
.

ri 	I
INT,

	

. 	 1 1-. 	
=erri= P 	

-0= .
q 1 	" '

	 .11 	
... 	

, 1
7:1 	 • - 	- Lm.........,...,9.-...-T.....41.1,...,.. 	• .1
. :In 	I .4.-13", .. .I. fp-Rid." L.-. I- - . 	 . 	 - 	 .6. ...T 	0,-. 	x:P-7- 	 .1 	/•.e;

i 	i„..,
.4.,,. 	le.......m.v.:...., ,.,1 4:11 . 	. .14 . - 	 , ' 	44.:4 , 	 , iplettn ... 	

i 	 { 	 ' VA"' • ' • 	.:',. 	. 	I 	 ---... 	I , 	I 	 j 	P.

	

."-.7 	 - 	11. 	 '" 	 '

	

s s-.-.-...-.. , 	_s 	 1.:4

	

.- . _ 	 :s i .- .- ' 	l' 	. =1.. 	 • 	 .
100 	 1.• .

	

; 	0 	G.:: 	 - 	
r 	. 	II

. 	 7 .. s =•■••••... I 	 -. 1..
e 	 - 	. 	 . 	. , =.... ,1 . 	 I. r

-'11 5'..T.
dit_ - •-, L. 71.7.7":*...1 	:: . , _ 	... -

	

-. 	
-. 	

.. d ..-....-. .-

	

i 	1 	.- 	 i -...... 	I• . - 	L. - 	- -. 	 r 	
:.: 	 L

	

i 	- 	
i

	

i 	
■.- 	 4t d uu

	

.._re ,..yolw 4.). 	 '`.14.41'.•=1 	 . . • ,6y !Limn oucor, 	 .

.? ,y. —.....—.-- 	 - ';'-? 1. /1-161 v. ---1 .0 	1-1, ss P -'.. " , '.

.s. 	_7-1 ill i 1 I 	I A ;: 1 • ■"'' 1 -. -g.' 1 s..-.-. RDP":21:1=V.C13171.131.14ter•

	

Sji=1--: 	. 	.-.-1.1.• -'_.- Ij .e - 'I` .:'• 4.,.....2111 -. 	••••':,''.4, - 1 0 • j • -1.. "i•.•A . •...... 	; :.!..; .•
.. 	

P 1-r.:. P ...-L...- 7 NT ...r. ';....` 	 United •--7-,:"'—=?"-- .- 	 .. ; ... • 	-• • '0 ' 1 	 • "r. 	 .- R

	

d . 	 i ..:D• 	. 	l'-Ji• 7 -.-.......7S% . • '•'' I .. V, &A,.—.....), .7. 1.' .. • : • .. le -•;: I. 	- " 	' P.••.] 	 . COP•1%Olt l*B13 	 ;'

	

,. 1 	 -.• 	 • LI 1 •-•- 	; 	N....N. 	 • 	. e 	. 	' .- —.... 	"'. - .;..- • = , — . 	"._11, .e=-. 	 ..

-- ' 	 .-. ' —''.••' 	 — 	- • • ..-1 	 ' I --` 1 I 	r -- 	• / 	- 	.."' 	
. 	

. 	

	

1 1 	 : KC.- . 0.7 ' edf,_ 1 	j 1 	..., 	 '''....} 	_ 	 " ,....1 . 1 	1" 	 R.1

	

l"'•e'7'--_Th,r1 	
F1:1

	

-a 	cr-git--m : 	 .• cigigrAt."-i ••••• 	Ric • 	..."
...---------..„ 	.1

L 	 ii 	P. - 7 'L .--4?, ' !r. ! " -..// 	- 	 - 	,... 1

'L. - :- ' 	 •. . 	_,... a.,•I 	 • +le- 5,' l'a in 	11----. 	0.411111=11 	I ' 	
..... ;11

'..

	

, • N.- 	 •••• 1 =.;.' ' r: : •', 	..-r iiii 	 • : '• .- 	 AN..4 1... - 	 .

. 	P 	.1. . - 	 ' 1 ' " - I 	. 	 - 	 \ RI r

	

47 . 	
All

1 LT. _. 	—1. 	 —, ..0= P 	f..-■. i

=-.-.=-. 1 	
:. NI ''Fk

i_s.._ 1 	 ;.:. 	
. 	7-'• . ra •-5

	

......--.1 1..z. 	 —..,_.
' .. .1., 	 _.. 	 "--•:-....., p 	 =;;;,-_ - I 	

...'"" 1 ..,.:. :,

	

. 1-.;1 	. . 	SAC 	. 	'Ij 	 : ■ '. 	
'''e----...-- . rf'''' .

	

' 	— 	 . 1 	;-.7- 	- ' I 	r r 	• 	A 	
'..'. 	r 	 .:: .. 3. _.. 	.,

_.:;= ,
-:' 	A

..`.■.
■.'' 	A
=,":- Ls

f rook! ... _
P .. I I _.• 11 4 Cr ' F .1 4 Ike? . 	

-='7.'

"..•.*.6, ' P 'FA:: W P Z f, 	• 	
e•--:

1 	‘..0 . 	4 	-7- -..• :: -

	

i 	 . 	

.1..•'-' 	: 	.

	

r I ;;., 	1: 7'...,_ 	 ''' 	. no :
1 ca_._,

14.P-.•-...-.., 	 , 1 • 	 •• • P -- 	,g. ,.- 	..

	

Na. 	 ." ' 	 • 	 ' . 4 PM .-

4.j. mar. -. 	1 1 !I I 	 - Ms ;' r. 	. 'N-.'s 16:T s 7

I;P 	IC.1-.-...71.P.1 . : 17:::.z:: I', 	 . ;• .7.. :2 :: - ' . - . .._ r 	 666.o.e.. Q. 	oog000rA 	liz.,,, 7

. 1 , .

• I. g : !... 	 .1. .. : 	 . : .:. .L. : — t j a . 	. . j_ Lk a_ d g . •

•

• . 	• . laai • . ' • ..

	

... 	-.. , 	.. N... 	 '' :13,-GRAX
• L.

e.

.••■•

; 0 	 P t)1

1111/illtli/111111111.11111ii

Arm NEWS
DIGEST

Focusing on the TI99/4A Home Computer
Volume 8, Number 10
	

October, 1989
Registered by Australia Post - Publication No. NBH5933

The P-GRAM Card

Something else to spend your money on!

P.O. Box 214, Redfern, New South Wales, Australia, 2016 	$ 2

TIsHUG (Australia) Ltd.
	 TIsHUG News Digest 	ISSN 0819-1984

TIsHUG News Digest
	

hilez
October 1989

All correspondence to:

P.O. Box 214
Redfern, NSW 2016
Australia

The Board

Title Description Author Page No.

Answer is abc, question?
c99 tutorial
Co-ordinators report
Direct I/0 interface
Disk controls
Expanding XBs powers
Extended BASIC Tutorial
Extended BASIC subprograms
Fairware author of month
Forth tidbits 1 to 6
Forth to you too!
From the bulletin board
From the trenches
Game of Wit
Joystick interface
Making your own dictionaries
Program to type in
Program to type in
RAMdisk or hard disk?
Regional group reports
Secretary's notebook
Setup for smart modem
Techo time
They're off
TI-Base tutorial
Tiger's tale
Tips from the tigercub #35
Tips from the tigercub #58
TIsHUG software column
Trials with Myarc DM5
Younger set

General interest
Software hints
General news
Hardware project
Software hints
Software hints
Software hints
Software hints
Club news
Software hints
Software hints
Mail to all
General interest
Software review
Hardware project
Software hints
Animal learner
Kingdom of Sumaria
Hardware review
General interest
Club news
General interest
Hardware project
General interest
Database
General interest
Software hints
Software hints
Club software
General interest
Program

Takach,Ben
Sheehan,Craig
Warburton,Dick
Amadio,Lou
Ballmann,Michael
Caron,David
McGovern,Tony
Shaw,Stephen
Trott,Geoff
Winkler,Lutz

Kanitz,Werner
Lang,Chris
Amadio,Lou
Trott,Geoff

Amadio,Lou

Phillips,Terry
Saunders,Larry
Amadio,Lou
Trott,Geoff
Smoley,Martin
Brashear,Harry
Peterson,Jim
Peterson,Jim
Phillips,Terry
Takach,Ben
Maker,Vincent

3
12

2
5

27
4
7

15
2

23
23
33
30
16

5
31
18
17
29
35

3
33

5
1
9

20
13
21

3
26
33

Co-ordinator
Dick Warburton 	(02) 918 8132

Secretary
Terry Phillips 	(02) 797 6313

Treasurer
Rolf Schreiber 	(042) 84 2980

Directors
Robert Peverill 	(02) 602 4168
Russell Welham 	(043) 92 4000

SIII)-001111411itICTS

News Digest Editor
Geoff Trott 	 (042) 29 6629

BBS Sysop
Ross Mudie 	 (02) 456 2122
BBS telephone number 	(02) 319 1009

Merchandising
Steven Carr 	 (02) 608 3564

Publications Library
Warren Welham 	(043) 92 4000

Software library
Terry Phillips 	(02) 797 6313

Technical co-ordinator
Lou Amadio 	 (042) 28 4906

Regional Group Contacts

Carlingford
Chris Buttner 	(02) 871 7753

Central Coast
Russell Welham 	(043) 92 4000

Coffs Harbour
Kevin Cox 	 (066) 53 2649

Glebe
Milce Slattery 	(02) 692 0559

Illawarra
Geoff Trott 	 (042) 29 6629

Liverpool
Larry Saunders 	(02) 644 7377

Northern Suburbs
Dennis Norman 	(02) 452 3920

Sutherland
Peter Young 	 (02) 528 8775

NIenibershin and Subscriptions

Annual Family Dues
	

$25.00
Overseas Airmail Dues
	

AUS$50.00

TIsHUG Sydney Meeting

The next meeting will start at 2 pm on
7th of October at the Woodstock
Community Centre, Church Street,
Burwood.

Do not forget the Melbourne
TI-Faire on Saturday 14th

October

Printed by
The University of Wollongong

Printery

TIsHUG Fairware Author of the Month
The Fairware Author for this month is Stuart Olsen for his
Program Mass Transfer. All Donations collected at the meeting
and sent in will be mailed to him this month

Ircht711rt 	 by Geoff Trott

A long time ago we bought a minicomputer at work. 	It was not a very
expensive one but it cost us a lot of money. It was physically quite large from
today's point of view as it lived in a 19" rack. Program entry and storage was
paper tape although it had a magnetic tape system which eventually after
considerable effort became usable for this purpose. After a number of years we
took the plunge and bought a hard disk system, 10Mbyte for $10,000. It was also
large, as large as the original computer. It made life much easier and the
system continued to run for many years and is still there as it turns out but is
not getting much use. My thoughts turned to this topic because I am currently
looking at replacing its function with another computer and considering retiring
it to my house where it would join the rest of the junk downstairs to be finally
thrown out. 	The interesting thing is to consider the size and cost reduction
for the same computing power that has occurred over the years. 	That
minicomputer had a maximum memory capacity (all RAM) of 64Kbytes, unless you
bought a memory management card. All the cards were large (.16 square metres)
and you needed at least 3 cards for a minimum system. The power supply was
large and heavy with a 20 ampere 5 volt supply. Memory (core) was expensive
with 8Kbyte on one card and costing $2700. I am now using a TI99/4A system with
more total memory and more facilities (like colour, graphics, speech, sound) and
easier to use software which cost a fraction of the amount and takes up a
fraction of the room of that ancient system. And yet that system is working
just as fast as it ever did and still doing the job that it was bought to do.
It is just starting to look like an anachronism and taking up too much space.
In fact it is as fast if not faster than the PCs and Macintoshes in the things
that it does well. Progress means different things at different times. I guess
I am conservative in that regard; if something is still doing its job then there
is no need to change it just bcause it is old. If the job changes and it is no
longer able to keep up that is a different story. No prizes for guessing how
old my car is!

continued on page 34

(Page 1 	 TIsHUG NEWS DIGEST 	October 1989)

Ccu-airillauElau"o
T-RaDttrft
byDickWarburton

Christmas and the festive season approaches. 	Our
December meeting is usually social, and this year we
would like to provide an outing for all the members of
our long suffering families. What happens in the home
of a "normal" TI99/4A user? Would a keen TI99/4A user
go without eating or sleeping trying to fix a crashed
RAMdisk, or even hard disk now? Do our members appear
deaf at times, especially when the lawn needs mowing and
we have not backed up that new disk? Have TI99/4A users
been known to talk about things other than a TI99/4A?
Well folks, we may find out the answers to these and
other important questions at the end of year family
picnic. Our social bloodhound, Les Andrews, is on the
trail of a good deal for all.

The September issue of the TND was a beauty. I
personally like the idea of a theme for each issue.
This month's digest looks at hard disks. I found it
particularly interesting. In fact, the technical
smorgasboard being presented each month is so helpful,
that I am developing a conflict trying to decide which
activity to finish next. The problem of choice is
usually resolved in my case, by the lack of sufficient
cash. My congratulations again to the team in
Wollongong. What has become clear to me is that there
are many things I can learn to do to expand my system.
We can reduce our costs if we do things for ourselves,
as well as gain real personal satisfaction from the
results. I do not know of any other group where the
members do so much for themselves.

There are some interesting avenues for further
expansion. The hard disk certainly seems worthwhile.
The Geneve seems to have missed the boat. The P-GRAM
card might be worth a second thought, and the club has
bought one. Derek Wilkinson's IBM keyboard is another
approach. Les Andrews has received cables from South
Australia, which will allow connection to a CGA and EGA
colour monitor. With an 80 column card, a hard disk,
upgraded software and a good resolution monitor, TI99/4A
users are well set 	Where will it end? What is the
limit? 	Probably cash flow problems. An idea suggested
to me by Gary Wilson at the last meeting seems worthy of
further consideration. Gary suggests that as the cost
of RAM chips is so dear, and RAMdisks are becoming very
expensive to make, we could concentrate on producing a
RAMdisk with EPROMs plugged in. The cost of 64K EPROMs
is quite low compared with static memory chips. Three
suggestions have been made.

1. We make a board for the PE box with 64K EPROMs,
and put all our commonly used software in the EPROMs.
We would add about 64K of RAM chips to load the programs
into.

2. We make additions to existing RAMdisks by adding
2 64k EPROMs to the board.

3. We develop a real supercart with 128k of EPROM
programs.

Craig Sheehan has already worked out a simple
circuit, and claims that it can be done fairly easily
and cheaply, using off the shelf components. I find the
idea of this project quite exciting. Imagine most of
your favourite programs available on EPROM. No more
corruption of important programs. It would free up the
available memory on RAMdisks for other uses. I think
there would be many advantages.

I am quite excited about this as a project. I feel
that there would be sufficient interest to set up a
projects group, where we could develop and build our
projects together. There are many things we can do, or
learn to do. Tell me what you think of the idea at the
next meeting.

See you there Dick Warburton 	 0

IF nirwure Alittilaar
cohe mutiath

We, the users of the TI99/4A, rely on many people
for our enjoyment of our computer, none more so than
those who have written software which we use and rely on
every time we use our computer. Some of this will be
commercial software which we should have paid for and
received value for our money in the form of a working
program with good documentation, but the majority of
software will be Fairware, which may not have cost
anything and yet still provides a working program and
good documentation. Software authors who produce good
useful programs and release them for us all to enjoy
under the fairware concept are the ones who are keeping
us all going. If you look at the price of commercial
programs for other computers which do the jobs that we
are able to do with our fairware programs, you will find
that $100 will not buy more than 1 program and you may
well need $1000 to get a state of the art program.
Fairware software costs the price of a disk initially
but if we use the program the onus is on us to send a
contribution to the authors to repay them for their
efforts and encourage them to continue development and
perhaps write a new program as well. We can be sure
that these authors are not relying on our contributions
to live, as they do not ask enough and we do not send
enough, if anything at all.

TIsHUG now offers us alternatives to sending the
money direct to the author. Of course sending the money
direct to the author is the best way to get on an
author's mailing list and to ask some pertinant
questions about the software or about improvements which
mi8ht be made in the next release. TIsHUG is offering
to collect money from us for fairware authors and to
send it on in the correct currency. This allows us to
contribute each month by mail or in person to the
monthly fairware collection or to send in a contribution
to be spread amongst several products and their authors.
If you use this last method, be sure to send in a list
of software and the amounts for each.

The Fairware software product for this month is
Mass Transfer from Stuart Olson in Illinois. This is a
terminal emulation program which I find easy to use with
our BBS and with very few problems. It has Xmodem
protocol available, which is not supported on the BBS
but is an excellent way of sending files to another user
directly. It also has a multiple file transfer Xmodem
in which only one transfer is initiated and all the
files are sent and appear on the receiver's disk as the
separate files with their correct names. If you use
this program then please send in a contribution. Do not
forget the other authors of fairware software that you
use and take up TIsHUG's offer of forwarding your
contribution on to them. 0

SEND IN YOUR DONATIONS NOW!

continued from page 11

$15 per year. 	As you can imagine 4d5 is little more
than the cost of printing and mailing this great
newsletter. If you would like to send your checks to me
(Payable to the NorthCoast 99'ers UG), I will expedite
your membership. Also any comments on the TI-Base
column can be sent to Martin A. Smoley, 6149 Bryson
Drive, Mentor, Ohio, 44060.

I am going to announce at this time that I will
produce a TI-Base help disk. The disk will be a flippy
and contain all of the tutorials and Command Files to
date plus anything else I think may be helpful. I
already have 390 sectors of tutorials. For this I would
like a donation of $3 to cover the Disk, Mailer,
Postage, Handling and wear on my disk drives. Please
make these checks payable to Martin A. Smoley at the
previous address, and make two checks if you want the
help disk and a membership.

(October 1989 	TIsHUG NEWS DIGEST 	Page 2)

3ttirtatiry'a NalitiDttit
by Terry Phillips

The September meeting was reasonably well attended
despite Geoff's problems in mailing the September issue
of the newsdigest. Again we were relegated to the
outbuildings for our meeting due to Woodstock having
their drama society conducting a play in the main
downstairs area. It happens from time to time that we
will be moved around by Woodstock management and I guess
we just have to fit in with their plans. The good news
is that from the October meeting onwards we should be
back upstairs in our normal meeting rooms. This next
meeting will also see the kick-off of our Games Room
activity in a small room upstairs. We hope to have a
couple of systems setup to let those into games go for
their lives.

Bulk subscriptions to Asgard News have been
received and have been mailed to members who requested
them. There are no spare subscription copies available
but if you wish to have a perusal of this publication,
it may be borrowed from the Library. It looks very good
value with some excellent articles.

We only have two new members to welcome this month,
and they are,

Robert Keast of Dapto
Mark Stuart-Street of Figtree.

It looks like the Illawarra boys are at it again
and are having good success in recruiting new members.
The TI99/4A is alive and well down Wollongong way.

There was no shop facility at the last meeting due
to Stephen being on the sick list. Also on the sick
list has been our Treasurer, Rolf, who has just been
released from hospital. Get well soon all you guys and
hope you can make it to the next meeting.

Coming up at the next meeting will be short talks
by the various Special Interest Group leaders who will
give timely information on where they are at. If you
are interested in joining up with one of the SIG's and
learning more about a particular piece of software or
hardware then this will be your big chance to ask a few
questions.

At this stage it is planned to hold a full day
tutorial event at the November meeting. Full details of
topics are still in the planning area but will be fully
publicized in the November newsdigest.

Christmas is not all that far away, and as usual
the December meeting will take the form of an informal
Christmas party get together. Should be fun if we have
a fine day and can get outside for a barbeque. 0

StEman
1.01 by Thrly Phillips

Inscebot Inc. have come out with a very nice new
piece of software called TI-Sort. This is a perfect
companion disk for owners of TI-Base and is subtitled
"The Incredible Sortware". It comes on a single disk
with a well written manual which gives an overview,
getting started and detailed instructions on its use.
It will just about sort anything, not only TI-Base
files, so it should be a very handy item of software to
have among your collection. Copies will be on sale at
the shop at the October meeting for the cost of $15.

Inscebot have also released a maintenance update
for TI-Base, numbered Version 2.02. According to Dennis
Faherty this version is fully hard disk compatible and
it also fixes some minor problems that existed in
Version 2.01. Copies will be available at the October
meeting, so either bring in your old disk or a blank
disk to obtain the upgrade.

A disk has been received from Colin Christensen of
the Brisbane Users group that contains a bunch of
utilities including Hardmaster which is for use by
members with hard disk drives. It also contains an
excellent program called Tapemaster which I wish had
been around a few years back. It makes backing up
programs from disk to tape a dream. Boy would it have
saved me some time. Also a Lotto/Pools number picker
which really does a good job in checking your results.
Unfortunately it did not pick the winning numbers for me
when I tried it out but at least it is a lot of fun.
This disk will also be available at the October meeting.

The Sutherland Regional Group have been trying out
a new method of demonstrating software to their members.
They give me 3 or 4 disks at each meeting and ask for
copies of various items of software with the view being
to show them at their meetings. All Regional Groups are
welcome to do this, so just bring a few disks in with
your list of software. If out of town and cannot make
it to the meetings, post them down with the list. 0

da 	unawitir tibt?
Tlet tia Tin vasetlauA

by Ben Talcach

I bet you have noticed the full page Benson and
Hedges advertisement in the Daily Mirror, complete with
a couple of tubes of 27C64 EPROMs spilled all over the
page, and an abc equation on the top left hand corner,
whether you are a smoker or a non-smoker.

The equation is written thus:

"(b"2 + ab) x (c + b) - b"2 x c - b"3 + ac"2 + bc -
SQR(a"3 x c"2 / b) x SQR(ab) - bc - (b"2 x ac)/c 	abc."

Well the person who wrote the eguation is certainly
no mathematician! Furthermore, he does not know how to
use a TI99/4A. The equation of course is wrong. The
left side cannot be equal to abc! Try to evaluate each
term, if you feel like doing it, otherwise take my word
for it. In fact, the left side of the equation is equal
to abc + ac"2 - a"2c.

	

It is obvious the fellow was a sickly student. 	He
missed many of his early mathematics lectures. Let us
prove him wrong using the TI99/4A.

First we have to assign some values to a, b, and c.
We can do all of our work in immediate mode, there is no
need to write a program. It is easier to use Extended
BASIC, it saves some typing. Here we go: first we
assign some values to a, b, and 	c. 	Type 	in:
>a=2::b=3::c=4 then press <ENTER>.

Next we enter the equation: PRINT (b"2+a*b)*(c+b)-
b"2*c-b"3+a*c"2+b*c-SQR(a"3*c"2/b)*SQR(a*b)-b*c-
(b"2*a*c)/c

Then press the <ENTER> key. The display will show
the result is 40.

Now we enter: PRINT a*b*c.

Again the result will be displayed: 24.

Clearly the two sides are not equal.

Now do a FCTN[8] and add to the PRINT a*b*c line:
+a*c"2-a"2*c, and press <ENTER>: The result of course is
40 (do you think I have written all this without trying
it first?)

Postscript. I have several hundred WD & HO Wills
shares for sale. I have decided to get out of this
company. If their accountants calculate my dividends
using similar calculating methods, then I am better off
getting out'while the sun is shining! And the moral to
the story, you do not have to be an Einstein if you have
a TI99/4A, just use common sense and try! 0

Page 3 	 TIsHUG NEWS DIGEST 	October 1989)

Luina 	 1)(01TaTO
Writing Assembly Routines, part 4

by David Caron, USA

The four Extended BASIC routines I am about to
discuss are what make Assembly and Extended BASIC such a
great team. Using these routines, you can transfer up
to sixteen variables between Extended BASIC and
Assembly. Any of these variables could be entire arrays
if you wish. Just imagine! You could make up an
unlimited number of new Extended BASIC procedures, like
reading in a whole line from the VDP screen to a string
all at once instead of using CALL GCHAR. Today,
however, we will just use these routines to print
something on the screen. The four routines are:

NUMREF (NUMber REFerence, BLWP @>200C)
NUMASG (NUMber ASsiGn, 	BLWP @>2008)
STRREF (STRing REFerence, 	@>2014)
STRASG (STRing ASsiGn, 	BLWP @>2010)

All of these routines are loaded from the Extended
BASIC module into low memory along with VMBW, VMBR etc.,
when CALL INIT is executed.

NUMREF is a routine which copies a variable from
Extended BASIC into Assembly. Let us take an example.
Say you executed your assembly routine with: CALL
LINK("START",X). X is an Extended BASIC variable which
I will let be equal to 5. Just before you execute BLWP
@NUMREF in Assembly, you load a value into RO and Rl.
The value in R1 tells NUMREF where in the parameter list
the variable is. In our case, the variable is the first
parameter in the list, so R1=1. For simple non-array
variables like X, always set R0=0.

If X had been an array like DIM X(10) and you
wished to select any of the ten values from Extended
BASIC, then the call link would look like CALL
LINKCSTART",X()). In such a situation RO is used to
tell NUMREF which array element you want passed. If you
wanted to pass X(4) then R0=4. If you wish to know how
to access multi dimensional arrays, read section 17.2.1
in the Editor AsseMbler manual. For our purposes,
knowing how to access single dimensional arrays will be
sufficient.

Once RO and R1 have been set, BLWP @NUMREF can be
executed. The variable in the parameter list will be
copied to CPU addresses >834A to >8352, yes 8 bytes, not
two. I neglected to remind you that all of Extended
BASIC numeric variables are in floating point notation
and take 8 bytes to represent them. I will also add
that they are always in a form of scientific notation,
so it would be difficult to convert a single number like
5.000000000000E0 (X=5) to a Word (16 bit) number.
Fortunately the TI99/4A home computer comes with a bunch
of great little routines like CFI (Convert Floating
point to Integer). This routine is accessed with:

BLWP @XMLLNK 	*where XMLLNK=>2018
DATA >12B8

This very handy routine will take that awful 8 byte
floating point number and convert it into the 16 bit
number 5. It will then place this number at the address
>834A. If you do something crazy like making
X=1.465838734 then the CFI will simply round the
floating point number and place a 2 at >834A. CFI even
handles negative numbers! What more could one ask? Do
not ask me what happens if X=1.0E99 or X=1.0E-99.

Remember that -32768<=X<=32767 for a possible
conversion to 16 bit format. The only reason I am
making such a big deal out of this is that I went to the
trouble to make a routine similar to CFI and then
learned of its existence in the console!

NUMASG is identical to NUMREF except that you place
the 16 bit number you want sent to Extended BASIC, in

>834A. Notice however that before you can execute BLWP
@NUMASG, the number must be in floating point notation.
CFI will not work, but CIF will! (Makers of the TI99/4A
evidently thought of everything.) CIF, as you may have
guessed stands for Convert Integer Floating point. This
console routine can be accessed using:

	

BLWP @XMLLNK 	*where XMLLNK=(>2018)
DATA >20

and presto, there you are. All that is needed now
is BLWP @NUMASG. If R1=1 then the Extended BASIC
variable in the first parameter of CALL LINK will be set
to the original integer at >834A. If the CALL LINK
statement is something like CALL LINK("START",1) instead
of CALL LINK("START",X) then NUMREF will return you to
Extended BASIC and issue an error message.

STRREF is similar to NUMREF except that a string is
passed from Extended BASIC to assembly instead of a
number. RO and R1 function the same way. R2 is used
however to tell STRREF where you want the string. The
usual procedure is to allot some memory before the
actual start of your assembly routine. This memory is
alloted in the same way as was done for the user
workspace registers in the last article. You need only
allot LEN(string)+1. The additional character indicates
how long the actual string is. This is why strings
cannot be any longer than 255 bytes: that is the largest
number possible for a byte to represent.

Example: STRBUF BSS 25

This string can be no longer than 24 bytes. R2 is
assigned the address STRBUF. Now only one more thing
must be done. If, for example , the string in Extended
BASIC was 255 characters long instead of 24, guess what
would happen? STRREF would simply copy the string at
STRBUF, then continue copying over your workspace
register and much of your assembly routine. Such a
situation would likely result in unpredictable results
on the part of the TI99/4A computer. Fortunately there
is a built in safeguard against this. When STRREF is
called it will check the byte at the address indicated
by R2 and check to make sure that the Extended BASIC
string is no longer than the value of this byte. If it
should be, STRREF will return execution to Extended
BASIC and issue an error. When BLWP @STRREF is
executed, the actual string starts at STRBUF+1 not
STRBUF.

