

mic NEWS
DIGEST

II r
1

Focusing on the TI-99/4A Home Computer

Volume 7, Number 6
	

July 1988

Registered by Australia Post - Publication No. NBH5933

rtut at tilt Irairt

P.O. Box 214, Redfern, New South Wales, Australia, 2016
	

$ 2

by Geoff Trott

By the way, I will be off on the family's annual trek to Adelaide for two
weeks starting on 2nd July. This means that I will miss the next meeting in
Sydney and the chances of the TND arriving in time for the August meeting are
rather slim at this time, unless we decide to cut down on the content. I
thought you might like to know before the event for a change. This week I have

been struggling with a rather nasty virus, all the time keeping my eyes skinned
for any sign of the snake which shed its skin in the downstairs area where my
computer is set up. Since the skin is about 60 cm long, I would not like to
upset the original inhabitant! So far so good.

continued on page 29

From all accounts, both the tutorial day last month and the TI-Faire in
Brisbane were great successes. Unfortunately I was unable to attend either,
but I did go to the first Australian Forth Symposium instead. More of that
later, but first I should apologise for the errors in last month's TND. Ross
Mudie's Link-it #16 should have had a continue on page 17 at the bottom of the
page. It appeared at the bottom of page 9 instead, where it was clearly not
needed. Hope you worked all that out for yourself. I was sticking all those
things in around midnight one night, and I guess the 9 and 6 look similar at

that time of night.

TISHILIG 	DIGEST July 1988, Page 1

TIsHUG (Australia) Ltd.

TIsHUG News Digest

July 1988

All correspondence to:

P.O. Box 214
Redfern, NSW 2016
Australia

The Board

Co-ordinator
Chris Buttner 	(02) 871 7753

Secretary
Teny Phillips 	(02) 797 6313

Treasurer
Percy Harrison 	(02) 808 3181

Directors
Cyril Bohlsen 	(02) 639 5847
Russell Welham 	(043) 92 4000

Sub-committees

News Digest Editor
Geoff Trott 	 (042) 29 6629

BBS Sysop
Ross Mudie 	 (02) 456 2122

Merchandising
Bob Sunbury 	(02) 601 8521

Publications Library
Warren Welham 	(043) 92 4000

Software library
Terry Phillips 	(02) 797 6313

Technical co-ordinator
John Paine 	 (02) 625 6318

Regional Group Contacts

Carlingford
Chris Buttner 	(02) 871 7753

Central Coast
Russell Welham 	(043) 92 4000

Coifs Harbour
Keir Wells 	 (066) 55 1487

Glebe
Mike Slattery 	 (02) 692 0559

Illawarra
Bob Montgomery 	(042) 28 6463

Liverpool
Larry Saunders 	(02) 644 7377

Northern Suburbs
Dennis Norman 	(02) 452 3920

Sutherland
Peter Young 	 (02) 528 8775

Membership and Subscriptions

$5.00
$25.00

AUS$50.00
or £22.00

or US$30.00
$5.00
$5.00

TIsHUG Sydney Meeting

The next meeting will be at 2 pm on 2nd
July at Woodstock Community Centre,
Church Street, Burwood.

Printed by
The University of Wollongong

Printery

TIsHUG News Digest
Index

Title 	 Description

Asynchronous comms controller 	Hardware hints

Chess quiz 	 General interest

Communicators 	 BBS information

Exploring TI DOS 	 Software hints

Forth column 	 Forth forum <3>

From the bulletin board 	Mail to all

GPL primer 	 Software hints

Hidden characters 	 Software hints

How to disassemble programs 	Software hints

Letter to the editor 	 Membership

PRbase review 	 Software review

Power of relational expressions Software hints

Program to type in 	 Crayon program

Program to type in 	 Draw poker

Publications library report 	Club library

Purchasing software overseas 	General interest

RAMdisk menu tip
	

Software hints

Regional group reports
	

General interest

Report on TI-Faire
	

General interest

Secretary's notebook
	

Club news

Sneggit
	

Software review

Sneggit
	

Software review

Solution to chess quiz
	

General interest

Subroutines and subprograms
	

Software hints

TI-Writer special character modeWord processing

TIsHUG shop

TIsHUG software column

Telco, a new TE program

They're off

Tips from the Tigercub #47

To GOSUB or not to GOSUB

Trouble with your clockcard?

US Tennis

US Tennis

Viatel screen dump

Wire accessory interface

Younger set

ISSN 0819-1984

Author 	Page # I
McCormick,Mack 	19

Meldrum,George 	22

Mudie,Ross 	 4

Atkinson,Terry 	21

Smyth,George L 	27

4

McCormick,Mack
	

23

Patterson,Steve
	

8

Storey,Phil R
	

26

Amadio,Lou
	

3

Smith,Peter
	

12

Peterson,Jim 	 18

Cooper,Jeff 	 14

Constantinidis,Manuell5

Welham,Warren 	 7

Amadio,Lou 	 12

Amadio,Lou

31

13 	1
Phillips,Terry 	2

Phillips,Terry 	2

Brown,Robert 	 17

Judd,Stephen 	 17

Meldrum,George 	6

11

8 Peterson,Jim

Bunbury,Bob
	

3

3 Phillips,Terry

Buttner,Chris
	

7

Trott,Geoff

Peterson,Jim
	

9

10 Takach,Ben

Phillips,Terry
	

2

13 Brown,Robert

Judd,Stephen
	

13

22 Schubert,Peter

5 Mudie,Ross

7 Maker,Vincent

(

Joining fee
Annual Family Dues
Overseas Airmail Dues

Publications Library
Texpac BBS

For sale

Club software

Software review

General interest

Software hints

Software hints

General interest

Software review

Software review

Software hints

Hardware

Program, adventure

HIV TISIMIG VEINS DIGEST July 1988, Page 24Il

by Terry Phillips

Friday afternoon and a group 	of interstate
travellers head north from Hornsby, destination
Brisbane and the awaiting TI-Faire. In the party are
Les Andrews, Shane Ferrett, Peter Schubert, Ben Von
Takach, Russell and Warren Welham and myself.

After an uneventfull overnight drive our group
arrived in Brisbane at 6.30am, had a quick breakfast,
then headed to the Faire venue where we we met by Col
and Garry Christensen, a father and son combination,
who are Treasurer and President, respectively of the
Brisbane Group.

After setting up, people began arriving and before
too long there were numbers milling around each of the
exhibits, prize of these being a fully configured and
operating NTSC version of the Geneve 9640.
Unfortunately the guest of honour, Lou Phillips of
Myarc, could not attend owing to personal business in
the USA.

A run down of who we met and what was on display
follows:

FROM BRISBANE - the previously mentioned
Christensens plus a host of other Brisbane members.
Apart from the Geneve, the Brisbane boys had taken the
bull by the horns and imported some software and
hardware for sale, which to me at least, was very
reasonably priced. Included was the RAVE 99 speech
adaptor card, essential for those contemplating buying
a Geneve and wanting speech. Russell bought one of
these so ask him about it if you want 	further
information. 	Among the software items were TI-BASE, a
new and powerful data base from Inscebot, the price
being $20 which included 2 disks, a well written manual
and a keyboard overlay, TI-ARTIST V2.1 for $16, ARTIST
EXTRAS for $5 and DISPLAY MAKER for $5. I noticed that
this software sold out fairly quickly and at those
prices I do not wonder. Have a look in MICROpendium
for the US equivalent prices. By the way, Garry
informed me that if you are contemplating buying a
Geneve, the full PAL versions should be available
shortly and can be ordered through him for $750
complete. Garry can be contacted on (07)2841841 if you
want further details.

Garry also presented me with V2.0 of his Disk-Aid
utility, which is an assembly version and updated on
the previous Forth version.

FROM THE HUNTER VALLEY 99ERS - Brian Woods, Paul
Mulvaney, Peter Smith and Albert Anderson made the trip
north. 	I think there was someone else also, but I did
not write his name down. 	New software which was
available from the HV group included Funnelweb V4.1,
Cheque Book and Credit Card Manager, Genealogy Record
Keeper, copies of which were obtained.

FROM ADELAIDE - Richard Earl represented the
Adelaide users and presented copies of a new graphics
programming language called GEE. This looks a very
attractive package.

FROM MELBOURNE - Peter Gleed made the long trip to
Brisbane to represent Melbourne. Peter's offering was
a disk containing a program to select Lotto numbers,
and a program called Flag, which I cannot get to run.
Will have to contact Peter about that one.

On another table there was used hardware, software
and books for sale and I think most would have been
sold as the table looked bare towards the end of the
day.

A couple of TIsHUG members were also noticed among
the visitors. Alf Culloden, who was in Brisbane
visiting Expo, and Don Gould. Alf, by the way, says if
you plan on visiting Expo, take a good pair of
comfortable walking shoes.

On display and for sale from our group was Peter
Schubert's range of hardware, back issues of TNDs,
which sold fairly well, MICROpendiums, which did not
sell all that well as I guess everyone has their own
arrangements for obtaining them, and a software disk
containing most of the winning entries in the recently
concluded software competition. One of these disks was
presented to each of the visiting groups.

All too soon, it seemed it was time to pack up and
face the long trip back to Sydney. 	But before

ililideparting a very good night of feasting and fun was had,

by some of the Brisbane team, the HV 99ers and our
group at the Redcliffe Hotel restaurant.

