories. A p-System Application Catalog is
available from ©BSofTech Microsystems +that 1lists +the various
applications available and where to obtain them.

(Foil 14): This foil summarizes why the p-System is unique
in the market. Xey points are that the enviromment is

Texas Instruments -4 -

transported...not just programs. Both source and object programs
are transportable. Disk formats are predefined. There are few
implementor defined elements and the p-System is adaptable to any
machine architecture. In any case...assembly code is probably
not transportable so the user should write his application in a
higher level language.

How does one decide if the p-System is right for their
application and enviromment? I believe that this decision needs
to be made based on the company strategy for selling and using
computers. If the user is content to sell only IBM or TI
Professional Computer class products, then the choice would be
MS-DOS and one of the M3-DOS language products. If the user
wents the application to run on many different types of
microprocessors, then the choice is the p-System.

(Foil 15): If the corporate strategy is to sell machines
utilizing various microprocessors such as Apple machines with the
6502, and Radio Shack machines with the 780 or 68000, or the TBM
or TI Professional Computer with an 8088 and desires to run the
same software base on each of these machines, then the p-System
is the best system to utilize. If the strategy is to sell ONLY
TI machines from the Business System 200 through the Business
System 800, then the best plan is to utilize the DX10 or DNOS
systems and their associated languages and productivity aids.

(Foil 16): Vhile the p-System is supported on all TI
products from the 99/4A Home Computer through the Business System
800, it is most efficient when run on a single user
microprocessor type system. On the larger TI products, it is
supported as a task running under DX10. While this allows the
user to execute p-System applications in the DX10 environment,
the overhead of DX10 plus the design of the p-System does not
make this a viable multiple terminal environment when the mumber
of terminals becomes large. TI designed operating systems and
languages are more efficient in the multi-terminal DX10 style
world. The DX10 p-System allows the user to run p-System
applications in concert with his DX10 applications. It is not
intended as the primary use of the system.

(Foil 17): Texas Instruments has chosen the p-System to be
utilized on many machines within +the company. Some of the
primary reasons are listed on this foil. In particular,
prevention of software obsolescence by new hardware offerings and
the ability to select hardware based on the suitability to the
task rather than the software available to run on that hardware
are key reasons.

In summary, the p-System has the strongest transportability
story of any system on the market. To obtain that

Texas Instruments -5

transportability, the user trades off performance although tools
are available to increase performance if that becomes a problems.
The decision to "go p-System" is a strategic decision that must
be made based on the marketing plans of the company or their
planned utilization of computers within the company. As with any
system, the p-System has its limitations and quirks, but many
large software houses have seen the wisdom of utilizing this
system in the implementation of their products. Most
manufacturers, DEC, IBM, HP, Texas Instruments, and others either
provide the p-System as part of their product line or a third
party has provided the p-System for a particular machine. The
utilization of the system and its pervasiveness are increasing
each day. It certainly is and will remain a viable contender in
microcomputer systems arena.

Texas Instruments -6 -

presented 1n the

Techniques and Concepts for the Nontechnical or New User Session

by

Gary Imken

Texas Instruments Austin, Texas

April 6, 1983

~ This presentation introduces the System Command Interpreter
(SCI) to nontechnical and new users. The first part of this
presentation describes SCI in general terms and presents a
scenario of a typical session which will be of interest to both
nontechnical and new users. The latter part of this presentation
explains more about how SCI works and will be of interest
primarily to new users with some technical expertise. Specific
detalls of SCI's operation can be found in the DX10 and DNOS
manuals and are not presented here 1in order to focus on the main
concepts.

WHAT IS SCI?

SCI can be described 1In several ways. The most basic
definition of SCI is that it is the interface between the user and
the DX10 or DNOS operating system. SCI 1s that part of the
operating system which prompts the user to determine what actions
he would like to perform.

At a more detailed 1level, SCI can be described as a compact,
parameter-collecting program which invokes tasks wusing a standard
interface. By design, SCI 1is not 1intended to perform numerous
operations. Instead, the intent is to keep SCI small and fast so

that user requests can be quickly passed on to the operating
system with a minimum of overhead. In its operation, SCI will aid
the user in his selection of a command to execute by displaying
helpful information on the terminal to guide him. Once a command
has been selected, SCI will optionally prompt the wuser for
additional information which is needed to perform the command.
For example, if the user enters the command to print a file, SCI
will prompt the user to determine the file name and the name of
the destination printer. Finally, SCI provides a standard
interface to operating system tasks and wuser written tasks which
simplifies the incorporation of new programs written by the user
into the operating system.

Structurally, SCI can be described as an interpreter for a
small set of primitive commands. These primitive commands control
the actions of SCI by determining the menus of helpful information
displayed to the wuser, by providing a description of the syntax
for user inputs, and by manipulating these user inputs before they
are passed to the appropriate task. SCI's primitive commands can
be collected together into files of commands called procedures, or
procs, which are also executed by SCI. The DX10 and DNOS
operating systems use these procs to implement the command choices
that are available to the user. For example, the print file

command mentioned previously 1s actually a proc consisting of
primitive commands.

SCENARIC OF A TYPICAL SESSION FOR A NEW USER
When a user enters the appropriate key sequence at a terminal

to invoke DX10 SCI, the following information will be displayed on
the screen (DNOS has a similar display):

Introduction to SCI Page 2 TI-MIX 1983 Symposium

SYSTEM COMMAND INTERPRETER -~ PLEASE LOG IN

USER 1ID:
PASSCODE:

This display requests the entry of the USER ID and PASSCODE

of the person who is logging onto the system. The USER ID is
typically assigned by some system coordinator to all those

individuals who will Dbe wusing the system. The PASSCODE is
optionally chosen by the user to prevent someone else from using
his USER 1ID. Most systems usually require the entry of this

information, but the DX10 and DNOS systems do permit this display
to be eliminated if so desired.

After the entry of the USER ID and PASSCODE (or immediately
if the USER ID and PASSCODE are not desired), the following
display, or menu, will appear on a standard DX10 system:

TEXAS INSTRUMENTS
DX10 SYSTEM 3.5.1

SELECT ONE OF THE FOLLOWING COMMAND GROUPS

/DEV - DEVICE OPERATIONS
/FILE - FILE OPERATIONS
/PDEV - PROGRAM DEVELOPMENT
/SMAIN - DX10 MAINTENANCE
/S0P - DX10 OPERATION

1

The box symbol ([]) is used by SCI in conjunction with the
cursor to indicate the input line for command entry. The command
groups shown on the menu - /DEV, /FILE, /PDEV, /SMAIN, and /SOP -
indicate general categories of DX10 commands and are intended to
ald the user who needs help 1locating a specific command name.
Both the box symbol and the standard menu display are modifiable
by the user. For example, a user might wish to display his
company's name and a set of command groups different from those
shown in this display. If the wuser enters one of these command

group names such as /FILE, a more detailed submenu will be
displayed as follows:

FILE OPERATIONS

/DBMS DATA BASE MANAGEMENT SYSTEM
/DIR DIRECTORY COMMANDS
/EDIT - TEXT EDIT COMMANDS

/FILEC - FILE COMMANDS
/LUNO - LUNO COMMANDS
/STAT - STATUS COMMANDS

L]

Introduction to SCI Page 3 : TI-MIX 1983 Symposium

This menu 1is similar to the previous menu except that the
categories are divisions of file operations. If the user were
interested in text editor commands, he would enter /EDIT on the
command line and the following menu would be displayed:

TEXT EDIT COMMANDS

CL - COPY LINES IF - INSERT FILE
DL - DELETE LINES MHR - MODIFY HORIZONAL ROLL VALUE
ML - MOVE LINES MR - MODIFY ROLL VALUE
SL - SHOW LINE MRM - MODIFY RIGHT MARGIN
SVL - SAVE LINES TO FILE MT - MODIFY TAB SETTINGS
DS - DELETE STRING QE -~ QUIT EDITOR
FS - FIND STRING RE - RECOVER EDIT
RS - REPLACE STRING XE - INITIATE TEXT EDITOR
XES - TEXT EDITOR WITH SCALING

L]

This menu is different from the preceding menus in that it
contains actual commands rather than command groups. Actual
command names do not begin with a slash (/) as the menu displays
do. (As mentioned earlier, each of the command names shown here
and 1n all DX10 and DNOS menus are actually procs.) A typical
command that might be selected from this menu is the MRM command.
When MRM is entered the following display appears:

MODIFY RIGHT MARGIN
RIGHT MARGIN POSITION: 80

This display shows the full name of the command entered and
displays a prompt which requests input from the user. In this
example, the prompt has an initial wvalue of 80 which is a
frequently used response. If this is not an acceptable value to

the user, he can overtype it with the desired value. Otherwise he
can accept it as is.