STRASG: Well, there is not much to say here. 	All
you do is set R0=0, R1 to the string position in the
CALL LINK parameter list, make up the string somewhere
in CPU memory, set the byte immediately in front of that
string equal to the length of the string, set R2 equal
to the address of that byte, execute BLWP @STRASG and
the string in CPU memory gets assigned into the Extended
BASIC string variable.

Now I will rewrite the assembly routine from my
last article using the above routines. This assembly
routine can be accessed from Extended BASIC using CALL
LINKCSTART",X,S$) where X is the starting address of
the string S$ being written to screen, 0<= X <=767.

	

DEF START 	*This places the word "START" in
the DEF table along with its
start address.

	

VSBW EQU >2020 	*The Extended BASIC

	

VMBW EQU >2024 	assembler

	

VSBR EQU >2028 	environment has no

	

VMBR EQU >2030 	REF table so the assembler
directive EQU (equate) must be
used to defined the constants
VSBW, VMBW, VSBR and VMBR. Take
a look at page 415 to 416 in the
Editor Assembler manual

NUMREF EQU >200C
NUMASG EQU >2008
STRREF EQU >2014
STRASG EQU >2010
XMLLNK EQU >2018

continued on page 30

(October 1989 	TIsHUG NEWS DIGEST 	Page 4

FIRE 	LEFT 12 CONON
3 2

0
EM7 SOCKET CCornpu er End)

0
6 7 0

MUM NW 	RINT

RIGHT LEFT 	DON 	UP LEFT DOWN

SZ 	EZ 	 EZ
5 	4 12 3 1 	2 10 1 '7 	 5 	4 4 	3 3 2 2 	1

g 	D25 PLU C
G\\:D9 PLI1 FOR JOYSTICK 2

o 	a
a

	

o 	• D9 PLUG FOR JOYSTICK 1 li \O 	0 	s 	o

o 	 0 	

Or

. 	9 	, 8 16 7 	6 14
N 0 	 FME

9 	1.1 	7
.•

	J

ttaap Tirnt
with Lou Amadio

Unfortunately I was unable to attend the September
meeting and I will be away .on holidays for the October
meeting. Still there are two meetings left this year
which I should be able to attend (November and
December). This year has gone very quickly for me.
There has really not been enough time for me to
participate in, let alone enjoy, my other hobby
(building and flying radio controlled model aeroplanes).

Geoff brought back two very interesting items from
the last meeting: a P—GRAM card kit and a small RGB
monitor with interface. I will be assembling and
playing with these over the next few weeks and will
report my findings in this column. I also understand
that Les Andrews has brought back a number of RGB
monitor interfaces (designed and built by Colin
Cartright of ATICC). Please contact Les if you are
interested in one of these.

This month I will be presenting another way to
interface Atari compatible joysticks and the final
episode (I think) on the Direct I/0 Interface).

ImIeulttan ,Duattritko
qa 	7llnii4k

by Lou Amadio

Although interfacing joysticks has been covered
more than once in this magazine, I am still asked either
personally or through the mail how to adapt other brands
to the task.

Virtually everyone who owns a computer will almost
certainly own a pair of joysticks. If you bought a pair
of original TI joysticks, chances are that they are
probably worn out. If only the #2 stick is working, you
could probably use the parts to keep #1 stick working.
Eventually, however, you will be faced with the decision
to buy one or more new joysticks.

Finding a joystick which is as easy to use
(especially for children) as the TI stick will only
solve one of your problems. The other is how to make it
work with the console.

Joystick adapter circuit diagram
Courtesy of Paul Mulvaney,

Hunter valley 99ers

Of all the interface articles that I have read, the
one that I believe provides the best and mbst cost
effective solution to the problem was described by Paul
Mulvaney of the Hunter Valley 99ers. Paul used a 25 pin
"D" connector (male) and associated plastic shell to
form the joystick interface and house the isolation
diodes. The diodes (1N4148) are supposed to prevent
interaction between the two joysticks, which share a
common return wire, as well as providing proper joystick
operation in the diagonal directions. The D25 is wired
to a 9 pin "D" connector (female) which provides the
connection to the console.

To assist in plugging in the joysticks, the inner 7
pins of the D25 plug are removed. This can be achieved
with a pair of needle nose pliers. The diodes are
soldered directly to the pins of the D25 plug so as to
fit inside the plastic shell. A short cable connects
the seven wires to a 9 pin "D" connector (D9), which in
turn plugs into the console joystick port. 0

aimtl ili© ilanIvrtrim
The final Episode?

by Lou Amadio

The Direct I/0 (or Two—way Expansion) Interface
project which first appeared in the July issue of the
TND seems to have created a great deal of interest.
First of all, errata on the subject was published in the
August and September issues of the magazine. Apart from
two errors in the wiring table, most of the confusion
has been associated with the connections (or lack
thereof) of the unallocated pins. For this reason, two
tables are included this month, one referenced from the
I/0 port and the other referenced from the PEB
connector. These tables supersede 411 other references
to I/0 to PEB connections. The new data shows a larger
number of "pull—up" resistor connections when compared
with the previous article. Although the interface will
still work without the pull—up connections, it is
recommended that you build it as per the attached
tables.

The main purpose of this article, however, is to
announce that a double sided printed circuit version of
the Direct I/0 Interface has been produced (courtesey of
Geoff Trott). The PCB will obviate the need for most of
the time consuming (and potential error producing) point
to point wiring. Building the interface now will only
involve making a number of through links, mounting 11
resistors, 4 capacitors, a voltage regulator and of
course the I/0 and PEB edge connectors.

Parts Required

11 x 1000 ohm 1/4 watt resistors
4 x 10 uF 25 volt tantalum capacitors
1 x 78L05 +5 volt regulator
Plus other parts as specified in the July '89 TND

Before soldering any components, drill five 3nun
mounting holes through the PCB, one at each corner and
one near the centre through the earth track as
indicated. 	The central support is M:141kortant if you
decide to mount the I/0 connector on a liox. 	If the
connector is to be mounted inside the.box, the 44 way
connector must be mounted proud of the PCB wiLb
sufficient clearance to .form a proper connection with
the console I/0 port. (The wire—wrap ',edge connectors
that I used had 13 mm long legs).

Construction

If you look at the two printed wiring diagrams
presented with this article, you will see that one is
labelled "component side" and the other is labelled
"solder side". Note that the "solder side" diagram is a
mirror image of what you would see by turning the PCB
over.

Page5 	 TIsHUG NEWS DIGEST 	October 1989

Refer to the original article as a guide to the
position and orientation of the edge connectors, and to
the printed wiring diagrams below for the solder
connections.

Solder all through links (approximately 46) prior
to mounting any other components. Mount the four
capacitors, regulator (watch polarity), and the eleven
1000 ohm resistors.

The I/0 edge connector is mounted (6mm proud) from
the "solder side" and soldered on the "component side"
of the board. Please note the 6 through links
associated with this connector and that pins 3,21 and 27
must be soldered on both sides of the PCB. For added
strength, the I/0 connector should also be soldered both
sides on pins 1, 2, 22, 28, 43 and 44. One link from
the I/0 pin 44 track to PEB pin 10 track need only be
made if Audio—In is required.

The PEB card edge connectors are mounted from the
"component side" of the PCB and soldered on the "solder
side" of the PCB. Note the 40 through links associated
with these connectors and that six of these links must
be made BEFORE the edge connectors are mounted onto the
PCB.

Power Supply

Connections from the.+18V, —18V, +9V and earth must
be made to the separate power supply (see July '89 TND).
As the 5 volt regulator is now part of the current
design, the regulator specified in the original article
is no longer required unless you intend to power an add
on disk drive as well. In this case, all that is
required is to substitute higher capacity transformers
and to add a voltage regulator for the disk drive motor.
For low power drives, I found that a lA transformer was
adequate for T2.

Referring to the circuit diagram on page 6 of the
July '89 issue of the TND, substitute a 0/7.5/15 volt 2A
transformer (Arlec PT6978) for Tl and a 0/15/30 volt lA
transformer (Arlec PT6672) for T2. Unregulated output
voltages will increase to +11, +22 and —22. A 7812 (+12
volt) regulator is added to the +22 volt rail for the
disk drive motor. (Refer to articles between July and
September for hints on how to build power supplies).

I/0 Port to PEB Connections

I/0 # Function PEB # I/0 # Function 	PEB #
1 +5V SP NC 23 GND 	7,49
2 SBE(H) NC 24 CLKOUT(L) 	50
3 RESET(L) 6 25 GND 	20,53
4 EXTIN(L) 17 26 WE(L) 	54
5 A5(H) 40 27 GND 	3,27

AlO(H) 33 28 MBE(L) 	NC
7 A4(H) 39 29 A6(H) 	37
8 All(H) 34 30 Al(H) 	44
9 DBIN(H) 52 31 AMU) 	43
10 A3(H) 42 32 NE' 	% L) 	56
11 Al2(H) 31 33 CL__:.,H) 	55
12 READY(H) 4 34 D7(H) 	19
13 LOAD(L) 18 35 D4(H) 	24
14 A8(H) 35 36 DO(H) 	22

15 A13(H) 32 37 DO(H) 	28
16 A14(H) 29 38 D5(H) 	21
17 A7(H) 38 39 D2(H) 	26
18 A9(H) 36 40 Dl(H) 	25
19 A15/CRUOUT(H) 30 41 IAQ(H) 	NC
20 A2(H) 41 42 D3(H) 	23
21 GND 	5,47 43 —5V 	NC
22 CRUCLK(L) 	51 44 AUDIOIN 	10

continued on page 32

•
III 	K1 --,'" '''''' - 0 	 I 	 13

ni 	— s - . •!..— ri.-.-..' 	• 	 .1 	 4. .

O all 1Kn 	 Solder Both Sides
.,,,..........."...,.."..,,,,,,,....—............ -.... mrsionnmuunumnimmuuuumaisulatansrumnsremmulusowsumultiumstulullomn llllll manoluntuuntielnumlUnguarammunnunonnsumu.ualuottumiomminolansaausunsuanananntsimmantsnot

Ls.)
PE box Card Connector 	! 	 . 	

________ 	 ----,\,.!<:N,
--.::;:::,,,,4,1,, 4t, N.,‘

	

appoot, " • •a•awarr••••••••••••1•.4 . • IP & • • 0 11, .2e•-•:••-•-•-•-•••----i 	 .• 	 OA+ F 	
, ' ■:::',.: '''. .:‘,\, :4,, ''''

at- 	
-.. ,__,__ a --s,,,,,, ,, 1 „,,,,,,,,,)„

IghlaggimarlaigoREBRiiiiiimiamiiimigomiimaid 	Houma* il 0 ,i,
...- 	 I SIN, --- 	* 	„ ”„ 	,

...._._.............. . 	 - ,:------=,_.,„,\\\
51 	• • • • • • 0 ff.." .!..!!..!!!...,...' .."....C...._—_-_-_'07:07-126110. -el -11001 -4,-/-1-1

IP- 	 -7 e - 	 ,...... . 	••• r .=.4 7.7.7...„ 'I., 	4, ri.,:q.,, 1 I
...............

P EB connector.f.:::::::-. 	-_—.-_-..=========—_-_===== : :::: 	--.. ,,, ‘,.. ----- __..............._
— 	

4 Ji,A.R,-.r,r-T-1.-i- _.0 __:___, a i __ 4c
- •

all 1Ka
0M-W".1--61 C4--,,,•"4,- 	 •10 	 C1--'"•-•^•-,,••••11

--- •

• ■I,TV

II/0 connector'

•

tS'

voltage
regulator

Direct I/0 Interface - Component Side
rvuntrinrnn.r.r.nm..r.mmnu..ata.aae.I..t.ln cmnur.mm.--rar.=.rantr..iUt...s..a.n.nnlntn.r.u.-..uaumuanasCussmartn“nrtulmctur..tunuttn ■Ura-t.s.:s.xr.rrnnnnaazc-.“-r--tau....I.u.- •

13 	 121

111111111/111131111113111111111111113:111 •
! `tit 't • 	7,1, T, T, T, T,LT„ 1,41,T,441,t-f

• •

F111111il

=1,[=...M..M

▪ 3mm holesx"

- • •

1

I 1.• • e - 4 	: it , 4 	• i * • i•Lo •

VI. ri"6 "" 'if:4166 '1.11 14 ii"k:4'4,,'4 6 '6 lir 6- '6 .'4 I ‘.1 11
'N,' 	' \ • 	

i , 4,,'" ,N,47,L..... ',...._____.---
4,4 , ti 	,,,,:l 	4 	,,11-...

3mrn hole
tl

lentimmuumunnumuraninuticonnumilwitutiLutuwma Cl

11119111111:1 irwwwirf

ly.1112A.t 	1-.2 	s. It gu. s

-0

I:1 	 LI

n!,1

.1............nonammunmumuralinsaniturnous=alumixumnmummtavnm.gmumranumulussunumwiattill...sumainUtunsaummunnumoans.sitavuls+10181.m.0....0.sestununi...antInau...ntinumnistunmoirommitrunumuutmumu.saustumi

a

Direct I/0 Interface - Solder Side

October 1989 	TIsHUG NEWS DIGEST
	

Page 6

Eatentiltd BASIC Tutothill
by Tony McGovern, Funnelweb Farm

III. Sub—program Parameter Lists

In the last chapter we saw how sub—programs fitted
into the overall workings of Extended BASIC. In this
chapter we are going to go into the details of writing
sub—programs. Most of the fiddly detail here concerns
the construction of the parameter lists attached to CALL
and SUB statements, and some of the little traps you can
fall into.

Any information can be transmitted from the CALLing
program to the CALLed sub—program via the parameter
list, and anything not transmitted this way remains
private for each program, with the exception of the DATA
pool which is equally accessible to all. If something
is mentioned in the parameter list then it is a two way
channel unless special precautions, provided for in
Extended BASIC, are taken. In this case the CALLing
program can inform the sub—program of the value of a
variable or entry in the parameter list, but not allow
the CALLed program to change the value of the variable
as it exists in the CALLing program. Arrays however,
numeric or string, cannot be protected from the follies
of sub—programs once their existence has been made known
to the sub—program through the parameter list.

Let us for starters take a very simple but useful
example, where a program needs to invoke a delay at
various points. Now some BASICs (and TI Logo) have a
built—in function called WAIT. Extended BASIC does not
have this command (though a cynic might suggest that GPL
gives it to you all the time whether you want it or not)
so you have to program it. It can be done by a couple
of CALL SOUNDs or with a FOR ,.., NEXT loop. Let us use
an empty loop to generate the delay, about 4
milliseconds each time around the loop, and place the
loop in a sub—program.

230 CALL DELAY(200)
670 CALL DELAY(200/D)
990 CALL DELAY(T)
3000 SUB DELAY(A):: FOR I=1 TO A :: NEXT I ::SUBEND

This is easier to follow when editing your program
then using a GOSUB, and you would need to enter the
subroutine in every sub—program since GOSUBbing or
GOTOing out of a sub—program is verboten. Also it is
less messy than writing the delay loop every time. The
example shows several different CALLs to DELAY. The
first supplies a number, and when DELAY is CALLed, the
corresponding variable in the SUB list, A, is set to
200. This is a particular example of the kind of CALL
from line 670 where the expression 200/D is first
evaluated before being passed to DELAY to be assigned to
A. Variable D might for instance represent the level of
difficulty in a game. The CALL from line 990 invokes a
numeric variable T, and A in the sub—program is set to
the value of T in the CALLing program at the time when
the CALL is executed.

Nothing untoward happens to T in this example, as
the DELAY sub—program does nothing to change A. Now it
may not matter in this instance if T did not retain its
value after the sub—program CALL. Suppose instead the
delay was to be called out in seconds. Then a
sub—program on the same lines DELAYSEC might go

230 CALL DELAYSEC(2)
990 CALL DELAYSEC(T)
4000 SUB DELAYSEC(A):: A=250*A
4010 FOR I= 1 TO A :: NEXT I 	SUBEND

Now after DELAYSEC has been executed with the CALL
from 990, T will have value 250 times its value before
the CALL. This will not be a bother if you do not use T
again for its previous value. If the CALLing program
specifies a numeric constant as in line 230, or a
numeric expression, the change in A in the sub—program
has no effect on the main program. Suppose you cannot

tolerate T being changed in line 990 (and this kind of
thing can be a source of program bugs). You will find
that Extended BASIC allows for forcing T to be treated
as though it were an expression, thus isolating T from
alteration by the sub—program, if T is enclosed in
brackets in the CALL (not SUB) list. Suppose DELAYSEC
is also called from line

970 CALL DELAYSEC((T))

If this CALL in line 970 is followed by the CALL
from line 990, T not having been altered in the
meanwhile, the same delay will be obtained, but if the
order of CALLs were reversed the second delay would be
250 times the first. In the language of Extended BASIC
this is known as "passing by value" as distinct from
"passing by reference". This can only be done for
single variables or particular array elements, which
behave like simple variables in CALL lists. Whole
arrays cannot be passed by value, but only by reference.
Expressions and constants can only be passed by value,
and its hard to see what else could be done with them.
In the example as written, a different variable name was
used in the SUB, but if you remember the little
experiment in the last chapter you will see that it
would not make any difference if T had been used in the
SUB list instead of A.

Now let us complicate things a little by flashing
up a message on the bottom line of the screen during the
delay interval.

200 CALL MESSAGE(300," YOUR TURN NOW")
270 CALL MESSAGE(T,A$)
3000 SUB MESSAGE(A,A$):: DISPLAY AT(24,1):A$
3010 FOR I=1 TO A :: NEXT I :: DISPLAY AT(24,1):""
3020 SUBEND

The SUB parameter list now contains a numeric
variable and a string variable in that order. Any CALL
to this sub—program must supply a numeric value or
numeric variable reference, and a string value or string
variable reference, in precisely the same order as they
occur in the SUB list. In the little program segment
above, line 200 passes constants by value and line 270
passes variable references. There is no reason why one
cannot be by value and one by reference if so desired.

This process can be extended to any number of
entries in the parameter list, provided the
corresponding entries in the SUB and CALL lists match up
entry by entry, numeric for numeric, string for string.
The Extended BASIC manual does not say so explicitly,
but it appears that there is no limit apart from the
usual line length problems, on the number of entries in
the list. This is the only apparent difference between
the parameter list in Extended BASIC sub—programs and
the argument lists for CALL LINK("xxxxxx"„...) to
machine code routines in Extended BASIC, and MiniMemory
and Editor Assembler BASICs.

One little freedom associated with built—in
sub—programs is not available with user defined
sub—programs. Some built—ins, such as CALL SPRITE
permit a variable number of items in the CALLing list.
Parameter lists in user defined sub—programs must match
exactly the list established by the SUB list or an error
"INCORRECT ARGUMENT LIST in ..." will be issued. User
defined CALLs allow whole arrays, numeric or.string, to
be passed to a sub—program. Complete arrays may be
passed by reference only. Individual array elements may
be used as if they were simple variables and may be
protected from alteration by bracketing in the CALL
list. An array is indicated in the parameter list by
the presence of brackets around the array index
positions. Only the presence of each index need be
indicated as in A(). MATCH(„) indicates a three
dimensional array MATCH previously dimensioned as such,
explicitly or implicitly. Do not leave spaces in the
list. If the sub—program needs to know the dimensions
of the array these must be passed separately (or as
predetermined elements of the array). TI BASICs are
weaker thad some others in that they do not permit
implicit operations on an array as a whole, a very
annoying deficiency.

(Page7 	 TIsHUG NEWS DIGEST 	October 1989

Arrays may be DIMensioned within sub-programs.
This will introduce a new array name to the program, and
an array or variable name from the SUB parameter list
cannot be used or an error message will result. In the
following code the main program passes, among other
things, an array SC to sub-program BOARD (perhaps a
scoreboard writing routine in a game).

100 DIM SC(2,5)
450 CALL BOARD(P,A$(),SC(,))
4000 SUB BOARD(P,A$(),S(,)) :: DIM AY(5) 	

CALL REF(P,AY(),S(,)))
4080 SUBEND
5000 SUB REF(V,A(),B(,)):: 	 SUBEND

BOARD generates internally an array AY() which is
passed to another sub-program REF (maybe this resolves
ties) along with SC(,), which BOARD knows as S(,), and
REF in its turn as B(,) -- the same name could have used
in all places. There is however no way that the main
program or any sub-program whose chain of CALLs does not
come from BOARD can know about the array AY(). This
would hold equally well for any variable or array,
string or numeric, first defined within BOARD and whose
value has not been communicated back to the CALLing
program via some other variable mentioned in BOARD's
parameter list.

By following this line of reasoning you can check
out the conclusion that there is no way for a
sub-program whose chain of CALLs does not come through
BOARD to know about array AY(). The only way around
this is for AY() to be DIMensioned in the main program
(even if this is its only appearance there) and the
message passed down all necessary CALL-SUB chains.

This idea of DIMensioning an array only within a
sub-program is particularly useful if the array is to
READ its values from DATA statements and to be used in
the sub-program. This could be done again from any
other sub-program needing the same data, without having
to pass its name up and down CALL-SUB chains. Remember
that DATA statements act as a common pool from which all
sub-programs can READ. If the array values are the
results of computations then these values must be passed
through the CALL parameter lists.

For completeness note that although the Extended
BASIC manual has nothing to say about it, IMAGE
statements for formatting PRINT output are accessible
from any part of a program in the same way as DATA
statements and not confined to the sub-programs in which
they occur as are DEF entries.

It is not necessary to have any parameters in the
list at all. Sub-programs used this way can be very
helpful in breaking up a long program into more
manageable hunks for ease of editing. We shall also see
in later chapters that there can be other benefits as
well.

One more Extended BASIC statement for sub-programs
remains, the SUBEXIT. This is not strictly necessary as
it is always possible to write SUBEND on a separate line
and to GOTO that line if a condition calling for an
abrupt exit is satisfied. Like a lot of the little
luxuries of life however, it is very nice to have and
makes programs much easier to read and edit. It does
not replacb SUBEND which is a signal to the Extended
BASIC pre-scan to mark the end of a sub-program.
SUBEXIT merely provides a gracious and obvious exit from
a sub-program (awkward in some Pascals for instance).
The next chapter will demonstrate typical examples of
its use.

IV. Useful Sub-program Examples

In the previous chapter we used as an example a
DELAY sub-program which could, with a little refinement,
be used to substitute for the WAIT command available in
some other languages. You can extend this idea to build
up for yourself a library of handy-dandy sub-programs
which you can use in programs to provide your own
extension of the collection of sub-programs that
Extended BASIC offers. The MERGE facility with disk

based systems makes this particularly easy. See Jim
Peterson's Tigercub Tips for many further examples.

For our first example let us take one of the more
frustrating things that TI did in choosing the set of
built-in sub-programs. If you have MiniMemory or Editor
Assembler, you know that the system keyscan routine,
SCAN, built into the console ROM returns keyboard and
joystick information simultaneously, while Extended
BASIC forces you to make separate sub-program CALLs, KEY
and JOYST, to dig it out. Since these GPL routines are
slow it is difficult to write a fast paced game in
Extended BASIC that treats keyboard and joysticks on an
equal footing, as is done by many cartridge games. On
the other hand in games where planning and not arcade
reaction is of the essence there is no reason why the
player(s) should be forced to make a once and for all
choice and not be able to use either at any stage of the
game.

The sub-programmers approach to this problem, once
it realised that it can be done (and we have seen
commercial Extended BASIC games where the writers have
not realised this), is to write the game using
joysticks, but replacing JOYST by a user defined
sub-program JOY which returns the same values as JOYST
even when keys are used.

The first step in telling whether keys or joysticks
are being used is to check the keys, and if none have
been pressed then to check the joysticks. If a key has
been pressed then its return, K, has to be processed so
that the direction pads embedded in the keyboard
split-scan return the corresponding JOYST value. A
sub-program along the lines of the one used in TI
Extended BASIC does just this.

900 SUB JOY(PL,X,Y):: CALL KEY(PL,K,ST):: IF ST=0 THEN
CALL JOYST(PL,X,Y):: SUBEXIT

910 X=4*((K=4 OR K=2 OR K=15)-(K=6 OR K=3 OR K=14))
920 Y=4*((K=15 OR K=14 OR K=0)-(K=4 OR K=5 OR K=6))
930 SUBEND

PL is the player (left or right joystick or side of
the split keyboard) number and is unaltered by the
procedure. The simple minded approach for converting K
to (X,Y) values by using the Extended BASIC logic
operators (one of the more annoying omissions from
console BASIC) seems to work as well as any. The
sub-program as written checks the keys first but
balances this out by putting the processing load on the
key return.

This is as good a time as any to sharpen your own
skills by working out alternative versions of this
procedure, and also by writing one for mocking up a
substitute CALL KEY routine to return direction pad
values even if a joystick is used. 0

continued from page 15

An example to clarify matters:
To change "12ABCD789" into "123456789":
where CS="12ABCD789":
CALL REPLACE(CS,3,4,"3456")

Form: 	CALL REPLACE(startstring$, start_pos, length,
insert$)

Code:

27540 SUB REPLACE(T$,C,L,R$)
27550 IF S<1 OR S>LEN(T$) OR L<1 OR S+L-1>LEN(T$) OR

T$="" THEN SUBEXIT
27560 IF LEN(R$)>L THEN R1S=SEG$(R$,1,L) 	GOTO 27580
27570 IF LEN(RWL THEN R1S=R1$&RPT$(" ",L-LEN(R$)) ELSE

R1$=R$
27580 F$=SEG$(.4,1,S-1)

L$=SEGS(T$,S+L,LEN(T$)-(S+L-1))
27590 TS=F$&R1$8.L$
27600 SUBEND

END-
	

0

(October 1989 	TIsHUG NEWS DIGEST 	Page 8

'IrSal&at Tuaaourlinll #3

by Martin Smoley, NorthCoast 99'ers

Copyright 1988 by Martin A. Smoley

I am reserving the copyright on this material, but
I will allow the copying of this material by anyone
under the following conditions. (1) It must be copied
in its entirety with no changes. (2) If it is retyped,
credit must be given to myself and the NorthCoast 99ers,
as above. (3) The last major condition is that there
may not be any profit directly involved in the copying
or transfer of this material. In other words, Clubs can
use it in their newsletters and you can give a copy to
your friend as long as it is free.

SET TALK OFF
9/12/88 WHILE

* Command File WHTST3 	ENDWHILE
* Save as WHTST3/C 	DOCASE

ENDCASE
CLOSE ALL
LOCAL ? N 2 0
LOCAL SEL N 2 0

REPLACE ? WITH 0
WHILE .NOT. (?)
CLEAR
WRITE 2,8,"** Make A Selection **"
WRITE 4,10,"> 0 < To Quit CF"
WRITE 6,10,"> 1 < DO WHTST4"
WRITE 8,10,"> 2 < DO INITPR"
WRITE 10,10,"> 3 < SEL. THREE"
WRITE 12,10,"> 4 < SEL. FOUR"
WRITE 22,4,"Enter 0-4"
READ 22,15,SEL
WRITE 22,3,"
DOCASE

CASE SEL = 0
WRITE 18,10,"Have a nice day"
REPLACE ? WITH 1
BREAK
CASE SEL = 1

WRITE 18,15,"Number 1"
DO WHTST4

BREAK
CASE SEL = 2
WRITE 18,15,"Number 2"
DO INITPR

BREAK
CASE SEL = 3
WRITE 18,15,"Number 3"
BREAK
CASE SEL = 4
WRITE 18,15,"Number 4"
BREAK

ENDCASE
ENDWHILE

CLEAR
CLOSE ALL
SET TALK ON

RETURN

This month I will attack the DOCASE, ENDCASE and a
couple of additional tidbits. This tutorial will finish
off almost all of the major points in the TIB Manual.
Hopefully at that point you will have some idea what is
going on with this language. Future tutorials will be
less wordy and contain more intricate programming. I
will also try to touch on the items we did not cover in
the manual so far.