Well I guess that is all there is to say about the
Faire, except of course it was great to meet fellow
99ers from around the country. Would I go again? I
think yes, but certainly I would explore other means of
getting there.

otral a Ty°3
by Terry Phillips

Elsewhere in this issue I have compiled a report
on the Brisbane TI-Faire held during May. Following on
from this two matters have been discussed which may
impact on members in the future. These are:
1. The possibility of organising a joint meeting with
the HV 99ers in Newcastle. It is envisaged that there
would be a computer meeting during the morning and a
tour of Hunter Valley vineyards during the afternoon.
A social evening would round of the days activities.
Watch for further news on this as arrangements get
further down the track.
2. The possibility of this group and the HV 99ers
organising a 1989 TI-Faire. 	While this thought is
still very much in its infancy, members will be kept up
to date as more information becomes available.

Forthcoming meeting topics
JULY - This will be a follow-up to the successful
tutorial day held in June. Armed with all the
knowledge you acquired on this day, and having gone
home and attempted to put it into practice, you no
doubt have come up with questions you would now like an
answer to. Jot them down and come along and ask the
experts at this meeting. Start time 2pm.
AUGUST - The big swap, buying and selling market day.
Bring along your unwanted items and hopefully sell them
on this day. All goods sold on an as-is basis, with
the group taking no responsibility for non-working
items. Meeting start 2pm.
SEPTEMBER - On this meeting day, it is hoped to be able
to demonstrate the very latest in software items
currently advertised in the pages of MICROpendium. Not
only demonstrate, but also be able to offer to members
the software for sale at realistic prices. Items
likely to be available include TI-BASE, an excellent
data base utility and TI-ARTIST V2.01, the renowned
graphics and drawing utility. 	Hopefully there will
also be other software packages available. 	If any
member has any ideas on what they would like to be able
to see and purchase let me know quickly, please. Again
a normal 2pm start.

A big welcome is extended to 3 new members who
have joined the group in recent weeks. They are:

Mark Richardson - Blacktown
Mark Luebker 	- Randwick
Keith Degraaus - A Chief Petty Officer on HMAS

Adelaide.
The latter 2 joined the group at the June meeting

and seemed to be thoroughly enjoying that day's
activities. Hope to see you all at future meetings.

It is also great to welcome as a member Jane
Laflamme from the Ottawa TI Users Group. Jane has
joined our group, as are a lot of her fellow members
joining other groups throughout the world, so that more
information and exchange of ideas will be possible.

A number of exchange news letters have been
received over the past month. See Warren for full
details on what is available.

irnDuatIDI 	ywaa- (tlutk a ri-V?
by Terry Phillips

Owing to various other commitments, members who
are having construction problems with their clockcards,
may not have got the assistance they needed at the June
meeting. If you are in this category then all is not
lost, Russell Welham will be available at the July
meeting to help you out with problems you have
experienced. Be sure to see Russell and explain to him
the problem you are having. I feel certain he will be
able to assist you.

IISHUG NEWS DIGEST TeNI/G

/
]it4,111 (011'
	1 July 1988, Mige 3

76022 	 3th\inflIn

Callan:I by Terry Phillips

The software copying at the June full day meeting
proved tremendously popular. I have no idea on the
number of disks copied but estimate it at upwards of
200. Some members waited in line for up to 45 minutes
before their turn arrived, and maybe to be fair to all,
in future a limit of 5 to 10 disks per person may have
to be placed on this activity. Thanks also go to Ross
for the loan of the disk duplicator which greatly
speeded up the copying process.

At the July meeting, software to be distributed
through the shop, will all be of local production,
either from within this group or other Australian
groups. Titles will be:
DISK A193 - Extended Display Package from Craig
Sheehan. If you watched Craig put this through its
paces at the June meeting then you will know that it
is a powerful and versatile programmers utility. If
you did not see it, then get a copy and you will be
impressed. The package will be distributed on a
flippy disk so you can use it on any disk type
configuration. You will need Extended BASIC and 32K
memory expansion, plus a printer for producing the
lengthy documentation files.

DISK A197 - The Diskette Caretaker from Tony Imbruglia.
This utility is designed to produce commented disk
sleeves which can be trimmed and made into a disk
jacket. It is very nicely programmed and a good
addition to any software library. Requires Extended
BASIC and 32K memory expansion with a printer
essential. On the same disk I will add a copy of
Tony's Procalc program which is a hexadecimal to
decimal converter plus a lot more.

DISK A207 - Funnelweb V4.1, the very latest update of
this most used utility. I will have copies in double
sided and a flippy version for those with single
sided drives. Extended BASIC and 32K memory
expansion required.

DISK A210 - Disk-Aid, the latest assembly version of
this popular utility. Extended BASIC and 32K memory
expansion required.

DISK A212 - GEE, a graphics language which looks like a
great piece of software to play around with. This
disk also includes the Life game. Requires Extended
BASIC and 32K memory expansion.

I have received, courtesy of Jane Laflamme, the
latest copy of DM1000, now raised to version 4.0.
Included on the disk is a version for the Geneve.

That is about it for this month, however remember,
that if you require a specific program from the library
either on disk or tape, or would like a hard copy or
disk copy of the complete library catalog, then let me
know. 0

IUg{Mg tfp with Bob

This column is being written before the June meeting
Tutorial day. I hope you all had a worth while day.
Perhaps you may have stripped the shop bare. My thanks
to Steve Carr and Cyril and the other shop assistants
for pulling us through this awkward time of mine. My
boasts of a better column this month were empty ones.
However, the HOPE listing may suffice:- Jason Scott is
after a spare console. D.Dorrington wants a Mini
Memory Module. (So do I. Mine was borrowed back in
1986 and has not found its way home yet.) And, Ron
Kemp - I have the Dec 86 disk with a file called
Archiver on it for you. Where would you like me to
send it? 0

YOEDT

MULTIFUNCTION CARD FOR PE BOX
Trade up now to the most advanced Disk Controller

for the TI with the AT Disk system and RS232 system all
on one card. Adds many enhancements to your TI. Price
is $350, or only $250 with your old RS232 card
trade-in. Contact as above, or see Club Shop. 0

Dear Sir,
At around about this time of the year I am faced

with the decision on which (of many) organisations I
should rejoin for a further 12 months. With so many
competing for my time and money it is becoming
increasingly difficult to decide which ones are still
worthwhile. Why should I rejoin TIsHUG? Living in the
Illawarra region I am out of the mainstream of the
TIsHUG community in Sydney. 	Perhaps there are many
others in a similar situation. 	Receiving a monthly
newsletter is not in itself worth the asking fee to
rejoin. 	I cannot always make it to the monthly
meetings. 	Software releases are very slow. It even
costs extra to join the publications library and the
bulletin board. (What happens to the money collected
for these services?) I feel that clubs should be run
for the benefit of the members and not to put money
away for a rainy day?

This is my 5th year with the TI99/4A. I bought it
as a bargain computer, as I am sure many others did.
It has been a very enjoyable experience, but no one can
deny that it is outshone by some of the newer computers
released during the last three years. No doubt many
current TI99/4A owners will change over to one of these
sooner or later. Yet I believe that the TI99/4A
deserves to live for a few more years yet, but how long
is anyone's guess.

If TIsHUG is losing members it should do its best
to find out why. I, for one, object to having to pay
$25 to join then a further $10 dollars to join the
publications library and the bulletin board. Surely
these services can be provided free of charge now that
the initial setting up costs have been paid.

Although the directors have done a good job of
organising the club and its activities, they must not
stop there. With each passing year there will be more
and more competition for peoples time, money and
interests. TIsHUG must be prepared to offer better
services than previously in order to hang on to
members. They must offer their members a better
alternative than the "opposition"

Some of my suggestions include:
1) In order to minimise costs to users there should be

no club profits on public domain software
distribution, unless such profits are channeled into
the aquisition of new software.

2) The latest commercial software should be purchased
and evaluated for potential purchase by members.
Reviews could appear in the TND. For example, new
modules advertised in Micropendium.

3) Examples of the latest in hardware/firmware from the
USA 	(or where ever) should be purchased and
evaluated to determine their value.

4) All of the published literature about or related to
the TI99/4A should be squired and be available for
borrowing by members AT NO EXTRA COST.

5) Bulk buying of items. 	For example TI joysticks,
which tend to wear out but are still better than
anyone elses (survey required?).

6) Hardware development costs which will directly
benefit members should be bourne by the club.
Certain items (for example 32K static RAM chips)
should be purchased by the club in order to get bulk
purchase rates.
Some of the above suggestions may seem to be

contradictory in terms of my initial complaint of the
cost of rejoining TIsHUG, but, as with most things, it
is the perceived value that attracts people. Offer the
right package and results will follow.

On a more positive note, many thanks to all those
members who could and did give of themselves to provide
the services that we curently enjoy. In particular,
Geoff Trott and Rolf Schreiber for an excellent TND,
Peter Schubert and John Paine for expanding and
maintaining our computer and Ross Mudie whose unending
improvements to the BBS are appreciated by all who use
it (I may even become a BBS member one day).

Despite all of the above, I WILL rejoin for
another year, not because of what TIsHUG has to offer,
but because of a sense of loyalty to the TI99/4A. How
long will this loyalty last?

Lou Amadio, Illawarra Regional Group. 	0

1-15HUG NEWS DIGEST July 1988, Page 4

 users and some
changes in usage patterns, the BBS is now quite easy to
get on to on most evenings.

BBS membership for TIsHUG members is only $5 per
year, new members are welcome.

