

Secretary's Notebook
by Terry Phillips

First an apology for not having a column in the
September TND. I was battiing winter bugs and missed
the August meeting and consequently did not have a great
deal to write about. Very few people, from my
observations, have escaped the dreaded winter bugs,
however now with spring well and truly here we can |ook
forward to sunny warm days again.

The September meeting was a bit of a disappointment
for a meeting billed as a full day tutoriai. When I
arrived at about 10.30am there were only a handful of
members present and most seemed contented to sit around
having a chat. As the day wore on not a great number
more turned up and there did not appear to be any
organised activities. I remember I wrote recently that
Buy, Swap and Sell days appear to be poorly patronised
and it now appears full day tutorials are on the wane.
I may be only guessing but this could be as a result of
no members needing much tutoring these days. Are we
down to the 'hard-core’ element of members who now oniy
like to come along tc meetings for the social side of
things and discuss there computing problems on a one to
one basis with somecne they know is fairly well versed
on that particular topic that they are having problems
with? Anyway October is billed as another Buy, Swap and
Sell day. We will see what eventuates on that day.

There being an insufficient roll-up of Directors we
were unable to have a Directors meeting - Geoff was
attending a wedding in Adelaide and Rotf had difficuity
in arranging transport from Wollongong, while Russell
was seconded to work overtime - Dick and I however, had
an informal chat on future direction of the club, It
seems that there will need to be fresh ideas and new
blood next year if the club is to survive in its present
structure and continue servicing the needs of members as

it now does. Particularly paramount will be volunteers
to produce the |Iife-line of the club, the monthly
Newsdigest. Give it some thought over the next couple
of months.

At the time of preparing this article, the Faire is
only a couple of months away and I am pleased to report
that Ian Mullins and his band of helpers have things
wel |l under control. I wonder what the turn out will be.
I suspect that there will be well over 100 attendees
over the 2 days. Hope we sell all those T-Shirts!

I still want to push ahead with the social night
preferably on the Saturday night of the Faire but at the
present time there has been very little response as 1o
what type of venue is preferred or as to how many might
want to come along. I will need to firm up on both
shortly so that a booking can be made.

We have 7 new members to welcome, most of whom have

come through Percy and console exchanges. It is a big
welcome to the following:

Lewis Griffiths Old Bar

Terry Reeves Croydon Park

Joanne Mizzi Blacktown

Reg Yates Port Augusta (SA)

Cheryl Turner Warialda

George Norris Springwood

Computech Computer Centre Canberra

Hope you all enjoy your stay with the club.

Geoff Warnher a member in Western Australia and a
stalwart in that club has written to tell me that TIUP
is alive and well. Geoff also asked me to pass on the
following:

The Shop - service and preducts sold are wonderful.
TND - truly a great publication with preduction quality

the best he has seen in the TI99/4A world. He has a
minor criticism with the fragmenting of articles but

T%@ %ML@ S‘Jﬂ@[p) with Percy Harrison

The attendance at our full day tutorial was
somewhat disappointing but it was very pleasing to see
some of our more recent members who attended for the
first time and I hope that they felt that it was worth
their while coming along.

The Club T-shirts have arrived and went on sale at
the September meeting. They are available in five
sizes: 14 (90cm), 16 (95cm), 18 (100cm), 20 (105¢cm), and
22 (110cm). We have sold out of the 22 size so anyone
wanting this size should let me know as soon as possible
so that we can re-order. The price has been kept to a
minimum of $11.00 each which means that we will have to
sel |l every shirt to avoid making a loss. The shirts are
white Bonds made in Australia and have a map of
Australia on the front with the TIsHUG Logo within the
map and the words COMPUTER CLUB underneath, all in black
outline. On the back 1s a TI99/4A computer system
comprising a console, PE Box and a monitor come TV set.
The comments made by those members who attended the last
meeting were very favourable.

Once again I would like to remind members that I
will no longer bring the club hardware to the meetings
so if you need drives, conscles, PC Boards or any of the
cards that fit into the PE Box please ring me prior to
the meeting and I will bring the items you want with me.
Both Club Disks and Commercial Disks will be available
and also boxes of blank disks and a range of IC’s.

PRICE LIST

Club Software Disks

See Page 3 of the August TND plus following:

A475 Clubline 99 Vol 4 No.8 SSSD, $2.00
A476 Clubline 99 Vol 5 No.5 888D $2.00
A494 XB #0 Money Money 888D $2.00
A495 Directory 858D .. .ceiaviiiisieaieein nie e e $2.00
AS04 The Director 8880 :iu.wwinmivsawassanss o dv vivi $2.00
AG0E: Sorting DSSD wwivy s s werieievoa @ 58 I o $2.00
A506 Memory Manager S8SD iiiiiann. $2.00
AS0T Implanting 858Diiiiiieiienatiiininans $2.00
AS08 BOOKEAL BS8D cuvss i s wstisssmiaiamia ssene e Vi 474 $2.00
TC820 Health and the Human Body S8S8D $2.00
TEBAD PRYSIES iS88D s v sverimmwsbsivasma it % o it $2.00
TCB50 (ChamiSTry BBBD . .o vvwamsan srmaags ws a5 o8 s $2.00
TCBB0 Astronomy Disk #1 S8S8Dc.civuinnn. $2.00
TC890 Teacher’s Helper S88Dcccivineninnn. $2.00
TC990 Sports (Requires XB) SSSD $2.00
TCCY Tigercub Collection #9 S88D $2.00
TCC10 Tigercub Collection #10 888D $2.00
Hardware
AT Disk Control Card (DSDD Format) $150.00
5.25 Half Height Drive Double Sided $65.00
R5232 ‘Card o PE BOX wowssssoyinameawa i e ass $100.00
Modem Card (300Bd) for PE BOXce0vuvenn.. $60.00
Club T-Shirts Sizes 14,16,18,20,22 $11.00
Packaging and postage charges:
Surface Airmail

1 to 2 Disks $1.80 ~ 1.80

3 to 9 Disks ———————=- $2.90 $3.60

10 to 20 Disks ——————— $3.90 $4.80

TI Artist Plus ————— $3.00 $3.70

Display Master --- $3.70

TI Base $3.70

TI Sort $3.70

5.25 inch haif-height

drive (1.25 Kg) ————— refer to your local

post office
Bye for now. O

continued on page 6
(October 1992

TIsHUG NEWS DIGEST

Page 2)

o N S Al
S "PL g 5
% =

B RN (] t{j D
! :‘EELLBI}R'_D__‘ Gkt wCh&EﬁSS :
J MI;-’L Ea:mm[/\-‘ o —
’n | Pork /o/ o TISHUG T Ealpe

TO BE HELD AT AsSUFeLD
BOws ' HMiGH Schoo ;
1OAM— & P SATSON
261th,/29Th NOVEMBER 92
PTr=2 1 gk

b

. "
: of MG -
71 Eas:ebank : m‘sy AU 6 S ‘*?C\‘l & YA
Convent , 5 £ : %‘Q \
G . :

T HENS
=

<

2

Q(::
= =4 3{
|(IE; BIRRF?IGA 74145,

[ss]
ST
O CHURCH T.

EN
-

H
Uy Lol
OREHAPD

=]
=

ROBINSONY
gy

“

-(~ .
i Jlimﬁ"!g.._
AshField J°
2 AR

c

G ROUND S — AccEes
[|FrRoM 8=Th Aave
REGENT™ | o i

Gt :
2\ 1]
Re o0
e

C '%g
WE:
EAMS
™
NIGaWYH
Y

B

.-\‘-%Hr'——'iELD

HietH sScHool

1
~“ASHBURY

; E.Eﬁx TFTH :
e “”OUQ
RIS A~ 2 TH
T P B
; i
3 BKQ% |

in
o
1TH

L

(Page 3 TIsHUG NEWS DIGEST October 1992)

Shahzada Endurance Horse Ride
by Ross Mudie

Introduction

In August 1992, my trusty TI99/4A again saw service
(for the fourth year) at the Shahzada Endurance Horse
Ride as the event computer., The Shahzada is a 5 day,
400km event where horse and rider are pitted against the
rugged terrain on the riding trails of the St Albans NSW
area. The event commences at 4am daily and all riders
must complete the 80km course set for each day by Spm.
Daily weather conditions recorded included temperatures
between a frosty 4 degrees Celcius and a hot 23 degrees.
At times hail was reported by the check point radio
operators on the course, whilst strong winds and dust
made conditions quite unpleasant. Some days presented
four seasons in a day.

1992 Shahzada, I set up two TI9G/4A
The "main" computer managed the master data

At the
computers.

base, whilst the second computer was set up on a table
in a horse float at the weighing scales. The main
computer was 1in the back end of my communications

caravan, in company with the WICEN (Wireless Institute
Civil Emergency Network) amateur radio communications
base station, the public address system, fax machine and
my accomodation. The "Weights" computer in its horse
float was immediately beside the "Ruddweigh" walk on
scales for immediate input of the weight information,

The Hardware

The weights computer consisted of a TI99/4A console
with in-built Extended Basic (for reliability) and
inbuilt (custom wired) EPROM ROS Ramdisk/32K memory/
clock. The single stand alone disk drive was inter-
faced with an "original box car" disk controller and a
"parallel output interface” between the disk controller
expansion port and the logging printer. The screen used
was a 14 inch colour TV receiver and TI modulator.

computer consisted of a standard TI9S/4A
console with Peripheral Expansion Box containing 32K
memory expansion, DSDD AT disk controller, 2 disk
drives, 991 sector EPROM ROS Ramdisk, RS232, Triple Tech
(printer buffer and clock), Canon Bubble Jet printer
(BJ10e), Wang monitor and TISHUG RGB interface.

The main

Both systems were powered through a '"Constant
Voltage Transformer'.

The Weights Computer

The Weights Computer was used each day to record

the body weight of each horse and the combined weight of
the rider with saddle and gear, etc. When each horse or
rider approached the scales, the entrant number was
called. Since the Ramdisk contained the NAMES data
base, as soon as the entrant number was keyed in, the
rider name was available on the screen. The computer
operator could call out the name to ensure that the
correct entrant number was being accessed. (Riders have
been known to call the wrong entrant number and it is
not hard to key in a wrong number when its busy),

As the rider or horse were weighed, the weights
were typed straight into the computer. This overcomes
problems with people's handwriting which cannot be read.
The computer shows the weight history, sc as the week
went on each weight history grew. Many riders quickly
realised the advantages available in being able to
compare the current weight with the previous day's
weights, To guard against loss of data in the event of
a catastrophic computer failure, the printer logged
every entry transaction. (Thankfully the printed Ilog
did not need to be used).

The names were transferred from the main computer
by disk and the daily weight data was returned by disk.
The only problem with transfer by disk was that there
simply was not enough time between the names information
being available for entry inteo the main computer and the

horse being presented for weighing during the pre-ride
session. Updating of the NAMES data base in the WEIGHTS
computer needed to occur more regularly than was
physically possible.

The weights program provided some automatic checks
of the weight limit of each rider, ensuring that the
appropriate class of entry was being maintained. Horse
weights were monitored for not more than +/- 20kg change
from pre-ride to day one and not more than +/- 10kg
change between subsequent days. This provided an alert
in the event of possibly excessive weight change in
addition to prompting in the event of entry of a wildly
invalid value.

The Main Computer

The main computer managed the event data base,
which consists of files for names, veterinary data
(weights and pulse, etc) in addition to the daily times
and the entrants' status information. (Each entrant
number has a status byte which can be used to indicate
if (a) The entrant number is used, (b) If scratched, on
which day, (c¢) If active in the event and (d) If the
entrant is in one of the concurrently running single day
events. (All that in an 8 bit byte occupying 274 bytes
for the maximum number of 274 entrants). The use of the
status bytes made sorting and printing routines much
easier. There were a total of 135 entrants in this
year's event.

The main computer allowed the Daily Event Data
table to be printed out unchanged in entrant number
order. The sorting routines allows printouts in riding
time order for divisions of Open, Heavyweight,
Lightweight, Junior or Single Day as well as all
entrants. Other programs produce Veterinary
certificates for the entrants which are successful and a
list in order of riding time which provides the
information needed to inscribe the banners.

Programming Languages

described are written in TI Extended
pretty

The programs
Basic with links to assembly, and the memory is
full, but the TI can do an amazing job.

How Did It All Perform and What About the Future?

A major failure on the 4th morning of the event
occurred when a short drop out in the mains power
voltage was coincident with a SAVE to the Ramdisk. Both

computers were normally connected to a "Constant Voltage
Transformer" which regulates the mains voltage. When
the problem happened, data entry was occurring on the
main computer as the weights computer was plugged in to
commence the day's operations. At the moment of
connection of the weights computer, the high current
drawn by the de—gaussing circuit of the TV caused the
mains power voltage to drop to a critically low level on
the main computer. There was also a contact problem
with the Ramdisk in the PE box which decided to make the
system restoration a little more difficult. Three hours
were lost that day in reformatting the Ramdisk,
reloading back-ups from floppy disk and re—entering day
4 data that had not been backed up yet. Constant
Voltage Transformers can regulate varying input voltages
but they cannot handle large instantaneous loads
changing on the output. Plans are being considered to
run the computer off a battery back up system to prevent
this type of problem in the future.

Plans are also being made to link the weights and
main computer with modems, allowing a more efficient
upload of new names data to the weights computer. I
will be looking for a stand-alone or "box—car" RS232
with 2 R5232 ports for the weights computer, (can any
one help with this?)

The weighing scales also have a RS232 output, it is
hoped that next year the scales can be directly linked
to the RS232 of the weights computer and the weights
computer can directly upload to the main computer.
(Well its something to aim for!) continued on page 22

(October 1992

TiIsHUG NEWS DIGEST

Page 4)

TI-Bits Number 20

by Jim Swedlow, CA USA
A VIRUS IN TI LAND? I DOUBT IT!

