
Focusing on the TI-99/4A Home Computer

Volume 7, Number 9 	 October 1988

Registered by Australia Post - Publication No. NBH5933

•-•-•,

2 	■
L 	

Gti 7

HUNTER
vALLEy

99ers

_

2)

	

- 	

Aus-l-rmLim

ine

- — •

- -

g

-

-16C:

	 L 	

V-- —3' e 	•
=1.7

r,

e-Y1 /`/

Ar•F Hgc NEWS ix

DIGEST

P.O. Box 214, Redfern, New South Wales, Australia, 2016 	$ 2

TIsHUG (Australia) Ltd.

TIsHUG News Digest
TIsHUG News Digest

Index

ISSN 0819-1984

October 1988

All correspondence to: 	
Title
	

Description
	

Author 	 Page No.

P.O. Box 214
Redfern, NSW 2016
Australia

The Board
Co-ordinator

Chris Buttner 	(02) 871 7753
Secretary

Terry Phillips 	(02) 797 6313
Treasurer

Percy Harrison 	(02) 808 3181
Directors

Cyril Bohlsen 	(02) 639 5847
Russell Welham 	(043) 92 4000

Sub-committees
News Digest Editor

Geoff Trott 	 (042) 29 6629
BBS Sysop

Ross Mudie 	 (02) 456 2122
Merchandising

Steven Carr 	 (02) 608 3564
Publications Library

Wan-en Welham 	(043) 92 4000
Software library

Terry Phillips 	(02) 797 6313
Technical co-ordinator

John Paine 	 (02) 625 6318

Regional Group Contacts

Carlingford
Chris Buttner 	(02) 871 7753

Central Coast
Russell Welhain 	(043) 92 4000

Coffs Harbour
Kevin Cox 	 (066) 53 2649

Glebe
Milce Slattery 	 (02) 692 0559

Illawarra
Bob Montgomery 	(042) 28 6463

Liverpool
Larry Saunders 	(02) 644 7377

Northern Suburbs
Dennis Norman 	(02) 452 3920

Sutherland
Peter Young 	 (02) 528 8775

Membership and Subscriptions

4A/TALK review

Braille'n speak

Card games

Character set animation

Communicators

Dealing with multiple fractures

Desk top publisher review

Enhanced BASIC

Extended display package

Flippy floppy finger

Format commands

Forth column

From the bulletin board

Geneve update

Gramulator

How programs are,stored on disk

Memory ramblings

Multiplan madness

PULSAR assembly utilities

Program to type in

Program to type in

Program to type in

Program to type in

Regional group reports

Secretary's notebok

Software tips #2

TI—Keys

TI/PC connection

TIsHUG software column

TIsHUG software released

They're off

Tips from the tigercub #50

Younger set

SoEtware review

General interest

General interest

Software hints

BBS information

Software hints

Software review

Software hints

Software review

Hardware

Word processing

Forth forum <6>

Mail to all

Software hints

Hardware review

Software hints

General interest

Spreadsheet

Software hints

Battle star

Boa alley

Polynomial fit

Truckers' domain

General interest

Club news

Software hints

Software review

Software review

Club software

Club software

General interest

Software hints

Programs,adventure

Darling,Scott 	 13

Hott,Irwin 	 29

Kanitz,Werner 	 19

9

Mudie,Ross 	 4

Atkinson,Terry 	22

Prewitt,Ron 	 18

Shaw,Stephen 	 23

Sheehan,Craig 	 5

3

19

Smyth,George L 	27

4

Adams,Jack 	 19

Van Copperhole,Mark 	8

Atkinson,Terry
	

21

Trott,Geoff
	

6

Arnold,Tom
	 8

Amundsen,Michael
	

20

16

Isani,Tarik
	

15

Griffin,W.D
	

17

Moore,Sam Jr. 	14

31

Phillips,Terry
	

2

Shaw,Stephen
	

11

Johnson,Wes
	

28

Schreiber,Rolf
	

13

Phillips,Terry
	

3

Phillips,Terry
	

2

Trott,Geoff
	

1

Peterson,Jim
	

25

Maker,Vincent
	

7

Joining fee
Annual Family Dues
Overseas Airmail Dues

Publications Library
Texpac BBS

$5.00
$25.00

AUS$50.00
or £22.00

or US$30.00
$5.00
$5.00

riny'IM CAT by Geoff Trott

Stop press: I have just heard from Cyril Bohlsen that the Hunter Valley
99ers have invited TIsHUG members to their amusement day on Sunday 6th November.
It will start with a car rally from Speers Point Park and finish in a games
afternoon. If you want to go please give Albert Anderson a ring on (049)662602
to tell him and find out all the details.

Before I forget, I must say a big thanks to George Meldrum for the cover of

last month's TND. Yes, that is correct, it was not Peter Schubert who did the
cover, but one of his satisfied customers. George also has done this month's
cover and I hope he will continue to find time for some more in the future. He
was galvanised into action by my threat to have the same cover each month and

instead of just complaining about it actually did something constructive. Good
on you George. It was remiss of me to not acknowledge that it was his cover,
but this time he has signed his work and you may have noticed the credit amongst
the information on page 1.

continued on page 31

Cover by George Meldrum

TIsHUG Sydney Meeting

The next meeting will be at 2 pm on 8th
of October at Woodstock Community
Centre, Church Street, Burwood.

Printed by
The University of Wollongong

Printery

HIM -FISHING %MS DIGEST October 1988, Page 1

TISHUG NUNS DIGEST
	

October 1988, Page 2

BASIC BUILDER - A utility to convert "list" files to
Extended BASIC program format. Extended BASIC and
32K expansion.

BA WRITER - This is a TI-Writer substitute, also from
Paolo Bagnaresi which requires Extended BASIC and
32K expansion.

(CEPlaaill:{7 rta 	HOICeinDlh
by Terry Phillips

This has been a very quiet month with next to no
correspondence coming in and no new members to welcome
either. This should start to liven up again soon as
all the US groups come back on line after their summer
holidays.

Unfortunately, there was no response from Inscebot
in time for an announcement at the September meeting,
but with a bit of luck there should be a response from
them soon. It appears from my observations at least
that there is tremendous interest in the TI-Base
software, so the sooner it can be imported for members
the better.

As you can see from the meeting information on the
back page, the proposed trip to Newcastle has been put
on hold, at least for the time being. I still feel
that such a venture would be a very enjoyable outing
and with a bit of forward planning we can all look
forward to it early in 1989.

For a rundown on forthcoming activities, see
Regional Group Reports.

That is it for this month. 	Should be more to
report next time. 	 0

2Alltamol 	10141
by Terry Phillips

At the last meeting a couple of newer members
asked for a list of what software had been issued
during this year. While this has already been
publicised in the individual monthly magazine issues, I
thought that a recap on the topic would not go astray.
So trusting the Editor has space this column is mainly
aimed at newer members.

FEBRUARY, 1988:
40 COLUMN UTILITIES - Programmers assembly utility

routines. Extended BASIC and 32K expansion
required.

GRAPHIC LABELLER - Print out mailing labels with a
picture. Extended BASIC 32K expansion and printer
required.

RLE PICTURES (2 Disks) - A host of picture files for
you to print out. Needs Extended BASIC, 32K
expansion and a printer.

TAPE 1988/1 - Calculator, Cassette Sleeve Maker, City
Attack, Fitz, Harried Housewife, Adjective/Adverb
and Noun/Adjective. Also available on disk.

MARCH, 1988:
DISK A168 - Centipede, Diskcopy, Disk Doctor, Easy

Designer, Disk Hacker, Christmas Card, Masscopy,
Networth, Nibbler, Quick Copier, Turbo Copy,
Banner, Bowling and Perplex. Mostly disk copiers
but some games.

DISK A169 - A disk full of routines and utilities
including Banners, Calendars, Gothic Print, Thank
You notes plus a whole lot more.

Some programs on these disks require 32K expansion,
while others just need Extended BASIC.

APRIL, 1988:
ROS MENU VERSION 7.3 - An updating operation system for

RAMdisk users.
RLE PICTURES (3 Disks) - More pictures to print out.
CLOCK ROUTINES - Samples and demonstrations for the

TIsHUG clock card designed by John Paine.

MAY, 1988:
PETERSON'S MUSIC DISK - Collection of popular songs,

most with words to sing along to.
BEAXS - Latest updated version from Paolo Bagnaresi.

BEAXS is an Editor/Assembler replacement and
requires Extended BASIC and 32K memory expansion.

JUNE, 1988:
C99 VERSION 4.0 - Latest version from the author Clint

Pulley. "C" for those unsure is a programming
language. Requires fully expanded system.

CATLIB VERSION 1.5 - Cataloguing library program from
Marty Kroll. Has some excellent features and
requires a fully expanded system.

CATLIB COMPANION - A companion disk to the main program
with some added features.

COMPETITION GAMES - Tilo, Wait-a-Bit, Cathay, Triangle,
Matchmaker and Matchmaker Animator and Family Tree.
All require Extended BASIC.

COMPETITION WINNER - George Meldrum's MERGE utility.

JULY, 1988:
EXTENDED DISPLAY PACKAGE - Written by member Craig

Sheehan. Some excellent routines on this disk from
members dabbling with assembly language. Requires a
full system.

DISKETTE CARETAKER - Written by member Tony Imbruglia
and produces disk jackets with comments. Requires a
full system.

FUNNELWEB VERSION 4.1 - Updated and enhanced version of
this classic piece of software from the McGoverns.
Requires full system.

DISK AID VERSION 2.0 - Utility sector reader/copier
etc, from Garry Christensen. Requires full system.

GEE - A graphics programming language which requires a
full system.

. 	AUGUST, 1988:
TERR-WARE GAMES - Joker Poker, Blackjack and Wheel of

Fortune. Very well programmed games which require
Extended BASIC and 32K expansion.

WHEEL OF FORTUNE AND MONTE CARLO - Some more gambling
games that also require Extended BASIC and 32K
expansion.

TASS 2001 - TI Artist Slide Show. 	Enables you to
display all your Artist pictures one after the
other. Requires Extended BASIC and 32K expansion.

CHARACTER DESIGNER - One of the best of its type of
utilities around with features not found on similar
programs. Requires Extended BASIC and 32K
expansion.

SEPTEMBER, 1988:
HIGH RES GRAPHICS - Design your own high resolution

graphics. Also contains several demonstration
files. Needs Extended BASIC and 32K expansion.

COMIC ANIMATOR - Do your own or just watch the
demonstration files supplied. Extended BASIC and
32K expansion.

CARFAX ABBEY - Is the main program on the disk and it
is an adventure of the Tunnels of Doom type. This
main program requires Extended BASIC and 32K
expansion. The disk also contains 3 more game
programs, Boxes, Snakes and Ladders and Taskforce
which require Extended BASIC only.

J P HODDIE GAMES DISK - Some well programmed assembly
and Extended BASIC games mainly of the space
shooting variety.

To the end of September, 34 disks have been
issued.

frIta- Sth

Peripheral Expansion Box with two DSDD slimline
disk drives, 32K Memory expansion card, TI disk
controller, TI RS232 card, with all documentation. All
for $800.

Microsoft Multiplan complete for $50
TI-Writer complete for $50
Ring Mike Shami (02)798 5127 for details and

negotiations.

	 -'1110

-111111.e 	Dba
71 DDT Dlak 31vrtee Tau-
ainBh 	DrIweo

TISH11116 NM% DIGEST 	October 1988, Page 3

TTAAIUM 3A)TITraym
EDIFLTHAI by Terry Phillips

Here is a list of the new disks added to the
software library over the past few weeks.

LIBRARY DISK A259 - ASSEMBLY GAMES: Astroblitz, Buzzard
Bait, Cannonball, Cave Creatures, Compu-Car, Connect
4, ET Adventure at Sea, Angler Dangler, Galaxia and
Willy Worm. All require 32K expansion and
Editor/Assembler module or equivalent.

LIBRARY DISK A260 - The main program is an assembly
game entitled Hopscotch, which is based on the
Q-Bert type games. This jumping little fellow is a
kangaroo who utters a 4 letter expletive when donged
by one of the bouncing balls. Very good graphics
and animation. A secondary program on the disk is
WINDOS, a type of disk manager, but written entirely
in German. Requires 32K and Editor/Assembler
module.

LIBRARY DISK A261 - ASSEMBLY GAMES: Mathcatcher which
appears incomplete but has excellent animation of a
skate-boarder, Mission X a bomb and shoot everything
in sight game, St Nick which is one for Christmas
when you can help Santa gather up the toys, Star
Trap which is only Star Wars under a different name,
TI Mazog which is a sort of 3D Pacman but very
difficult to play. 32K and Editor/Assembler module
required.

LIBRARY DISK A262 - BITS AND PIECES: Perfect Push a
difficult and frustrating game where the object is
to assemble a rocket ship in the correct order,
Hitchhikers Guide a D/V80 file that contains the
solution to the adventure, an Extended BASIC and
assembly version of the rapid loader for Infocom
adventures which not only allows for much faster
loading but alterations to screen and text colors to
suit your taste. 32K and Editor/Assembler required.

LIBRARY DISK A263 - LEATHER GODDESSES OF PHOBOS a big
Infocom adventure too large to run even in a fully
expanded system without a super space module.

LIBRARY DISK A264 - LURKING HORROR: Another Infocom
adventure where the object is to find and destroy
the hideous creature. Like a Stephen King novel.
32K and Extended BASIC.

LIBRARY DISK A265 - SPELLBREAKER: 	Another 	Infocom
adventure and the final chapter in the Enchanter and
Sorcerer series. 32K and Extended BASIC.

LIBRARY DISK A266 - SIDEWRITER: An excellent utility
for printing Multiplan spreadsheets and TI Writer
files on their sides. Highly recommended. 32K and
Editor/Assembler required.

LIBRARY DISK A267 - TUNNELS OF DOOM: Finally, the
module is available on disk but appears only to load
through the loaders supplied with Funnelweb.
Apparently no Extended BASIC or Image type loaders
can handle it.

LIBRARY DISK A268 - BIG TEXAS ADVENTURE: a spy type
adventure with some 250 locations. Appears playable
but fairly slow in set up and play.

LIBRARY DISK A269 - ADVENTURES: 	Incredible 	Hulk,
Buckaroo Banzai, Adult Adventure (Warning - contains
words and scenarios that may be offensive to some
people), First Days In Eden, Doors to Eden,
Discovery at June Lake, On The Loose, Lost Gold.
The disk also contains solutions to Deadline,
Infidel and Eye Witness. All these adventures run
out of the Adventure Module or equivalent disk
version.

As I will be on holidays over the next school
holiday period, which runs into the October meeting
date, there will be no specific disks issued at that
meeting. To make up for this there will be a double
issue at the November meeting and titles will be
advised in the November TND.

be collected on top of the normal $5 disk fee. 	It
should be noted that it is NOT compulsory for any
member to pay the suggested authors fee, and if that
person declines then the disk will be available for the
normal $5 cost. On the other hand a lot of software
authors suggest you only send the donation if you
intend using the program, and of course you would not
know this until you had it home and tried it out.
Therefore, if you were to pick up a disk at one
meeting, for the normal fee, take it home and find that
it is exactly what you want, then the author's donation
can be given at the next meeting. The idea behind all
this is to encourage software authors to continue
writing programs that will ultimately benefit the
entire TI99/4A community. Give it some thought, any
feedback would be welcome.

That is it for this month, but just to remind you
that the standing offer of your selection of any of the
programs in the library is still open, and I am
encouraged by the number of members who have taken
advantage of this.

CUT TEMPLPTE FROM AN OLD OR DPMPSED FLOPPH.

USE PS GUIDE FOP MARKING INDEX AND WRITE

PROTECT MOLES. INSERT FINGER BETNEEN OUTER

CASING PND DISK TO PREVENT DAMAGE MIEN THE

HOLES PPE BEING PUNCHED. ENSURE PROTECTIVE

SIDE OF THE TEMPLATE ONLS TOUCHES TWE DISK

lir 	

At the Board meeting held on 3rd September it was
agreed that the Group should act as an intermediary for
Freeware/Shareware authors. What was decided was that
the Group, through shop sales would collect on behalf
of authors their suggested donation, that is, if an

\<uthor suggests sending him $10, then that amount would FLOPPU FLIPPER FIBER 	j
THE NIGEL BM

IISHUG IVE111115 DIGEST
	

October1988, Page 4

111 	tttErnankntroTo
	Trurra Itht 	 itivurcl

Special Interest Group for
Users of the TEXPAC BBS.

by Ross Mudie, 4th September 1988.

1. BBS CONSOLE FAILURE.

On 23rd August 1988 the BBS console failed at about
8am. The spare NTSC console had to be picked up and
was promptly installed, allowing the BBS to be back in
operation at 2.45pm on the same day. The cause of the
problem was the failure of the TMS9901 chip in the
console. A socket was installed for the replacement IC
and the VDP oscillator choke replaced as a precaution.
The felt oiling pad was removed from the GROM socket
which was cleaned out, first with a cloth on a blunt
knife blade and then with freon to remove any remaining
particles of dirt.

2. CONTROL AND SPECIAL KEYS AND KEY SEQUENCES.

There are a number of users who are still unaware
of the control functions available with files. To
pause a file listing use <CTRL> S once only and the BBS
will pause after the end of the current line. Remember
that 80 column lines will occupy two 40 column screen
lines so the BBS may seem to take two lines to stop
listing. Use <CTRL> Q to restart the listing. To
Escape from a file listing press E once only. The BBS
will exit from the listing at the end of the current
line.

After listing or Escaping from a file the BBS
sends the prompt:
"[M]ain[#1, [N]ews menu or News # >"

At this point the following actions are possible:
(a)M will give the Main Menu.
(b)M +a number will go directly to that numbered item

in the Main Menu, e.g., M2 will go directly to
the program download. The valid number is range
1 - 9.

(c)N will give the News Menu.
(d) A number will go directly to listing the News item

corrosponding to that number in the News Menu,
providing that the number is in the current range
of items in the News Menu.

To correct a typing error into the BBS use CTRL[H]
which is a destructive backspace. This also works in
the non-echo mode used for passwords. CIRL[H] stops at
the left hand end of the line and characters are
deleted in the BBS regardless of what your terminal
program leaves on your screen.

Full details of how to use the BBS are to be found
in the file BBS_HELP in the NEWS menu.

3. CONTRIBUTING MATERIAL FOR THE BBS.

If you wish to contribute material for the BBS,
then prepare your material as a text file and send it
as mail to SYSOP on the BBS. Anyone wanting to
contribute on a regular basis should contact the SYSOP
so that a Sub-Editor name can be allocated.
Sub-Editors can load their file into the NEWS menu
without the need for any SYSOP action. Any BBS member
can place programs in the Upload/Download Room for
others to download. Programs are generally left in
this area for a month for others to download and may be
deleted by the uploader, SYSOP or the GAMES
Sub-Editors.

4. BBS MEMBERSHIP.

Access to the BBS is limited to BBS members only.
TIsHUG members wishing to join the BBS should contact
the Secretary; membership rates are shown on page 1 of
the TND magazine.

• • . 	.r

MAIL TO : ALL
MAIL FROM : DIGIT

I have tried to use PRbase from a RAMdisk, and
while it loads, I am not able to access the data disk
drive either 1 or 2. It gives an error message. Does
anyone know the reason why, and more importantly, how
to fix it?

MAIL TO : ALL
MAIL FROM : SARA

KEVIN COX is in need of the Documentation for
Super Extended BASIC. We believe that they were put
out by J & K H Software.

Contact Kevin on BBS via SARA or call
(066)52 3649. Any information will result in a disk
swap.

MAIL TO : ALL
MAIL FROM : LARRY

I have just received a copy of Wheel of Fortune
program from my friend Jerry in the USA. It is a super
program that makes the TIsHUG program look 10th rate.
It's wheel looks and works like the TV show with
bankrupt, free spin, lose a turn. It has random speed
with the computer slowing down and stopping the wheel.
Two or three players can play. It has three rounds
with the winner playing the bonus round that has a time
limit to solve it. This program will be demonstrated
with two other programs at least at the next Liverpool
regional meeting. Bye for now Larry.

MAIL TO : ALL
MAIL FROM : PETESAKE
SUBJECT: HV99ers FAMILY WEEKEND OUTING.

I would like to suggest a change to the proposed
date of October 1 for the outing. As this is during
the school holidays I will be unable to attend as I
have already made plans with the family. I have asked
other members and found some in a similar predicament
as family plans were made some time before. 1 woulcl
suggest the main topics be on Sunday with overnight
accomodation details made available to those that
travel up on Saturday. Perhaps a Saturday afternoon
tour of the vineyards could be organised followed by a
dinner in the evening at the local RSL or such.

. Perhaps our Secretary could pass this suggestion
on to the HV99 organiser of this event.

MAIL TO : ALL
MAIL FROM : GOWFAR

Hi to all. 	I read in a recent TND about the
adventure game called "LEGENDS" and how it is a good
buy. I do not know how many people actually have the
game, but I bought it and can thoroughly recommend it.
You have to be patient, at first, as it takes quite
some time to build your characters up to a stage where
they are strong enough to venture round the whole
island, but once you get up to that stage, you find
more and more that is new. At this stage, I have not
completed the game but if anybody would like to know
more or like some help with it, let me know and I will
see if I can help.

See the file SCIFIBBS for info on the SCI-FI BBS.
The SCIFI-BBS file is now a sub-editor file. The date
line in the first line of the file will show the date
of the last update by Greg who is SYSOP of SCI-FI BBS.

Ross Mudie, SYSOP TEXPAC, 14/8/88.

MAIL TO : ALL
MAIL FROM : GOWFAR

Hi to all, yet again. Just another short note to
let you know that if you are planning on doing a bit of
downloading from TEXPAC and have wondered whether to
get the SWORDS program or not but cannot decide, ring
SCI-FI BBS (have a look at the file of the same name
for details on how to ring in) and have a look at it
there. I have been running the program as a play over
the modem one for a few years now. So, play it and if
you like it, download it from here (to play only on
computer at home, not modem, I believe). Rgs, Greg.

Zi111/0

/

TISIMIG %MS DIGFST) October 1988, Page 5

\
L13phy Ptithtet

a review by its author, Craig Sheehan

Extended Display Package is a utility designed to
improve and enhance screen handling from Extended
BASIC. This has been achieved with a number of
assembly language links that provide many features.
These include more graphics characters and colour sets,
a forty column display, windowing, enhanced display and
accept commands, scrolling, HI-Res drawing as well as a
screen dump option. The package is available from the
club shop on either a double sided or flippy disk for
the usual media fee. Included on the disk is the
utility, a demonstration program and the document
files.

At forty two pages, the manual for XDP takes over
an hour to print out. To do this, use the "Print Docs"
option of the demonstration program and answer the few
simple prompts. For best results, it should be printed
on an Epson compatible printer, with an 11" page length
and 1/6" line pitch. This will ensure that the
perforation is skipped at the end of each page.

The first part in this series of articles will
concentrate on the DISPLY command (note: no 110). It
has all the features of the original Extended BASIC
command, but also has many extra features. Before you
can type in the example below, the package must be
loaded:
1. From Extended BASIC, insert the disk in drive one.
2. Type in: RUN "DSK1.XDP" and press enter.
3. Type in: CALL LINK("NEW") and press enter. 	'

The package is now loaded. A word of caution:
once XDP is loaded, do not type in "NEW". If you wish
to delete a program from the memory, enter
CALL LINKCNEW") instead so that the utility does not
need to be reloaded again.

After XDP is loaded, type in the 	following
program, which will display text of two different
colours on the screen.

100 CALL LINK("XDP")
110 FOR CHAR=32 TO 127
120 CALL LINK("CHRPATH,CHAR,HEX$)
130 CALL LINK("CHAR",CHAR+96,HEX$)
140 NEXT CHAR
150 FOR COLSET=1 TO 12
160 CALL LINK("COLOR",COLSET,9,1,COLSET+12,3,1)
170 NEXT COLSET
180 CALL LINK("SCREEN",2)
190 CALL LINK("DISPLY",1,1,".WWUsing XDP, text of

different colours can be displayed .CR(2)Red text
.0F(96) .CR Green text .CRGreen, .0F(0)Red")

200 GOTO 200

If you wish to, you could continue on forever
printing coloured messages. If you think the commands
used appear similar to those normally used in Extended
BASIC, you will have no trouble in using XDP.
Basically this program copies the pattern of ASCII
characters 32 to 127 into codes 128 to 223. This gives
two entire character sets, which both can be given a
separate colour. In describing this program, I will
detail the sections that are similar to Extended BASIC
first and then deal with code peculiar to XDP. Lines
110 to 140 copy the normal character set into a set of
higher ASCII codes. This is done by placing the
pattern of character code CHAR into HEX$, and then
writing that pattern into a code that is 96 higher than
the original code. The colours of the two sets are
defined in lines 150 to 170. Colour sets 1 to 12 hold
the normal character set whilst sets 13 to 24 have the
copy of that character set. Line 180 simply sets the
screen colour to black.

So far so good. Line 100 is important to any XDP
program. The XDP link initialises the package and
makes changes to the memory's structure so that XDP
commands can, take effect. Once this link has been
executed, Extended BASIC's screen handling commands no
longer have the desired effect and should not be used.
The DISPLY command on line 190 can initially be viewed
as being the same as DISPLAY AT(1,1). In this regard
it is. As with DISPLAY AT, the text in the string will
be displayed from the screen position specified, with

ihyhe exception of the specification COMM 	.

A specification command is almost the same as
TI-Writer's formatter commands. They are preceeded by
a period and consist of a two letter code which may or
may not have arguments following them. These
specification commands can be placed any where in the
text, and illegal commands will be ignored and printed
on the screen. The first command reads '.WW1. This
stands for 'Word Wrap' and tells the DISPLY command to
shift words so that they are not chopped in half at the
edge of the screen.

After the word wrap command is some text that is
printed normally, except that words will not be chopped
in half at the end of a line. The next command is
'.CR(2)'. This means carriage return, and will fill
the rest of the screen line with spaces before setting
the next display position to the first column of the
next row. The two in brackets means simply to do this
twice. If no argument is supplied, then the program
will assume that it only needs to do this once.