0

July 1988, Page 4

Cvffitanault ULM Prom tht Bunttin Bowre_il Prom tht Bunttin Bowre_il
MAIL TO : ALL
MAIL FROM : GOWFAR

Hi to all. Can anyone help me with the INFOCOM
games INFIDEL, PLANETFALL and STARCROSS, please? It is
not that I need hints, it is that about at the 12th
move, the program always causes a lockup in my
keyboard, although the other INFOCOM games do not. If
anyone can supply me with an answer or just the
programs I would appreciate it. Please reply here or
on SCI-FI BBS, to the SYSOP. Ta!! Regards, Greg.

MAIL TO : ALL
MAIL FROM : GOWFAR

Hi to all. Can anyone help me with the INFOCOM
games INFIDEL, PLANETFALL and STARCROSS, please? It is
not that I need hints, it is that about at the 12th
move, the program always causes a lockup in my
keyboard, although the other INFOCOM games do not. If
anyone can supply me with an answer or just the
programs I would appreciate it. Please reply here or
on SCI-FI BBS, to the SYSOP. Ta!! Regards, Greg.

MAIL TO : ALL
MAIL FROM : REQUESTS

Hello everyone,
Could the person which left mail to REQUESTS about

uploading some programs please tell me the names again,
as I have misplaced them. And dont forget that ANYONE
can use REQUESTS.

MAIL TO : ALL
MAIL FROM : REQUESTS

Hello everyone,
Could the person which left mail to REQUESTS about

uploading some programs please tell me the names again,
as I have misplaced them. And dont forget that ANYONE
can use REQUESTS.

MAIL TO : ALL
MAIL FROM : SYSOP

Looking for disk drives? Today I purchased a USW)
half height new disk drive at Sheridan Electronics in
Redfern for $95. The brand is HAL (never heard of iL)
and it seems to work fine on my standard TI disk
controller. Sheridans also have second hand full
height MPI DSDD drives for $45 but they may contain
faults. I am so far very happy with the HAL drive.

Regards...Ross Mudie.

MAIL TO : ALL
MAIL FROM : SYSOP

Looking for disk drives? Today I purchased a USW)
half height new disk drive at Sheridan Electronics in
Redfern for $95. The brand is HAL (never heard of iL)
and it seems to work fine on my standard TI disk
controller. Sheridans also have second hand full
height MPI DSDD drives for $45 but they may contain
faults. I am so far very happy with the HAL drive.

Regards...Ross Mudie.

MAIL TO : ALL
MAIL FROM : GOWFAR

Maybe I should take this correcting up as a
lifetime pastime! I refer to the TELCO file on the
BBS, here. In this file, it states that TELCO can be
used to send files to BBSs by having the user set a
default character (62 for TEXPAC BBS) and you can use
Macros for Instruction sets, that not only allow you to
logon to a BBS without remembering the Usernumber or
Password but also allow you to input a set of
instructions that, once on the BBS, will get you to
where you want to go, quickly. The write-up also said
that text files may not be over 50 lines - Have I got
news for you! Any of you who have the 4A/TALK program
and do not know that all the above (plus text files of
any size) have not really been bothered to find out,
have you? For example, to set the character that you
want to wait for, from TEXPAC BBS, you go to option
FCTN[6] and set the strings in option 3 under that
menu. To create a Macro with 4A/TALK, load the
program, hit FCTN[4] for half duplex and then type what
you will, e.g. 108 (user number)

PWORD (password)
>....remembering not to use those 	words 	in

brakets. Note that hitting RETURN in half duplex only
causes the cursor to go back to the start of the same
line that you just typed. To overcome that, instead of
hitting RETURN, hit FCTN[X] which is RETURN and
LINEFEED in 4A/TALK. Oh, I forgot an important part!
After you have loaded the program and before the above,
hit FCTN[4], to open the capture buffer. Now, having
completed all the above, simply hit FCTN[5] and save to
disk - use the name of the BBS it is intended for, to
help you remember them without having to look them up.
When you logon, open the file with FCTN[6] and when you
get to a prompt, hit FCTN[D] to send a line at a time.
On some of the BREADBOARD systems such as PROPHET and
BLACKBOARD, you will need to use FCTN[6] before opening
the file and will have to set both XON and XOFF to the
same number (any number), otherwise the TBBS BBS's rip
the data right out of memory without stopping. Why the
big hoohaa about TELCO? All it has (that was written
in the file) and more has been available for a couple
of years, now with 4A/TALK. Anyone wanting to know
more or where they can get a free copy of 4A/TALK, let
me know!!

Regards, Greg.

MAIL TO : ALL
MAIL FROM : GOWFAR

Maybe I should take this correcting up as a
lifetime pastime! I refer to the TELCO file on the
BBS, here. In this file, it states that TELCO can be
used to send files to BBSs by having the user set a
default character (62 for TEXPAC BBS) and you can use
Macros for Instruction sets, that not only allow you to
logon to a BBS without remembering the Usernumber or
Password but also allow you to input a set of
instructions that, once on the BBS, will get you to
where you want to go, quickly. The write-up also said
that text files may not be over 50 lines - Have I got
news for you! Any of you who have the 4A/TALK program
and do not know that all the above (plus text files of
any size) have not really been bothered to find out,
have you? For example, to set the character that you
want to wait for, from TEXPAC BBS, you go to option
FCTN[6] and set the strings in option 3 under that
menu. To create a Macro with 4A/TALK, load the
program, hit FCTN[4] for half duplex and then type what
you will, e.g. 108 (user number)

PWORD (password)
>....remembering not to use those 	words 	in

brakets. Note that hitting RETURN in half duplex only
causes the cursor to go back to the start of the same
line that you just typed. To overcome that, instead of
hitting RETURN, hit FCTN[X] which is RETURN and
LINEFEED in 4A/TALK. Oh, I forgot an important part!
After you have loaded the program and before the above,
hit FCTN[4], to open the capture buffer. Now, having
completed all the above, simply hit FCTN[5] and save to
disk - use the name of the BBS it is intended for, to
help you remember them without having to look them up.
When you logon, open the file with FCTN[6] and when you
get to a prompt, hit FCTN[D] to send a line at a time.
On some of the BREADBOARD systems such as PROPHET and
BLACKBOARD, you will need to use FCTN[6] before opening
the file and will have to set both XON and XOFF to the
same number (any number), otherwise the TBBS BBS's rip
the data right out of memory without stopping. Why the
big hoohaa about TELCO? All it has (that was written
in the file) and more has been available for a couple
of years, now with 4A/TALK. Anyone wanting to know
more or where they can get a free copy of 4A/TALK, let
me know!!

Regards, Greg.

0 0

Ts **A
k

CONcoLe

2(DoK p,wA,4 op

✓ogE necegi rkRY
L

Si. 71 qg /4A

ku

prITP BLdi BuFFOL
- BUF F ErtE.I2

IDr:r Sul
\r_____

TIGHILIG NEVIS DIGEGT

WiIre A©tnaau7 llaThIlilt(e TDT

Ace T119/104k by Ross Mudie

Have you ever thought "I would like to control the
kids' train set with the computer?", or may be, "How
can I connect a full music keyboard into the TI99/4A?",
or "How would I control a robotic unit with the
TI99/4A?". Other possible applications includg: a
security system; a fancy sign; or the ChristmaS:.W.
lights.

Have I attracted your interest? The prototype of
the Wire Accessory Interface Unit was first shown on
the TIsHUG tutorial day at Burwood on 4th June 1988.

AbbOEs5
AiDoRL& eus
	

pEcoprk.i,

	

V 	

.1.7121.

EI.OX 	I 	01.111PLIT.5

140E 	 in 	.r E.
C..YPA5

7 ..r _64=4

mg 44,

dm-04
r.. Pr.71. th"

This article will show how such things are
possible on a 32K memory expanded TI99/4A console. I
have developed a prototype of a circuit which plugs
directly into the expansion port of a 32K console which
can have up to 128 single wire inputs or outputs, in
blocks of 8 of either type, that is, inputs or outputs.
The unit provides and accepts 5 volt logic signals on
the output and input wires. Additional circuitry will
be required to drive circuits requiring other
conditions. My first application is for the control of
a model train set, to perform the tasks of changing the
points, operating the signal lamps, controlling the 12V
power to the rails to stop trains and to use the
information from train movement detectors to prevent
train crashes when more than one train is operating on
the same track. After due consultation with younger
son, Peter, it was decided to go for 32 inputs and 96
outputs for the train set, used as follows:
Inputs: 29 track sections to be monitored.

3 spare..
Outputs: 32 for the 16 points on the layout.
a 	29 for controlling 12 volt power to the track.
lc . 	32 for signals, 1 per track section + 3 amber.

3 for miscellaneous building lights.

1. Construction of the demonstration prototype.
The development unit was constructed on a small

piece of veroboard connected directly to a 44 way plug
which plugs into the TI99/4A's expansion port. The 5
volt DC power rail from the console was used for the
PCB power. Constructors should check the current drawn
from the console 5V power rail and provide an external
5V power supply if the current drawn exceeds 50mA. The
current drawn by the prototype was 100mA with no LEDs
on and 170mA with the LEDs on.

The circuit is memory mapped from hexadecimal 8680
to 868F, which means that it uses 16 bytes. This
memory area is allocated to the sound chip which is not
fully decoded. This means that the sound chip will
respond to values written to any memory location
between hexadecimal 8400 and 87FF. Whilst this can

111,,,

cause some false operation of the sound chip, no other
problems occur and the sound chip can be easily turned
off again. It is also placed in memory immediately
above John Paine's Time of Day clock.

The prototype unit vas set up with 8 outputs
driving 8 Light Emitting Diodes (LEDs) and 8 inputs
connected from a PCB mounted switch. The outputs are
at hexadecimal 8680 whilst the inputs ar,,, at
hexadecimal 868C.