As another example of a DX10 command, the user could follow a
different path through the SCI menu structure and arrive at the
print file command which appears as follows:

PRINT FILE

FILE PATHNAME(S):
ANSTI FORMAT?: NO
LISTING DEVICE: LPOl1
DELETE AFTER PRINTING?: NO
NUMBER OF LINES/PAGE:

This command prompts the user for five items of information,
some of which have initial values displayed. The first prompt
asks the user for one or more file pathnames which are to be
printed. A list of items can be entered for this prompt, but not

for any of the other prompts shown. The second and fourth prompts

i

Introduction to SCI Page 4 TI-MIX 1983 Symposium

must be answered with a Yes or No response. SCI will only accept
responses that begin with Y or N for these prompts. The third
prompt, LISTING DEVICE, also has an initial wvalue, but it is
slightly different from the second prompt. In this case, the
initial value will be the response that was entered on the
previous invocation of Print File. For example, the first time a
new user invokes Print File, this prompt will have no initial
value. If the user enters LP0Ol as his response, then the next
time he uses Print File, LPO1 will appear as the initial value.
If the user enters LP03 as his response, then the next time he
invokes Print File, LP03 will appear as the initial value. The
fifth prompt, NUMBER OF LINES/PAGE, does not have an initial
value, but it is different from the other prompts 1in that the user
may enter a null response for it. If a null response 1s entered,
SCI will provide an appropriate default value for the prompt.

As a user gains familiarity with the DX10 or DNOS system, he
will use the menu structure less frequently since he will know the
command names. SCI does not restrict the user to entering only
those responses which appear on the current menu. The menus are
only intended as a source of helpful information, so the user may

enter any valid command name regardless of which menu is currently
displayed.

The implementation of DX10 and DNOS commands as procs offers
several advantages: (1) Procs are easily modifiable. To add or
change a command, all the user has to do 1is edit a file. No
compilations are needed, no reconfiguration 1s needed, and no
reloading of the operating system 1is necessary. This greatly
simplifies the job of the user who wants to customize the standard
system by adding his own commands and perhaps modifying some of
the existing DX10 or DNOS commands. (2) Procs can invoke other
procs as well as primiftives. This allows the user to construct
his high level commmands in a more modular fashion. For example,
he may write one proc which performs a frequently needed function
and is invoked by several other procs. (3) Procs make it easy for
the user to package a customized product for transfer to other
systems. Typically the system dependencies can be isolated in the
procs so that the programs invoked by the procs can be written in
a more system independent fashion. (4) Procs can be restricted so
that certain procs can only be executed by sufficiently privileged
users. Thus those system functions which require a more
sophisticated user can be 1isolated from ¢the 1less sophisticated
user.

COMMAND PRIMITIVES IN THE SCI LANGUAGE

As previously mentioned, SCI executes a set of primitive
commands that control fthe displays that the user sees on the
terminal and that manipulate the wuser's inputs. This section
gives a Dbrief description of these primitives without going into
syntactic details in order to show the capabilities that are
available through the primitive commands:

Introduction to SCI Page 5 TI-MIX 1983 Symposium

.PROC and .EOP - These primitives work as a pair to define the
beginning and end of an SCI procedure when a procedure is
installed in the DX10 or DNOS operating system.

.BID, .QBID, and .DBID - These primitives are used to invoke a
task from SCI. The .BID primitive suspends SCI until the task is
complete, .QBID 1lets the task and SCI execute concurrently, and
.DBID is used to debug a task from SCI.

.DATA and .EOD - These primitives work as a pair to define an in-
line data file which 1s to be copied to a file on disk. This file

may contain dynamic information such as the responses entered by
the user after prompting by SCI and other user specific data.

+EVAL - The JEVAL primitive 1s used to evaluate arithmetic
expressions. For example, .EVAL could be used to add the results
of two or more numeric values entered by the user in response to
SCI prompts.

+EXIT - This primitive is used to exit from an SCI procedure, For
example, if an SCI procedure named A invoked a procedure named B,
then a .EXIT command in B would cause SCI to resume execution in A
at the point at which A had been left.

.IF, .ELSE, LENDIF - These primitives are used for conditional
execution in the same manner as high level languages which support
these constructs. The .IF primitive checks a condition and if
true executes the following commands until a .ELSE or .ENDIF is
encountered. A false condition causes execution to begin
following the .ELSE if it 1is present, or following the .ENDIF 1if
.ELSE is not present.

TTTY ™ T aAam

.L00P, JUNTIL, J.WHILE, .REPEAT - These primitives are used for
repetitive execution of commands. The commands between the .LOOP
and .REPEAT are executed until the condition specified in the
.UNTIL is true or while the condition specified in the .WHILE is

true., The LEVAL primitive 1s sometimes used in conjunction with
such loops to specify a loop counter.

+MENU - This command controls which menu, 1if any, is the next one
to be displayed to the user.

.OPTION - The .OPTION primitive allows the user to select certain
options affecting the operation of SCI. For example, .OPTION can
be used to allow both lower and upper case input to SCI and to
control the default main menu that SCI displays to the user.

.PROMPT -~ This command causes SCI to prompt the user for
additional information. This 1is often used in situations where
the set of prompts that are to be displayed to the user are
dependent on values entered earlier.

.SHOW - This primitive is used to display a file to the user. SCI

provides scrolling and positioning commands to use in conjunction
with the display.

Introduction to SCI Page 6 TI-MIX 1983 Symposium

«SPLIT - This primitive splits off the first item from a list of
items. For example, the list of file pathnames specified in the
Print File command described previously are separated using the
~SPLIT primitive before the task that does the printing is
invoked.

.STOP - The .STOP primitive is used to terminate the execution of
SCI and log the user off the terminal.

.SVC - This primitive 1s reserved for operating system use.

«SYN - The .SYN primitive 1is wused to define synonyms to SCI.
Synonyms are typlcally short names that can be used in the place
of longer names. For example, a user might wish to assign a
frequently used file name consisting of many characters as the
value of a short synonym name. Synonyms can also be thought of as
the variable names which appear in higher level programming
languages, i.e. as names for which there is an associated value.

.USE - The .USE primitive allows ¢the user to specify which
directories are searched to find the command names he enters. By
default, SCI will search a standard directory, but the user may
specify other directories to be searched with the .USE command.

AN EXAMPLE PROC

The following proc 1s presented to 1llustrate how a typical
SCI proc would appear. As in the preceding discussion, no attempt
will be made to go into any syntactic details or into very many
specifics:

EX (EXAMPLE PROC)=2,

ENTER NAME(S) = (NAME)

.SYN L = "(&ENTER NAMES(S))"

.LOOP
.SPLIT LIST="@L",FIRST=F,REST=L
.BID TASK=DISPLAY, PARMS=(@F)
.WHILE "@L", NE, L

PROC NAME AND PRIVILEGE LEVEL
PROMPT FOR USER INPUT

SAVE PROMPT IN SYNONYM L
BEGIN A LOOP

EXTRACT NEXT ITEM FROM LIST
PASS ITEM TO DISPLAY TASK
CHECK FOR END OF LIST

- tw s w0 e sw S

+.REPEAT REPEAT THE LOOP
B e e e e e e e e e e e e e e e e e
IF @$$UI, NE, SYS000 ! CHECK FOR USER ID SYS000

.DATA .LOG, EXTEND=YES, SUB=YES ! APPEND MESSAGE TO LOG FILE
- USER @$$UI EXECUTED PROC EX -
.EOD

+ENDIF ! END OF CHECK

The first two lines of the proc EX contain the proc name, the
privilege level of the wusers who can execute it, and the prompt
ENTER NAME(S) which will be displayed to the user. The list of
names entered by the user 1in response to this prompt is assigned
to the synonym L and a loop is entered which splits successive
names off the beginning of this list and passes them to a task for
display. The line beginning with the asterisk 1is a comment line
added for appearance. Below the comment line, a .IF statement is
used to check for a particular user id of SYS000 and if the user
executing the proc has a different user id, the .DATA command is

Introduction to SCI . Page 7 TI-MIX 1983 Symposium

used to append a message to a log file of messages. The lines of

text to the right of the exclamation marks in the above example
are also comments which may optionally appear for documentation.

OTHER SCI FEATURES

SCI provides other features 1n addition to those previously
mentioned. These additional features and some of those which have
been only noted in passing are as follows:

(1) Tasks invoked by SCI may be run in foreground or background
mode. This means that the user may chose to have SCI wait until
his task completes before continuing execution, or he may choose
to have SCI execute concurrently with his task.

(2) SCI itself may be run in a background (batch) mode in which it

executes from a file of commands rather than receiving 1its input
from a terminal. This is very useful for such things as compiling

many modules or performing time consuming functions which can be
set up and run without human intervention.

(3) Special procs can optionally be defined by the user which are

automatically executed when a user logs on and when he logs off.
This 1s useful in situations where one might want to record the
amount of time that the user was logged onto the terminal. It is

also useful in situations where a certain set of initialization
procedures needs to be 1lnvoked when a user logs on.,

(4) Synonyms have already been mentioned, but it should be added
that SCI saves synonyms between a user's sessions so that a

synonym defined during one session will be available 1n a later
session.