Now for the part that selects the colours. There
is nothing magic about this and the principle is quite I
simple. When we copied the normal character set, we
copied it into the character codes that were ninety six
above the original character. So if 96 is added to the '
ASCII code of each character to be displayed, we are in !
fact displaying this second character set, and by
giving this second character set a different colour, we '
get the effect of being able to select between two
different coloured fonts. All the '.0F(96)' does is to
add 96 to the ASCII code of each character displayed
thereafter. To return to the normal characters, simply
set the offset to zero with '.0F(0)'. The offset
command was originally included so that ASCII codes
like 239 that have no character on the keyboard could
be displayed with the DISPLY command, but has been used
for other applications since, such as for different
coloured fonts and for displaying a string of upper
case characters as lower case or vice versa.

* * * * *
After that colourful introduction to XDP, we will

look at some of the other features of DISPLY. With
Extended BASIC's DISPLAY command, it is possible to
insert variables between the text like so:

DISPLAY AT(1,1):NAME$;" HAS";SCORE;"POINTS."

Unfortunately this not allowed with XDP's DISPLY
command, or indeed with any string operation. A
possible solution is to use the string concatenator
("&") to join the variables together as a string, with
a STR$ to convert the numeric variable "SCORE" into a
string. Recoded as described above, the equivalent XDP
command becomes:

CALL LINK("DISPLY",1,1,NAMEW HAS "&STR$(SCORE)&
" POINTS.")

This is rather messy and does have a major draw
back. If NAME$ was very long, say 240 characters plus,
the total length of the combined string would exceed
the maximum 255 character limit that a string is
allowed to have. The result would be that all the
characters beyond the 255th would be chopped off the
end of the string, never to be seen again.

The solution that is offered by the DISPLY command
is the use of the specification command '.VAT. This
will cause the next variable in the variable list to be
retrieved and be displayed on the screen. Using this
new specification command, the above example becomes:

100 CALL LINK("XDP")
110 CALL LINK("DISPLY",1,1,".VA HAS.VA POINTS.",NAMES,S

CORE)
120 GOTO 120

Note that the order that the variables are used is
the same as the order that they appear in the variable
list. When displaying strings with this specification
command, any other commands in the string from the
variable list will be ignored, even if valid.

continued on page 22,40

TISMIG NEVIN DIGEST October1988, Page 161/

Rieumairy. 	imbIllmEs
by Geoff Trott

Having used a RAMdisk for a few months, I decided
that it would be nice if I cOu1d store a bit more on
the RAMdisk. This seems to be the usual way, start
with something small and soon you need more and more.
At about the same time, perhaps coincidentally, Lou
asked if I wished to join with him and buy some 32K
byte static RAM chips at a good price. In the end Rolf
came in as well and we bought about 16 chips each for
quite a bit of money total. Having the chips I then
decided to build the RAMdisk on a Horizon type card
which Lou had previously populated with diodes,
resistors, capacitors and sockets. I obtained a copy
of the instructions from the Library and set to work.

I had to remove a few of the sockets for chips
which were not used and then solder together the chips
which were on top of other chips. The worst of these
are the 3 74LS138 chips which are near the edge
connector. I also had a bit of trouble with one
connection to address line All. I eventually used a
hole under U14, which caused a bit of a problem with
the resistor soldered between pin 28 and pin 20. There
is of course one of these resistors on each memory chip
to ensure that it enters power down mode when the power
is turned off. The remainder was straight forward
except that I am using 3 alkaline AA batteries which
will eventually need replacing, so they are attached by
wires through holes drilled in the board. I have
included a diode from the + end of the battery to the
PCB to ensure that no charging takes place.

After checking the connections I tried it out.
Using the CFG program I had confusing results. I first
tried just 3 chips and it seemed to be all OK. I was
using version 7.1 in my existing RAMdisk but version
7.3 in the new one. I tried a few more chips and then
problems arose. Using Minimem I discovered that the
chips were not being accessed either on read or write
and looking carefully at the board I found that I had
left a wire off. There was one chip without any
meaningful connections. A quick go with the soldering
iron and then back to try it.

Then I ran into a frustrating time when I must
have decided to load CFG from my other RAMdisk and CFG
V7.1 hangs with lines at the top of the screen and an
open parenthesis where the size of the RAMdisk appears.
This makes one think that the RAMdisk memory is not
working. Back to Easybug and setting CRU addresses and
reading memory. There has to be a better way I say to
myself. I did not have the MEGTEST memory test
program, but did have the original Horizon RAMdisk
memory test. This is an Extended BASIC program with
CALL LINKs to two assembler routines. These looked
quite short in their uncompressed D/F 80 format, so I
decided to disassemble them. One was called FILL and
the other CHECK, so their operation was easy to
anticipate.

FILL was called once for each bit pattern to be
used while CHECK was called once for each chip to be
tested. Parameters were passed via CALL LOADs to fixed
places in memory. Upon examination of the disassembled
code, it was quite easy to see what was going on and
how it would have to be modified. The main difference
was that the original routine only sent out 8 bits of
CRU information whereas the bigger RAMdisk needs at
least 10 bits for 1Mbyte and 9 for 512K, which I was
proposing to have. In the end I used 12 bits as this
allows for future expansion. The other change was to
allow for the difference in the accessing of the 8K DSR
area. In the large RAMdisk only 6K of the 8K chip is
actually accessible. The other 2K resides in the first
32K chip (U17), and to keep compatibility with the
existing ROS is in the 4th rack of that chip. The
first 3 racks do not get used, but to check the memory
I wanted to check all of that chip. This means that
the check of Ull (the 8K DSR chip) only checks the
first 6K (writing and reading) while the rest of the
checking of the memory exercises all the address space
in each chip.

Having made these few changes I then changed the
Extended BASIC program to reflect a little more closely
the actual chips being tested and after debugging it
.all found that U14 had rather a lot of errors. I had

broken a track while putting in that wire mentioned
earlier, so it was back to the iron again. After that
all ran well although I had one chip giving me 2 errors
on some of the tests. I am not sure if that would be a
problem in practice, but I put another chip in its
place and all was well. I only had one layer of chips
but had more than a DSDD disk to play with.

I decided make the RAMdisk into 3 disks. 	On the
first I put my system with menu and the programs I use
most often. On the second I put Multiplan and on the
third I put the dictionaries for the spelling checker,
thinking that I might use the checker if its speed was
reasonable this way. 	The easiest way to access the
second and third drive is via the 	drive name.
Multiplan looks for a disk with a name TIMP, and I
changed the spelling checker to look for a disk named
DICT. This may all sound very easy, and it did to me
when I read about it in the documentation. There are a
few traps for the beginners which you may like to know.

1. Only the RAMdisk with the smallest CRU address
can be used in this way. There is no way (that I know
of) to get at the third disk on the second RAMdisk.

2. The T for toggle the disks from the menu only
worked when my RAMdisk had a CRU address of >1400 (ie
not >1000) and had the lowest CRU address of the two
RAMdisks. When the CRU address was set to >1000, T
from the menu did not work but CALL TD from BASIC
worked in both cases. I have not tried the various
DM1000 versions to see if they will copy to a disk name
rather than number, but to copy files to all disks the
first time requires the ability to toggle the disks.

3. The use of disk name to access a file on the
RAMdisk requires that the RAMdisk CRU be >1000,
otherwise the physical disk drives are accessed until
an error occurs, probably because I do not have 4 disk
drives.

4. There seems to be some problem with using the
second RAMdisk with some programs. 	FUNNELWEB has
strange problems with its directory function (AID)
which causes odd control character codes to fill up the
screen. 	It seems that the space character changes to
some other rather random character. 	The version of
DM1000 supplied with FUNNELWEB also seems to have
problems with the second RAMdisk. I also have problems
copying files to any RAMdisk with DM1000 V3.5 stopping
with an error when it tries to copy a file with the
name of the disk which it then finds is too big.
Restarting the copy again works but it is annoying.

5. I tried using a disk name of D instead of DICT
and everything stopped working. Most confusing I found
this, as I had to load in the whole system again. That
was the only change I had made and sure enough, when I
used a different name (DICT) the problems disappeared.
I did not try any other short disk names. I was trying
to use FUNNELWEB at the time.

But enough of all this bad news. At least it all
worked for a week or so until I decided that I wanted
to start to do some c99 programming and so decided to
add a few more chips to the RAMdisk to allow the c
compiler to be on the disk along with some of the
support files. Something went wrong and I am without
my RAMdisk at the moment. Wait for the next
installment.

On another slightly related topic, Rolf brought me
a Minimem which he thought was losing its battery power
and which he wanted to enhance along the following
lines. He suggested that if the RAMs and ROM were
replaced by an 8K RAM, and an Editor/Assembler GROM was
installed as a switchable option to the Minimem GROM,
he would have a Supercart/Minimem combined cartridge.
As I was doing the necessary surgery, and with all
these 32K byte chips in front of me I thought that an
improvement would be to put in a 32K chip which could
be switched in in 4 lumps and so allow much more
flexibility. Well to cut a long story short, that is
what we have done, and the more I think about it the
more useful I think it would be. Losing the ROM from
Minimem only seems to lose the ability to load programs
and probably some routines, Easybug is still there.
This means that I could load diagnostic programs into
that memory and have a selection of these as well as
Easybug available for diagnosing faults in systems.

continued on peg:7j

rtING 	TISHIIG %MS DIGEST October1988, Page 7

Zr-c
(

jenny 's 1(4)-111J81--4
Dear Jenny,

I have improved my score on Draw Poker from
$23,000 to $30,000. Is this a Younger Set Hall of Fame
score? Here is a program for those who like Dr. Who.
It is a quiz from the third Dr. series.

100 REM 3rd Dr QUIZ by Vincent Maker
110 CALL CLEAR :: REM This is in Extended BASIC
120 PRINT "Q.1 Who was the Doctor's (Jon Pertwee)

assistant during the invasion of AXOS?": : :
130 RIGHT=0 	WRONG=0
140 PRINT :"Was it A) Liz Shaw 	 B) Harry

Sullivan 	 C) Jo Grant 	 D)
Michael Yates": :

150 PRINT :"Choose a letter-": :
160 CALL KEY(3,K,S)
170 IF S=0 THEN 160
180 IF K=67 THEN RIGHT=1 ELSE WRONG=1
190 IF K=67 THEN PRINT "right" ELSE PRINT "wrong"
200 PRINT : : :"Q.2 What was the Doctor's car called?"
210 PRINT "Was it A) Bessie 	 B)

Masterpiece 	 C) Fred
D) Joe": :

220 PRINT :"Choose a letter-": :
230 CALL KEY(3,L,J)
240 IF J=0 THEN 230
250 IF L=65 THEN RIGHT=RIGHT+1 ELSE WRONG=WRONG+1
260 IF L=65 THEN PRINT "right" ELSE PRINT "wrong"
270 PRINT : : :"Q.3 Who was the Queen of Peladon during

the Doctor's second visit there?": :
280 PRINT "Was it A) Mary 	 B)

Elizabeth 	 C) Thalira
D) Galaxy": :

290 PRINT :"Choose a letter-": :
300 CALL KEY(3,A,B)
310 IF B=0 THEN 300
320 IF A=67 THEN RIGHT=RIGHT+1 ELSE WRONG=WRONG+1
330 IF A=67 THEN PRINT "right" ELSE PRINT "wrong"
340 PRINT : : :"Q.4 Who was in charge of Global

Chemicals?": :
350 PRINT "Was it A) Thomas Stevens 	 B)

General Carrington 	C) Michael Yates
D) Lethbridge-Stuart": :

360 PRINT :"Choose a letter-": :
370 CALL KEY(3,X,Y)
380 IF Y=0 THEN 370
390 IF X=65 THEN RIGHT=RIGHT+1 ELSE WRONG=WRONG+1
400 IF X=65 THEN PRINT "right" ELSE PRINT "wrong"
410 IF RIGHT=4 THEN AS$="Perfect score, four out of

four"
420 IF RIGHT=3 THEN AS$="Very good, three out of four"
430 IF RIGHT=2 THEN AS$="Fair score, two out of four"
440 IF RIGHT=1 THEN AS$="Poor score, one out of four"
450 IF RIGHT=0 THEN AS$="Very poor score, zero out of

four"
460 PRINT : : :AS$: : :
470 INPUT "Want to play again (Y/N)? ":XY$
480 IF XY$<>"N" THEN 100
490 PRINT 	- • • •"Thank you for playing"
500 END

I also have two programs here, one for Extended
BASIC and one for TI-BASIC users.

100 REM By Vincent Maker
110 CALL CLEAR
120 PRINT "In this program you must pick the 3 numbers

(0 to 9). If you like a time limit can be imposed"
130 INPUT "Set a time limit (Y/N)? ":A$
140 T=0
150 IF A$="N" THEN 170
160 INPUT "Time limit (in goes)? ":T
170 RANDOMIZE
180 A=INT(10*RND)
190 B=INT(10*RND)
200 C=INT(10*RND)
210 INPUT "Number one? ":D
220 INPUT "Number two? ":E
230 INPUT "Number three? ":F

..\..2.40 IF A=D THEN 260

NOP

250 GOTO 270
260 RIGHT=1
270 IF B=E THEN 290
280 GOTO 300
290 RIGHT=RIGHT+1
300 IF C=F THEN 320
310 GOTO 330
320 RIGHT=RIGHT+1
330 PRINT "You have ";RIGHT;" correct so far"
340 T=T-1
350 IF T=0 THEN 410
360 INPUT "Continue? ":A$
370 IF A$="NO" THEN 410
380 IF A$="N" THEN 410
390 RIGHT=0
400 GOTO 210
410 PRINT : : :"Thank you for playing": : :"Have a nice

day/night."
420 END

100 REM By Vincent Maker
110 PRINT "You are found on the Wizard's property, he

demands an excuse."
120 INPUT "Well? ":A$
130 PRINT "Sorry, you are committed for trial -"
140 INPUT "How do you plead (G or N)? ":PLEA$
150 IF PLEA$="G" THEN 210 ELSE INPUT "Did you intend

harm there (Y/N)? ":A$
160 IF A$="Y" THEN 210
170 PRINT "You are found guilty of tresspass. The

penalty is 2 years in goal/ja il."
180 INPUT "Do you wish to appeal (Y/N)? ":Y$
190 IF Y$<>"Y" THEN PRINT "See you in 2 years pal." ::

STOP
200 PRINT "The judge is kind, you get 6 weeks!" :: STOP
210 PRINT "You will be executed tomorrow." :: STOP
220 END

I hope you like them, 	Vincent Maker

Well Vincent, thankyou for all those programs. 	I
am sorry that they did not make the last issue, but I
did not receive them in time. You are the only one who
has submitted a score for Draw Poker, so I guess you
are the holder of the record in the Hall of Fame. I
hope you other younger setters get some fun out of
Vincent's programs. I found them a bit of fun! Now to
the first request to our resident adventure games
expert, Crocodile Jones.

Dear Jenny,
I have received the following letter:

Dear Crocodile Jones,
I am having problems with adventure 7

(Mystery Fun House). How do you get into the Fun
House? Do you need money? If so, could you
advise me on how to get that as well? Thankyou,

Christopher of Winston Hills

Well Christopher, you need to get the dollar that
is in the grate. do this by chewing the gum and
putting it on the stick (to stick) and using it to get
the coin (with stick). Buy your ticket and wear your
shoes. Then "GO FUN". Thanks for the letter,

yours failhfully, 	Crocodile Jones 0

continued from page 6

The perfect place for a good disk diagnostic when(?) I
write one. A very good 'idea Rolf!

The switching can be done with 2 single pole
double throw switches (toggles) but this means 3 such
switches (one for the GROMs) and a push button (reset)
are needed. It is not easy to fit all that in a
cartridge case. Another way is to do the RAM switching
with a 74LS74 and a push button with leds to show which
one is in use. This reduces the hardware to 2 push
buttons and one toggle (or slide), with room for 2
LEDs.

-1 03c

movuE0

-1g-ttn.77

HUG TISHUG 111IFINS DIGEST October 1988, Page 8

Th
Iluntiplitm

by Mark Van Copperhole, USA

At last! A direct equivalent for the popular but
out of production Gram Kracker has been designed by an
engineer in Massachusetts. It is called the
Gramulator.

A wire wrapped prototype was demonstrated to the
MAGNETIC Users Group in Andover, MA at their September
meeting and to the Boston Computer Society TI99/4A
Users Group at their November meeting. It performed
flawlessly at both meetings. The Gramulator offers
virtually all of the features of the Gram Kracker but
it is targeted to cost less.

No production Gramulators have been built yet. To
go from a prototype to a production model requires an
investment of about $1000. As with anything else the
more that can be made on one batch, the cheaper they
will be. You are invited to respond to this if you
would consider purchasing this product. Technical
questions are welcome. Please write to:

Mark Van Coppenole
52 Audobon Road
Haverhill, MA 01830
(617) 372-0336

FEATURES:
The Gramulator simulates 64K of GRAM and 16K of

RAM (in two 8K banks at >6000->7FFF).
1) You can customize the built-in TI99/4A operating

system in GROM 0 AND TI BASIC in GROMs 1 and 2.
2) You can backup your GROM and ROM cartridges to disk

to protect your investment and reduce wear on the
cartridge port. 	All TI, Atarisoft and Parker
Brothers cartridges can be backed up. (Does not
work with MBX.)

3) Acts as a "Super Space" cartridge allowing you to
run programs requiring RAM at >6000->7FFF
(including MYARCTS XB11).

4) Allows you to use a customized GROM 0, 1, or 2,
while a cartridge is in the slot. One applicatiom
is that you can use your own character set with a
cartridge like TI-Writer.

5) Capable of loading user written GPL code.
6) A total of 80K of memory with lithium batteery

backup.

The software needed to LOAD and SAVE GRAM and ROM
will be built-in for instant access. A memory editor,
which will be supplied on disk, will allow you to alter
and save any program loaded into the built-in GRAM and
RAM. User documentation and technical information will
be included.

Memory expansion and a disk drive are required to
take full advantage of the gramulator.

Eye Witness report by Walt Howe:
1. I saw the demonstration at the Boston meeting and

was very 	impressed. 	Mark has designed the
Gramulator to take advantage of inexpensive,
readily available components that should help keep
the price down.

2. One improvement over the Gram Kracker will be an
external, 	easily 	accessed battery for quick
replacement.

3. If you are at all interested in this, drop Mark a
note. 	Without good evidence of user support, it
will never be built. Make copies of this and pass
it around on bulletin boards and hand it out at
user group meetings. This project should really
be supported.

by Tom Amold, Hamilton

Yes I remember that I was going to talk to you
about formulas in Multiplan, specially the IF-THEN
statement. However time constraints and the fact that
I am not all too clear about them yet has lead me to
delay this topic till later. I want to talk to you
about using spread sheets, in particular Multiplan, as
Text Editors. Why would want to use Multiplan as a
word processor? Simply because in certain applications
it can be very useful. I actually use a spread sheet
at work quite often and I never work with numbers! It
is very useful in keeping lists of things, in
particular lists that you might want to up date from
time to time. I assume that you would want to sort
these lists. How about a telephone list, an address
list of your club members, a list of topics on the
TI99/4A, an index to a book, any index for that matter.
For these applications Multiplan is a very powerful
tool. Let me explain.

At work I have to write job practices, generally I
type them out. All these practices need indexes. I
used to write every topic out by hand, then number each
letter in alphabetical order. For example under "P",
prince comes before punk and punk before pyke. Then I
would write out all the topics in order for the typist
to retype. This took a long time, especially if there
were many items.

Along comes the computer and I immediately found
an easier way. I type out two columns, the topic in
column #1 and the page number in column #2. These are
entered in the order that I come across them in the
book. After I am done I "sort" the first column and I
have an instant index. Very simple and the typist does
not need to retype it either!

How do you do this in Multiplan? 	First, do not
type Titles or any other text you would want on the
printed page, enter this later. 	Assuming we are
entering an index. 	Type in the names (topics) in
column #1. After each entry move the arrow keys right
and then enter the number or other references you want.
Repeat this until all entries are done. Now sort the
spread sheet by selecting SORT. First you will be
prompted the column you wish to sort by, in our case
enter (1). Control A will move you to the second field
where the row selection will be prompted. The default
is between rows #1 and #255. This will be your normal
selection. However you can use this to sort partial
lists. This could be useful if you want to sort one
part, by one column and the other part by another
column. Which brings us to the last prompt (via
CTRL[A]). You are given the choice of ascending order
(<) or decending order (>).

I suggest you try this little experiment. List 5
names in column 1, list the numbers 5 to 1 in column 2,
list the letters c,f,d,s,f in column 3, and then the
numbers 1,34,76,45 in column 4. Now sort using a
different column each time. See how the rows follow
each other and the order changes. You may also sort
using different columns, for example you could sort a
long list by column #1 and then the top 20 entries
could be sorted by column #2 to achieve a different
order.

As for uses, how about starting by making a
combination of phone list and address list. Then sort
by name, phone numbers, addresses, printing out a new
list each time. These would then be handy references.
For example, you could isolate all your friends who
live in Australia whose names begin with "P" and whose
phone numbers are in area code "2456". I would think
that you would find 10 or 20 anywhay! Just kidding!!!

One more point about using Multiplan to make
columns of items. You will not accidently format them
into one jumbled mass! I forgot to mention that all
titles etc. should be added after all your sorting is
done. Hope this had been helpful.

0

TISHUG IVEINS DIGEST October 1988, Page 9

	1
Chiln 	[3fi kllt11111,11alan

Author unknown

In this article we will learn how to create
complex computer animation using the same techniques
that filmmakers use in creating hand drawn animation
like cartoons. We will create a 24-character
representation of a galloping horse. If that is not
enough, we will place several of them on the screen at
once. The result will be a whole stable of horses all
galloping in tempo - and not a SPRITE in sight!

CorComp (or AT) makes it possible
One of the most useful features of the new CorComp

Commands is the ablity to move large blocks of memory
at one time with the MOVEM command. Until CorComp
added this much needed command, the only way you could
move data from one location to another was by using FOR
NEXT loops moving one byte at a time. With this new
command, however, an entirely new form of computer
animation is available to the TI99/4A owner - Character
Set Animation.

What is Character Set Animaiion''
Character Set Animation is one of the most common

forms of computer graphics. It works much like film
animation in that a set of pictures are flashed into
view in such a way that it looks as if the picture is
moving. In the early computer versions of this type of
animation, the entire "movie" was stored as a series of
frames, all in sequence in memory. To create the
effect of motion, the computer would simply move the
location of the screen area to begin at the next
"frame" of the movie. Sort of like looking at the same
landscape from different windows in the same building.
It is a lot easier to change the "window" than to move
the building!

The TI99/4A computer cannot use this type of
animation because it uses a "memory mapped" video chip,
the TMS9929A. This means that to create the same
effect, we would probably have to move the "building"
brick-by-brick. This means tedious' byte-by-byte
actions that are way too slow in BASIC to ever create
the sense of motion. Luckily, CorComp has changed all
that with their MOVEM command.

Redefine the characters
To create the same sense of motion on the TI99/4A,

we will need to constantly redefine the displayable
character set. In this example, we will use the
lowercase letters (character sets 9-12 in TI-BASIC).
We can just print the characters onto the screen, then
redefine them by placing new data into the character
definition tables in VDP memory. We will let the
computer do the rest!

A lot of Data
To do this will require a great deal of data. In

the example program below, we have chosen a 6 by 4
"frame" or 24 characters per frame. This means that
each frame requires 192 bytes of data. Since we will
be using only five frames, we will need a total of 960
bytes to animate our picture. As you can see, it takes
quite a bit of data to create computer animation!

We will not be able to store the data in the
standard TI99/4A character strings either
("001FAC446688F100"). Since we will be "poking" data
directly into the VDP character table, we will have to
express our character definitions as decimal values
(>FF=256, >10=16, etc.).

	

We also need a place to store all this data. 	In
our example we use the expansion memory starting at
>A000 (40960). If you do not have the 32K memory, you
can locate your data in some free area of VDP memory.
Try around >2000 (8192). If you want to move the data
area to some other portion of expansion memory, simply
change the value in line 500 (CPU=NNNNN).

So here is what we do
Here is a quick summary of the program given

below. You can use the ideas found here to create your
own "computer movies".
1) Load all needed character data into free memory

area.

2) Clean out original character data, so we can start
with a "blank screen".

3) Put up the characters on the screen (they are blank,
so we cannot see them yet!)

4) Set up a loop that places each "frame" of data into
the character set table (this causes us to "see"
the frame on the screen).
In our version below, you have the added ability

to control the speed of the horses' gallop.
NOTE: The program below operates only in TI-BASIC.

If you want to run this program in Extended BASIC, you
need to change all the CorComp Command statements to
match the Extended BASIC versions.