2. How it works.
The inputs and tutput'g am interfaced to the

computer via 74LS373 integrated circuits which are
"Tri-State octal latches". This means that they handle
8 circuits, (that is what "octal" means), and they
provide a memory element for each input line, (that is
the latch).

The remainder of the circuitry provides the
decoding of the address bus of the computer. What this
means is that when the computer addresses the
appropriate memory location then the addressed input or
output chip is allowed to look at the data bus and to
store the value present on the data bus, if it is an
output, or to place a value on the data bus if it is an
input. When the extended basic statement (or command)
CALL LOAD is used in the format CALL LOAD(-31104,V) the
computer will place the value in the variable V on the
data bus and the value hexadecimal 8680 on the address
bus. After a short delay there is a pulse on the WE*
line which "strobes" the output interface chip. IC25
buffers the data bus, since up to 16 74LS373 chips may
need to be driven from the data bus.

This is probably a good time to look at the
circuit diagram. Integrated circuits (1A), (2), (3)
and (4A) decode the address bus of the computer. When
the value hexadecimal 8680 (decimal -31104) is present
on the address bus and the "not Write Enable" (WE*)
line is active (low), then the "Latch Enable" (LE)
input of IC6 receives a pulse of logic 1 and at this
point IC6 stores what ever is present on the data bus.
The stored value is then maintained on the output of
IC6 until a new value is written into IC6 or the
computer is turned off.

To perform a reD.A from an input with Extended
BASIC, 	a 	CALL PEEK 	is 	used 	as 	follows:
CALL PEEK(-31092,A). This will read the 8 switches by
placing a pulse of logic 0 on the control pin 1 of IC7
for the duration of the Data Bus IN (DBIN) signal
whilst the address hexadecimal 868C is decoded by the
PCB logic. Whilst the control input of IC18 is at
logic 0, its outputs become low impedance and the
conditions on the inputs are passed to the outputs
which are connected to the data bus of the TI99/4A.

3. Increasing the unit from 16 to 128 lines.LLJ% 11
The prototype unit was constructed foe- jUf.! 46

lines to try out the idea. Each 8 inputs require
another 74LS373 chip and a NOR gate for each 8 outputs
and an OR gate for each 8 inputs.

The chip requirement for the 128 line unit with 96
outputs and 32 inputs is as follows.

IC fto. Qty. Type Funaiono

1 1 74FC20 Address bus decoding logic l's.
2 1 CD4078 Address bus decoding logic O's.
3 1 74LS154 Address bus decoding 4 LSB's.
4 1 74HC32 Control logic.
5 1 74HC32 Final address decoding for input.

6-21 16 74LS373 Output buffers and input selector.
22-24 3 74LSO2 Final address decoding for output
25 1 74LS245 Bi-directional data bus buffer
26 1 74HCO4 Inverters.

The prototype unit contains ICs 1, 2. 3o 4, 5,

18, 22, 24 and 25.

4. How to build your own unit.
There is a lot of work to design a printed circuit

board layout for 128 inputs and outputs and the cost of
a small number of double sided plated through boards
may not be worthwhile. A problem with committing the
circuit to a PCB layout is that the PCB does not allow
outputs to be converted to inputs. There may however
be interest in a smaller PCB with, say, 16 inputs and
16 outputs.

If anyone is interested in getting a PCB for this
design then please let me know how many I/O's you would
like. If there is enough interest steps will be taken
tu design a PCB. Of course the simplest way is to

460 DISPLAY Al'(10,1): KMM; 1W2); TC): -fis.04))
KM(5); KM(6); KM(7); KM(81

470 V=0
480 FOR T=0 TO 7
490 IF KM(T+1)=1 THEN 7=V+tr7)
500 NEXT T
510 DISPLAY AT(14,1):V
520 CALL LOAD(-31104,255-V)
530 CALL KEY(3,K,S):: IF S<>0 THEN 3V)
540 GOTO 430
550 SUB ESC
560 DISPLAY AT(24,1):"Use BACK (fctn 9) to escape"
570 SUBEND

!Ivo< ikreCCUillie por,ewe.
Jar T,T qg /44 i 122 rio. ,
Ads Aewas loir/gg

CA

A
r"h.r)

r - 	P

J1141 r
A -.6

1111

1:100
Wid

`Pal 0-4.
Pr4

1

w

▪

 a. eo+Ne

Ovie,1

I 	 6 0,, +, ;#
—0-- a E

E

•

d'A.
E.P

✓r
Jo

▪ -

•

-Irri171"
:71- A 	ft

1.5 	LiliZ

iron 3.4al.

.1

Aus0400

5-6T1C
PON .

VI .17v 71 t.prd

/4 Cid re 	iDec 	nej

•••■ •1 bra
G4141—

rE

/1 0 / 2 31 if 	G 7Ieq 	1111 -2. 13 i 	IS
>g1,8X 	°°° 011° /0°0 XXX K

Stkalem 	Elnza 	01.Lizz
provided by George Meldrum

kwhfuo 	11151-1116 NUNS DIGEST 	 July 10845. Page 6

ril'";"7
Hroll your Dignm on YarDhonrd, thig way you can make
unit vith just 	the required I/0 quantity and
CombinatiOn,

5. Assembly language programming.
The design lends itself to easy assembly language

programming. Access is simple and should be quick,
making processing of the inputs by an interrupt routine
most probably quite feasible. As programs axe
developed they will be published 	an'S ant.r.alL aa
shown in the project.

6. Controlling a train set or other device,
Ihe inputs and outputs are not Quite -1)10 to

directly control the train set. As the test of the
interface is developed copies of circuits will be
available to be published if there is interest from the
membership. The I/0 is 5 volt logic only and is NOT
protected against destruction from connecting the wrong
things to it, nor is it protected against static
electric discharge, apart from the normal 'protection
provided within the integrated circuits.

The author will take no responsibility For any
damage that any person may do to their computee
result of information contained in this article.,

Summary.
Ihis development represents a simple way of using

E "spare" TI99/4A console to perform a control task.
Ihe circuit developed so far is unsuitable for use in
the expansion box since there 4re adnor interfacing
differences to operating Nda Vhs igide port of the
console.

Additional detailg bf hardwaro end 	Isottwara
development will be made available if interest is shown
in the project.

100 ! SAVE DSK6.C6NTROLI
110 CALL INIT
120 DISPLAY AT(4,2)ERASE ALL: "DEMONSTRATION PROGRAM

FOR": TAB(10); "PROTOTYPE": " ACCESSORY
CONTROLLER"- : TAB(8); "by Ross Mudie"

130 DISPLAY AT(10,1):"To control lamps,": "PRESE:v:
"1. Switches on PCB": : "2. Binary coune! : "3 •

Keys 1 to 8 control lamps"
140 DISPLAY AT(22,1):"Use BACK (Fctn 9) to return to

this menu from any part"
150 CALL KEY(3,K,S):: IF K<49 OR K>51 THEN 150 F.LS

K=K-48
160 ON K GOTO 1P0.290.4‘10
170 !
180 1
190 ! SWITCHES TO DIRECT CONTROL LAMPS
200 DISPLAY AT(4,1)ERASE ALL:HOPERATE SWITCHES ON

PCB.": :"Note value on screen & lamps"
210 CALL ESC
220 CALL PEEK(-31092,A)
230 DISPLAY AT(20,1):A
240 CALL LOAD(-31104,A)
250 CALL KEY(3,K,S):: IF K.15 THEN 120
260 GOTO 220
270 I
280
290 ! STEP THROUGH LAMPS IN BINARY SEQUENCE
300 DISPLAY AT(4,1)ERASE ALL:"Note value on screen &

lamps"
310 CALL ESC
320 FOR V=255 TO 0 STEP -1
330 DISPLAY AT(20,1):V
340 CALL LOAD(-31104,V)
350 CALL KEY(3,K,S):: IF K=19 WEN 120
360 NEXT V
370 GOTO 120
380
390 !
400 ! KEYBOARD TO CONTROL LAMP
410 CALL CLEAR :: CALL ESC
420 DISPLAY AT(4,1):"USE KEYS 1 to 8,":"note value on

screen & lamps": :" 1 2 J. 4' 5 6 7 8" :: GOTO
460

430 CALL KEY(3,K,S):: IF K=15 THEN 120 ELSE TE K<49 0V
K>56 THEN 430

440 K=K-48
QI5LIFKM(K)=1 THEN KM(K)=0 ELSE KM(K)=1

.alum BuTAT8 Lq 	umed aqi sainideo 'loom aiTqm alp
yogi Sett= doqs-pil Nosig aqi ;I .sanew umud aiTqm aql
uaqi voa aqi sainideD Noeig ji *.pq ol 'pea : snow Aal

Author 1 Code 	Title

I 00223

00224
T.Instrument
E.Valley

TMS9902A Asynchronous Communi-
cations Controller

The Best of 99'er Vol.1

Northern New Jersey
Pittsburgh Users Group
Bluegrass 99 Computer

Society Inc
Hunter Valley 99ers

user group
Micropendium
Brisbane User Group
San Diego Computer

Society
Club Information

Montreal
Club Information

Montreal
Club Information

Montreal
Melbourne TI Computer

Enthusiasts

The Pug Peripheral

Bytemonger

Hunter Valley News

Bug Bytes

Cim 99

Cim 99

Cim 99

Melbourne Times

T151-111G 	DIGEST 	July 1988, Page 7

(iYn 	TLIIIIET r3,1

Dear Jenny,
To date I have not received a single letter. 	It

would be good if people would write in, but not to
worry. Here is the address again:

Crocodile Jones
29 Palmeston Avenue
Winston Hills, NSW 2153
Please get those letters to me if you have any

problems with adventures.
Here are a few clues to Mission Impossible #3.
Remember that the bomb does not go off

immediately.
For the pail, the water comes in handy.