(5) SCI does validation on the prompted inputs of procs so that
mistakes are caught early and the user 1is reprompted until a
correct response 1is entered.

(6) SCI provides initial values for prompts that represent
frequently chosen values. This speeds the entry of commands and
gives the wuser helpful information about the proper form of the
response.

(7) SCI will display an optional news file to all users who log
onto the system which contains whatever information the users of
that system might deem appropriate for everyone to see.

ADDITIONAL FEATURES IN DNOS SCI

The DNOS version of SCI supports all the capabilities of the
DX10 version of SCI plus has some additional features. Some of
the

more significant of these features are as follows:

(1) DNOS SCI allows alternate type specifications for prompts.
For example in DX10, the value of a prompt could be specified as

Introduction to SCI Page 8 TI-MIX 1983 Symposium

an integer or a name, but not both. DNOS would allow the value of
a prompt to be specified as either integer, name, or both.

(2) In DNOS the SCI type checking of prompts has been expanded to
allow prompts to be given default values, to be elements of a
specified set of values, and to be within a range of numbers.

(3) The .IF statement has been extended in DNOS to allow syntax
checking of a value. For example, a value could be checked to
determine if it is an integer, a name, an element of a specified
set of values, etc.

(4) The error messages in DNOS SCI are more detailed than in DX10
SCI. In particular an error in a proc in DX10 will report the
type of error that occurred, but DNOS SCI goes beyond this to also
report the proc name and line number where the error occurred.

(5) The .DATA command has been extended in DNOS to allow the
copying of data from an in-line file to a default terminal local
file which will be displayed to the user at a later time.

SUMMARY

In summary, SCI has been one of the strong points of the DX10
and DNOS operating systems. It has proven to be a reliable pilece
of software which is very configurable and adapts to the needs of
a wide class of users. It satisfies the needs of the casual user
who desires a consistent, easy to use interface to the operating
system as well as the needs of the user who wants to build on the
operating system to provide his own customilzed interface.

Introduction to SCI Page 9 TI-MIX 1983 Symposium

NOTES

A'LINK 'EDITOR ' OVERVIEW
WITH COBOL SPECIFIC
APPLICATIONS

Rodney Lancaster
TIMIX 837

Techniques and Concepts
for the Nontechnical or
New User

Data Systems Group

P. 0. Box 2909
Austin, Texas 78769

TEXAS INSTRUMENTS
INCORPORATED

Date: February 15, 1983

Linking COBOL Programs

A LINK EDITOR OVERVIEW
WITH COBOL SPECIFIC
APPLICATIONS

1. INTRODUCTION

This presentation will overview the TI Link Editor and TI
program files. It will show how COBOL programs can be linked

several ways to save memory, enter execution faster, and save
disk space. Specific items that will be covered are:

l. Program files - what are they?

2. Creating program files.

3. Linking and installing a COBOL task on a program file.

4. What are and using shareable procedures.

5. Using COBOL subroutines that are shared across several
tasks.

6. Overlaying COBOL subroutines.

An application that we might coansider for wuse in our
discussion of 1linking and program files {is an inventory
management system that issues and receives materials and is
capable of generating a reorder report. This application makes
use of the following programs and subroutines:

. MAIN - Main program.

2, ISSUE - Issues the materials from inventory.

3. RECPT - Receives materials into the inventory.

4. REORD - Creates a reorder report.

5. RDINV - Reads the inventory file.

6. SSTAT - Displays the status of a part-number 1in the

inventory.

The call tree for this progam looks like:

Linking COBOL Programs

MAIN

l

e D i R R +

I 1 I I

ISSUE RECPT RDINV REORD

SSTAT SSTAT

2, PROGRAM FILES & SIMPLE LINKING

A program file 1is a special form of relative record file
used to contain executable programs in memory image form. For
COBOL the object produced by the compiler is in ASCII (readable
character) format. This object can be linked into a COMPRESSED
(Binary) format. Both ASCII and COMPRESSED format can Dbe
executed directly using the XCP or XCPF commands (Execute Cobol
Program) but require coanversion into memory image format at the
load time. The program file is already in memory image format
and does not require conversion at the load time and thus loads
much faster than an object file.

Program files also allow several facilities to reduce memory

requirements. In a program file you can use Shared procedures
and/or overlays.

A procedure 1is a segment of the task that usually consists
of executable <code. Shared procedures are procedures in a
program file that are shared by more than one task. Shared
procedures decrease the amount of disk storage required to store
a program file.

Overlays are parts of a task that stay on the disk until
explicitly requested. When it is requested the overlay replaces
a part of the task previously in memory. Overlays reduce the
amount of memory required to run a COBOL program. The program
file also contains information that points to the different
sections within a program file (tasks, procedures, overlays).

A diagram of a program file looks like the following.

Linking COBOL Programs

STRUCTURE OF A PROGRAM FILE

. . memm———— m—bm—te ot

. i |

l T ASK {mmmmm +

. IMAGES .

TSP Jlr
PROCEDURES |

. o< ————————— +

A T

] OVERLAYS !

. o< ------------- -

s Tk T PP +

Program files are created either by the Link Editor when

linking the program or wusing the CFPRO (Create Program File)
command.,.

[1 CFPRO

CREATE PROGRAM FILE
PATHNAME: MY.PROGFILE
MAX NUMBER OF TASKS: 25
MAX NUMBER OF PROCEDURES: 10
MAX NUMBER OF OVERLAYS: 10
INITIAL ALLOCATION: 85

SECONDARY ALLOCATION:
EXPANDABLE?: YES

The CFPRO command prompts are pretty simple to understand with
the possible exception of the two ALLOCATION prompts. These two
prompts are asking for how many disk units (ADUs) to start with
initially and if it must increase beyond that the number of disk
units to get when needed.

Linking COBOL Programs

Since a program file cannot Dbe displayed to a terminal
directly a map must be made to see where each item in the program
file is kept. The command to look at a program file is MPF. MPF
is executed as follows.

[1 MPF
MAP PROGRAM FILE

PATHNAME: MY.PROGFILE
LISTING ACCESS NAME:

The two prompts are:

1. PATHNAME - This is the pathname of the program file to
be mapped.

2. LISTING ACCESS NAME - Is where you wish the listing to
g0, The default is to the terminal that executes the
command. Any other input should be a file pathname or
device name (LPO1l).

The map produced contains a wealth of information and looks like:

FILE MAP OF MY.PROGFILE
TODAY IS 15:16:07 TUESDAY, MAR 02, 1982.

TASKS: MAXIMUM POSSIBLE = 25

1D NAME LENGTH LOAD PRI S PM R D E O C OVLY P1/SAME P2/SAME INSTALLED
01 TXSF 0928 2340 4 P R D 01/Y 11/11/81
02 GN990A 6674 0000 4 P D 02 11/11/81
03 TXMD 1166 2340 4 P R D 01/Y 11/11/81
PROCEDURES: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD MDEWC INSTALLED
01 TXDXFC 2334 0000 D 11/11/81
OVERLAYS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD MAP D OVLY INSTALLED
01 INTCTA 42C2 23B2 D 11/11/81
02 BUILDA 2D76 23B2 D 01 11/11/81

The Tasks are in 1ID order and the name of each is given.
The length in bytes and the load address relative to the
beginning of the program are giveun. Alsc given is the priority
of the task and the last overlay used by the task. The first
procedure used by the task is given as well as what the procedure
ID number is and whether the procedure is located in this program
file or 1in the system program file. The same information is
given for the second procedure used by that task. The date of

Linking COBOL Programs

installation is also given. There
certain flags are set. The flags are:

S - system program

P - privileged

=
!

Memory resident

are indications whether

R - Replicatable i.e. more than one copy can execute

at a time.

D - Delete protected

=
1

Execute protected

0 - Overflow protected for arithmetic

C - uses the Writeable Control storage area.

The Procedures are in ID order and the name of each

procedure is given.

Its length in bytes and load address is also

given as well as its installation date on the program file. The

flags that

M - Memory resident procedure
D - Delete protected
E - Execute protected

W - Write protected

can be set for procedures are:

C - Uses the Writable Control Storage area.

The Overlays are also in ID order
as well. The length of the overlay in
the overlay, and the installation date
that can be set for overlays are:

MAP - There is a relocation bit
file

D - Delete protected

and have their names given
bytes, the load address of
are given. The only flags

map associated with the

OVLY - number of the previous overlay associated with

the task,

Linking COBOL Programs

The Link Editor requires a file containing a sequence of

link edit commands that let the Liank Editor know how this program
is to be constructed. The following 1is a simple Link Edit

control file that might be used for our application program.