100 REM ***************
110 REM *
120 REM * GALLOPING *
130 REM * HORSE *
140 REM *
150 REM * ANIMATION *
160 REM * 	DEMO
170 REM *
180 REM ***************
190 REM
200 REM 	04/85
210 REM
220 REM 	SUBFILE99
230 REM
240 REM *************
250 REM *SET UP AREA*
260 REM *************
270 REM
280 CALL CLEAR
290 REM
300 FOR X=1 TO 8
310 CALL COLOR(X,16,6)
320 NEXT X
330 CALL SCREEN(6)
340 REM
350 A$="abcdef"
360 B$="ghijkl"
370 C$="mnopqr"
380 D$="stuvwx"
390 SP=25
400 REM
410 CALL VPOKE(6,96,"GALLOPING HORSE DEMO")
420 REM
430 REM ***********
440 REM *POKE DATA*
450 REM ***********
460 REM
470 CALL SOUND(150,1400,0)
480 CALL VPOKE(388,96,"LOADING DATA INTO EXP MEM")
490 CALL VPOKE(326,96,"ONE MOMENT PLEASE....")
500 CPU=40960
510 FOR X=0 TO 959
520 READ B
530 ADDR=CPU+X
540 CALL MPOKE(ADDR,O,B)
550 NEXT X
560 REM
570 REm *****************
580 REM *CLEAN OUT CHARS*
5,90 REm *****************
600 REM
610 VDP=1544
620 FOR X=0 TO 191
630 ADDR=VDP+X
640 CALL VPOKE(ADDR,0,0)
650 NEXT X
660 REM
670 REM *BEEP WHEN DONE*
680 REM
690 CALL SOUND(150,1400,0)
700 CALL VPOKE(738,96,"PRESS ANY KEY TO START DEMO")
710 CALL KEY(0,K,S)
720 IF S=0 THEN 710
730 REM
740 REM *CLEAR VDP AREA*
750 REM
760 CALL HCHAR(2,1,32,736)
770 REM
7go REm ******************
790 REM *PUT UP BLANK SET*
goo REm ******************

	- •

1590 DATA 28,254,6,12,56,48,0,0,0,0,0,0,0,0,0,0
1600 DATA 0,0,0,0,0,0,0,0,220,216,192,96,112,0,0,0
1610 DATA 1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
1620 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1630 REM
1640 REM *FRAME 3 DATA*
1650 REM
1660 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1670 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,63
1680 DATA 0,0,2,3,62,239,223,127,0,0,0,0,128,192,32, 16
1690 DATA 0,0,0,3,15,63,10,0,0,0,3,252,200,12,31,31
1700 DATA 0,0,255,24,48,124,56,255,23,255,128,0,0,56,

126,255
1710 DATA 247,238,252,20,8,24,16,16,196,108,48,0,0,0,

0,0
1720 DATA 0,0,0,0,0,1,3,6,31,31,61,121,243,195,1,0
1730 DATA 191,224,224,192,128,0,128,96,254,254,7,7,

14,12,24,112
1740 DATA 56,7,255,0,0,0,0,0,0,128,192,192,192,192,

192,128
1750 DATA 12,24,24,56,24,0,0,0,0,0,0,0,0,0,0,0
1760 DATA 51,62,0,0,0,0,0,0,192,0,0,0,0,0,0,0
1770 DATA 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1780 REM
1790 REM *FRAME 4 DATA*
1800 REM
1810 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1820 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
1830 DATA 0,0,6,118,155,127,247,231,0,0,0,0,0,0,128, 32
1840 DATA 0,0,0,3,7,10,0,0,0,0,3,255,204,141,15,14
1850 DATA 0,0,252,127,16,239,63,111,1,11,29,224,0,12,

142,220
1860 DATA 127,255,254,122,30,12,4,68,8,252,204,32,0,

0,0,0
1870 DATA 0,0,0,0,0,0,1,3,13,15,15,63,248,224,128,0
1880 DATA 159,127,248,56,24,24,56,28,252,255,63,1,1,

0,112,63
1890 DATA 124,196,243,255,199,192,192,192,0,0,0,128,

192,192,96;48
1900 DATA 118,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1910 DATA 6,1,0,0,0,0,0,0,0,128,192,192,0,0,0,0
1920 DATA 0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0
1930 REM
1940 REM *FRAME 5 DATA*
1950 REM
1960 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1970 DATA 0,0,0,0,0,0,0,0,0,0,0,6,15,30,28,61
1980 DATA 48,56,254,231,227,255,253,255,0,0,0,0,128,

32,144,232
1990.DATA 0,1,3,7,13,0,0,0,3,255,232,78,142,15,7,15
2000 DATA 255,124,80,24,60,247,239,159,255,63,12,0,0,

0,241,4
2010 DATA 252,28,56,56,24,16,208,112,216,64,0,0,0,0,

0,0
2020 DATA 0,0,1,1,3,3,118,60,60,255,240,128,0,0,0,0
2030 DATA 112,240,112,48,56,24,12,6,255,1,12,6,3,1,0, 0
2040 DATA 48,240,120,56,124,198,3,1,0,0,0,0,0,0,0,126
2050 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2060 DATA 3,1,0,0,0,0,0,0,0,192,224,0,0,0,0,0
2070 DATA 0,0,0,0,0,0,0,0,192,112,56,0,0,0,0,0
2080 REM

r4

MAIL TO : ALL
MAIL FROM : SHOP

For sale
1 TI disk drive for sale, no power supply. Please

get in touch with Steven Carr on (02)608 3564 between
4:30 and 10:30 pm on weekdays or between 10:00am and
10:00pm on weekends or leave a message via TEXPAC BBS.

MAIL TO : ALL
MAIL FROM : ABEL

For sale
Console and power supply, PE box, 32K memory

expansion, disk drive SSSD
Extended BASIC module, DM2 module, TI Logol, Touch

Typing Tutor.
(044)21 4274 after hours. Make an offer.

HOG -11511111G 	1111GEST 	October 1988, Page 10

620 FOR Y=1 TO 3
830 FOR X=1 TO 25 STEP 8
840 Z=((192*Y)+X)-64
850 A=Z
860 B=A+32
870 C=A+64
880 D=A+96
890 CALL VPOKE(A,96,A$;8,96,B$;C,96,C$: D,96,D$)
900 NEXT X
910 NEXT Y
920 REM
930 REm ****************
940 REM *DISPLAY HORSES*
950 REm ****************
960 REM
970 CALL SOUND(150,1400,0)
980 CALL VPOKE(736,96,"<S>=SLOWER, <D>=FASTER,

<0>=QUIT")
990 CALL MOVEM(3,40960,1544,192)
1000 GOSUB 1130
1010 CALL MOVEM(3,41152,1544,192)
1020 GOSUB 1130
1030 CALL MOVEM(3,41344,1544,192)
1040 GOSUB 1130
1050 CALL MOVEM(3,41536,1544,192)
1060 GOSUB 1130
1070 CALL MOVEM(3,41728,1544,192)
1080 GOSUB 1130
1090 GOTO 990
1100 REM
1110 REM *CHECK KEYBOARD*
1120 REM
1130 CALL KEY(0,K,S)
1140 IF S=0 THEN 1230
1150 IF K<>83 THEN 1190
1160 IF SP>50 THEN 1230
1170 SP=SP+4
1180 GOTO 1230
1190 IF K<>68 THEN 1220
1200 IF SP<1 THEN 1230
1210 SP=SP-4
1220 IF K=81 THEN 1260
1230 FOR X=1 TO SP
1240 NEXT X
1250 RETURN
1260 CALL CLEAR
1270 STOP
1280 REM
1290 REM *****************
1300 REM *HORSE CHAR DATA*
1310 REM *****************
1320 REM
1330 REM
1340 REM *FRAME 1 DATA*
1350 REM
1360 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1370 DATA 0,0,0,0,0,0,0,0,0,0,0,0,1,1,6,15
1380 DATA 0,0,6,118,155,127,247,231,0,0,0,0,128,192,

32,136
1390 DATA 0,0,0,3,14,29,5,0,0,0,3,252,188,14,11,11
1400 DATA 0,0,255,31,0,24,31,157,59,15,254,192,0,0,0,

240
1410 DATA 135,14,60,124,12,8,8,56,196,204,48,0,0,0,0, 0
1420 DATA 0,0,0,0,0,0,0,0,15,5,126,127,97,99,103,99
1430 DATA 207,223,243,224,192,192,128,128,252,191,

223,127,3,3,1,1
1440 DATA 112,248,254,142,252,248,128,128,0,0,0,0,0,

0,0,0
1450 DATA 1,1,0,0,0,0,0,0,193,128,0,0,0,0,0,0
1460 DATA 192,224,112,24,28,0,0,0,1,1,1,0,0,0,0,0
1470 DATA 128,192,224,48,56,0,0,0,0,0,0,0,0,0,0,0
1480 REM
1490 REM *FRAME 2 DATA*
1500 REM
1510 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1520 DATA 0,0,0,0,0,0,0,0,0,0,0,1,5,8,59,87
1530 DATA 0,8,12,190,121,248,252,191,0,0,0,0,0,128,

32,208
1540 DATA 0,0,3,7,15,29,0,0,0,7,252,208,151,31,31,15
1550 DATA 0,255,32,32,108,255,255,255,255,1,0,0,4,28,

252,184
1560 DATA 187,184,48,16,16,16,48,240,144,192,0,0,0,0,

0,0
1570 DATA 0,0,0,0,0,0,0,0,15,15,62,60,56,236,204,198
1580 DATA 255,143,0,0,0,0,0,0,248,255,31,60,48,112,

. 	 .

-111 	 1.1511 DIGEST 	°cid,- i988,Page

3ahwure flpo
from Stephen Shaw, England

Here are some interesting routines b) Dr Roy 11
Tamashiro, for Extended BASIC plus 32K.

Lines 100 to 150 are a demonstration program. The
Flip routine is in lines 30100 onwards and may be saved
as a merge file

100 CALL FLIP
110 CALL CLEAR
120 PRINT "FLIP DEMO": I 4
130 FOR 1=33 TO 126 :: PRINT CRR$(1); :: VW I t:

PRINT
140 CALL LINK("FLIP")
150 INPUT "Press enter":R$ 1 V LOTD JJD
160 !
170 I
30100 SOB-F1111
30110 ! 1986 R TAMASHIRO
30120 ! COMPUTER BRIDGE
30130 ! NOVEMBER 1986
30140 ! XB + 32K
30150 !
30160 CALLINIT :: CALL LOAD(16376,70, 76,73,80,32.32,

36,244) :: CALL LOAD(8196,63,248)
30170 CALL LOAD(9460,2,0,4,0,2,5,37,72, 2,2,0,2,2,4,0,

4,2,1,40,56,4,32,32,44)
30180 CALL LOAD(9484,192,96,40,56,6,5, 213,65,6,193,6,

5,213,65,5,192,2,128,6,240,21,5,6,4)
30190 CALL LOAD(9508,22,239,2,37,0,16, 16,254,2,1. 2,

240,2,1,37,64,2,0,4,0,4,32,32,36,4,96,0, 112)
30200 PRINT "FLIP LOADED"
30210 SUBEND
30220 END

Upside down demonstration
(-Merge FLIP into it!!!-)

100 CALL FLIP ! Merge it in!
110 DATA 1,"UPSIDE DOWN"
120 DATA 3,"by Roy Tamashiro "
130 DATA 5,"from Computer Bridge"
140 DATA 6,"November 1986"
150 DATA 15,"After a while, everything°
160 DATA 16,"gets corrected..."
170 DATA 18,"It will wait for yot Le
180 DATA 19,"press the ENTER key"
190 DATA 99,"DUMMY DATA"
200 RESTORE :: CALL UPSIDE
30000 GOTO 200
31500 SUB UPSIDE
31510 DIM W$(24) :: FOR I=1 TO 24 :: WS(I)="" :: NEXT I
31520 READ R IF R<25 THEN READ W$(R) GOTO 31520
31530 CALL LINK("FLIP") :: CALL CLEAR :: FOR I=1 TO 24
31540 DISPLAY AT(24-I,14-LEN(WW)/2): WS/I)
31550 NEXT I :: CALL DELAY
31560 FOR I=1 TO 24 :: CALL HCHAR(I,1,32,32) 	IMPL-A7

AT(I,14-LEN(WW)/2): W$(1) :: NEXT I :: PA1I. nFLAY
:: CALL LINK("FLIP")

31570 DISPLAY AT(24,1):"PRESS ENTER.' :: CALL KEYWA,S)
:: IF K<>13 THEN 31570

31580 CALL CLEAR :: SUBEND
31590 SUB DELAY :: FOR sk-o TO 11100 	MITI) 	SUBEND
31600 END

mmwammo
Q. How do I redefine the =BOK LA a running

Extended BASIC program?
A. The answer to ehis query is on page 57 of

TI*MES Issue 8, and comes from Jim Peterson of Tigercub
Software. It requires 32K memory expansion.

100 1 Iefine character N with the definition you
require. Now proceed:

110 CALL CHARPAT(N,A$) :: FOR J=1 TO 16 STEP 2

	

H$=SEGUA$,J,2) :: CALL HEXDEC(H$,D) 	TT+7, II
H(T)=D :: NEXT J

120 CALL INIT :: CALL LOAD(8196,63,248)
130 CALL LOAD(16376,67,85,82,83,79,82, 48,8)
140 CALL LOAD(12288,H(1),H(2),H(3),H(4), H(5),H(6),

H(7),H(8))
150 CALL LOAD(12296,2,0,3,240.2,1,48,0, 2,2,0,8,4,32.

32,36,4,91)

160 CALL LINK("CURSOR") !program here - - - 	them
20000 SUB HEXDEC(H$,D) :: N=1 :: DEC=0
20001 FOR J=1 TO LEN(H$) 	AS=SEGS(H$,LEN(H$)-J+1,1)

:: IF ASC(A$)>58 THEN HT=ASC(A$) -55 ELSE HT=VAL(A$)
20002 DEC=DEC+N*HT 	N=N :: NEXT J
20003 IF DEC<=32768 THEN D=DEC ELSE D= -(65536 -DEC.)
20004 SUBEND
20005 END

MNOMMEIMMIMMIMMIIIIM■ME Yam

TI Editor/Assembler bug
11 iou wish to use PIO as an output device for a

11ST, you have to put a full stop after it to make it
'work (eg PIO.) due to an error in the ASSM2 file. The
'error lies in the DSRLNK routine which the assembler
'uses, 	It Acies not use the same routine that your
TrogramD *all! 	The assembler internally uses a
modified 'VSBR routine which returns data to RO instead
*f the usual R1, but whoever wrote the internal DSRLNK
torget this! Consequently, the assembler looks at R1,
mnd the program uses an incorrect name length when
scanning for the device name! The period causes 1-le
routine to exit, and "catches" the errowr -

Want to fix it? If you still havt"Ehe origina-1
ASSM2 file, use a sector editor to look for the code 04
20 AA BE 00 00 D1 Cl. It is usually in the 8th sector
of the file. Change that last Cl into a CO and the
Assembler will work as it is supposed to! Ne mppA t.0

add a full stop after PIO now!
Courtesy Danny Michael (Dump and Neatlist authorl

SHOALS 99ERS.
mmOolmOMOmelimlift110

Nri11 we see-Multiplan on disk, TAO
Nope. -Open up your Multiplan module and check out
those chips, then look at the size of the disk files
they load into your 32K ram and VDP ram. That comes to
about 66K. Now squeeze it into 32K? Nope. Stuck with
the module until you get your 9640 (Geneve) anywayl

0

OPERATING SYSTEM BUG
Seems a little late in the day to be discovering

system bugs, but here we are with one I have not so far
seen reported.

Type and run Van

1100 CALL KEY(3,A,B) :: PRINT B.:BL:13 :: CALL JOYSTfl,X,Y)
II COTO JLW

Now hold down a key on the right side of the
joystick, hold it down continuously. What you get is a
lot of +1's. Every key scan treats the continuously
held down key as new.

Now hold down a key on the left side of the
Nsyboard. You may get an odd +1, the odds are you will
boot., !You will get a lot of -11.9_

Now change the CALL JOYST to scan JOYST(2... aMi
try again to see if there is any difference.

These results are not what you might expect, and
could well cause problems, especially if you use a CALL
KEY to scan for the fire button and check its status as
well. This could explain why I have problems using the
unreleased module game LASSO and also explain why it is
so unfinished?

This may be a hardware bug, the same as the alpha
lock/joystick problem, so easily fixed with a suitable
diode and a cut pcb track, or it could be a firmware
bug. It is constant in every Extended BASIC module 1
have, including Myarc Extended BASIC.

 RA!.

FORTH NOTE
Would you like to input a floating point number

from the keyboard? It is not too obvious how to do it
and thanks go to George Sloane of the Aloha User Group
in Hawaii for this one:

f) PAD 1+ DUP 20 EAR*. .4:.1'5"4 41141 3411,
1— C! VAL FAC>

Explanation:
The address of PAD+1 is placed on the stack, this

is because VAL, perhaps contrary to what the Manual

I IMP (
SVAP

TISHUG NUNS DIGEST

le

r IL777
suggests, starts reading the entry at PAD+1. II you
just used PAD, you would lose the first character,
either the most significant digit, or perhaps a decimal
point or a minus sign.

20 EXPECT allows you to enter up to -20 di.gits.
More than you may need but so what!

VAL then converts the string to a floating point
,cuimber ,

'EAU> -brings fhe floating point nuMber on to fho
islaik..

If you want an integer Blint.tr ottput. Yed 00514

use FAC->S instead.

CALL LOADs
In response to requests, here is a list I have

found useful. Remember, you must do a CALL INIT before
you can use CALL LOAD!
CALL LOAD(-31961,51) :; END ..returt rto titie
CALL PEEK(-28672,A) 	aF A=0 then NO speech synth

attached.
CALL LOAD(-31888,63,255) then NEW up another 250 oda

bytes of memory from CALL FILES(1))
CALL LOAD(-31888,55,215) then NEW three drives! 	NI:

Attempted disk usage after turning all drives off
like this can be fatal!

CALL LOAD(-31931,0) ..delete Extended BASIC protection
CALL PEEK(-31863,A) ..in a running program, if A=231

then expanSion memory is fitted.
CALL LOAD(-31961,149) :: END ..reset console Amd load

DSK1.LOAD
CALL PEEK(-31952,A,B) ..Pointer to starting address ol

line number table.
CALL PEEK(-31950,A,B) ..pointer to ena aaaress of lino

number table.
CALL PEEK(-31954,A,B) ..current line being referencec

in line number table. The line number table i8
composed of four bytes for each line: two bytes
hold the line number and two bytes hold the
address.

CALL LOAD(-31806,16) —disable quit key.
CALL LOAD(-31878,N) ..all sprites over N stop. Cam la

used to make several sprites start moving
simultaneously, This LOAD is over-ridden by a
subsequent CALL SPRITE or CALL MOTION.

CALL LOAD(-31806,64) will disable all sprite motion
until it is reset with CALL LOAD(-31806,0) or
(-31806,16). If you wish to disable sprite motion
and quit key, use CALL LOAD(-31806,80).

CALL LOAD can also be used for SOUND and SPEECII.
These entail long articles and havgr IbBem icoverea jr.
previous TI*MES.

===

SPRITE SAMPLER:
Wirst a program using CALL LOAD(-31878),

100 CALL CLEAR :: CALI =5 	CALL SCREEN(2)
R=2*PI/28

110 FOR 1=28 TO I STEP -1
120 CALL SPRITEUI,46,16,96,128,10*COS(I*R),

10*STN(T*R)) :: CALL LOAD(-31878,0) :: NEXT 7
130 GOTO 130

ar using -318106:

100 CALL CLEAR :: CALLJNIT 	CALL SCREEN(z)
R=2*PI/28

110 CALL LOAD(-31806,80J
120 FOR I=1 TO 28
130 CALL SPRITEW,46,16,96,128.10*COS(I*R).

10*SIN(I*R)) :: NEXT
140 CALL LOAD(-31806,16)
150 GOTO 150

.M.M.10 11FE

And nothing to to with CALL LOAD but rclated to
the sprite sample:

100 R=2*PI/28 	CEW i; GALL S.GHEEN(2)
110 FOR I=1 TO 28 :: CALL

SPRITEW,46,16,96,128,COS(T*R1,SIN(T*R1) CO NEXT I
,130 GOTO 110

Frew lips from thH Tioitub Kusber
Original:

101.1 It X.16/ THEW T=7 ELSE II.' I42 1111(Tw33 ImsE IF X=.1
THES Tw19 ELSt IF X=4 THEI 121.
Battart

100 YEVAL(SE0("07331,321",104-1,2))

CMIA (G-1114a3
byWrincrKanitc

Moker, 	'Christmas, Easter?? Not reallf ever
'heara of RAM cards. Some time ago several meu3ers of
our little fraternity started playing the RAMcard game.
These little beasties allow the owner to store heaps of
stuff on them. This could be programs or data, which
becomes readily accessible at RAM speed (just think,
.1.1stant phone books).

The apparent prerequisite is b. disk controller
tcara. 'However I believe that it is possible to drive
these critters as stand alone units i.e., run programs
off the RAMcards without a disk controller. is
however beneficial to have a mate with disk drives sti
the card can be set up and loaded.

1Well, 	'since 	my collection of -cbilfputerS lanZI
paraphenalia met the prerequisites to handle a RAMcard
they put the hard word on me to, if not buy one, at
least buy the bits and glue one together myself. (They
jest. I flunked cut and paste in pre school.) Besides
I have heard of people going dyslexic and requiring eye
crutches as a result of looking at the little pointy
bits where the glue goes.

Nonetheless, the lad weakened and bought a circuit
board with the.intention of eventually buying the bits
to fill the holes. At that time the holes were to be
filled with 8K byte crisps. I did not buy any then
(they would not accept monopoly money as legal tender).
Since then, as things are wont to do, the buggers have
more than trebled in price, but this is marginally
offset by the fact that their storage capacity has
quadrupled. (This fails to alleviate the monopoly
money economy prevalent in my financial circles.1..

to icu). a long story ihort it seema lehai Laol. T110
entire loard :needs to be filled to work. It is
,possible to do things in small stages and gradually
:build up to the desired capacity. In an attempt to
convince myself that the exercise is worth the effort,
I borrowed a completed card off my visually impaired
mate Karel Kuit who has just recently had to acquire
eye crutches. He assembled his own RAMcard (but then
again my wife needs glasses and she has never built a
RAMcard so perhaps the relationship is not as strong as
first suspected).

Now, the RAMcard is a solid state disk drive which
is battery backed so none o.t the goodie5 tecomd
demagnetised and fall off whet the newel :is cut,
Further there are no mechanical bits nappin& 114

down and spinning around, so acessing dat6 ,cm the
RAMcard is marginally(?) quicker than a normal idisP
drive. Its almost like having your data and pro2rams
resident in the computer.

The lirst thing I did was to remove the batteries
rtd ,clean the existing programs and data off the card
i(nice bastard). Still, it was replaced with the latest
'ROS (RAM Operating System), a RAM resident Editor
Assembler, a RAM resident TI-Writer, a file display
utility, a DM-1000, a Disk Editor and a Quick copier ta
mention a few. Practically the only cartidge reguired
is Extended BASIC.

The speed at which these programs are acessea 11
really quite amazing and really puts this little toy
into a different class. I am therefore resolved that I
shall get some of those crisps to glue into the holes
on my card as soon as I can. I only wish that monopoly
money were legal tender, perhaps I can ge awa
using a latex cheque!

compare the resultsi

TistiuG rtinitis mum- Dctober /98s,Page 13

F

rEQ',\Y"lilir 'DT- 4ailli'AILLE'
by Scott Darling, Sysop of GENIE, USA

ThiR file was on Compuscrve, and is from the
1T-Forum,

: 	4A/Talk from DataBioTics, Inc. 	:

: Performance 	
: Easc of Use 	 Bf
Documentatloa 	 A+ :
Vane 	 A- ;
Final Grad& 	 A- :

What is 4A/Talk? 4A/Talk is a terminal emulator
type of program. It requires Console, 32K card, Disk
system, RS232, Modem, Extended BASIC module, E/A
module, or Mini-Memory module, TI or CorComp Disk
Controller (unsure of Myarc compatibility). Optional
is a printer. This program has TE2, Xmodem, and ASCII
capabilities. It also includes two unique features not
found on ANY other terminal program. A Disk Cataloger
and a Delete file option from online mode! This Disk
catalog also has the option to highlight a file on the
disk so the name can be used for up or downloading.

Performance:
The program worked flawlessly in all phases of

operation. It. could not be crashed by the user in any
manner that I tried. The only complaint is that the
program is so large, the Buffer space is only 8K. This
8K is used for ALL phases of transfers, But there is a
graphical representation on screen to show how large
the buffer is at all times in ASCII mode. But on 	!
other hand the SK is also used for TEII and XM(
transfers, so this gives the drives a breakl

Ease of Use!
The program has an onscreen help listing (CTRL[7])

that can be brought up at any time! Every prompt is in
menu choices, so you have a way of backing out of an
incorrect keystroke. There is a configure file to set
up a default file and an auto-dialer file to list your
most frequently called numbers and access them using a
smart modem! 	There is also a Disk Catalog function
that allows you to read any disk on screen. 	Also
included is a Delete iile function, from an on or
offline mode.

Documentation:
Is FANTASTIC! I could give this program to anyone

and they could make a connection on the first try! The
documentation covers every aspect of the program and
then some! The documentation alone is worth the price.
There is nothing left to the imagination!

Value:
If you do a lot of ASCII reading, this program may

be cumbersome! But for TE2 or Xmodem it will be a
worthwhile investment,

Final Grade:
downrated this program solely on 8K buffer for

ASCII. 	I realize because of the program size it was
impossible to have a larger buffer. 	Even Fast-Term
would have only 11K buffer if both files (TE2 and
Xmodem) were loaded. Also I thought that there should
be a mode of operation to dump the buffer when it is
full. At least it does not erase the buffer like
Pterm! Another inconvenience is using ASCII uploading.
The program only has a line at a time option. There is
no provision for send-all of the data automatically!

Ordering Info:
DataBioTics, Inc.
PO Box 1194
Palos Verdes Estates, CA 90274

The Bull Board 2
Software Hardware
P.O. Box 307
Upper Marlboro, MD 20772
Price: $19.95 plus $2.50 (S H)

71r1v 	CamittllaDm
by Rolf Schreiber

This module from CorComp is a welcome addition to
the utilities available for the TI99/4A. It
effectively allows the two way transfer of ASCII (io
data or text) files between an IBM PC (and/or
compatible/clone) formatted disk and a TI99/4A
formatted disk

.
-:Brierly, the following actions are possible:

1) Kead the directory of a PC or a TI99/4A formatted
disk (SSSD, DSSD or DSDD at 18 sectors/track only)
by selecting either a '1' or a '2' from the menu.

2) Copy a file between a PC and a TI99/4A formatted
disk (in either direction) by typing a 'C' in the
command field and executing the command by pressing
FCTN[6].

3) Rename a file on either a PC or a TI99/4A formatted
disk by typing an 'R' in the command field and
executing the command by pressing FCTN[6].

4) Delete a file on either a PC or a TI99/4A formatted
disk by typing a 'D' in the command field and
executing the command by pressing FCTN[6].

5) Change the file protection of a file on a TI99/4A
formatted disk by typing either a 'U' (to unprotect)
or a 'P' (to protect) in the command field and

executing the command by pressing FCTN[6].

Points to note are:
1) You need a CorComp Disk (or AT) Controller card for

the program to work.
2) You need a 2 drive setup! drive #1 for the PC

formatted disk end drive 42 for the TI99/4A
formatted disk. 	Since PC disks are 	usually
formatted at least 360K, drive #1 must be a DSDD
drive. Drive #2 may be a RAMdisk.

3) You can escape to the menu at any time by preaaias
FCTN[9].

4) The TI99/4A file must be in DIS/VAR 80 format and
must be unprotected.

5) The sector size of the PC formatted disk appears tu
be 128 bytes.