The CF named WHTST3 is listed above. 	It is the
beginning of TIB's menu capability and many other things
which can be handled by combinations of WHILE, DOCASE
and IF statements. Let us hit the high points.

LOCAL ? N 2 0, initializes a local variable named
"?". I named it ? because I could not come up with a
good name for it, as in SEL which stands for selection.
? is a Numeric Variable with a size of 2 and 0 decimal
places. 	A Numeric Variable can also be used as a
Boolean Operator (if you are careful). 	A Boolean

Operator is just something that transmits a TRUE or
FALSE to TIB. To TIB and to many many programs and
computers, FALSE is represented by a Zero "0", and TRUE
is represented by a one "1". When we REPLACE ? WITH 0,
? is both a Numeric Variable which contains the value 0
and a Boolean Operator which represents FALSE.

WHILE statements need Boolean Operators to decide
whether to execute the lines following the WHILE
statement or skip them all and go directly to the
statement after the ENDWHILE. In this case WHILE .NOT.
(?) means WHILE ? is NOT TRUE, do the statements
following the WHILE. Because we placed a 0 in ?
previously, it is FALSE (or not TRUE), so the WHILE will
continue to loop until we change ? to a 1 or TRUE, which
you can do in the CASE SELection number O. If you grasp
this logic, you can see why I named it ? and why I said
be careful. If you do not grasp the idea, just type
things in as you see them. There will be more chances
to sort out program logic in the future.

When we enter the WHILE loop we CLEAR the screen
and display a menu which can contain anything you wish
TIB to do for you. At the bottom of the input screen
TIB asks for your selection. Entering a number from 0
to 4 will set the variable SEL equal to that number.
TIB then blanks out line 22 on your monitor and goes
into the DOCASE routine.

In the DOCASE, TIB goes to the first CASE and
compares the value in SEL to the value on the right side
of the equal sign. Therefore, if you selected 0 when
asked for your choice, TIB would find a TRUE match when
it hit the first CASE comparison and would execute the
lines between that CASE and the BREAK directly after it.
In this case it would display the message "Have a nice
day" and REPLACE ? WITH 1, which makes the variable ?
TRUE. When TIB hits the BREAK after REPLACE ? WITH 1 it
goes to the ENDCASE. In this instance it would then go
to the ENDWHILE which sends TIB back to the beginning of
the WHILE loop.

This time when we hit the WHILE .NOT. ? the ?
equals 1 or TRUE so the WHILE loop does not execute and
the program goes to the next directive after the
ENDWHILE. "I know that is a roundabput way to get here,
but the computer can do it a lot faster than I can
explain it."

If you had selected 0, TIB would then finish and
leave this CF which would return you to the DP. If,
however, you had chosen any other number, TIB would have
performed whatever tasks were present between the CASE
that matched the SELection and the BREAK that followed
it. 	For example, entering a 2 would DO the CF named
WHTST4, or 3 would DO the CF named INITPR. 	I hope to
eventually show you how to put a complete system
together that will allow you to maintain and use a
membership list for home, club, church or work, using
menus and small CFs to do the work for you.

CLEAR
9/15/88 WHILE

* Command File WHTST4 	ENDWHILE
* Save as WHIST4/C
WRITE 12,15,"************"
WRITE 13,15,"* WHTST4 *"
WRITE 14,15,"************"
LOCAL ANS N 3 0
WRITE 22,1," 	Number of Cycles"
READ 22,22,ANS
WRITE 22,1,"

WHILE (ANS > 0)
WRITE 22,4," 	Cycles Left =",ANS
REPLACE ANS WITH ANS — 1

ENDWHILE
WRITE 22,1,"
CLEAR
RETURN

The CF above can be run by selecting number 1 from
the menu screen of WHTST3. "Provided you type all this
stuff in of course." WHTST4 does not really do a darn
thing. When you run it, it asks you to enter a number.
It will then start at that number and count down until
it hits zero. You should enter a number like 4, 5 or 6
if you do not want to watch this thing counting down for
a week. So you are saying to yourselves, why did this
nut put this junk in the tutorial. Let us go through it
and I will explain.

Page 9 	 TIsHUG NEWS DIGEST 	October 198

We initialize the LOCAL ANS as a number. "No big
deal here." You enter a number of your choice and then
we hit the WHILE loop. In this instance it is written,
WHILE (ANS > 0). Take a look at it. It is different
from the last one. In this case the (ANS > 0) forms the
Boolean Operator. As long as ANS holds a number which
is greater than zero (0) the result is a TRUE, and as
long as the WHILE has a TRUE stamp on it .everything
inside the loop is executed.

Now inside the loop we find REPLACE ANS WITH ANS —
1. This is an accumulator. Each time the loop is
executed you can add a quantity to your accumulator, or
as in this case you can subtract a quantity from your
accumulator. This is a lot like a FOR NEXT loop in
Extended BASIC. You enter a quantity for ANS. Each
time the loop is executed 1 is subtracted from ANS.
When ANS reaches 0 the loop is discontinued. I tried to
show you this idea in its simplest form so you might
have an easier time grasping the concept.

The CF below is a real application of this idea.
It is slightly stripped down so it would not take up too
much space, but it works and it is usable. It uses our
old data base named TNAMES. When you run it (DO
WHTST5), it opens TNAMES and displays the first record
in the file. It then asks you how many labels you want.
If you enter a zero (0), it MOVEs to the next record in
the data base and puts that one on the screen for you
with the same question. If you enter a quantity greater
than 0, like 4, it will print out 4 labels and then go
to the next record. "I hope you get the idea."

One thing about it that is slightly odd. The
Emphasize command I placed in the first part of REPLACE
TEMPI WITH "<27>E " comes up as an E on the screen
at the top left of the display. (Note that a number in
< > means that number as an ASCII code.) Just ignore
it, the CF works fine.

I whipped WHTST5 up by loading WHTST4 into the
FunnelWeb Assembler Editor just as it looks above. Then
I pulled in the old CF named LBLS1 from Tutorial 1.
With both CFs loaded I did a bunch of M)oving and
C)opying. I typed over a few things and I had it. It
took me about 45 minutes to smash it together and work
out the bugs.

CLEAR
SET TALK OFF
SET RECNUM OFF
SET HEADING OFF
SET LINE=80
SET PAGE=000
* Command File WHTST5 10/07/88
* Save as WHTST5/C
* USE TNAMES and Print Multiple Labels
WRITE 11,15,"* Multiple *"
WRITE 13,15,"* Label *"
WRITE 15,15,"* Program *"
LOCAL TEMPI C 40
LOCAL TEMP2 C 40
LOCAL TEMP3 C 40
LOCAL BLNK C 1
USE TNAMES
TOP
WHILE .NOT. (EOF)

CLEAR
REPLACE TEMPI. WITH "<27>E
	

II ;

I " Exp. Date " I XP
WRITE 10,3,TEMP1

REPLACE TEMP2 WITH TRIM(FN) " ";
MI I " " I LN

WRITE 12,3,TEMP2
WRITE 14,3,SA

REPLACE TEMP3 WITH TRIM(CT) I " ";
I ST I ". " I ZP

WRITE 16,3,TEMP3
LOCAL ANS N 3 0
WRITE 22,1," 	Number of Labels"
READ 22,22,ANS

WRITE 22,1,"
	

I t

WHILE (ANS > 0)
PRINT TEMPI
PRINT BLNK
PRINT TEMP2
PRINT SA
PRINT TEMP3

PRINT BLNK
REPLACE ANS WITH ANS — 1
WRITE 22,4," 	Cycles Left =",ANS

WRITE 22,4,"
ENDWHILE
MOVE
ENDWHILE
CLEAR
CLOSE ALL
SET RECNUM ON
SET HEADING ON
SET TALK ON
RETURN

I am not telling you how, or how fast I created a
CF to make you feel bad. I am doing it to demonstrate
that you should develop a logical procedure, and
maintain good programming habits. When you do not
understand something about a language, create a small CF
or program to test your ideas. Make your new test CF as
complete as possible as far as house keeping is
concerned. This will allow you to use your work as part
of another larger program when the idea has been fully
developed and you see it more clearly. Also, I had a
lot less trouble finding bugs in WHTST4 than I would
have in WHTST5 do to WHTST5's more complicated nature.

I have also noticed, as I get deeper into this,
that TI—Base is slow. It is not always slow, but the
more you ask it to do the slower it gets. This will not
deter me from using or recommending that others use
TI—Base, because what it can do outweighs this drawback.
As I write CFs I will attempt to keep this in mind and
attempt to minimize unneeded repetition. Let us take a
quick look at WHTST5 for some ideas on this matter. "I
would also like to add that some of this is theoretical
and that any speed difference may vary greatly depending
on your system."

We have two WHILE loops in WHTST5. The smaller
WHILE which runs from WHILE (ANS > 0) to the first
ENDWHILE (which is 10 lines down) is nested inside a
larger WHILE loop. The larger WHILE loop runs from
WHILE .NOT. (EDF) to the ENDWHILE directly following the
MOVE statement. The number of times the small loop will
run, and print out labels, is determined by your answer
to how many labels you want. The larger WHILE loop will
run until it reaches the E)nd 0)f F)ile (or data base)
that is in use at the time. "Here is the time saver."

Because the inner WHILE loop may run many times,
depending on the number of labels you request, I have
attempted to remove any non—essential code (program
lines) from this loop. You will notice that I loaded
all my variables (REPLACE TEMPI WITH), etc.,
before I got into this loop. Therefore, TI—Base did not
have to perform that task 100 times if I said I wanted
100 labels. There is one other consideration you must
make in this situation. In order to do this it was
necessary to create the variables TEMPI, TEMP2 and
TEMP3. You should not get carried away and use up all
of TI—Base's variable space. You must balance the idea
of speed with the lack of massive free memory space. In
this case we have enough memory space to do the job and
these variables will be thrown away and the space will
be freed up when this CF terminates with the RETURN
statement.

You will probably have your first real problem with
memory space when you run a CF which runs another CF
which in turn runs another CF. If each CF initializes
some variables of its own, by the time you get to the
last one the variable space will all be used up. I will
point this out again later when it comes up in the
natural scheme of things. We better move along to some
items with more immediate use potential.

On this page you will find INITPR which was a
selection from the menu of WHTST3. This CF is nothing
new and spectacular, but I find it useful. It is the
same as WHTST3, but it has been modified to send printer
control codes. I think I have covered the ideas in
INITPR previously. I would like to point out (??). If
this CF is run from WHTST3 as selection 2 you must not
re—use the (?) as a variable. If you do use the same
name here and you change the value of ?, you may cause
unexpected things to happen when TI—Base returns to
WHTST3 and carries ? with it. Also, if you wish to use
INITPR as a stand alone CF, you may want to turn the

October 1989 	TIsHUG NEWS DIGEST 	Page 10)

RECNUM and stuff back on at the end of the CF.
SET TALK OFF
SET HEADING OFF
SET RECNUM OFF

09/12/88
* Command File INITPR
* Save as INITPR/C

CLOSE ALL
LOCAL ?? N 2 0
LOCAL SEL N 2 0
LOCAL CNTRL C 2

REPLACE ?? WITH 0
WHILE .NOT. (??)
CLEAR
WRITE 1,6,"** Send Printer Controls **"
WRITE 2,9,"** Make a selection **"
WRITE 4,10,"> 0 < Leave this CF"
WRITE 6,10,"> 1 < Emphasized on"
WRITE 8,10',"> 2 < Italics on"
WRITE 10,10,"> 3 < Condensed on"
WRITE 12,10,"> 4 < Doublestrike"
WRITE 14,10,"> 5 < RESET Printer"
WRITE 22,4,"Enter 0-5"
READ 22,15,SEL
WRITE 22,3,"
	

t I

DOCASE
CASE SEL = 0
CLOSE ALL
CLEAR

WRITE 18,12,"Do Not Turn Your"
WRITE 20,12," Printer Off."
REPLACE ?? WITH 1

BREAK
CASE SEL = 1
REPLACE CNTRL WITH "<27>E"
PRINT CNTRL

BREAK
CASE SEL = 2
REPLACE CNTRL WITH "<27>4"
PRINT CNTRL

BREAK
CASE SEL = 3
REPLACE CNTRL WITH "<15> "
PRINT CNTRL

BREAK
CASE SEL = 4
REPLACE CNTRL WITH "<27>G"
PRINT CNTRL

BREAK
CASE SEL = 5
REPLACE CNTRL WITH "<27>@"
PRINT CNTRL

BREAK
ENDCASE

ENDWHILE
CLEAR

RETURN

INITPR is merely another demonstration of what you
can do with DOCASE and WHILE statements. Many of the
ideas I have presented in my tutorials can be done in
other ways. 	Some of the other ways may turn out to be
more efficient or more convenient to use. 	I still
consider myself to be a beginner at TI—Base so I
anticipate changing my ideas on how to optimize program
power and minimize program run time. As I stated in the
last tutorial, I would appreciate letters or notes from
TI—Base users with comments, tips or questions on this
subject. I do not have the time to write back to you.
In many cases I find myself rushing to the last minute
before the newsletter deadline to finish the months
tutorial.

100 ***** TIB—>DV/80 ***********
110 	(C) 1988 Martin A. Smoley
120
130 Extended BASIC program to read TI—Base I/F40 files
140 and write D/V80 files for TI—Writer or FunnelWeb.
150
160 You must add one blank space to the beginning
170 of every line in the TI—Base I/F40 file.
180 After transfer, check all lines for any
190 missing characters, especially the end.
200 .

210 CALL CLEAR :: CALL SCREEN(6)
220 PRINT " Enter INPUT File ALL CAPS"
230 PRINT " Example: DSK1.0PERATOR/C"
240 INPUT " 	":IN$
250 IF LEN(IN$)>12 THEN OUT$=SEGJ,1,12)&"*DV"
260 IF LEN(IN$)<13 THEN OUT$=INS&"*DV"
270 PRINT "OUT File= ";OUT$:: PRINT
280 INPUT " Is that OK Y/N ":ANS$
290 IF ANS$="N" OR ANS$="n" THEN 210
300 OPEN #1:IN$,INTERNAL,FIXED 40,INPUT 	LN=40
309 ! OPEN #1:IN$,DISPLAY ,VARIABLE 80,INPUT 	LN=80
310 OPEN #2:OUT$,DISPLAY ,VARIABLE 80,OUTPUT
320 IF EOF(1)THEN CLOSE #1 :: CLOSE #2 :: GOTO 480
330 !
340 INPUT #1:A$
350 PRINT A$
360 FOR I=1 TO LN
370 T$=SEG$(A$,I,1)
380 ON ERROR 440
390 IF ASC(T$)>126 THEN T$=" "
400 IF ASC(T$)<32 THEN T$=" "
410 B$=P$
420 IF I<1 THEN P$=T$ ELSE P$=B$&T$
430 NEXT I
440 PRINT #2:P$
450 P$=""
460 !
470 GOTO 320
480 CALL CLEAR :: PRINT " *** FINISHED ***" 	
490 INPUT " Quit Program Y/N ":QT$
500 IF QT$="Y" OR QT$="y" THEN STOP ELSE GOTO 210
510 ! ***** TIB—>DV/80 **********
520 END

I have also been recommending the use of FunnelWeb
in the non—word wrap mode. I have had some problems
with this procedure. I figured if I was ha\,ing a
problem, someone else must be having the same problem.
The problem is hidden characters in the CF. In most
cases I am in a hurry to produce code (write programs or
CFs). Many times I jump into.the wrong editor mode and
start typing. In many instances this will not be a
problem. In FunnelWeb pressing CTR140.] will throw you
into non word wrap mode, which is the same as the
Assembler Editor. However, if you hit the CTRL key and
some other key at the same time while you are still in
word wrap mode, you can insert characters which are
invisible on the screen but do crazy things when the CF
is run. At one point I wasted more precious time than I
could afford trylng to find one of these invisible
little land mines. I remembered a little Extended BASIC
program I had written for another task several weeks
earlier. At that time I wanted to convert several
Command Files (CFs) to DV/80 files so I could print them
out and study them more carefully. The program I wrote
was TIB—>DV/80 which is listed on this page. I think
some of you may get some use out of it. As is is now,
it will read an I/F40 file (like a CF), and write it to
a D/V80 file for FunnelWeb. There is one thing you must
do first. A control code in CFs causes the loss of the
first character in every line. You can overcome this by
loading the CF into TI—Base using MODIFY COMMAND
(filename). 	Pressing FCTNr2] for insert mode, which
stays on until you press FCTN(.2) again. 	Then add one
blank space to the beginning of every line. When you
run my program the blank space will be lost instead of
something you need. If you want to run the program on a
DV/80 file, remove the exclamation point from line 309
and place one in front of line 300. Adding the space is
only necessary with D/F40 files, not D/V80. The program
will check every character in the file and will kick out
all characters below 32 or above 126. That includes
those invisible land mines in your CF. Unfortunately
you will have to replace any printer controls.

Well, I am running out of space and my mind is
shot, so I would like to say a couple more things and
this one is finished. First I would like to thank the
people of the NorthCoast 99'ers for allowing me the
space in their newsletter to write this tutorial, and a
lot of miscellaneous articles in the past. The
NorthCoast members are a great group of people. I would
like to throw in the fact that any TI99/4A owner in the
continental US can join the NorthCoast 99'ers for only

continued on page 2

(Page 11 	 TIsHUG NEWS DIGEST 	October 198

rammin op c99
part 3 by Craig Sheehan

Sub-programs are the most important element of 'C'
that needs to be learnt. They make program writing
easier and quicker since sections of a program are
broken down into smaller and easier to manage sections.
In addition, once a subprogram has been compiled, there
is no need to re-compile it; the sub-programs required
to run a program are simply loaded along with the main
program. It is possible to build up a library of
sub-programs so that commonly used functions need not be
written every time you begin a new program.

Already we have seen one example of a sub-program,
the PRINTF command. PRINTF is not part of the 'C'
language. Indeed, 'C' does not have a print statement
at all! It is up to the programmer to supply their own
sub-program to carry out this task. Fortunately,
somebody else has already written one, eliminating the
need to write one each time you start a program. Other
examples of sub-programs that are on the Ic991 disk
include the file handling and graphics libraries.

As an example of a typical sub-program, Figure 6a
contains twb sub-programs that find the minimum and
maximum values from a set a three integers. Figure 6b
contains a sample program that makes use of these
sub-programs .

/* Sub-programs to find minimum and maximum values */
/* from a list of three integers. 	 */
/* 	 */
/* MIN: returns the value of the smallest number 	*/
/* 	in the list. 	 */
/* MAX: returns the largest number in the list. 	*/
/* 	 */
/* Source: TND. October, 1989. 	 */

entry min, max;

min(a, b, c)
int a, b, c;

(int minab;
minab = ((a < b) ? a : b);
return((minab < c) ? minab : c);

max(a, b, c)
int a, b, c;

(int maxab;
maxab = ((a > b) ? a : b);
return((maxab > c) ? maxab : c);

Figure 6a - The ordering sub-programs.

/* Program to find the maximum and minimum values
/* from the list 1, 7 and 3.

extern printf();
extern min();
extern max();

main()
(printf("Maximum: %d\n", max(1, 7, 3));
printf("Minimum: %d\n", min(1, 7, 3));
exit(0);

Figure 6b - A sample program using 'max' and 'min'.

Before describing how these programs operate, first
a note on how to compile and run them. First type in
Figures 6a and 6b separately, saving to different
filenames, MIN MAX/C and ORDER/C, say. Then compile
each one with the 'c99' compiler, using output filenames
MIN MAX/S and ORDER/S for example. Finally, assemble
these files to produce object files MIN MAX/0 and
ORDER/0 respectively. To run the program after carrying
out this process, from the load and run option of the

loaders, use the filenames: DSK1.CSUP, DSK1.PRINTF,
DSK1.MIN MAX/0 and DSK1.0RDER/0. Press enter and then
type in START as the program name. If you have carried
the procedure out correctly, the numbers 7 and 1 should
appear next the words "Maximum" and "Minimum"
respectively.

We will now turn to a description of the program.
Notice that the program has been deliberately broken
into two distinct parts and is even compiled as separate
parts. This done for a good reason, although it may not
be apparent from a simple example like this one. The
reason is as follows: next time you require to find the
maximum or minimum of a list of three numbers in one of
your programs, there is no need to write or copy a
function to do this task. Simply load in the file
containing these sub-programs when you load the main
program and they will be available for use. As you
program, it will become natural to do this as many
sub-programs are commonly used in almost all programs.

The first few lines of the program in Figure 6a
contains comments on what the program does, and its
source. Do not underestimate the importance of this.
Whilst it does not affect the running of the program,
they make it clear in plain english what the sub-program
does. More complex sub-programs should also contain
some notes on the algorithm used. This makes debugging
easier, especially for a third party. The source is
included in case more information concerning the routine
than is provided in the comment is required. Make this-
a habit!

The next program 	line contains an 	"entry"
statement. This tells the compiler that the
sub-programs that follow the "entry" are to be made
available to outside routines. In this way the main
program can access the sub-programs "min" and "max". It
should be noted that "entry" is not part of standard
'C', and should be removed if you wish to compile these
sub-programs on a computer other than a TI99/4A.

Each sub-program is defined by placing its name,
followed by the list of parameters that are required in
parentheses. Parameters are values that are passed to
the sub-program in order for it to carry out its job.
In this case the parameters are three integers, which
will be referred to by the names lat, lb' and lc' inside
the sub-program. If no parameters are required, such as
in "main", nothing is placed between the parentheses.
Each parameter's type is defined immediately after this
in the same manner as an ordinary variable declaration.
In Figure 6a, this tells the compiler that each of the
parameters is an integer.

The way in which the maximum and minimum number is
determined involves a new command, which is buried
within brackets and so may seem a little confusing at
first. Consider the "min" sub-program. The statement:

minab = ((a < b) ? a : b)
is evaluated 	by 	setting minab to the value of
(a < b) ? a : b. First (a < b) is tested. If the value
of this expression is non-zero (i.e it is true), then
'a' is value of the statement. If the condition is
false, then 'b' is returned. Assuming 'a' is smaller
than 'b', then the entire expression becomes:

minab = (a)
which simply is equivalent to setting 'minab' to 'a'.
The trick to understanding this statement is that the
innermost brackets are calculated first.

The "return" statement sends an integer back to the
main program. As an example, "return 1" would return
the value 1 in place of the call to the sub-program. In
the case of "min", the brackets are calculated first,
which in similar way to 'minabi, finds the smaller of
'minab' and 'c', and hence the smallest value of the
entire set.

A final point to note is the "extern" statements in
Figure 6b. Since the sub-programs are compiled
separately te) the main program, the compiler has no way
of knowing that "min", "max" and even "printf" are to be

continued on page 34

.3 OIT
CIP

(October 1989 	TIsHUG NEWS DIGEST 	Page 12)

firorri the Tigenub #35
by Jim Peterson, Tigercub Software, USA

Copyright 1986
156 Collingwood Ave., Columbus, OH 43213

Distributed by Tigercub.Software to TI99/4A Users
Groups for promotional purposes and in exchange for
their newsletters. May be reprinted by non—profit users
groups, with credit to Tigercub Software.

Over 130 original programs in BASIC and Extended
BASIC, available on cassette or disk, only $3 each plus
$1.50 per order for packing and mailing. Entertainment,
education, programmer's utilities.

Descriptive catalog $1, deductable from your first
order.

Tips from The Tigercub, a full disk containing the
complete contents of this newsletter numbers 1 through
14, 50 original programs and files, just $15 postpaid.

'Tips from the Tigercub volume 2, another disk full,
complete contents of numbers 15 through 24, over 60
files and programs, also just $15 postpaid. Or, both
for $27 postpaid.

Nuts & Bolts (No. 1), a full disk of 100 Extended
BASIC utility subprograms in merge format, ready to
merge into your own programs. Plus the Tigercub
Menuloader, a tutorial on using subprograms, and 5 pages
of documentation with an example of the use of each
subprogram. All for just $19.95 postpaid.

Nuts & Bolts No. 2, another full disk of 108
utility subprograms in merge format, all new and fully
compatible with the last, and with 10 pages of
documentation and examples. Also $19.95 postpaid, or
both Nuts & Bolts disks for $37 postpaid.

Tigercub Full Disk Collections, just $12 postpaid!
Each of these contains either 5 or 6 of my regular $3
catalog programs, and the remaining disk space has been
filled with some of the best public domain programs of
the same category. I am NOT selling public domain
programs — my own programs on these disks are greatly
discounted from their usual price, and the public domain
is a FREE bonus!

TIGERCUB'S BEST 	 PROGRAMMING TUTOR
PROGRAMMER'S UTILITIES BRAIN GAMES BRAIN TEASERS
BRAIN BUSTERS! MANEUVERING GAMES 	ACTION GAMES
REFLEX AND CONCENTRATION 	TWO—PLAYER GAMES
KID'S GAMES MORE GAMES WORD GAMES ELEMENTARY MATE
MIDDLE/HIGH SCHOOL MATH 	VOCABULARY AND READING
MUSICAL EDUCATION 	KALEIDOSCOPES AND DISPLAYS

For descriptions of these send a dollar for my
catalog!

The April MICROpendium had a rather slow routine to
count the number of words in a D/V text file. I think
-the following will be much faster. It ignores any lines
beginning with a period (TI—Writer formatter commands),
otherwise counts each cluster of characters followed by
a space, plus the last cluster on the line.

10 !WORDCOUNT by Jim Peterson
100 DISPLAY AT(12,1)ERASE ALL:"INPUT FILENAME? DSK"

ACCEPT AT(12,20):F$:: OPEN #1:"DSK"&F$,INPUT
110 A=1 :: LINPUT #1:M$:: IF ASC(M$)=46 THEN 130
120 X=POS(M$," ",A):: IF X=0 THEN 130 :: IF X=A THEN

A=X+1 	GOTO 120 ELSE F=1 :: C=C+1 	A=X+1 	GOTO
120

130 C=C+F 	F=0 :: IF EOF(1)<>1 THEN 110 :: CLOSE #1 	::
DISPLAY AT(12,1)ERASE ALL:"APPROXIMATELY "&STR$(C)&"
WORDS"

Have you tried those black write—protect tabs, made
of a material similar to electrical tape? They do not
become dog—eared from bumping against the drive slot,
and do not leave the disk sticky when you remove them.

100 !TIGERCUB GRAPHPRINT by Jim Peterson
110 !Will output to printer a line graph of 31 items of

data, as for instance the temperature for each day
of a month

120 !Values must be positive integers within a range of
75 from minimum to maximum'

130 M$=RPT$.("*.2,65):: DIM T$(31),D$(75):: MN=10000
140 DISPLAY AT(12,1)ERASE ALL:"Input data — maximum

31":"items. Enter to finish"
150 FOR X=1 TO 31 :: DISPLAY AT(14,1):X;TAB(4);CHR$(1)::

ACCEPT AT(14,4)VALIDATE(DIGIT)SIZE(-5)BEEP:T$(X):: -
IF T$(X)=CHR$(1)THEN X=X-1 GOTO 170

160 T=VAL(TUX)):: MX=MAX(MX,T):: MN=MIN(MN,T):: NEXT X
170 RN=MX—MN 	IF RN>75 THEN PRINT "EXCEEDS MAXIMUM

RANGE OF 75" :: STOP
180 IF MX>75 THEN AD=MX-75
190 OPEN #1:"PIO",VARIABLE 132 ::

PRINT #1:CHR$(15);CHR$(27);CHR$(51);CHR$(12)::
PRINT #1:RPT$("2,132)

200 DISPLAY AT(12,1)ERASE ALL:"Wait, please...":
.” 	this takes time"

210 LM=LEN(STR$(MX)):: FOR J=1 TO 75 :: J$=STR$(76+AD—J)
220 IF J>66+AD THEN J$=J$&" "
230 IF J/2=INT(J/2)THEN D$(J)=RPT$(" ",LMA

SEG$(M$,1,132—LM) ELSE D$0)=J$&SEG01,1,132—LM)
240 NEXT J :: PRINT #1:RPT$(" ",LMASEG$(M$,1,132—LM)
250 J=1 :: T=VAL(T$0))—AD T=76—T

W(T)=SEG$04(T),1,J*4+4)&CHR$(239)&
SEG$(DUT),J*4+6,255):: J=J+1

260 T2=T 	T=VAL(T$(J))—AD 	T=76—T :: FOR N=T2 TO T
STEP (T2>T)+ABS(T>=T2):: D$(N)=SEG$(D$(N),1,J*4+2)&
CHR$(253+(T<T2))&SEGUD$(N),J*4+4,255):: NEXT N

270 J=J+1 	DUT)=SEG$04(T),1,J*4)&CHR$(239)&
SEG$(DUT),J*4+2,255):: IF J<=X THEN 260

280 FOR J=1 TO 75 :: PRINT #1:D$(J):: NEXT J :: PRINT #1
290 T=8 :: FOR J=1 TO 31 :: PRINT #1:TAB(T);STR$0);::

T=T+4 :: NEXT J

'WlIen you are analyzing an Extended BASIC program,
or modifying it, it is often easier to work with single
statement lines. This program will break all
multi—statement 	lines into single statement lines,
except when they are followed by IF or ELSE. 	When you
are finished modifying, a Compactor or Smash program can
be used to compact it again.