FORMAT IMAGE,REPLACE (use memory image format)
PROC RCOBOL (procedure name)
DUMMY (procedure exists on another)

(program file)
INCL .S$SYSLIB.RCBPRC (attach task to procedure)
TASK BIG (task name)
INCL .S$SYSLIB.RCBTSK (task entry vector and data area)
INCL .S$SYSLIB.RCBMPD (main program designator for COBOL)

INCL OBJ.LABO4 (main program)

INCL OBJ.RDINV (subr to read inventory file)
INCL 0BJ.ISSUE (subr to issue stock)

INCL OBJ.RECPT (subr to add to quantity on hand)
INCL OBJ.REORD (subr to create reorder report)
INCL OBJ.SSTAT (subr to display status of part)

END

Each command in the file serves a purpose in telling the
Link Editor what to do and how the program is to be put together.

1. FORMAT IMAGE, REPLACE - Specifies that the FORMAT of
the program file is to be in memory image form and if
it exists in the program file replace it.

2. PROC RCOBOL - Defines the beginning of the procedure
segment and assigns the name RCOBOL to this procedure.

3. DUMMY - Specifies that the item just specified, in this
case the ©procedure, is either already in the program
file or is in another program file.

4., INCL .S$SYSLIB.RCBPRC - Tells the Link Editor to wuse
the COBOL Runtime routine RCBPRC to attach the
following task to the specified procedure.

5. TASK BIG - Signifies the beginning of the task segment
and gives it the name BIG.

6. INCL .S$SYSLIB.RCBTSK - Means include the task entry

7. INCL .S$SYSLIB.RCBMPD - Signifies to include the COBOL
main program designator.

8. The rest of the INCLs are the main program and all the

Linking COBOL Programs

subroutines for this program.

To link the program together use the command XLE.
[] XLE

EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: MY.CONTROL.FILE
LINKED OUTPUT ACCESS NAME: MY.PROGFILE
LISTING ACCESS NAME: MY.LINKMAP
PRINT WIDTH: 80

The prompts for XLE are:

1. The CONTROL ACCESS NAME is the pathname of the Link
Editor control file mentioned above.

2. The LINKED OUTPUT ACCESS NAME is the pathname of the
actual program file.

3. The LISTING ACCESS NAME 1is the pathname for the
Messages produced by the Link Editor as well as the

Link Map. The default is to the terminal that executed
the command.

4. The PRINT WIDTH allows you to specify the width of the
Listing file.

The following is a map of the program file after linking and
installing the COBOL task BIG.

FILE MAP OF MY.PROGFILE
TODAY IS 19:47:01 TUESDAY, MAR 02, 1982.

TASKS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD PRI S P M R D E O C OVLY P1/SAME P2/SAME INSTALLED
01 BIG 30AC 3D20 4 R 10/N 3/ 2/82
PROCEDURES: MAXIMUM POSSIBLE = 10 -

ID NAME LENGTH LOAD MDEWC INSTALLED
OVERLAYS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD MAP D OVLY INSTALLED

Look at the P1/SAME column. It indicates that the COBOL Runtime
procedure is not in this program file and therefore can be
shared. We have saved already 15648 (>3D20) bytes of storage in
the program file 1itself without sacrificing any speed of

Linking COBOL Programs

execution. Also note that none of the Inventory software
subroutines are shared.

The COBOL Runtime procedure exists oun the system program
file and 1is shared by all COBOL tasks that are linked to it. A

diagram of what the program file looks like is below.

o e e - + >0000 (0000) --+
| |

COBOL Runtime Procedure ! s
. length of <3D20 . h
L] . a
. . r
. . e
L] L d
Fom—————— e e + >3D20 (15648) -—t
I
] Image of "BIG" Task
. length of <30AC (12460) .
. Includes Main program .
. and all subroutines i
|
il T e + >3D20 + >30AC = >6DCC

(28108)

To execute this program on DX10 you should first assign a
luno (Logical Unit Number) to the program file as follows:

[1 AL

ASSIGN LUNO
LUNO:
ACCESS NAME: MY.PROGFILE
PROGRAM FILE?: YES

The prompts are:

1. LUNO - You may select the luno number to be assigned.
The only time this causes a problem is if the luno is
already assigned.

2. ACCESS NAME - The pathname that the 1luno is assigned
to.

3. PROGRAM FILE? - Whether this pathname is a program
file or not.

This Luno that is returned must be used in the XCTF (Execute

Linking COBOL Programs

COBOL Task Forground) command. The XCTF command is as follows:

[] XCTF

EXECUTE COBOL TASK FOREGROUND <VERSION: 3.4.0 82062>
PROGRAM FILE LUNO: use value returned from AL

TASK ID OR NAME: BIG
DEBUG MODE: NO

MESSAGE ACCESS NAME:

SWITCHES: 00000000
FUNCTION KEYS: NO

The prompts are:

l. PROGRAM FILE LUNO - The Luno number returuned from the
AL command.

2., TASK ID OR NAME - The name of the task in the program
file.

3. DEBUG MODE - Whether the COBOL debug utility is to be
entered. It should be noted that a module RCBTSKXD must

be used insead of the module RCBTSK. RCBTSKD contains
the debug module.

4., MESSAGE ACCESS NAME - The pathname to be used for COBOL
messages and errors.

5. SWITCHES - The COBOL switches that may be used. 0 -
off, 1 - on.

6. FUNCTION KEYS - Whether the function keys are inabled
for wuse in the program by wusing the ON EXCEPTION
condition.,

3. LINKING SHAREABLE PROCEDURES

In the simple example I made mention that the COBOL Runtime
procedure RCOBOL 1is shared with all COBOL tasks that are linked
to it. You can set up procedures of your own that can wuse this
ability to be shared and save space in the program file. A
shared procedure could be a set of subroutines that can be used
by more than one task I.E. the RDINV (Read inventory), ISSUE
(issue stock report), RECPT (receive new material into the
inventory), REORD (create the reorder report), and SSTAT (show
the status of a part in the inventory).

Linking COBOL Programs

Below is a Link Control file that sets these wup as a
procedure that can be shared between more than one task.

FORMAT IMAGE,REPLACE (memory image format)
PROC RCOBOL (procudre 1 name)
DUMMY (procedure already exists)
INCL .S$SYSLIB.RCBPRC (COBOL runtime proc)
PROC INVSUBS (procedure 2 name)
INCL OBJ.RDINV (subr to read inv file)
INCL OBJ.ISSUE (subr to issue stock)
INCL OBJ.RECPT (subr to add to quant on hand)
INCL OBJ.REORD (subr to create reorder report)
INCL OBJ.SSTAT (subr to display status of part)
TASK SHARE
INCL .S$SYSLIB.RCBTSK (task entry vector and data)
ALLOCATE (force data segment allocation)
INCL .S$SSYSLIB.RCBMPD (COBOL main program designator)
INCL OBJ.LABOZ (main program)
END

You should notice that the FORMAT statement thru the INCL of the
RCBPRC is the same. The new items to be looked at are:

1. PROC INVSUBS - The procedure containing the code of the
subroutines. The INCLs that follow wup to the TASK
command tell the Link Editor to 1include the named
subroutines in this procedure.

2. TASK SHARE - Starts the task segment by the name of
SHARE.,

3. ALLOCATE - Allocates storage for the DATA areas of the
procedures. This also includes the DATA areas of the
shared procedures.

All the other items were mentioned previously.

After using XLE to install the task SHARE and the procedure
INVSUBS the map looks like:

Linking COBOL Programs

FILE MAP OF MY.PROGFILE
TODAY IS 20:49:43 TUESDAY, MAR 02, 1982.

TASKS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD PRI S PM R D E O C OVLY P1/SAME P2/SAME INSTALLED
01 SHARE 2532 48A0 4 R 10/N 01/Y 3/ 2/82
PROCEDURES: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD MDEWSGC INSTALLED
01 INVSUBS 0OB7A 3D20 3/ 2/82
OVERLAYS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD MAP D OVLY INSTALLED

The diagram of this program now looks like:

B i e m———————— T >0000 (0000) --+
COBOL Runtime Procedure | s
. length of <3D20 . h
L3 . a
* L] r
L L] e
1
o e .- e + >3D20 (15648) --+
| INVSUBS Procedure ! s
. length of <B7A (2938) . h
L] L] a
. . r
| l e
tm e e e + >489A (18586) --+

>48A0 (18592)

Image of "SHARE" Task !

. length of <2532 (9522) .
. Includes Main program .
I but no subroutines .
e e e e + >6DD2 (28114)

It may be convenient, but it is not required, to make a
partial link of the shared procedure. The following shows a Link
Control File that will accomplish this.

Linking COBOL Programs

PARTIAL (create a partial 1link)
TASK INVSUBS (le idiosyncracy)
INCL OBJ.RDINV (include object for all
INCL OBJ.ISSUE routines that comprise
INCL OBJ.RECPT the shared procedure)

INCL OBJ.REORD
INCL OBJ.SSTAT

END
The two things to notice are:

1. PARTIAL - This lets the Link Editor know that this 1is
not a complete program.

2. TASK INVSUBS - This is an idiosyncracy of the Link
Editor. Even though this is going to be linked in as a
procedure for some odd reason the Link Editor requires
the TASK statement.