Points I did not like:
1) The program does not allow you to format a disk,

either in PC format or in TI99/4A format.
2) You cannot transfer a TI99/4A file in DIS/FIX SO

format; it must first be converted to DIS/VAR 80
form using either TI-Writer or Editor/Assembler.

3) The TI99/4A text file must must not be write
protected, otherwise the program ignores the command
and returns to the menu.

4) The program does not work wRh 	MiARC dial(
controller card.

5) The program does not allow you to view a file on the
screen, or to send the directory to a printer. 	I
presume that memory space in the cartridge was a
limiting factor.

6) The size of a PC ASCII file that can be converted is
limited, and in my opinion, far too small.

Points I liked:
1) It allows a two way transfer of text or ASCII data

between a PC readable disk and a TI99/4A formatted
one.

2) It opens up another avenue of obtaining and using
information and increases our machine's capabilities
in a very important direction.

Possible applicatinng:
1) Transferring your data files to an PC without the

need to retype the information, if you feel the need
to upgrade your computer.

2) Transferring inforMation more easily between your
workplace (school?) and home.

3) Transfer BASIC programs (in an ASCII format) between
PCs and the TI99/4A, to facilitate conversions
without the need for retyping.

4) Transfer of UCSD Pascal source code between PC and
TI99/4A disk formats. 	A program is available for
the TI99/4A to convert between Pascal screens and
DIS/VAR 80 format.

0

_rrr-.1sir-Ntry 1-15H1_116 NUNS illIGEST October 1988, Page 141

	A

100 REM Truckers Domain
110 REM Pgm by Sam Moore Jr.
115 REM TEXAS INSTRUMENTS CO
NTRIBUTED SOFTWARE 1983
120 DIM P$(51):: CALL CLEAR
:: FOR CC=1 TO 14 :: CALL'CO
LOR(CC,2,2):: NEXT CC :: CAL
L SCREEN(2)
130 PRINT " 	TRUCKERS DO
MAIN
====fl:u”:” 	You Will Be D
riving a Truck In The Hill
Country OfTexas."
140 PRINT :" 	The Job Wil
I Not Be 	Easy, Since You
Must Keep Your Truck On Th
e Road And Avoid All Obstac
les."
150 PRINT :" 	The Obstacl
es Are:":"":" 	1) Giant A
rmadillos 	2) Huge Po
tholes 	 3) Texas S
ized Skunks"
100 PRINT " 	4) Giant Jac
krabbits 	5) A Herd Of
Turtles"
170 PRINT : : :"Press Any Ke
y To Continue..."
180 FOR CC=1 TO 14 :: CALL C
OLOR(CC,16,2):: NEXT CC
190 CALL KEY(0,K,S):: IF S=0
THEN 190
200 FOR CC=1 TO 14 :: CALL C
OLOR(CC,2,2):: NEXT CC
210 PRINT :" 	Each Obstac
le You Hit Or Each Time You
Run Off TheRoad Costs You A
Spare Tire.": :" You Have

A Large Truck And"
220 PRINT "You Have Driven T
his Danger-ous Route Before
So You HaveStocked Up With 2
O Spares."
230 PRINT :"You Gain A Spare
With Each Level Completed,
But When They're Gone,"
240 PRINT :"You Lose!":"":"B
ut The Fun Is Seeing How M
any Miles You Can Get Under
Your Belt And How High A Lev
el You Can Obtain."
250 PRINT :"PLEASE USE JOYST
ICK NO. 1!": :"Press Any Key
To Continue..."
260 FOR CC=1 TO 14 :: CALL C
OLOR(CC,16,1):: NEXT CC
270 CALL KEY(0,K,S):: IF S=0
THEN 270
280 CALL CLEAR :: CALL SCREE
N(2):: FOR CC=1 TO 14 :: CAL
L COLOR(CC,4,1):: NEXT CC
290 FOR CC=3 TO 8 :: CALL CO
LOR(CC,1,4):: NEXT CC
300 CALL CHAR(47,"FFFFFFFFFF
FFFFFF")
310 RESTORE :: FOR 1=98 TO 1
26 :: READ A$ CALL CHAR(I
,A$):: NEXT I
320 FOR I=1 TO 50 :: READ P$
(I):: NEXT I
330 SCORE=0 	LVL=0 	TR=2
O :: A=7 :: B=6 :: COSUB 670
340 FOR LEVEL=1 TO 99
350 READ L 	A=7 :: B=6 ::
CALL CLEAR :: CALL SCREEN(2)
:: FOR CC=1 TO 14 :: CALL CO
LOR(CC,L,1):: NEXT CC
360 FOR CC=3 TO 8 :: CALL CO
LOR(CC,1,L):: NEXT CC :: GOS
UB 670
370 TR=TR+1
380 NEXT LEVEL
390 PRINT "YOU WON IT ALL!"
:: END

400 SCORE=SCORE+1 :: CALL JO
YST(1,P,Y):: A=A+P/4
410 CALL GCHAR(7,A,GC):: IF
GC<>32 THEN TR=TR-1 :: CALL
SOUND(-100,110,30,110,30,899
,30,-4,0):: CALL SOUND(-100,
110,30,110,30,1599,30,-4,0)
420 IF TR<1 THEN 760
430 CALL SOUND(-2000,110,30,
110,30,260,30,-4,9):: CALL H
CHAR(7,A,101):: RETURN
440 DATA FFFFFFFFFFFCFOC,FFF
CFOC
450 DATA 3C3C3C3C3C3C3C3C,3C
3C3C3C003C3C18,286C6C6C29387
F02,000003FBFCFCFC94,0F3F7FF
F7F38,0000000CDEDE3F2D,O8CCF
EFFE3E
460 DATA 18183C3C7E7EFFFF,00
040C3F0F0F0FOC,0103070F1F3F7
FFF,01060ACAEAF2EC3,80C0E0F0
F8FCFEFF,181E3F7F7F7F1C18
470 DATA FF7F3F1F0F070301,FF
FEFCF8F0E0C08,808000COEOEOF0
F,F8F8FCFCFEFEFFFF,FFFF7F7F3
F3F1F1F,OF0F070703030101
480 DATA 0101030307070F0F,1F
1F3F3F7F7FFFFF,FFFFFEFEFCFCF
8F8,F0F0E0E0C0C0808,00000000
030F3FFF,030F3FFFFFFFFFFF
490 DATA COFOFCFFFFFFFFFF,00
000000C0FOFCFF
500 DATA // 	//// 	/////
/////////,// 	//// 	q///
//////////,//s 	u///o 	q/
///////////,//t 	v////o
q///////////
510 DATA ///s 	u////0 	q/
/////////,///t pv/////op
q////////,////s 	u/////0

DEAD,////t v//////o
/END

520 DATA /////s 0//////ofg
////////,/////t 	v///////0

///////,////// 	///////
/0 ///////,DRIVE/ hj <DILLE
R// SQUEEZE
530 DATA SAFELY 	///////bc
///////,/////y 	w/////bc
///////,/////z 	xi//bc
///////

540 DATA ////y w//bc
[1///////,////z 	x//
I/////////,///y lnw/// i i i
TURTLE/HERD,///z x///
///////////

550 DATA /// 	////0 	q/
/////////,/// 	/////0
fg 	q//,//y p w//////o k

q/,//z xMERGE// q

560 DATA // 	uLEFT/// /)-
_ P 	/,// 	v/////bc //

/) 	/,/r k ///bc 	m/
////)- 	/,/ 	/ /// 	m/
/////// 	m/
570 DATA / p/ /// 	/MEDI
AN// m//,/p / /// hj////
///bc ///,/s /hj///o 	u//
//bc 	///,/t 	//// 	v/
/bc 	m///
580 DATA // 	w////op
p 	m////,//s 	x/////0 	p
p POTHOLE,//t u//////o
p 	COUNTRY,///s v///////0
p q//////

590 DATA ///tp u///////0
q/////,////s v////////0
q////,////tp pn////////

0 	q///,/////s v///////
//op 	fgq//

600 DATA /////t u/////////
q/,//////s v////////

//o /,//////t u//////
////op p /,///////s v/////
//////0 	/
610 DATA ///////tp pu///////
///r 	/d/MERGE/s v//////
///r 	hj/,//RIGHT/t 	u////
///r 	/,/////////s v///
////
620 DATA /////////t 	u/////
/ 	p /,////////// 	v////
// /,//////////ln p///
/// ln /
630 DATA 12,4,10,8,14,9,3,6,
15,12,4,10,8,14,9,3,6,15,12,
4,10,8,14,9,3,6,15
640 DATA 12,4,10,8,14,9,3,6,
15,12,4,10,8,14,9,3,6,15,12,
4,10,8,14,9,3,6,15
650 DATA 12,4,10,8,14,9,3,6,
15,12,4,10,8,14,9,3,6,15,12,
4,10,8,14,9,3,6,15
660 DATA 12,4,10,8,14,9,3,6,
15,12,4,10,8,14,9,3,6,15,12
670 FOR I=1 TO 20 :: PRINT P
$(1):: NEXT I :: GOSUB 400 :
: CALL SOUND(500,990,0):: LV
L=LVL+1
680 CALL HCHAR(1,1,47,96)::
DISPLAY AT(1,1):"PRESS/FIRE/
BUTTON/TO/START/////////////
/////////LEVEL";LVL:"///////
////////////SPARES";TR
690 CALL HCHAR(3,28,61):: CA
LL HCHAR(2,28,61):: IF LVL<1
0 THEN CALL HCHAR(2,30,47)
700 IF TR<10 THEN CALL HCHAR
(3,30,47)
710 CALL KEY(1,K,S):: IF S=0
THEN 710
720 FOR 1=21 TO 50 :: CALL V
CHAR(7,A,32):: PRINT P$(1)::
GOSUB 400 :: CALL VCHAR(7,A
,32):: GOSUB 400 :: NEXT I
730 FOR I=1 TO 50 :: CALL VC
HAR(7,A,32):: PRINT P$U)::
GOSUB 400 :: CALL VCHAR(7,A,
32):: GOSUB 400 :: NEXT I
740 FOR 1=1 TO 16 :: CALL VC
HAR(7,A,32):: PRINT P$(1)::
GOSUB 400 :: CALL VCHAR(7,A,
32):: GOSUB 400 :: NEXT I
750 CALL SOUND(500,990,0)::
RETURN
760 CALL CLEAR :: CALL SCREE
N(2):: FOR CC=1 TO 14 :: CAL
L COLOR(CC,4,1):: NEXT CC
770 FOR CC=3 TO 8 :: CALL CO
LOR(CC,1,4):: NEXT CC
780 CALL CLEAR :: DISPLAY AT
(10,1):"YOU/HAVE/RUN/OUT/OF/
SPARES//YOUR/SCORE/IS:";SCOR
E;"MILES.":"ON/LEVEL";LVL
790 DISPLAY AT(20,1):"PLAY A
GAIN9 Y-N"
800 CALL KEY(0,K,S):: IF S=0
THEN 800
810 CALL SOUND(444,880,0)
820 IF K=89 THEN 330 ELSE EN

100 REM ************* 720 Y1=21
110 REM * BOA ALLEY * 730 M1=0
120 REM ************* 740 N1=-1

NUNS DIGUST 	October 1988. Page 15

I
;I

130 REM BY TARIK ISANI
140 REM 99'ER VERSION 2.6.1
150 REM
160 REM
170 CALL CLEAR
180 CALL SCREEN(2)
190 RANDOMIZE
200 PRINT " 	*** BOA ALLE
Y ***": :" 	 BY":"

TARIK ISANI"
210 PRINT "YOU MUST DIRECT A
LONG": :"SNAKE-LIKE OBJECT

THROUGH"
220 PRINT "A MAZE HITTING RO
UND WHITE": :"TARGETS. USE T
HE JOYSTICK"
230 PRINT :"OR THE ARROW KEY
S TO MOVE.": :"IF YOU HIT YO
URSELF, THE"
240 PRINT :"BOUNDARIES OR TH
E DIVIDERS,": :"THE GAME WIL
L END."
250 PRINT :"[PRESS ANY KEY T
O CONTINUEr
260 FOR 1=1 TO 8
270 CALL COLOR(I,16,1)
280 NEXT I
290 CALL KEY(0,S1,S2)
300 IF S2=0 THEN 290
310 CALL CLEAR
320 FOR I=1 TO 8
330 CALL COLOR(I,1,1)
340 NEXT I
350 PRINT :" METHOD OF INPU
T:": :" 	1.ARROW KEYS": :"

2. JOYSTICK". • • • •
360 FOR I=1 TO 8
370 CALL COLOR(I,16,1)
380 NEXT I
390 CALL KEY(0,01,02)
400 IF (01<49)+(01>50)THEN 3
90
410 CALL CLEAR
:20 FOR I=2 TO 9
430 CALL COLOR(I,2,9)
440 NEXT I
450 CALL COLOR(9,10,1)
460 CALL COLOR(11,14,1)
470 CALL COLOR(12,16,1)
480 CALL COLOR(13,5,1)
490 CALL COLOR(14,9,1)
500 CALL CHAR(96,"3C7EFF9999
FF7E3C")
510 CALL CHAR(97,"3C66E7FFFF
E7663C")
520 CALL CHAR(112,"007E7E666
67E7E00")
530 CALL CHAR(120,"3C7EFFFFF
FFF7E3C")
540 CALL CHAR(129,"183C7EFFF
FFFC381")
550 CALL CHAR(132,"F87C3E3F3
F3E7CF8")
560 CALL CHAR(131,"131C3FFEFF
F7E3C18")
570 CALL CHAR(128,"1F3E7CFCF
C7C3E1F")
580 CALL CHAR(136,"FFFFFFFFF
FFFFFFF")
590 OPTION BASE 1
600 DIM P(105,2)
610 CALL HCHAR(1,2,136,29)
620 CALL HCHAR(23,2,136,29)
630 CALL VCHAR(1,2,136,23)
640 CALL VCHAR(1,30,136,23)
650 FOR 	TO 21 STEP 2
660 FOR J=4 To 28
670 CALL VCHAR(I,J,112)
68o NEXT J
69n 	r

ilo XL-;0

750 FL=0
760 L=0
770 SC=0
780 CALL HCHAR(1,2,136,29)
790 AWSCORE:0"
800 J=10
810 GOSUB 1920
820 FOR 1=6 TO 10 STEP 4
830 FOR J=7 TO 25
840 CALL SOUND(1,2000,0)
850 CALL VCHAR(I,J,132)
860 L=L+1
870 P(1,1)=I
880 P(L,2)=J
890 NEXT J
900 CALL SOUND(1,2000,0)
910 CALL VCHAR(I+1,J-1,131)
920 L=L+1
930 P(L,1)=I+1
940 P(L,2)=J-1
950 FOR J=25 TO 7 STEP -1
960 CALL SOUND(1,2000,0)
970 CALL VCHAR(I+2,J,128)
980 L=L+1
990 P(L,1)=I+2
1000 P(L,2)=J
1010 NEXT J
1020 CALL SOUND(1,2000,0)
1030 CALL VCHAR(I+3,J+1,131)
1040 L=L+1
1050 P(L,1)=I+3
1060 P(L,2)=J+1
1070
1080 FOR J=7 TO 25
1090 CALL SOUND(1,2000,0)
1100 CALL VCHAR(14,J,132)
1110 L=L+1
1120 P(L,1)=14
1130 P(L,2)=J
1140 NEXT J
1150 CALL SOUND(1,2000,0)
1160 CALL VCHAR(15,25,131)
1170 L=L+1
1180 P(L,1)=15
1190 P(L,2)=25
1200 FOR J=25 TO 21 STEP -1
1210 CALL SOUND(1,2000,0)
1220 CALL VCHAR(16,J,128)
1230 L=L+1
1240 P(L,1)=16
1250 P(L,2)=J
1260 NEXT J
1270 RX=INT(RND*22)+2
1280 RY=INT(RND*27)+3
1290 CALL GCHAR(RX,RY,C)
1300 IF C<>32 THEN 1330
1310 CALL VCHAR(RX,RY,120)
1320 FL=1
1330 IF 01=50 THEN 1510
1340 CALL KEY(1,8,T)
1350 IF S<>5 THEN 1390
1360 M1=-1
1370 N1=0
1380 GOTO 1550
1390 IF S<>3 THEN 1430
1400 M1=0
1410 N1=1
1420 GOTO 1550
1430 IF S+1<>1 THEN 1470
1440 M1=1
1450 N1=0
1460 GOTO 1550
1470 IF S<>2 THEN 1550
1480 M1=0
1490 N1=-1
1500 GOTO 1550
1510 CALL JOYST(1,A,B)
1520 IF ABS(A)+ABS(B)<>4 THE
N 1550

M1=-B/4

1550 CALL GCHAR(M1+Xl,N1+Yl,
C)
1560 IF C=32 THEN 1770
1570 IF C<>120 THEN 1650
1580 CALL SOUND(-100,110,0,1
000,0,500,0)
1590 SC=SC+1
1600 AS=STRS(SC)
1610 J=16
1620 GOSUB 1920
1630 FL=0
1640 GOTO 1770
1650 CALL SOUND(-500,-7,0)
1660 CALL SCREEN(12)
1670 CALL SCREEN(2)
1680 CALL KEY(0,S1,S2)
1690 IF S2<1 THEN 1680
1700 FOR 1=2 TO 22 STEP 2
1710 CALL HCHAR(I,3,32,27)
1720 NEXT I
1730 FOR 1=3 TO 29 STEP 2
1740 CALL VCHAR(2,I,32,21)
1750 NEXT I
1760 GOTO 700
1770 CALL VCHAR(X1,Y1,128+2*
(N1+1)+Ml)
1780 X1=Xl+Ml
1790 Y1=Y1+N1
1800 CALL SOUND(-1,2000,0)
1810 IF M1=0 THEN 1840
1820 CALL VCHAR(X1,Y1,96)
1830 GOTO 1850
1840 CALL VCHAR(X1,Y1,97)
1850 CALL VCHAR(P(Q,1),P(Q,2
),32)
1860 P(0,1)=X1
1870 P(Q,2)=Y1
1880 Q=Q+1
1890 IF Q<>106 THEN 1910
1900 Q=1
1910 IF FL=0 THEN 1270 ELSE
1330
1920 FOR I=1 TO LEN(A$)
1930 CALL VCHAR(1,I+J,ASC(SE
GS(A$,I,1)))
1940 NEXT I
1950 RETURN

continued from page 17

1050 G(L)=G(L)-A(L)*G(L-1)
1060 GOTO 1080
1070 G(L)=G(L)-A(L)*G(L-1)-13
(L)*G(L-2)
1080 S1=S1+S(L)*G(L)
1090 NEXT L
1100 U(J)=S1
1110 L=N
1120 FOR 12=2 TO N
1130 G(L)=G(L-1)
1140 L=L-1
1150 NEXT 12
1160 G(1)=0
'.170 NEXT J
1180 T=0
1190 FOR L=1 TO M
1200 C(L)=0
1210 J=N
1220 FOR 12=1 TO N
1230 C(L)=C(L)*X(L)+U(J)
1240 J=J-1
1250 NEXT 12
1260 T3=Y(L)-C(L)
1270 T=T+T3"2
1280 NEXT L
1290 IF (M-N)<>0 THEN 1320
1300 T5=0
1310'GOTO 1330
1320 T5=T/(M-N)
1330 Q7=1-T/(T9*(M-1))
1340 NM1=N-1
1350 PRINT "POLYFIT OF DEGRE
,,;"1

1360 PRTNT "I-NDFX OF DETERM=
";W
137o PRINi

continued un page lb

TISHIM NM% DIGEST October 1988, Page 16

100 REM ***************
110 REM *
120 REM * BATTLE STAR *
130 REM *
14° REm ***************

150 REM
160 REM 99'ER VERSION 1.6.1.
XB49
170 REM RANDOMIZE
180 DIR=1 :: CALL CLEAR
190 CALL COLOR(9,7,1):: CALL
COLOR(10,6,1):: CALL SCREEN
(2)
200 CALL CHAR(96,"0000000000
070707"):: CALL CHAR(97,"181
8183C7EFFDB99")
210 CALL CHAR(98,"0000000000
E0E0E0"):: CALL CHAR(99,"070
E1CFFFF1C0E07")
220 CALL CHAR(104,"18423C999
93C4218"):: CALL CHAR(101,"E
07038FFFF3870E0"):: CALL CHA
R(102,"070707")
230 CALL CHAR(107,"104628240
A923044")
240 CALL CHAR(103,"99DBFF7E3
C181818"):: CALL CHAR(100,"E
0E0E0")
250 CALL CHAR(112,"30787C477
C7830"):: CALL CHAR(113,"101
0386CEEEE7C")
260 CALL CHAR(114,"0C1E3EE23
ElEOC"):: CALL CHAR(115,"007
CEEEE6C381010")
270 CALL CHAR(116,"101038FE3
81010"):: CALL CHAR(117,"000
0183CFF7E2442")
280 CALL CHAR(105,"181818181
8181818"):: CALL CHAR(106,"0
0000OFFFF")
290 FOR COL=1 TO 12 A: CALL
COLOR(COL,16,1):: NEXT COL
300 L=100 :: S=5 :: SC=0 ::
SA1,SB1,SA2,SB2,SA3,SB3,SA4,
SB4=0 :: T=0
310 GOSUB 350
320 GOSUB 390 :: GOSUB 650
330 L=L-.5 :: IF L<1 THEN L=
1
340 DISPLAY AT(24,3):SC 	G
OTO 320
350 CALL SPRITE(#10,96,16,81
,113,0,0,#11,97,16,81,121,0,
0,#12,98,16,81,129,0,0)
360 CALL SPRITE(#13,99,16,89
,113,0,0,#14,104,7,89,121,0,
0,#15,101,16,89,129,0,0)
370 CALL SPRITE(#16,102,16,9
7,113,0,0,#17,103,16,97,121,
0,0,#18,100,16,97,129,0,0)
380 RETURN
390 CALL KEY(0,K,S):: IF S=0
THEN RETURN
400 IF K=69 THEN 450
410 IF K=83 THEN 500
420 IF K=88 THEN 550
430 IF K=68 THEN 600
440 RETURN
450 IF SA1=0 AND SB1=0 THEN
CALL VCHAR(1,16,105,10):: CA
LL SOUND(10,800,0):: CALL VC
HAR(1,16,32,10):: SC=SC-10 :
: RETURN
460 IF SB1=0 THEN CALL VCHAR
(2,16,105,9):: CALL SOUND(50
0,110,2,-5,2):: CALL VCHAR(2
,16,32,9):: SC=SC+50 SA1=
0 :: RETURN
470 CALL POSITION(#1,P1,P2):
: IF Pl>76 THEN 840
480 P1=1NT(P1/8)+1 :: CALL V
CHAR(P1,16,105,10-P1):: CALL
SOUND(200,110,10,-5,8):: CA

LL VCHAR(P1,16,32,10-P1)

490 CALL DELSPRITE(#1):: SC=
SC+20 	SB1=0 :: RETURN
500 IF SA2=0 AND SB2=0 THEN
CALL HCHAR(12,1,106,14):: CA
LL SOUND(10,800,0):: CALL HC
HAR(12,1,32,14):: SC=SC-10 :
: RETURN
510 IF SB2=0 THEN CALL HCHAR
(12,3,106,12):: CALL SOUND(5
00,110,2,-5,2):: CALL HCHAR(
12,3,32,12):: SC=SC+50 :: SA
2=0 :: RETURN
520 CALL POSITION(#2,P1,P2):
: IF P2>86 THEN 840
530 P2=INT(P2/8)+1 :: CALL H
CHAR(12,P2,106,15-P2):: CALL
SOUND(200,110,10,-5,8):: CA
LL HCHAR(12,P2,32,15-P2)
540 CALL DELSPRITE(#2):: SC=
SC+20 	SB2=0 :: RETURN
550 IF SA3=0 AND SB3=0 THEN
CALL VCHAR(14,16,105,10):: C
ALL SOUND(10,800,0):: CALL V
CHAR(14,16,32,10):: SC=SC-10
:: RETURN

560 IF SB3=0 THEN CALL VCHAR
(14,16,105,10):: CALL SOUND(
500,110,2,-5,2):: CALL VCHAR
(14,16,32,10):: SC=SC+50
SA3=0 :: RETURN
570 CALL POSITION(#3,P1,P2):
: IF Pl<110 AND Pl>0 THEN 84
0
580 P1=INT(P1/8)+1 :: CALL V
CHAR(14,16,105,P1-14):: CALL
SOUND(200,110,10,-5,8):: CA

LL VCHAR(14,16,32,P1-14)
590 CALL DELSPRITE(#3):: SC=
SC+20 	SB3=0 :: RETURN
600 IF SA4=0 AND SB4=0 THEN
CALL HCHAR(12,18,106,14):: C
ALL SOUND(10,800,0):: CALL H
CHAR(12,18,32,14):: SC=SC-10

RETURN
610 IF SB4=0 THEN CALL HCHAR
(12,18,106,13):: CALL SOUND(
500,110,2,-5,2):: CALL HCHAR
(12,18,32,13):: SC=SC+50
SA4=0 :: RETURN
620 CALL POSITION(#4,P1,P2):
: IF P8<142 AND P8>0 THEN 84
0
630 P2=INT(P2/8):: CALL HCHA
R(12,18,106,P2-15):: CALL SO
UND(200,110,10,-5,8):: CALL
HCHAR(12,18,32,P2-15)
640 CALL DELSPRITE(#4):: SC=
SC+20 	SB4=0 :: RETURN
650 IF SB1=0 THEN Pl,P2=0

GOTO 660 ELSE CALL POSITION
(#1,P1,P2)
660 IF SB2=0 THEN P3,P4=0

GOTO 670 ELSE CALL POSITION
(#2,P3,P4)
670 IF SB3=0 THEN P5,P6=0

GOTO 680 ELSE CALL POSITION
(#3,P5,P6)
680 IF SB4=0 THEN P7,P8=0

GOTO 690 ELSE CALL POSITION
(#4,P7,P8)
690 IF Pl>76 OR P4>86 OR(P5<
110 AND P5>0)0R(P8<142 AND P
8>0)THEN 840
700 NS=INT(RND*L):: IF NE>10
THEN RETURN
710 NS=INT(RND*4)+1 :: ON NS
GOTO 730,760,790,820
720 IF SA1=1 AND SB1=1 THEN
RETURN
730 CALL HCHAR(2,16,115):: S
Al=1 :: IF L<80 AND SB1=0 TH
EN CALL SPRITE(#1,116,7,17,1
20,11-(L/10),0):: SB1=1
740 RETURN