100 !DECOMPACTER by Jim Peterson
110 DISPLAY AT(3,5)ERASE ALL:"TIGERCUB DECOMPACTER": :"

Program must first be —": :"RES 100,100": :"SAVE
DSK(filename),MERGE"

120 DISPLAY AT(12,1):"INPUT FILENAME?":"DSK"
ACCEPT AT(13,4):1F$

130 DISPLAY AT(12,1)ERASE ALL:"OUTPUT FILENAME?":"DSK"
:: ACCEPT AT(13,4):0F$

140 OPEN #1:"DSK"&IF$,INPUT,VARIABLE 163 :: OPEN #2:
"DSK"&OF$,OUTPUT,VARIABLE 163 :: LN=100

150 LINPUT #1:M$ 	P=POS(M$,CHR$(130),3):: IF P=0 THEN
PRINT #2:M$ 	GOTO 270

160 A$=SEG$(10,1,P-1):: IF POS(A$,CHR$(129),1)<>0 OR
POS(A$,CHR$(132),1)<>0 THEN PRINT #2:M$ 	GOTO 270

170 PRINT #2:AOCHR$(0)
180 AN=LN+1 	GOSUB 280
190 M$=SEG$(M$,P+1,255)
200 P=POS(M$,CHR$(130),1)
210 IF P=0 THEN PRINT #2:LN$&M$ 	GOTO 270
220 A$=SEG$(M$,1,P-1)
230 IF POS(A$,CHR$(129),1)<>0 OR POS(A$,CHR$(132),1)00

THEN PRINT #2:LN$&M$ 	GOTO 270
240 PRINT #2:LNOAOCHR$(0)
250 AN=AN+1 	GOSUB 280
260 GOTO 190
270 LN=LN+100 :: IF EOF(1)<>1 THEN 150 ELSE CLOSE #1 ::

CLOSE #2 :: END
280 LN$=CHRUINT(AN/256))&CHR$(AN-256*INT(AN/256))::

RETURN

I still think of the TI99/4A as a home computer,
and I still think that the home computer is an
invaluable educational tool, but I guess not many folks
agree with me. I had thought of writing full disks of a
progressive series of lessons on one subject, but my
present two full disks of math education have sold a
combined total of 7 copies in 7 months, so that would
obviously be a waste of time.

I had written this next program for that purpose
and I guess it is no use wasting it, so —

100 CALL CLEAR :: CALL TITLE(5,"TAKE AWAY")1by Jim
Peterson

Page 13
	

TIsHUG NEWS DIGEST 	October 1989

110 DISPLAY AT(3,10):"COPYRIGHT":TAB(10);"TIGERCUB
SOFTWARE":TAB(10);"FOR FREE":TAB(12);"
DISTRIBUTION":TAB(11);"SALE PROHIBITED"

120 CALL PEEK(-28672,0):: IF A(9)=0 THEN 150
130 DATA FINE,NO,GOOD,UHOH,RIGHT,TRY AGAIN,YES,THAT IS

NOT RIGHT
140 FOR J=1 TO 4 :: READ R1GHT$(J),WRONG$(J):: NEXT J
150 FOR D=1 TO 1000 :: NEXT D :: CALL DELSPRITE(ALL)
160 CALL CLEAR :: CALL CHAR(95,"FFFF"):: CALL MAGNIFY(2)

:: RANDOMIZE :: CALL SCREEN(14):: FOR SET=5 TO 8 ::
CALL COLOR(SET,16,1):: NEXT SET

170 CALL CHAR(120,"E70042001E007E0000E700420099423CE
700420099423C00E7004218003C4200")

180 CALL CHAR(124,"0E000401000708007000208000E01000")
190 DISPLAY AT(3,10):"TAKE AWAY" :: CALL CHAMELEON
200 CALL COLOR(14,2,2):: CALL HCHAR(4,4,143,2)::

CALL HCHAR(5,4,143,2)::
CALL SPRITE(#25,120,11,25,25)

210 T=T+1 	N=1—(T>5)—(T>15):: G=10—(T>5)*80—(T>15)*810
H=0—(T>5)*10—(T>15)*90

220 X=INT(G*RND+H):: Y=INT(G*RND+H):: IF Y>X THEN TT=X
X=Y 	Y=TT

230 IF X=X2 OR Y=Y2 THEN 220 :: X2=X 	Y2=Y 	Z=X—Y
240 GOSUB 250 :: GOTO 210
250 GOSUB 260 :: GOSUB 280 :: GOSUB 310 :: FOR D=1 TO

200 :: NEXT D :: CALL DELSPRITE(ALL)::
DISPLAY AT(18,1):: CALL CHAMELEON ::
CALL SPRITE(#25,120,11,25,25):: RETURN

260 FOR J=1 TO LEN(STR$(X))::
A(J)=VAL(SEG$(STR$(X),J,1)):: NEXT J :: FOR J=1 TO
LEN(STR$(Y)):: B(J)=VAL(SEG$(STR$(Y),J,1)):: NEXT J

270 FOR J=1 TO LEN(STR$(Z))::
C(J)=VAL(SEC$(STR$(Z),J,1)):: NEXT J
W=LEN(STRS(Z))—LEN(STR$(X)):: RETURN

280 R=96 	CC=96 :: FOR J=1 TO N :: CALL
SPRITEW,48+A(J),11,R,CC):: CC=CC+16 :: NEXT J

290 R=116 	CC=96 :: FOR J=1 TO N
CALL SPRITE(#4+J,48+B(J),11,R,CC):: CC=CC+16 :: NEXT

300 CALL HGHAR(18,12,95,N*3) 	CC=CC-16 :: RETURN
310 R=140 :: FOR J=LEN(STR$(Z))TO 1 STEP —1 ::

IF LEN(STR$(X))=1 THEN M=CC 	GOTO 330
320 FOR M=CC TO CC+8

CALL LOCATEW—W,96,M,#J+4—W,116,M):: NEXT M
330 IF A(J—W)>=B(J—W)THEN 360 ::

CALL SPRITE(#28,49,16,96,M-9)
340 IF F3=1 THEN 360 :: F1=1 :: A(J—W-1)=A(J—W-1)-1

IF A(J—W-1)<0 THEN A(J—W-1)=9 :: F2=1 ::
A(J—W-2)=A(J—W-2)-1

350 CALL SPRITE(#22,48+A(J—W-1),16,80,M-24):: IF F2=1
THEN CALL SPRITE(#21,48+A(J—W-2),16,80,M-40)

360 CALL SPRITE(#27,45,16,116,M-12)
370 CALL SPRITE(#20,63,11,R,M)
380 CALL KEY(3,K,ST):: IF ST6 OR K<48 OR K>57 THEN

CALL PATTERN(#20,32):: CALL PATTERN(#20,63):: GOTO
380

390 CALL DELSPRITE(#20,#28)::
CALL SPRITE(#12+J,K,11,R,M)

400 IF K-480C(J)THEN GOSUB 450 :: CALL DELSPRITE(#12+J)
:: F3=1 :: GOTO 330

410 CALL DELSPRITE(#27):: IF F1=1 THEN 420 ELSE IF F2=1
THEN 430 ELSE 440

420 F1=0 :: CALL DELSPRITE(#J—W-1):: FOR P=80 TO 96 ::
CALL LOCATE(#22,P,M-24):: NEXT P
CALL SPRITEW—W-1,48+A(J—W-1),16,96,M-24)::
CALL DELSPRITE(#22):: GOTO 440

430 F2=0 :: CALL DELSPRITEW-1—W):: FOR P=80 TO 96 ::
CALL LOCATE(#21,P,M-24):: NEXT P
CALL SPRITEW-1—W,48+A(J-1—W),16,96,M-24)::
CALL DELSPRITE(#21)

440 CC=CC-16 :: NEXT J 	GOSUB 480 :: F3=0 :: RETURN
450 DATA 123,124,125,123,124,125,123,120
460 IF A@=0 THEN 470 :: CALL SAY(WRONG$(INT(RND*4+1)))
470 RESTORE 450 :: FOR JJ=1 TO 8 :: READ P

CALL PATTERN(#25,P):: XX=2"250 :: NEXT JJ :: RETURN
480 DATA 121,122,121,122,121,122
490 IF A@=0 THEN 500 :: CALL SAY(RIGHT$(INT(4*RND+1)))
500 RESTORE 480 :: FOR JJ=1 TO 6 :: READ P

CALL PATTERN(#25,P):: XX=2"250 :: NEXT JJ :: RETURN
510 SUB CHAMELEON
520 M$="1800665AC342D8667E188100995AC3A5E781428D24DB

660081429924007E5AC3A53C24180OFFDB5AFF7EFF00991881
00660018"

530 RANDOMIZE ::
CALL CHAR(128,SEG$(M$,INT(43*RND+1)*2-1,16))::
X=INT(14*RND+3)

540 Y=INT(14*RND+3):: IF Y=X THEN 540 ::
CALL COLOR(13,X,Y)

550 CALL HCHAR(1,2,128,30):: CALL HCHAR(24,2,128,30)::
CALL VCHAR(1,31,128,96):: SUBEND

560 SUB TITLE(S,T$)
570 CALL SCREEN(S):: L=LEN(T$):: CALL MAGNIFY(2)
580 FOR J=1 TO L :: CALL SPRITE(#J,ASC(SEG$(T$,J,1)),

J+1-0+1=S)+0+1=S+13)+0>14)*13,J*(170/L),
10+J*(200/L)):: NEXT J

590 SUBEND

When you give your printer 	instructions, 	it
remembers them until you turn it off. That is why you
may find that your letter to Aunt Sally is being printed
in double width underlined italics. The solution is
found in another gobbledegook paragraph in the Gemini
manual; "when (ESC "@") is sent to the printer, the
conditions of the printer are initialized."

In plain 	English, 	OPEN #1:"PIO" 	:: 	PRINT
#1:CHR$(27);"@" in your program or CTRLL11], FCTN(RJ,
CTRLLUj, SHIFT[2j at the beginning of your TI—Writer
text will cancel out any special orders the printer is
still remembering and return it to its default
conditions.

Here is a bright idea by Scott King in the AVTI UG
newsletter. When you load a program in order to modify
it, put a reminder of its filename in the first line,
such as 1 ! SAVE DSK1.NAME . Then, when you are ready
to save it, just list line 1, FCTN(81, use the space bar
to erase the 1 !, and <ENTER>.

Memory Full! 	Jim Peterson 	 0

confinuedampage26

The easiest way would be to.edit the existing DM5 files,
and give these different file names (of course in the
source code as well). This disk would then become the
hospital disk. 	One could use this in an emergency
situation to boot up DM5. 	Another possibility is to
prepare a savable program which would redirect the
program flow to another path. In an emergency, one
could load this program into the memory, and save it to
the DSK1 sub—directory of the hard disk, naming it MDM5.
This would then over—write the corrupted file.

The long term solution is to modify and augment DM5
by extensive error trapping routines. If the pathway or
a program file is not kosher, then a response by the
user to an appropriate prompt, could redirect the
program flow to an alternate path.

4. A few more lines on the previously published subject
of backup.

30238 sectors of my hard disk are filled with data
at present. This is about 7.75 Mbyte. Using the Myarc
backup option would require approximately 45 diskettes.
The same may be backed up, using manual file by file
copying, on 22 DSDD disks. Archiving reduced the
required space by approximately 50%, thus 11 DSDD
diskettes were needed. The same is saved on 6 diskettes
of 80 track, 720k capacity. This is better than 1/7
space utilization! The incredible saving was achieved
by using the already supported 80 track option and
available software. The moral: the backup routine of
DM5 combined with the maximum disk density option and
archiving would rationalize the backup routine. Each of
the essential building blocks are already available,
however, someone has to put it together.

To sum up, the present versions of DM5, sadly lacks
error trapping as well as quad density support. DM5 is
fair weather software only. Some of the features
mentioned in the manual ate not supported. Hard disk
has advanced the old TI99/4A by light years, hard disk
users would be well prepared to spend more on improved
disk manager software if such softWare is clearly
superior to that presently available.

(October 1989 	TIsHUG NEWS DIGEST 	Page 1

Mtatuuttqll IBMIC 3nab-yrou AI 11131

by Stephen Shaw, England

Long before Acorn put sub-program capability into
the BBC-Micro, and told anyone who would listen that it
was the first BASIC with that capability, TI gave us
this in EXTENDED BASIC. Not many users take advantage
but here are some ideas for you to consider.

We are talking about the ability to write a program
in such a way that you CALL up your own sub-programs, so
that at the extreme a program could be:
CALL SETUP
CALL INSTRUCT
CALL PLAY
CALL HIGHSCORES

Get the idea? You are well used to using CALLs as
you use them all the time even in TI BASIC, such as CALL
CLEAR, CALL HCHAR, and so on! In Extended BASIC you can
write your own.

For a very large selection you can do worse than
buy copies of Jim Peterson's NUTS & BOLTS disks, but in
the meantime here is an excellent selection of routines
for you from our member Peter Hutchison. Many thanks
Peter.

If you have a disk system, save each of these on
disk in MERGE format and then just merge them into any
program you wish to use them in.

CALL PUTAT:
This command uses the whole screen (32x24) rather
than the limited 28x24 used by DISPLAY AT.

CALL SAVECHAR / CALL LOADCHAR:
These commands will save the definitions of the
characters 96 to 127 into an array PAT$ and then use
the array to restore the definitions.

Examples: 	 CALL SAVECHAR(PATM)
	

and
CALL LOADCHAR(PAT$())

Code:

27220 SUB SAVECHAR(PAT$())
27230 FOR C=96 TO 124 STEP 4 :: EL=C/4-23 :: CALL

CHARPAT(C,P$(EL)) :: NEXT C
27240 SUBEND
27250 SUB LOADCHAR(PAT$())
27260 FOR C=96 TO 124 STEP 4 :: EL-C/4-23 :: CALL

CHAR(C,P$(EL)) :: NEXT C
27270 SUBEND

CALL HSCROLL:
This command can be used to scroll text along a line
on the screen.

Form: CALL HSCROLL(row, column, length displayed, text$)
Sample: CALL HSCROLL(5,9,10,TEXT$)
Note: Text$ is limited by the system and the code below

to a length of 240 characters !

Code:

27300 SUB HSCROLL(R,C,L,M$)
27310 M$ -" 	"&M$&" 	
27320 IF LEN(M$)<L THEN 27310
27330 FOR A=1 TO LEN(M$)-L+1
27340 DISPLAY AT(R,C)SIZE(L):SEG$(M$,A,L)
27350 FOR B=1 TO 15 :: NEXT B :: NEXT A
27360 SUBEND

Form: CALL PUTAT(row, column, string)
Sample: CALL PUTAT(5,1,"HELLO TI USERS EVERYWHERE")

Code:

CALL GET:
This command will return the character of
pressed, or a null if no key is pressed.

the key

27000 SUB PUTAT(R,C,T$) 27010 IF R<1 OR C<1 OR T$=""
THEN SUBEXIT

27020 R=MIN(R,24) :: P=1
27030 IF R>=24 AND C>32 THEN PRINT :: R=24 :: C=1
27040 IF C>32 THEN R=R+1 :: C=1
27050 CALL HCHAR(R,C,ASC(SEG$(T$,P,1)))
27060 IF P>=LEN(T$) THEN SUBEXIT
27070 C=C+1 	P=P+1 	GOTO 27030
27080 SUBEND

Form: CALL GET(KEY$)

Code:

27380 SUB GET(K$)
27390 CALL KEY(0,K,S)
27400 IF S=0 THEN K$="" ELSE K$=CHR$(K)
27410 SUBEND

CALL LOWCASE:
This command defines the TI99/4A small uppercase
letters as real lowercase letters.

Form: CALL LOWCASE.
Example: CALL LOWCASE

Code:

27100 SUB LOWCASE
27110 RESTORE 27120
27120 DATA 00000E020E120D0010101E1111111E0000000F10

10100F0001010F1111110F00
27130 DATA 00000E111E100E000609081C0808080000000E11

110E010E10101E1111111100
27140 DATA 040000040404040E0200020202020A0410101214

181412000004040404040600
27150 DATA 00001A1515151100000016090909090000000E11

11110E0000001E11111E1010
27160 DATA 00000E11110E0101000016191010100000000E10

0E011E0008081E0808090600
27170 DATA 0000121212120D00000011110A0A040000001111

15150A000000110A040A1100
27180 DATA 00001111110E011E00001E0204081E0000000000

000000000000000000000000
27190 FOR C=97 TO 121 STEP 4 :: READ P$:: CALL

CHAR(C,P$) :: NEXT C
27200 SUBEND

CALL MOVE:
Moving sprites with CALL MOTION and using CALL COINC
can sometimes be a trifle imprecise. Here is an
alternative approach! The command should be nested
in a loop if smooth motion between positions is
required.

Form: CALL MOVE(sprite, updown, leftright)
Sample: CALL MOVE(1,0,2)

Code:

27440 SUB MOVE(S,R,C)
27450 IF S<1 OR S>28 THEN SUBEXIT
27460 CALL POSITION(#S,RW,CL) 	NR=RW+R 	NC=CL+C
27470 NR=MIN(NR,256) 	NR=MAX(NR,1)
27480 NC=MIN(NC,256) 	NC=MAX(NC,1)
27490 CALL LOCATE(#S,NR,NC)
27500 SUBEND

CALL REPLACE:
This command replaces a part of a string with
another.
Start is the position in the string to be changed
where the new TEXT$ is to be inserted and LENGTH is
the number of characters to be replaced (eg
removed):

continued on page 8

(Page 15 TIsHUG NEWS DIGEST 	October 1989

Gt.r.nt ttr

New words may be formed by: V\

by Chris Lang, MD USA

The WIT series contains 5 Educational word games
which are Fairware. The author is:

Chris Lang,
1906 Jackson Rd,
Baltimore. MD. 21222 USA
The author's requested donation is $10 for User

Group members and $15 for non—user group members.

Instructions

Object of the Game:

To be the player with the highest score when the
game ends. From one to four players may play.

Equipment Required

1 floppy disk or cassette tape containing The Game of
Wit program (included)

1 instruction booklet (included)
1 TI99/4A computer console (not included)
1 colour monitor (or 1 RF modulator and a colour TV set)

(not included)
1 Exceltec (or TI) Extended BASIC command module (not

included)
1 disk drive (for disk version only) (not included)
1 disk controller card (for disk version only) (not

included)
1 32K memory expansion card (for cassette version with

disk system attached and turned on; also for disk
version) (not included)

1 peripheral expansion box with peripheral expansion
card (for disk version only) (not included)

1 cassette recorder with interface cables (cassette
version only) (not included)

Note: For disk version only, separate units can be
used in lieu of the peripheral expansion box and all
cards listed above.

Preparation:

Connect all equipment (not included with this
package) as shown in each equipment's respective
instruction manuals and insure that the equipment is
working properly. Read and study this entire
instruction booklet carefully before proceeding to play
the game.

Game Description:

Each player, in turn, forms interlocking words, as
in a crossword puzzle, on the playing grid using letters
with various point values and placing them on the grid
in locations that take best advantage of letter values
and bonus squares to achieve the highest score by the
end of the game.

Play:

The first player combines two or more of the
letters in his holder to form a word and places them on
the grid to read either across or down with one letter
on the starting square. Diagonal words are not allowed.

A player's turn is completed after the computer
tallies his score for any word(s) formed and adds that
score to his score total. The computer will also
automatically replace the letters used from the player's
holder with letters selected at random from the letter
pool.

The second player, and then each in turn, adds one
or more letters to those already played so as to form
new words. All letters played in any one turn must be
placed in one straight line across or down the grid.
They must form one complete word and if, at the same
time, they touch letters in adjacent rows or columns,
they must also form complete words, crossword fashion,
with all such letters. The player gets full credit for
all words formed or modified by his play.

1. Adding one or more letters to a word or letters
already on the grid.

2. Placing a word at right angles to a word already on
the grid. The new word must use one of the letters
of the word already on the grid or must add a letter
to it.

3. Placing a complete word parallel to a word already
played so that adjoining letters also form complete
words.

Any words found in a standard dictionary are
permitted except those capitalized, those designated as
foreign words, abbreviations and words requiring
apostrophes or hyphens. Consult a dictionary only when
a word is challenged to check for spelling or usage.

Play continues until all letters in the letter pool
have been drawn and one of the players has used all of
the letters in his holder or until all letters in the
letter pool have been drawn and each of every player, in
succession, uses the pass option.

Examples of Play (two—player game):
1st player's letter holder:TAWRON

Letters used in turn: WORN 	 WORN

Points scored for forming: WORN

2nd player's letter holder: LLNABE
A

Letters used in turn: B A N
	

WORN

Points scored for forming: BARN

1st player's letter holder: TAMEST
A

Letters used in turn:TASTE
	

WORN

Points scored for forming: TASTE, BARNS
	

TASTE

2nd player's letter holder:LLORZE
A

Letters used in turn: 0 R
	

WORN
NOR

Points scored for forming: NOR, NOT, RE
	

TASTE

1st player's letter holder: DEMTIB
A

Letters used in turn:EDIT
	

WORN
NOR

Points scored for forming: EDIT, NOTE, RED
	

TASTE
EDIT

2nd player's letter holder:LLSKZE
	

B
A

Letters used in turn: S
	

SWORN
NOR

Points scored for forming: SWORN
	

TASTE
EDIT

Sequence of Statements

HOW MANY PLAYERS (1-4)?

Decide the amount of players (from one to four may
compete), the order in which each player will play, and
enter the total number.

PLAYER __: P=PASS; ENTER=PLAY

continued on page 19

(October 1989 	TIsHUG NEWS DIGEST 	Page 16)

lo --m********************
20 	'.'*** 	 ***
30 KhM*** 	KINGDOM ***
40 REM*** 	 ***
50 REm********************
60 GOSUB 110
70 GOSUB 310
80 GOSUB 520
90 GOSUB 1820
100 END
110 REM
120 REM***INSTRUCTIONS***
130 REM
140 GOSUB 270
150 PRINT "THIS IS A SIMULAT
ION OF THE COUNTRY OF SUMERI
A. YOU ARETHE SOVEREIGN RUL
ER, AND"
160 PRINT "YOUR REIGN WILL L
AST FOR TENYEARS."
170 PRINT
180 PRINT "THE DECISIONS YOU
MAKE WILL AFFECT HUNDREDS 0
F PEOPLE. YOUR DICTATORIAL
SKILLS WILL"
190 PRINT "BE RATED AT THE E
ND OF YOUR RULE."
200 PRINT
210 PRINT "YOU WILL BE ASKED
TO MAKE SEVERAL KEY DECIS
IONS EACH YEAR."
220 FOR I=1 TO 5
230 PRINT
240 NEXT I
250 INPUT "PRESS ENTER WHEN
READY TO CONTINUE: ":ANS$
260 RETURN
270 CALL CLEAR
280 PRINT TAB(8);"*** KINGDO
m ***”
290 PRINT
300 RETURN
310 REM
320 REM***SETUP***
330 REM
340 CALL CLEAR
350 RANDOMIZE
360 DIM NU$(11)
370 P=95
380 S=2800
390 H=3000
400 E=H-S
410 Y=3
420 A=H/Y
430 1=5
440 Q=1
450 D=0
460 Z=0
470 FOR X=1 TO 11
480 READ NUS(X)
490 NEXT X
500 DATA FIRST,SECOND,THIRD,
FOURTH,FIFTH,SIXTH,SEVENTH,E
IGHTH,NINTH,TENTH,ELEVENTH
510 RETURN
520 REM
530 REM***PLAY***
540 REM
550 GOSUB 270
560 FOR X=1 TO 3
570 PRINT
580 NEXT X
590 Z=Z+1
600 PRINT "HAMURABI, I BEG T
0 REPORT TOYOU:"
610 PRINT
620 PRINT "IN THE ";NU$(Z);"
YEAR,";D;"PEOPLE";

630 PRINT "STARVED;";I;"CAME
TO THE ";"CITY."
640 P=P+I
650 IF Q THEN 670
660 GOSUB 1380

670 PRINT
680 PRINT "THE POPULATION IS
";P;"AND"
690 PRINT "THE CITY OWNS";A;
"ACRES."
700 PRINT "YOU HARVESTED";Y;
"BUSHELS PER"
710 PRINT "ACRE. RATS ATE";E
;"BUSHELS."
720 PRINT "YOU HAVE";S;
730 PRINT "BUSHELS IN ";"RES
ERVE."
740 PRINT
750 PRINT
760 IF Z=11 THEN 1810
770 Y=INT(RND*10)+17
780 PRINT "LAND IS TRADING A
T";Y
790 PRINT "BUSHELS PER ACRE.
HOW MANY ACRES DO YOU WISH

TO BUY?"
800 INPUT Q
810 PRINT
820 IF Q<0 THEN 1460
830 IF Y*Q>S THEN 1490
840 IF Q>0 THEN 1520
850 INPUT "HOW MANY ACRES DO
YOU WISH TO SELL? ":Q
860 PRINT
870 IF Q<0 THEN 1560
880 IF Q=A THEN 1590
890 IF Q>A THEN 1610
900 A=A-Q
910 S=S+Y*Q
920 C=0
930 PRINT
940 PRINT "OF THE";S;"BUSHEL
S THAT"
950 INPUT "ARE LEFT, HOW MAN
Y DO YOU WISH TO FEED TO
YOUR PEOPLE? ":Q
960 PRINT
970 IF Q<1 THEN 1650
980 IF Q=S THEN 1670
990 IF Q>S THEN 1690
1000 S=S-Q
1010 PRINT
1020 PRINT "OF THE";A;"ACRES
YOU NOW"
1030 INPUT "OWN, HOW MANY DO
YOU WISH TOPLANT WITH SEED?
":D

1040 PRINT
1050 IF D<1 THEN 1720
1060 IF D>A THEN 1740
1070 IF D/2>S THEN 1760
1080 IF D>10*P THEN 1780
1090 S=S-INT(D/2)
1100 Y=INT(RND*5)+1
1110 H=D*Y
1120 E=0
1130 IF INT(Y/2)*2=Y THEN 13
60
1140 S=S-E+H
1150 I=INT(Y*(20*A+S)/P/100+
1)
1160 C=INT(Q/20)
1170 Q=INT(10*(2*RND-.3))
1180 IF P<C THEN 1250
1190 D=P-C
1200 IF D>.5*P THEN 1270
1210 P1=((Z-1)*Pl+D*100/P)/Z
1220 P=C
1230 D1=D1+D
1240 GOTO 550
1250 D=0
1260 GOTO 550
1270 GOSUB 270
1280 PRINT "YOU STARVED";D;"
PEOPLE IN"
1290 PRINT "ONE YEAR. YOU H
AVE DONE SUCH A MISERABLE
JOB THAT"