To create the partial link use the XLE command. It should
be noted that this partial link is installed on an object file
and not a program file. To Use this partial link, a Link Control
file must be created that includes this object file as a
procedure. The following is an example of this.

FORMAT IMAGE,REPLACE
PROC RCOBOL
DUMMY
INCL .S$SYSLIB.RCBPRC
PROC INVSUBS
DUMMY
INCL OBJ.PARTIAL (include the partial link)
TASK ANOTHR
INCL .S$SYSLIB.RCBTSK
ALLOCATE
INCL .S$SSYSLIB.RCBMPD
INCL OBJ.ANOTHR
END

The one new thing to notice is instead of listing all the
subroutines separately, the object file from the partial link is
used for the INCL. Also notice that the procedure is DUMMY’'d as
if it already was on the program file.

After using the XLE command to install this task on a
program file the map looks as follows.

Linking COBOL Programs

FILE MAP OF MY.PROGFILE
TODAY IS 12:57:47 WEDNESDAY, MAR 03, 1982.

TASKS: MAXIMUM POSSIBLE = 10

1D NAME LENGTH LOAD PRI S PM R D E O C OVLY P1/SAME P2/SAME INSTALLED
01 SHARE 2532 48A0 4 R 10/N 01/Y 3/ 2/82
02 ANOTHR 2700 48A0 4 R 10/N 01/Y 3/ 3/82
PROCEDURES: MAXIMUM POSSIBLE = 10

1D NAME LENGTH LOAD MDEWGC INSTALLED
01 INVSUBS OB7A 3D20 3/ 2/82

The diagram for this map containing two tasks and shared
procedures follows.

R it —————— R T >0000 (0000) -=+
'COBOL Runtime Procedure l s
. length of <3D20 . h
. . a
L] L] r
. e
, L] d
| |
D i e T T + >3D20 (15648) -=+
| INVSUBS Procedure [s
. length of >B74 (2938) . h
* . a
. . r
| e
bt e it R T PR + >489A (18586) --+d
| >48A0 (18592)
| SHARE task ANOTHER task |
. length >2532 length >2700 .
. (9522) (9984) .
T g + l
R ittt TR +

When more than one task uses this shared procedure you will
be saving 2938 (D>B7A) bytes of disk space for each task in the
program file that uses this shared procedure.

Linking COBOL Programs

4. OVERLAYS

A way to save space in memory 1s to use overlays 1in your
program file. An overlay is a part of the task that stays on the
disk until it is explicitly called for. The overlay replaces the
part of the task in memory that uses the same load address as the
overlay. This allows the saving of space in memory by making the
program size in memory be the sum of the procedure, the task, and
the size of the largest overlay to load. Before we get into the
Link Control File that might be used for our application lets
review the call tree for this application.

MAIN

|

e e T +

| l l |

ISSUE RECPT RDINV REORD

| I

SSTAT SSTAT

This call tree allows for four main overlays (ISSUE, RECPT,
RDINV, and REORD) as well as two sub overlays (SSTAT being called
by both ISSUE and RECPT). The following is an example of how we
might set up the Link Control File to accomplish our overlay
setup.

FORMAT IMAGE,REPLACE
LIBRARY .S$SYSLIB (library required for load directive)
PROC RCOBOL -
DUMMY
INCL .S$SYSLIB.RCBPRC
PHASE 0, MAIN (level zero is the root node named MAIN)
INCL .S$SYSLIB.RCBTSK
LOAD (use the automatic overlay loader)
INCL .S$SSYSLIB.RCBMPD
INCL OBJ.MAIN

PHASE 1, OVLYI (level one: subr ISSUE)
INCL OBJ.ISSUE

PHASE 2, OVLYll (subr SSTAT is an ovly under ISSUE)
INCL OBJ.SSTAT

PHASE 1, OVLY2 (level one: subr RECPT)
INCL OBJ.RECPT

PHASE 2, OVLYZ1 (subr SSTAT is an ovly under RECPT)
INCL 0BJ.SSTAT

PHASE 1, OVLY3 (level one: subr RDINV)
INCL OBJ.RDINV

PHASE 1, OVLY4 (level one: subr REORD)
INCL OBJ.REORD

END

Linking COBOL Programs

There are five main new items in this Link Control File.

1. LIBRARY .S$SYSLIB - This 1is required for the 1load
directive to work properly. The library command allows
you to include routines that are contained in that
library file specified and are called by the routines
in the Link Control File. If a routine is named ia the
Link Control File and is in a library specified, only
the leaf name need be named surrounded by parenthesis.
I.E. +S$SYSLIB.RCBPRC could have been put as (RCBPRC)
since it is in the library .S$SYSLIB.

2. PHASE 0, MAIN - This replaces the TASK statement from
the other program files. The 0 lets the Link Editor
know that this is the root of the overlay structure.,

3. LOAD - Signals the Link Editor to wuse the automatic
overlay loader in .S$SYSLIB.

4., PHASE 1, OVLYl - This command signifies the Dbeginning
of a new phase in the overlay structure, assigns a
level 1 (first level overlay) and a name to the
overlay.

5. PHASE 2, OVLY1l - This command signifies the ©beginning
of a new phase in the overlay structure, assigns a
level 2 (second 1level overlay) and a name to the
overlay.

After wusing the XLE command to link and install the MAIN
routine and the overlays on a program file the map of the program
file would look like the following.

Linking COBOL Programs

FILE MAP OF MY.PROGFILE
TODAY IS 16:43:52 WEDNESDAY, MAR 03, 1982.

TASKS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD PRI S P MR D E O C OVLY P1/SAME P2/SAME INSTALLED
01 MAIN 25CA 3D20 4 R 06 10/N 3/ 3/82
PROCEDURES: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD M DEWTC INSTALLED
OVERLAYS: MAXIMUM POSSIBLE = 10

ID NAME LENGTH LOAD MAP D OVLY INSTALLED
01 OVLY1l 034C 5BlC 3/ 3/82
02 OVLY1l 0482 5E68 01 3/ 3/82
03 OVLY2 0332 5BlC 02 3/ 3/82
04 OVLY21 0482 S5E4E 03 3/ 3/82
05 OVLY3 02B8 5BIlC 04 3/ 3/82
06 OVLY4 0666 5BIC 05 3/ 3/82

A diagram of the program file looks like the following.

o e e e e - + >0000 (0000) --+

] COBOL Runtime Procedure I

. length of <3D20 .

1 |

e e e + >3D20 (15648) --+

| MAIN

. length of >25CA (9674) .

e fmm e g e + >5B1C (23324)
ISSUE RECPT RDINV REORD !
ovlyl ovly?2 ovly3 ovlyé

o e + >02B8 (696)
o + |] >0332 (818)

e + SSTAT | | >034C (844)
SSTAT ovly21l tom - + 20666 (1638)
ovlyll

------------ + >0482 (1154)

R T +

Notice that with overlaying, mem required is the root plus
the longest overlay sequence. For our example this amounts to:

Linking COBOL Programs

>5B1C + (>034C + >0482) = >62EA
23324 + (844 + 1154) 25322

Without overlaying, the memory required is the root plus the
sum of all the unique overlays. In our case this works out to:

]

>5B1C + >02B8 + >0332 + >034C + >0666 >6ABS
23324 + 696 + 802 + 844 + 1638 = 27320

The savings from using overlays in this example is >07CE or 1998
bytes in memory.

5. SUMMARY

We have looked at three main ways to link a COBOL program
for speed, disk space savings and for saving memory space. All
three methods use the memory image format in the program file and
thus will not need to be converted in the process of loading into
memory. Depending on your needs one of these three methods will
help in speed of execution, saving of disk space, and effective
memory utilazation. Use the following list to help decide which
method to use.

l. If speed is the most important, d th p am

huge (larger than 64K bytes lo when linked) use the
normal linking procedure that puts the whole program in
memory at the same time.

(1]

roocram 1is not
o~

= [

2. If you have a set of subroutines that will be used in
several tasks, wuse the shareable procedure linking
method to save disk space.

3. If the program is large (bigger than 64K bytes) then
use the overlay method to wutilize memory more
effectively. Using overlays will slow down your
program due to loading the overlays from the disk.

When an application 1is ready to be put into operation
consider the method of linking carefully. Linking is mnot hard,
but like all programming careful thought should be used.

COMPUTER SYSTEM HARDWARE
TI-MIX SYMPOSIUM, NEW ORLEANS, 1983
TECHNIQUES AND CONCEPTS FOR THE
NONTECHNICAL OR NEW USER SESSION

Art Miller

Texas Instruments

Austin, Texas

Digital computer systems are functionally composed of only a few
elements. There is some means of placing input into the computer;
a means of receiving output from the computer; a computational
element to perform manipulations on the input; a program that
defines what those manipulations are; data to be input, stored or
manipulated; and memory to keep track of results or systems
operation. There are many types of input, output, computer
architectures, and memory. Even more varied are the programs that
have been written for each configuration, or arrangement, of these
varied elements and the data that they operate on and with, The
purpose of this paper is to present a basic approach to these
elements for the uninitiated user of computer systems.