Yours faithfully
Crocodile Jones

Dear Jenny,
Is $23,000 a record at Draw Poker? 	I have

achieved this score.
Here is a Mathematics program

50 REM BY V. MAKER
55 B=0
60 C=0
100 INPUT "+ - * / ? ":A$
110 IF A$="+" THEN 130
120 GOTO 160
130 INPUT "No. 1 ":8
140 INPUT "No. 2 ":C
150 PRINT B+C
155 GOTO 320
160 IF A$="*" THEN 180
170 GOTO 210
180 INPUT "No. 1 ":B
190 INPUT "No. 2 ":C
200 PRINT B*C
205 GOTO 320
210 IF A$="/" THEN 230
220 GOTO 270
230 INPUT "No. 1 ":8
240 INPUT "No. 2 ":C
250 PRINT B/C
260 GOTO 320
270 IF A$="-" THEN 290
280 GOTO 320
290 INPUT "No. 1 ":8
300 INPUT "No. 2 ":C
310 PRINT B-C
320 INPUT "ANOTHER SUM, MULTIPLICATION, DIVISION OR

SUBTRACTION? ":B$
330 IF B$="Y" THEN 55
340 IF B$="YES" THEN 55
350 PRINT "I HOPE YOU ENJOYED THIS PROGRAM."
360 PRINT "I HOPE YOU DO WELL AT MATHS. BYE!"
370 END

Well it was nice to get 2 letters this month and I
must say I can readily sympathise with Crocodile Jones
and his lack of mail. Never mind, we can only hope
that there are still some younger members out there who
are allowed to read their family's TND each month, and
will burst into creativity some time if we wait long
enough! 	 0

IrLEICO„ a atm, 	LPToper a LEIg

by Chris Buttner

If you use the BBS for sending and receiving
messages, you will find a program recently circulating
here is a great help. It is called TELCO and was
reviewed recently in MICROpendium magazine. The review
version was 1.1 whereas the current version in
circulation is 1.3.

TELCO is designed for use with smart modems. This
does not mean it cannot be used with bread and butter
modems, you just will not be able to use a number of
the special features. The program allows you to

emulate a number of terminals such as ANSI, VT100,
ADM3A (Fasterm standard) etc. High baud rates are also
supported. Because the program has so many features it
is quite large. The core is 3 memory image files which
call in any one of a multitude of other files as
required.

Three special features which I feel worth
highlighting are:

(1) the built in editor;
(2) ASCII file upload; and
(3)macro files.

The editor allows you to create your text messages
from within your terminal program. Text files can be
saved and reloaded for editing as often as you need.
One restriction - your text file must not exceed fifty
(50) lines.

The ASCII file upload is of special interest to
those who send messages to the BBS. The sensible thing
to do is create your message within the Editor (or have
it prepared before hand. You can then send your
message to the BBS from within the terminal program.
In essence, there is no need to exit your terminal
program to use the Sendmail program. All this is
possible with the use of what is called a pace
character. The terminal program sends a line of your
text and then waits for the BBS to send the ">" symbol.
When the program detects the ">", it then sends the
next line automatically and continues in this way until
all the file is sent. The pace character is set by the
user as a default. For Texpac it is character 062
(ASCII).

With the macro facility you can create macro
commands which can handle almost anything you do on the
BBS from signing on to inserting a commonly used phrase
in text or executing a sequence of commands to go to
set menus within the BBS. The range is limited only by
your imagination.

0

fPunblqvaIlattno Iltbirma 	1Wpairl •
with Warren Welham

1New Tnd's arrived this month

Sep 84 	Apr 85 	Mar 86 	Mar 87 Oct 87
Oct 84 May 85 Apr 86 Apr 87 May 88
Nov 84 Jun 85 Jun 86 May 87 Jun 88
Mar 85 Oct 85 Jul 86 Sep 87

1New Books arrived this month

New Arrivals of Overseas Publications

Group
	 Publications Name 	Date

Mar 88
Jan 88

Mar 88

Mar 88
Mar 88
May 88

Feb 88
Feb 88
Jan 88

Feb 88

Mar 88

Apr 88

(

A few newsletters recently have discussed the uses
of the TI—Writer special character mode, which the
manual did such a poor job of telling us about. Here
are some of the things that can be done (on a Gemini
10X Printer).
(CTRI[U] FCTN[R] CTRL[U] SHIFT[M] CTRL[U] SHIFT[H]

CTRL[U]) Set the left hand margin at 8. Using the
TI—Writer TAB for left margin creates problems.

(CTRL[U] FCTN[R] CTRI[U] 4) Select the italic character
set.

(CTRI[U] FCTN[R] CTRL[U] 5) Cancel italics, return to
standard character set.

(CTRL[U] 	FCTN[R] 	CTRL[U] 	SHIFT[G]) 	Print 	in
double—strike mode.

(CTRL[U] FCTN[R] CTRL[U] 7 CTRL[U] SHIFT[B] CTRL[U])
Select the international 	character 	set 	for
Germany. Instead of SHIFT[B], use A for England,
C for Denmark, D for France, E for Sweden, F for
Italy and G for Spain.

(CTRL[U] FCTN[R] CTRL[U] SHIFT[B] CTRL[U] SHIFT[B]
CTRL[U]) Set the print pitch for elite characters
(12 per inch)

(CTRI[U] SHIFT[R] CTRL[U]) Restore pitch print to pica
(10 cpi).

(CTRL[U] SHIFT[0] CTRL[U]) Set print pitch to condensed
print.

(CTRL[U] SHIFT[R] CTRL[U]) Cancel condensed print.
(CTRL[U] SHIFT[N] CTRL[U]) Print in double width mode

(on one line only); to cancel it before end of
line, use DOUBLE (CTRL[U] SHIFT[T] CTRI[U])
cancelled.

(CTRL[U] FCTN[R] CTRL[U] SHIFT[H]) 	Cancel 	double
strike.

(CTRI[U] FCTN[R] CTRL[U] SHIFT[E]) Emphasized mode.
(CTRI[U] FCTN[R] CTRL[U] SHIFT[F]) Cancel emphasized

mode
(CTRL[U] FCTN[R] CTRL[U] SHIFT[—] CTRL[U] SHIFT[A]

CTRL[U]) Print characters with underline.
(CTRL[U] FCTN[R] CTRL[U] SHIFT[—] CTRL[U] SHIFT[A]

CTRL[U]) Cancel the underlining.
(CTRL[U] FCTN[R] CTRL[U] SHIFT[S] CTRL[U] SHIFTN]

CTRL[U]) Print in superscript mode, which is
always double strike and unidirectional.

(CTRL[U] FCTN[R] 	CTRL[U] 	SHIFT[T]) 	Cancels 	the
superscript and unidirectional. Contrary to the
manual, it obviously also cancels the double
strike.

(CTRL[U] FCTN[R] CTRL[U] SHIFT[S] CTRL[U] SHIFT[A]
CTRL[U]) Print in subscript mode, unidirectional
and double strike.

(CTRL[U] FCTN[R] CTRL[U] SHIFT[T]) Cancels subscript,
unidirectional and double strike.
Print italics double strike and underlined, return

to pica without underlining but emphasized, then
condensed, then double width in pica; cancel double
width and go to elite type.

Any combination of codes can be used, including
those which move the print head or move the paper (line
feeds).

(CTRLNJ SHIFT[H] CTRL[U]) moves the print head
back one space and can be used to overprint characters.
(CTRL[U] SHIFT[M] CTRI[U]) placed before the end of the
line will send the print head back to the beginning of
the line and reprint it with the rest of the line.

I have even managed to code in customized download
characters, such as my Tigercub emblem, but I cannot
find any way to input CHR$(127).

Remember that these control characters are deleted
by the printer and the line of print is shifted left by
the number of spaces that they occupied. If you are
inserting codes into text that has been prepared in
columnar format, or right justified through the
formatter, the best way is to use CTRL[0] to get the
open square fixed mode cursor; position it over the
character to the right of the point of insertion;
FCTN[2] to insert characters; tap the space bar as many
times as there are characters to be inserted (be
careful not to shove the end of the line into
oblivion!); FCTN[S] to backspace and then fill the
blanks with control characters.

The text file of this article was printed through
\\the TI—Writer editor and was also printed by a separate

July 1988, Page114118

print program; both printouts were identical. The
margin setting confused the TI—Writer formatter
completely; when this was deleted, it printed out
properly except that some of the foreign character sets
were repeatedly overstruck and defaced!

(Printed here using a daisy wheel printer which
means the effects are missing. ED)

0

likhattei Cltirttaira

by Steve Patterson, New Horizons

Hidden characters is a term that I have given for
the use of characters in a filename that are unable to
be seen on most disk catalogs. These types of
characters can be used in both programs and files but
there is a huge difference. With files, if you copy
the program with an Extended BASIC file copier such as
my 'COPIER' then you can use any character ever
imagined. For program type HC I have only found one to
this day, which is ASCII 127 or FCTN[V]. This is the
only character that is hidden and has a key-in. You
can use this character at the end of a filename to make
it hard for others to run the program because they
cannot figure out how to spell the filename because
they do not notice the last hidden character. Of
course you can use more than one and they do not have
to be at the end. You could put one in the middle oi
the filename or you could let the entire filename be
character 127. But having it at the end makes it a lot
less noticeable.