1300 PRINT "YOU HAVE BEEN OV
ERTHROWN ANDEXILED TO A DESE
RTED ISLAND."
1310 FOR I=1 TO 13
1320 PRINT
1330 NEXT I
1340 WL=5
1350 GOTO 1810
1360 E=INT(S/Y)
1370 GOTO 1140
1380 CALL CLEAR
1390 PRINT " A HORRIBLE PLA
GUE STRUCK!!"
1400 FOR 1=1 TO 5
1410 PRINT
1420 NEXT I
1430 PRINT "HALF OF YOUR PEO
PLE DIED...."
1440 P=INT(P/2)
1450 RETURN
1460 PRINT "HAMURABI, YOU CA
N'T DO THAT,TO SELL LAND, FI
RST BUY ZEROACRES."
1470 PRINT
1480 GOTO 780
1490 PRINT "HAMURABI, THINK
AGAIN!"
1500 PRINT
1510 GOTO 780
1520 A=A+Q
1530 S=S-Q*Y
1540 C=0
1550 GOTO 930
1560 PRINT "HAMURABI, YOU CA
N'T DO THAT.IF YOU DO NOT WI
SH TO SELL, THEN SELL ZERO A
CRES."
1570 PRINT
1580 GOTO 850
1590 PRINT "HAMURABI, YOU MU
ST KEEP AT LEAST ONE ACRE 0
F LAND!"
1600 GOTO 850
1610 PRINT "HAMURABI, YOU ON
LY OWN";A
1620 PRINT "ACRES."
1630 PRINT
1640 GOTO 850
1650 PRINT "HAMURABI, THE PE
OPLE WILL STARVE! YOU MUST
FEED THEM SOMETHING."
1660 GOTO 930
1670 PRINT "HAMURABI, YOU MU
ST KEEP AT LEAST ONE BUSHEL
TO PLANT."
1680 GOTO 930
1690 PRINT "HAMURABI, YOU ON
LY OWN";S
1700 PRINT "BUSHELS."
1710 GOTO 930
1720 PRINT "HAMURABIf YOU MU
ST PLANT SOMETHING SO THE
RE WILL BE FOOD FOR NEXT YE
AR."
1730 GOTO 1010
1740 PRINT "YOU ONLY HAVE";A
;"ACRES!"
1750 GOTO 1010
1760 PRINT "HAMURABI, THAT I
S TOO MUCH TO PLANT."
1770 GOTO 1010
1780 PRINT "YOU CAN ONLY FOR
CE ONE MAN TO WORK 10 ACRES
OF LAND. YOUR POPULATION

OF";P
1790 PRINT "JUST ISN'T BIG E
NOUGH."
1800 GOTO 1010
1810 RETURN
1820 REM
1830 REM***END***
1840 REM 	•
1850 IF WL=5 THEN 2090

(Page 17 	 TIsHUG NEWS DIGEST 	October 1989

1860 INPUT "PRESS ENTER TO S
EE YOUR 	RATING.":A$
1870 GOSUB 270
1880 PRINT "IN YOUR 10 YEARS
OF RULE, ";Pl;"PERCENT OF
THE"
1890 PRINT "POPULATION STARV
ED PER YEAR (ON THE AVERAGE)
; A TOTAL OF";DWPEOPLE DIE
D."
1900 L=A/P
1910 PRINT
1920 PRINT "YOU STARTED WITH
10 ACRES PER PERSON AND Y

OU ENDED WITH";L;"ACRES P
ER PERSON."
1930 IF Pl>33 THEN 2010
1940 IF L<7 THEN 2010
1950 IF Pl>10 THEN 2030
1960 IF L<9 THEN 2030
1970 IF Pl>3 THEN 2050
1980 IF L<11 THEN 2050
1990 PRINT "A TRULY INSPIRED
JOB. THE PEOPLE LOVE AND
ADMIRE YOU."
2000 GOTO 2060
2010 PRINT "YOU ARE A DISGRA
CE!!! THE PEOPLE CHEERED W
HEN YOU LEFTOFFICE."
2020 GOTO 2060
2030 PRINT "YOU RULE LIKE AT
ILLA THE 	HUN!!! MOST OF
YOUR 	SUBJECTS WOULD D
ANCE AT YOUR FUNERAL."
2040 GOTO 2060
2050 PRINT "YOU COULD HAVE D
ONE BETTER. FEW PEOPLE CARE
TO SEE YOU RULE AGAIN."
2060 FOR I=1 TO 5
2070 PRINT
2080 NEXT I
2090 RETURN

100 CALL CLEAR
110 REM MUSIC TUNER
120 REM BY V. MAKER
130 PRINT "GUITAR STRINGS"
140 FOR T=0 TO 3
150 PRINT
160 NEXT T
170 PRINT "LOW E: 165"
180 PRINT
190 PRINT " 	A: 	220"
200 PRINT
210 PRINT " 	D: 	294"
220 PRINT
230 PRINT " 	G: 	392"
240 PRINT
250 PRINT " 	B: 	494"
260 PRINT
270 PRINT " 	E: 	659"
280 PRINT
290 PRINT
300 PRINT
310 INPUT "ENTER REQUIRED
FREQUENCY:":FREQ
320 CALL SOUND(500,FREQ,0)
330 PRINT
340 PRINT "PRESS 'A' FOR THE
SAME SOUND AGAIN. 	PRESS 'B'
TO END. PRESS ANY OTHER KEY
TO 	SELECT OTHER"
350 PRINT "NOTES."
360 CALL KEY(0,K,L)
370 IF L=0 THEN 360
380 IF K=65 THEN 320
390 IF K=66 THEN 410
400 GOTO 100
410 END

10 REm********************
20 REM*** ***
30 REM***ANIMAL LEARNER***
40 REM*** ***
50 REm********************
60 GOSUB 100
70 GOSUB 300
80 GOSUB 420
90 END
100 REM
110 REM***INSTRUCTIONS***
120 REM
130 GOSUB 260
140 PRINT "THIS IS A GAME TH
AT HAS THE ABILITT TO LEARN.

IT WILL ATTEMPT TO GUESS
THE NAME"
150 PRINT "OF AN ANIMAL THAT
YOU PICK AT RANDOM."
160 PRINT
170 PRINT "WHENEVER YOU STUN
P THE 	COMPUTER, YOU ARE
ASKED 	ABOUT THE ANIMAL

YOU CHOSE."
180 PRINT "BY COMPILING THIS
DATA, THE COMPUTER 'LEARNS'

190 PRINT
200 PRINT "ENTER 'STOP' WHEN
YOU ARE DONE."
210 FOR I=1 TO 6
220 PRINT
230 NEXT I
240 INPUT "PRESS ENTER WHEN
READY TO CONTINUE: ":ANS$
250 RETURN
260 CALL CLEAR
270 PRINT TAB(4);"*** ANIMAL
LEARNER ***"
280 PRINT
290 RETURN
300 REM
310 REM***SETUP***
320 REM
330 CALL CLEAR
340 DIM QU$(50),RI(50),WR(50
),RA$(50),WA$(50)
350 QU$(1)="DOES IT ROAR"
360 RI(1)=0
370 WR(1)=0
380 RA$(1)="LION"
390 WA$(1)="GRIZZLY BEAR"
400 FR=2
410 RETURN
420 REM
430 REM***PLAY***
440 REM
450 LI=1
460 GOSUB 260
470 FOR I=1 TO 10
480 PRINT
490 NEXT I
500 PRINT
510 PRINT "I KNOW";FR;"ANIMA

520 PRINT
530 PRINT QU$(L1);
540 INPUT "?":ANS$
550 ANS$=SEG$(ANS$,1,1)
560 IF ANS$="Y" THEN 690
570 IF ANS$="N" THEN 740
580 IF ANS$="S" THEN 1340
590 A$="PLEASE ENTER 'YES' 0
R 'NO' "
600 FOR 1=1 TO LEN(A$)
610 CALL HCHAR(12,I+2,ASC(SE
G$(A$,I,1)))
620 NEXT I
630 FOR I=1 TO 300
640 NEXT I
650 FOR I=1 TO LEN(A$)
660 CALL HCHAR(16,1+2,32)
670 NEXT I

680 GOTO 540
690 IF RI(LI)<>0 THEN 720
700 GU$=RA$(LI)
710 GOTO 790
720 LI=RI(LI)
730 GOTO 520
740 IF WR(LI)<>0 THEN 770
750 GU$=WA$(LI)
760 GOTO 790
770 LI=WR(LI)
780 GOTO 520
790 PRINT
800 PRINT "IS IT A ":GU$;
810 INPUT "?":TA$
820 TA$=SEG$(TA$,1,1)
830 IF TAWY" THEN 1040
840 IF TAWS" THEN 1340
850 PRINT
860 INPUT "WHAT WAS THE ANIM
AL? ":NA$
870 IF FR=51 THEN 1140
880 PRINT
890 PRINT "WHAT IS A QUESTIO
N I COULD ASK TO TELL THE D
IFFERENCE BETWEEN A ";GU$
900 PRINT "AND A ";NA$;
910 INPUT "? ":QU1$
920 PRINT
930 PRINT "FOR ";NA$;", THE"
940 PRINT "ANSWER IS WHAT";
950 INPUT "? ":YN$
960 YN$=SEG$(YN$,1,1)
970 IF (YN$<>"Y")*(YN$<>"N")
THEN 920
980 IF ANS$="Y" THEN 1230 EL
SE 1270
990 QU$(LI)=QU1$
1000 IF YN$="Y" THEN 1310
1010 RA$(LI)=GU$
1020 WA$(LI)=NA$
1030 GOTO 450
1040 FOR i=1 TO 200
1050 NEXT I
1060 CALL CLEAR
1070 AWWOW! I GOT IT!"
1080 FOR I=1 TO LEN(A$)
1090 CALL HCHAR(12,I+8,ASC(S
EG$(A$,I,1)))
1100 NEXT I
1110 FOR I=1 TO 300
1120 NEXT I
1130 GOTO 450
1140 CALL CLEAR
1150 PRINT "I CAN'T REMEMBER
THAT ONE,"
1160 PRINT "MY MEMORY IS FUL
L."
1170 FOR I=1 TO 12
1180 PRINT
1190 NEXT I
1200 FOR I=1 TO 400
1210 NEXT I
1220 GOTO 450
1230 RI(LI)=FR
1240 LI=FR
1250 FR=FR+1
1260 GOTO 990
1270 WR(LI)=FR
1280 LI=FR
1290 FR=FR+1
1300 GOTO 990
1310 RA$(LI)=NA$
1320 WA$(LI)=GU$
1330 GOTO 450
1340 RETURN •

October 1989 	TIsHUG NEWS DIGEST 	Page 18

confinuedfmmnpagel6

From the moment that the above statement appears at
the bottom of the screen, the player has approximately 3
1/2 minutes to decide what letters from his holder he
will use to form a new word or words and where the
letters will be placed on the grid. He then presses the
enter button when ready.

If the player cannot make a word, or does not wish
to play any of the letters he has in his holder and
desires a new set of letters he must then press the "P"
key to use the pass option before time runs out.

This pass option will automatically place all of
the letters in the player's holder back into the letter
pool and then replace the empty holder with another set
of randomly selected letters from the pool.

Using the pass option automatically forfeits the
player's right to place any letters on the grid; thus
the player, in effect, loses his turn. Play immediately
continues on to the next player.

TOO MUCH TIME!!!

If, after 3 1/2 minutes, a player had not pressed
either the enter button or the "P" key, the above
statement will appear. The player retains all of the
letters in his holder, he forfeits his chance to pass or
play, and his turn is completed.

YOU LOSE YOUR TURN!!!

This statement appears if:

1. Player runs out of time before deciding whether to
pass or play.

2. A word being played is challenged and is found to be
unacceptable.

3. A player tries to make an illegal word or attempts to
place a word or illegal word in the incorrect row
and/or column of the playing grid.

In all of the above cases, the player loses his
chance to play any letters for this turn and play
immediately moves to the next player.

SPELL WORD THEN PRESS ENTER.

After electing to play, by pressing the enter
button, the above statement will appear briefly and then
the line will go blank with only the flashing cursor
showing at the bottom.

The player must now type in the ENTIRE word being
formed, which includes any letters from the player's
holder that is to be placed on the grid plus any letters
already on the grid which, when connected to the
newly—placed letters, form one complete word in a single
direction.

COLUMN OF 1ST LETTER:

The column numbers appear at the top of the playing
grid. Enter the column number of the position where the
first letter of the entire principal word will be placed
on the grid.

Both row number and column number, together, will
determine the exact location on the playing grid where
the first letter will go.

DIRECTION (A=ACROSS;D=DOWN)

Beginning at the position where the row and column
numbers intersect on the playing grid, determine whether
the entire word will be placed horizontally (across) or
vertically (down) by entering an "A" or a "D".

ANY CHAJJENGES? (Y/N) N

When the above statement appears, any of the other
players, at this time, may elect to challenge the
legality of a newly formed word, before it is placed on
the grid, due to a suspected improper placement or
spelling, by saying "YES". If no challenge is made,
press enter and the new word or words will be placed on
the grid. If there is a challenge, enter "Y".

WHO WON THE BATTLE ?

(P=PLAYER: C=CHALLENGER): P

After a word has been challenged, the first
statement, above, will appear briefly; then the next
statement, above, will appear. All players must now
decide amongst themselves, consulting a dictionary, if
necessary, if placement and spelling of the new word or
words is proper. If placement and spelling is correct,
press enter. If not, enter "C" and the current player
will retain his letters in his holder and lose his turn.

Scoring

The computer automatically keeps a tally of each
player's score and enters it in the appropriate scoring
area.

The point value of each letter is located on the
letter values chart to the right of the playing grid.

The score for each turn is the sum of the point
values of all the letters in each word formed or
modified in the play plus the bonus values resulting
from placing letters on bonus squares.

Squares on the grid have different colours. 	The
one square that is unique from all the others is the
starting square; a letter placed on this square scores
its normal letter value. All grey squares score the
normal letter value. Bonus squares are either yellow,
green, red or blue.

EXAMPLE: before
spelling 	A
word 	WORN

TASTE

after
pressing 	A
enter 	WORN

NOR
TASTE

A letter placed on a yellow square scores two (2)
times its normal value.

A letter placed on a green square scores three (3)
times its normal value.

Letter holder contains:LLORZE

Player wishes to use the letters "0" and "R", from
his letter holder, to place next to the "N" in the word
"BARN", forming the principal word "NOR", along with two
other words "NOT" and "RE".

When the player is asked to spell the word and
press enter, he should type in the entire principal word
'NOR" then press enter. The computer will automatically
give him credit for the other two words.

ROW OF 1ST LETTER IN WORD:

The row numbers appear on the left side of the
playing grid. After spelling out the principal new word
being formed, enter the row number of the position where
the first letter of that entire principal word will be
placed on the grid.

A letter placed on a red square scores four (4)
times its normal value.

A letter placed on a blue square scores five (5)
times its normal value.

Letter bonus values apply only in the turn in which
they are first played. In subsequent turns, letters
count at normal chart value.

When two or more words are formed in the same play,
each is scored. Any letters which are common to both or
all newly—formed words are counted (with full bonus
value, if any) in the score for each word.

Any player who plays all six of his letters in his
holder in a single turn scores a bonus of fifty (50)
points in addition to his regular score for the play.

If the letter pool is depleted, and a player has
just played the last letter in his holder, the game ends
and gives an additional fifty (50) points to that
player. continued on page 22

Page 19 	 TIsHUG NEWS DIGEST 	October 1989

". .Shit. . ."

- ■••••=1.r•

Ar5,11-Itifii*!rmy -..-
*-11VERTfaivwe

••

•\.411r

Irdateo a It
by Harry Brashear, Asgard News

"The user group is the life blood of the TI99/4A
community." (period, end of sentence, absolute
statement!) That emphatic judgement made by many, may
not be sure anymore. In fact, in many cases, I could
call some of the user groups today, the bleeding
arteries of the TI99/4A community.

At some point, back a few years ago, when the
TI99/4A was young, orphaned, and people had no place to
turn, there was no question of the groups' value. Today
because of bad management, bad judgement, and burned out
leadership, there are many groups that are falling
apart. When the group begins to fall, the remaining
membership is in worse shape than ever.

I would like to share some thoughts with you based
on my own experience and some stories I have been told.

First of all, and most importantly, not all groups
are falling apart. Take the Rochester users group for
instance. Two years ago, they were meeting in the
president's basement because the entire group consisted
of perhaps ten people. Today, they have thirty some
members and they need to meet in a school.

How did this happen, you ask? Well, one of the
primary ways they have found to get membership is to
call up every newspaper advertisement they find for used
TI99/4A equipment. This accomplishes two things: 1>
they find lots more spare equipment; and, 2> they always
tell the seller about the user group. Many of these
people are surprised to find out that the TI99/4A is not
dead and come to a meeting.

Another good example is West Penn 99ers. 	Not to
long ago this group was on its way down hill but, the
group leaders got involved in hardware projects. With
the help of people like John Wilforth, getting more out
of the existing systems became a major group project.
The result was a terrific boost in the membership based
on this single premise. Much of the TI99/4A community
now looks to this gang for many of the hardware projects
that update our computers.

They are only two examples of continuing success.
They are successful because the leadership of the group
cares and enjoys working with the TI99/4A, but when the
caring fails, so does the group. A number of things can
happen to begin a general erosion of TI morale. A BBS
converts from TIBBS to FIDONET. A good programmer
converts to IBM and starts talking about all the $$$ he
is making. A little pack of converts starts meeting in
the rear and talking IBM. (That I have seeming at some
TIsHUG and Regional meeting lately.) A newsletter
editor gets lazy and starts using Ventura at work. All
of these things are bad news to the TI99/4A user group
because it is generally made up of followers.

The worst I have heard about, is a group with a
huge treasury and a few remaining members. They are
hanging in so that they can split the money at the
official fold-up. The last thing they want is new
members. (Let this be a lesson. If you have not done
so, commit your treasury to the local zoo or something,
should a breakup occur.)

There seems to be this "thing" that says, "if I go
out and buy a new computer, I have to make everybody
else do the same, and since they are all my friends, so
this makes it right". Wrong! If you are a leader, then
act like a responsible leader. Stand down and move on
to the IBM group. Why hang around and wreck everyone
else's fun. It takes TI99/4A'ers to run a TI99/4A
group, people that are looking forward to the next big
breakthrough for our computer.

I have screamed time and time again, publicity,
about multi-user groups. 	Computers of various kinds

cannot coexist together any more than one computer's
BASIC can be run into another. I have seen the results
of letting the clones through the door and the guy with
the little' computer gets trampled into the dust every
time. (The above happened at the meeting at Han's place
and to a degree at Cyril's place the last two meetings.
It will not happen again if I can help it!!!)

We all take some interest in other computers, we
have to, because that is often where some ideas come
from. If it were not for Procomm for the IBM, we
probably would not have TELCO. If it were not for
WordPerfect, we would not have anything to model Press
after. Of course, TI-Base is D-Base II through and
through, so, thank God for other computers. But if the
interest gets out of hand and a leader wants everyone to
join the rest of the flag waving techies, look out! It
takes a lot of guts to stand up to these individuals,
but you have to, to preserve your sanity and more
importantly, your group.

Another thing that will bring down a group is a
lack of communication, both within the group and with
the outside community. Without communications there is
no excitement about what is to come. If I did not think
there was anything new coming, would I stay with the
TI99/4A? No! But I know there are great things coming
because I read and write and I call people to find out
what is new. People tell me what is new because they
know that I generate some of the excitement that drives
the TI99/4A engine. I write to people all over the
world.. Australia, Germany, Italy, and all over Canada
and the US. Sure, it costs me a few bucks to do this,
but it is worth it. The money that you spend on movies,
dinners out, Saturday afternoon at the pub, and petrol
to do these things, I spend on long distance calls.

If your group is not supplying you with the
information you need, get it yourself and pass it back.
Do you take the time to read all those newsletters that
your group trades back and forth, or do you ever see
them at all? If you send me a big self addressed
stamped envelope with a few comments of your own I will
be happy to send you a list of groups, and mark off a
few of what I feel have the best newsletters. Join
these groups, buy MICROpendium, Asgard News, and any
other periodical that might come along. If you are new
to the community and feel a little left out, ask
questions, or better still, write your questione down
and send them to us.

Next time: The Computer versus The Family Unit.

(October 1989 	TIsHUG NEWS DIGEST 	Page 20)

TIgn ikrtuaa 	Tqweirvalb #58
by Jim Peterson, Tigercub Software, USA

156 Collingwood Ave.
Columbus OH 43213

I am still offering over 120 original and unique
entertainment, educational and utility programs at just
$1 each, or on collection disks at $5 per disk.

The contents of .the first 52 issues of this
newsletter are available as ready to run programs on 5
Tips Disks at $10 each.

And my three Nuts & Bolts disks, $15 each, each
contain over 100 subprograms for you to merge into your
own programs to do all kinds of wonderful things.

My catalog is available for $1, deductable from
your first order (specify Tigercub catalog).

TI-PD Library

I have 	selected 	public domain programs, by
category, to fill over 230 disks, as full as possible if
I had enough programs of the category, with all the
Basic-only programs converted to Extended BASIC , with
an E/A loader provided for assembly programs if
possible, instructions added and any obvious bugs
corrected, and with an autoloader by full program name
on each disk. These are available as a copying service
for. just $1.50 postpaid in U.S. and Canada. No
fairware will 	be offered without the author's
permission. 	Send a stamped self addressed envelo for
list or $1, refundable for 9-page catalog listing all
titles and authors. Be sure to specify TI-PD catalog.

In Tips #55 I published a CHARSUB routine to
convert character patterns into assembly source code,
and in Tips #55 and #56 I published several routines to
manipulate hex codes into new character sets. 	Those
patterns looked 	fine on my old TV, but when I
demonstrated them on a high-resolution monitor I could
see too many missing pixels.

So I wrote this CHARFIX program which, when MERGEd
into a program and CALLed after any character
redefinition is completed, will permit any normal or
reidentified character to be viewed on screen and edited
and will then write the hex codes of any range of
printable characters into an assembly source file which
can be assembled, loaded and linked to instantly change
character sets.

This routine also reidentifies the common
punctuation into the same character sets as the letters,
as described in Tips #55. If you do not want this
feature, delete lines 29001-29003.

29000 SUB CHARFIX
29001 DATA 32,33,34,44,46
29002 RESTORE 29001 :: FOR J=1 TO 5 :: READ CH :: CALL

CHARPAT(CH,CH$):: CALL CHAR(J+90,CH$):: CALL
CHAR(J+122,CH$):: NEXT J

29003 CALL CHARPAT(63,CH$):: CALL CHAR(64,CH$):: CALL
CHAR(96,CH$)

29004 DISPLAY AT(1,1)ERASE ALL:"1 2 3 4 5 6 7 8 9 0 :
;":" ":"@ABCDEFGHIJKLM":" ":"NOPQR
STUVWXYZ[":" ":"\ j " _abcdefghi j"

29005 DISPLAY AT(9,1):"klmnopqrstuvwx":"

29006 CALL CHAR(128,"FF"&RPT$("81",6)&RPT$("FF",9)&
"FFFF"&RPT$("C3",4)OFFFF"):: CALL COLOR(13,2,16)

29007 CALL CHARVIEW
29008 SUBEND
29009 SUB CHARVIEW
29010 DISPLAY AT(13,14):"CTRL V TO VIEW" :: DISPLAY

AT(14,14):" " :: DISPLAY AT(15,14):"CTRL E TO EDIT"
:: DISPLAY AT(17,14):"CTRL S TO SAVE"

29011 DISPLAY AT(19,14):" " :: DISPLAY AT(20,14):" "
29012 CALL KEY(0,@,S):: IF S=0 THEN 29012 ELSE IF @=150

THEN 29015 ELSE IF @=133 THEN 29014 ELSE IF @=147
THEN 29013 ELSE 29012

29013 CALL DELSPRITE(#1):: CALL CHARSUB(HX$0):: DISPLAY
BEEP :: STOP

29014 CALL EDIT(K):: GOTO 29010
29015 DISPLAY AT(24,1)BEEP:""
29016 DISPLAY AT(24,1):"PRESS A KEY" :: CALL

KEY(0,K,S):: IF S<1 OR K<32 OR K>143 THEN 29016
29017 DISPLAY AT(24,1):"" :: CALL CHARPAT(K,CH$)
29018 12=13 :: FOR J=1 TO 15 STEP 2
29019 H$=SEG$(CH$,J,1):: CALL HEX B1N(H$,B$)
29020 H$=SEG$(CH$,J+1,1):: CALL HX BIN(H$,BB$):: FOR

L=1 TO 8 :: C$=C$&CHR$(ASC(SEG$TBOBB$,L,1))+80)::
NEXT L

29021 DISPLAY AT(R,1):C$;:: DISPLAY
AT(R,10):SEG$(CH$,J,2);:: R=R+1 	C$="" :: NEXT J
:: DISPLAY AT(22,1):CH$;:: GOTO 29012

29022 SUBEND
29023 SUB HEX B1N(H$,B$):: HX$="0123456789ABCDEF"

BN$="0000Y0001X0010X0011X0100X0101X0110X011
1X1000X1001X1010X1011X1100X1101X1110X1111"

29024 FOR J=LEN(H$)TO 1 STEP -1 :: X$=SEG$(H$,J,1)
29025 X=POS(HX$,X$,1)-1 	T$=SEG$ON$,X*5+1,4)&T$

NEXT J 	B$=T$ 	T$="" 	SUBEND
29026 SUB CHARSUB(HX$())
29027 DISPLAY AT(12,1)ERASE ALL:"Source code

filename?":"DSK" :: ACCEPT AT(13,4)SIZE(12)BEEP:F$
:: OPEN #1:"DSK"&F$,OUTPUT

29028 DISPLAY AT(15,1):"LINKABLE program name?" ::
ACCEPT AT(16,1)SIZE(6):P$

29029 DISPLAY AT(18,1):"Redefine characters from
ASCII 	to ASCII"

29030 ACCEPT AT(19,7)VALIDATE(DIGIT)SIZE(3):F
29031 ACCEPT AT(19,21)VALIDATE(DIGIT)SIZE(3):T
29032 PRINT #1:TAB(8);"DEF";TAB(13);P$:: PRINT #1:"VMBW

EQU >2024" :: PRINT #1:"STATUS EQU >837C"
29033 NB=(T-F)*8 	CALL DEC_HEX(NB,H$):: A=768+F*8

CALL DEC HEX(A,A$)
29034 FOR CH:F TO T 	IF CH<144 THEN CALL

CHARPAT(CH,CH$)ELSE CH$=HX$(CH)
29035 IF FLAG=0 THEN PRINT #1:"FONT";:: FLAG=1
29036 FOR J=1 TO 13 STEP 4 :: M$=M$&">"&SEWCH$,J,4)&",

" :: NEXT J 	M$=SEWM$,1,23)&" *fl&CHRUCH)
29037 PRINT #1:TAB(8);"DATA "&M$ 	M$="" :- NEXT CH
29038 PRINT #1:P$;TAB(8);"LI 	R1,PONT" :: PRINT

#1:TAB(8);"LI 	RO,>"&A$:: PRINT #1:TAB(8);"LI
R2,>"&H$

29039 PRINT #1:TAB(8);"BLWP @VMBW":TAB(8);"CLR
@STATUS":TAB(8);"RT":TAB(8);"END" :: CLOSE #1

29040 SUBEND
29041 SUB DEC HEX(D,H$)
29042 X$="01ff456789ABCDEF" 	A=D+65536*(D>32767)
29043 H$=SEG$(X$,(INT(A/4096)AND

15)+1,1)&SEG$(X$,(INT(A/256)AND
15)+1,1)&SEGUX$,(INT(A/16)AND 15)+1,1)&SEG$(X$,(A
AND 15)+1,1):: SUBEND

29044 SUB EDIT(CH)
29045 DISPLAY AT(13,14):"1 TO TOGGLE" :: DISPLAY

AT(14,15):"CURSOR" :- DISPLAY AT(15,14):"E S D X TO
MOVE" :: DISPLAY AT(17,14):"CTRL A TO ABORT"

29046 DISPLAY AT(19,14):"CTRL R TO" :: DISPLAY
AT(20,15):"REIDENTIFY"

29047 R=13 :: C=3 :: X=128 :: CALL
SPRITE(#1,130,11,R*8-7,C*8-7)::
X$=CHR$(129)&CHR$(146)

29048 CALL KEY(0,K,S):: IF S<1 THEN 29048 ELSE ON
POSClEeSsDdXx"&X$,CHRUK),1)+1 GOTO 29048,29049,
29050,29050,29051,29051,29052,29052,29053,29053,
29055,29056

29049 X=X+1+(X=129)*2 	GOTO 29054
29050 R=R-1-(R=13):: GOTO 29054
29051 C=C-1-(C=3):: GOTO 29054
29052 C=C+1+(C=10):: GOTO 29054
29053 R=R+1+(R=20)
29054 CALL LOCATE(#1,R*8-7,C*8-7):: CALL HCHAR(R,C,X)::

GOTO 29048
29055 CALL DELSPRITE(#1):: SUBEXIT
29056 FOR R=13 TO 20 	FOR C=3 TO 10 :: CALL

GCHAR(R,C,GH):: CALL LOCATE(#1,R*8-7,C*8-7)::
B$=B$&CHRI(GH-80):- NEXT C

29057 CALL BIN HEX(B$,14):: DISPLAY AT(R,10):H$;:: B$=""
HEX$=HE$&H$:: NEXT R :: DISPLAY

AT(22,1):HEX$;:: CALL CHAR(CH,HEX$):: HEX$=""
29058 CALL DELSPRITE(#1):: FOR R=13 TO 20 :: DISPLAY

AT(R,14):"" :: NEXT R 	SUBEND
29059 SUB BIN HEX(B$,H$):: HX$="0123456789ABCDEF"

BN$="000a0001X0010X0011X0100X0101X0110X011
1X1000X1001X1010X1011X1100X1101X1110X1111"

(Page21 	 TIsHUG NEWS DIGEST 	October 198

29060 L=LEN(B$):: IF L/40INT(L/4)THEN B$="0"&B$ 	GOTO
29060

29061 FOR J=L-3 TO 1 STEP —4 :: X$=SEGS(B$,J,4)
29062 X=(POS(BN$,X$,1)-1)/5 	T$=SEGS(HX$,X+1,1)&T$

NEXT J 	HS=T$ 	T$="" 	SUBEND

I think that programs, at least non—commercial
ones, should be open for anyone to modify for their own
use. For that reason, I would not normally publish the
following routine. However, I recently received a large
number of programs, originally in the IUG library, and
found that the author's name had been erased from the
title screen or REM of every one of them. I know,
because I already had many of the original versions,
including some that I wrote myself.