A computer virus attaches itself to a program and
then hides. It moves from program to program, hidden

until it starts doing whatever it does. Some virus
programs display humorous and/or obscene messages.
Others destroy data. By definition, a virus must exist
in an electronic environment where it has programs to
move among. This happens on a main frame or a hard
disk. Since our TI's are mainly disk based, there

should be no where for the wvirus to
danger, however, is a trojan horse. This little love is
a program that is supposed to do one thing but actually
does another — like reformat your disk or make the drive
jump around.

spread. A real

Some simple precautions will keep you safe. When
you get a new program, run it on a disk by itself. Keep
all other drives empty. If anything unusual happens,
shut your system off.

If you find a bad program and it came from a
bulletin board, call the Sysop IMMEDIATELY. (Sysop is
"bulletin boardese" for system operator.)

BOOT TRICK

the colours on your BOOT screen?

This is not in the documentation, but pushing
changes the Background colour and <F> the Foreground.
Use <FCTN 5> to save your changes.

Want to change

TI vs IBM

No, this is not one of those bash the big blue
monster items. Nor is it a lament for the end of the
4A. Rather, some thoughts on reality.

IBM compatible computers exist and are
widely used. I do not want to get into the IBM v. MAC
argument here. The point is that these computers are
used and supported in offices and software stores. Our
4A is not. Another fact - many Tl users have 1left the
4A and gone to other platforms. These defections have
left those of us who continue to use our 4A's gun shy.

First,

Some have suggested that TI user groups form IBM
SIG's (Special Interest Groups). This has not been well
received and I think wisely so. There is strong support
for IBM compatibles. It would be a mistake for us to
dilute our energies by diving them.

On the other hand, ignoring the real world would
also be a mistake. GSome of us use IBM compatibles at

work. Others own one. This does not mean the end of
the 4A. QOur TI continues to be viable. It was not, it
would have gone the way of Adam and other lesser
contenders.

stick our heads in the sand and pretend
that we are alone. We are not. We can, however, make
sure that the TI continues to get the support it
deserves. One way is to support those who live in a two
computer world. From time to time, then, you will see
some discussion here about working with a TI and another
computer. I hope that this will be taken in the spirit
that it intended. Not to wean folks away but to keep
hands on those 48 keys.

We cannot

MAGIC FILE MANIPULATOR

use more than one
back and

One vital necessity when you
operating system is the ability to move files

forth. If you have this need, MAGIC FILE MANIPULATOR
(MAGICFM) is the program for you. You need the
following:

- A TI system with disk, RS232 and 32K.

- Extended BASIC.

- A communications (modem) program that performs
XMODEM file transfers for your other computer.

- A null modem cable.

The MAGICFM documentation includes pin outs for the
null modem cable. Since it only uses three wires, it is
easy to make.

You boot up MAGICFM on your TI and your
communications program on your other computer. Then,
from the other computer keyboard, you can:

- Catalog any disk on your TI.

- Delete, Protect, Unprotect or Rename any file on
your TI.

— View any DV80 file.

~ Transfer (via XMODEM) any file from your TI to
the other computer OR from the other computer
to your TI.

One of the things that make this program magic is
that the file transfers work at the fantastic speed of
19,200 baud. Files fly over the null modem cable., If
you think you need this program, you do. It solves any
number of problems. Kudos to Ben Hatheway who wrote
MAGICFM. Outstanding!

UNSUNG HEROES

The February, 1989 issue of PC Computing contained

an article subtitled:

"Sometimes being great is not good enough. Witness
the fate of ten products that deserved better".

Guess what one of the ten was.
"TI 99/4A:

was fast, expandable,
'dinosaur marketing.'"

Texas Instruments' 16 bit home computer
cheap and an early victim of

EDITOR ASSEMBLER MODULE

Do you own the Editor Assembler module? Probably

not. Most of us have Extended Basic but not Editor
Assembler. With the price down to $10, it is a good
buy. Many fine programs run with the Editor Assembler

module including FUNNELWEB, ARCHIVER and DM100OO. All of
these programs will run under Extended Basic but they
load much faster with Editor Assembler. Next time you
see Editor Assembler on sale, pick up a copy. Take the
book and put it on a shelf somewhere. Put the disks in
your master box. You will not need either unless you
start programming in assembly). You will wonder how you
got along without Editor Assembler.

LOADING UTILL FILES IN EDITOR ASSEMBLER

When you insert the Editor Assembler module and
"PRESS ANY KEY", you have two choices:

1 FOR TI BASIC
2 FOR EDITOR ASSEMBLER

Press <2> and you get FIVE choices. Only two are

of use for loading programs:

3 Load and Run
5 Run Program File

"Load and Run"
80) files while "Run
Assembler Program files.

is for object code (Display Fixed
Program File", is for Editor

If you press 5, Editor Assembler will ask you for a
file name. If you just press <ENTER> without entering
anything, Editor Assembler will look for and try and
load a file named <UTIL1> in Drive 1 (close to the
Extended Basic autoload of LOAD but you have to press
two more keys). That is why FUNNELWEB has a UTIL] and a

(Page b

TiIsHUG NEWS DIGEST

October 1992]

LOAD program — one for Extended Basic and one for Editor
Assembler.

YOUR DISK WILL NOT WORK

Every now and then you get errors when you try to
read from a disk. This can mean any of many things.
Your drive might be dirty. You might have the wrong
disk. The disk could be blown. The file could be lost.
The list of horrors is long.

Here is a simple solution that you might try first.
Remove the disk from the drive. Holding it by a corner,
put your fingers in the center hole and turn the disk in
its sleeve a few turns. Then move the media (the disk)
around a little. Touch only the corner and the center.
Sometimes this will restore your disk.

BAD DISKS

I purchased a box of disks at a discount house {low
prices and no servicel). One of the disks had bad
sectors when I formatted it. I wondered what would
happen, so I sent the disk back to the manufacturer
asking for a replacement.

I was out about 31 (between postage and mailer) but
it was worth the try. Over a month later another disk
came in the mail along with a form letter explaining
about quality control and such.

The only problem was that the new disk also had bad
sectors. That one went into the trash and I will not
buy that brand again! Who was it? I really should not
say, but they are known for their film and there are not
any K's in their name.

MORE DEBUGGING

about the origin of
His response was a

I mentioned the story
"debugging” to a fellow in Canada.
long and sad tale:

"Yes, I did know about 'debugging'. Fifteen years
ago my company decided to do a lot of the alarms to our
Central Station on a computer. This unit was six feet
high. I knew NOTHING about computers except that, at
that time, the office environment had to be kept within
close bounds. 1 was chosen., They said, 'You are the
most careful supervisor in Ontario',

"] asked for air conditioning and an electronic air

cleaner. 'Too expensive', they said. After again
reading from the instructions given me, I showed them
the pertinent info. 'H'mm', they said. Said I, 'This
unit has seven filters that are to be changed each

month'. Said they, 'Too expensive, just clean the old

ones'.

"Said I, 'We must make grandfather disks in case we
have problems'. 'Oh, we do not think so - that is just
their way of making the whole project more expensive'.

lastly, I told them that there was a week of
training to be completed in Trenton and at least two of
our people should attend. Said they, 'You are too
valuable to 1lose for a whole week —— just pick out two

of your people that you can afford te lose for that
period'.
"I did and told them that the system would never

work at all if this was how they were going to operate
and that I disavowed any problem that reared it's head.
$850,000 later they threw their hands in the air and
told the computer people that their stupid computer was
no good.

"Yes Jim, T did find bugs in the unit as well as

bugs in my bosses at Head Office."

GRAPH

13 year old just had to have
Never mind that she knew

The other night my
graph paper for her home work.

that she would need some paper for some time; she had
forgotten to tell us and the need was urgent.

I remembered that I had an Extended Basic program
that printed graph paper. To my surprise, I found it
fairly quickly. I ran it and it worked - almost. It
printed graph paper but the boxes were wider than they
were long. It sufficed for her assignment but I had to
fix the program.

Here it is:

100 ! GRAPH

110 E$=CHR$(27)

120 A$=RPT$(CHR$(128),228)

130 B$=RPT$(CHR$(255)&SEG$(A$,1,6),8)
140 B$=RPT$(BS$&CHR$(255),4)

150 A$=E$&"K"&CHRS (228)&CHR$ (0)&A$
160 B3=E$&"K"&CHR$(228)&CHR$(0)&B$
170 OPEN #1:"PTO.CR"

180 FOR I=1 TO 11

190 PRINT #1:E$;"@";E$;"3";CHR$(16)
200 FOR J=1 TO 8

210 PRINT #1:B$;B$;CHR$(10)

220 NEXT J

230 PRINT #1:A$;A%;E$;"3";CHR$(2)

240 NEXT I

250 PRINT #1:RPT$(CHR$(13)&CHR$(10),9)
260 PRINT #1:E$;"@"

270 CLOSE #1

This program will work with MOST Gemini and Epson
compatible printers. There are two printer commands
that can cause you problems.

The first one is <E$;"@"> (remember that E$ is
defined in line 110 as CHR$(27) or Escape) which appears
in lines 190 and 260. This is a reset command that
tells your printer to restore its default settings.
Earlier Epson compatibles (including the TI TImpact
Printer) do not recognize this command. If you get
garbage with some "@" characters, yours does not either.
These embedded reset commands cause your printer to
completely loose any idea of where the top of form is so
you will have to manually reset it.

The printer command that caused my problem is
<E$;"3";CHR$(16)> in 1line 190. For the Gemini 10X and
most Epson MX compatible printers, this sets line height
to 16/144 (or .1111) inch. For the Star NX10, NX1000,
and most Epson FX compatibles, it sets the 1line height
to 16/216 (or .0741) inch. Hence the squat squares. I
changed the line to read <E$;"3";CHR$(24)>. This set
line height at 24/216 (or .1111) inch and everything
worked correctly.

The difference for the <E$;"3";CHR$(2)> in line 230
is so small (.0046 inch) that it makes no difference.
If you really wanted to, you could change it to
<E$;"3";CHR$(3)>.

The problem with CHR$(27) "3" CHR$(n) raises its
ugly head in a number of programs. Most folks wrote for
the Gemini 10X/Epson MX family. This change, which came
with the NX/FX lines of printers, has not received wide
attention.

If your printout lines are too close together, look
for this code and increase "n'" by a factor of 1.5. You
can, that is, if it is an Extended Basic program.

Enjoy. O

continued from page 2
accepts the difficuity continuity

throughout the Newsdigest.

maintaining

TI-Faire — extends his groups best wishes for |its
success but does not think that any will be able to
attend due to distance and financial considerations.

That’s all for this month. See you at the October
meeting. o]

@ctober 1992

TIsHUG NEWS DIGEST

Page 6)

to Instamece Conversiom
by Geoff Trott

TIPS

Alf Ruggeri Is trying to produce a demonstration
for the TI-Faire of his Greeting Card production and
would like to get some of the graphics available in TIPS
in the form of instances. The TIPS preogram has this
facility but in the process some of the resolution of
the pictures gets lost. The single size instance is
bigger than the TIPS printout for example and appears to
lose some of its fine detail. AIf sent me a disk and
some print-outs to demonstrate the probiem. This seemed
to be a probtem of the mis—interpretation of the data
and so I started to look into it. I was doing the club
financial statement at the same time so I could not
spend too much time on it.

If you look at the TIPS files for the data you will
find that there are two files for each set of pictures.

One file is reasonabie small and its name ends with
TRXXT . The other one is large and its name ends with
'TXT’. They are both Internal Fixed type files, which

means that their contents are stored in fixed length
records and in the same format as you would find them in
memory. The ’XXX' file has records of 16 bytes long
while the "TXT" file has a record length of 53 bytes.
By looking at the contents of these files using
DiskReview inspect command, I was able to determine that
both these files store strings of characters. The XXX’
file stores the picture name as a string of 15
characters (the string length byte takes the 16th byte)
while the 'TXT' file stores large numbers of strings
which are 52 characters long. Clearly, the TXT’ file
must contain the data of the picture and it is only
necessary to find out the format that is used and we
will be in business.

On closer inspection of the TIPS program and the
data in the ’'TXT” file, it became clear that each
picture took up 11 of these 52 character strings. S0
for each of the 15 character name strings in the 'XXX’
file there are 11, 52 character data strings which
contain the data for that picture. The normal way to
produce pictures on the screen or printer is to use a
bit value of 1 for foreground or black dot and a bit
value of 0 for background or no black dot. When a
printer is producing the picture, it runs across the
page printing 8 bits at a time so that each character
sent to the printer runs its bits down the page with the
most significant bit at the top and the least
significant bit at the bottom. I tried interpreting the
data using that scheme first and got the following for
this data (ignoring the strings of all null codes and
putting each character code on two |lines to allow it all
to fit on a single line). The data is for 5§ strings of
52 characters each with the ASCII code of each character
shown in two hexadecimal digits, one above the other.

00
0000000001344443000000000000000000013444430000000000

00000007FFF0002C000000000000110007FFF0002C0000000000
0000000FFFF0000000003788517F33E6EFFFF000000000000000
0000000FFFF111322666CCC888FFOF000FFFF000000000000000
OOCO0O0OEFFFFFFFFF777333111FFOFQ00EC80000000000000000
0000000008CCCCCCCEEEFFFFFFFFFFT7T711137000000000000000
00000000000000000000000888CCCEEEFFFFEQOCO00000000000
000000000000000000000000000000000€800000000000000000
00

This shows a bit of the pattern this way. If we
expand ocut the hexadecimal into binary (leaving out the
rows of zeros to save a bit of space) we get the
following pattern.