750 IF SA2=1 AND SB2=1 THEN
RETURN
760 CALL HCHAR(12,3,112):: S
A2=1 :: IF L<80 AND SB2=0 TH
EN CALL SPRITE(#2,116,7,88,1
7,0,11-(L/10)):: SB2=1
770 RETURN
780 IF SA3=1 AND SB3=1 THEN
RETURN
790 CALL HCHAR(23,16,113)::
SA3=1 :; IF L<80 AND SB3=0 T
HEN CALL SPRITE(#3,116,7,175
,120,-11+(L/10),0):: SB3=1
800 RETURN
810 IF SA4=1 AND SB4=1 THEN
RETURN
820 CALL HCHAR(12,30,114)::
SA4=1 :: IF L<80 AND SB4=0 T
HEN CALL SPRITE(#4,116,7,88,
216,0,-11+(L/10)):: SB4=1
830 RETURN
840 CALL DELSPRITE(#1,#2,#3,
#4):: CALL SOUND(2000,110,2,
220,2,1000,30,-4,2)
850 FOR BUB=10 TO 18 :: CALL
MOTION(#BUB,INT(RND*40)-20,
INT(RND*40)-20):: CALL PATTE
RN(#BUB,107):: NEXT BUB
860 CALL SOUND(1000,110,2,22
0,2,110,2,-5,2):: CALL SOUND
(1,40000,30)
870 CALL DELSPRITE(ALL):: CA
LL CLEAR
880 DISPLAY AT(12,7):"YOUR S
CORE IS":TAB(10);SC
890 CALL DELSPRITE(ALL)
900 DISPLAY AT(22,1):"DO YOU
WISH TO PLAY AGAIN?(Y/N)."
910 ACCEPT AT(23,8)VALIDATE(
"YN"):ANS$:: IF ANS$="N" TH
EN 950
920 CALL CLEAR :: GOSUB 350
:: SC=0 :: L=100
930 SB1,5132,SB3,SB4,P1,P2,P3
,P4,P5,P6,P7,P8=0
940 RETURN
950 RUN "DSK1.LOAD"
960 END

continued from page 15

1380 PRINT "TERM","COEFFICIE
NT"
1390 FOR J=1 TO N
1400 I2=J-1
1410 PRINT 12,U(i)
1420 NEXT J
1430 PRINT
1440 PRINT "* PRESS 1 TO CON
FINUE *"
1450 PRINT
1460 CALL KEY(0,KEY,STATUS)
1470 IF STATUS=0 THEN 1460
1480 GT=KEY-48
1490 IF GT=1 THEN 1570
1500 GOTO 1570
1510 PRINT "ELEVENTH DEGREE
IS THE LIMIT"
1520 GOTO 1650
1530 PRINT "TOO FEW POINTS
FOR FITTING DEGREE ":N
1540 GOTO 1650
1550 PRINT "TOO MANY POINTS-
MAXIMUM IS 100"
1560 GOTO 1650
1570 PRINT "Y-ACTUAL 	Y-C
ALCULATED"
1580 FOR L=1 TO M
1590 PRINT Y(L);TAB(12);C(L)
1600 PRINT "DIFF.=";Y(L)-C(L

1610 FOR TIME=1 TO 500
1620 NEXT TIME
1630 NEXT L
1640 PRINT
1650 END

1 REM W.D. GRIFFIN SAN RAFAE
L CA. 94903
100 CALL CLEAR
110 DIM B(100),X(100),Y(100)
120 DIM P(100),Q(100),A(100)
125 DIM S(100),C(100)
130 PRINT "POLYNOMIAL CURVE"
140 PRINT "BY METHOD OF LEAS
T SQUARES"
150 PRINT
160 PRINT
170 PRINT "THE NUMBER OF OBS
ERVATIONS"
180 PRINT "ARE THE NUMBER OF
X-Y"
190 PRINT "COORDINATES TO BE
ENTERED" '
200 PRINT
210 PRINT
22Q PRINT
230 PRINT
240 INPUT "NUMBER OF OBSERVA
TIONS ":M
250 INPUT "LOWEST DEGREE OF
POLYNOMIAL ":N
260 IF M<0 THEN 1260
270 Z=0
280 0=1.0
290 K=12
300 N=N+1
310 IF (N-12)>0 THEN 1510
320 IF (M-N)<0 THEN 1530
330 IF (M-100)>0 THEN 1550
340 T7=Z
350 T8=Z
360 W7=Z
370 FOR I=1 TO M

380 INPUT "X(l)
390 INPUT "Y(I) ":Y(I)
400 NEXT I
410 FOR I=1 TO M
420 W7=W7+X(I)
430 T7=T7+Y(I)
440 T8=T8+Y(I)"2
450 NEXT I
460 T9=(M*T8-T7"2)/(M*M-M)
470 XM=W7/M
480 YM=T7/M
490 STD=SQR(T9)
500 PRINT "LEAST-SQUARES POL
YNOMIALS"
510 PRINT
520 PRINT "NUMBER OF FOINT="
;M
530 PRINT "MEAN VALUE OF X="
;XM
540 PRINT "MEAN VALUE OF Y="
;YM
550 PRINT "STD ERROR OF Y=";
STD
560 PRINT
570 PRINT TAB(7);"* RUNNING

40,

580 PRINT
590 FOR I=1 TO M
600 P(I)=Z
610 Q(I)=0
620 NEXT I
630 E1=Z
640 F1=Z
650 W1=M
660 N4=K
670 I=1
680 K1=2

690 IF N=0 inEN
700 K1=N4
710 W=Z
720 FOR L=1 TO M
730 W=W+Y(L)*Q(L)
740 NEXT L
750 S(I)=W/W1
760 IF (I-N4)>=0 THEN 990
770 IF (I-M)>=0 THEN 990
780 E1=Z
790 FOR L=1 TO M
800 E1=E1+X(L)*Q(L)"2
810 NEXT L
820 E1=El/W1
830 A(I+1)=E1
840 W=Z
850 FOR L=1 TO M
860 V=(X(L)-E1)*Q(L)-Fl*P(L)
870 P(L)=Q(L)
880 Q(L)=V
890 W=W+V^2
900 NEXT L
910 F1=W/W1
920 B(I+2)=F1
930 W1=W
940 I=I+1
950 GOTO 710
960 FOR L=1 TO 13
970 G(L)=Z
980 NEXT L
990 G(1)=0
1000 FOR J=1 TO N
1010 S1=Z
1020 FOR L=1 TO N
1030 IF (L-2)<0 THEN 1080
1040 IF (L-2)>0 THEN 1070

continued on page 15

SIMPLE READ-DATA DEMO

• M. Amundsen 3-30-85

* Example program using the *
* "PULSAR" assembly routines. *

* NOTE:
* The PULSAR master file *
* MUST be loaded into memory! *

* LOAD DEF/REF TABLE

COPY "DSK2.START-EA/S"

* PUT UP TITLE
(* "BASIC" VERSION *)

BEGIN BL @SCRCLR
(100 CALL CLEAR)

BL @PRNTAT
(110 DISPLAY AT(1,8):Ll$)

DATA D1,D8,L1
BL @PRNTAT

[120 DISPLAY AT(2,8):L2$)
DATA D2,D8,L2
BL @PRNTAT

[130 DISPLAY AT(3,8):L3$)
DATA D8,D2,L3

* READ and DISPLAY INTEGERS

NLOOP BL @SETDAT
(140 RESTORE "DLIST1" (INTEGER

DATA INTDAT,DLIST1
BL @FOR

(150 FOR LOOP=10 TO 19 STEP 1)
DATA LOOP,D10,D19,D1
BL @GETDAT

(160 READ DTEMP)
DATA DTEMP
BL @INTFLT

* END PROGRAM

EXIT, LIMI 2
(310 *TURN ON INTERRUPTS*)

JMP $
(320 GOTO 320)

* VARIABLES

Ll 	DATA 14
TEXT 'READ-DATA DEMO'
EVEN

L2 	DATA 14
TEXT '
EVEN

L3 	DATA 8
TEXT 'NUMBERS:'

L4 	DATA 8
TEXT 'STRINGS:'

L5 	DATA 18
TEXT 'PRESS REDO OR QUIT'

LOOP DATA 0
FLTEMP BSS 8
STRING BSS 20
DTEMP BSS 20
DLIST1 DATA 1,2,3,4,5,6,7,8,9,0
DLIST3 DATA 1

TEXT 'A'
DATA 2
TEXT 'BB'
DATA 3
TEXT 'CCC'
DATA 4
TEXT 'DDDD'
DATA 5
TEXT 'EEEEE'
DATA 6
TEXT 'FFEFFF'
DATA 7
TEXT 'GGGGGGG'
DATA 8
TEXT THHHHHHITH'
DATA 9
TEXT 'IIIIIIIII'
DATA 10
TEXT 'JJJJJJJJJJ'
EVEN
END

(170 FLTEMP=DTEMP (TURN INT TO FLT))
DATA DTEMP,FLTEMP
BL @NUMSTR

(180 STRING$=STR$(FLTEMP))
DATA FLTEMP,STRING
BL @PRNTAT

(190 DISPLAY AT(LOOP,8):STRING$)
DATA LOOP,D8,STRING
BL @NEXT

(200 NEXT LOOP)
DATA LOOP

* READ and DISPLAY STRINGS

SLOOP BL @PRNTAT
(210 DISPLAY AT(8,15):L4$)

DATA D8,D15,L4
BL @SETDAT

(220 RESTORE "DLIST3" (STRING DATA))
DATA STRDAT,DLIST3
BL @FOR

(230 FOR LOOP=10 TO 19 STEP 1)
DATA LOOP,D10,D19,D1
BL @GETDAT

(240 READ STRING$)
DATA STRING
BL @PRNTAT

(250 DISPLAY AT(LOOP,15):STRING$)
DATA LOOP,D15,STRING
BL @NEXT

(260 NEXT LOOP)
DATA LOOP

* WAIT FOR KEYHIT

BL @PRNTAT
(270 DISPLAY AT(23,5):L5$)

DATA D23,D5,L5
DATA)) REGET BL @KEYCON

(280 CALL KEY(0,K) *NO "S")
BL @IFTHEN

(290 IF K=QUIT THEN 310
DATA KEYHIT,EQ,QUITKY,EXIT
BL @IFELSE

(300 IF K=FCTNS THEN 100 ELSE 280)
DATA KEYHIT,EQ,FCTN8,BEGIN,REGET

TISHUG NEns 'utast. Cictobel 1988, Page 17

TISHUIG runs 11116E511F
	

Wober1988, Page 1 8

newtiew 	lbak Trap RAIIIIMAT
by Ron Prewitt, USA

Desk Top Publisher is a cartridge program produced
by DataBioTics that allows you to create a graphic
picture and then include the picture in your text. The
text can be printed in one to three columns with an
Epson compatible printer.

Performance:
The documentation recommends that the console be

turned off when inserting the cartridge module. The
title of the module will appear on the master selection
list as "2" on the TI or Myarc and "3" on CorComp
controller card. The documentation does not mention
that you must use the space bar to get to the secondary
selection screen with the CorComp otherwise the module
will not function.

The program consists of three major sections that
are selected from the main menu. These are "1" PICTURE
MAKER, "2" WORD MAKER, and "3" PRINT PAGE.

The PICTURE MAKER is a graphics or drawing program
that has many of the drawing functions of other graphic
programs like TI-Artist, Graphx etc.. 	The drawing
modes are represented by a single key input. 	The
drawing modes are Draw, Point, Frame, Box, Circle,
Disc, Fill, Line, Connect Line, Rays Horizontal. The
crosshair shaped cursor can be moved about with either
the joy stick or the FCTN "arrow" keys. The mode is
activated by either the ENTER key or joystick fire
button. There is a text mode that lets you type in the
drawing area. You can select different size fonts with
the FCTN[1] through to 0 keys. The other functions are
CLEAR to clear the work area, Save Picture to disk or
casssette and Load Picture from disk or cassette.
There is no mention of being able to use pictures
created by any of the other drawing programs.

WORD MAKER is the text input program. You will
first be asked to choose 1, 2 or 3 columns for
inputting your text. Choosing 1, 2 or 3 columns will
allow input of 78, 39 or 26 characters per line
respectively. Making this selection will then take you
to the text editor screen. The first task is to
position the picture that was created or loaded from
the PICTURE MAKER. Using the FCTN "arrow" keys or the
joystick will position the picture anywhere on the
page. To set the picture position, use ENTER or the
joystick fire button. This will make the text editor
ready to accept your input. The editor will only
display 5 straight forward. It allows input of your
printer device (the default is "PIO.CR") and whether to
include the picture in the printed output.

Ease Of Use:
The program is fairly easy 	to 	use. 	Most

everything is menu driven with The screen can be
scrolled horizontally to view the entire line. The
very top line of the screen shows the location of the
cursor by column. row and the position within the
line.

The bottom of the screen displays a graphic
representation of the entire page showing the position
of the cursor and the picture. The screen also has
framed areas that show several status conditions.

The editor functions are Delete Character, Insert
Character, Delete Line and Insert Line. There are no
Move, Copy, Replace String or Reformat functions.

Other utility commands are Roll-up, Roll-Down,
Page-Right to scroll to the right, Word-Wrap toggle.
Previous Menu, Save Text, Load Text, Place Picture and
Select Text Style. The last four functions can be
selected from either assigned function keys or the
Editor Menu.

The saved text should be re-loaded in the same 1,
2, or 3 column mode it was originally created and saved
as Loading text that was saved as 1 column when you are
in 3 column mode will truncate the text beyond position
26.

The Text-Style function allows the selection of
several type styles. The type style chosen will affect
the entire line.

There is no capability to limit the type style to
a word or several words. The type styles available are
Normal, Italics, Bold, Emphasized and Underline. More
than one type style can be selected for a line in
combination; an exmple is Bold and Emphasized.

The text buffer will only hold one page regardless
of column format. If you need additional pages for
your text input, they must be created and saved as
separate files.

The PRINT PAGE selection is pretty yourself. This
RPG was the FIRST, in AUSTRALIA to incorporate users
playing against (and killing if you do not like your
opponent), other USERS as opposed to just playing the
computer. You have the choice of PROVING yourself
against easy to follow prompts.

One thing that would make the program a lot easier
to use is being able to reformat the text although
lines can be inserted, you end up having to retype a
lot of text to eliminate having a real short line.

Another inconvenience is losing the special type
styles you have set when the text is saved and then
loadedd back in from disk. They are not lost when
saved and loaded back in from cassette.

Another feature that would have made it easier is
Right-Justify to eliminate the ragged edge on the Right
edge of the text. This can be done manually by turning
the Word-Wrap mode off and inserting additional blank
spaces between words. It also would have helped, if
the program would have automatically caused the text to
bypass the Picture area. Typing text in the Picture
area will overlay the text on the Picture when printed.
There is an on-screen status box that indicates when
your text is in the Picture area but it is still easy
to end up with you busily typing in your text. You
also have to remember that if you insert lines the type
styles you have set will be off by the number of lines
inserted. The PICTURE MAKER would have been more
functional if it had the capability to work with pixels
in a zoom or magnify-mode. Being able to use pictures
from other graphic programs would have been helpful
also.

Documentation:
The documentation consists of a 7 page booklet

including the Contents and In Case of Difficulty pages.

There was also an addendum insert of corrections
to the booklet. This still only provided "bare bones"
information. There was no explanation of the Status
Boxes or that some of the type styles would be used
together on the same line. These are just a couple of
examples of information that could have been provided.

Value:
The value is greater for those with an expanded

system. It is a minimal text processor that allows you
to prepare your text in 1, 2, or 3 columns. Although
the advertisments show a page in a printer of almost a
full page of graphics, the Picture area is actually
only about 7 rows by 27 columns of text. There is only
the capability to use one picture per page. Note: This
article was prepared using Desk Top Publisher.

Tarr 3 a

MAIL TO : ALL
MAIL FROM : SECRETARY

Two ex members have advised that they have the
following items for sale:- Peter, telephone
(02)389 7025 has Multiplan for $30, TI-Writer for $25
and TE2 for $35.

Jeff, telephone (02)631-7839 has a number of
modules at $8 each plus Editor/Assembler for $50.

MAIL TO : ALL
MAIL FROM : DOBELL

I have a limited number of A4 tractor feed plain
white printer paper for sale. It is in boxes of
1500/2500 sheets and is for sale at $10.00 a box

Ring me at home, (02)699 5137 day 	Lime 	or
evenings.

1.1(

TISHUG NM% DIGEST October 1988, Page 19

(BtEtatIt UOtat
by Jack Adams, Canada

Myarc has just recently mailed out to those of us
who have sent in our Geneve WARRANTY REGISTRATION
forms, three diskettes of update software.
Diskette 1 - MYARC-DOS Version 1.01

2 - MYARC GPL Interpreter Version 0.99
3 - Cartridge saver; Multiplan Upgrade; MYWORD

Processor Version 1.10

Apparently, no further upgrades are to be expected
for Multiplan or Myword Processor. On testing
MYARC-DOS, I have noticed that DSK5 cannot be formatted
and therefore cannot be used unless you are working
from GPL. In the GPL mode of operation, DSK5 is
automatically formatted as double sided 720 sectors.
Version 0.98 did not do this.

As promised, here is a brief review of MYARC'S
MYART.(note the T)

This software is loaded directly from MYARC-DOS by
simply entering MYART at the A> prompt foc DSK1. The
version in review is 1.0. Something that will help the
first user immensely is a template that fits over the
function keys. This template contains all the commands
required from the key board and the mouse is available
from Canaria Data Incorporated, 264 Weber St. W,
Kitchener, Ontario, N2H 4A6.

I am writing this as a first user myself. I have
tried TI-Artist previously and find MYART superior in
ease of handling and in artwork in general. Much finer
work can be expected of MYART. There are two
resolution modes, 256 and 512. You should note here
that if you start a picture in either mode, you cannot
transfer one to the other without losing all your work.
A picture saved in one mode will not load into the
other mode from the disk. Also note that if the
diskette becomes full, there is no warning that this is
occuring.You may end up with only part of your work
saved. The saving routine stops when the diskette is
full and no warning is given. It is best to check your
diskette directory before using it.

512 Mode
512 mode offers finer detail and ability to mix

your own colours from the basic Red, Green and Blue
combinations. You may also choose from a palette of 16
colours that will be displayed at the bottom of the
screen. The art work achievable with 512 mode is truly
amazing. With zoom and control over the speed of
movement of the icon, fine detail can be displayed
easily. The pixel shape in this mode is a vertical
rectangle; consequently any circles drawn will be
elliptical. Unfortunatly there is no way to correct
this.

256 Mode
When MYART is first loaded, it is automatically in

this mode of operation. This mode is identified by the
fact that a multicoloured bar appears at the bottom of
the screen. This bar contains 256 colours which are
not all displayed at one time.

The colour bar can, however, be moved left or
right along the bottom of the screen by use of either
the mouse or the arrow keys. The behaviour of the
colour bar gives the appearance that it is on an
endless drum. The pixel shape in this mode is square
and the circles drawn are nearly circular (actually a
little like horizontal ellipses).

In General.
There are 15 commands in all. A command is

enacted whenever the first letter (usually) of the
command is typed from the keyboard. These commands
will produce Boxes, Rectangles, Circles and Straight
lines and allow free-hand sketches in any colour. They
will also allow you to gain access to a Help File, to
Load and Save, Format a disk, Cut and Paste, Type Text,
Fill a space with a chosen colour and provide several
levels of Zoom.

By depressing CTRL plus a letter, it is a simple
matter to toggle between 512 and 256 mode, rotate text
in 90-degree steps, clear the screen, display a disk
directory, change the icon colour and print what is on

the screen. When printing the screen you have two
sizes available and you can print a picture in shades
of grey or in outline only. (Sorry, I do not think
colour printing is possible.)

The mouse has three buttons. One button toggles
the colour palette, another controls the levels of zoom
and erases the most recently produced line or product
(depressing it a second time brings it back) and the
third enables colour change and engages the activity
desired on the screen. The speed of movement of the
icon can be controlled in five stages by simply
pressing the number keys 1 to 5. This is important,
particularly when working on details while in zoom
format mode.

All in all I feel that this is a super product
that is available locally for about $200 from any of '
the Geneve dealers listed in this bulletin.

?11-7traavr Turimeati Canantata
Author unknown

Text Dimension commands, as the name implies, move
or shape the words in the document (margins, line
spacing, right justify, etc.)
.FI 	: Fill 	: Puts as many words on a line as will

fit in the margins.
.NF 	: No Fill : Cancels fill.
.AD 	: ADjust 	: Aligns the text to the left and

right margins (right justify).
.NA 	: No Adjust: Cancels adjust.
.LM n : Lf Margin: Sets the left margin to "n".
.RM n : Rt Margin: Sets the right margin to "n".
.SP n : SPace : Leaves one or "n" blank lines at

this point.
.LS n : Line Sp : Sets the line spacing to "n" lines

for each new line.
.PL n : Pg Length: Defines number of lines to a page.
.BP 	: Begin Pg : Forces the start of a new page.

Internal Format commands control the spacing of
characters on a line.
.IN n : INdent 	: Creates an indent from the left

margin.
.CE n : CEntre 	: Centres the next "n" lines between

the margins.
Highlighting commands control functions such as

underline or bold and allow you to redefine characters
to use them to send control codes to the printer.
A 	: required : Joins words together when required

: 	space : to prevent splitting in
reformatting, underline, bold, etc.

& 	: underline: (underscore) Underline all text
following until next space.

@ 	: bold 	: (overstrike) Retypes following text
(until next space) four times.

.TL xx: Trans- 	: Allows reassignment of one
: Literate : character to represent a number of

character codes, to send codes to
the printer. The full format is
.TL nl:n2,n3,...

.00 t : COmment : Similar to REM in BASIC; allows
notes that do not print.

Page Identification commands print notes in the
top or bottom margins of each page, either headers or
footers.
.HE t : HEader : Prints text (t) (and page number if

% symbol is present) at the top of
each page.

.F0 t : FOoter 	: Prints text (t) (and page number 	if
% symbol is present) at the bottom
of each page.

.PA n : PAge # 	: Resets page number in .HE and .F0
File Management commands.

.IF f : Include 	Merges a file to print a document
: File 	: too large for one file.

Mail Merge Option commands are used to supply
values to the variables in a letter that has been set
up for the mail merge option
.ML f :Mail List: Identifies value file (f) for mail

list.
n 	:Variable : Inserted in text as variable for

assignment from value file.
.DP n:t:Display : Prompts you using text "t" to

	

: Prompt : assign a value to variable (*n*). 	°

1-151-1111G was DIGEST 	October 1988, Page 20

d)11111.J3kE Assembly Language Utilities
by Michael Amundsen, USA

THE SOBERING ASPECT OF ASSEMBLY
If you are like me, you are probably one of those

people who bought the Editor/Assembler package because
it was "a good deal" and not because you knew
everything there was to know about writing in assembly
language. You probably were as foolish as I was and
assumed that the big fat book that came with the
Editor/Assembler package would "explain it all." Since
the documentation is less than enlightening, this
probably also means that, like me, you are not churning
out skads of super-fast bit-byte-ing assembly programs
either. You have discovered, like I have that writing
assembly programs is a complex, error-prone and
frustrating way to get things done. It may be true
that a program written in assembly runs fast, but it
takes forever to write!

THE HARD PART
This past winter I resigned myself to learn 9900

Assembler. It took many sleepless nights, but I
finally got the hang of it. That is when I realized
how much longer each assembly program can be. When I
need to get a string from the keyboard in BASIC I just
write INPUT AS. In assembler it takes almost 100 lines
of code to do the same thing! Not only that, I also
realized that each time I write an assembly program I
have to "re-write" the same simple routines! What a
waste!

What I needed was a set of "portable" utilities
that would make writing assembly easier. Ones that
would handle the boring stuff like, getting a line of
input, printing text on the screen, performing the math
fnctions, etc. Why re-write them every time? That is
where the Programmer's Utility Library of Specialised
Assembly Routines or PULSAR comes in.

PULSAR MAKES IT EASY
PULSAR is a set of 'black box' routines designed

to take the drudgery out of assembly progrmming by
performing the tasks usually covered by statements and
functions in high-level languages like BASIC, Forth,
Pascal, etc. By using PULSAR, the programmer can write
relatively "bug-free" assembly code in less than half
the time it takes to write assembly code from scratch.
Of course, this speed in the development stage will be
paid for in a slightly slower running time, but in most
cases, the delay will be minimal.

PULSAR is an attempt to bring the speed of
assembly language, the extensibility of Forth, the
modularity of Pascal and the english-like syntax of
BASIC all into one. At present, PULSAR is just a
series of routines that are accessed via the BL
instruction in TI9900 assembly code. The programs are
written using Editor/Asssembler syntax coventions and
must follow all the same rules as writing "pure"
assembly code. Eventually, PULSAR will have its own
editor and interpreter, thus making a true "programming
language." Of course, the interpreter will be written
using PULSAR!

WHAT CAN PULSAR DO?
The current version of PULSAR (V1.2) contains 50

routines covering all the floating point mathematical
operations, simple keyboard/screen I/0 (print, input,
keyboard scan, etc.), graphics commands (CALL COLOR,
CALL CHAR, etc.), flow control routines (IF-TI1EN-ELSE
and FOR-NEXT-STEP), and memory manipulation routincs
(PEEK and POKE, READ-DATA and arrays). In addition,
several frequently 1.1;d values are -pr,-dcfincd" to
make genrating TI9900 code easier and faster.

In most cases, the "syntax" for PULSAR follows the
conventions of TI BASIC. This means even those with
little assembly experience can learn to write programs
very quickly. Advanced programmers may not ever use
the more simple zoutines (the integer mathematics set,
for example), bu',: the more complex ones (like the
floating point set) will be appreciated by even the
skilled TI9900 programmer.