Now, that is inexcusable. 	If a programmer is
willing to share his work, he does deserve credit for
it. And if people are going to play that dirty, maybe
there is good reason for protecting programs.

So here is how to do it. Ken Woodcock wrote this
ingenious routine and published it in the Tidewater
newsletter. I have modified it so that it can be
deleted after it has done its work. It is to be MERGEd
into any Extended BASIC program (32k required) and RUN,
and will change the line length byte of each line to
zero, so that the program cannot be LISTed, although it
can be loaded and run.

1 CALL INIT :; CALL PEEK(-31952,A,B,C,D)::
SL=C*256+D-65539 	EL=A*256+B-65536 :: FOR X=SL TO
EL STEP —4

2 CALL PEEK(X,E,F,G,H):: ADD=G*256+H-65536 	J=J+1
IF J<4 THEN 3 :: CALL LOAD(ADD-1,0)

3 NEXT X :: STOP :: !@P—

Save that as FIX in MERGE format. Merge it into
any program (RESequence first if it has line numbers
less than 4) and RUN. Then type 1, FCTN X and FCTN 3 to
delete line 1. Delete lines 2 and 3 in the same way.
Then SAVE. Now try LISTing it and watch the fireworks.

Ken wrote an even more ingenious UNFIX routine to
unprotect the program, but I am not passing that on!

Now, suppose you have a party game program that you
do not want the kids playing with. So, RESequence it to
some odd number, such as RES 797. Put in a line just
before that 796 STOP. Then merge in FIX, run it, and
delete those first 3 lines.

I hope you remember what line number you
resequenced it to start from, because now you can only
run it by RUN 797!

In Tips #57 I reported the discovery that printing
to the disk from the TI— Writer Formatter, with the C
option, really converted the carriage returns to
trailing blank ASCII 32's, and I published a routine to
strip them. I have found an easier way. First PF and C
DSK... to convert the CRs to blanks. LF DSK... and SF
DSK... to strip out those blanks, but that leaves the
pestiferous tab line, so LF DSK... and PF DSK... again!

Here is a handy little "program that writes a
program" which I often use to add instructions to
programs.

First key this in —

1 DISPLAY AT(24,5)ERASE ALL:"PRESS ANY KEY"
2 RESTORE 30721
3 REM
4 FOR J@=1 TO T@ :: READ @$:: DISPLAY AT(J@,1):@$:" "
5 CALL KEY(0,K@,S@):: IF S@=0 THEN 5
6 NEXT J@

Save it by —
SAVE DSK1.MATRIX,MERGE
Then key this in —

100 OPEN #1:"DSK1.MATRIX",VARIABLE 163,INPUT :: OPEN
#2:"DSK1.MATRIX2",VARIABLE 163,OUTPUT :: L=179 ::
FOR J=1 TO 6

110 LINPUT #1:M$:: PRINT #2:CHR$(0)&CHR$G+J)&
CHR$(156)&CHR$(253)&CHR$(200)&CHR$(1)01"&
CHR$(181)&CHR$(199)&CHRMENOWAM$&CHR$(0)::
NEXT J •

120 CLOSE #1 :: PRINT #2:CHR$(255)&CHR$(255):: CLOSE #2

Run it to convert MATRIX into a merge format file
MATRIX2 on DSK1. Then key this in. Do not change line
numbers —

100 DISPLAY AT(3,1)ERASE ALL:"DATAWRITER by Jim
Peterson":"":" To be used to add instruc—":"tions to
programs."

110 DISPLAY AT(7,1):"Type and Enter the instruc—":"tions
in single lines. They":"will be wriften to a
D/V163":"file. When finished, enter"

120 DISPLAY AT(11,1):"END":"Then enter NEW, then
MERGE":"DSK1.@DATA, then RUN.":"If everything is OK,
load":"the program, be sure the"

130 DISPLAY AT(16,1):"lowest line number is
higher":"than 6 and the highest is":"lower than
30721, then merge":"in the @DATA file."

140 DISPLAY AT(24,5):"PRESS ANY KEY" :: DISPLAY
AT(24,5):"press any key" :: CALL KEY(0,K,S):: IF S=0
THEN 140

150 OPEN #1:"DSK1.@DATA",VARIABLE 163,OUTPUT :: CALL
CLEAR :: DEF WX)=CHR$(120)&CRIMX)

160 L=L+1 :: ACCEPT AT(12,0):M$
170 IF M$<>"END" THEN PRINT

#1:WLACHR$(147)&CHR$(199)&CHRMENOWAM$&CHR$(0)
GOTO 160

180 REM KEEP THIS LINE OPEN
190 PRINT #1:CHR$(0)&CHR$(3)&"Tr&CHR$(190)&CHR$(200)&

CHRMEN(STRM-1)))&STR$(1,-1)&CHR$(0)
250 PRINT #1:CHR$(255)&CHR$(255):: CLOSE #1

Enter MERGE DSK1.MATRIX2, then SAVE it and try it
out.

Memory full!
Please tell your friends about my TI—PD catalog. I

put a lot of work into that, and am not getting many
orders!

Jim Peterson

continuodfnmpagel9

Quantity of each letter in the letter pool

A = 11 	G = 4 	L = 5 	Q = 1
	

V = 2
B = 2 	H = 2 	M = 2 	R = 7
	

W = 2
C = 2 	I = 11 	N = 7 	S = 6
	

X = I
D = 5 	J = 1 	0 = 9 	T = 7
	

Y = 2
E = 14 	K = 2 	P = 2 	U = 5
	

Z = 1
F = 2

Total letters in letter pool: 115

Use the chart above as a reference during the game.

Playing the game

For disk version only: Make sure that the Extended
BASIC command module is inserted into the command module
port of your console. Turn on all peripherals, then
turn on the console. When the master title screen
appears, press any key to display the module's main
menu. Now select Extended BASIC from the menu and wait
until the word READY appears on your screen. Insert The
Game of Wit program disk into disk drive #1. Type in
the following statement: RUN "DSK1.GAMEOFWIT"

For cassette version only: make sure that the
Extended BASIC command module is inserted into the
command module port of your console. Turn on your
monitor or TV set, then turn on your console. When the
master title screen appears, press any key to display
the module's main menu. Now select Extended BASIC from
the menu and wait until the word READY appears on your
screen. Insert The Game of Wit program cassette into
your cassette recorder. Type in the following
statement: RUN "CS1" and follow the loading instructions
on your screen. 0

@ctober 1989 	TIsHUG NEWS DIGEST 	Page 22

YSErall 	71:A71 Ital Session 2
Author unknown

You have determined which of the editors suits you
and found a display colour you like. They could be
entered from the keyboard each time FORTH is booted.
But there is a better method: let the disk do it for
you! To begin with we will use the simple (and later on
a more elegant) way. (If you have not made up an
overlay yet, better dosit now, else editing is not going
to be easy. Programming in Forth is done by editing
screens and the various editing functions are made a lot
easier if you can refer to the overlay.)

So boot your Forth disk again and when the Menu
shows up, enter either —EDITOR or —64SUPPORT. Now get
out your manual and go to Appendix I (Contents of the
Disk) and look at screen 3. This is the one that gives
you the first inkling that something is going on by
displaying "BOOTING". So you get an idea of the way
Forth works, let us scan its contents before going on.

Line 0: The parentheses () act like a REM in
BASIC, so we see that it is called the Welcome Screen.
GOTOXY is like DISPLAY AT, note the coordinates 0 0
preceding it.

• Line 1: Forget the BASE—>R for now, but let us do
something with HEX. From your keyboard enter

HEX 83C2 DECIMAL .

Do not forget the period, actually a Forth word
called Dot. (Look up each word in the Glossary!) What
did you get? —31806 is correct. In plain English line
1 states: switch to Base 16, put >10 (16) on the stack,
and C! (C—store, see page 17, Glossary) it at 83C2.
This is how Forth does the CALL LOAD to disable FCTNI...;
(Quit). (You have seen that one before!)

Line 2: DECIMAL returns us to Base 10, ignore the (
84 LOAD), 20 LOAD loads SCREEN 20 (look at scr #20 and
you will see that it is the menu which appears at boot
time. 16 SYSTEM is CALL CLEAR (more about System Calls
later) and finally MENU displays the menu. Take a
moment to digest this, as it gives some idea as to how
Forth works. The command 20 LOAD booted scr #20 at
which time a new Forth word was compiled (see scr f20,
line 1). MENU is now part of the Dictionary. Any time
MENU is invoked, Forth looks it up and executes it. Try
it, enter MENU. You get the menu and tokl. If you
enter something Forth cannot find you will' see a '?',
sometimes followed by an error message (see Appendix H).

OK, back to the Welcome Screen. But now let us put
it on display. Enter 3 EDIT and watch it come up. Skip
to line 4 and note that here we have the menu words
defined, i.e. : —EDITOR 34 LOAD ; etc. The first word
after a 1:' is the new word being added to the Forth's
dictionary. Any words that follow must already be in
the dictionary, otherwise the word being defined cannot
be compiled. The definition ends with ';'. Move the
cursor to line 12 and enter —EDITOR (or, if that is your
choice, —64SUPPORT). Now, if you chose the regular
editor, you can type the number from your SEE experiment
followed by 7 VWTR. Now hit FCTNI9J (escape) to get out
of the edit mode. 	Your additions to screen 3 are at
this time only in a buffer, not on the disk. 	In order
to record them on the disk you must enter FLUSH.

Remember: every time you edit a screen you must
FLUSH, otherwise all your efforts will be for nought.

So let us check if your edit was successful. Enter
COLD. (If you are using the 64 column editor enter TEXT
COLD.) This word is like NEW in Extended BASIC, except
you do not have to do anything else, Forth will re—boot.
(It will take longer now because you are booting the
editor also.)

Now let us recap: you have 'edited' screen 3 so it
boots your editor and sets up the screen colour for you.

This was done while in the EDIT mode. You have also
worked in the 'interactive' mode when you defined the
word SEE to determine your colour choice. In this mode
you can try out your definitions before you use them in
a program. You will find this to be tremendously
helpful because unlike BASIC there is no need to RUN the
whole program to find out what happens.

Having worked my way into TI—Forth the hard way, I
will leave you with a few suggestions which I feel will
be helpful. As you encounter a new word look it up in
the Glossary (Appendix D of the manual) to see what it
is supposed to do. Mark the chapters and appendices in
your TI—Forth manual for easier access to them. You
will be using it frequently because, even though it may
not seem so at first, it does contain a lot of
information. Get a Forth book, preferably Leo Brodie's
Starting Forth. It is sold in many bookstores and
software houses. The manual (Appendix C) explains the
differences between fig—Forth, which Brodie uses, and
TI's implementation of it. 	Though it may read like
Greek, scan through the manual. 	As we go along you
might just remember having seen something that rings a
bell. (Finding it again may be something else!)

Author's Note:
Since these tutorials were written, a new edition

of Starting Forth has come out. In it, Brodie uses
Forth-83 rather than fig—Forth. If at all possible try
to get a copy of the old book, otherwise Appendix C of
the TI—Forth manual will be meaninglees and may lead to
added confusion. 0

Yeirll ?hulas
by Lutz Winkler, USA

F2THYBIT #1: True Lower Case for Forth
Your favorite CHARA1 file from TI—Writer (several

versions exist) can be installed on your Forth disk for
true lower case. Screen 19 of the system disk is only
partially used by the Forth kernel, leaving sufficient
space for the character definitions of ASCII 32 through
127. The parameters given below assume a two drive
SS/SD system. For other configurations it will be
necessary to adjust them accordingly. In case you
prefer the 64 column editor, the following does not
affect the display of its tiny characters. (There is no
way to improve them.)

Step 1: Copy the CHARA1 file to a clean, initialized
disk. Any disk manager can be used.

Step 2: Boot Forth and place the disk with the CHARA1
file in drive 2. The file will be found on
screens 98 and 99. That is, the sectors which
are needed are on these screens, the rest can be
ignored.

Step 3: The file could be transferred now, but it is
easier to combine it first onto one screen (100)
before the transfer is made. The CHARA1 file
starts on line 8 (address 512) but the first 6
bytes (0 to 5) constitute the file header, so
the address must be incremented by 6 (to 518).
This is followed by 256 bytes (the character
definitions for ASCII 0 to 31) which we do not
need. Therefore, the starting address for the
transfer is 98 BLOCK 774 +, destination is 100
BLOCK and we want to move the remaining 250
bytes of that screen:

98 BLOCK 774 + 100 BLOCK 250 CMOVE UPDATE FLUSH

The rest of the character definitions are found
on screen 99 and 506 bytes have to be moved.
They must follow what has already been put on
screen 100:

99 BLOCK 100 BLOCK 250 + 506 CMOVE UPDATE FLUSH

Screen 100 now contains the entire set of
definitions for displayable ASCII characters.

Step 4: Once again it is time to issue that old warning
of "Do it on a backup disk!" With the Forth
back—up disk in drive 1 and the character
definitions on screen 100 in drive 2, the
transfer is easily accomplished by:

100 BLOCK 19 BLOCK 256 + 768 CMOVE UPDATE FLUSH

(Page 23
	

TIsHUG NEWS DIGEST 	October 1989)

Provided no errors were made and screen 33
(SYSTEM CALLS) is booted, the new character
definitions are written to the PDT (pattern
descriptor table) with

HEX 13 BLOCK 100 + 900 300 VMBW

: TEST IV" This is a test" ;
to display 'This is a test' when TEST is
invoked.

F-TIDBIT #3: Improving the 40 Column Editor

For a quick check, it can be entered from the
keyboard and some lower case characters typed. If
everything works as expected, i.e., the display does not
go haywire and lower case letters are properly shown,
then the above statement should be placed on screen 3
(the welcome screen) to auto-boot the new character set
along with whatever other auto-booting features may
already have been installed there by the user.

While it is not necessary to put the entire
character set into the PDT (the upper cases are there
already) I use the whole range (32 to 127) because I
have redefined the characters of my file. They are not
only bigger but I have slashed the 0 and improved the
lower cases. Also, I can easily put the same character
set into the upper end of the PDT for conversion to
inverse video. More about that in F-TIDBIT #2.

The procedure I have described makes use of space
on the disk which is wasted otherwise. 	It does not
require any modifications of other screens to
accommodate the character definitions. A VMBW of >300
bytes does not add any noticeable delay when booting
Forth.

F-TIDBIT #2: Adding Inverse Video

One feature which can enhance a program by making
screen prompts and other information stand out, is
'inverse video' where text and background colours are
reversed. With Forth this is easily done. Michael
Jaegermann of Edmonton, Alberta, Canada, provided the
routine which I adapted for use with a standard TI-Forth
system.

0 (INVERSE VIDEO)
1 33 CLOAD RANDOMIZE
2 BASE->R HEX
3 	900 PAD 300 VMBR PAD DOO 300 VMBW
4 : INVERT 1000 DOO DO FF I VXOR LOOP ; INVERT
5
6 : (") COUNT OVER + SWAP DO I C@ 80 OR EMITS LOOP ;
7 : (IV) BEGIN KEY DUP 1F > WHILE 80 OR EMIT8 REPEAT
8 	DROP DROP ;
9 : IVLIT 22 STATE @

10 	 IF COMPILE SLIT WORD HERE C@ 1+ =CELLS ALLOT
11 	 ELSE WORD HERE THEN ; IMMEDIATE
12 : IV" (COMPILE.' IVLIT STATE @
13 	IF COMPILE (") ELSE (IV) THEN ; IMMEDIATE
14
15 R->BASE

Line 1: Insures that the SYSTEM CALLS are booted which
allows VMBR and VMBW to be used.

Line 2: VPD reads and writes are always easier in HEX.
Line 3: Read ASCII 32 to 127 to PAD and write them from

PAD to the high order (ASCII 160 to 255) area in
PDT. If you have put a character set on screen
19 (see F-TIDBIT #1) replace this line with : 13
BLOCK 100 + DOO 300 VMBW.

Line 4: INVERT performs a VXOR on the high order
character set to turn off-pixels on, and
on-pixels off.

Line 6: (") converts a string to inverse video.
Line 7: (IV) accepts input from keyboard for inverse

video.
Line 9: IVLIT is WLITERAL adapted for IV purposes,

delimiter is ASCII 34 (") instead of BL (ASCII
32).

Line 12: IV" (used in place of .") will display or
compile text following it in inverse video until
delimited by ".

Usage: IV" <ENTER>
input from the keyboard is displayed in inverse
video until <ENTER> is pressed again

or you can use it in a word definition in the form
of

In F-TIDBIT #1 I outlined how to install your
preferred character set on the Forth disk and in
F-TIDBIT #2 I provided information on how to get inverse
video. Now we can put both of these features together
to improve the 40 column editor. The procedure below
not only corrects TI's omission of auto-repeat keys but
also changes the character under the cursor to inverse
video (unless it is a space). This merely requires that

1) there is a character set loaded into the PDT at
>D00,

3) a few minor changes to screen 38, and
4) the 	addition 	of screen 41 (which is unused

otherwise).

As to the first item, if you have installed your
favorite character set on screen 19 (F-TIDBIT #1), all
you need to do is a

HEX 13 BLOCK 100 + DOO 300 VMBW

This puts a copy of it in the upper part of the
PDT. To convert it to inverse video use INVERT from
F-TIDBIT #2, then install the following routine on
screen 41 of your system disk. (#41 should be a blank
screen.)

0 (BLINK AND DELAY FOR 40 COL EDITOR)
1 0 CLOAD DELAY
2 BASE->R HEX
3
4 : BLINK ()
5 	CURPOS @ DUP VSBR OVER OVER
6 	DUP 21 < IF DROP lE SWAP VSBW
7 	 ELSE 80 + VSBW
8 	 THEN
9 	BO 0 DO LOOP (blink rate)
10 	SWAP VSBW ;
11
12 : DELAY ()
13
	

800 0 DO LOOP ; (repeat rate)
14
15 R->BASE

Now modify screen 38 as shown below:

0 (SCREEN EDITOR 12JUL82 LCT) BASE—>R HEX 29 CLOAD DELAY
1 : VED BOX SWAP CLS LISTL !CUR .CUR BEGIN ?KEY DUP IF CASE

(lines 2 through 9 remain unchanged)

10 7F OF —TAB ENDOF DUP 1F > OVER 7F < AND
12 BLINK DELAY ELSE DROP BLINK ENDIF AGAIN ; FORTH DEFINITIONS

(lines 13 through 15 remain unchanged)

Before you make this improved editor part of your
auto-boot, you may want to try one more minor change.
On line 3 of screen 34 modify the word BOX to read

: BOX 8F7 8F1 DO CC I VSBW LOOP ;

which makes the vertical sides of the box-shaped cursor
2 pixels wide and a bit easier to spot. This will
provide you with a very satisfactory 40 column editor.

F-TIDBIT #4: In Between Disk Copier

From the time TI-Forth was first released a number
of disk copying routines have been published. This was
mainly in response to TI's implementation of FORTH-COPY
which, being nothing more than 'a DO-LOOP of SCOPY,
tediously copies one screen at a time while giving the
disk drives a good workout. My complaint about those 3
pass copiers is that they necessitate re-booting and for
the most part also disk swapping. In essence, not much
time is saved. One might as well leave Forth and boot a
disk manager. That, of course, is something a true
fanatic is not going to do.

(October 1989 	TIsHUG NEWS DIGEST 	Page 24

From my point of view, too much is made of speed
anyway (I am in the enviable position of having plenty
of time) and I am inclined to look for convenience.
That is the reason my disk copier does not set any speed
records, but it does away with disk swapping and
re-booting. It copies from drive 1 to 2 (0 to 1, if you
want to be finicky about it), takes only 720 bytes of
memory, and 5 screens are read and written per pass. It
will copy formats other than SS/SD, however, the disk
formatting feature will only provide the format provided
by your FORMAT-DISK word.

0 (DISK-COPIER - 1) 39 CLOAD AD 0 CLOAD COPY-DISK
1 BASE->R HEX 	0 DISK LO ! 0 CONSTANT INC
2 : AT GOTOXY ; (skip This if already in your auto-boot)
3 : .SCR# DUP 6 .R ; (format for screen number display)
4 : READ5 5 0 DO I INC + .SCR#
5 	 BLOCK I 400 * 1400 + 400 VOW
6 	 LOOP ;
7 : WRITE5 5 0 DO I 400 * 1400 + I INC +
8 	 DISK SIZE @ + .SCR# BLOCK 400 VMBR UPDATE
9 	 LOOP --FLUSH EMPTY-BUFFERS ;
10 : M1 F4 7 VWTR CLS 2 A AT ." Reading source screens" CR CR ;
11 : M2 4E 7 VWTR CIS 2 A AT ." Writing copy screens" CR CR ;
12 : M3 CLS CR ." FORGET INC to clear memory" CR ;
13 : MORE? (f) CLS 0 ' INC ! 4 E AT . Continue (Y/N) ? "
14 	KEY DUP 59 = SWAP 79 = OR 0= ;
15 -->

0 (DISK-COPIER - 2)
1 : TITLE CLS 4 5 AT ." 0> 	COPY-DISK ---- >1"
2 	 4 8 AT ." Insert source disk in drive 0,"
3 	 4 A AT ." 	copy disk in drive 1,"
4 	 4 D AT ." Press 1 to format copy disk or"
5 	 4 F AT ." any other key when ready "
6 	KEY 31 = IF 1 FORMAT-DISK THEN ;
7 : XFER DISK SIZE @ 5 / 0
8 	DO gT READ5 M2 WRITE5 5 ' INC +!
9 	LOOP ;
10 : COPY-DISK EMPTY-BUFFERS
11 	 BEGIN TITLE XFER F4 7 VWTR MORE?
12 	 UNTIL M3 ABORT ;
13
14 R->BASE COPY-DISK ;S
15

The first parameters in M1 and M2 (as well as the
one preceding 7 VWTR in DISK-COPY) change the text and
background colours. You may substitute them to suit,
just make sure to do it in hexadecimal. READ5 and
WRITE5 are DO-LOOPs which read/write five screens at a
time. XFER combines them into one DO-LOOP which derives
its limit from DISKSIZE. The top level word COPY-DISK
is an indefinite loop which allows repeated execution by
way of MORE?. About the >1400 in READ5 and WRITE5: this
is the address of an unused area of VDP memory which is
used as a buffer. As I said convenience, not speed, was
my objective. So please excuse me while I fetch that
second cup of coffee.

F-TIDBIT #5: Sorting Numbers

Inevitably a programmer encounters the need to sort
some information into some logical sequence, either
numerically or alphabetically. Quite a few sorting
algorithms have been devised over the years and here we
will deal with a Forth version of the Quicksort. This
particular interpretation was written by Gary Nemeth.
Based on it I have implemented a demonstration to sort
twenty numbers.

0 (QUICKSORT DEMO - 1 BASED ON GARY NEMETH'S QUICKSORT)
1 : NOT 0= ; 	 : 2/ 1 SRA ;
2 : 2DUP OVER OVER ; 	: 2SWAP ROT >R ROT R> ;
3 : 20VER SP@ 6 + @ SP@ 6 + @
4
5 0 VARIABLE XX 40 ALLOT
6
7 : NO.INP (----n)
8 	 QUERY INTERPRET ;
9 : ENTER CR 40 0 DO I 2 / 1+ 14 .R ." INPUT : "

10 	 NO.INP XX I + ! CR 2
11 	 +LOOP ;
12 : SHOW CR 40 0 DO CR I 2 / 1 + 18 .R ." : "
13 	 XX I + @ 3 .R 2
14 	 +LOOP ;
15 -->

This screen sets up a number of operators (from NOT
to 20VER) which are needed for the sorting operation.
VARIABLE XX is established to receive the numbers in
random order by way of ENTER. After they have been
sorted SHOW displays them. The words which perform the
sort are shown on below:

1 (QUICKSORT DEMO - 2)
2 0 VARIABLE MIDDLE
3 : K@ 2 * XX + @ ;
4 : K! 2 * XX + ! ;
5 : MID@ OVER - 2/ + K@ MIDDLE ! ;
6 : COMP K@ MIDDLE @ - ;
7 : EXCH 2DUP K@ SWAP K@ ROT K! SWAP K! ;
8 : SORT (nl n2)
9 	2DUP > IF DROP DROP

10 	 ELSE 2DUP 2DUP MID@
11 	BEGIN SWAP BEGIN DUP COMP 0< WHILE 1+ REPEAT
12 	 SWAP BEGIN DUP COMP 0 > WHILE 1- REPEAT
13 	 2DUP > NOT IF 2DUP EXCH 1 -1 D+ THEN 2DUP >
14 	UNTIL SWAP ROT 20VER 20VER - ROT ROT -
15 	 < IF 2SWAP THEN MYSELF MYSELF THEN ;

	

SORT obviously is the top level word. 	K@ and K!
retrieve and store the integers from variable XX, while
MID@, COMP and EXCH are needed to enable SORT to perform
its function. (It is not the purpose of this article to
explain the workings of a typical quicksort. This
information should be obtained from other sources.)

The twenty number limit for the sort is arbitrary.
It was chosen so the entire result of the sort can be
displayed without scrolling off screen. If XX is
modified to allot more (or fewer) cells and the loop
counters in ENTER and SHOW are changed accordingly a
larger (or smaller) number can be sorted.

Usage is as follows:
ENTER - allows input of 20 positive or negative

numbers
0 19 SORT - sorts 	them 	in ascending 	order (loop

parameters must be put on the stack!)
SHOW - displays the result of the sort

In spite of the length of SORT, you will be amazed
at the speed of the sorting operation. In the next
installment we shall explore the use of this routine for
string sorts.