If this has not gone over too many pages, it should
be recognisable as a rather stylish ’'A”, It is
obviously sideways but not quite as obvious, it is
actually also back to front. That is the bottom of the
picture above is actually the right hand side of the
picture and the top is the left hand side of the
picture. This caused me to stop and reflect how

0000000000011110000000000000000000000111100000000000
0000000000100001000000000000000000001000010000000000
0000000001100001000000000000000000011000010006000000
0000000011100001000000000000000000111000010000000000
0000000111100001000000000000000001111000010000000000
0000000111100010000000000000000001111000100000000000
0000000111100000000000000000110001111000000000000000
0000000111100000000000110001001011111000000000000000
0000000111100000000001001011001111111000000000000000
0000000111100000000011000011111111111000000000000000
0000000111100000000011001111110001111000000000000000
0000000111100000000011111111010001111000000000000000
0000000111100000011111100011010001111000000000000000
0000000111100011111100000011010001111000000000000000
0000000111111110000000000011010001111000000000000000
0000000111111111100000000011010001110000000000000000
0000000111111111111100000011010001100000000000000000
0000000111111111111111100011010001000000000000000000
0000000011111111111111111111010000000000000000000000
0000000001111111111111111111110000000000000000000000
0000000000111111111111111111111100001000000000000000
0000000000000000011111111111111100011000000000000000
0000000000000000000011111111111111111000000000000000
0000000000000000000000011111111111111000000000000000
0000000000000000000000000011111111111000000000000000
0000000000000000000000000000011111111000000000000000
0000000000000000000000000000000011110006000000000000
0000000000000000000000000000000001100000000000000000
0000000000000000000000000000000001000000000000000000

difficult it may be to rotate this and reverse it to get
it to come out correctly on the printer. Fortunately
the printing of the TIPS pictures is done well so this
is not a problem. Then I thought I had better find out
how the instance file requires the data to be organised.
I did look at an instance file using DiskReview (these
are display variable 80 files) and found that they
contain one record which gives the size of the instance
(in characters) which is then followed by the character
definition data for each character as 8 decimal integers
in a record separated by commas. The character
definition sequence is ordered starting at the top left
of the picture and scanning the picture from left to
right and top to bottom. This is described in the
Appendices to TI-Artist Plus. S0 I needed to first
determine the size of the instance in characters to
encompass the TIPS picture and this is 11 characters
wide and 6.5 characters high (11 records of 52
characters rotated and reversed). To make sure that
nothing is missed I decided that I would use instances
of 11 characters wide and 7 characters high so the first
record in the instance file would contain ’11,7’ and
would be followed by 77 records, each containing 8
decimal numbers between 0 and 255 separated by commas to
represent the character definition data.

Now to do the translating of the data, you must
recognise that character definition is done with the
pattern running horizontally for each character, 8 bits
across each character, then working down the character
for 8 bits. If you do not understand what I mean, I do
not blame you but look in the Extended BASIC or TI-BASIC
manual at the explanation of the *CALL CHAR’ subroutine.
It turns out that if the data in the TIPS file is read
straight into a character definition one record at a
time for 7 characters whose ASCII codes are consecutive
and then these are placed vertically as columns for the
picture, the picture comes cut the right way up and
reversed. This was quite unexpectedly easier than I
thought it would be and only required a very small
assembler routine to which I pass the string which comes

from reading one record of the 'TXT’ file with 4 nulls
added on the end to give 5B characters. These
characters are then stored in the pattern definition

table in VDP memory for the character which is also
passed to the assembler routine and the following six
characters (that is 56 consecutive memory locations in
VDP memory}. This could be done with BASIC but would
invoive taking each character code, getting its value

(using ASC) and converting it to two hexadecimal
characters and then assembling these characters into a
string for input into the CHAR routine. This is not

easy 1o do in BASIC but is very easy and quick to do in

(Page 7

TIsHUG NEWS DIGEST

October 1992)

To display the picture on the screen, it s
necessary to print to the screen a rectangle of
characters 11 wide and 7 high with the character codes
running vertically. The first such pattern I used was
the following:

1(/6=DKRY"g

")07>ELSZah

#x187FMT[bi

$+29@GNUNC

%,3:AHOV]dk

&—4;BIPW el

T LB<CJAX_fm

This worked well and I then re—defined the

characters to show the picture, cne column at a time.
The characters were defined as a string one row at a
time and printed out that way, across the screen. The
character definition routine is passed the first eleven
characters of the string (the top character of each
celumn, one at a time) aiong with the record from the
TXT" file. To output the data to the instance file
requires output of the pattern of each character in the
order of the characters in the string above. This could
also be done in BASIC but would be relatively cumbersome
and slow. A short assembler routine has as input the
character to be worked on and as output a string. The
routine reads the pattern out of VDP memory and converts
the 8 bytes into decimal numbers and stores these digits
in the text string separated by commas. I then modified
the BASIC part of the TIPSSHOW program to do the file
handling and allow the pictures in a TIPS file to be
viewed on the screen and sent to an instance file |if
wanted.

The listing of the Extended BASIC program follows.
You will note that the character string is somewhat
different to the one above in an attempt to not
re—-define characters which may be displaying a useful
message on the screen. The concept is the same however
as that mentioned above. I did find one interesting
point in that the character whose code is >7F was not
able to be printed on the screen (using DISPLAY AT).

100 ! SAVE DSK1.TIPSINSTA

110 REM (C) 1992 Geoff Trott TIPSINSTA 1.0

120 DATA GDAZ

130 DATA ZZZ

140 FLZ$="'(:U\cjax"&CHR$(130)&CHR$(137)&""");V]dkry"&
CHR$(131)&CHR$(138)&"#x<W elsz"&CHR$(132)&
CHR$(139)&" $+=X_fmt{"&CHR$(133)&CHR$(140)

141 FLZ$=FLZ$&"%,>Y gnu!"&CHR$(134)&CHR$(141)&
"8&-7Zahov}"&CHR$(135)&CHR$(142)8" . @{bipw™"&
CHR$(136)&CHR$(143)

170 CALL INIT :: CALL LOAD("DSK1.CHRPAT;Q")

180 INPUT "Place image disk in drive 1 ":IGN$

190 READ FIL$:: IF FIL$="ZZZ" THEN END

200 IF FIL$<>"GDAZ" THEN GOTO 220

210 CALL CLEAR :: CALL CHARSET :: INPUT "Enter first 4
characters of TIPS filename ":FIL$

220 OPEN #1:"DSK1."&FIL$&"XXX", INPUT
,SEQUENTIAL, INTERNAL,FIXED 16

230 CALL CLEAR :: FOR I=1 TO 7 :: DISPLAY
AT(I+4,9):SEGH(FLZS,(I-1)+1,11):: NEXT I

240 OPEN #2:"DSK1,"&FIL$&"TXT",INPUT ,INTERNAL,FIXED 53

270 RNO=0 :: DISPLAY AT(16,1):"PRESS ENTER FOR NEXT ONE"
it DISPLAY AT(17,7):"1 FOR INSTANCE" :: DISPLAY
AT(18,7):"0 FOR FINISHED"

280 IF EOF(1)THEN GOTO 300

200 INPUT #1:INAM$:: DISPLAY AT(14,2):INAM$::
320 :: RNO=RNO+1

295 GOTO 280

300 CLCSE #1

310 GOTO 190

3290 FOR I=1 TO 11

350 INPUT #2:1% ::
J$=SEG$(FLZ$,1,1)::

340 NEXT 1

350 ACCEPT AT(23,27):IGN$:: IF IGN$="0" THEN END ELSE
IF IGN$="1" THEN GOSUB 370

GOSuUB

1. CLOSE #2

I1$=I1$8RPT$(CHR$(0),4)::
CALL LINK("CHRPAT",J$,I$)

3680 RETURN

370 OPEN #3:"DSK1."&FIL$&STR$(RNO)&" _I",0UTPUT :: PRINT
#3:"11,7"

380 FOR I=1 TO 77 ::
CALL LINK("INSTAN",SEG$(FLZ$,I,1),A$):: PRINT #3:A$

t NEXT I

390 éLOSE #3 :: RETURN

The assembler routines are both in one file and a
listing of them follows. They are just for Extended
BASIC but could be changed to work in any environment by
changing the references to the routines called by these
subroutines.

An Extended BASIC subroutine to put the character
pattern into the specified characters for graphics.

These will be done B characters at a time.
The call will be:

CALL LINK("CHRPAT",C$,1$)
where

C$ contains the first character to be defined
I$ contains 58 characters with the patterns
for 7 charcters.

An Extended BASIC subroutine to put character
definitions into a form for TIA+ instance files.

The call will be:
CALL LINK("INSTAN",C$,0UT$)
where
C$ contains the character whose definition is
to be done
OUT$ is the string to hold the 8 numbers

O I I M M O O K K I H M K K K K MK K M

DEF CHRPAT, INSTAN
X
% Equivalences for EXTENDED BASIC routines.

%
NUMREF EQU

>200C
STRASG EQU >2010
STRREF EQU >2014
VSBR EQU >2028
VMBR EQU »202C
VMBY EQU >2024

F'3
FAC EQU >834A

STATUS EQU »>B37C

X

*x Start of subroutine. Need to use new workspace
X registers, so use a context switch herel

X

CHRPAT BLWP @PROGC
CLR RO
MOVB RO,@STATUS
RT

set status no errors

X
% Start of routine with new WS
*
PROGC DATA MYWS,START
*
START CLR RO

L1 R1,1

LI R2,SBUF1

1st argument
buffer for string

BLWP @STRREF get string
CLR RO
LI R1,2 2nd argument

LI R2,SBUF2
BLWP @STRREF
MOV @SBUF1,RO
ANDI RO,>7F

buffer for string
get string

get character

Al RO, >60 add offset

SLA R0,3 get address

LI R1, SBUF 2+1 data in RAM

LI R2,56 number of bytes
BLWP @VMBW tranfer bytes
RTWP

*
* Start of subroutine. Need to use new workspace
* registers, so use a context switch here!
X
INSTAN BLWP @PROGI
CLR RO
MOVB RO,@STATUS
RT

set status no errors

*
* Start of routine with new WS
X
PROGI DATA MYWS,STRT .
1 continued on page 14
STRT CLR RO
LI Ri1,1

LI R2,SBUF1 get first parameter

(October 1992

TiIsHUG NEWS DIGEST

Page 8)

SUB1L

LI R3,4
Assembly Class LOOPL CB *Ré,€C0
. JLT JMPEND
by Ross Mudie CB *RlH-,@Cg
JGT JMPEND
The Assembly Class continued on 5th September with
the members participating in the writing of a program in DEC R3
assembly linked from Extended Basic. The program takes JGT . LOCP1
two time values in a single TI Extended Basic string B *R11

format, performs Iimited validation of the numeric

content and then subtracts the start time from the JMPEND B @END
finish time. As the program was developed, there was

quite a lot of spirited discussion on how to do the ¥ 24 BYTES
required tasks. In 1line program or sub-routine *,
structure was evaluated for the amount of memory used.

TIME MOV R11,@SAVRTN

At one stage an XMLLNK routine was encountered LWPI WS
which no one was really confident on how it was used, so
a test program was set up to prove if it could be CLR RO Element
successfully used. (It worked!) LI RI,1 Argument

LI R2,BUFFER

The class ran out of time to complete the task, so MOVB @B15,@BUFFER
the discussion will again be continued at the October BLWP @STRREF
class at 10am, 3rd October 1992,

*
This class will explore converting the resultant x LI R5,2
minutes into hours and minutes separated by a "." * LI R4,BUFFER+L

and sending the result back to Extended Basic in the *LO00P2 LI R3,4
input string. Quite a lot of tidying up will be *LOOP1 CB *R4,ECO
required to make the program memory efficient. All JLT END

*

TISHUG members are very welcome to attend the Assembly * CB *R4+,@C9
Language Class, just vremember to bring your * JGT END
Editor/Assembler manual, note book, pencil and a blank
(formatted) SSSD disk if you want a copy of the day's * DEC R3
work. * JGT LOOP1

A copy of the work of the class on 5th September * INC R4
follows for anyone who wants to join in. * DEC RS

* JGT LOOP2

100 ! SAVE DSKI1.LOADZ
110 CALL CLEAR * 38 BYTES
120 CALL INIT *,

130 CALL LOAD("DSK1.0")

135 CALL CLEAR LI R4,BUFFER+1

140 S$="0442 1008" BL @SUB1

150 DISPLAY AT(8,1):S$

160 CALL LINK("TIME",S$,T) INC R4 R4 is pointing at BUFFER+6
170 DISPLAY AT(10,1):8%,T BL @SUB1

1000 CALL PEEK(-31926,4,B,C,D,E,F) :: PRINT A;B;C;D;E;F

*

14 BYTES
* 5=5 0=0

#*

* TISHUG ASSEMBLY CLASS 5/9/92

* LI R&4,BUFFER+21
IDT "TIMETEST' * BL @SUBL
*
DEF TIME = INC R4 R4 is pointing at BUFFER+6
* BL @SUB1
SAVRTN BSS 2
WS BSS 32 * 14 BYTES
BUFFER BSS 16 ¥
LI RO,>0800
LI R1,BUFFER+]
VSBW EQU >2020 LI R2,2
VMBW EQU >2024 BLWP @VMBW
NUMASG EQU >2008
STRREF EQU >2014 LI RO,>0802
XMLLNK EQU >2018 LI R1,>2000
BLWP @VSBW
FAC EQU >834A
MOV @VDPBUF,@FAC+12
VDPBUF DATA >0800 Used for CSN
SIXTY DATA 60 BLWP @XMLLNK
DATA >11AE CSN
Co TEXT '0'
Cc9 TEXT '9’ BLWP @XMLLNK
B15 BYTE 15 DATA >12B8 CFI
EVEN MOV @FAC,R6 Hours start in R6

* CALL LINK("TEST",S$)

(Page 9 TIsHUG NEWS DIGEST October 1992)

* MINUTES
LI
LI
LI
BLWP
LI
LI
BLWP
MOV

BLWP
DATA

BLWP
DATA

MOV

BLWP
DATA

BLWP
DATA

MOV

* MINUTES

LI
LI
LT

RO,>0800
R1,BUFFER+3
R2,2

@VMBW

RO, >0802
R1,>2000
@VSBW

@VDPBUF,@FAC+12

@XMLLNK
>11AE CSN

@XMLLNK
>12B8 CFI

@FAC,R8 Minutes start in R8

@SIXTY,R6 Answer in R7
R7,R8 Mins Start in R8

RO,>0800
R1,BUFFER+6
R2,2

@VMBW

RO, >0802
R1,>2000

@VSBW
@VDPBUF,@FAC+12

@XMLLNK
>11AE CSN

@XMLLNK
>12B8 CFI

@FAC,R3 Hours FINISH in R3

RO,>0800
R1,BUFFER+8
R2,2

BLWP @VMBW

LI
LI

R0,>0802
R1,>2000

BLWP @VSBW

MOV

@VDPBUF,BFAC+12

BLWP @XMLLNK

DATA

>11AE CSN

BLWP @XMLLNK

DATA

MOV

MOV

>12B8 CF1
@FAC,R5 Minutes finish in R5

@SIXTY,R3 Answer in R4
R4,R5 Mins finish in R5

R8,R5

R5,@FAC

BLWP @XMLLNK
DATA >20 CIF

CLR
LI

RO sk
R179 oKk

BLWP @NUMASG HHOK

continued on page 20

Scott [Foresman Reading Series
reviewed by Charles Good, Lima, OH USA

These modules resemble PLATOC software in that they
present specific language arts concepts in a text format
and then ask a series of questions to text the student's
knowledge of the concept. Unlike PLATO software, the
Scott Foresman modules make good use of music and colour
graphics. The rare modules DO NOT make use of speech
synthesis, unlike some of the more common cartridges in
the Scott Foresman READING series. These cartridges
seem to be designed for in classroom use, which may be
why they were not made commonly available to the public.
The "suitable age' designations below are taken from the
Fall 1987 TRITON catalog which lists most of these
modules.