Requirements for Digital Computer

Computational Element (CPU)

Memory (RAM, ROM, mass storage, paper)
Input Element (CRT, VDT, KSR, mass storage)
Output Element (terminal, printer, memory)
Program

Data

This is a block diagram, or symbolic representation, of a possible
computer system. Note in this example that input and output both
have to pass through the central processor, or CPU, in order to
reach the memory elements of the system. This is a typical type
of configuration, but is not the only architecture presently used.
There are, for example, machines where input can enter directly
into system memory. Our initial concentration will be on the
central processor - what it does and why it does it.

Digital Computer System

Memory
Central
Input Processor je—> ROM
RAM
Mass
Storage
Output

AT11 digital computers are presently based upon Boolean Logic.
This area of mathematics was developed by George Boole, an English
mathematician during the 1800's. The whole pretense of Boolean
algebra is that there are only two possibilities for each element

- either "1" or "0." This is contrasted with decimal arithmetic
where there are ten possibilities for each element - "0" through
"9."

Boolean Algebra

In the beginning there was nothing,
and he* called it ‘0’ . . .

And then there was something,
so he called it ‘1’ ..

So it was necessary to define a
whole lot of operations around 1 and 0!

* George Boole (1 1864, English Mathematician)

The real ascendancy of Boolean algebra did not occur until the
jinvention of the digital computer during the 1940's. This type of
mathematics is perfect for electrical processing elements defined
by digital logic - each element is either "on" or "off." Use of
Boolean algebra allows definition of addition and subtraction.
Shifting and addition then define multiplication, while shifting
and subtraction define division. Use of recursive operations,
(operations performed repeatedly), and other mathematical
reiationships such as truncated series approximations, aliows
development of a full complement of mathematical operations.
These mathematical and data manipulation, (shifting, negating,
etc.), operations form the arithmetic logic unit, or ALU, portion
of the CPU.

Boolean Logic

* Great for electrical function
- “on” = “1” “Off” = “0”
¢ Defines addition
- Multiplication is “shift” and add
¢ Defines subtraction
- Division by shift and subtract
e Recursion yields integration, exponentiation, etc.
¢ Mathematical ability resides in CPU
- Arithmetic logic unit (ALU)

For the sake of completeness, these are examples of Boolean
Operations. The dot and plus sign, normally understood to
indicate multiplication and addition, define different operations
in Boolean algebra. These operations are "And" and "Or," and are
best explained by example tables giving a set of inputs and
outputs. Since my intent is not to teach a Boolean algebra course

or to make you digital logic designers, this is as far as we will
explore the subject.

Boolean Operations
Xe} = X |
(X+y) (X'+2)=xz+x'y
X+1=1
X+y+z+..)'=xy2'...
X+y) (x+y)=x

XeX'=0

etc., for (x, y, 2)=(0, 1)

So far we understand that a digital computer requires data,
arithmetic and manipulation capability on that data, and a program
to provide information on the intended relationships between
pieces of data. (1.E., a program may define billings to be the
sum of individual sales receipts, or it may define billings to be
the product of average sales per receipt times total number of
reciepts.) However, it is always true that initial input and
final output must be in human usable form. The basis for
providing a more readable format arises from coding. In some
cases this coding is in several levels.

Central Processor (CPU)

e Digital computers require

- Data

- Arithmetic capability

- Data manipuiation capability

- Information on relationships (program)
e Basis for representation is coding

Coding allows us to represent a large number of bits as a small
number of symbols. These tables show the evolution of the
hexadecimal coding system where four bits, (individual sets of "1"
or "0"), can be represented by a single alphanumeric character.
Another example of a common coding scheme is the ASCII character
set wherein the 128 possible combinations representated by the
hexadecimal characters 00 through 7F, (0000000 to 1111111), encode
the characters of a standard typewriter keyboard. This allows the

computer to recognize, for example, the character "40" as the
Tetter "A."

Coding

A set of “N” bits (sets of “on” or “off”” possibilities) has 27
ordered combinations . ..

1Bit = 2'= 2 Most Common Code is “He?(" '
0 {Hexadecimal =6 + 10or 16 combinations)
1
. B 0000- 0 1000- 8
2Bits = 22= 4 0001 - 1 1001 - 9
00 0610- 2 1010- A
% 0011 - 3 1011- B8
ii a100- 4 1100- C
! 0101- 5 1101- D
3Bits = 2°=8 0110- 6 1110- E
000 0111 - 7 1111~ F
001 _ ' o
010 Code convention yields shorthand, i.e.,:
m A40 =1010 0100 0000

100
10
110
111

Data in a computer typical exists in ordered sets of fixed length.
A general shorthand for these fixed length patterns is the "byte,"
which is a set of eight "bits." The computer architecture then
defines the width of the data and address paths which determines
much about the capability of the computer system. Typical data
paths are, for example, the 8-bit Apple computer, the 16-bit
minicomputers, the 32-bit super-minicomputers, and the 64-bit
mainframe computers exemplefied by the IBM 370 machine. Each set
of data then has associated an address, or location, where the
data may be found. Having an address for data then allows ordered
access to the data (recall), storage and recall of results, and
branching to new locations in a program according to results. it
is important to note that data in memory can be either just data
or the instructions in a program. Therefore, it matters where in
the data you start operating. A computer architecture alway has a
"Reset" function that allows you to start operation at a know
location in the data.

Data Streams

» Computers handle data groups of “fixed” length
- 8 bits is 1 byte
- Defines memory organization, data path size
e Lists of data groups have an order numbering (address)
~ Ordered access
- Storage and recall
~ Branching based on results
* Members of list may be data or instructions
- It matters where you start
- ‘Reset’ defines starting at a known address

This is a block diagram of a central processor unit, or CPU. This
arrangement of structures is often referred to as a von Neumann
machnine since all input to and output from the memory must be
routed through the central processor unit. 1 will step through
several instructions to show how the processor would implements
instructions:

Jump - When the program counter provides the memory address
register (storage location address holding point) with an address
for memory, the output of memory is assumed to be an instruction
and is loaded into the instruction decoder. If the instruction is
a "Jdump" command, then the next location in memory is loaded into
the memory address register as the spot to jump to! It is also
possible to jump by a fixed amount from where you are in the
program. This is called a "Jump Relative."

Add - When an "Add" instruction is decoded, the numbers to be
added are retrieved from memory and/or input and the addition is
forced by the control lines. It is possible that one of the
numbers is the next number in the program, (add a constant), is in
memory, (add a stored value), or is waiting at the input. In the
case of the latter an "Input" command is executed first.

Input - When an "Input" command is activated, control lines
deactivate the memory output and activate the output of the input
element. Then the input data is available to the CPU.

Qutput - An "Output" command is the reverse of "Input" in that the
control lines force the results of the operation, available at the
output of the ALU, into the output element.

A typical processor element will understand several hundred
variations of commands. This set of allowable variations is
refered to as the instruction set of the computer, and corresponds
to the minimum understandable syntax, or language, for the

computer.)
Central Processor Unit

Examples
Memory
(] Eam
1 . Add (3)
Control - Constant
r—| F=-—-—- - = - Stored
1 = - Input
= Instruction i Input
} | Decoder Contral Program 0y - Output
] ’———'> Counter nlm
| ~~ |
Arithmetic] |
:O Logic Addess 4
Unit]
1
Memory l
J;) Address
Address
Lines
L]
—Tl
l bae cru |
s2Z
OUTPUT c
Von Neumann Machine

10

Programs and data are typically stored in memory. While
operating, they are usually placed into RAM, or random access
memory, to provide quick access for fast operation. The first
successfal RAM was core memory. This memory was implemented with
small, magnetic donuts woven into a grid of access lines.
Needless to say, this memory was very bulky, but had an advantage
jn that it was nonvolatile. This means that it retained data even
when the power was turned off.

New memory technology is primarily based upon silicon integrated
circuits. It is presently possible to put over 250,000 bits of
data on a single chip one-quarter of an inch on a side. The
dominant technology now, though, is 64K DRAM with over 64,000 bits
of data on a single chip. DRAM stands for dynamic random access
memory. This type of RAM requires constant updates, or "refresh"
cycles to keep the data in memory from being forgotten. Static
memory refers to memory that only requires the power to remain on
for memory to be maintained.