F-TIDBIT #6: Sorting Strings

In the preceding article I demonstrated how numbers
can be sorted. Now we will see how the same routine can
be adapted for sorting strings, i.e., putting them into
alphabetical order. Most obvious changes are the use of
an additional variable (ORDER) and a few added and/or
modified words. Instead of moving strings into
alphabetical order, pointers are stored in ORDER,
similar to sector 1 of a disk containing pointers to the
files in their alphabetical order while the files
themselves remain in random order. There is also the
-TEXT word from Brodie to compare strings, except that
it is called =TEXT to avoid confusion with TI-Forth's
-TEXT. Variable STRGS serves the same purpose as XX
which stored numbers in the previous example. ENTER has
become ENTER$, and similarly SHOW is SHOWS. SET is used
to initialize ORDER.

0 (STRING SORT DEMO - 1 BASED ON GARY NEMETH'S QUICKSORT)
1 : NOT 0= ; 	 : 2/ 1 SRA ;
2 : 2DUP OVER OVER ; 	: 2SWAP ROT >R ROT R> ;
3 : 20VER SP@ 6 + @ SP@ 6 + @ ;
4
5 : =TEXT (addressl u address2 	f)
6 	2DUP + SWAP
7 	DO DROP 2+ DUP 2- @ I @ - DUP
8 	 IF DUP ABS / LEAVE THEN 2
9 	+LOOP SWAP DROP ;
10
11 0 VARIABLE ORDER 40 ALLOT
12 0 VARIABLE STRGS 40 ALLOT
13
14
15 -->
	 continued on page 35

(Page25 	 TIsHUG NEWS DIGEST 	October 198

Thais andFleadaches with WIY 	DM5
by Ben Takach

The first part of this report published in the
September issue dealt with the back—up problems, and the
need of a streaming tape backup support. This part will
deal with the problems encountered by using DM5, the
Disk manager program for the hard and floppy disk
controller.

1. The 80 track drive support.

The manual clearly states that 80 track drives are
supported by the Hard disk control card and DM5. This
option may be set by the dip switches on the HFDC card.
Myarc provided 4 settings: 360k 40 track 16ms step rate,
360k 40 track 8ms step rate, 720k 80 track 2ms step rate
and 1.44M 80 track 2 ms step rate for future expansion.

If the appropriate dip switch pair is set to the 80
track 1.44M (quad density) mode, then the particular
drive will be treated as a 720k 40 track drive 2ms step
rate. I have tried to use an IBM 1.4M HD drive on this
setting, the disks however were only formatted to 1440
sectors. The same drive will format disks to 2880
sectors if the dip switches are set to 80 track 720k.

2. Compatibility with other cards in the PE—box.

Any mass storage media is likely to get corrupted.
In fact they have a habit of getting corrupted at the
most inopportune times. This of course is not such a
big drama with floppies, as I have said before.

So the catch 22 situation with DM5 is that its
virtue, to be ever present and only a CALL away, once it
is installed on the Winchester drive, is also its
downfall. The program logic does not prompt for a path
name if the file MDM5 is corrupted or missing, it simply
drops the bundle and locks up the system. It is easy to
fall into an iron—tight inescapable trap without trying
too hard.

The ever present Mr Murphy decided to test my
patience and ability to get out of a straight—jacket a
few weeks ago. Originally, the MD5 files were on the
hard disk in two places.

WDS1.Root

--DSK1.DM5 FILES

I — —DSK.DM5.DM5 FILES

I 	I

r

V V

The Hard disk card co—exists happily with the
Mechatronic GRAM card, the TI-32K card, the Myarc 512K
RAMdisk card, or the Rave RAMdisk. All my module files
have been saved to the hard disk. The GRAM card loads
the selected files at the appropriate command. Thus I
am able to boot up in any format, eg., Extended BASIC,
MiniMemory, Editor Assembler, TEII, TI—Writer, etc.,
without a cartridge in the module port or a diskette in
the drives. The Hard disk control card will access any
program or data file in any sub—directory of the hard
disk.

DM5 however, is not so user friendly. 	It will
refuse to boot up in the presence of the Mechatronic
GRAM card unless the 512K Myarc RAMdisk is in the PE
BOX. If the Rave EXP.MEM or the TI-32K card is fitted,
then I have to pull out the Mechatronic card to enable
DM5. This is a serious short coming, and so far I have
been unable to come up with any remedy or get an
explanation.

3. The Tricky DM5.

DM5 version 1.26 and version 1.29 are the two most
recently released Myarc hard and floppy disk managers.
It is a delight to use it if and when it runs. Getting
it booted can at times be most difficult or even
impossible. I had to shed all the surplus hardware from
the PE box at first, to get it up and running. The main
problem stems from the entirely different concept of a
hard disk environment, compared to the floppy system.
If you have a corrupted diskette, you can remove it from
the drive and try its back up. The same option is not
available to hard disk users. If a program file is
corrupted on the hard disk, then the only option left is
to run it from a diskette out of a floppy drive. If the
program happens to be a multiple file chained assembler
object code, which is configured to run out of drive 1,
then all of the files with the exception of the load
file have to be present in drive 1, otherwise the files
will not be found.

The root of DM5's problem stems from this explicit
rule of the TI99/4A disk memory organization. Naturally
one has to install the essential DM5 program files on
the hard disk in order to use the instant access option
through the "CALL MDM" or "call mdm" from BASIC. If the
program file MDM5 gets corrupted on the hard disk, then
one can no longer load, run or access the disk manager
DM5. Myarc did not provide an emergency back door! It
does not matter how much back up copy one has on floppy
disks, and from which drive one tries to run them
(including the ram disk) the hard disk control card will
try to read MDM5 off the hard disk.

Thus the path names were: WDS1.DSK1.MDM5 and
WDS1.DSK.DM5.MDM5.

Why did I stored these twice? The Myarc manual is
not very clear regarding the residential status of the
MDM program files. I understood it may be anywhere on
the hard disk, thus I duly created a sub—directory for
it, and saved the path together with the set up details
as directed by the prompts in the SETUP screen of DM5.
Subsequent CALL MDM's went unanswered, so I decided to
copy the essential files on to the DSK1 sub—directory.
This is where I committed the fatal error. I lost
access to MDM forever. As it happened, I had to
transfer the hard drive on to another system, thus it
did not matter. What was my error? I should have
repeated the set up procedure after the files were
copied to the DSK1 sub—directory before leaving the DM5
environment. Once one quits, there is no way to get
back ever again! Every time I called MDM, it found an
unacceptably torturous path and hung up!

Things were back to normal after this episode, with
the new hard disk drive, until the recent visit of
Murphy. Here is the result of the post—mortem after one
week of keyboard and card swapping gymnastics.

Once I managed to boot up DM5 again, I had copied
the MDM files from the hard drive to floppy disk, then
using the disk sector editor, printed out the MDM5
program file, which is the main part of the program.
Almost half of the codes were missing! The immediate
result was that I could not boot up the disk manager, no
way, no how! It proceeded just so far to give me a
brief glance at the disk manager's title screen, then
took me back to the TI99/4A title screen.

I could have solved the problem by deleting the
MDM5 file from the DSK1, or rename the sub—directory to
DSK2 etc., or by copying a new MDM5 file to WDS1.DSK1.
Alas, DM5 had to be up and running to do any of these.

Finally, after many frustrating hours, I pulled the
20 way IDC plug from the hard disk card after the system
was booted, ran the DM5 program from the floppy, then
re—connected the 20 way ribbon to the Hard—card after
the program was up and running. I made a copy of MDM
residing in the DSK sub—directory, to a diskette for
further investigation, as I already mentioned above,
then copied the necessary DM5 files onto the hard disk.

There are many possible ways to recover from such a
predicament. 	All of these do need special software.

continued on page 14

(October 1989 	TIsHUG NEWS DIGEST 	Page26)

,1)4311. CIMITIA3
by Michael A. Ballrnan, USA

This series of articles will explain some of the
secrets of the TI disk controller. To start off you
need to know several memory locations and commands. At
all of these addresses the data is inverted.

>5FF0 status read address
>5FF2 track address read
>5FF4 sector address read
>5FF6 data from disk
>5FF8 command write address
>5FFA track address write
>5FFC sector address write
>5FFE data to write

TYPE COMMAND
	

BITS
7 6 5 4 3 2 1 0

Restore
	

O000hvRr
Seek
	

O001hvRr
Step
	

O01uhyRr
• Step in
	

O10uhyRr
Step out
	

O11uhvRr
II 	Read command
	

100mbe00
II 	Write command
	
101mbeAa

III Read address
	

11000e00
III Read track
	

1110010s
III Write track
	

11110100
IV 	Force interrupt1101jkln

h=1 load head at beginning
v=1 verify track register
u=1 update track register
m=1 multiple records
b=1 IBM format (TI uses IBM format)
e=1 enable 10ms delay for head settling
Aa binary count data marks (FB,FA,F9,F8)
Rr binary count for step speed (6,6,10,20ms)
jkln various interrupts (use '0')

BL @SETTRK
LI R2,>1000
LI R10,TBUFF
BL @SENDC
DATA >1B00
SBO +2

TREAD1 MOVB @>5FF6,R0
INV RO
MOVB RO,*R10+
DEC R2
JNE TREAD1
SBZ +2
NOP

STOP TIP STOP
• JMP AGAIN
SENDC MOV *R11+0R0

MOVB @>5FFO,R6
SLA R6,1
SBZ +1
SBO +1
JOC WRTCD
LI R6,>7530

WAITL SRC R5,4
SRC R5,4
DEC R6
JNE WAITL

WRTCD MOVB RO,@>5FF8
SBO +3
SRC R5,8
SRC R5,8
B 	*R11

MYREG BSS >20
TEXT 'BSTART'

TBUFF BSS >1000
TEXT 'BEND'

for later program
set byte count
buffer pointer
send command
read track cmd inverted
enable ready
read byte
make normal
save byte
adjust byte count
last byte? no
disable ready line
display routine

wait here forever
for later program
get command
read status
get ready bit
toggle drive on

ready set? yes
set—up delay
* so motor can
* get up to
* speed
delay end? no
send command
load head
kill time
kill some more
return
work registers
so start can be found
buffer
so end can be found

NOP 	 goes here

* USE DEBUG TO VIEW DATA PUT BREAKPOINT
* WHERE THE TWO NOP'S ARE AND USE 'M'
* TO LOOK AT THE BUFFER 'TBUFF'

Do not be too worried if you do not understand how
any of these instructions are used. All will be
explained by the end of this series.

The CRU base address for the disk controller is
>1100 and must be in register twelve. With R12 loaded
these bits can be used for various control functions
with the SBZ and SBO assembly language instructions.

SBO +0 turn on card
+1 motor on by toggling this bit
+2 activates the ready line
+3 sets head load line
+4 selects drive called DSK1
+5 selects drive called DSK2
+6 selects drive called DSK3
+7 selects side two of drive

Now for the first program segment. This part will
read a track on a disk in drive one. The track can be
protected and does not have to be formatted for this
program to read it. (No you can not read a track then
write it to copy a disk some of the control information
will change.)

*** ******

* READ TRACK

DEF TREAD 	define start

TREAD LWPI MYREG 	load work registers
LI R12,>1100 	set CRU address
SBO +0 	 turn on card
SBZ +5 	 not drive two
SBZ +6 	 not drive three
SBO +4 	 select drive one
SBZ +7 	 select side one

* zero track program goes here later
*AGAIN BLWP @GET# 	for later program

Here is the control information on the disk and a
program to accept a track number from the keyboard. The
FDC recognizes some data bytes as special when a write
track command or a read command is given. These bytes
and their meaning are:

F7—Write CRC characters used in error checking
F8—Data address mark (deleted data) Aa=11
F9—Data address mark (user defined) Aa=10
FA—Data address mark (user defined) Aa=01
FB—Data address mark (user defined) Aa=00
FC—Index address mark (hole in disk)
FD—Spare (no special meaning)
FE—ID address mark

When data is written it is intermixed with a clock
bit between each data bit. In order to easily identify
address marks they are written with some clock bits
missing. The special coding is why data can not be
written to the disk with the write track command.

x=data bit c=clock bit
11000111=C7 	11010111=D7
cxcxcxcxcxcxcxcx 	 cxcxcxcxcxcxcxcx
11111? ? ?=F8,9,A,B,E 	11111100=FC

When the FDC sees an F7 byte on write track, two
bytes of data to be used for error checking are written.
Remember two bytes.

GAP AM TRACK# SIDE SECTOR# SECTOR—LEN CRC
000000 FE 28 	00 	09 	01 	??

The ID field tells the FDC where it is. This
information indicates track 40 and sector 9 on a single
sided disk with a sector size of 256 bytes. By changing
this information or putting it someplace else on the
disk, the data in the sector will not be found with the
TI DOS (disk operating system). This a type protection
used prevent backup of their software.

Page 27 	 TIsHUG NEWS DIGEST 	October 1989

Under the 'IBM' disk format (TI's also 01) the
sector length is used as a shift value of 0 to 3 giving
a sector length of 128 to 1024 bytes. If the 'b' bit in
the read and write commands is a zero, the length byte
is used as a multiplier. That is 16*(sector length) =
bytes in sector, giving a sector length of 16 to 4096
bytes. (Do not use the reserved bytes F7 to FE.)

VREG1 BSS >20 	set-up registers
H30 	DATA >0030 	data for conversion
H07 	DATA >0007 	data for conversion
TRACK# DATA >0000 	track no. to read
SCRENO DATA PRESS,>0000 text pointers
PRESS DATA >02E2,22 	address and length

TEXT 'SELECT TRACK TO READ >'
GET# DATA VREG1,BEGIN BLWP pointers
BEGIN LI RO,>2000 	byte to write

LI R1,>0300 	bytes to clear
LI R2,>0000 	address to start
BL @CLEAR 	clear screen
LI R10,SCRENO get pointer for screen
BL @TEXTO 	write screen

* KEY SCAN

LI R1,>02F8
	

load write location
KEY 	LWPI >83E0
	

use GPL registers
BL @>000E
	

scan keyboard
LWPI VREG1 	go to my registers
CLR RO 	 clear RO
MOVB @>8375,R0
	

get key
CI RO,>FFOO
	

check for no key
JNE KEY
	

yes. key pressed
KEY1 LWPI >83E0
	

use GPL registers
BL @>000E
	

go to scan routine
LWPI VREG1
	

use my registers
MOVB @>8375,R0
	store key

CI RO,>0D00
	

was key ENTER?
JEQ ENTER
	

yes.
CI RO,>3000
	

was key zero or higher?
JLT KEY1 	yes.
CI RO,>3A00
	

is key greater than 9?
JLT DECODE
	

yes. decode and display
CI RO,>4100
	

is key less than 'A'?
JLT KEY1
	

yes.
CI RO,>4600
	

is key greater than 'F'?
JGT KEY1 	yes.

DECODE MOV RO,R5 	move key to R5
MOV R1,R2 	get write location
INC R1
	

adjust write location
BL @ADDST1
	

set-up write address
MOVB R5,@>8C00
	

write key to screen
SWPB R5
S 	@H30,R5
CI R5,>000A
	

is key a hex digit?
JLT SAVE
	

no.
S 	@H07,R5 	make a hex digit

SAVE SLA R8,4
SOC R5,R8
	

store number in R8
JMP KEY
	

get next key
ENTER ANDI R8,>00FF
	

mask off mistakes
MOV R8,@TRACK# save track to read
RTWP
	

return to read program
TEXTO MOV R11,R6
	

save return
TEXT1 MOV *R10+,R0
	

get pointer to text
MOV RO,R0
	

was it last text?
JEQ RETN6 	yes.
MOV *R0+,R2 	get write address
MOV *R0+,R1 	get length
BL @ADDST1 	set up VDP address

WTEXT1 MOVB *R0+,@>8C00 write data
DEC R1 	 adjust count
JNE WTEXT1 	done? no
JMP TEXT1 	go for more text

* CLEAR SCREEN

CLEAR MOV R11,R6
	

save return
BL @ADDST1 	set-up VDP write address

W100PA MOVB RO,@>8C00 	write byte
DEC R1 	 adjust count
JNE WLOOPA
	

last byte? no.
RETN6 B 	*R6
	

return

* SET-UP VDP WRITE ADDRESS

ADDST1 AI R2,>4000 	make a write address

SWPB R2
MOVB R2,@>8CO2
SWPB R2
MOVB R2,@>8CO2

*R11 	return

Now put these two segments together.

A while ago someone ask me the size the files in
the disk directory. I have now come across the answer.
The files are (decimal) 38 bytes long. Any other size
will give an error.

I once asked what all the names and uses of
subprograms in the disk service routine. I now have the
answer. If you want to know just ask.

Now this program needs:

1) Error checking so you cannot try to read past the
last track.

2) Some way to quit the program.
3) A display routine.
4) A way to switch to the second side.

I feel there is some merit in typing in programs so
the only way this program is available from me will be
on paper. It is less than 200 lines long so it should
be easy to input it in with one sitting.

I have not used some of the commands available on
the FDC (WD-1771). Here is how they work:

SEEK: The track register at >5FF2 must have the current
track number, load the data register at >5FFE with
the desired track, then send the SEEK command. The
FDC will then issue the necessary step signals to
arrive at the requested track. If the 'v' bit is
set in the command the FDC will then check of the
track number on the disk.

STEP: This command just steps the head the same
direction as the last head move.

READ: Position the head on the correct track, load the
sector register at >5FF4 with the desired sector,
then send the read command. The track register and
the track data on the disk must agree! Data will be
at >5FF6. If there is a CRC error in the ID field
this command will abort.

WRITE: This command is like the READ command except data
is put at >5FFE to be written to the disk.

READ ADDRESS: When sent this command the FDC will read
the next ID data field. The data will be at >5FF6
and will be six bytes long. The bytes will be:

1) Track number as it appears on the disk
2) Side number. Not use by the FDC.
3) Sector number.
4) Sector length.
5) First byte of the CRC error checking data.
6) Second byte of the CRC data.

If there is a CRC error, this command, or any which
check the CRC, sets the status bit number three.
Remember these bits are not numbered backwards like
the bits on the TI.

WRITE TRACK: Just like the READ TRACK except it writes
data instead of reads it. Do not forget the
different addresses for read and write.

FORCE INTERRUPT: When this command is received the FDC
stops whatever it is doing and goes not busy.

Now the status bits at >5FFO:

7) All commands- NOT READY
6) Write and type I commands- WRITE PROTECTED

Read- 1st bit for data ID byte decode

(October 1989 	TIsHUG NEWS DIGEST 	Page 28

5) Type I— Head engaged, Write— Write fault.
Read— 2nd bit for data ID byte decode

4) Type I— Seek error
Others— Requested data not found

3) All commands— CRC error
2) Type I— Track zero, Others— Lost data
1) Type I— Index (beginning of the track)

Others— Requesting service of data register
0) All commands— BUSY

RAMdisk DT haird disk
which way to go?

by Lou Amadio

* SET THE DRIVE TO TRACK ZERO

LIMI >0000 	disable interrupts
BL @SENDC 	send instruction
DATA >F700 	seek track zero
BL @CBUSY 	wait until done
CLR R7 	 pointer to current track

* MOVE THE ABOVE SECTION OF CODE TO THE PLACE *
* RESERVED FOR THE ZERO TRACK ROUTINE AND DELETE*
* THE '*' AT THE BEGINNING OF THE THREE LINES *
* MARKED FOR FUTURE USE. DELETE THE STOP LINE *

If you have owned a fully expanded system for some
time and are thinking of expanding further, you may be
wondering what options are available to you with regard
to mass storage. Now that the cost of static RAM chips
has slowly increased to a point where we are paying
approximately $1 per kilobyte, the question of which way
to expand, RAMdisk or Hard Disk, becomes very relevant.

Up until recently I had been of the opinion that
RAMdisks were the only way to go, so let us have a look
at the relevant statistics, or what you get for your
money:

RD Size 	Basic 	SRAM 	Total

96Kb 	$80
192Kb 	$80
384Kb 	$80
512Kb 	$85
1024Kb 	$90

$96 	$176
$192 	$272
$384 	$464
$512 	$597
$1024 	$1114

SETTRK MOV R11,R13
MOV @TRACK#,R1
C 	R1,R7
JLT SOUT
JEQ RET13

SIN BL @CBUSY
BL @SENDC
DATA >BDOO
INC R7
C 	R1,R7
JNE SIN
JMP RET13

SOUT BL @CBUSY
BL @SENDC
DATA >9D00
.DEC R7
C 	R1,R7
JNE SOUT

save return
get desired track numb.
compare desired / actual
if less then step out
equal then return
check busy bit
send command
select step in cmd
adjust track pointer
is drive at wanted track
no.
return to main program
check busy bit
send command
select step out cmd
adjust track pointer
is drive at wanted track
no.

"RD" = RAMdisk
"SRAM" = Static RAM chips
"Basic" refers to the cost of a RAMdisk kit with

everything except the SRAM chips..

As you can see, a small RAMdisk (96Kb) will cost
you almost $180 while a DSDD RAMdisk will set you back
over $460.

On the other hand, a hard disk system has the
following costs:

RET13 B 	*R13 	return

* CHECK FOR DRIVES BUSY

CBUSY MOVB @>5FFO,R0 	get status

	

SLA R0,8 	find busy flag

	

JNC CBUSY 	is it set? n
B 	*R11 	return
END

Merge these three segments together in the order
presented, then make the move and changes noted in this
last segment, then assemble the result with the 1121
option. If when you assemble this code you want a
printed copy; type in the correct print device. If you
have PIO include a '.' after the name.

This is the last of this series. If you have any
questions please write (I repeat write) to me at the
following address.

If you have any Assembly Language or Hardware
questions you would like answered, please send them to:

Miami Users Group
PO Box 650955
Miami, FL 33265-0955
	 0

POT S Rat
3 x Consoles (1 black) UHF, $90 each
Speech Synthesiser $50
Terminal Emulator $20
BMC BX80 printer $220
6 x modules $10 each
Assembly Language and Systems Handbook $20

Phone Homero on 042-286585

Myarc HFDCC 	 $380
10Mb Hard Disk (used) 	 $100

Subtotal $480

The above costs assume that you will be mounting
the Hard Disk inside the TI Peripheral Expansion Box
(PEB) and powered by a modified PEB power supply.

A stand—alone power supply and box for a hard disk
costs approx $85 on a do it yourself basis. (See TND
Sept '89 for more information on how to power a Hard
Disk).

Given the above costs, which way would I go?

My first choice would be a minimum specification
RAMdisk. By minimum specification I mean enough SRAM to
run the John Johnson Menu programme as well as a few
important utilities such as a disk manager and a word
processor. For this you could probably get away with
64K or even 32K of SRAM. So for little more than the
cost of a floppy drive you can have a very powerful menu
driven system which will change the way you use your
computer, and make you wonder how you ever got along
without it.

After that, you either add extra memory chips to
your basic RAMdisk, if and when you can afford them, or
wait until the price of SRAMs comes down to a reasonable
level.

The second choice is not as easy: Given the above
costs, and the uncertainty of the prices of SRAMs, you
can bite the bullet and go for a Hard Disk system.
After the shock to your wallet has subsided somewhat,
you will find that not only is the Hard Disk a very
useful addition to your system, but it nicely
compliments the RAMdisk.

Perhaps then, when taken in the right order, it is
not such a hard choice after all.

Page29 	 TIsHUG NEWS DIGEST 	October 19Ei

„FEND In alit Metalltlin

byWmmerFamitz

I can't believe I am here today
Dad I but said, Mazz go away,
When first my mind was tempted
But then again as you can see
My soul could once again be free
If this association would be ended.

It did it again!!!
	 (my apologies to Mr Colleridge)

	
0

Half way through a page of typing the RAMdisk died.
Oh woe is me!

"Well there ylgo complain enuff an' some oriel]. come
t' the rescue (or the devil will come to get his dues).”

Remember that most wonderful of devices, that
circuit board with all those fancy chips stuck onto it
gingerly inserted into a vacant slot in that most useful
of add—ons the PEBox, backed up as it were with a number
of batteries in case there is a lack of power. I
referred to it above, that devil's own device, the
RAMdisk.

For years I managed to avoid constructing one due
in no small way to the fact that I am more into spitting
chips than soldering them. I could however not elude
that silver tongued fox Herr Amadio. I was persuaded to
buy a ready made model. Once installed the boy thought
she was a ripper, and so it was, when it was running.
Blessed are those without for they shall not suffer the
aggravations of blips and surges, and require to
reinstall their ROS every few weeks.

"It is the price of technology they reckonned yer
tryen t' make the thing do tings it wozn't meant t'
do." That is not much consolation.

Never mind, Lou to the rescue. 	"Ve can fix det
midt ein chip preprogrammed wif der operating zystem
burnt into it for ever (EPROM)." Great news, no more
worries, get me one. Done. Thinks I, get it home pop
out the old, slip in the new and you are cooking with
gas so to speak.

"B!**sh%t!!"

You need different software to drive it, no
problem, I will install it. You need to make hardware
changes to your RAMdisk. (*@!*, is nothing simple!)

I do not know anything about oxy—cutting and
welding even on this minute scale. It is getting to the
point where I am tempted to cut my losses and go PC. At
least everything is plug in. G*%, I hate electronics!

The Rhyme to an Ancient Computer.
by Werner "Wordsmith" Kanitz

I don't know why I bought the thing
Some said it was a bargain
The cost was cheap free games rolled in
But then we reassessed again
For nothing there was serious

Chips and cards were everywhere
And the number of free slots did shrink
Chips and cards were everywhere
Still not enough I think.

Its chips were there its slots were free
Its keys cold and inviting
Its skin was white as leprosy
My nightmare TI PC was she
Who drains man's purse expanding

For joy for joy this glorious toy
The men would play and fiddle
Expanding up was all the go.
First box and then the extra memory
The RAMdisk followed close behind
To my everlasting misery.

continued from page 4

STRBUF BSS 256
	

*This is where strings will be
transferred between assembly and
Extended BASIC.

NEWREG BSS 32
	

*This is where our workspace will
be. 32 bytes are reserved since
16 registers X 2=32

START LWPI NEWREG
	

*This instructs the computer to
use the memory locations
indicated by NEWREG as the
workspace registers.

CLR RO
	

*Loads RO with 0
LI R1,1
	

*Loads R1 with 1 (first
parameter)

BLWP @NUMREF
	

*Gets the value of X from CALL
LINK

BLWP @XMLLNK
	

*Converts X from a
DATA >12B8
	

floating point number to an
integer which is in >834A

MOV @>834A,R3 *Saves the integer X into R3
since the the word at >834A may
be altered by STRREF.

LI R1,2
	

*Loads R1 with 2 (second
parameter)

LI R2,STRBUF *Address of where S$ should be
copied to.

LI R0,255
	

*Loads RO with 255 (largest
possible string)

MOV RO,*R2
	

*Makes @STRBUF=255 this allows S$
to be up to 255 characters or
less.

CLR RO
	

*Restores RO to 0 since S$ is not
an array.

BLWP @STRREF 	*Copies S$ into STRBUF+1
LI R2,STRBUF+1 *Tells the routine below where

to find S$.
MOV R3,R0 	*Tells the routine below where to

start writing the message to the
VDP screen.
(The following LOOP routine is
identical to that in Part 3.
Please Refer for explanation on
entries.)

LOOP MOVB *R2+,R1
AI R1,>6000
BLWP @VSBW
CI R2,STRING+4
JLE LOOP
CLR RO
MOVB RO,@>837C
LWPI >83E0
RT

With this assembly routine you can control where
and what your message is written to the VDP screen.
Keep in mind that unlike DISPLAY AT, if you let X be 767
and S$ is 256 bytes long , screen wrap will not occur
with S$ being printed at the top of the screen, but
rather, S$ will be written to the VDP being used for the
first 31 character definitions, ASCII 0 to 30. Since
the memory for these characters is.being used to hold
some of Extended BASIC's system variable, queer things
could occur.

PDT Sth
2 x 35 track floppies in box with power supply $100
Speech Synthesiser $50
Peter Schubert Mini PE System (no box) $240

Phone Kevin on 042-616301

(October 1989 	TIsHUG NEWS DIGEST 	Page30

VDtEllr Inra
Vital 	irha #3, by Geoff Trott

This is the third article on writing programs in
c99 using the example of reconstructing dictionary files
for the Dragonslayer Spell Check program. Of course the
main part of the whole task is the editing of the
dictionary files, deleting and adding words and this
remains to be completed. If anyone is interested in
this project, either in the dictionries as they are, or
in progress reports, I suggest they contact me.