READING TRAIL

Suitable for ages 8-12, this cartridge teaches
about the characters, setting, and points of view in
stories. Famous characters from the Wizard of Oz and a
separate story about fishing are used to illustrate
specific points.

READING POWER

Suitable for ages 8-12, this module teaches
regsearch skills involving the dictionary, encyclopedia,
and library card catalog. Specifically the student
learns how to find information that is organized
alphabetically in these kinds of reference materials. A
detective story called "The Lion's Charm" with colour
animation and music is used in some of these activities.

READING RAINBOWS
This is one of the rarer of the "rare" READING

modules. It has been listed in very few catalogs over
the years. It teaches how things are alike, parts and
wholes, and sizes. Speech synthesis is used

effectively. My first grade daughter whipped through
this in a very short time, so I assume it is designed
for first grade (age 6).

READING WONDERS

Another of the more rare modules, READING WONDERS
teaches the student to distinguish between various types
of fiction and non fiction. Several colourful stories
are used to illustrate what is and is not historical
fiction, modern realistic fiction, science fiction,
biography, autobiography, and information articles. I
suspect that this is probably for ages 11-13

READING ADVENTURES

This uses a variety of stories to teach, within a
paragraph, main and supporting details, drawing
conclusions, and sequential relationships. I have seen
this one mentioned, but not described in catalogs. It
looks like about ages 8-10, but I am not sure.

READING CHEERS

I would have guessed this was for 2nd grade, but my
1987 TRITON catalog says ages 8-12 (2nd grade is age
7-8). The module teaches root words with endings (lazy
and lazily), contractions, and compound words.

A1l of the above 'rare" modules are cl983. To
complete the record I will briefly describe below the
more commonly available 1982 Scott Foresman titles in
the READING series.

READING ON

Some nicely illustrated science fiction stories
illustrate the use of maps, schedules, graphs, and why
and how people use them. For ages 8-9

READING FUN

There is minimal use of speech synthesis 1in this
2nd grade level module. Four colourful stories
illustrate problems and how people solve them, why
things happen, and how characters feel.

READING ROUND UP
Four stories based on an "American Wild West" theme
continued on page 18

(October 1992

TisHUG NEWS DIGEST

Page 1 @

Crazy Extended BASIC

by Wesley R. Richardson, OH USA

The purpose of this article is to describe how an
Extended BASIC (XB) program is stored on disk and how a

program can have line numbers out of sequence, or even
have hidden lines, yet still run properly. The intent
is inform programmers so they can attempt to restore

programs which have been altered.

The program CRAZY-XBl is a very simple program
which prints 'LINE 40' 'LINE 50' and so on to the
screen. The listing for CRAZY-XB2 shows how the program
can be altered to have descending 1line numbers. Note
that line number 7 is for two different instructions.
The listing for CRAZY-XB3 would appear that only line 10
is in the program, yet when CRAZY-XB3 is run, it will
function exactly like -XBl and -XB2. These listings are
how the program would appear after you typed LIST.

10 REM CRAZY-XB1

20 REM WESLEY R. RICHARDSON, FEB 1990
30 REM NORTHCOAST 99ER'S, CLEVELAND, OH
40 PRINT "LINE 40"

50 PRINT "LINE 50"

60 PRINT "LINE 60"

70 PRINT "LINE 70"

80 PRINT "LINE 80"

90 PRINT "LINE 90"

100 END

10 REM CRAZY-XB2

20 REM WESLEY R. RICHARDSON, FEB 1990
30 REM NORTHCOAST 99ER'S, CLEVELAND, OH
9 PRINT "LINE 40"

8 PRINT "LINE 50"

7 PRINT "LINE 60"

7 PRINT "LINE 70"

6 PRINT "LINE 80"

5 PRINT "LINE 90"

0 END

10 REM CRAZY-XB3

To wunderstand how these programs work, we must
first look at the Extended BASIC representation for the
program. If you refer to the CRAZY-XB1 ASCII code
sector listing (below), you will see that the lines are
listed in reverse order. The disk sector listing has
line 90, then 80 and so on, ending with the CRAZY-XBI1
statement.

Note that if you edit a line or add a line, then
that line gets moved to the beginning of the file. If
line 40 1is edited, then it will be in the file (and
located in memory) before 1ine 90. The 1line number
table in memory enables the computer to run the program
in the correct sequence, even if the processor has to
expend some time chasing around all over memory to do
so!

If you edit a program and simply save the program,
the lines as listed on the screen will be in proper
order, but internally they will be quite mixed. If you
have a program, for example PROGNAMEl, in which you have
made several changes, the lines can be re-ordered by the
following steps:

1) SAVE "DSK1.PROGNAME2" ,MERGE
2) NEW

3) MERGE '"DSK1.PROGNAME2"

4) SAVE "DSK1.PROGNAME3"

I suggest using different filenames in case you
make an error, then you can recover using the original
file. When creating a program, do all of you debugging
and modifications and when your program is finished,
then use the MERGE routine to organize the internal
program lines.

Now that we understand the BASIC lines can be out
of order in the file, how do we modify the line numbers?
If you refer to the CRAZY-XBl hex code sector listing,
we will see how XB keeps track of the line numbers. In
the first row, locate the 0064, that is line 100. Also
in the first row is 0054 (hex 50=decimal 80+ hex
A=decimal 10), that is line 90, We can see the old line
numbers in hexadecimal and decimal.

OLD LINE # NEW LINE #
HEX DEC HEX DEC
0064 = 100

0054 = 90 0005 = 5
0050 = 80 0006 = 6
0046 = 70 0007 = 7
003C = 60 0007 = 7
0032 = 50 0008 = 8
0028 = 40 0009 = 9
001E = 30

0014 = 20

000A = 10

Using a sector editor, I changed the old line

number hex values to those indicated under new. If you
examine rows one, two and three in the CRAZY-XB2 hex
code sector listing, you will see these changes. But
wait, how can the program still work? Extended BASIC
executes instructions according to memory location, not

to line numbers (the actual line numbers found in the
line number table are not important in running a
program, their place in the table is important). When
we list the CRAZY-XB2 program, it appears on the screen

as I listed it previously. If you try to edit the
program by typing 10 then FCTN X, you will be able to
see lines 10, 20 and 30, but when you go to line 9, the
old line 40, XB will tell you "LINE NOT FOUND." The
program will still run correctly,

If we make one more change, we can hide some lines.
By changing the sector row one value of 0064 for line
100 to a value like 0001, you will produce CRAZY-XB3.
Now only line 10 can be viewed when listed, but the
program still works fine.

Line numbers in Extended Basic range from 1 to
32767, or hex 0001 to 7FFF. If we change the line
number to a value in the range of 8000 to FFFF, it will
cause a BREAK in the program when that line is executed.
For example, if the program reached the line number
83E8, the line number would then have the value of 8000
subtracted, leaving 03E8 and the message "BREAKPOINT IN
1000" would be displayed.

In the hex code sector listing for
lines 1 to 3,

CRAZY-XB1, in
there are 2 byte or four digit numbers

such as 373B, 373E, 374A, and 3756, after each line
number. These refer to the memory location for the
Extended Basic instruction. The difference between
adjacent values 1s the number of bytes used for the
Extended Basic instruction. The format for each

instruction is XXYYY..YYY00. The XX is the number of
bytes used for the instruction, not including the 00.

Since the maximum value which can be represented is
FF, the longest 1line length in XB is 255 bytes.
Depending upon the statements which you use, this 255
byte length can have different ASCII lengths which you
see when entering an Extended Basic program. The
Extended Basic statements are stored in token format,
for example PRINT is 9CC7. The word PRINT takes 5 ASCIT
bytes, but to Extended Basic, only requires 2 bytes to
store 9CC7.

Some information such as the text contained in
print statements is in the same format when saved to
disk. For example the characters LINE 50 are stored on
disk in the readable form as shown in line 7 of the
ASCII code sector listing for CRAZY-XBI.

The third format which Extended Basic uses on disk
for program files is for CALL statements. Memory must
be reserved for variables and CALL statements. One way

to find the tokens for each of the XB commands is to
write a program using each of the commands on a separate

[Page 11

TisHUG NEWS DIGEST

October 1992)

line, and then lock at the hex codes using a sector
editor. Be sure to use the MERGE technique listed above
if you wish to keep the sequence of lines in order when
the program is saved to disk.

As T indicated earlier, I do not agree with using
hidden instructions in Extended Basic programs. If you
encounter one of the modified programs, perhaps now you
will have some idea about how they were modified and the
meaning of the values of an Extended Basic program
stored on disk.

CRAZY-XB1 - ASCII CODE SECTOR LISTING

IN E 70 L IN E
60 « s wae L BN B 50 .
RT HC OA ST 9 9E R' S8,
C LE VE LA ND , OH .!
AR DS ON , FE B 19 90
B1 T .

CRAZY-XB1 — HEX CODE SECTOR LISTING

002B 3739 3712 37D7 0064 373B 0054 373K
0050 374A 0046 3756 003C 3762 0032 376E
0028 3774 001E 3786 0014 37AA O00A 37CC
028B 000B 9CC7 074C 494E 4520 3930 000B
9CC7 074C 494E 4520 3830 000B 9CC7 074C
494F 4520 3730 000B 9CC7 074C 494E 4520
3630 000B 9CC7 074C 494E 4520 3530 000B
9CC7 074C 494E 4520 3430 0023 9420 4E4F
5254 4843 4F4] 5354 2039 3945 5227 532C
2043 4C45 5645 4C41 AE44 2C20 4F48 0021
9A20 5745 534C 4559 2052 2E20 5249 4348
4152 4453 4F4E 2C20 4645 4220 3139 3930
000C 9A20 4352 415A 592D 5842 3100 AA3F
FF11 0300 0000 0600 01C3 5241 5A59 2D58
4231 2000 0000 0000 0100 0000 0000 0COO
0000 0000 0028 0000 0000 0000 0000 0000

CRAZY-XBZ — ASCII CODE SECTOR LISTING

IN E 70L IN E
60L IN E 50 ..
RT HC OA ST 9 9E R'" 8§,
C LE VE LA ND , OH .!
AR DS ON , FE B 19 g0
B2 =5 .. . I

CRAZY-XB2 - HEX CODE SECTOR LISTING

002B 3739 3712 37D7 0064 373B 0005 373E
0006 374A 0007 3756 0007 3762 0008 376E
0009 3774 OO1E 3786 0014 37AA 000A 37CC
028B 000B 9CC7 074C 494E 4520 3930 QOOB
9CC7 074C 494E 4520 3830 000B 9CC7 074C
494F 4520 3730 000B 9CC7 074C 494E 4520
3630 000B 9CC7 074C 494E 4520 3530 00O0B
9CC7 074C 494E 4520 3430 0023 9A20 4EAF
5254 4843 4F41 5354 2039 3945 5227 532C
2043 4C45 5645 4C41 4E44 2C20 4F48 0021
9A20 5745 5334C 4559 2052 2E20 5249 4348
4152 4453 4F4E 2C20 4645 4220 3139 3930
Q00C 9420 4352 415A 592D 5842 3200 AA3F
FF11 0300 0000 0600 01C3 5241 5A59 2D58
4232 2000 0000 0000 0100 0000 0000 00CO
0000 0000 0028 0000 0000 0000 0000 00CO

CRAZY-XB3 - ASCII CODE SECTOR LISTING

INE 70L INE
60LINE 50 ..
RT HC OA ST 9 9E R' §,
C LE VE LA ND , OH .|
AR DS ON , FE B 19 90
B3 5 VW

CRAZY-XB3 - HEX CODE SECTOR LISTING

002B 3739 3712 37D7 0001 373B 0005 373E
0006 374A 0007 3756 0007 3762 0008 376E
0009 377A 001E 3786 0014 37AA 000A 37CC
028B 000B 9CC7 074C 494E 4520 3930 000B
9CC7 074C 494E 4520 3830 000B 9CC7 074C

494E 4520 3730 000B 9CC7 Q74C 494E 4520
3630 000B 9CC7 074C 494F 4520 3530 0O00B
9CC7 074C 494E 4520 3430 0023 9A20 4E4F
5254 4843 4F4&1 5354 2039 3945 5227 532C
2043 4C45 5645 4C41 4E44 2C20 4F48 0021
9A20 5745 534C 4559 2052 2E20 5249 4348
4152 4453 4F4E 2C20 4645 4220 3139 3930
000C 9A20 4352 415A 592D 5842 3300 AA3F
FF11 0300 0000 0600 01C3 5241 5A59 2D58
4233 2000 0000 0000 0100 0000 0000 0000
0000 0000 0028 0000 G000 0000 0000 0000 o

[Wish ..

by Jim Peterson, Tigercub Software, USA

I wish that someone would write a rapid disk
copier, 1like Rediskit, that would allow me to specify
the drive I wanted to copy to each time, so that I could
be &ble to load a disk into one drive while the disk in
another drive was being written to.