Memory - Random Access (RAM)

e Matrix of storage locations

e First successful RAM was magnetic core

e Dominant technology is volatile, Dynamic 64K RAM
- 2% pits of information on single chip

Enable

Agd_ress > —— Data Out
Lines

Definition: 1K =2"*=1024

Read/Write

11

Read only memory, or ROM, is typically used to store commputer
diagnostics and program load routines - the types of programs
needed to start operation of a system. Several methods of
creating ROM's are available: A ROM is mask-programmed, meaning
that the data is inserted into the circuit during manufacture and
can never be changed. These chips are the cheapest method in
large volumes when the contents are stable. PROM's allow data to
be electrically encoded one time after manufacture. These are
typically used for small production runs, or during development.

EPROM and EAROM chips are used to store data that may change on a
routine basis. EPROM's can be erased by extended exposure to
ultraviolet radiation. EAROM's can be erased by electrical
signals. EPROM's are usually used during development, while
EAROM's seem to find favor in storing slowly updated material,
such as system calibration values in measurement equipment.

Memory - Read Only (ROM)

e Same organization as RAM
- “Write once,” read many times
- Nonvolatile
e Different methods to input data
- ROM, PROM, EPROM, EAROM
¢ Store starting, permanent programs for computers
- Diagnostics
- Load routines

Booting the System!

12

Mass storage devices run the gamut. The purpose of such devices
is to provide long-term, non-volatile, high-capacity memory for a
system. A unit might, for example, provide room to store several
different programs and the data for each. When a program is
activated, then it is typically moved into RAM along with its data
where it then operates. The first types of mass storage available
were the friendly paper systems - paper tape and punch cards.
Hollerith punch cards were first used before the turn of the
century to help with the census. These paper systems are bulky
and subject to abuse. As a result, more commcn methods today rely
on magnetic media.

In magnetic media, a material is coated with a magnetic material.
A head runs close to the material and causes flux (magnetization)
polarization changes in the material dependent upon the inputs to
the heads. Magnetic tape units were the first major units
available, but disk technology has taken hold due to its faster
access speed to random data. (Tape drives have data stored piece
after piece. The data must always be randomly accessed.) Over
the years, large hard disk drives (using a stiff platter) have
found favor in large computer systems. Smaller computer systems
serving one or a few users have relied on flexible, or floppy,
disk drives. In this case the media is much thinner and bendable.
The advent of winchester, (sealed), disk drives has allowed the
technology to mature to where small hard disk drives are the
largest growing market.

Note that disk drives rely on an ability to record much data in a
small area. In order to accomplish this, they must ride close to
the surface of a disk. However, in order to keep from wearing the
surface of the unit and the read/write head of the drive, the
heads should not ride on the surface. (Typically the surface 1is
spinning at 3600 rpm - much faster than a record player.) In
winchester units the head rides so close to the surface that a
smoke or dust particle is larger than the head clearance. Hitting
such a particle can cause the airfoil-shaped head to actually
waver in its path and "crash" back into the surface, destroying
the head and the disk and the data. Due to possibilities of this
and other failures, data is usually "backed up," or copied and
stored by some other device in a redundant fashion.

Future optical technology disk devices utilizing lasers will allow
us to move from several megabytes of data per disk surface into
the gigabyte (one billion bytes) per surface range.

13

Now that we have discussed the internal workings of a computer -
memory and the central processor - we are ready to discuss input
and output. These usually take the form of encoding or decoding
data.. In most cases a display of the data takes place, and the
data is presented as alphanumer - a combination of letters,
numbers and characters. These characters are made up of
individual little on-off areas on a screen that are grouped to
form characters. As shown on this foil, the density of the array
available to form each character has a drastic effect on the
readability of the display. In higher-priced systems it is
possible to obtain pixel-addressable displays which allow high-
quality graphical presentation. This allows a mixture of text and
graphics in a dot matrix type of system.

Computer Display Elements - Dot Matrix

Display mechanism is typically an array of dots (pixels)

- Array broken into small display arrays per character

- Character codes built into ROM

Pixel-addressable arrays require much memory/better control
- Low cost systems typically use block graphics

Typical arrays are 5x7, 9x9, and 9x15

- Near letter quality arrays can be 24x18, etc.

Denser arrays print slower (more passes) or cost more

5 9 24

Memory - Mass Storage

First systems for mechanical calculators

- Hollerith cards, paper tape

Magnetic tape improved density, durability

- Data still serial

Dominant technology is magnetic disk

- Fast, near random access

- Coated media may be flexible (floppy) or rigid
- New technology is Winchester (sealed)
Future technology is optical (laser)

Head (Airfoil)

Magnetic Coating % a Smoke or Dust Particle
\ e O T T T T T T T LT T T T Disk Rotation
' Il

14

Typical input elements are Video Display Tubes. These elemgnts
are really television monitors with keyboards and e]ectron!cs.
They are very flexible to edit, and are typical]y.very fast units.
A typical screen of data is 24 lines high with an 80 column
display. This can display 1920 characters, and can be completely
changed in one second with a unit interfaced at 19,200 baud. (One
baud is a bit per second. Baud implies a communications overhead
of stop and start bits surrounding a character. Therefore, each
eight-bit character requires ten bits in a transmission mode.)

Input Elements - VDT

* Television display that shows dots
- Incorporates screen, keyboard, controller
¢ Easy to change (edit) inputs
* Typical units are serial interface
- Change screen at 300 baud to 19,200 baud
(30 characters to 1920 characters per second)
- Typical screen is 24 lines, 80 characters per line
(1920 characters per screen)
- Usual display is green monochrome

15

A keyboard send-receive unit, or KSR, typically displays both
input and output on a paper copy. These units are much slower,
typically printing at 30-120 characters per second, but are much
more portable than a VDT unit, especially when hard copy print out
is required. (In the case of a VDT this generally requires the
addition of a separate printer unit.)

Input Elements - KSR

* Incorporates keyboard and paper display
- Thermal paper or plain paper
* Evolved from teletype (TTY) functionality
* New units are 30-120 characters per second input/output

16

The typical output element is either a video display tube or a
printer. The usual device is an RO, or receive-only printer. Dot
matrix printers can allow the flexibility of mixing graphics and
text and seem to offer the best speed for the price. Band
printers are usually higher speed devices than matrix printers and
address 300-1200 line per minute output requirements. Print wheel
or ball devices are like electronic typewriters and are used for
the requirements where a fully formed character is required for
excellent readability. This document was printed on & print wheel
printer. They typicall offer 12-50 character per second printing.

More exotic printers for high-speed and specialized output use
lasers and ink jets to form the output. These units can cost
hundreds of thousands of dollars each and are used in instances
where pages of output are required per second.

Output Element - RO Printer

¢ Methods of print vary
- Dot matrix
Band printer
Ink jet
Print wheel or ball
- Laser
e Speeds from 20 characters to several pages per second
» Typical units are 80-150 cps, dot matrix
- Allow mix of text and graphics

17

The subject of programs and languages is the topic of another
paper in this series, and I shall not get into that final area of
computer systems. The finish of this presentation is a series of
photographs showing the build up of a Series 300 Business System
to display the areas we have just discussed on a computer system.

vour Part in Business System Documentation
Techniques and Concepts for the

Nontechnical or New User Session
by

Charles E. Watkins and Adrienne Gardner
Texas Instruments
Austin, Texas

1. INTRODUCTION

Until recently, TI developed computer systems primarily for wuse
by data processing professionals. This meant that we could count
on the readers of our documentation to be familiar with most of
the concepts and terminology involved. We could also count on
our users to be an experienced readers of technical documentation
and to know how to use and maintain a technical document set.
However, once TI stepped into the end-user market, we had to
reassess our documentation strategy in light of the needs of a
new type of reader. We could no longer assume that the reader
has a background in data processing. We could no longer assume
the reader knows the language and structure of technical
documentation. In sum, we could no longer assume that our tried
and true approach to technical documentation would meet the needs
of this new group of users.

The first products aimed at this type of customer are on the low
end of the Business System Series, the Business System 200 and
the Business System 300. As one of the writers who worked on the
DX10 Micro manuals and the operator”s guides for Business System
200 and 300, I’m in a position to give you some background on how
we developed the documentation for these products and how we
think vou can get the most out of it. First, I‘d 1like to give
you the big picture of the documentation for the Business System

wia s w1l hnavws

series and show you how all the parts fit together. Then, we’ll
look at the parts individually and you”ll see how they“re
organized and where you should look to find the information vyou
need. Finally, I”11 go over the procedure for adding to your
Business System documentation and software as your system Jrows
to meet your needs.

2. DOCUMENT TYPES

Apart from the technical manuals used by the people who service
the equipment, there are three types of documents in the Business
System series. The first type tells you how to set up and
operate the system itself. The second type tells you how to
install and use one of the ready-made application packages such
as Payroll or Inventory Control. The third type explains to
people with some programming experience how to develop new
application software for your Business System computer.
Together, these three types of documents provide everything vyou
need to know for the everyday operation of the system and for
development of your own applications.