This month I will explain how the string procedures
work. These have been modified so if you want to
compare these with the originals, you will have to do
the comparison yourself. I have tested each of these
procedures and am confident that they do work as they
are supposed to. I have changed them so that they do
not need to be compiled with your program but they are
loaded at the same time as the main program and the
support procedures. To this end you must include the
statement "#include DSK.H.STRINGI" near the start of
your program. This looks in disk called DSK.H. (or
sub-directory DSK.H.) for the file which contains the
following:

extern strlen(),strcmp(),stncmp(),index(),rindex();
extern strcat(),stncat(),strcpy(),stncpy();

These lines define the procedure names as being
external to this program and so not to give an error
when one of these names is used. Then you may use any
of these procedures. They perform the following
functions:

strlen(s): returns the length of the string s
strcmp(sl, s2): returns a value which shows the result

of the comparison of two strings, sl and s2
stncmp(sl, s2, n): returnsa value which shows the result

of the comparison of the first n characters of sl
and s2

index(s, c): returns the position of the first occurence
from the left of the character in the string s

rindex(s, c): returns the position of the first
occurence from the right of the character in the
string

strcpy(sl, s2): copy s2 into sl
stncpy(sl, s2, n): copy the first n characters of s2

into sl
strcat(sl, s2): copy s2 onto the end of sl
stncat(sl, s2, n): copy the first n characters of s2

onto the end of sl

What is a string? Well, a string is a number of
characters which travel together. In C, a string is an
array of characters terminated by a NULL or 0 character.
The name of an array is a pointer to the first element
in the array. So we are going to have to understand
pointers if we are going to see what these procedures
do. To look now at the code, the first few lines are
comments followed a statement to give a value to a name
(NULL = 0) and then two lines of assembler code enclosed
in the "#asm" and "#endasm" statements, which ensures
that the procedure names are available to other programs
at load time. This could also be done with the "#entry"
statement (see Craig Sheehan's tutorial). Then on to
the first procedure.
/*
** string function library
**
** contributed by :
** Tom Wible
** 203 Cardinal Glen Circle
** Sterling, VA
** USA 22170
**
** Modified by Geoff Trott, 29 June 1989
** 20 Robsons Road, Keiraville, NSW 2500, Australia
**
*/
ifdef ne NULL 0

#asm
DEF STRLEN,STRCMP,STNCMP,INDEX,RINDEX
DEF STRCPY,STRCAT,STNCPY,STNCAT

#endasm

/* 	returns string length 	*/
strlen(s)
char *s;

int n;
n = 0;
while (*s++) n++;
return (n);

The string name passed to the procedure must be
declared before the procedure starts. In this case it
is an array of characters so the name is a pointer to a
character. "*s" means the contents of the memory cells
pointed to by "s" and in this case is a character.
Inside the procedure a local variable is declared which
is used to count the number of characters in the string.
This is first initialized to zero and then as long as
the next character in the string is not NULL, it is
incremented. When the NULL character of the string is
reached, n has the number of characters scanned and this
is returned as the result of the procedure, like a
function.

Note the use of the ++ operator to increment both
the pointer to the string and the counter. This
procedure could have been done using other operators as
we will see with the other procedures.

/* 	compares sl to s2,
return: number<0 if sl before s2;

0 if sl same as s2;

	

number>0 if sl after s2 	*/
stroll:1)01, s2)
char *sl, *s2;

int r12;
for (; (*s1) != NULL; sl++, s2++)

r12 = (*s1) - (*s2);
if (r12) return (r12);

r12 = (*s1) - (*s2);
return (r12);

}

Comparison of strings is trickier but all that
happens is that each character of the two strings are
compared, one at a time, until they differ or one is a
NULL. If a NULL appears before they differ, the strings
are identical, whereas if they differ the difference is
returned as the result. The work is done by a "for"
loop. This one has no initialization statement with
both pointers to the strings being incremented each time
round the loop which terminates if the character from sl
is NULL. Note the "!=" meaning not equal to. If the
characters are not the same then the "if" statement
returns that difference as the result of the procedure.
When the "for" loop terminates, the result is the
difference between the last characters.

/* compares n chars of sl to s2,
return: number<0 if sl before s2;

0 if sl same as s2;
number>0 if sl after s2 */

stncmp(sl, s2, n)
char *sl, *s2;
int n;

int r12,i;
if (n < 1) return(0);
for (; n > 1; --n, sl++, s2++)

r12 = (*s1) - (*s2);
if (r12) return (r12);
if (*sl == NULL) return (r12);

r12 = (*s1) - (*s2);
return (r12);

(Page 3 1
	

TIsHUG NEWS DIGEST 	October 1989)

continued from page 6

PEB to I/0 Port Connections

PEB # 	Fun(' 	I/0 #
1 	+9V 	NC
2
	

+9V UNREG NC
3
	

GND 	21
4
	

READY(H) 	12
5
	

GND 	23
6
	

RESET(L) 	3
7
	

GND 	25
8
	

SCLK(H)PULLUP
9
	

LCP(L) PULLUP
10
	

AUDIO 	44
11
	

RDBEN PULLUP
12
	

PCBEN PULLUP
13
	

HOLD(L)PULLUP
14
	

IAQ(H) PULLUP
15
	

SENILA PULLUP
16
	

SENILB PULLUP
17
	

INTA(L) 	4
18
	

LOAD(L) 	13
19
	

D7(H) 	34
20
	

GND
	

27
21
	

D5(H)
	

38
22
	

D6(H)
	

36
23
	

D3(H)
	

42
24
	

D4(H)
	

35
25
	

Dl(H)
	

40
26
	

D2(H)
	

39
27
	

GND
	

21
28
	

DO(H)
	

37
29
	

A14(H)
	

16
30 A15/CRUOUT(H) 19

PEB # Function I/0 #
31
	

Al2(H) 	11
32
	

A13(H) 	15
33
	

AlO(H) 	6
34
	

All(H) 	8
35
	

A8(H) 	14
36
	

A9(H) 	18
37
	

A6(H) 	29
38
	

A7(H) 	17
39
	

A4(H) 	7
40
	

A5(H) 	5
41
	

A2(H) 	20
42
	

A3(H) 	10
43
	

AO(H) 	31
44
	

Al(H) 	30
45
	

AMB(H) PULLUP
46
	

AMA(H) PULLUP
47
	

GND 	23
48
	

AMC(H) PULLUP
49
	

GND 	25
50
	

CLKOUT(L) 24
51
	

CRUCLK(L) 22
52
	

DBIN(H) 	9
53
	

GND 	27
54
	

WE(L) 	26
55
	

CRUIN(H) 	33
56
	

MEMEN(l) 32
57 	—18V UNREG NC
58 	—18V UNREG NC
59
	

+18V UNREG NC
60
	

+18V UNREG NC 0

This comparison has the added complication of only
looking at the first n characters. The "for" loop is
modified to make sure that only n characters are
examined. There are then two exits from the function
within the loop and one check at the end of the loop.
Note that the "==" in the "if" statement means is equal
to.

/* 	returns location of c in s */
index(s, c)
char *s, c;

int n;
for (n = 1; *s != NULL; n++, s++)

if (*s == c) return (n);

return (0);

The "for" loop now initializes n to 	1 	and
increments n and the pointer to the characters in the
string while the loop finishes when the NULL character
is reached. In that case the character has not been
found and zero is returned. If the character is found
the current value of n is returned.

/* returns location of c in s from right
rindex(s, c)
char *s, c;

int n;
for (n = 0; *s != NULL; n++, s++) ;
s--;
for (; n > 0; s--, n--)

if (*s == c) return (n);

return (0);

The first "for" loop finds the length of the string
and sets the pointer to the last character. The second
"for" loop searches for a character match from the end
of the string to the start. The use of "--" decrements
the pointer and the counter.

/* 	copy s2 into sl
strcpy(sl, s2)
char *sl, *s2;

while ((*s1++) = (*s2++)) ;
return;

This procedure returns a string which can only be
done through a pointer if there are more than one item,
in this case a number of characters. This is done by
the test of the "while" loop (which is empty). Here the
power of C can be seen as each pointer is incremented
after one character is stored in the other string. The
single "=" means to assign the value, not to test the
result. The "while" loop continues until the character
value is NULL, the end of the string.

/* 	copy at most n chars of s2 into sl
	

* /
stncpy(sl, s2, n)
char *sl, *s2;
int n;

for (; n > 0; n--, sl++, s2++)
*sl = *s2;
if (*sl == NULL) return;

*sl = NULL;
return;

For this case there is too much to be done to use a
simple "while" loop as before, so a "for" loop is used
with one exit if the string is less than the length n.
If not then the new string must have a NULL as the last
character.

/* concatenate s2 to end of sl
strcat(sl, s2)
char *sl, *s2;

while (*s1++) ;
sl--;
while ((*s1++) = (*s2++)) ;
return;

To concatenate two strings, first the pointer must
be moved to the end of the first string and then the
second string copied to the end of that string. Very
simple and elegant!

/* concatenate at most n chars of s2 to end of sl
stncat(sl, s2, n)
char *sl, *s2;
int n;

while (*s1++) ;
sl--;
for (; n > 0; n--, sl++, s2++) {
*sl = *s2;
if (*sl == NULL) return;

*sl = NULL;
return;

Concatinating at most a number of characters is
more complicated and requires the "for" loop, but is
just a combination of other procedures.

I hope that you find some value in looking at these
procedures but I suggest that you have a book on C close
at hand while you do it. There are other procedures to
look at and try out with the c99 package from Clint
Pulley of Canada. I commend the language to you if you
have a program you wish to write and have execute at a
faster speed than it would in Extended BASIC. C is one
of the languages of the future for just such uses and is
very powerful in the assembler language sense as well as
having many of the features of high level languages. 0

(October 1989 	TIsHUG NEWS DIGEST 	Page32)

TrallTa stamp DDT aillitet Iltunuo
by Larry Saunders

Select : AUTO DIALER
Press : M
Press : 1
Type : TEXPAC BBS 2400 Baud rate
Phone : 3191009
Terminal : ANSI
Baud rate : 2400
Parity : 8N1
Width : 40
Select : Option Setup
Select : Initialization Setup
Type : ATS0=0
Select : Dial String
Type : ATDP
Select : Hangup String
Type : ATH!
Goto : Setup Option Screen
Press C for save Changes

Now Telco is setup for smart modem. If you want a
different Baud rate for BBS, setup AUTO DIALER the same
as at start but put in a different baud rate.

Ideal setup should read
1> TEXPAC BBS 2400 Baud rate
2> TEXPAC BBS 1200 Baud rate
3> TEXPAC BBS 300 Baud rate
4> AUSTPAC's 2400 Baud rate

RUM 	Bulletin Bourd

MAIL TO : ALL
MAIL FROM : GOWFAR

Hi all!! A bit of update news for you from Gary
Christensen (Old) re: Geneve and other Myarc gear. It
appears that Gary received a letter from Myarc (after
numerous overseas calls not answered by them) stating
that the Geneve's ordered by anyone here (through Gary)
will be arriving in 4 to 6 weeks. Also, anyone having
purchased a HFDCC through either Gary or (sorry)
"whoever—it—is" in Sydney, who has not received them,
the HFDCCs will be arriving shortly (1 week). Also soon
to be released (1 to 2 weeks) in USA, are runtime
Pascal, Myart and Advanced Basic Compiler (yes
Compiler!!). So, for any updates you may need, either
contact Gary Christensen in Old or watch out for updates
here. SCI—FI BBS will (at last) soon be on the Geneve!!

MAIL TO : ALL
MAIL FROM : LOU

I have some cartridges for sale, surplus to
requirements. Addition and Subtraction 1+2, Alpiner,
Disk Manager 2, Early Learning Fun, Early Reading,
MiniMemory, Multiplication 1, Parsec, Reading Fun,
Scholastic Spelling 4-5-6, Terminal Emulator, Extended
BASIC, TI—Invaders.

For information phone Lou (02)626 8855

Just PRESS number and Telco will do the rest. 	If
you Select 1, you will connect at 2400, If you select 2
or 3 you will connect at 1200 or 300 Baud rate .

Intelligent modem setup

From RS232

2 3 6
	

7 20

3 2 20-4 7 6

To Modem

For those with TELCO, setup the AUTO DIALER three
times for BBS, one at 300, one at 1200 and one at 2400.
When you use the auto—Dialer it will change TELCO to the
rating that the AUTODIALER is set to for the program
number.

For eacmple:

1 TIsHUG BBS 300
2 TIsHUG BBS 1200
3 TIsHUG BBS 2400

If you select 1 the smart modem will connect you at 300
If you select 2 it will connect at 1200
If you select 3 it will connect at 2400

One other thing with Telco, if you have any
problems with dialing put the phone number as
ATDP3191009.

I also found with MENU 7.35 a quick way of turning
it off. Just press Q. 	 a

enny ' s Yam !J, .114 3tt

Here is a program from my old friend Vincent Maker.
He also sent me a letter but I am as yet not able to get
it off the cassette. It is a good idea when saving
things on cassette to record it twice, one after the
other, just in case, especially when sending it to
someone else who is not very cluey like me. It does not
take much longer as you do not need to rewind or find
the end of the previous one. continued on page g

MAIL TO : ALL
MAIL FROM : SCI—FIBBS

Hi all. Pardon my ignorance in case this has been
answered before but I have recently downloaded ARC111XB
from the BBS only to find an anomaly in it. It will not
pack files where the file being packed INTO (end result
ARC file) is larger than (I think) 349 sectors. Now,
having DS/DD drives, my BBS uses files which nearly fill
the whole of both drives. Therefore, the problem was:
how could I ARC my BBS (including all files current) as
a backup? The answer was that I archived into 2
different files, each of which had less than the number
of sectors at which space ARCIIIXB would not proceed.
Then, I archived both of those already archived files
into yet another ARC file. When wanting a single normal
file, I have to un—archive the particular ARC file
including the already archived file, un—archive that
file and then extract the file wanted. Why do all
this? The result of archiving twice gave me: A) My
total BBS (remember it nearly fills 2 DS/DD drives) on
one disk and reduced the total space considerably. B)
By reducing as such, if i need to upload to another BBS,
the file is shorter than the multiple files that went
into the 2 files and the 1 file is shorter than the 2
files. It may be a round about way of doing it but
then, when you are next on your favourite BBS and wish
to upload multiple files, archived, longer than the bug
in ARCIIIXB allows, you may thank me instead of watching
your daily time limit go to nothing. 	Hope this helps
someone. 	If anybody knows how to fix the bug, I would
like to know, too.

Ta!! Regards , Greg.

ROT 3th
Half height floppy, power supply, cable and box — $100
Full height floppies from $20
Modules — all $10 each: Household Budget Management,
Parsec, Touch Typing, Mind Challengers, Hangman, Music
Maker, Car Wars, Early Reading, Early Learning Fun.

Phone Lou on 042-284906

0

Page33 	 TIsHUG NEWS DIGEST 	October 1989

continued from page 1
We have had a rather difficult time here in the

Leisure Coast these last few weeks (or months). My
right hand man, Rolf, has had a real bout of illness
with rather major surgery. This all happened just after
he had done the layout but still had to stick in the
headings and tidy up. We also lost communications in
our regional group and were locked out of our meeting
place the next .evening but recovered from that by
invading Phil's place at short notice. My car in the
meantime was at the panel beaters for reconstructive
surgery for two weeks and then Lou managed to drive his
wife's car into the side of someone else's car which had
no right to be there at that time. He had just left me
for a few minutes to transport one of his children to
somewhere while we were in the middle of laying out the
PCB for the direct I/0 interface. Then I have had sofie
tight deadlines to meet at work and my car still has not
emerged from the panel beaters after 3 weeks. I did
manage to get the last TND out, with help from Sue, but
it was a few days late as you probably noticed. I hope
that this month's issue is back to normal, although I
will be away for the last week of the school holidays,
which is the week before the next meeting. This may
mean a slight delay as someone else will have to do the
envelope stuffing and posting. That means that I will
not be at the next meeting and Lou will also be away so
only Rolf will be able to attend.

Now for the newsletters. 	First there are those

from Australia. Bug Bytes (Brisbane) August has an
article from Col Christensen in which he talks about his
Tapemaster program. It looks good and it is good to see
Col back on deck after his heart attack. He also
mentioned using my transistor circuit for the PIO cable
to enable any printer to work with the TI RS232 card.
Nice to have confirmation that it does help. Garry
Christensen has an article on tips for the hard disk
controller card with the TI99/4A and the Geneve. Mike
Wright has an interesting article on using a system for
file names and disk numbering to help keep track of all
your files.

We have 3 from the Hunter Valley, June, July and
August. They had a change in executive in June and also
a change in cover. Bob Carmany has a useful article on
how to write better programs. There is an interesting
interview with the editor Brian Woods which I can relate
to. Ron Pratt suggests that if you carefully make a
plastic bag for your console you will keep it nice and
clean. Bob Carmany also talks about Forth and programs
that write programs. In July, Ron Klienschafer talks
about the DSR in the Quest RAMdisk and a problem with a
discharging battery in a Superspace cartridge. Take out
the pullup resister on the WE line. Richard Terry
continues with his Forth column, very interesting.
There are: a beginner's BASIC article, a glossary of
terms and some keyboard strips. August brings a
challenge to assembly language programmers from Tony
McGovern, more Forth from Richard Terry and also from
Joe Wright and some musings from Bob Carmany.

From overseas comes the June issue of The Pug
Peripheral of Pittsburgh. Anne Dhein writes about high
resolution graphics and compares all the graphics
programs, John Wilforth continues with disk drives and
gives an adapter between 3 1/2" and 5 1/4" floppies,
anote that Barry Boone has released V3.03 of Archiver
and is working on a hard disk version and a review of
Jim Peterson's program "homework helper".

July's TIC talk from the Rocky Mountain 99ers has
the TI—Base tutorial from Martin Smoley and Tips from
the Tigercub from Jim Peterson. In August there are
more of the same plus a short tutorial on interrupts by
Jim Ness. Note that the times we will get will be at
1/50 second rather than 1/60 seconds.

ROM in May from Orange County, California, has
articles by Earl Raguse continuing with his program
FILO, N. Armstrong shows a tinygram for two column
printing and how to do it all, Adrian Robinson shows how
to add boot tracking to your programs and Earl Raguse
introduces the theory of dark. In July, Adrian Robinson
looks at more assembly language to write a "RUN"
statement to the end of an Extended BASIC loader
program, more from Earl Raguse on FILO, some programs
from Jim Swedlow and hardware corrections for the
Horizon RAMdisk.

August TIdbits from Tennessee has reviews and news
items from Beery Miller, Gary Cox, Bill Gaskill and
Michael Dorman.

TopIcs of July from Los Angeles has a list of PEEKs
and LOADs, lots of news from Bill Gaskill and beginning
Forth from Earl Raguse. August has more news from Bill
Gaskill, more Forth from Earl Raguse and a TI—Base quick
reference chart.

As I sit here in front of my monitor wondering what

I should rabbit on about this month, I often wonder if
there is anyone out there who cares. I mean that it is
very hard to know what you would like us to put into
your newsletter if you do not tell us some how. I guess
it goes with computer people, they do not like writing
letters. I know I do not like writing letters. For
some reason I do not mind typing in all this rubbish or
trying to explain something in an article or two, but to
write a personal letter requires me to get my mind into
another gear. This always seems to be something to be
done later rather than sooner. It would be nice if you
all would overcome your inhibitions and bombard us with
letters. It would make us think that someone really
cares about what we do each month.

I received a phone call from someone in the Hunter
Valley group about problems with a MiniPE RAMdisk.
Unfortunately I have lost his name and so have not been
able to send him a disk with a 32K version of the memory
test program. I have not had time to look at many
repairs this month although I have repaired two PE box
cards. These were a RS232 card and a Myarc disk
controller card which ceased working when the PE box was
jammed back against a wall or something. This obviously
caused these two cards to be misplaced in their sockets
as the —18 volts had shorted to the CRUIN line on the
board and blown two 9902 chips on the RS232 and a
74LS251 on the disk controller board. The CRUIN line is
next to the —18 volt line on the PE box motherboard so
be very careful with cards in the PE box. 0

cominuod fmrn page 12

loaded later, in comparison to a variable that you
simply forgot to define. By placing the "extern"
followed by the function's name with open and closed
parentheses, you announce to the compiler that these are
functions that will be loaded later. "extern" is' the
complementary function of "entry".

As with the last two months' articles, a lot of
very subtle information has been crammed in. In order
to gain a better insight it is necessary to experiment.
For example, write a sub—program to find the middle
number in a list or a set of sub—programs to make
imperial to metric conversions. If you are having any
trouble in programming 1c99' or using the compiler, do
not hesitate to ask me at the monthly meetings, or send
a letter to the TND.

NEXT MONTH
We will take our first look at 'char'
variables and arrays. There will also
be some more examples on sub—programs.

0

continued from page 35

This routine can easily be adapted for inclusion in
a program where an alphabetical listing is desired.
Parameters for allotting sufficient space in ORDER and
STAGS would have to be derived from the number of
records (actual or allowed). The same is true for any
loop to read the pointers in ORDER and look up the
corresponding records. Storing the contents of ORDER in
the program (i.e., on disk) would eliminate the need for
sorting until a new record is added to the file.
Sorting takes time and unless =TEXT can be re—written in
assembly language to speed it up one should remember to
keep string length to a minimum. The longer the
strings, the longer it takes to sort them.

(October 1989 	TIsHUG NEWS DIGEST 	Page 34)

RtElanna CGTDAp 	DT13
Meeting summary.

Banana Coast 	8/10/89 Sawtell
Carlingford 	18/10/89 Carlingford
Central Coast 	14/10/89 Toukley
Glebe 	 12/10/89 Glebe
Illawarra 	16/10/89 Keiraville
Liverpool 	' 13/10/89
Northern Suburbs 26/10/89
Sutherland 	20/10/89 Jannali

BANANA COAST Regional Group
(Coffs Harbour area)

Regular meetings are held in the Sawtell Tennis
Club on the second Sunday of the month at 2 pm sharp.
For information on meetings of the Banana Coast group,
contact Kevin Cox at 7 Dewing Close, Bayldon, telephone
(066)53 2649, or John Ryan of Mullaway via the BBS,
user name SARA, or telephone (066)54 1451.

CARLINGFORD Regional Group.
Regular meetings are normally on the third

Wednesday of each month at 7.30pm. Contact Chris
Buttner, 79 Jenkins Rd, Carlingford, (02)871 7753, for
more information.

CENTRAL COAST Regional Group.
Regular meetings are normally held on the second

Saturday of each month, 6.30pm at the Toukley Tennis
Club hall, Header St, Toukley. Contact Russell Welham
(043)92 4000

— - - - - - - - - — — - - — - — - - - - - - -

GLEBE Regional Group.
Regular meetings are normally on the Thursday

evening following the first Saturday of the month, at
8pm at 43 Boyce St, Glebe. Contact Mike Slattery,
(02)692 0559.

ILLAWARRA Regional Group.
Regular meetings are normally on the third Monday

of each month, except January, at 7.30pm, Keiraville
Public School, Gipps Rd, Keiraville, opposite the
Keiraville shopping centre. Contact Lou Amadio on
(042)28 4906 for more information.

LIVERPOOL Regional Group
Regular meeting date is the Friday following the

TIsHUG Sydney meeting at 7.30 pm. Contact Larry
Saunders (02)644 7377 (home) or (02)708 5916 (work) for
more information.

NORTHERN SUBURBS Regional Group.
Regular meetings are held on the fourth Thursday

of the month. If you want any information please ring
Dennis Norman on (02)452 3920, or Dick Warburton on
(02)918 8132.

Come and join in our fun. Dick Warburton.

SUTHERLAND Regional Group.
Regular meetings are held on the third Friday of

each month at the home of Peter Young, 51 Jannali
Avenue, Jannali at 7.30pm. Group co-ordinator is Peter
Young, (02) 528 8775. BBS Contact is Gary Wilson, user
name VICZYGW on this BBS.

The regular monthly meetings at Sutherland Group
always seem to produce the unexpected and the August
meeting was no exception. Garry Wilson produced some
backup disks for copying which refused to be
initialised. The floppys turned out to be old MS-DOS
disks but Garry was still left scratching his head, as
virtually all attempts to solve the problem failed.

TIsHUG in Sydney
Monthly meetings start promptly at 2pm (except for

full day tutorials) on the first Saturday of the month
that is not part of a long weekend. They are held at
the Woodstock Community Centre, Church street, Burwood.
Regular items include news from the directors, the
publications library, the shop, and demonstrations of
monthly software.

At last month's meeting, Ross Mudie demonstrated
how to transfer files and programs between computers
using modems. Les Andrews showed a small monitor as
well as holding the TI-Artist SIG meeting. Problems
relating to the EPROM ROS in the RAMdisk was discussed
and a tutorial on the use of TI-Writer's transliterate
command was held. If you missed all that, do not
worry, there is more to come in next couple of months.

October 7 - What have the various special interest
groups achieved over the last six months? When do they
meet? How can you become involved? All of these
questions will be answered with presentations from each
of the SIGs. The TI-Artist SIG will meet and the final
tutorial in the transliterate series will be held.

November 4 - Full day workshop. Starts at 10am.
A collection of tutorials, program workshops and
demonstrations that will be of interest to any member,
whether a programmer, a program user or a hardware
hacker. Mark this date on your calendar.

December 2 - Christmas Party

	

Craig Sheehan (Meeting coordinator). 	 0

continued from page 25

0 (STRING SORT DEMO - 2)
1
2 : SET 40 0 DO I 2 / ORDER I + ! 2
3 	 +LOOP ;
4
5 : ENTER$ SET
6 	 40 0 DO CR ." ENTER STRING : "
7 	 I 2 / 2 .R ." : " PAD 2 EXPECT
8 	 PAD STAGS I + 2 CMOVE 2
9 	 +LOOP ;

10
11 : SHOW$ 40 0 DO CR ORDER I + @ DUP 12 .R SPACE
12 	 2 * STRGS + 2 TYPE 2
13 	 +LOOP ;
14 -->
15

The basic sort itself (now on screen 3) remains
virtually unchanged with the exception of COMP (now
$COMP) which has to furnish parameters for =TEXT.
String length is purposely limited to 2 letters in the
interest of speed. Unless it is absolutely imperative
that, for example, the names RICHARD, RICHARDS,
RICHARDSEN and RICHARDS011 be sorted in proper order, the
sort should be performed with a limited string length.
This is because =TEXT is a high-level definition and is
by no means a speed demon.

1 (STRING SORT DEMO - 3)
2 0 VARIABLE MIDDLE
3 : K@ 2 * ORDER + @ ;
4 : K! 2 * ORDER + ! ;
5 : MID@ OVER - 2/ + K@ MIDDLE ! ;
6 : $COMP K@ 2 * STRGS + 2 MIDDLE @ 2 * STRGS + =TEXT ;
7 : EXCH 2DUP K@ SWAP K@ ROT K! SWAP K1 ;
8 : SORT (nl n2)
9 	 2DUP > IF DROP DROP

10 	 ELSE 2DUP 2DUP MID@
11 	BEGIN SWAP BEGIN DUP $COMP 0< WHILE 1+ REPEAT
12 	 SWAP BEGIN DUP $COMP 0 > WHILE 1- REPEAT
13 	 2DUP > NOT IF 2DUP EXCH 1 -1 D+ THEN 2DUP >
14 	UNTIL SWAP ROT 20VER 20VER - ROT ROT -
15 	 < IF 2SWAP THEN MYSELF MYSELF THEN ;

Usage is as follows:
ENTER$ - allows input of twenty 2-letter strings

0 19 SORT - generates the alphabetical list in the form
of pointers which are stored in ORDER

SHOW$ - displays the result of the sort

condnued on page 34

Page35 	 TIsHUG NEWS DIGEST 	October 1989)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