Now how do you use ASCII 127 and possibly ASCII
1-29 in a filename for a file. This is where you will
have to have some Extended BASIC programming knowledge.
You have to use either my program mentioned above or
one of your own which you can write from scratch.
Basically how to get any character at the end of a
filename is to open that file in Extended BASIC, then
open a new file with a couple of Hidden Characters at
the end of the filename. Then read each record of the
file and save it to the new file. So you have actually
copied the file itself and in the process you have
added several invisible or Hidden Characters at the end
of the filename. With the possibility of any character
from 1 to 29, only you know the characters at the end.
So, say you have a filename like: "DSK1.LIST". You can
change that normal and easy to read file into the
almost impossible to open file:

"DISK1.LIST"&CHR$(2)&CHR$(25).
This portion will place two ASCII characters (2

and 25) right after the 'T' in the name. It will not
be seen on most catalogs but you will know what it is
because you wrote the two characters down somewhere
safe. One bad thing about this is that later, you
cannot load this file into any program without changing
it back to the normal way or by going in and changing
the open statements in the program so that the Hidden
Characters are in the filename. So you would not want
to place Hidden Characters in a filename that is
updated every day. Only on certain files that you only
want to see and that will not be updated often, would
this be of any use.

The reason I keep saying that most cataloguers
will not be able to read the end characters is because
I wrote one that can detect when there is a character
in the filename that you would not normally see. For
those who are not clear on the type of program that
will add these Hidden Characters to a filename, read
on
100 OPEN #1:"DSK1.LIST", INPUT, DISPLAY, VARIABLE 80
110 OPEN #2:"DSK1.LIST"&CHR$(4)& CHR$(16)&CHR$(23),

OUTPUT, DISPLAY, VARIABLE 80
120 IF EOF(1) THEN 160
130 LINPUT #1:A$
140 PRINT #2:A$
150 GOTO 120
160 CLOSE #1
170 CLOSE #2
180 END

The program above will give you a copy of the file
LIST with three Hidden Characters at the end of the
file. These characters being ASCII 4, 16 and 23. Hope
you find this new and experimental process of locking
up files of some use and of some help in keeping away
the unwanted and un—needed. 0

ZY:

0111)VtdIla CTILIPTIC1hEr

by Jim Peterson, Tigercub Software

TISHUG NEWS DIGEST
	1

wins DIGEST
	

July 1988, Page 9

(1-111)a 	Irlswinab #47
byhniPeterson

Copyright 1988
Tigercub Software

156 Collingwood Ave.
Columbus, OH 43213

Distributed by Tigercub Software to TI99/4A Users
Groups for promotional purposes and in exchange for
their newsletters. May be reprinted by non-profit
users groups, with credit to Tigercub Software.

Over 120 original programs in BASIC and Extended
BASIC, available on cassette or disk, now reduced to
just $1 each!, plus $1.50 per order for cassette or
disk and postage. Minimum order of $10. Cassette
programs will not be available after my present stock
of blanks is exhausted. The Handy Dandy series, and
Colour Programming Tutor, are no longer available on
cassette. Descriptive catalogs, while they last, $1
which is deductable from your first order.

Tigercub Full Disk Collections, reduced to $5
postpaid. Each of these contains either 5 or 6 of my
regular catalog programs, and the remaining disk space
has been filled with some of the best public domain
programs of the same category. I am NOT selling public
domain programs; they are a free bonus!
TIGERCUB'S BEST, PROGRAMMING TUTOR, PROGRAMMER'S
UTILITIES, BRAIN GAMES, BRAIN TEASERS, BRAIN
BUSTERS!, MANEUVERING GAMES, ACTION REFLEX AND
CONCENTRATION, TWO-PLAYER GAMES, KID'S GAMES, MORE
GAMES, WORD GAMES, ELEMENTARY MATH, MIDDLE/HIGH
SCHOOL MATH, VOCABULARY AND READING, MUSICAL
EDUCATION, KALEIDOSCOPES AND DISPLAYS

NUTS & BOLTS disks
These are full disks of 100 or more utility

subprograms in MERGE format, which you can merge into
your own programs and use, almost like having another
hundred CALLs available in Extended BASIC. Each is
accompanied by printed documentation giving an example
of the use of each. NUTS & BOLTS (No. 1) has 100
subprograms, a tutorial on using them, and 5 pages of
documentation. NUTS & BOLTS (No. 2) has 108
subprograms, 10 pages of documentation. 	NUTS & BOLTS
(No. 3) 	has 	140 	subprograms 	and 	11 	pp. 	of
documentation. Now just $15 each, post paid.

TIPS FROM THE TIGERCUB
These are full disks which contain the programs

and routines from the Tips from the Tigercub
newsletters, in ready-to-run program format, plus text
files of tips and instructions.

Tips (Vol. 1) contains 50 original programs and
files from Tips newsletters #1 through #14. 	Tips
(Vol. 2) contains over 60 programs and files from #15
to #24. Tips (Vol. 3) has another 62 from #25 to #32.
Tips (Vol. 4) has 48 more from issues #33 through #41.
Now just $10 each, post paid.

* Now ready: TIPS FROM TIGERCUB (Vol. 5). Another *
* 49 programs and files from issues #42 through to *
* #50. Also $10 post paid.

TIGERCUB CARE DISKS Nos.1, 2, 3 and 4.
Full disks of text files (printer required).

No. 1 contains the Tips news letters #42 thru #45, etc.
Nos. 2 and 3 have articles mostly on Extended BASIC
programming. No. 4 contains Tips newsletters #46 to
#52. These were prepared for user group newsletter
editors but are available to anyone else for $5 each
postpaid.

If you bought my C11 disk, Kid's Games, please
check line 100 of the Butterfly and Flowers program
and, if necessary, change it to
100 CALL CLEAR :: CALL SCREEN(4).

If you bought my C12 disk, More Games, and have
trouble loading Lost Plane and Andromedan Invasion,
please go to line 1000 of the LOAD program and change
TC-18 to *TC-18 and *TC-23* to *TC-23. Or, return
the disks to me and I will fix them.

Thanks to 011ie Hebert for this fix to the Gordian
Knot in Tips #36. This will keep it from running off
the edge and crashing in the automatic mode.
270 GOSUB 480 :: R=R-24*(R0)+24*(R>24)

C=C-28*(C<3)+28*(C>30) 	CH=128-(D=1)-(D=3)
CALL GCHAR(R,C,G) :: IF G<>32 THEN IF
INT(2*RND+1)<>1 THEN CH=G

I
The trouble with me is that, before I finish one

program, I have thought of another that I want to try
writing and so I do not take time time to test
completed programs as well as I should. The
Decompactor in Tips #35 was one that should have been
tested more thoroughly. I think this version will
work. It will break an Extended BASIC program into
single statement lines to make it easier to modify.
Then, John Dow's Compactor or a similar program will
put it back together.
100 !DECOMPACTER V.1.1 by Jim Peterson fixed 12/87
110 DISPLAY AT(3,1) ERASE ALL: "TIGERCUB DECOMPACTER

V.1.1": : " Program must first be -": :
"RESequenced to greater in-": "crements than the
number"

120 DISPLAY AT(9,1): "of statements in any one":
"line.": : "SAVEd by": " SAVE DSK(filename), MERGE" !

130 DISPLAY AT(16,1): "INPUT FILENAME?": "DSK" ::
ACCEPT AT(17,4): 1F$

140 DISPLAY AT(16,1) ERASE ALL: "OUTPUT FILENAME?":
"DSK" :: ACCEPT AT(17,4): OF$

150 OPEN #1: "DSK"&IF$, INPUT, VARIABLE 163 :: OPEN #2:
"DSK"&OF$, OUTPUT, VARIABLE 163

160 LINPUT #1:M$:: LN=256*ASC(SEG$(M$,1,1))+
ASC(SEG$(M$,2,1)) :: IF LN>LN2 THEN 180

170 DISPLAY AT(12,1) ERASE ALL BEEP: "ERROR! RESEQUENCE
PROGRAM TO": "GREATER INCREMENTS AND TRY": "AGAIN."
:: CLOSE #1 :: CLOSE #2 :: STOP

180 LN2=LN
190 P=POS(M$,CHR$(130),3):: IF P=0 THEN PRINT #2:M$::

GOTO 260
200 A$=SEG$(M$,1,P-1) :: R=POS(A$, CHR$(132), 3) ::

S=POS(A$, CHR$(201), 3)
210 IF R=0 THEN PRINT #2:A$&CHR$(0) :: GOTO 250
220 IF S=0 AND R<>0 THEN PRINT #2: M$:: GOTO 260
230 IF S<>0 THEN IF S-R<3 THEN PRINT #2: A$&CHR$(0) ::

GOTO 250
240 PRINT #2:M$:: GOTO 260
250 LN=LN+1 :: LN2=LN :: GOSUB 270 :: M$=LN$&SEGUM$,

P+1, 255) :: GOTO 190
260 IF EOF(1)<>1 THEN 160 ELSE CLOSE #1 :: CLOSE #2 ::

DISPLAY AT(12,1) ERASE ALL: "Enter NEW": : "Then
Enter": " MERGE DSK"&OF$:: END

270 LN$=CHRUINT(LN/256))&CHRULN-256* INT(LN/256)) ::
RETURN
If 	you have my BXB routine from Tips #40

(corrected in Tips #42) or from my TIPS disk Vol. 4 or
NUTS & BOLTS (No. 3), or Genial Traveller Vol. 1 No. 6,
here is a neat improvement that Barry Traver thought
of. 	Key this in, run it to create a merge file on a
disk. Then clear memory with NEW, merge in BXB, then
MERGE DSK1.LINEZERO, and now save BXB again in merge
format and it will CALL itself from line zero (and do
something else that I am not going to tell you about!
100 OPEN #1: "DSK1.LINEZERO", VARIABLE 163, OUTPUT
110 M$=CHR$(0)&CHR$(0)&CHR$(157)& CHR$(200)&CHR$(3)&

"BXB"&CHR$(130)& CHR$(157)&CHR$(200)&CHR$(4)&
"CHAR"& CHR$(183)&CHR$(200)&CHR$(2)&"30"

120 M$=M$&CHR$(179)&CHR$(199)&CHR$(16)&
"81C37EA58199663C"&CHR$(182)&CHR$(0) :: PRINT #1:M$
:: PRINT #1: CHR$(255)&CHR$(255)
And if you have merged in BXB, the edge character

(ASCII 31) can be re-identified and coloured (set 0) to
give the screen an ornamental border.
100 CALL CHAR(31,"0"):: CALL CLEAR :: FOR J=1 TO 24 ::

PRINT :: NEXT J :: CALL CHAR(31,
"1824429999422418") :: CALL COLOR(0,5,16)
Here is an improved version of the CATWRITER

program to create the Tigercub QUICKLOADER, which is
intended for disks of programs which you have filled
and do not plan to change. It will read the directory,
display each filename, and ask you for the complete
program name of each one. Then it prepares a program
which displays one or more menu screens of complete
program names, and auto-loads whichever one you select.