Even better, I wish someone would write an even
faster disk copier that would read in as much as
possible and then write it to two or more drives.

I wish that someone would figure out how to put
four more tone generators under the hood of the
TI-99/4A, with software to access them.

I wish that someone would write a LINK to assembly
to store strings in the expansion memory; the limitation
to console memory in Extended Basic is one of the worst,
although least-known, faults of the TI.

I wish that someone would write a library of links
to assembly, to do the many things that Extended Basic
cannot do or cannot do fast enough.

I wish that the anonymous genius who created the
Ernie and Bert program would share his secret with us.
He seems to have achieved better sound quality, in far
less memory, than Sound F/X.

I wish that someone would
simulate the Dvorak typewriter.

remap the keyboard to

I wish that someone would write a tutorial on
programming in assembly in very simple language that T
can understand, using three-letter words to replace such
intimidating terms as 'least significant byte" and
"floating point accumulator".

I wish that someone would write a music composing
program. A person with a good knowledge of both music
theory and programming should be able to do so, because
music is basically mathematical in concept - sounds must
vibrate a certain number of times per second in order to
be recognized as musical tones, and collections of those
tones must be arranged within certain parameters,
definable by music theory, in order to sound musical.
It should be possible to randomly produce phrases within
those parameters and allow the user to select a phrase
to be further randomly developed, until a complete
melody emerges.

I wish that someone would write a really complete
tutorial article on the various types of disk files and
the means of accessing them.

If those folks who like to brag about the lightning
of their low level languages are actually writing
they would share

speed
programs in those languages, I wish
them with us.

I wish that my new Star NX1020R printer had, among
its many character sets, those handy graphics characters
that were accessible in ASCII 225-254 in the Star
emulation of the old Gemini 10X and SG-10.

I wish that the suppliers of products for the TI,
and the developers of new products, would advertise in
MICRO-pendium so we could find out what they have to
offer! continued on page 18

(October 1992

TisHUG NEWS DIGEST

Page 12)

Programming Music part 3

by Jim Peterson, Tigercub Software, USA

In Part 1 of this series, I showed you the simple
routine to set up a musical scale, and showed you how
easy it was to merge in various routines to create
different effects in single-note music. In Part 2 I
showed you how to key in single-note melodies from sheet
music. Now, we will get into 3-part harmeny.

But first, there are a few more things I should
have told you about reading music. You will often see
curved lines arching over two or more notes. If the
notes are not all the same, ignore those lines - they
call for phrasing which you cannot really accomplish.
But, if the line curves over two or three of the same
note, you will get a better effect if you add all their

. duration values together and program them as a single
note. For instance, if your chart gives a whole note a
value of 8 and a half-note a value of 4, and the music
has a curved line over a whole note followed by a
half-note, just program one note with a duration of 12.

You may find a heavy black bar at the beginning of
a measure, with a colon to its right, and somewhere
later in the music will be a heavy bar with a colon at
its left. This means that the notes between those bars
are to be played through twice - and naturally you will
want to save time by programming them in a GOSUB as I
showed you in Part 2. It can get more complicated than

that, but generally you can follow the lyrics to
decipher what to do.
Rather rarely, you may find three notes, usually

joined together, with a 3 above them. These are called
a triplet, and all three of them are to be played, with
the same duration for each, in the length of time it
would normally take to play one of them. These can
create a problem under any method of music programming.
The best method is to divide the duration of the note by
three and write individual CALL SOUNDs in your music,
rather than a GOSUB to a routine, to handle those notes.

Now, let's get on to 3-part harmony. It is just
the same as keying in single note music, except that you
must also give frequency values to B and C -~ and, as

before, you have to give those values only when they

change.

So, load the SCALE routine from the first lesson,
and key in this bit of music to experiment with. Notice
that I found three repeating phrases and put them in
subroutines in 500, 600 and 700 to make this shorter.

110 GOSUB 500 :: T=4 :: A=15 :: B=11 :: C=9 :: GOSUB 100
0 :: T=8B :: A=18 :: GOSUB 1000 :: T=2 :: A,B,C=0 :: GOSU
B 1000 :: T=2 :: A=23 :: B=18 :: C=15 :: GOSUB 1000 :: G
0SUB 600

120 T=2 :: A=21 :: B=18 :: C=15 :: GOSUB 1000 ;: A=23 ::

GOSUB 1000 :: T=12 :: A=20 :: B=16 :: C=11 :: GOSUB 1000

130 T=2 :: A,B,C=0 :: GOSUB 1000 :: GOSUB 500 :: T=4 ::
A=21 ::; B=16 :: C=13 :: GOSUB 1000 :: T=10 :: A=25 :: GO
SUB 1000

140 T=2 :: A=28 :: GOSUB 1000 :: GOSUB 600

150 T=2 :: A=27 :: B=23 :: C=I8 :: GOSUB 1000 :: A=30 ::
GOSUB 1000 :: T=10 :: A=28 :: B=23 :: C=20 :: GOSUB 1000
160 T=2 :: A,B,C=0 :: GOSUB 1000 :: T=3 :: A=28 :: B=23
:: C=20 :: GOSUB 1000 :: T=1 :: A=27 :: GOSUB 1000 :: GO
SUB 700

170 T=6 :: A=25 :: B=21 :: C=9 :: GOSUB 1000 :: T=2 :: A

=23 :: B=18 :: C=15 :: GOSUB 1000

180 T=10 :: A=20 :: B=16 :: C=11 :: GOSUB 1000 :: T=2 ::
A,B,C=0 :: GOSUB 1000

190 T=3 :: A=28 :: B=23 ::; C=20 :: GOSUB 1000 :: T=1
A=27 :: GOSUB 1000 :: GOSUB 700

200 T=4 :: A=25 :: B=21 :: C=16 :: GOSUB 1000 :: A=21

B=18 :: C=15 :: GOSUB 1000

210 T=14 :: A=20 :: B=16 :: C=11 :: GOSUB 1000 :: T=2
A,B,C=0 :: GOSUB 1000 :: STOP
500 T=2 :: A=23 :: B=20 :: C=16 :: GOSUB 1000 :: A=28 ::
GOSUB 1000 :: A=27 :: GOSUB 1000 :: A=28 :: GOSUB 1000

11 A=27 :: GOSUB 1000

510 A=28 :: GOSUB 1000 :: A=23 :: B=20 ::
1000 :: A=20 :: B=16 :: C=11 :: GOSUB 1000
11 :: C=8 :: GOSUB 1000 :: RETURN

600 T=2 :: A=27 :: B=23 :: C=18 :: GOSUB 1000 :: A=23 ::

C=16 :: GOSUB
:: A=l :: B=

B=18 :: C=15 :: GOSUB 1000 :: A=21 :: GOSUB 1000 :: A=2
3 :: GOSUB 1000
610 A=27 :: GOSUB 1000 :: A=23 :: GOSUB 1000 :: RETURN

700 T=4 :: A=27 :: B=21 :: C=16 :: GOSUB 1000 :: T=8 ::
A=25 :; GOSUB 1000 :: T=3 :: A=27 :: B=23 :: C=18 :: GOS
UB 1000

710 T=1 :: A=21 :: GOSUB 1000 :: T=4
C=16 :: GOSUB 1000 :: T=8 :: A=23 ::
UB 1000

720 T=3 :: A=25 :: B=21 :: C=16 ::

:: A=25 :: B=21 ::
B=20 :: C=16 :: GOS

GOSUB 1000 :: T=1 ::

A=23 :: GOSUB 1000 :: T=2 :: A=23 :: B=l8 :: C=15 :: GOS
UB 1000
730 A=21 :: GOSUB 1000 :: A=20 :: GOSUB 1000 :: A=21
GOSUB 1000 :: RETURN

Save that under the filename ROSES, clear the
memory with NEW, and key this in -
1000 CALL SOUND(D*T,N(A),V1,N(B),V2,N(C),V3):: RETURN

Save that by-

SAVE DSK1.PLAIN3,MERGE .

Load ROSES again and merge it in by MERGE
DSK1.PLAIN3 . Add a line -

105 D=200 and RUN it.

Sounds rather raw and harsh, does it not? Try

changing that line 105 to -
105 D=200 :: V2=5 :: V3=8

Sound better? The first time, all 3
voices were being played at the loudest volume. Usually
computer music will sound better if the harmony notes
are given a lower volume. Experiment and find the
volumes you like best. TIs the music too slow for you?
Just change the value of D. Is it not in your singing
key? Just change the value of F in line 100, as I showed
you before.

Try it again.

But, does the music still have too strong a beat
for your taste? Clear the memory again and key this in -

1000 CALL SOUND(~4250,N(A+Z),V1,N(B+Z),V2,N(C+Z),V3):: G
0SUB 1010 :: RETURN
1010 FOR W=l TO T+#D ::

NEXT W :: RETURN

Save that as NEG3,MERGE because it uses negative
duration for 3 voices. Then load ROSES again and merge
it in. This time, try line 105 with D=50 and with V2

and V3 as you wish. Sound smoother?

In lines 110, 130, 160, 180 and 210 of ROSES, you
will find A,B,C=0 . That makes all three voices silent,
because in line 100 N(0) is given a frequency of 40000
which is above the range of human hearing. This is how
I programmed those silent pauses, the "rests" which were
written in the music.

On a piano or guitar, the strings continue to
vibrate during a rest, so that the sound gradually fades
out. However, the electronically generated tones of a
computer stop very suddenly. That is why I often add
the duration of the rest to the duration of the
preceding note, and play it right on through. Some
people think that it does not sound right, so here is
another solution. Clear memory again and key this in -

2000 FOR W=2 TO 8 STEP 8 :: CALL SOUND(-999,N(A+Z),V1+W,
N(B+Z),V2+W,N(C+Z),V3+W):: GOSUB 2010:: NEXT W :: RETURN
2010 FOR Y=1 TO T*D/4 :: NEXT Y :: RETURN

Save that as REST,MERGE. Load ROSES again, merge
in SCALE and NEG3 (this will not work well with PLAIN3)
and merge in REST. Now go to lines 110, 130, 160, 180
and 210, delete the A,B,C=0 :: and change the GOSUB 1000

@age 13

TIsHUG NEWS DIGEST

October 199@

after it to GOSUB 2000. Add line 105, run it and see if
you like that better. Anyway, keep it for now because
we will use it again.

You will probably want to have the music play
through more than once. Just add :: FOR J=1 TO 4 to the
end of line 105 (if you want it to play 4 times) and
change the end of line 210 to read NEXT J :: STOP .

I said that you could change the key of the music
just by changing the value of F in line 100. There is
also a way to change it while the music is playing.
After the FOR J=1 TO 4 in 105 put:

s Z=Z-(J=2)¥3-(J=3)*14(J=4)*4

That is somewhat complicated but it just means to
play the second time three whole keys higher, the third
time one key higher still (I know the *1 is
unnecessary!) and drop back 4 keys for the 4th time, so
you can take it from there and modify it as you wish.
If you want to use that routine with silent rests,
change the GOSUB after each rest to 3000 instead of
1000, and add this line -

3000 CALL SOUND(-4250,N(A),V1,N(B),V2,N(C),V3):: GOSUB 1
010 :: RETURN

This tune happens to end in a rest, which is
unusual. If you key in another tune and it seems to end
too abruptly, just after that NEXT J and before the
STOP, put in & long duration such as T=12 and a GOSUB
2000 to that REST routine to fade ocut more slowly.

Now, when you are keying in your own tunes, the
notes on your sheet music will usually have two or three
of those little eggs on the stem. It is best to use the
upper one for A, the next one for B, and the lower one
for C; the computer could care less, but you will find
it easier to keep track of what you are doing. If there
are less than three, just go directly below to the bass
clef and find a note there. If you still do nmot have
enough, you can always use 0 to make that voice silent.
Or, you can usually just let the previous note continue.
If your sheet music has guitar chords - those little
square grids with dots on them — above the staff, they
will give you some help - if there is no guitar chord
above the note you are working on, the chord has not
changed and it is safe to use the previous harmony
notes.

There are many other CALL SOUND routines you can
use for different effects. This is similar to the one
that Bill Knecht used for his hymns - I call it VIBRA.

105 D=1 :: V1=l :: V2=3 :: V3=11

1000 FOR J=1 TO T*D :: CALL SOUND(-99,N(A),V1,N(B),V2,N(
C),V3):: CALL SOUND(-99,N(4)*1.01,V1,N(B},V2,N(C),V3)::
NEXT J :: RETURN

This one I call WUBBA, for no good reason -

105 D=1 :: V1=l :: V2=5 :: V3=11

1000 FOR J=1 TO T*D :: CALL SOUND(-99,N(A),V1,N(B),VZ,N(
C),V3):: CALL SOUND(-99,N(A)*1.01,V1,N(B),V3,N(C},V2)::
NEXT J :: RETURN

And this one I call TREM -

105 D=1 :: V1=1 :: V2=5 :: V3=11

1000 FOR J=1 TO T*D :: CALL SOUND(-999,N(4),V2,N(B),V2,N
(C)*1.01,V3):: CALL SOUND{-999,N(A)*1.01,V1,N(B),V2,N(C)
,V3):: NEXT J :: RETURN

I included 1line 105 in those, to merge in the
duration and volumes along with the sound routine.
Change the value of D to suit yourself, even in decimal
increments such as D=1.5 .

It is easy to play a song repeatedly but with a
different effect each time. Merge in VIBRA and change
its line number to 1010. You can do this by typing 1000
and FCTN X, Enter, FCTN 8 to bring it back, type over
the line number, and Enter. Merge in WUBBA and change

it to line 1020 in the same way, then TREM and change it
to line 1030. Add ::

105.