HOW DO I USE PULSAR?
All PUV)AR routines are compiled into a library

file calleq PULSAR/O. This file contains all fifty
routines adad the "pre-defined variables". To access
this ma*,:erial, the programmer simply uses the TI9900

likiLtirruc,tion BL and passes the necessary data to the

routine. Below is an example of the PULSAR version ot
the TI X-BASIC statement DISPLAY AT:

BL @PRNTAT
DATA ROW,COL,MSG
In PULSAR, all data is stored in pre-declared

variables. This means that all variables are pointers
to the data, not the data itself. In the above example
the following actual numbers are involved:

ROW >A000
COL = >A002
MSG >A004
>A000 = >000C
>A002 = >0010
>A004 = (* ASCII chars *)
The above information tells the PULSAR routine to

print the data stored at MSG on the screen row stored
at ROW and the screen column stored at COL. This may
seem a bit cumbersome at first, but it is easy once you
get the hang of it.

It is also important to note that since all PULSAR
routines are accessed via the BL instruction (not the
BLWP), the routines use the host program registers.
This means you cannot use your workspace registers to
store values - they will most likely be corrupted by
the PULSAR routines. It is best to store any important
data at a pre-declared address.

Since the PULSAR routines allow for "nesting,"
there is a return stack and a set of loop stacks.
These are indexed using R9. Any alteration of R9 could
cause the system to crash. Also, R11 is used as the
return stack and variable-passing register and must be
left alone.

There are other consideratios when mixing PULSAR
and "pure" assembly but, instead of boring some of us
with that info here, I will talk more about that at the
upcoming New Horizons Demonstration of PULSAR. For
now, let us look at an example program.

EXAMPLE PROGRAM
The program we will look at, will demonstrate many

of the routines in PULSAR including converting floating
point data to integer, using READ-DATA commands,
scanning the keyboard and printing data on the screen.
As an aid, I have included a BASIC "translation" of the
PULSAR code for those of us who are more familiar with
TI BASIC.

Housekeeping
TI9900 code requires that any external references

be declared ahead of time. This directs the assembler
to search a list in memory of existing routines that
may have been written in another program. This is
handled with the include file INIT-EA/S. This line
must be the first actual line in any PULSAR program.
This file also contains the workspace and program entry
information. All PULSAR programs start with "RUN."

Title Screen
The next lines of code simply clear the screen and

print the program title lines. Note the use of D1, D8,
etc., to indicate row and column numbers. The decimal
values 0 to 40 are "pre-defined" as DO-D40 and are
contained in the Housekeeping file called INIT-EA/S.

Read and Print Integers
In PULSAR, the READ-DATA routines are a bit

different than those in BASIC. You must first position
the READ-pointer to the start of the data list. You
must also tell the routine the data type it will be
accessing. In this case we will be reading integer
data starting at the address DLIST1.

PULSAR loops require not only the usual holding
variable, start and stop value, but always require a
step value (in this case the step value is one).

The PULSAR equivalent of BASIC's READ is GETDAT.
Since the information is stored as integer type, we
will first convert the data into a floating-point type,
then convert the floating-point type into a string
type, then display it on the screen. This is not the
fastest way to do it, hut it does show off more PULSAR
commands!

Read and Display Strings
The next section of code does the same thing with

string data. Note that each string starts with a word
that contains the length of the string. This is vital
to the operation of the PRNTAT routine.

Scan the Keyboard
After printing the data, the keyboard is scanned

for any keystroke (BL @KEYCON) and then the program
continued on page 264

iPmETIanz aur 3I(Dircd1 zal1st
by Terry Atkinson, Canada

In the Feb issue, Tim had an excellent write-up on
how BASIC programs are stored in memory. This is
required reading for it will help you to understand
what I am about to put forth here.

To re-iterate, programs are stored in memory in
two sections. A line number table and (program)
statement table (tokenized). Each segment of the line
number table consists of 4 bytes of information. The
first two bytes are the line number, and the next two
bytes point to the address in memory where the actual
statement is held. Once a program is executed ("RUN"),
the line numbers are not used unless a GOTO/GOSUB is
encountered. Then the computer will look up the new
line number in its directory and begin to execute the
program sequentially at the new location. Now, back to
the disk.

When a program is "saved" to disk, certain pointer
information is put on the disk, followed by the line
number table and followed by the actual program
statements. Remember, though, the lines of the program
are stored just as they sit in memory, so you are going
to be looking at your program backwards; highest line
number first, then lowest line number. I will not deal
with what happens when you "insert" a line in the
middle of a program at this time.

The pointer information is stored in the first 8
bytes of the first sector of the disk used by the
program. It contains information such as start and end
addresses of the line number table, address of highest
memory location used by the program, etc. These 8
bytes are followed by the complete line number table.
If the program is a long one, the line number table
will take up several sectors. Finally the program
statements themselves are placed on the disk (again, in
reverse order). OK. Enough for generalities. Let us
get down to specifics.

First, initialize a disk and key-in the program
below and save it to disk. I have done it in Extended
BASIC, but you can do it in BASIC if you wish, however,
some of the bytes will be different. Alternatively,
you can follow the example in this article. 	I think
"hands-on" is much better, though. 	Key in this
program; do not put any extra spaces or different line
numbers!
100 REM TEST PROGRAM FOR TINS NEWSLETTER
110 CALL CLEAR
120 PRINT "WE ARE IN NEED OF ARTICLES FOR OUR

NEWSLETTER!"
130 END

Now, boot up your disk-fixer and have a look at
sector >22. It should look like the example shown
below:

ADDR = 01 2 3 4 5 6 7 89 AB CD EF

0000 = 0017 3773 3764 37D7 0082 3775 0078 3778
0010 = 006E 37AB 0064 3785 028B 0032 9CC7 2E57
0020 = 4520 4152 4520 494E 204E 4545 4420 4F46
0030 = 2041 5254 4943 4C45 5320 464F 5220 4F55
0040 = 5220 4E45 5753 4C45 5454 4552 2100 099D
0050 = C805 434C 4541 5200 239A 2054 4553 5420
0060 = 5052 4F47 5241 4D20 464F 5220 5449 4E53
0070 = 204E 4557 534C 4554 5445 5200'AA3F FF11
0080 = 0030 0000 0700 01D4 4553 5458 4220 2020
0090 = 2000 0000 0000 0100 0000 0000 0060 0000
00A0 = 0000 0022 0000 0000 0000 0000 0000 0000
00B0 -> END all zero's.

Let us first examine the pointers at addresses
>0000->0007 inclusive.

ADDR 	Contents(wor0 and remarks:
0000 >0017 - This is the exclusive or (XOR) of the

words at >0002 and >0004. See elsewhere in this
issue for further instructions. This word tells
TI DOS that the-file it is accessing is a program
file, and whether or not it is a "protected"
file. (eg. "SAVE DSK1.TEST,PROTECTED"). If it
is protected, this word will be in its 2's (16's)
compliment form.

0002 >3773 - End address of the line number table
(14195).

0004 >3764 - Start address of line number table
(14180).

0006 >37D7 - Address of the highest memory location
used by the program itself (14295).
That is it for the pointers. Next comes the line

number table. Each line number takes up two words (4
bytes). Our program (above) contains 4 lines,
therefore the next 8 words are for the line number
table. The first word is the actual line number, and
the second word is the address of the beginning of that
line. Remember the actual lines are stored in reverse
order, as are the statements. Let us look at the line
number table closely.
0008 >0082 - Line # of the last line (130)
000A >3775 - Address of where the last line starts

(14197).
000C >0078 - Second last line number (120).
000E >3778 - Address of the above line (14200).
0010 >006E - Third last line number (110).
0012 >0064 - Fourth last line number (our first line)

(100).
0016 >37B5 - Address of the above line (14261).

Since our example contains only 4 lines, the line
number table ends at >0016/>0017. Of course, if our
program were longer, so would the line number table.
Next comes the statements themselves, each preceded by
a byte of data which indicates the length of the
statement. Looking at >0018, the byte is >02. Look at
the program. Our statement is "END", which is
tokenized at >8B. All statements are flagged with a
"00" at the end, therefore, the byte counter (>02)
counts this flag as well.
0018 >02 - Byte count of the last statement (2).
0019 >8B - Token for "END".
001A >00 - End of statement flag.
001B >32 - byte count of second to last statement

(50).
001C >9C - Token for "PRINT".
001D >C7 - "string follows" flag.
001E >2E - Length of string (46 chars).
001F-004C - Ascii for->WE ARE IN...ETC...LETTER!
004D >00 - End of statement flag.
004E >09 - Byte cound of 3rd last statement (9).
004F >9D - Token for "CALL".
0050 >C8 - "command string follows" flag.
0051 >05 - byte count of non-tokenized command.
0052 >43 - C
0053 >4C - L
0054 >45 - E
0055 >41 - A
0056 >52 - R
0057 >00 - End of statement flag.
0058 >23 - Length of final (first) statement (35).
0059 >9A - Token for "REM".
005A >20 - Space
005B-007A - Ascii for the REM statement.
007B >00 - End of statement flag.

So that takes care of the nitty gritty stuff.
However, as you may notice, there is still more to
come. Some of the next lot of junk escapes ma, others
I can figure out, but cannot understand the reason for
it being there. I will give it my best shot.
Remember, I am not a professional!

007C-007E - Characters >AA >3F >FF seem to be
found on all program types. Perhaps an "end of
program" marker. Notice that, in the FDBs, the byte at
>0010 points to this marker.

007F >11 - Unknown, but present on all programs I
have examined.

0080 >03. - Default for CALE PlLES. If I had done
a CALL FILES(1) prior to entering/eavidg this program,
>0080 would Contain. >01.

0081-0083 - Unknown. Set to zero- on programs I
have examined.

0084 >02 =-LocatiOn of the PDB fo- this program.
0085 >00 - UnknoWn...
0086 >01 - Dri've-number used when Pro

saved. 	
gram was

0087 >D4 - This has got to be the agangest of
all. For some reason, TI'has seen fit to a,ddl >80 to
the first' letter of the filename. (in th_is case, a
IT'). Note that >54+>80=>D4. Cdincidentally, >ap028)
is one of the mystery (to me) tokens.

TISHI1G runs DIGEST October 1988, Page 21

cgotio 	1-115HUG 	DIGE51- October 1988, Page 22

uu88-0091 - ASCII for the remainder of the
filename.

0092-0095 - Unknown. Set to zero in those I have
examined.

0096 >01 - Number of sectors in the program (less
FDB).

First 	fracture: 	Starts 	at sector >074(116) and

0097-00A2 - Unknown. Set to zero.
REMAINDER - Block links again. Do not ask me why

they are there. Another of TIs strokes of genius?
Well, that is about it for programs. Do not

bother informing me if I missed something, but I sure
would like to know (curious) what all those "unknowns"
are all about. Remember that the sector addresses will
be different for all programs. There is no substitute
for going through it word-by-byte-by-nybble just like I
did above. 	After all, it took me only 3 hours and 20
minutes to produce the first draft of this article! 	0

ly11111 TirzEttilurTa TMG
by Terry Atkinson, Canada

In the February issue of the TINS newsletter, I
introduced, among other things, details on how TI DOS
handles fractured files. This month, I wish to further
expand on that segment. Before I do, however, I wish
to bring to your attention, bytes >0012 and >0013 of
the File Descriptor Block (FDB). In the article, I
described their use for "FIXED" type files. Contrary
to some people's belief, they ARE used for variable
type files as well, but since they more-or-less
duplicate other sector addresses, I left that
information out. In fact, for "variable" type files,
byte >12 contains the low order bye for the number of
sectors used in the file (same as byte >F) and byte >13
contains the high order byte for the number of sectors
in the file (same as byte >E). These bytes are not
used by program type files.

Having cleared the air, let us get on with the
main theme: Multiple Fractures. Recall that a file may
be fractured up to 76 times (that is all the room there
is in the FDB to handle 6 byte fracture pointers). For
my example, I will use the following. I am looking at
FDB >3 and find a program called "TEST". It contains
several fractures, the pointers starting at sector >3
address >001C are:

ADDR: 001C 1D lE 1F 20 21 22 23 24 25 26 27 28 29 2A
CONT: 	74 50 00 88 30 01 38 31 02 05 40 02 07 50 02

2B 2C 2D 2E 2F 30
OC 60 02 14 20 03

The remainder of the sector contains all zeros.
Recall that we grouped the bytes in groups of 3,

then numbered each nybble from 1 to 6. 	Then we
rearranged the nybble order to read 412563. 	The 412
nybble became the start sector for the fracture, and
the 563 became the number of sectors in the offset.
Since we are dealing with multiple fractures, I will
mention at this point that the sector offset is
cumulative; it always keeps track of the TOTAL number
of sectors from the beginning of the file. Also, for
the first fracture, you should add "1" to the value,
since a file which takes only 1 sector has an offset of
"0". I am sure you can appreciate, in simple
mathematics, that 9-1=8, but counting on your fingers
from 1 to 9 produces 9 different combinations. "00",
therefore, is a combination. So here are the bytes
grouped and numbered.

Bytes: 745000 883001 383102 054002 075002 006002

[

ed : 123456 123456 123456 123456 123456 	123456
142003

123456
Now, rearrange in 412-563 groups and separate

them. The groups should now look like this:

074 005, 088 013, 138 023, 005 024, 007 025, 00C 026,
014 032

OK, the hard part is done. We can safely say our
program contains 7 fractures. The first fracture
starts at sector >074 and continues for >005 sectors.
But lets analyze all the fractures with all numbers in
hexadecimal with their decimal values in brackets after
them.

continues for >005 sectors. The end sector for
this fracture is >74+>5=>79(121); a total of 6
sectors 5+1.

Second fracture: Starts at >088(136) and continues for
>013-05+1)=>D(13) sectors. The end sector for
this fracture is >88+>D=>95(149).

Third fracture: Starts at >138(312) and continues for
>023-(>13+1)=>F(15) sectors. The end sector will
be >138+>F=>147(327).

Fourth fracture: Starts at >005(5) and continues for
>024-023+1)=0 sectors. The end sector is
>5+>0=>5(5).

Fifth fracture: Starts at >007(7) and continues for
>025-(>24+1)=0 sectors. The end sector for this
fracture is >7+>0=>7(7).

Sixth fracture starts at >00C(12) and continues for
>26-025+1)=0 sectors. The end sector for this
fracture is >C+>0=>C(12).

Seventh and final fracture is at >014(20) and continues
for >032-026+1)=>8(11) sectors. The end sector
for this fracture (and the program) is
>14+>13=>1F(31).

The total number of sectors used for this file is the
final offset plus 1 (>32+1=>33(51) sectors). If
you were to catalog this disk, it would show 52
sectors used for this program. Do not forgei the
FDB!!

OK, so, I think that explains the subject a bit better.
Have a look at a few files of your own to see if
you can find the start and end sectors and fracture
points. With very little practice, you will be
able to read the block links without problems.
Guaranteed!

Ellatlrund t, 1BitiATJ
If anyone wants the KJ Bible as text_ on disk,

contact: Raymond K Hamilton, Rt #2, WILDER, Idaho, USA,
83676. It needs around 70 SSSD disks! Do not forget
to send $$$ or IMOs when writing.

continued from page 5

The '.VAT command can also be used to supply
arguments for other specification commands. Consider
an example using the time delay command, '.TDI. At the
start of the program, you may wish a message to be
displayed for a longer period of time than later, when
the user is familiar with the messages given. The
following code demonstrates this.

100 CALL LINK("XDP")
110 DELAY=50
120 CALL LINK("DISPLY",1,1,"THE USER READS THISLTD(.VA

)",DELAY)
130 ! REST OF PROGRAM.

This will print the message for about five seconds
and then continue with the rest of the program. If
however, later in the program you wish this delay to be
two seconds, the value of DELAY should be changed to
20, and provided line 110 is not executed, this shorter
delay will occur next time the message is printed.

Further references can be found in the XDP utility
guide that can be printed from the demo program. 	Read
pages 2-10, as well as the following commands:
CHAR (page 15), CHRPAT (page 16), COLOR (pages 18-19),
DISPLY (pages 20-21), SCREEN (page 30) am?
XDP (page 37)

Remember: XDP is available from the club shop as
either double sided or flippy disks.

Questions about the package may be forwarded to my
home address:

Mr. Craig Sheehan
21 Suzanne Rd.,
Mona Vale 2103

Next Month: We will examine XDP's enhanced ACCEPT
command, forty column mode and scrolling.

TISHILIG NUNS DIGEST October 1988, Page 23

113A3 11r,
by Stephen Shaw, UK

The original console design concept was that there
would be a peripheral device into which you could
insert several modules. These would ALL appear on your
opening menu screen for selection; that is, you could
select modules by software instead of having to use a
mechanical switch. Further, subroutines in each module
would be available to you either in machine code or
BASIC.

The peripheral was never built, but you can still
sometimes see its shadow with the error message "Review
Module Library". And two modules have routines which
you can use in TI BASIC.

If you insert either the Personal Record Keeping
or Statistics modules into the port, and select TI
BASIC, you have access to additional CALLS which we
shall describe here and in forthcoming articles.

If you have a disk system, and run the PRK/Stats
modules from disk (using any suitable loading module or
peripheral), after loading the module code, you will
find yourself looking at a menu offering say:

1. TI BASIC
2. EXTENDED BASIC
3. PERSONAL RECORD KEEPING.

If you select 1. TI BASIC, the extra calls are
still available, just as though the actual module was
inserted.

The details of the CALLs seem to have appeared in
Holland, via Paul Karis, who wrote an article on CALL A
and CALL D for 99er Magazine. We have a printed
booklet which seems to be a dump of the TI hard disk
archive file "ARCHIVE.PRK.DOC.SUBRLST" and this has
been used in putting together this (and preceding)
articles. The archive document indicates also an
intention to allow CALL FILES(0), but that was also not
implemented.

The extra calls are CALL A (Accept); 	CALL D
(Display); CALL G (Getput); CALL H (Header); CALL L
(Load); CALL P (Prep); and CALL S (Save).

These allow you to set aside an area of VDP ram
for data storage, move data to and from this area, and
to and from the screen, and save and load data stored
in the area to an external device in MEMORY IMAGE
format. This is a very fast way of ,storing data,
especially for cassette users.

We shall look first at the ACCEPT and DISPLAY
subroutines as they relate to the screen input and
output. Then we shall get into the juicy bit of
reserving VDP ram and doing something with it.

CALL A - ACCEPT SUBPROGRAM.
There are four formats. The fourth we shall look

at later, verifies input based on a predefined header.

i and ii :
CALL A(ROW,COLUMN,WIDTH,NUMRETVAR,NUMERIC,[LOW,HIGH]).

ROW AND COLUMN are screen positions; 1 to 24 for row,
and 1 to 28 for column.

WIDTH is how many screen characters are to be entered.
If this takes you past the screen edge, WIDTH is
effectively reduced to the room available. You
can of course actually enter a shorter input, as
trailing spaces will be dropped.

NUMRETVAR must be a numeric variable. 	Its value is
changed according to which key you use to trigger
the input:
NUMRETVAR will be

1 if you use ENTER and the input is valid and
non-null.

2 if you use ENTER but the field is blank.
3 if you press AID (FCTN[7])
4 if you press REDO (FCTN[8])
5 if you press PROC'D (FCTN[6])
6 if you press BEGIN (FCTN[5])
7 if you press BACK (FCTN[9])
- think about how you can use this function!!

NUMERIC is a numeric variable, into which your input is
placed.

LOW and HIGH are optional, and can be used to specify a
range of acceptable inputs; perhaps you want the
user to enter a number between 56 and 121? Not
quite the same as the VALIDATE command we are
used to in Extended BASIC eh!

:

CALL A(ROW,COLUMN,WIDTH,NUMRETVAR,STRINGVAR)
is as above except that it is used to input a

string variable. There is no range checking available.

Notes: Additional checking is possible using a
fourth format which refers to a predefined header,
which we shall cover soon.

Row and Column numbers are MOD(24) and MOD(28)
respectively. It will not crash if you use a number
over 24 or 28. If you try to use a negative or zero
number, the default of 1 is used. Play around with
this a while. It is not too difficult!

Even easier is:

CALL D - DISPLAY SUBPROGRAM.
CALL D(ROW, COLUMN, WIDTH, VALUE 	

Where ROW and COLUMN are screen positions, MOD(24) and
MOD(28) respectively, with zero or negative
values read as 1.

WIDTH is interesting. If WIDTH is positive, then that
number of characters will be replaced with spaces
before the display is inserted. If the display
is wider than the specified width, the display is
truncated. If WIDTH is negative, the display
will be inserted up to the specified length, but
any excess length is not cleared. WIDTH is
reduced to the distance to the edge of the screen
if you use too high a number.

VALUE may be a number, string, or numeric or string
variable.

You may use CALL D to display as many items as you
can fit into your BASIC program line, specifying the
parameters for each display. Try it.

SAMPLES:
100 CALL CLEAR
110 CALL D(1,1,28,"Using CALL D and CALL A")
120 CALL D(3,1,28,"PRK/STATS sub programs")
130 FOR T=1 TO 30
140 CALL D(5,1,3,T,5,5,2,-T,5,10,1,T,5,15,4,T/7)
150 NEXT T
160 CALL HCHAR(5,1,32,32)
170 CALL D(6,1,28,"Input a number from 6 to 9:")
180 CALL A(7,20,4,RTN,NBR,6,9)
190 CALL HCHAR(12,1,42,160)
200 CALL D(13,1,28,"DIVIDED BY 12 IS:")
210 CALL D(14,12,-5,NBR/12)
220 CALL D(9,1,28,"PROC'D for next section")
230 IF RTN=5 THEN 240 ELSE 180
240 CALL HCHAR(6,1,1,32,320)
250 CALL D(12,1,28,"PRESS:",13,2,28,"REDO or PROC'D")
260 CALL A(14,12,2,RTN,NUL$)
270 IF RTN=4 THEN 100
280 IF RTN=5 THEN 290 ELSE 260
290 CALL CLEAR
300 CALL D(12,1,28,"End of Demo")
310 END.

Now we shall dive into the mysteries of CALL L
(load), CALL P (partition), CALL H (header), and CALL G
(getput).

The best way to introduce these perhaps is with a
working program, then in the next issue we can get down
to a little more detail!

Program first, then discussion. This program will
use an already created PRK data file, and in the TI
BASIC environment will read that data and display it on
the screen. It will demonstrate several of the calls
in a fairly simple manner, so you can get used to the
idea of using PRK data in a BASIC program! If you have
a disk system, free up memory by typing:
CALL FILES(1)
NEW

before you load and run this program!

jjeL

r— ,/''' lid you Know -that
Gavin' is rod,/ eleve.r al-

T.-1--1-in3 (peanut- buf-her occ o.P.
'-')addy's computer aiscs?!

TISHIJIG INFUN flIGIEST CcLuber 1988, Page 24

(111...7■
As this program occupies some VDP memory, you may

find that a few PRK data files will be too long to
load. Try deleting some records to make the data file
fit. Remarks will be in lower case between the program
lines! Before loading the program you must allocate an
area of VDP memory for the data, by using the partition
command, in command mode, thus:
CALL P(10900)
NEW

Now loed the ft:4101ring program and run it;

Firstly, load the prk file from disk or cassette
100 CALL L("CS1",Y)
or call 1("dskl.filenamen) ae you wish
now to check to see if the file is loaded
110 IF Y=0 THEN 500
no there was an error
else carry on as follows
how many fields in each record? let us find out
120 CALL H(1,5,0,F)
where f will return number nf fitoldc,

130 CALL CLEAR
140 CALL D(1,1,28,"# OF FIELDS:"STR$(F))
then we need to know how many records there are in the
data file, think of a record as a page:
150 CALL H(1,6,0,R)
160 CALL D(2,1,28,"# of RECORDS:"STRS(R))
now let us loop through each record and display it on
the screen:
170 FOR RCD=1 TO R
taking each field in turn
180 FOR FLD=1 TO F
but does the field contain a number or a string? let
us find out:
190 CALL H(1,10,FLD,TYPE)
200 IF TYPE=1 THEN 240
as type is 0 data is a number:
get the data from field FLD of record RCD:
210 CALL G(1,RCD,FLD,Z,RD)
and print the result on screen:
220 CALL D(2+FLD,1,28,RD)
and jump over string section
230 GOTO 260
this is string section:
240 CALL G(1,RCD,FLD,Z,RD$)
250 CALL D(2+FLD,1,28,RD$)
that is one field dealt with, on to the next:
260 NEXT FLD
and now all fields in the record are on screen let us
give the record number and a pause
270 CALL D(23,18,10,"RECORD:"STr"--,D))
280 CALL D(24,1,28,"PRESS ENTER 	NEXT")
290 CALL A(24,28,1,RC,RV$)
and on to the next record
300 NEXT RCD
310 PRINT "NO MORE"
320 GOTO 320
500 CALL CLEAR
510 PRINT "LOAD ERROR"
520 GOTO 520
530 END

CALL P sets aside an area of memory for the data
to be stored in, and must of course be sufficient to
hold the data, but for BASIC use, we must also have
enough room for our BASIC program! After using
CALL FILES(1), disk users have a maximum of 12768 bytes
of VDP RAM free to split between BASIC program and data
area, while cassette users have 13820 bytes available
(see how much memory a disk system eats up!). By using
10900 for our data, we have left even disk userA.'with
at least 1868 bytes for our little program! -L .

CALL L 	just: 	loadEl 	Lbs data riTe into Llic
partitioned area, the return variable following the
device/file name is a 0 (zero) if an error occurs, for

114.0.- 	

instance, the files is not on the disk, the data is too
large for the partition, or other I/0 errors. The
device/filename may be a string variable if you wish,
e.g. CALL L(A$,A)

As used in the above example (there are many other
uses!!!):

CALL H(1,5,0,F)
CALL H(1,6,0,R)
CALL H(1,10,FLD,TYA)

The first digit C1) is s read instruction. We
would use a 0 to write.

The fourth digit is a variable pLimed in or
obtained from the header data.

The second digit (5, 6 or 10 above) is the header
item number, from 1 to 14, where 5 is the number of
fields per record, and 6 is the number of records.

10 is the type of field, returning to the fourth
item, a numeric variable, a 1 for characters (string),
a 2 for Integer, a 3 for decimal, and a 4 for
scientific notation.

We shall deal with the other 11 header items, and
with writing to the header, in a later article.

CALL G deals with the actual data we have stored,
and as used above (again there are other uses.):

CALL G(1,RCD,FLD,Z,RD)
CALL G(1,RCD,FLD,Z,RD$)

Again the first item (1) is a read instruction,
with 0 used to write.