First, key in this part and save it to disk by
SAVE DSK1.CAT1,MERGE. If you want, you can change the
screen and character colours in line 10. Do not change
the line numbers!
10 CALL CLEAR :: DIM M$(127) :: CALL SCREEN(5):': FOR

S=0 TO 14 :: CALL COLOR(S,16,1) :: NEXT S :: CALL
PEEK(8198,A) :: IF A<>170 THEN CALL INIT

11 REM (leave this in!)
12 ON WARNING NEXT :: GOSUB 21
13 X=X+1 :: READ M$(X):: IF WX)<>"END" THEN 13

TIGHUG NEVIN DIGEST July 1988, Page 10
	■11141

\

14 R=3 :: FOR J=1 TO X-1 :: READ X$:; DISPLAY AT(R,1):
STR$0);TAB(4);X$:: R=R+1 :: IF R<23 THEN 17

15 DISPLAY AT(24,1):"Choice? or 0 to continue 0" ::
ACCEPT AT(24,26) VALIDATE(DIGIT) SIZE(-3): N :: IF
N>X-1 THEN 15

16 IF N<>0 THEN 19 :: R=3
17 NEXT J
18 DISPLAY AT(24,1): "Choice?" :: ACCEPT AT(24,9)

VALIDATE(DIGIT): N :: IF N=0 OR N>X-1 THEN 18
19 CALL CHARSET :: CALL CLEAR :: CALL SCREEN(8) :: CALL

PEEK(-31952,A,B) :: CALL PEEK(256*A+B-65534,A,B) ::
C=256*A+B-65534 :: AWDSK1."&M$(N) :: CALL
LOAD(C,LEN(A$))

20 FOR J=1TO LEN(A$) :: CALL LOAD(C+J,
ASC(SEG$(A$,J,1))) :: NEXT J :: CALL LOAD(C+J, 0)::
GOTO 10000

21 CALL LOAD(8196,63,248)
22 CALL LOAD(16376,67,85,82,83,79,82,48,8)
23 CALL LOAD(12288,129,195,126,165,129,153,102,60)
24 CALL LOAD(12296,2,0,3,240,2,1,48,0,2,2,0,8,4,32,

32,36,4,91)
25 CALL LINK("CURSOR") :: RETURN
10000 RUN "DSK1.1234567890"

Next, key in this little routine and run it to
create a file called CAT2.
100 OPEN #1: "DSK1.CAT1", VARIABLE 163, INPUT
110 OPEN #2: "DSK1.CAT2", VARIABLE 163, OUTPUT
120 FOR J=10 TO 26:: LINPUT #1: M$:: PRINT #2:

CHR$(0)&CHRWACHR$(156)& CHR$(253)&CHR$(200)&
CHR$(1)&"2"& CHR$(181)&CHR$(199)&CHRMEN(10))&M$
&CHR$(0) :: NEXT J

130 PRINT #2:CHR$(255)&CHR$(255):: CLOSE #1:: CLOSE #2
Finally, key in CATMATRIX. Leave the line numbers

as they are, we need that space after line 9.
Then MERGE in DSK1.CAT2 to combine the two, and

SAVE.
1 CALL CLEAR :: CALL TITLE(16, "CATWRITER") :: CALL

CHAR(124, "3C4299A1A199423C") :: DISPLAY AT(2,10):
"Version 1.3":;: TAB(8); "& Tigercub Software"

2 DISPLAY AT(15,1):"For free": "distribution": "but no
price or": "copying fee": "to be charged." :: FOR
D=1 TO 500 :: NEXT D :: CALL DELSPRITE(ALL)

3 DISPLAY AT(2,3) ERASE ALL: " TIGERCUB CATWRITER
V.1.3":;: " Will read a disk directory,": "request
an actual program": "name for each program-type"

4 DISPLAY AT(7,1): "filename, and create a merg-":
"able Quickloader which dis-": "plays full program
names and": "runs a selected program."

5 DISPLAY AT(12,1): " Place disk to be cataloged": "in
drive 1 and press any key" :: CALL KEY(0,K,S) :: IF
S=0 THEN 5

9 OPEN #2: "DSK1.CATMERGE", VARIABLE 163,OUTPUT
100 OPEN #1: "DSK1.", INPUT, RELATIVE, INTERNAL ::

INPUT #1: N$,A,J,K :: LN=1000 :: FN=1 100
110 DISPLAY AT(12,1): "Disk name?"::: N$::

ACCEPT AT(14,1) SIZE(-28): N$::
LX$=STR$(14-LEN(N$)/2) :: LXLEN=LEN(LX$)

120 PR$=CHR$(0)&CHR$(11)&CHR$(162)& CHR$(240)
&CHR$(183)&CHR$(200)&CHR$(1)&
"1"&CHR$(179)&CHR$(200)& CHRWALEN)&LX$

130 PR$=PR$&CHR$(182)&CHR$(181)& CHR$(199)&
CHR$(LEN(N$))& NUCHR$(0) :: PRINT #2: PR$

140 X=X+1 :: INPUT #1: P$,A,J,B :: IF LEN(P$)=0 THEN
180 :: IF ABS(A)=5 OR ABS(A)=4 AND B=254 THEN 150
ELSE X=X-1 :: GOTO 140

150 DISPLAY AT(12,1): P$;"PROGRAM NAME?" ::
ACCEPT AT(14,1) SIZE(25):F$

160 PRINT #2: CHR$(INT(FN/256))&CHR$(FN-256*
INT(FN/256))& CHR$(147)&CHR$(200)&CHRULEN(FW&F$&
CHR$(0) :: FN=FN+1

170 M$=MUCHR$(200)&CHRULENUI))&F$& CHR$(179) :: IF
X<11 THEN 140

180 IF M$="" THEN 200
190 PRINT #2: CHWINT(LN/256)ACHRULN-256*

INT(LN/256))& CHR$(147)&SEGUM$,1,LEN(M$)-1)&
CHR$(0) :: LN=LN+1 :: M$="" :: X=0 :: IF LEN(P$)<>0
THEN 140

200 PRINT #2: CHR$(INT(LN/256))&(:. : LN-256*
INT(LN/256))& CHR$(147)&CHRU. .)&CHR$(3)& "END"&
CHR$(0)

210 PRINT #2:CHR$(255)&CHR$(255):: CLOSE #1:: CLOSE #2
220 DISPLAY AT(8,1) ERASE ALL: "Enter -":;: " NEW":;:

	

tir 	

" MERGE DSK1.CATMERGE":::

	

\..... 	" DELETE ""DSK1.CATMERGE 	:;: " SAVE DSK1.LOAD"

230 SUB TITLE(S,T$)
240 CALL SCREEN(S):: L=LEN(T$):: CALL MAGNIFY(2)
250 FOR J=1 TO L :: CALL SPRITE(#J, ASC(SEGUT$,J,1)),

J+1-0+1=S)+(J+1=S+13)+13*(J>14), J*(170/L),
10+J*(200/L)) :: NEXT J

260 SUBEND
Mike Stanfill and Ed Machonis and others have been

publishing some neat little single-screen "tinygram"
programs, so here is my contribution. It is a
one-screen one-liner!
1 RANDOMIZE :: PRINT 	. A=INT(RNI07)

B=INT(RND*9+1) :: FOR X=1 TO 5 :: Y=A*X*X-43*X-FB
PRINT Y; :: NEXT X :: Y=A*X*X-B*X+B :: PRINT : :
INPUT "GUESS NEXT NUMBER": N 	IF N=Y THEN PRINT 	: •
"RIGHT" :: GOTO 1 ELSE PRINT : "CORRECT IS": Y
GOTO 1

Memory full! - Jim Peterson 	 0

7q) (0-00111 Zit' NW i(t.) 0TOCIJI,
Mama la tithe ,37)211Q&siiitaa 	by Ben Talcach

The GOSUB routine is a placid, forgiving sort of
an affair in BASIC. It will take a fair amount of
punishment without complaint. One can call it from
almost anywhere and it never forgets where to return.
This last virtue of this useful tool is the downfall of
the foolhardy. Its patience has defined limits. The
secret of its unerring homing instinct is literally
buried in the stack. The stack is just like that 9'
(230 mm) long spike fastened to a heavy base plate,
which Mrs. T. uses to anchor her unpaid bills to. When
her stack is full, yours truly blows his stack. lhaL
is precisely what happens to your trusted TI99/4A when
its stack is full. Texas Instruments, like most other
computer makers, is very secretive about the stack
capacity, altough one can dig it out from some of the
more hi-tech litterature. Let us say it is adequate
for the purpose.