1000 ON R GOSUB 1010,1020,1030

FOR R=1 TO 3 to the
Put in a new line 1000-

end of line

:: RETURN

And change the end of line 210 to NEXT R :: STOP.

Next
autochording.

time -

continued from page 8

STROO

STRHU

STRTE

STRO1

STRUN

STRO2

MYWS
SBUF1
SBUF2
SBUF 4
SBUF3

BLWP
MOV
ANDI
Al
SLA
LI
LI
BLWP
LI
LI
LI
LI
LI

CLR
LI
MOVB
LI
cB
JHE
LI
cB
JHE
JMP

AB
MOVB
INC
DEC
JLE
MOVB
INC
JMP

SWPB
MOVB
LI
LI

BLWP
RTWP

BSS
BYTE
BYTE
BSS
BYTE
BSS
END

@STRREF
@SBUF1,R0
RO, >7F
RO, >60
RO, 3
R1,SBUF4
R2,8
@VMBR
R3,>2C00
R4, SBUF 4
R5,8

R6,0
R7,SBUF3+1

RO
R2, 3000
*Ré+, RO
R1,>6400
RO, R1
STRHU
R1, >0A00
RO,R1
STRTE
STRUN

R2,>0100
R1,RO
RO,R1
STRHU
R2, *R7+
R8
R2,>3000
R1,>0A00
RO, R1
STRO1

R2,>0100
R1,R0
RO,R1
STRTE

R2,*R7+
R6
R2,>3000

RO,R2
R2,*R7+
R6

R5
STRO2
R3,*RT+
R6
STROO

R6

R6 , @SBUF3
RO,0

R1,2
R2,SBUF3
@STRASG

32
1,0
56,0
56
80,0
80

different

get characte
add offset
get address

read in defi
code for ","
input data
data count
output byte
output buffe

start with z
ASCII for ze
get next byt
100

at least 100
10

at least 10
only units

increment

loop until |
store byte
byte count

increment
loop until |

store byte
byte count

put in comma

effects, and

(&

r

nition

count
r

ero
ro
e

ess than 100

ess than 10

(October 1992

TiIsHUG NEWS DIGEST

Page 1@

XHi - Graphies for 92938

by Jan Alexandersson, Sweden

A new fantastic program for DIJIT AVPC, Geneve or
Mechatronic with video processor 9938 has come from:

Alexander Hulpke
Sadowastrasse 68
D-5600 WUPPERTAL 1

West Germany

You can order it from the address above by sending
a suitable fairware donation (I recommend at 1least 20
DM) and 7 DM for disk and postage. The program gives
you the possibility to use a large number of CALL LINK
to get high resolution graphic within an Extended Basic

program. The manual on the disk for XHI versicn 3.6
from 29 September 1989 has 20 pages. The content of the
disk:
XHI The program XHI
XHI/T Source code
XHIDOX Archived manuals
XHIDOC English manual (in XHIDOX)
XHIDEU German manual (in XHIDOX)
COLDEF Redefine colours
L0OAD XHI-loader with SysTex
CHARA1 Character set for HARDCOPY
HCSETUP Printer Setup for HARDCOPY
HCLOAD Extended Basic-loader for
HARDCOPY
YLOAD EXTENDED BASIC EA5 Loader
HARDCOPY Version 1.2, EAS

HIRESDEMO Demo-program with graphic
UHR Demo, analog clock
FIXSTERNE Demo, star constellations
KUGEL Simple Ray-tracing program
KUGEL;PAR Example of start values
KUGEL;PIC Complete picture

A program which resembles XHI but works with CALL
LINK for Text2 is called X80. It is now in test version
0.91 from 11 August, 1989.

1. GRAPHIC MODES FOR 9938

Of the ten different graphic modes in the video
processor 9938 are six completely new and there are also
the usual four graphic modes from the 99/4A.

Text1l-2 or Graphicl should be chosen if you mostly
need text. These three modes are the only ones where
the character set is the same for the whole screen.
Text2 should be used for all new programs when much text
is shown i.e. for word processing, spread sheets and
data bases. Graphicl could be the wright thing for
start screens and menus where you get big fat characters
if 32 per row is enough. You can create graphic with
some difficulty in Graphicl with CALL CHAR or similar.

Graphic6-7 should be used if you mostly want to use
graphic. Graphic6 has more pixels (512x212) on the
screen if 16 (out of 512) colours is enough. If your
priority is colours then you choose Graphic7 which has
256 colours simultaneously but less pixels (256x212).
Graphic6-7 can with some difficulty be used for text.
Remember that the result will only pixels so there is no
way to read the text with CALL GCHAR or similar in
assembler.

Graphic2 has the screen divided in three parts each
with its own character sets. Each character can have
several colours because each pixel row has its own data
similar to CALL COLOR. Graphic2 is only interesting if
you also want to use it with a 99/4A. Graphic3 is only
good for old programs written in Graphic2 where you want
to change to multicoloured sprites (mode2) without any
need to change the rest of the code. Perhaps something
for Parsec. Graphic4 is only useful for old
99/4A-programs written for Graphic2 where you want to
change to true bitmap with unique colour for each pixels
without the need to change so much of the code. Perhaps
something for TI-Artist.

Graphic5 can only use four colours but it needs
only 32 kbytes which can be used if you want to change
between several pictures which is stored in VDP-RAM at
the same time.

2. SPRITE MODES FOR 9938

Sprite mode 2 is used for Graphic3-7 which give you
multicoloured sprites (max 32) where each pixel row has
its own attribute as colour, collision, priority and
early clock. You can have 8 sprites at the same pixel
row before anything vanish. With Magnify 3 or 4 you
have the possibility to use 16 different attributes
because a sprite with four characters has 16 rows. As
with Graphic2 you cannot use auto-motion of sprites
which means the the program itself must do the move.

3. COLOURS WITH 9938

The four ordinary graphic modes which you have in
the 99/4A get with a 9938 the possibility to redefine
the colours as long as you use 16 out of 512 colours for
Graphicl-2 and 2 out of 512 for Textl. Graphic6é has
also 16 out of 512 colours for both pixels and sprites.
Graphic7 has 256 out of 256 colours for pixels and 16
out of 16 colours for sprites. These 16 sprite colours
are not the same as the standard 99/4A colours but are
the same as the default colours in Geneve Myart. The
512 colours are created by setting the three basic
colours red, green and blue to a value 0-7. Graphic7
gets 256 colours by setting blue in only 4 levels.
Normal colours in 99/44:

No Colour Red GreenBlue

Transparent 0
Black

Green

Light green
Dark blue
Blue

Dark red
Cyan

Red

Light red

10 Dark yellow
11 Light yellow
12 Dark green
13 Magenta

14 Grey

15 White

DO~NOUbhPswh=O
NUORFOONNRNRONHW—OD
NUuUNAF,FORORWFRFOHWHRENOO
~NUuUEERRWLUEREIREI~NW—=OO

Colour O can only be altered if the screen colour
is 0 or VDP register R8 bit 5 1 set to 1. In Basic and
XHI will these 16 colours be numbered 1-16 (corresponds
to 0-15 in the table).

4, TO LOAD XHI

The program XHI is 1loaded with CALL TINIT::CALL
LOAD("DSK1.XHI"). You get a number of CALL LINK for
Graphic6 and Graphic7. You can always jump between the
usual Extended Basic -screen (Graphicl) and the high
resolution screen (Graphicb or Graphic7). You can write
both to the Extended Basic—~screen and the XHI-screen.

Both is in memory but only one is displayed. With the
XHI-screen active you can still use all Extended
Basic-commands to write and read the Extended
Basic-screen even though you do not see it on the
screen. The XHI-screen is shown without any
disturbances also when executing program lines. You can
use SIN without any problem which dis difficult with

99/4A and Graphic2. XHI-LINK can only be used when the
XHi-screen is active. CALL SCREEN and CALL MAGNIFY work
on the Extended Basic — and XHI-screen at the same time
because they only write to VDP registers.

5. CALL LINK WITH XHI

All XHI commands can also be
operators IMP, AND, OR, XOR
Myart picture to the previous
resolution is called by
VCOOR,HCOOR,COLOR) as follows:

executed with logic
and NOT. You can add a
picture with OR. High
CALL LINK("PLOT",

(Page 15

TIsHUG NEWS DIGEST

October 1992)

a.Graphic modes

HICLR Graphich + clear screen
HIRES Graphict

CLR256 Graphic7 + clear screen
MOD256 Graphic?

NORMAL Graphicl

COLMIX redefine colour

COLRES reset colours

b.Graphic

BACK screen colour (out of 256)
also CALL SCREEN (only 16 colours)

DCOL colour for plot

PLOT write pixel

CLS clear/colour the pixel area
GPIX read pixel

CIRCLE write circle

LINE draw line

FILL fills an area

DRAWTO continue line (turtle)
SAVE save Myart-picture

LOAD load Myart-picture

ARTLES TI-Artist to Myart-screen

A stand-alone program for XHI can print Myart
pictures on a printer. This HARDCOPY version 1.2 can
also be used without a 9938-processor.

c.Window

VIPORT create window for graphic
FILSCR clear/colour window

COPY copy window

XPAND expand the window horizontally
YPAND expand the window vertically
REDUCX reduce the window horizontally
REDUCY reduce the window vertically

d.Text

PRINT writes a text string
CWIDTH choose pixel width for characters

With CWIDTH 6 you can have 80 char/row and with
CWIDTH 5 you get 102 char/row. In normal BASIC you have
the width 5 and pixel 2-6 is used. If you create your
own characters with the width 4 (+ 1 pixel space) then
you could have 102 characters/row.

e.Sprites

SPRITE activates sprite

LOCATE move sprite

SCOL alter multicoloured sprite
PATTER sprite-character

DELSPR delete sprite

also CALL MAGNIFY works

MOTION interrupt motion of sprite
STOP stops sprite

The author has plans to include PEEKV, POKEV, COLOR
HARDCOPY and circle with correct proportions in G6.

6. PROBLEMS

G6 CIRCLE has wrong proportions because the pixels
are more dense in the X-direction than in the
Y-direction.

G7 CLR256 makes all pixels black sc you must also
use CLS. Transparent appears to be missing among the
256 colours so you must choose the same colour for CLS
and BACK.

MOTION of sprite with DIJIT AVPC EPROM version 1
will destroy the 16 characters of the first program
line. You must put a REM with at least 16 characters in
the first line. T use:

100 112345678GABCDEF

are

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

100
110
120
130
140
150
160
170
180
190
200

INPUT ::

210
220
230
240
250
260
270

100
110
120
130
140
150
160
170
180

100
110
120
130
135
160
170
180
181
220
230

100
110
120
130
140
150
160
170
180
190
200
210

The 1line
sure to get if you:

SAVE DSK1.MERGE,MERGE
NEW
MERGE DSK1.MERGE

must be high up in the CPU-RAM which you

The new EPROM PWRUP2A works without this problem.

7. PROGRAMS FOR XHI

! LOAD MYART GRAPHIC6

! JAN ALEXANDERSSON

! SWEDEN

! 1989-08-19

! Extended Basic + 9938 + XHIL
CALL CLEAR

INPUT "FILE ":FILE$

IF FILE$="" THEN END

CALL LINK("HICLR")

ON ERROR 220

CALL LINK("LOAD",FILE$)

CALL KEY(5,K,S):: IF S<1 THEN 210
CALL LINK("NORMAL™)

CALL LINK("COLRES")

GOTO 160

! LOAD MYART GRAPHIC7

! JAN ALEXANDERSSON

! SWEDEN

! 1989-07-28

! Extended Basic + 9938 + XHI
CALL CLEAR

INPUT "FILE ":FILE$

IF FILE$="" THEN END
CALL LINK("CLR256™)

ON ERROR 260

OPEN #1:FILE$,FIXED 128,
LINPUT #1:COLOR$::
COLOR=ASC(COLOR$)

CALL LINK("BACK",COLOR)
CALL LINK("CLS",COLOR)
CALL LINK('LOAD",FILE$)
CALL KEY(5,K,S):: IF S<1 THEN 250
CALL LINK("NORMAL")

GOTO 160

CLOSE #1

REM XHI ARTLES G6
INPUT "TIARTIST FILE ":F$
INPUT "MYART G6 FILE ":M$
CALL LINK("HICLR")

ON ERROR 180

CALL LINK("CLS",16)

CALL LINKE("ARTLES",F$)
CALL LINK("SAVE",M$)
CALL LINK("NORMAL™)

REM XHI FILSCR G7

CALL LINK("CLR256")

ON ERROR 230

CALL LINK("BACK",255)

CALL LINK("CLS",255)

CALL LINK("VIPORT",10,50,100,100)
CALL LINK("FILSCR",7)

CALL LINK("VIPORT",10,150,100,200)
CALL LINK({"FILSCR",14)

CALL KEY(5,K,S):: IF S<1 THEN 220
CALL LINK("NORMAL")

1123456789ABCDEF

REM XHI MOTION G&

CALL SPRITE(#1,64,1,50,50,10,10)
CALL LINK("HICLR")

ON ERROR 210

CALL SCREEN(16)

ATTRIB$="08080808080808080808080808080808"
CALL LINK("SPRITE",1,70,ATTRIBS,50,50)

CALL MAGNIFY(2)
CALL LINK("MOTION",1)

CALL KEY(5,K,8):: IF S<1 THEN 200
CALL LINK("NORMAL")

[October 1992

TisHUG NEWS DIGEST

Page 1 6)

A Look at the PIRIK Mlodule

by R.A. Green, Ontario Canada

The Personal Record Keeping module (PRK) and its
companion the Personal Report Generator module (PRG)
provide an easy to use a data base system. However, it
would often be useful to be able to process a data base
with a BASIC program. The PRK module provides you with
this facility!