The second and third items identify the record and
field number that we are going to read/write, while the
final item is the variable that the contents of that
particular record/field will be placed in for us to
use. Note that we must use a string variable for
characters! That fourth item (Z) is a numeric
variable, which can be used to indicate a blank field.
It takes a value 0 if data is found, and 1 if data is
missing, that is, not entered!

When using CALL G to WRITE, the fourth parameter
as above is not used, you just go on to the value you
are writing, for instance:
CALL G(0,RCD,FLD,"STRING INPUT')

That fully covers CALL G, apart from a sample of
how to write!

CALL S will save the data area to cassette/disk,
very easily indeed:

CALL S(DEVICE$,VARIABLE) 	with variable sga1n
indicating success or failure!

That leaves us with a great deal to look at with
CALL H, and also we need to look at writing datl, Luld
(perhaps!) maybe even creating a data file without
using the PRK create file routine. Until later...

((Is anyone reading this please!!! Is this the
right level/approach for you?))

CALL H deals with the "header" information, the
database specification you create when using PRK/Stats:
what sort of data is held in each field and what name
have we given the field?

TISHI1G %ins IlIGE5-1- 	0a0ber 1988, Page 25

ir,-01-11 'tire 	 #50
by .1 in Petet son

Copyright 1988
TIGERCUB SOFTWARE

156 Collingwood Ave.
Columbus, OH 43213

Distributed by Tigercub Software to TI99/4A Users
Groups for promotional purposes and in exchange for
their newsletters. May be reprinted by non-profit
users groups, with credit to Tigercub Software.

Over 120 original programs in BASIC and Extended
BASIC, available on cassette or disk, NOW REDUCED TO
JUST $1 EACH!, plus $1.50 per order for cassette or
disk and postage and handling. Minimum order of $10.
Cassette programs will not be available after my
present stock of blanks is exhausted. The Handy Dandy
series, and Color Programming Tutor, are no longer
available on cassette. Descriptive catalogs, while
they last, $1, which is deductable from your first
order.

Tigercub Full Disk Collections, reduced to $5
postpaid. Each of these contains either 5 or 6 of my
regular catalog programs, and the remaining disk space
has been filled with some of the best public domain
programs of the same category. I am NOT selling public
domain programs - they are a free bonus!

TIGERCUB'S BEST, PROGRAMMING TUTOR,
PROGRAMMER'S UTILITIES, BRAIN GAMES, BRAIN TEASERS,
BRAIN BUSTERS!, MANEUVERING GAMES, ACTION GAMES,
REFLEX AND CONCENTRATION, TWO-PLAYER GAMES,
KID GAMES, MORE GAMES, WORD GAMES, ELEMENTARY MATH,
MIDDLE/HIGH SCHOOL MATH, VOCABULARY AND READING,
MUSICAL EDUCATION, KALEIDOSCOPES AND DISPLAYS

NUTS & BOLTS DISKS
These are full disks of 100 or more utility

subprograms in MERGE format, which you can merge into
your own programs and use, almost like having another
hundred CALLs available in Extended BASIC. Each is
accompanied by printed documentation giving an example
of the use of each. NUTS & BOLTS (No. 1) has 100
subprograms, a tutorial on using them, and 5 pages of
documentation. NUTS & BOLTS No. 2 has 108 subprograms,
10 pages of documentation. 	NUTS & BOLTS #3 has 140
subprograms and 11 pages of documentation. 	NOW JUST
$15 EACH, POSTPAID.

TIPS FROM THE TIGERCUB
These are full disks which contain the programs

and routines from the Tips from the Tigercub
newsletters, in ready-to-run program format, plus text
files of tips and instructions. TIPS (Vol. 1) contains
50 original programs and files from Tips newsletters
No. 1 through No. 14. TIPS VOL. 2 contains over 60
programs and files from Nos. 15 through 24.
TIPS VOL. 3 has another 62 from Nos. 25 through 32.
TIPS VOL. 4 has 48 more from issues No. 33 through 41.
NOW JUST $10 EACH, POSTPAID.

NOW READY

* TIPS FROM TIGERCUB VOL. 5 *
* Another 49 programs and *
* files from issues No. 42 *
* through 50. Also $10 ppd *

TIGERCUB CARE DISKS #1,#2,#3 and #4.
Full disks of text files (printer required).

No. 1 contains the Tips news letters #42 through #45,
etc. Nos. 2 and 3 have articles mostly on Extended
BASIC programming. No. 4 contains Tips newsletters
Nos. 46-52. These were prepared for user group
newsletter editors but are available to anyone else for
$5 each postpaid.

This educational program is a much expanded
version of a routine I published before.

100 DIM M$(100)
110 GOTO 150
120 S,K,A$(),J,M$(),Y$,Z$,Z,X,ING$,A,AN$
130 CALL CLEAR :: CALL COLOR :: CALL SCREEN ::

CALL CHAR :: CALL KEY :: CALL ING 	HCHAR

140 !@P-
150 CALL CLEAR :: FOR S=0 TO 12 :: CALL COLOR(S,2,8)::

NEXT S :: CALL SCREEN(5)::
DISPLAY AT(3,1):"LEARNING TO ""ING"" IT V.1.1"

160 CALL CHAR(64,"3C4299A1A199423C")::
DISPLAY AT(5,1):"@ Tigercub Software 1987 forfree
distribution - no priceor copying fee to be charged

170 CALL KEY(3,K,S)
180 A$(1)="No, if the word does not end in B, D, G, M,

N, P, R or T you always just add ING"
190 A$(2)="No,if the last letter is not E and the

next-to-last 	letter is not a vowel, just add
ING"

200 A$(3)="No, if the word has two 	vowels just
before the last letter, just add ING"

210 A$(4)="No, if a word ends in B, D, G, M, N, P, R or
T with one vowel (but not two vowels!) just before
it, you must 	double the last letter and add
ING"

220 A$(5)="No, if the word ends in IE, Change the IE to
Y and add ING"

230 A$(6)="No, BE is an exception to 	the rules,"
240 A$(7)="Some dictionaries give EYING but EYEING is

better"
250 A$(8)="No, if a word ends in E (ex-cept BE and

words ending in IE,OE,UE AND YE) you must drop the
E and add ING"

260 A$(9)="No, if the word ends in EE, or OE or UE,
just add ING"

270 A$(10)="No, QUIP, QUIT and QUIZ are exceptions to
the rule. 	Double the last letter and add ING."

280 FOR J=1 TO 100 :: READ M$0):: NEXT J
290 FOR J=1 TO 100 :: Y$=Y$&CHR$0):: NEXT J 	Z$=Y$
300 DISPLAY AT(3,1):"":"":"":" Type the word with the

correct ING suffix"
310 RANDOMIZE :: Z=INT(RND*LEN(Z$)+1)::

X=ASC(SEG$(Z$,Z,1))::
Z$=SEG$(Z$,1,Z-1)&SEGEZ$,Z+1,255) :: IF LEN(Z$)=0
THEN Z$=Y$

320 CALL ING(M$(X),ING$,A)
330 DISPLAY AT(12,1):M$(X):: ACCEPT AT(12,15):AN$
340 CALL HCHAR(15,1,32,280):: DISPLAY AT(10,1):"" :: IF

AN$=ING$ THEN DISPLAY AT(10,10):"CORRECT!" 	GOTO
310

350 DISPLAY AT(15,1):A$(A):" ":"The word is ";ING$
GOTO 310

360 !@14
370 DATA LODGE,BUY,HOPE,QUIP,TITHE, WISH,CUT,DRIVE,

SEE,EYE,GO,CRY,TRY,AGREE,QUIT
380 I@P-
390 DATA BOIL,COOL,HURT,BUTT,CAGE,BE, ROVE,PITY,SAVE,

COOL,RULE,MEASURE,TUNE,RAVE
400 DATA RUN,BEG,STOP,THINK,ERR,BORE, TEAR,BAR,CARE,

BARE,BEAR,LET,QUIZ,HOOT,HEAT,COME
410 DATA DREAM,TAKE,FRY,CADDY,FLEE,HOE, SEW,TRIP,HOPE,

RIG,DRAG,SUE,KNEE,B00,BABY,NURSE,CRUISE
420 DATA LIE,TIE,DIE,BELIE,VIE,DODGE, LIVE,DRIVE,LOVE,

LEAVE,HUM,HOP,BEG,BEGIN,BOMB,BOB
430 DATA ADD,AID,BAT,BOAT,PRAY,LAY, QUOTE,SNORE,STARE,

HIRE,FIRE,LINE,CRY,SAY
440 DATA BOOGIE,RAGE,RATTLE,GRATE, LEAVE,STRIVE,DRAW,

WRITE
450 !@P+
460 SUB ING(M$,ING$,A):: E$= SEG$(M$,LEN(M$),1)::

F$=SEG$(14$,LEN(M$)-1,1):: A$="ING"
C$="BDEGMNPRT" 	V$="AEIOU"

470 GOTO 500
480 C$,E$,1NG$,M$,A$,A,V$,F$
490 !@P-
500 IF LEN(M$)=4 AND SEG$(M$,1,3)="QUI" THEN

ING$=M$&E$&A$:: A=10 :: SUBEXIT
510 IF POS(C$,E$,1)=0 THEN ING$=M$&A$:: A=1 :: SUBEXIT
520 IF E$="E" THEN 550
530 IF POS(V$,F$,1)=0 THEN ING$=M$&A$:: A=2 :: SUBEXIT
540 IF POS(V$,SEWM$,LEN(M$)-2,1),1)00 THEN

INGS=MUA$:: A=3 :: SUBEXIT ELSE ING$ =M$&E$&A$
A=4 :: SUBEXIT

550 IF F$="1" THEN ING$=SEG$(14$,1,LEN(M$)-2)&"YING"
A=5 :: SUBEXIT ELSE IF F$="E" OR F$="0" OR F$="U"
THEN ING$=M$&A$:: A=9 :: SUBEXIT

560 IF M$="BE" THEN ING$="BEING" :: A=6 :: SUBEXIT
570 IF M$="EYE" THEN INGWEYEING" :: A=7 :: SUBEXIT
580 INGS=SEG$(10,1,LEN(M0-1)&A$:: A=8
590 !@P+
600 SUBEND

HOG 	TISHIIG 	DIGEST 	October 1988, Page 26

I still have a sort of an old-fashioned idea that
the computer can be a useful educational tool -

430 !@P+
440 DIM A$(175),B$(175):: FOR J=1 TO 174 :: READ

A$(J),B$(J):: Z$=Z$&CHR$0):: NEXT J Y$=Z$
RANDOMIZE

450 DISPLAY AT(7,1):"":"Type the adjective form of

460 X=INT(RND*LEN(Y$)+1):: Y=ASC(SEG$(Y$,X,1))::
Y$=SEG$(Y$,1,X-1)&SEG$(Y$,X+1,255):: IF LEN(Y$)=0
THEN Y$=Z$

470 DISPLAY AT(12,1):A$(Y):: ACCEPT AT(12,14):Q$:: IF
POS(B$(Y),Q$,1)=0 THEN 490

480 DISPLAY AT(18,1):"":"" :: FOR D=1 TO 100 :: NEXT D
:: DISPLAY AT(18,1):" That is the word in my
memory banks.":"" 	GOTO 460

490 DISPLAY AT(18,1):" The adjective in my memory banks
is ";B$(Y):: GOTO 460

When one program is run from from another by RUN
DSK.., the screen is not cleared, sprites are not
deleted, and screen color, character definitions and
sprite magnification are not returned to the default
values. This can cause some strange results, which can
be prevented by CALLing CLEARALL just before the RUN.

1000 SUB CLEARALL :: CALL CLEAR ::
CALL DELSPRITE(ALL):: CALL SCREEN(8):: CALL CHARSET
:: CALL MAGNIFY(1)

1001 FOR CH=65 TO 90 :: CALL CHARPAT(CH,CH$)
CALL CHAR(CH+32,
"00"&SEG$(CH$,1,12)&SEG$(CH$,15,2)) :: NEXT CH

1002 CALL CHAR(96,"000201008",123, "0018202040202018",
124, "001010100010101000300808040808300000205408")

1003 FOR CH=127 TO 143 :: CALL CHAR(CH,"0"):: NEXT CH
SUBEND

The routine in line 1001 can be used, by deleting
the +32 if necessary, to modify some of the character
sets on my Nuts & Bolts disks.

From an idea in a program by Ed Machonis, here is
an improvement to my 28-Column Converter published in
Tips #18. After line 160, insert

100 CALL CLEAR :: FOR SET=0 TO 12 ::
CALL COLOR(SET,2,8) :: NEXT SET :: CALL SCREEN(5)::
DISPLAY AT(3,6):"NOUN TOADJECTIVE"
CALL KEY(3,K,S)

110 CALL CHAR(64,"3C4299A1A199423C")::
DISPLAY AT(5,5):%0 Tigercub Software":"":" For free
distribution - no price or copying fee to be
charged."

120 DISPLAY AT(12,1):" One moment...loading memory"
130 DATA ROGUE,ROGUISH,HOG,HOGGISH,PIG, PIGGISH,SWINE,

SWINISH,THIEF,THIEVISH, KNAVE,KNAVISH,BRUIE,BRUTISH
or BRUTAL

140 !@P-
150 DATA FAME,FAMOUS,TUMULT,TUMULTUOUS, RIOT,RIOTODS,

SCANDAL,SCANDALOUS, MOUNTAIN,MOUNTAINOUS,ODOR,
ODOROUS or ODORIFEROUS

160 DATA CAVERN,CAVERNOUS,VILLAIN, VILLAINOUS,DANGER,
DANGEROUS,PERIL, PERILOUS,ADVANTAGE,ADVANTAGEOUS

170 DATA BARB,BARBED,FORK,FORKED, bORDER,BORDERED,
WhEEL,WTIELLED,HUNGER, BUNGRY,ANGER,ANGRY

180 DATA PARLIAMENT,PARLIAMENTARY, PLANET,PLANETARY,
LEGISLATURE, LEGISLATIVE,PARISH,PAROCHIAL

190 DATA CONGRESS,CONGRESSIONAL, ELEPHANT,ELEPHANTINE,
FANTASY, FANTASTIC,BULL,BULLISH

200 DATA GIRL,GIRLISH,BOY,BOYISH,BABY, BABYISH,AMATEUR,
AMATEURISH,FEVER, FEVERISH,DEVIL,DEVILISH,FOOL,
FOOLISH

210 DATA OAF,OAFISH,SHEEP,SHEEPISH, CHILD,CHILDISH or
CHILDLIKE,VIRTUE, VIRTUOUS,PRIDE,PROUD or PRIDEFUL

220 DATA HATE,HATEFUL,DOUBT,DOUBTFUL, THOUGHT,
THOUGHTFUL,SHAME,SHAMEFUL, FEAR,FEARFUL,SORROW,
SORROWFUL

230 DATA WISH,WISHFUL,PEACE,PEACEFUL, EVENT,EVENTFUL,
TRUTH,TRUTHFUL,SKILL, SKILLFUL,MAN,MANLY

240 DATA WOMAN,WOMANLY,FATHER,FATHERLY, MOTHER,
MOTHERLY,BROTHER,BROTHERLY, SISTER,SISTERLY

250 DATA NIGHT,NIGHTLY,HOUR,HOURLY, MONTH,MONTHLY,
ORDER,ORDERLY,SERIES, SERIAL

260 DATA TIME,TIMELY,GRAVEL,GRAVELLY, FRIEND,FRIENDLY,
WOOL,WOOLLY,YEAR, YEARLY,SOUTH,SOUTHERN or
SOUTHERLY

270 DATA NORTH,NORTHERN or NORTHERLY, WEST,WESTERN or
WESTERLY,EAST,EASTERN or EASTERLY

280 DATA CHARITY,CHARITABLE,TERROR, TERRIFIED or
TERRIBLE,HORROR,HORRIFIED or HORRIBLE or HORRIFIC

290 DATA RAG,RAGGED,MILITARY, MILITARISTIC,ART,
ARTISTIC,CAT,CATTY, DOG,DOGGY,FOG,FOGGY,SUN,SUNNY

300 DATA BAG,BAGGY,LEG,LEGGY,B0G,BOGGY, STUB,STUBBY,
FUN,FUNNY,FUR,FURRY,GUM, GUMMY,AVARICE,AVARICIOUS

310 DATA CLOUD,CLOUDY,RAIN,RAINY, FLOWER,FLOWERY or
FLORAL,GREED,GREEDY, THIRST,THIRSTY,AIR,AIRY,BUSH,
BUSHY, FISH,FISHY

320 DATA SOUP,SOUPY,BLOOD,BLOODY,FOAM, FOAMI,BEAD,
BEADY,SWAMP,SWAMPY,SILVER, SILVERY,COPPER,COPPERY,
DUST,DUSTY

330 DATA DIRT,DIRTY,GUILT,GUILTY,SALT, SALTY,GRAIN,
GRAINY,OIL,OILY,TRICK, TRICKY,HILL,HILLY,
ROCK,ROCKY

340 DATA SAND,SANDY,SOAP,SOAPY,SUDS, SUDSY,SILK,SILKY,
WOOD,WOODY,MODESTY, MODEST,PIETY,PIOUS,DAY, DAILY

350 DATA TREE,TREELIKE,TOY,TOYLIKE, FINGER,FINGERLIKE,
SWAN,SWANLIKE,WAR, WARLIKE,DISH,DISHLIKE,PLATE,
PLATELIKE

360 DATA SPOON,SPOONLIKE,BIRD,BIRDLIKE, SNAKE,SNAKY,
WIRE,WIRY,BONE,BONY,SMOKE, SMOKY,FLAKE,FLAKY

370 DATA NOISE,NOISY,BRINE,BRINY,TASTE, TASTY,STONE,
STONY,WAVE,WAVY,GORE,GORY, PASTE,PASTY,BUBBLE,
BUBBLY

380 DATA LABOR,LABORIOUS,ORNAMENT, ORNAMENTAL,
GOVERNMENT, GOVERNMENTAL, CONTINENT,CONTINENTAL,
MUSIC,MUSICAL

390 DATA MAGIC,MAGICAL,TOPIC,TOPICAL, SENSATION,
SENSATIONAL,LOGIC,LOGICAL, ALARM,ALARMING,
ARTERY,ARTERIAL

400 DATA GOLD,GOLDEN,EARTH,EARTHEN, GLAMOUR,
GLAMOURIZED,DEPUTY,DEPUTIZED,
ENERGY,ENERGIZED,PART, PARTIAL,FIRE, FIERY

410 DATA ANGEL,ANGELIC,CHERUB,CHERUBIC, BURDEN,
BURDENSOME,TROUBLE,TROUBLESOME, BEAST,BESTIAL

420 DATA HISTORY,HISTORICAL,GEOGRAPHY, GEOGRAPHICAL,
BOTANY,BOTANICAL,BIOLOGY, BIOLOGICAL,LITURGY,
LITURGICAL

165 DISPLAY AT(20,1):"Tab setting? 1" ::
ACCEPT AT(20,14)SIZE(-2)BEEP:T

And change line 290 to -

290 PRINT #2:TAB(T);L$ 	S=S+28 	GOTO 410

MEMORY FULL! - Jim Peterson

continued from page 20
checks to see which key is hit using the IFTHEN or
IFELSE routines. If the QUITKY is hit, the program
turns on the interrupts and jumps to the title screen,
ending the program. If the REDO key (FCTN[8]) is hit,
the routine is repeated. If some other key is hit, the
program simply re-scans the keyboard until a valid key
is hit.

FOR THE ADVANCED PROGRAMMER
As you can see, it is relatively easy to write

assembly programs using the PULSAR routines. PULSAR is
quick and efficient, but does need some improvements.
This is where the advanced assembly programmer comes
in.

Routines still needed include disk I/O, string
manipulation (SEG$, POS, ASC, CHR$, LEN, etc.), plus
access to TI's Bit Map, Multi-color graphics, Sprites,
speech and sound capabilities.

The next step in PULSAR development should be the
incorporation of the BLWP command in place of the BL.
This would allow much easier mix of PULSAR and "pure"
assembly language commands.

If you do get interested and begin to write your
own routines, be sure to let me know.

NOTE: This article originally appeared in the
April Edition of the Ohio New Horizons User Group
Newsletter. It is reprinted by permission. Anyone who
would like a copy of the PULSAR source and object code
should send an initalized SSSD disk along with a
self-addressed/stamped return evelope and $5 to:

PULSAR UTILITIES
c/o SUBFILE99
POB 533
1 - 	Green, Ohio 43402
	 0

TISHUG IVEIIIIS DIGCST Oclobrr 1988. Page 27

Mat YbTlIa CDTEtana
Forth Forum <6>

by George L Smyth
This month I will give a quick go-over of Forth's

conditional IF..THEN construct. The similarity in
usage of this word set to BASIC's namesake is close,
with the exception that we use this word "Forth style".
A comparison of the uses of these words, as defined by
the two languages, will give the user an idea of how
Forth's implementation differs from BASIC.

Also presented this month is a word which will
allow user specified precision of integer division.
Although its useability is questionable, it is fun to
divide two numbers and take the division out 1000
places bexond the decimal point. So, to beEin.

Getting iffy
The Forth equivalent of BASIC's IF..THEN statement

is also IF..THEN, although the construct is somewhat
different. Before we examine this form, let us look at
a few words which will often help us set up this word
pair.

= (nl n2 --- f)
A while back I stated that the equal sign in BASIC

did not have the same function in Forth. The Forth
language uses T=' as a comparison operator. A
comparison operator is a word which removes the two
numbers from the top of the stack, compares them in
some way, and reports the status of the requested
comparison by placing a flag on the stack. A flag is
represented by the system as either a '1' or a '0',
meaning true or false, respectively. The equals sign
returns a flag to indicate whether or not the two
numbers on the top of the stack are equal or not, a '1'
if they are and a '0' if they are not.

> (n1 n2 --- f)
< (nl n2 --- f)
The "greater than" and "less than" signs are also

comparison operators which determine the felationship
of the next to the top of the stack value to the value
at the top of the stack value. When using the 5'
operator, if the second to the top of the stack value
is larger than the top of the stack value, a true flag
is left on the stack. Conversely, when the '<' word is
used, this situation will result in a false flag being
returned to the stack.

The reason we want to place a flag (sometimes
called a Boolean flag) on the stack ia ta set up d
situation whereby we may be able to utilize the
IF..TEEN structure. The word IF examines the stack to
determine if a false flag (0) or a true flag (00) has
been left. If it finds a true flag, execution
continues until the word THEN ends the routine. A
false flag will force the system to ignore the routine
between the IF and THEN words.

The word ENDIF is a synonym for THEN and the two
I

may be interchan e 	 ' her way without affecting

4110(program execution. 	ave seen both THEN and ENDIF
used in the same wor 	en nesting conditionals to
allow for additional clarity. I personally prefer THEN
because it relates to the functional purpose of BASIC's
namesake, but you should decide for yourself which one
you like.

Just as BASIC employs an IF..TEEN..ELSE structure,
Forth also has a similar operation, IF..ELSE..THEN.
After IF looks at the stack, it will execute either the
words between IF and ELSE if it finds a true flag, or
the words between ELSE and THEN if it finds a false
flag. Let us write a word to demonstrate this.

: 5COMP 5 = IF ." It is equal" ELSE ." It is not
equal" THEN ;

This word named 5COMP places the number 5 on the
stack and compares it with the number that had
previously been placed on the stack. If the number '5'
was on the stack before 5COMP was executed, the display
will show "It is equal". If anything other than a 5
was on the stack, "It is not equal" will be printed.
Try it:

5 5COMP It is equal
13 5COMP It is not equal
Because I figured everyone was sick and tired of

the "Guess the Number" game in BASIC, I decided to
111' 	

write it in Forth. Actually, this will give us a bit
of experience in writing programs correctly. We need a
couple of words we have not gone over to complete it,
so I made it as simple as possible.
SCR #45
0 (Guess the Number)
1 BASE->R DECIMAL
2 0 VARIABLE NUMBR RANDOMIZE
3 : THE NUMBER 100 AND NUMBR ! ;
4 : WROT1G ." Too " NUMBR >
5 	IF ." Large" ELSE
6 	." Small" THEN ;
7 : GUESS DUP NUMBR ROT =
8 	IF ." Correct" DROP
9 	ELSE WRONG THEN ;
10

12 t411100"'
11

13
14
15

To "play" the game, enter "THE NUMBER" to have the
program pick number between 0 and 99 and place it in
the variable 'NUMBR' (the word 'NUMBER' is a word
already used in Forth). Now you can make your guess by
entering the number followed by the word "GUESS", tor
example, '50 GUESS'. If you are correct, "Correct"
will be returned, if not, you will be told if your
guess was too large or too small.

Several things should be noted concerning this
program that I consider good programming practice,
although I could get some arguments . First off, note
the words BASE->R and R->BASE. Before we enter this
program it is quite possible that we could be in the
HEX number system, or any other number system for that
matter. If we want to retain that numbering system
after we finish loading that screen, we would like to
save the base and return it to the system after
entering this program. These words do just that.
BASE->R takes the base and saves it on the return stack
(something else we have yet to talk about (yes there
are two stacks)). 12->BASE returns this number back to
the system after loading in this screen. This way we
can be sure that we are in base 10 (decimal) while
loading the application, and we will return to whatever
base we were working with previously.

Also note the indentations inherent in the words.
This is a point of contention. I have argued against
those who feel that the programmer should fill the
screen with as much information as possible. It is
true that the application may load a bit faster, but
the tradeoff is decreased clarity. The function of the
word "WRONG" is easy to see partly because of the
indentations. Unlike BASIC, program execution is not
changed at all by this. The ability to revise the
program is, of course, also enhanced.

Another thing I am sure to get flak about is the
fact that I never nest IF..THEN statements. Note that
the word "WRONG" could easily fit into the word "GUESS"
without any problems. There is nothing wrong with
ending word with "THEN THEN", except for the fact that
I feel that clarity and easy revision suffer somewhat.
If you are like me in that you are never satisfied with
a program and are constantly revising it, you may wish
to consider this.

Last but not least, please note that each word is
ahort. Yes, it is simple program and I would have
trouble being verbose here, but the fact remains that
short words constitute good programming practice. All
professional Forth programmers I have talked with have
told me that their words typically are 15-20 words in
length maximum! This may sound a bit restrictive, but
it forces the programmer to use the concepts Forth was
built around. If you were to look at the programs
submitted by J Volk, you would see words containing
over 100 words within them. How does one go about
modifying them? I did not bother trying. I was glad
to see them at time when few Forth programs were
available for our computer, but was frustrated when I
tried to dissect them. We have plenty of room on our
screens, . . them?