2.1 System Operator”s Guide

In addition to a Business System 200 or 300 computer, a typical
system could include either or both of two disk units (WD500 or
WD800) , either or both of two printers (840 RO or 810), and in
the case of Business System 300, one or more Business System
Terminals. Also, we offer no less than four operating systems
for the Business System computers--DX10 Micro, DX10 Run-Time, the
full DX10, and the p-System (tm UCSD).

Obviously, no single operator”s guide could cover everything
without distracting the reader with 1lots of information about
parts of the system the reader doesn“t even have. And since we
wanted to develop step-by-step procedures that pertain to the

actual hardware on site, we couldn”t use generic terms throughout
the operator”s guide.

What we decided to do is create a modular operator”s guide. Each
part, or module, would cover one aspect of the system and we
would pack the module that deals with a piece of equipment in the
carton with the hardware. The shipping carton for the computer
has the module on the computer display unit and keyboard, along
with the binder, tabs, and some general information. The
shipping carton for each model disk drive contains a module on
how to set up and operate that particular type of drive.
Likewise, the carton that contains one of the printers also
contains a module with the procedures for setting up and
operating that type of printer.

By inserting these modules into the binder that comes with the
computer, you build up a single operator”s guide that is tailored
to your equipment. When you receive your operating system
software, it comes with two modules--one on how to install the
software and another on how to use it from day to day.

This leaves only the information on troubleshooting--what to do
in case of a problem. For Business System 200, we decided that
this topic deserved its own module in the operator”s guide, but
we still didn”t want to burden our readers with information about
equipment they don“t have. So what we did was package the
troubleshooting information with the module for each piece of
equipment and ask the user to insert it Dbehind the
Troubleshooting divider in the operator”s guide binder. This
allows the Business System 200 user to build a troubleshooting
module tailored to the system at hand.

By the time we did the Business System 300 operator”s gquide, we
decided that this approach required more effort than it was
worth, so we did away with the separate Troubleshooting section
and 1left the troubleshooting checklists as part of the modules
dealing with different parts of the system. As a result, when a
piece of equipment goes with both Business System 200 and 300,
there”’s a page in front of its troubleshooting checklist that
tells you to move it to behind the Troubleshooting divider if vou
have a Business System 200 or to leave it in place if you have a
Business System 300.

2.2 Application User”s Guides

The Business System 200 and 300 computers support a variety of
applications, ranging from Word Processing to Account Management.
TTI sells these applications as packages consisting of the
application software and the application user”s gquide. Unlike
the operator”s guide, which deals with general system operations,
an application user”’s guides deals with only a single
application. Each application user”s guide contains procedures
for installing the application software and for performing all
the tasks associated with the application.

Within individual applications, the only difference between the
Business System 200 and 300 computers has to do with software
installation. Since the Business System 200 and 300 computers
use different operating systems, the procedures for installing
applications are slightly different for the two systems. Rather
than make two different versions of each application user”s
guide, we figured out a way to have only one version and still
avoid the potential problem of a reader using the wrong
procedure.

Since the Business System 200 came out first--even before the
details of the Business System 300 installation procedures had
been worked out--we went ahead and included the Business System
200 installation procedure at the front of each user”s guide.
Then, when we got ready to ship Business System 300, we prepared
what we call a change package for the application user”s guides.

There”ll be more about change packages later on in this
presentation, but for now it”s enough to know that the change
packages for the application user”s guides contain the procedures
for installing application software on the Business System 300.

2.3 Programmer”s Guides

Even though we anticipated that many Business System customers
would prefer to buy ready-made applications, we wanted you to
have the option of developing vour own programs as well. So we
gave you two choices: you could buy the run time system and
packaged applications, or buy the development system. The
development systems come with various programming language
packages determined by the operating system you selected -- DX10
Micro, DX10, or p-System. Four high Jlevel languages are
available: BASIC, COBOL, Pascal, or Fortran. Each 1language
development package includes a programmer”s guide, operating
system manuals, and an error message manual.

If, for example, you bought the COBOL 1language package on the
DX10 Micro operating system, you would get four DX10 Micro
manuals. The first, the user”s guide, is intended for everyday
use and easy reference. It explains how to use the Text Editor,
how to create and maintain files, and how to use all the
commands. The second, the COBOL programmer”s guide, assumes that
you have read the user”s guide and know how to program in COBOL.
It describes the enhancements TI has made to ANSI standard COBOL
and shows you the most efficient ways to develop and run COBOL
programs on your Business System 200 computer. The third, the
operating system handbook, assumes that the reader 1is an
experienced assembly language programmer. This manual describes
the nuts and bolts (so to speak) of the DX10 Micro operating
system: how to perform device and file I/O, how to write new
commands, and how to debug assembly language programs. The last
manual, on error messages and codes, lists the DX10 Micro error
messages and suggests recovery procedures.

3. DOCUMENT USE

Unlike most other documentation published by TI, the Business
System series has had to address readers who do not happen to be
data processing professionals. We had to consider how much you
really need to know before you can begin using a computer as part
of your work. We also had to decide how to present this
information in a way that would be easy to find and easy to use.
We eventually developed a style and format based on four
elements:

* Equipment tours -- Each module that deals with a piece
of equipment begins with some unpacking instructions and
then continues with a short tour of the equipment. In
the tour, vyou find out about all of the lights and
switches, the important electronic and mechnical parts,
and the supplies that go with the equipment. Any time
you need to do something with the equipment, you can
refer back to the tour to check the nomenclature.

* Step-by-step procedures -- Every repetitive task is
covered by an operating procedure. The procedure begins
by telling you when it should be performed and what you
need to perform it. The rest of the procedure consists
of steps, each of which requires a single action on your
part. When a procedure involves a piece of equipment
that might vary from system to system (such as
performing a disk unit self-test), it refers you to
another procedure that deals specifically with that
equipment.

* Background paragraphs -- Though we have greatly
simplified the data processing terminology used in the
Business System guides, sometimes we absolutely have to
introduce a data processing term or concept. When such
a termcomes up, we introduce it in a background
paragraph and list it in the glossary.

Troubleshooting checklists -- Even though the Business
System products have been engineered for a high degree
of reliability, we must recognize that problems
sometimes do occur. To save the you the inconvenience
and expense of a service call, we have included
troubleshooting checklists for both the equipment and
the software. The troubleshooting checklists cover most
of the common problems that you can solve yourself and
many situations where you can help isolate the problem
by collecting data for the service person. We have
organized the checklists by symptom so you can quickly
find out what to do. With each symptom we give a list
of things to check, reserving the service call for the
last resort.

4. DOCUMENT MAINTENANCE

To keep vyour Business System documentation current, you should
update your Business System manuals as necessary, keep a log of
back up activity, and keep a record of modifications made to your
applications. To suggest improvements to future manuals, send in
the User”’s Response Sheet at the end of each manual.

4.1 Change Packages

TI makes all changes to the Business System manuals and software
updates available to you through your dealer. If you buy an
updated version of your operating system or application software,
you may also receive updated documentation. Sometimes an entire
manual will be revised. 1In that case, simply discard the old
manual. However, when changes to the documentation are slight,
TI issues a change package, as we did to include the installation
instructions for the Business System 300 application packages.
Each change package includes replacement pages and an explanatory
cover letter. When you get a change package, simply remove the
obsolete pages from your manual and substitute the new ones.

4.2 Back up Log

Your back up log keeps track of when vyou made copies of your
software. Your 1log should 1list the date, the time, and the
volume name of the back up disk. If it takes more than one
volume for the back up, each volume must have the same name; we
recommend that vyou number the volumes manually to avoid
confusion.

If you Kkeep two generations of back ups, give them different
volume names. For example, if vou back up vyour accounting
applications at the end of each month, you might name the current
backup volume APRIL83 and the next month”s MAY83.

How frequently vyou should back up your files depends on your
application. Copying your software regularly ensures that you
have a recent copy of your application data. Then, in case of
data loss or damage, having a recent backup of your information
makes data recovery easier.

4.3 Application Notes

Keeping application notes makes it easier for you to tailor your
application package to the needs of your business. Many
applications allow you to select options when running specific
programs. Write down in your manual, or in a notebook kept for
this purpose, how you respond to options in the program. For
example, if you were running an accounts payable program, the
system might prompt you to ask whether to post the transactions
to the general ledger. You can respond YES or NO; the default
response 1is NO. If you keep a general ledger, vou may want to
override the default and respond YES. Note this change in vyour
application notes so that the next person running this
application -- perhaps your secretary - will respond
appropriately to the prompts.

4.4 User”s Response Sheets

Finally, there is something you can do for us: return the User”s
Response Sheet 1located at the back of each manual. Each letter
goes back to the Publications department, where it is given to
the writer working on the next release of that manual. Writers
need to know what is unclear or incomplete in order to improve
your Business System documentation.

<&° CO“P(%
N

INSTRy,
e
9 Sy3sN

1))
&) TI-MIX

|

i

1

1§

i

i

%

i

‘ PIAR

.

	001
	002
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	xBack