With the PRK module plugged in, you will find that
TI BASIC has several new subroutines which your programs

can CALL. These are:
CALL P(...) - reserve VDP RAM for PRK data base
loading;
CALL A(...) - facility similiar to Extended
BASIC's ACCEPT AT statement;
CALL D(...) — facility similiar to Extended

BASIC’'s DISPLAY AT statement:

CALL G(...) - get fields from a PRK data base
record or put fields intoc a PRK data base
record;

CALL H(...) - get the number of records in a data
base or set the number of records in a data
base;

CALL L(...) - load a PRK data base into VDP RAM

from disk or cassette;

CALL S(...) - save a PRK data base from VDP RAM to
disk or cassette.

While not all features of these subroutines are
known, with what will be described later and a little
experimentation you can make good use of them to write
TI BASIC programs to process your own data bases.

The "A" and "D" subroutines provided by the PRK
module can be freely used in any TI BASIC program to
provide a facility similiar to Extended BASIC’s ACCEPT
AT and DISPLAY AT statements. These two subroutines are
fully described in Volume 1 Number 4 of the 99er
Magazine, page 72. A short description of each is given

below.
Display At
The BASIC CALL statement to invoke this subroutine
is:
CALL D(R,C,L,VALUE, ...)
where:

R — is the row number for the display,

C - is the column number for the display,

L — is the length of the fieid into which the value
is to be displayed,

VALUE -~ is a numeric or string constant or variable
that is the value tc be displayed.

The four parameters may be repeated as many times
as desired to do several displays in a single statememt.

A single display is restricted to a single row on the
screen,

Accept At

The BASIC CALL statement to invoke this subroutine
is:

CALL A(R,C,L,F,VAR,MIN,MAX)
where:

R — is the row number where the accepted data will
appear,

C - Is the column number where the accepted data wil
appear

L - is the length of the field into which the entered
value is to appear,

F—-1is a function value set by the
subroutine to indicate how the input
ended; the value will be one of:

ENTER key pressed,

2 CLEAR key pressed,

3 AID key pressed,

4 REDO key pressed,

5 PROC’D key pressed,

6

7

accept at
request was

g

BEGIN key pressed,
BACK key pressed, !
VAR — in the numeric or string variable into which
the accepted value is placed,

MIN — is the minimum value acceptable for numeric
input,

MAX - is the maximum value acceptable for numeric
input. N

Processing a PRK data base

Your TI BASIC program can process a PRK data base. By
process, I mean that you can read records from, update
records in or add records to the data base. First,
however, you must use the PRK module to create and save
the data base or a mode! (i.e. empty) data base.

Next, when using your TI BASIC program to process the
data base you must have the PRK module plugged in. You
select TI BASIC from the master title screen, and in
BASIC command mode you enter:

CALL FILES(n)
NEW

CALL P(size)

OLD program—-name

(for disk users only)

where;

n — Is the number of disk files your program requires
(minimum of 1),

size - is the amount of VDP RAM to
PRK data base.

reserve for the

Then you can run your TI BASIC program.

The value for “"size" requires some experimentation.
Your BASIC program and the PRK data base must share the
VDP RAM. A large value for “"size” means that you can
have only a small program. A small value for "sijze"
means that only a small data base can be processed. A
value of about 8000 is a good starting point; you can
adjust this up or down depending upon the size of your
program and data base,

You may find that it is convienent to segment your
processing of a data base into three separate TI BASIC
programs.

First, a program to "convert” your data base into
an ordinary BASIC file, This program could be very
small thus allowing a large data base.

Second, a program to process the BASIC file,
generating an updated BASIC file. This program can be
completely independent from PRK. 1In fact, it could be
written in any language available on the TI99/4A.

Third, a program to ‘"convert" the updated BASIC

file back to a PRK data base. This program, like the
first one, could be very small allowing a large data
base.

Reading a PRK data base

In order to process records or fields from a PRK
data base, your BASIC program must first “load" the data
base into VDP RAM. This 1is done via the BASIC
statement:

CALL L(file-name,X)

[Page 17

TIsHUG NEWS DIGEST

October 1992]

Where “file—-name" is a string variable or constant
that is the name of the PRK data base (for example,
"DSK1.MYDB", "CS1", etc.). And where "X" is a numeric

variable whose use is unknown. It may be that X is set
by the L subroutine to indicate error conditions.

Once the data base is
determine the number of records or "pages” in
base via:

|oaded, your program can
the data

CALL H(1,8,0,NOREC)

Where the first parameter, “1", tells the H
subroutine that you are reguesting the number of records
in the data base which it will set into the numeric

variable, "NOREC". The use of the second and third

parameters, six and zero, is unknown.

Your program can obtain the value of a field in the
data base via:

CALL G(1,RBN,FN,C,variable)

Where the first parameter, "1", indicates a request
to the "G" subroutine to obtain data from a field in a
record. “RN" is a numeric variable or constant that |Is
the number of the record from which the data is to be

obtained. "FN" is a numeric vairable or constant that
is the number of the field from which data is to be
obtained. The field numbers are as shown by the PRK

module when defining a data base. “C" is a numeric
variable set by the “G" subroutine. It is set to zero
if the field in the record contains data. “Variable” is
a numeric or string variabie into which the value of the
field will be set by the "G" subroutine. Whether
"variable" is a string or numeric variable depends upon
how the tield was defined when the data base was created
with the PRK module.

Example. Read field 1 and 3 of all records.
100 CALL L("DSK1.MYDB",X)
110 CALL H(1,6,0,NOREC)
120 FOR RN=1 TO NOREC
130 CALL G(1,RN,1,FIELD1%)
140 CALL G(1,RN,3,FIELD3%)
150 PRINT FIELD1$,FIELD3$
160 NEXT RN

Writing a PRK data base

In order to write or update records or fields in a
PRK data base, your BASIC program must first “load" the
data base into VDP RAM. The data base may be full or a

model (i.e. empty). This is done via the BASIC
statement:
CALL L(file-name,X}

Where "file-name” is a string variable or constant

that 1Is the name of the PRK data base (for example,
"DSK1.MYDB", "CS1“, etc.). And where "X" is a numeric
variable whose use is unknown.

Once the data base is loaded, your BASIC program
call fill values into the fields of the records via:

CALL G(O,RN,FN,C,value)

Where the first parameter, zero, indicates a
request to the "G" subroutine to set data into a field
in a record. "“RN" is a numeric variable or constant
that is the number of the record into which the data is
to be placed. "FN" is a numeric vairable or constant
that is the number of the field into which data is to be
placed. The fieid numbers are as shown by the PRK
module when defining a data base. “C" is a numeric
variable whose use is unknown. “Value" is a numeric or
string variable or constant that is the value to be set
into the field by the "G" subroutine. A field can be
cleared to blanks or zero via:

CALL G(2,RN,FN,C,X)

Where the first parameter, 1two, tells the "G"
subroutine to clear field number FN in record RN. The
use, if any, of "C" and "X", in this case is unknown.

After your program has filled in or updated all
desired fields and records, it must tell PRK how many
records there now are in the updated data base via:

CALL H(0,8,0,NOREC)

Where the first parameter, zero, tells the H
subroutine that you are setting the number of records in
the data base to "NOREC". The use of the second and
third parameters, six and zero, is unknown.

Finally, your program must save the updated data
base via:

CALL S(file-name,X)

Where "file-name"” is a string variable or constant
that is the name of the PRK data base (for example,
"DSK1.MYDB", "CS1", etc.) and where "X" is a numeric
variable whose use is unknown, o

Treasurer's

by Geoff Trott

I have received a few letters recently which you
may be interested in. The first one was from Jim
Banfield of Armidale with the latest instalment of his
interesting series on machine language. I am enjoying
reading them as I type them in for Jim. I hope there
are others also receiving some inspiration from them.
Jim has sent in some interesting pictures of his system
which we wilil publish soon.

Report

The other letter was from Tony McGovern with the
latest in the beta test version of the new editor. 1
know that many people I have spoken to are waiting for
the release of this editor. Even if you do not have an
BO column card, the 40 column version wiil have quite a

few of the enhancements. Tony is waiting for version
5.00 of Funnelweb before releasing the editor. I wonder
if we can invite him to the TI-Faire and have a world

release of version 5.00 of Funnelweb? That would be

worth the price of admission on its own!

Income for August $1431.19

Payments for July $ 877.65

Excess of income over expenses for August $553.54
o

continued from page 12

I wish that printers were made so that they would
continually shift either the print head or the ribbon up
and down, so that we could use up the entire width of
the ribbon instead of that narrow strip down the center.
Considering their outrageous prices for ribben
cartridges, they owe us that much!

I wish that the local stores would get together and
set up a computer information service so I could use my
modem to find out what stores have what I am looking
for, and what their price is.

I wish that manufacturers of electronic equipment
would stop labeling all the controls in raised black
letters on a black background.

I wish most of all that Texas Instruments had

continued developing our computer, that we now had a
TI-99/9Z! o

continued from page 10

are used. Concepts taught are figures of speech, word
meaning, and didioms. The module is designed for ages
9-10.

READING FLIGHT

For ages 11-12. A neat story about an
archaeological dig on a south seas island called Bolo
Island teaches classifying, summarizing, and outlining

@ctober 1992

TIsHUG NEWS DIGEST

information. Page 1 ;J

Begimming Forth - part 20
by Earl Raguse, UGOC, CA USA

Well, here we are at Beginning Forth 20, you should
no longer be classed as beginners, so I guess it is time
for me to sign off with a couple of special words.

The first of these is DUMP, a very useful word
which lets you 1look at memory contents and print them
out if so desired. The DUMP is in both HEX and ASCII
side by side. The easiest way to find out is to just
try DUMP. All you need on the stack is the address to
start at and the number of memory locations to dump.

To find the address of a word in memory one uses '
(tick) and NFA to use with DUMP, you may guess as to how
many memory locations to display to see the complete
definition. As it happens Forth has a word for it.
Just like the Greeks, Forth usually has a "word" for it.
That word is -FIND, see TIFM APP D p7, which not only
finds the PFA of a word, but its length. T have written
another word LOC (LOCate) using —FIND, which is shown on
Screen #77. I think its pretty self explanatory,
especially, if you read up on -FIND.

Screen #77 and you will be
word to locate, if the word is
following,

Type in and load
encouraged to enter a
found in the dictionary, you should see the
assuming you entered LOC EXPECT

Found EXPECT
Length 143

PFA= =21420
NFA= -21430

Press Q to dump it
else press any

If a word is not found, Forth will say so.

There is nothing particularly innovative going on
here, except maybe the word | (I do not know its name,
lets call it 'post'). Forth uses it | (post), not as a
word, but to indicate the bottom of the stack. Just in
case you have forgotten, the word ;5 is what enables you
to lock at the stack (parameter, that is) without
disturbing its contents. If you do not use this word
you are missing out on a great tocl, even better than
DUMP.

Back to |, in this case I use it to line up text.
Its even better when you have several lines of text and
you want to move them toward the center of the screen
instead of on the left margin. Later you will see
redefined, for essentially the same purpose, but a
completely different word., The flexibility of being
able to define it on the spot is the reason I do not
incorporate it in my UFW's.

of being a newsletter
access to all the exchange
One excellent newsletter

One of the advantages
librarian, (for UGOC) is
newsletters from other groups.
is The Computer Voice from our sister group in San
Diego. A gleaning from the Feb 86 issue shows how to
get instant reverse video for use in prompts etc. The
words were originated by Michal Jaegermann, = from
Edmonton in Alberta, Canada. You have heard of him
before, remember his word PRINTS? The following Screens
#78 and #79 were included in an article by Lutz Winkler,
whom you have also seen quoted in this column. Is it
not nice that there are so many smart people who are
99/4A owners?

I do not pretend to know all of what is going on
with Screens #78 and #79; but the word ROLL is widely
known by advanced Forth programmers. It is in effect a
programmable ROT which allows one to access further down
in the stack. It is related to ROT in much the same way
that PICK is related to OVER, PICK allows one to dig
down into the stack further than OVER. Many Forth
programmers turn up their noses at words like PICK, they
say it promotes sloppy work.

Now we have other fish to fry. Looking at Screen
#78, FX is a word I can understand, its just the words
that use it that I do not fully comprehend. FX in
effect is the reverser; when you XOR a number with FFFF
(in hex of course), all the 1's become 0's and
vice-versa. What REV does, T think, is to take four
numbers off the Parameter Stack, hereinafter the 'stack'
and push them on the Return Stack, hereinafter the
'Rstack' or simply R. It then takes them off the Rstack
one at a time, does an FX while returning them to the
stack for use by XCHAR. XCHAR in turn is used by XFORM
which is just a D0...LOOP covering the ASCII character
set from decimal codes 34 to 127. Do not ask me why
they excluded 33 the !, but they did, consequently !
does not work. I have not tried changing the word yet,
there may be a good reason for it, but rest assured I
will try it sooner or later.

But I digress, notice that XFORM uses CHARPAT and
CHAR which have identical meanings as in Extended Basic.

REV was discussed, and 5 ROLL just digs out the
character number which is buried under the four XORed
numbers on the stack, 80 + adds an offset of 128

(decimal) to the character number so that the standard
character set is still intact. Notice also, that XFORM
is executed in the immediate mode.

From here on is where my ignorance begins, the
words RV, RS, RLIT, and R" are a little too advanced for
me. RLIT replaces SLIT and R" replaces ." in resident
Forth. I am not sure about the functions of RV
(ReverseVideo) and RS. I have the feeling that the RS
refers to STATE, and that these are 'STATE Smart' words.
STATE is the address of the compiler status flag. I am
not yet well enough informed to make use of it in words
that I write.

It does not follow that one understands how a Forth
word works to use it. How many Extended Basic
programmers know how ACCEPT AT works internally?

On Screen #79, I have added the words PRMPT and .M
to show how to use R". They are not a part of the
Reverse Video essentials. OH YES!, before I forget, you
must have -GRAPH loaded in order to have words like CHAR
and CHARPAT available, else you must have a disk with
all the necessary OScreens #57-#64 from the original
Forth System disk plus all the referenced screens on it
when you try to load Screen #79.