I'm the last person to question a chap's credibility but let's
face it — he's not being sued by Atari.

115HILIG Nruis nitasir October1988, Page 28 711111/G

I will go over some of these elements in later
articles when I present a catalog program I wrote in
Forth which has several advantages of being able to
"see" things hidden from BASIC catalog Erograms.

The Forum
Thought for the month:

"There is always one more bug!"
A while back I lamented the fact that using

floating point routines were an extension which
required learning new words, which I still have not
done for the most part. Of course, speed is enhanced
when the computer does not have to worry about where
the decimal point is, but I still wondered if there was
some way I could divide two numbers and get an answer
with value extending beyond the decimal point. Well,
needless to say, there is. To all mathematicians, I do
realize the rules which relate to the significance of
precision, but we are just having fun here.

The program listed will divide two integers (whole
numbers) to the precision you wish to indicate. If you
want to use a number which is not an integer, merely
multiply the numbers by any factor of 10 until they
both are, i.e. 123/4.56 = 12300/456. When I was
considering how to write this word, I figured that the
best way to go would be to do it the way I normally
divide two numbers using longhand division. The main
falling point with this routine is that the only thing
that you can do with this answer is to display it. As
far as the system is concerned, this is merely a string
of numbers.
SCR #46
0 (Multi-precision Pseudo-non-modulus)
1 : X/MOD (Dividend Divisor Precision ---)
2 	ROT >R SWAP R> OVER
3 	/MOD . ." . " ROT
4 	 0 DO 10 * OVER
5 	 /MOD . LOOP
6 	DROP DROP ;
7
8
9

10
11
12
13
14
15

Example:
100 13 5 X/MOD 7 . 6 9 2 3 0
100 51 23 X/MOD1 . 9 607 8 4 313 7 2 5 4 9019

6 0 7 8 4 3
Have fun with this and hopefully I will have some

more stuff next month.
George L. Smyth
3017 Sylvan Dr.
Falls Church, VA, 22042
(703)533-8710

by Wes Johnson, USA

TI-Keys is a program which allows the user to
define 36 keys so that when they are typed as control
keys, they will display up to 31 characters of text or
code. The program is menu driven, disables the quit
key, and changes the cursor shape when it is active.
Other features include saving the user defined keys to
disk, editing the keys, and the ablilty to turn 'off'
the program so that true control characters can be
typed.

LOADING INSTRUCTIONS
TI-Keys is loadable in two different ways. It is

saved in Extended BASIC program format and is named
LOAD. RUN this program, and TI-Keys will load quickly.
The disadvantage to this method is it will erase any
BASIC program already in memory.

The other format is the standard CALL LOAD format.
Type CALL INIT :: CALL LOAD("DSKx.MAC"):: CALL
LINK("MACRO"). The disadvantage to this method is the

4t.ime involved loading the program.

USING TI-Keys
Once the program is loaded, BASIC's cursor will be

a hollow box. This indicates TI-Keys is loaded and
functional. Now press CTRL, and you will notice that
the cursor is not blinking. The program is waiting for
a key to be pressed. 	Now press the 'A' key while
holding down CTRL. 	ACCEPT will be printed on the
screen. 	Now release CTRL, and BASIC's cursor will
begin blinking again. Make-Keys works with all letter
keys A - Z, and the number keys 0 - 9. Any key can be
redefined by the user, and saved to disk at any time.

By pressing CTRL[=1, the menu will appear. The
program options are listed on the screen as follows: 1
to EDIT, 2 to SAVE, 3 to LOAD, 4 to TURN OFF KEYS, 5 to
RETURN TO BASIC.

1 EDIT - The program will ask 'KEY TO CHANGE?'.
Press the key you wish to change, and the
'PRESENT VALUE' of the key will be displayed. .
Now TI-Keys asks 'CHANGE TO?'. Simply type in
the string as it will apear in BASIC, and press I
enter.

2 SAVE - The program will ask 'SAVE FILENAME'. Type I
in any valid filename except CS1. If an error '
occurs, FILE ERROR will be displayed. Press a '
key to get back to the menu. If no error occurs,
the menu will be displayed as soon as the file is
saved.

3 LOAD - The instructions for load are the same as
option.

4 TURN OFF KEYS - Will turn off TI-Keys so that true
control characters can be typed, or so that other
assembly programs can be loaded with out lock up.

WARNING If CALL INIT is performed, and another
assembly program is loaded, the computer may lock
up. This is prevented by turning TI-Keys OFF,
and then typing CALL INIT, and loading the other
program.

5 RETURN TO BASIC - Does just what it says. When
you are finished with the menu, press 5 to get
back into BASIC.

PREDEFINED KEYS
When the program is loaded, the keys have the

following text strings stored in them.
A - ACCEPT 	S - SAVE "DSK
B - BEEP 	T - TAB(
C - CALL 	U - U
D - DELETE "DSK V - VCHAR(
E - END 	W - CALL INIT
F - FOR 	X - CALL LOAD("DSK
G - GOSUB 	Y - CALL LOAD(-
H - HCHAR(Z - CALL LINK("
I - IF 	 1 - RUN
J - JOYST(2 - \
K - KEY(
L - LINPUT
	

:

5 - \NO PREDEFINED M - MERGE "DSK
6 - / 	VALUE N - NEXT

O - OPEN
	

7 -
P - PRINT
	

8 -
Q - Q
	

9 -
R - RUN "DSK
	

0 - /

This is a "Fairware Program". Try it! If you
like it please send the author your $10.00 thanks. I
am a high school student trying to upgrade to DSDD and
other nice things! Thanks!

Wes Johnston
404 Furman Lane
Ladson, SC 29406
United States of America

0

-1-ISHIIG NEWS DIGEST 	October 1988, Page 29

3untik
by Irwin Hott, USA

Braille'n Speak: a new computer for the blind.
I am actually beginning to write this article

while riding a COTA bus downtown. I am using the
Brailleen Speak. It is about 8 inches long 4 inches
wide and 1.5 inches high (20cm by 10cm by 4cm in
metric, ED). It weighs less than 1 lb (.5 kgm). The
small size is made possible by the use of a braille
keyboard and a speech synthesizer for the "display".
The Brailleln Speak has rechargable batteries as well
as an RS232 port.

The braille cell is made up of 6 dots 1,2,3 from
the top to bottom on the left, 4,5,6 on the right. The
unit uses 7 keys (1 for each dot plus the spacebar).
You simply press dots simultaneously to get the desired
character. Dot 1 is A and 2 is B, dots 1 and 4 are C
etc..

I do not propose to go into the intricate patterns
of Braille here except to say that there are different
"grades" involving the number of contractions
(abbreviations) used e.g. nec for necessary, AL for
also and words such as WITH written as dots 2,3,4,5,6.

I am writing in grade 1 braille now. There are no
contractions and I am writing in lower case most of the
time. I can switch to upper case by hitting a U chord.
That means pressing U and the space bar at the same
time. That will give me the next character in upper
case. If I hit U chord twice, upper case lock will be
on. Most of the commands such as file. Cursor and
parameter are made by pressing a key combination with
the spacebar.

The Braille'n Speak has about 200K of RAM. About
180 of that may be used for file storage. Files may be
as short as 1 page (4096 characters) or up to 45 pages.
The maximum number of files allowed is 30. Right now I
have 6 files open in Braille'n Speak with 40 pages of
memory remaining. I have a 2 page file for this
article; notes from Lima; a phone list; a BBS list; a
help file which is always resident and clipboard.
Clipboard is a 1 page file that is used to house
deleted material as well as data copied from one file
to another. I just exited "art" and looked at
clipboard. It contained a sentence I had deleted from
this article. I could have deleted a line from this
file and put it into another file. It is very easy to
move from one file to another. When I do that I return
to the exact place where I left the file. Many
features such as these make the unit a joy to use.

There are several word-processing functions built
in. Right now I have key echo turned on. However my
brailing is faster and I am ahead of speech most of the
time. 	There is a backspace command which is
destructive. 	I can move through text, a paragraph,
line, word or character at a time in either direction.
If I do not understand a character such as p or t there
is a phonetic alphabet built-in. I can insert up to
255 characters from the keyboard. If I insert from
another file I can add up to 4069 characters in one
move. I can also delete anywhere from one character to
the entire contents of the file. I can set a "mark" in
text and delete to that "mark" in either direction.
One of the minor drawbacks is in Replace String. I can
overwrite a character or find a string but I cannot
replace all occurrences of a string. It is very easy
to transfer material to and from Braille'n Speak. The
RS232 port is controlled by software commands. I can
set the Baud rate from 75 to 19,200; set parity, duplex
handshaking and stop bits. I can transmit complete
text, text to "mark" a character, line or paragraph.
If I want to receive text, all I have to do is open a
file, set the parameters in the RS232 port and turn on
the RS232 port. All incoming material will be stored
in the open file.

I can listen to the material as it comes in or
just let it build up in RAM. I frequently dump files
from the TI99/4A so I can listen to them in the
Braille'n Speak. It is much easier to read text here
because I can skip around in the file and carry the
machine around with me. As an example I dumped a
series of messages from HUG TI BBS in Houston about
using 3.5 inch disk drives. I thought it would make an

iiiii.nteresting file on Spirit of '99, so I edited it in

the Braille'n Speak This took about 10 minutes to edit
out all of the extraneous information. On the TI99/4A
without being able to use TI-WRITER or the equivalent
it would have taken at least 45 minutes. I was able to
quickly search for key words to delete, such as message
numbers. I entered a note at the beginning of the
file, merged the new file description into the old
description file dumped both from the Braille'n Speak
to the TI99/4A and I was ready to go. I can format the
text I am sending from the Braille'n Speak. It can be
formatted as to page length, line length, left margin
and top margin. There is no way in writing text (such
as this article) to specify a line length. I will
format the file when I send it to the TI99/4A. It
would be nice if I could set a line length and have a
warning if I was approaching the end of the line.
However that is a relatively minor drawback.

The Braille'n Speak has a clock built-in. 	The
current time is 12:16. There is a calendar, a timer
and a four function calculator. I can "paste" answers
to calculations into a file such as I did with the time
above.

Now that I have the Braille'n Speak I wonder how I
ever got along without it. The program (using a 512k
EPROM) has been carefully written to make it as easy to
use the device as possible. Much careful thought has
gone into it. Not that it was easy to learn. I have
not counted but I suppose there are at least 50 new
commands I had to learn. For the first couple of days
I wondered if I was ever going to master it. After
that it started to get much easier. There were also
some bugs in earlier versions of the EPROM. I was one
of about half a dozen people who helped test some of
the updates. That was for the most part a lot of fun.
However it was not without dangerous moments. A couple
of times I erased memory! Once through my own
carelessness, the other time an error in the program.
Fortunately, I had backup copies of most files on the
TI99/4A. I have not found any errors in this new
version of the EPROM.

I am not really sure I can explain how nice it is
to have a device such as this. The possibilities of
use are just about endless. It can be used for phone
messages, receipts, editing programs and so much more.
The cost is reasonable at $US895.00, which for a high
technology low production device is fairly unusual. As
an example the first talking calculator cost $495. Now
for the first time blind people have a computer, at
least, on a par with those used by their sighted
counterparts. Previously, portable lap-top computers
with speech cost at least $2000. This put it out of
the price range for many individuals. It is not
absolutely necessary to interface Braille'n Speak with
another computer. There is a tape interface device
available as an option. It works through the RS232
port.

I hope this gives you a little idea of just how I
use the Braille'n Speak.

Contact-: BLAZIE ENGINEERING
2818 COLLEGE VIEW DRIVE
CHURCHVILLE, MD 21028
UNITED STATES OF AMERICA.
0011 1 301 879-5504

I would also be glad to correspond with anyone who
would be interested.

MY ADDRESS-:
Irwin Hott
1540 Northbridge Road
Columbus, OH 43224
0011 1 614 263-5319

WANT TO SELL

I have a 34cm (14") Colour TV with NTSC (American
Colour System) implant built in. This is in good full
working condition, and with that NTSC implant you can
use it as a Monitor for any American models of the
TI99/4A or other brand computers. I wish to sell it
for only $300

If you wish to purchase this PAL/NTSC TV/MONITOR,
for only $300, Please call me on (02)550 0014 or at
work on (02)570 6388

Bi 4 now, Shane Anderson

	1

October 1988, Page 33 IISHIIG VMS DIGEST

if,ontinued from page 1
I finally made it to a Sydney meeting last month

and had a talk to a few people. Ross Mudie told me
about how busy he was at work at the moment trying to
solve the rather strange problems of the FAX world.
This has meant that he has had little time for his Club
activities other than ensuring the smooth running of
the BBS, which he does so well. This has meant that
his contributions to the magazine have not been as
frequent nor as long as the standard he set earlier in
the year. However I notice that he had time for an
article this month for which we should all be grateful.
I will say thanks for everyone Ross, and hope that work
settles down to a dull roar soon.

Chris Buttner also had a chat which I gained the

impression was to put me in the picture as to the
current state of the group (what are we now? a club, a
group, a company, a rabble?) as he saw it from the top.
I did not take notes and as I am writing this some 2
weeks after the event my memory is a bit sketchy about
all that he said. He said that he would be on a course
in Canberra for the next 2 or 3 months and would miss
some meetings. He said that the finances of the group
were a bit uncertain until a stocktake of the shop was
complete, but the board was expecting that they would
have to use some of the money currently in investments
(assets) for the general running of the group. I said
I felt that was a better use for that money, than
leaving it in the bank. He said that the board had not
been able to get together with the Hunter Valley
committee in time to organise the meeting set down for
October 1, and that there was a feeling that a date in
the middle of the school holidays was not very suitable
anyway. That is all I can remember of our
conversation.

If there are any TI99e7s with an interest in
amateur radio, then Graeme Virtue of 9 Minyon Street,
Brunswick Heads, NSW 2483, would like to hear from you.

I had a few words with Les Andrews at the TIsHUG

meeting. He was very disappointed that the proposed
get together with the Hunter Valley club was not to be
held. 	It seems that the committees on both sides did
not pursue the event with enough enthusiasm. 	Both in
the TND and in the Hunter Valley 99ers user group
newsletter the event had been announced many months
before hand so that even Brisbane picked it up and
suggested that some of their members might -make the
trip to Newcastle. That would have made the long
weekend a good choice, but the opportunity has been
missed. Les was disappointed as he had suggested the
idea on the way back from the TI-Faire. He also wrote
a few letters to try and keep the idea alive but all
too late. Perhaps the amusement day will tura out to
be a good way of achieving the original objective, so I
would urge all those who can manage it to contact
Albert and go along.

The review of the newsletters this month comes

from Lou Amadio.
TI-SIG newsletter, San Diego, May 1988. 	Tandy

have announced a write/read CD disk which can be used
in the same way as a floppy disk. Storage is expected
to be >100Mbyte and will be a boon for animated
graphics applications. John Johnson announced a direct
connect disk drive. SpadXIII runs faster if 32K is
installed internally. Waldo Hamilton writes on the
proper way to terminate cables, diagrams included.
June 1988 has a plea for information on using Extended
BASIC II with Horizon RAMdisks, another DV80 word
counter (includes hyphens), more on (video) cable
termination. July 1988 mentions a PACMAN type game for
2 joysticks, mention of a new graphics programming
language from Adelaide (SA), a beginner's BASIC
tutorial, TI-Writer tip: R tab should be 1 higher than
Formatter .RM, an article on how to build an Atari
joystick adapter. August 1988 has details of the
TI-FEST West in February 1989, an article on ribbon
cable connectors, CALL LOAD to disable disk drives,
procedure to load very large Extended BASIC programs.

ROM Newsletter, Fountain Valley CA, July 1988.
Adrian Robinson on Assembler language windowing, Earl
Raguse writes about an improved Forth editor and an

\,,Extended BASIC 28 column program lister, N. Armstrong

on uploading DV80 files, Jim Swedlow gives tips on
using Funnelweb V4.1, Telco V2.1 and acceptable
chararacters for file names.

LA 99ers Topics, Los Angeles, June 1988. Tom
Freeman writes on fast loading a module into the 9640,
Earl Raguse on beginner's Forth #2, C. DeMarti on how
to make your printer print in different languages and
an EZ BASIC tutorial, Bill Gaskill on PRbase Tips (V2.1
works on the 9640), Danny Nelson writes on how to use a
modem. May 1988 has an in depth article on disk
controllers by Jerry Coffey, an Extended BASIC program
to create character highlighting, Curt Borders on load,
hold and reset switches for the TI99/4A, C. DeMarti on
spicing up CALL KEY routines, use of 3.5" drives more
on EZ BASIC and another column lister program. Page 13
has a table on TI-Artist and Enhancement Functions, Dr
Fudge reviews Funnelweb, Earl Raguse starts a Beginning
Forth series, Steve Mehr on a new TI99/4A database
called MICROdex V1.1, review of Video Chess Module, a
Marketplace page full of interesting software and
lastly a diagram on a PEB speech interface.

Northern NJ 99ers, New Jersey, June 1988. Page 2
has a BASIC address labeller for mailing labels, Jim
Swedlow writes on how to send for fairware, Tips from
the Tigercub #52, page 10 has an Extended BASIC program
to list in 28 columns, a 3D title program, an unusual
screen clearing routine as well as a number of other
useful hints and a stress diet all from C. DeMarti.

Two newsletters from CIM 99, Montreal - still
looking for a translator.

The Tacoma Informer, August 1988: Announcement of
"ASGARD NEWS" magazine for the TI community.

The PUG Peripheral, Pittsburgh, August 1988: A
review of TI-Base by Gene Kelly, TI-Writer "MOVE"
command by Stan Katzman, RAMdisks Part VII by John
Willforth is on the Rave 9 "MX0I" PEB card, Lutz
Winkler writes a new series of introductory Forth,
Frank Zic has a "Tips For Beginners" column on The
Printers Apprentice, Mickey Schmitt writes on getting
the most from your cassette system, page 15 has a CALL
LOAD to disable FCIN[4] in Extended BASIC, Tips From
The Tigercub #45, page 19 has a tip on adding extra
graphics to Certificate 99, page 20 Charles Good writes
on the features of Funnelweb V4.1 and describes it as
the most significant software ever for the TI99/4A.

Sacramento 99er Users Group, August 1988. Page 2
reviews KARATE CHALLENGE from Boundless Systems
Software rating it 4 out of 5, Mike Morrow writes on
"BASIC to FORTAN", and lastly, page 5 has an article on
"Death of a Computer.

Australian Newsletters
CHUG-A-LUG, Canberra, July 1988. Page 5 has an

article on "LEGENDS" which is a role playing adventure
game, Jack Sugrue writes about PLUS! word processing
utility package, page 7 has an article on graphics
compatability in TI99/4A software, page 12 has a review
of the Brisbane TI-Faire and declared it a gre,1
success, Asgard News available from Garry Christensen
(Brisbane T199/4A Users) at $12 for 4 newsletters, Page
15 shows how to connect double joysticks to the
TI99/4A, page 17 shows a modification to "release"
alpha lock for games, page 18 on a double console reset
switch which allows modules to be inserted without
causing a reset.

TI-UP TITBITS, Perth, July 1968. Page 5 shows a
joystick port connection and an Extended BASIC program
which allows the TI99/4A to be used as a burglar alarm
and page 7 shows an Extended BASIC program to print
message tags.

Ti BUG BYTES, Brisbane, June 1988. Report oh the
now well known Brisbane TI-Faire. There were
representatives from every major TI99/4A user group in
the country with demonstrations of software and
hardware from here and around the world, good and bad
news on Myarc hardware imports, a minimemory version of
HELICOPTER and RTTY (radio teletype) on the 1[99/4A.
In August 3988, page 3 has a proposal that TIsHM, and
HV99ers co-host a Faire in 1989, page 4 has a asef1C
TI-Writer Reference Guide, page 6 has the "(,eneve
Corner" column, Col Christensen writes on embedding
assembly into Extended BASIC, Garry Christensin writes
on Bugs in computer programs including the now iniamohs
Virus.

continued on page 34
P

erf13111/0 IIISH1116 NUNS DIGEST 	October 1988, Page 31

Rivi3fibEa int), CGrvoil) ktipar13
Meeting summary.

Banana Coast 	9/10/88 Sawtell
Carlingford 	19/10/88 Carlingford
Central Coast 	15/10/88 Toukley
Glebe 	 6/10/88 Glebe
Illawarra 	17/10/88 Keiraville
Liverpool 	14/10/88 ???
Northern Suburbs ??/10/88 Davidson
Sutherland 	21/10/88 Jannali

BANANA COAST Regional Group
(Coffs Harbour area)

Regular meetings are held in the Sawtell Tennis
Club on the second Sunday of the month at 2 pm sharp.
For information on meetings of the Banana Coast group,
contact Kevin Cox at 7 Dewing Close, Bayldon, telephone
(066)53 2649, or John Ryan of Mullaway via the BBS,
user name SARA, or telephone (066)54 1451.

CARLINGFORD Regional Group.
Regular meetings are usually 	on 	the 	third

Wednesday of each month at 7.30pm. Contact Chris
Buttner, 79 Jenkins Rd, Carlingford, (02)871 7753, for
more information.

CENTRAL COAST Regional Group.
Meetings are normally held on the second Saturday

of each month, 6.30pm at the Toukley Tennis Club hall,
Header St, Toukley. Contact Russell Welham
(043)92 4000

GLEBE Regional Group.
Regular meetings are normally on the Thursday

evening following the first Saturday of the month, at
8pm at 43 Boyce St, Glebe. Contact Mike Slattery,
(02)692 0559.

ILLAWARRA Regional Group.
Regular meetings are normally on the third Monday

of each month, except January, at 7.30pm, Keiraville
Public School, Gipps Rd, Keiraville, opposite the
Keiraville shopping centre. Contact Bob Montgomery on
(042)28 6463 for more information.

LIVERPOOL Regional Group
Regular meeting date is the Friday following the

TIsHUG Sydney meeting at 7.30 pm. Contact Larry
Saunders (02)644 7377 (home) or (02)759 8441 (work) for
more information.

Meetings coming up.
14th October, at Stan Puckle's house, 15 Richmond
Crescent, Campbelltown. We should have a stack of new
programs from the US to demonstrate and some new
hardware.
Last meeting was at Marcel Zaia's house. There were
demonstrations of some new programs. Two of the
programs were TIsHUG Wheel of Fortune and the US
version. The US version leaves the TIsHUG version for
dead.

NORTHERN SUBURBS Regional Group.
If you want any information please ring Dennis

Norman on (02)452 3920, or Dick Warburton on
(02)918 8132.

SUTHERLAND Regional Group.
Regular meetings are held on the third Friday of

each month at the home of Peter Young at Jannali at
7.30pm. Group co-ordinator is Peter Young,
(02) 528 8775. BBS Contact is Gary Wilson, user name
VK2YGW on this BBS.

Uploaded 09:17:47 04/09/88 by SUTHERLND Although
the Group is small in number, there are always plenty
of new and interesting subjects for discussion. TI
Base and PR Base programmes are two pieces of software
currently arousing interest.

Future meeting dates are October 21st and November
18th.

TIsHUG in Sydney
Regular meetings are normally at 2pm on the first

Saturday the month, except January and possibly other
months with public holidays on that weekend, at the
Woodstock Community Centre, Church Street, Burwood.

Meetings planned this year. October 1 - Joint
meeting with Hunter Valley 99'ers. This meeting will
not now go ahead as there has been insufficient time to
organise and notify members appropriately in advance.
Coupled with this is the fact that this is school
holiday period and a number of members have expressed
the view that it is an unsuitable time. Hopefully the
idea of a joint meeting will be looked at again early
for 1989.

October 8 - Software copython. Be at Woodstock at
2pm to be able to get some of the latest software.
Other minor events, yet to be finalised, are also
planned for this afternoon. A note on the copython -
on this occasion only full disks will be copied with a
maximum of 6 disks at a time. This will enable the
maximum amount of copying for each member in the time
available during the afternoon. For those members
requiring single files copied, then this facility will
be available at the November full day tutorial meeting.

November 5 - Full day tutorial workshop. Here the
themes and other activities are yet to be finalised,
however, like all full day events in the past, this is
guaranteed to be a fun day. As usual there will be a
luncheon BBQ at a very reasonable price. (Hamburger
and soft drink for $2)

December 3 - Christmas party. 	Given a fine day
this will be one of the major events of the year, with
plenty of food and drink available and a great chance
to chat with fellow members in a social and relaxed
environment. There will be plenty of software released
for this meeting, so you will have plenty to keep you
occupied over the Christmas/New year holiday break. 0

continued from page 30

Hunter Valley 99ers, August 1988. 	Joe Wright
reports on a stand alone 32K with optional Supercart
available from The Captains Wheel USA, Neil Quigg is
awaiting orders to manufacture RAMdisk boards, another
warning from Ottawa UG on using any version of DM1000
greater than V3.5, Tony McGovern writes on Assembly
Squeezing (part 2), and Kevin Cox on a different
approach to speech with CALL LOADS, Jack Sughrue writes
about "Good Old Days Are Coming Back" and some useful
hints for TI-Writer CR, SF, LF, Bob Carmany writes on
the Evolution of the TI99/4A and Ron Kleinschafer on
The QED Utilities Loader V3.1, Richard Terry on
Struggling Forth where he codes for "Any Size Editor"
and lastly Bob August writes on arrays in BASIC.

Rolf has just noticed an error in the June issue

on page 12. There has been an insertion of words from
another article into this one in the second column
about two thirds of the way down the page. This is
caused by a bug in either TI-Writer or DM1000. It
happens to me about once each issue as I am editing
articles. It is most annoying and because it occurs so
infrequently is hard to decide where the problem lies.
I feel that it is in the editor or the disk controller
software. Has anyone else had this problem, where,
after saving a file to disk, when it is next examined,
lines from another file are imbedded in the middle? I
would be very pleased to hear about any problems others
may have, as that would help to point the finger in the
correct direction. I changed to using Funnelweb to see
if that would make a difference, but it has not. I
have other strange problems in transferring files to
RAMdisk and in using the SD command to a RAMdisk with
Funnelweb which may be from the same problem and which
I shall write to the McGoverns about. Any evidence
from others would be greatly appreciated.

‘‘• 	

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