Well, onward and upward, my next offering is
Screens #80 and #8l. Have you ever been programming
away and then had to stop to dig up a reference to find
the ASCIT code for Q or W for instance? If so then ASC
or AS are the words for you. If you have Screen #80
loaded and type either AS or ASC, you will get a
complete ASCII table on the screen. Of course you must
exit from the EDIT mode to do that (ie FCTN 9), and I
strongly advise doing a FLUSH (or F;) before using ASC
or AS,

SCR 77

0 \ Word location and Dump EGR 12 87

1 0 VARIABLE LEN \ length

2 % I CR CR 15 SPACES ;

3 ¢ PROMPT 5 12 AT ." Enter LOC and a word to find" v
4+ LOC CLS (word) -FIND DUP CLS 0=

5 IF 15 8 AT ." Not Found " ABORT THEN

6 IF 158 AT ." Found "' OVER NFA ID.

7 DUP LEN ! ." Length " .

8 DUP M PFA= M,

g NFA DUP JUNFA= M,

10 12 16 AT ." press Q to dump it"

11 14 18 AT ." else press any" THEN

12 KEY 81 = IF LEN @ CLS DUMP ELSE PROMPT THEN ; CLS PROMPT
13

14

15
SCR 78

0 \ Reverser Video #1 Michal Jaegermann

1 \ Via Lutz Winkler and The Computer Voice
2 BASE->R 57 CLOAD CHAR HEX

3 : ROLL DUP 1 = IF DROP ELSE DUP 1 DO SWAP

[Page 19

TisHUG NEWS DIGEST

October 1992]

4 R> R> ROT >R >R >R LOOP 1 DO

5 R> R> R> ROT ROT >R >R SWAP LOOP THEN ;
6 : FX FFFF XOR ;

7 : REV >R >R >R >R R> FX R> FX R> FX R> FX ;
8 : XCHAR DUP CHARPAT REV 5 ROLL 80 + CHAR ;
9 : XFORM 7F 22 DO I XCHAR LOOP ; XFORM

10 : RV BEGIN KEY DUP 1F > WHILE 80 OR EMIT8

11 REPEAT DROP ;
12 : RS COUNT OVER + SWAP DO I C@ 80 OR
13 EMITS 1.OOP ;

14 =<3

15

something you had on the CRT.
different

else you may lose
The words AS and ASC do the same thing in a
way, try them and see which you like.

Sometimes you may want a printed form of the ASCII
table; sure, they are all over, but when you want one,
where are they? Screen 81 takes care of that. I had

originally thought that SWCH ASC UNSWCH would print out
the 1list, but the printer ignores all my | (post) words
which nicely locate text on the CRT, but the printer
does not understand them. Try it and see, you get the
data but not the format. Screen #81 uses only printer
decipherable words SPACE, SPACES (essentially Tabs) and
CR's to get the job done. In Forth there is always 3 or
4 ways to skin a cat.

Its been fun. See you at the meetings!

May the FORTH be with U, Always!

SCR 79

0 \ Reverser Video #2

1 : RLIT 22 STATE IF COMPILE SLIT

2 WORD HERE C@ 1+ =CELLS ALLOT

3 ELSE WORD HERE THEN ; IMMEDIATE

4 ¢ R" [COMPILE] RLIT STATE IF COMPILE

5 RS ELSE RV THEN ; IMMEDIATE

6 R->BASE DECIMAL

7 : PRMPT CLS

8 12 6 AT R" THIS IS A PROMPT"

9 14 8 AT R™ DO SOMETHING" ;

10 : .M 10 10 AT R" WHAT'S GOING ON HERE? "

11 4 12 AT R" Its rather heady stuff in case you "
12 3 14 AT R" are not aware of how clever this is,"
13 2 16 AT R"
Do not ask me how it works, but it does " ;

14
15
SCR 80

0 \ ASCII CHARACTER DISPLAY EGR 12 17 87

1 0O VARTABLE CH 0O VARIABLE ROW 0 VARIABLE COL

2 : HD CLS 7 O AT ." ASCIT CHARACTERS BY NUMBER" CR CR ;

3 : .CL 222 DOCOL@I AT CH@ DUP EMIT SPACE . 1 CH +! LOOP
4 : ASHDS50DOI8+*24+COL!TI20*32+CH! .CLLOOP;
5 : | ROW @ AT ;

6 : ASC HD 2 ROW ! 52 32 DO

7 I00+ DUP 3 6 | EMIT

8 I 20+ DUP 10 . 13 | EMIT

9 I40 + DUP 17 | ., 20 | EMIT

10 I 60+ DUP 24 | , 28 | EMIT

11 I 80 + DUP 32 | . 36 | EMIT CR PAUSE 1 ROW +! LOOP QUIT
12 : .M CLS 10 12 AT ." PRINTS ASCIL TABLE "

13 10 14 AT ." just type ASC or AS" QUIT ;

14 M

15
SCR 81

0 \ ASCII CHARACTERS PRINTED EGR 12 17 87

1 : S SPACES ; : SP SPACE ;

2 : HD 14 S ." ASCII CHARACTERS BY NUMBER" CR CR ;

3 : PASCII SWCH HD 64 32 DO

4 10 S I 00 + DUP EMIT SP .

5 10 S T 32 + DUP EMIT SP .

6 10 S I 64 + DUP EMIT SP . CR LOOP

7 FF UNSWCH ;

8

9 CLS 11 12 AT ." ASCII TABLE TO PIO"

10 12 16 AT ." <PASCII> Does It" QUIT

We have finally come to the end of this excellent

series. We hope that you have enjoyed it and will find

yourself browsing through these tutorials from time to
time for years to come. o)

The FHome Computer
by Jim Peterson, Tigercub Software, USA

Can you stand a few more words from the last

surviving advocate of the HOME computer?

And what is a HOME computer? It is a computer
designed to be used in the home, to do whatever someone
might do in the home that can be done better with the
aid of a computer.

AND ~ the HOME computer is designed to be used by a
person who has no particular interest in computers, who
regards them as just another electronic tool te be used
to make 1life easier or more enjoyable. Alsc, that
person is probably just a bit intimidated by computers.

A person who is not interested in computers? Well,
that eliminates everyone who is reading this, but read
on anyway.

Now, what percentage of VCR owners have never
learned to program their VCR? How many do not know what
some of the buttons on their cable TV remote unit do?
How many housewives are failing to take advantage of
half the pushbuttons on their microwave, or their
washing machine? I do not think anyone has the answer to
those questions, but I am sure that the percentages are
very large!

Many people who buy a new appliance NEVER read the
manual. They learn some of its features by
experimenting, and never use the rest. Most other
people read the manual one time, file it away with the
warranty or lose it, and operate the appliance based on
what they remember from that one reading. Of course,
there are an increasing number of people who are
incapable of reading the manual at all, and very few
people who are capable of writing a manual that anyone
can understand!

The average home computer buyer, knowing nothing
about computers, can easily be convinced that he needs
640k a RAM, a hard drive, a mouse, and who knows what
else. He needs all those things like he needs a hole in
the head, and he is completely baffled by the technical
jargon in the manuals that come with the machine.

His computer probably comes bundled with an
assortment of "free" software that is alleged to be
worth more than the machine itself. It is probably
excellent software — but each program comes with a thick
manual, hopefully written in intelligible English, which
must be studied before the program can be used.

Big programs like that are fine for the workplace,
where a worker becomes familiar with a program and
remembers how to use it because he uses it every day.
For the typical home computer user, they are totally
impractical.

So, what is a HOME computer? It is a computer with
no more memory than is needed to do the job, practically

automatic in operation (i.e., with built-in disk
operating system!), with one disk drive, and with an
adequate supply of short simple programs to do what

needs to be done at the moment and no more, so simple
that they can be operated by reading on-screen
instructions and prompts.

I happen to own such a computer. It is called the
Texas Instruments TI-99/4A HOME Computer. e

continued from page 10

END CLR RO
MOVB RO,@>837C
LWPI >83E0
MOV @SAVRTN,RI1
B *R11

END

(October 1992

TisHUG NEWS DIGEST

Page 2@

Quad density Disks

by Jan Alexandersson, Sweden

A disk stores data as sectors each with 256 bytes.
Such a sector is the smallest amount of data that you
can write to a disk, so the computer writes always a
whole sector at a time. You sometimes write to a data
file with PRINT #1:4,B,C which is less than 256 bytes.
The computer will store it in a buffer in RAM until it
can write the whole sector. Do not forget to close the
file with CLOSE #1 because there may still be data in
the buffer.

DISK HEADER

There are two special sectors number O and 1 on a
disk for management of all files on the disk. Sector
one has pointers, sorted by filename in alphabetic
order, which points to the sector with the file header.
This file header shows file npame, file structure
(DIS/VAR 80, INT/FIX 128, PROGRAM etc.) and which
sectors that contain data beleonging to the file. Sector
zero has general information about the disk as number of
sides, tracks/ side, sectors/track and a table of which
sectors are occupied so the computer can know which
sectors it can use for a new file. TI made the table in
a way that it can only hold 1600 sectors. A SS/SD 90
kbytes disk uses 360 sectors and a 360 kbytes DS/DD disk
uses 1440 sectors.

If you have a disk with more than 400 kbytes (1600
sectors) then there is no space for all sectors. This
is the reason why a 512 kbytes Myarc RAM disk cannot use
more than 400 kbytes. The remaining 112 kbytes is used
as expansion RAM 32 kbytes, printer buffer and working
memory for Myarc Extended Basic II. Horizon RAM disk
has solved the problem by using two disk numbers each
with 360 kbytes (1440 sectors) on each card. Corcomp
512 kbytes RAM disk has 32 kbytes expansion memory but
the remaining 480 kbytes is used as a RAM disk. This
can be managed by the use of an additional sector for
marking of used sectors. An empty RAM disk will then
have 3 used sectors (0-2).

QUAD DENSITY (5.25 inch)

There is a Myarc disk controller (with DS/QD EPROM)
and a Myarc hard disk controller HFDC. HFDC EPROM H6 is
not OK because SAVE of a file from Basic or TI-Writer
will destroy the disk (DM V works despite of this). You
must have EPROM HIO or H1l for quad density. Both types
of disk controller can use disks with 720 kbytes DS/QD
(double sided/quad density). This mean that there are
2880 sectors. Myarc has solved the problem with sector
zero by letting each bit mark two sectors at the same
time (1 allocation unit is 2 sectors) which means that
you cannot use less than two sectors for file header and
two sectors for data. The shortest possible file is
then four sectors. A program will despite of this write
and read single sectors of 256 bytes. A disk drive for
quad density can read single density and double density
but only write quad density.

The file headers are mainly stored on sectors 2-33
to speed up the search of files. This means that a
normal SS/SD or DS/DD can have 32 file header for fast
access. Higher numbers is used if there are more than
32 files., The computer will also store data sectors on
sectors 2-33 dif there are less than 32 files but not
until all other sectors are used.

A DS/QD disk with a 2 sector file header can only
have 16 file headers on sector 2-33 with fast access.
My Myarc HFDC card cannot store any data sectors on
sector 2-33 when I have a few long files. This often
happens when you have archived files.

DISK MANAGER FOR 720 KBYTES DS/QD

There are some disk suitable for 720

kbytes:

manager

— Funnelweb 4,30 Quick Directory

— Funnelweb 4,30 Show Directory 40 or 80 columns
— Funnelweb 4.30 Disk Review 40 or 80 columns

- Myarc CALL DIR

-~ Myarc DM III

- Myarc DM V for HFDC

Disk Utilities

I

You cannot use DMIOOO for quad density because it
will misunderstood sector O and that one allocation unit
is two sectors. Hard Master will show the total number
sectors in a wrong way for QD-disks.

The well working disk managers all show the same
number of free and used sectors. This corresponds to
the marked allocation units in sector =zero. The file
length is shown in different ways:

DS/QD Header Data sectors Minimum
FW QD 1 used 2
FW SD 1 used 2
FW DR 2 even number 4
CALL DIR 2 used 3
DM IIIL 2 even number 4
MV 2 even number 4
DSKU 2 even number 4
Older versions of Funnelweb may differ from this.

Funnelweb QD and SD shows how much space is needed for
copying to a smaller disk. CALL DIR shows the number of
sectors that cannot be used to increase the file. If
you have an odd number of data sectors then there is one
free sector which only can be used by that particular
file. DM V, DSKU and FW DR show the number of sectors
that cannot be used by other files. None of the disk
managers has any knowledge of that sector 2-33 cannot be
used for data but only for file header.

TI-Writer behaves strange because the shortest
possible file has two data sectors when you save it to a
DS/QD disk. If this file is copied to a smaller disk
then it will have a total length of 3 sectors. Three
data sectors can despite this be used with TI-Writer on
a QD disk.

You can also use 3.5 inch DS/DD 720 kbytes in the
same way as 5.25 inch DS/QD.

HIGH DENSITY (3.5 inch)

Myarc HFDC is prepared for DS/HD 1.44 Mbytes 3.5
inch drives but the software is not ready. I have not
seen any information about how the allocation units will
be organized. I suspect that it will have an allocation
unit of 4 sectors. This would mean that the shortest
file is 8 sectors long.

HARD DISK

My 20 Mbytes hard disk has an allocation unit of 2
sectors so the files will have two sectors for file
header and an even number of data sectors. The shortest
file will be 4 sectors. Both CALL DIR and DM V will
show 3 sectors for the shortest file in this case. This
is rather strange because a 20 Mbytes hard disk is
similar to a DS/QD 720 kbytes disk. A hard disk can
have maximum >FFFF allocation units and a 20 Mbytes hard
disk uses >99C0O.

A 40 Mbytes hard disk has 4 sectors per allocation
so the smallest file will be 8 sectors. Myarc DM V will
only show 4 sectors file header and used data sectors.
The unused but occupied data sectors will not be shown
so the disk manager will show 5 sectors for the smallest
file that occupies 8 sectors.

I have not seen any infeormation about an 80 Mbytes
hard disk but T think that it will have 8 sectors per
allocation unit. The smallest file will be 16 sectors
which will be shown as 9 sectors by the disk manager.

continued on page 22

(Page 21

TiIsHUG NEWS DIGEST

October 1992)