Each time.the program reaches a GOSUB instruction,
an unexecuted return address is spiked onto the stack.
The subroutines may also send the program to other
subroutines, so each time a new return address is
spiked on the top of the previous address. One can
see, that by this simple housekeeping method (no doubt
TI has copied it from Mrs. T.), the computer can not
get lost, since only the topmost address is accessible,
which belongs to the last GOSUB instruction.
Hopefully, by the time the program is near to its end,
the stack is almost empty again. It may happen that
the program finishes in the middle of a subroutine, and
one or more unexecuted return addresses remain in the
stack. Well you will never hear about it, the junk
will be discarded during the spring cleaning operation
to prepare the stage for the new program. On the other
hand, if one makes a habit of sending the program to a
new location with a GOTO instruction from within a
subroutine, then each time a return address will remain
on the stack as it will not be needed (the unpaid bills
syndrome). Eventually this could cause the stack to
overflow. 	At this time you will get an error message
and the program will crash. 	Extended BASIC is more
helpful, it will tell you STACK OVERFLOW, however BASIC
will let you guess it with the all encompasing MEMORY
FULL error message. The rule is, if you GOSUB Chen
RETURN, if you intend to go elswhere from a program
segment then use GOTO instead. To put it in a more
precise form, do not use GOTO instructions inside
subroutines. Parentheses may cause a similar problem.
The computer will "peel off" the parentheses layers to
reach the very core of the expression. The stack will
be overflowing if the expression is too complex. Again
one can not find any reference to the safe limit. if
the parentheses problem raises its ugly head, break the
complex expression in half and let the computer execute
the calculation in two stages. Extended BASIC is most
helpful by reporting which line did break the camel's
back.

The third possible cause of a stack overflow may
be due to a user defined function. This may become
very volatile if a complex user defined function refers
to another user defined function. The remedy like
before: simplify all or part of the defined function by
converting it to a (numeric or string) variable.

	

tlill.bfrOD1141.11113 	Ellatb-prI)EINIULZ
from SUBFILE99, USA

Word Wrap and Fill Routines
Below is a short program that illustrates two very

useful routines for handling displays of string data.
The first routine automatically right justifies each
line of text to give a neat appearance to things like
instructions etc., without having to "count out the
spaces."

The second routine will automatically calculate
the longest possible portion of the string that can be
presented on one line and breaks the line up
accordingly. 	This prevents that annoying break up of
words that sometimes occurs when printing long strings.

The actual routines themselves appear first in
both BASIC and Extended BASIC. A short TI BASIC demo
program follows.

Fill Subroutines
10298 REM *FILL/B*
10299 REM
10300 FOR XL=1 TO LEN(M$)
10301 IF LEN(M$)=28-XI THEN 10307
10302 IF SEG$(M$,XL,1)<>" " THEN 10305
10303 MS=SEG$018,1,XL)& " "& SEGS(MS, XL+1, LEN(MS)-XL)
10304 XL=XL+1
10305 NEXT XL
10306 GOTO 10300
10307 RETURN
10308 REM
10798 ! *FILL/X*
10799 !

10800 SUB FILL(R,I,M$)
10801 FOR X=1 TO LEN(M$)
10802 IF LEN(M$)=28-1 THEN 10804 ELSE IF SEGS(M$,X,1)=

" " THEN MS=SEGS(M$,1,X)& " "& SEG$(M$, X+1,
LEN(M$)-X) 	X=X+1

10803 NEXT X :: GOTO 10801
10804 DISPLAY AT(R,29-LEN(M$)):M$
10805 SUBEND

Wrap Subroutines
12598 REM *WRAP/B*
1%599 REM
12600 X1=0

12601 MS=M$&" "

12602 X2=POS(MS," ",X1+1)

12603 PRINT SEGS(M$,X1+1,X2-X1); 12604 IF
X2=LEN(MS)THEN 12607

12605 X1=X2
12606 GOTO 12602
12607 RETURN
12608 REM
12598 ! *WRAP/X*
12599 !
12600 SUB WRAP(M$)
12601 MS=M$&" " 	X1=0
12602 X2=POS(M$," ",X1+1)

12603 PRINT SEG$(M$,X1+1,X2-X1); :: IF X2=LEN(M8) THEN
SUBEXIT

12604 X1=X2 	GOTO 12602

12605 SUBEND

Demonstration Program
100 REM ***************
110 REM *
120 REM * FILL & WRAP *
130 REM *
140 REM * SUB DEMOS *
150 REM '

160 REM ***************
170 REM
180 REM SUBFILE99
190 REM 04/85
200 REM
210 REM *HOUSEKEEPING*
220 REM
230 L$=" 	
240 CALL CLEAR
250 RESTORE 970
260 FOR L=1 TO 17
270 READ MS
280 PRINT TAB(7);M$
290 NEXT L
300 REM
310 INPUT " PRESS ENTER TO START":A$
320 REM

	

111330 REM *SELECT DEMO* 	 N

July 1988, Page 11

340 REM
350 CALL CLEAR
360 PRINT "SELECT DEMO:"
370 PRINT " 	
380 PRINT
390 PRINT
400 INPUT "<W>RAP, <F>ILL OR <Q>UIT? ":A$
410 IF (A$WW")*(A$<>"F")THEN 920
420 IF A$="W" THEN 690
430 REM
440 REM *FILL DEMO*
450 REM
460 CALL CLEAR
470 PRINT "FILL DEMO"
480 PRINT " 	
490 PRINT
500 PRINT
510 PRINT L$
520 PRINT
530 RESTORE 1100
540 FOR L=1 TO 10
550 READ M$
560 GOSUB 1290
570 PRINT M$
580 NEXT L
590 REM
600 PRINT
610 PRINT L$
620 PRINT
630 PRINT
640 INPUT "HIT <CR> KEY":A$

650 GOTO 350
660 REM
670 REM *WRAP DEMO*

680 REM
690 CALL CLEAR
700 PRINT "WRAP DEMO"
710 PRINT " 	
720 PRINT
730 PRINT
740 PRINT L$
750 PRINT
760 RESTORE 1240
770 FOR L=1 TO 2

780 READ M$
790 GOSUB 1400

800 NEXT L
810 REM
820 PRINT
830 PRINT
840 PRINT L$
850 PRINT
860 PRINT
870 INPUT "HIT <CR> KEY":A$
880 GOTO 350
890 REM
900 REM *QUIT PROGRAM*
910 REM
920 CALL CLEAR
930 END
940 REM

950 REM *TITLE DATA*
960 REM
970 DATA "***************"
980 DATA "* *"
990 DATA "* FILL & WRAP *"
1000 DATA "* *"
1010 DATA "* SUB DEMOS *"
1020 DATA "*
1030 DATA "***************"
1040 DATA „," SUBFILE99"
1050 DATA " 04/85" 	
1060 REM
1070 REM
1080 REM *FILL DATA*
1090 REM
1100 DATA THIS IS AN EXAMPLE OF THE
1110 DATA FILL ROUTINE IN TI-BASIC.
1120 DATA AS YOU CAN SEE - IT IS NOT
1130 DATA THE FASTEST ROUTINE AROUND
1140 DATA BUT IT GETS THE JOB DONE!
1150 DATA IT COMES IN VERY HANDY WHEN
1160 DATA YOU WANT TO CREATE A NEAT
1.170 DATA LOOKING SCREEN LAYOUT W/0
1180 DATA ALL THE HASSLE OF COUNTING
1190 DATA SPACES WHEN ENTERING DATA!

• on page allop

TISHIIG NEWS DIGEST

Etvdtw 	Tid..blin
by Peter Smith

Recently a very extensive and genuinely "dinky di"
review of the major data base programs was published in
that great supporter of the TI99/4A, MICROpendium. I
would suggest that anyone who has read this far should
be interested enough to read page 32 of the October
issue of that great magazine.

I use PRbase to keep track of the children in the
primary (soon also the infants) department of my
school, (approximately 197 children).

I used to use Multiplan, as this allowed me to use
numerous mathematical operations on the information
which I kept, however the memory limitations meant that
each class had to be kept separately and EXTERNAL
COPIES of only a few items from each class had to be
used if a departmental printout was required (for
example, a list of names, houses and ages for the whole
department).

PRbase overcomes the memory problem by keeping
details (records) on disk. Very large amounts of data
can be kept in one record: each small piece of data is
called a field; lots of fields make a record; and a
collection of records make a file. For instance, you
can have up to 32 fields in a record, up to 700 records
per disk and each field can be up to 246 characters
long. This sort of power allows, "something useful" to
be done with the TI.

Using the program
There are 2 main sections to the program:

1. setting up the disk, the screen for entry of data,
the output for reports and mailing lists; and

2. entering and manipulating data.
Once the difficult part (in terms of organising

what you want) is completed part 2 is a breeze and a
delight. 	A help screen is easily available from the
data entry screen. 	The instructions are clear, in
retrospect. 	Once the steps have been deciphered and
gone through, and a fair bit of planning undertaken and
executed, the program acts in a way which makes it
convenient and efficient. (I have noticed that
virtually any worthwhile activity needs planning and
not just intuitive "hunches".)

Setting up the main data screen is a busy and
thoughtful task which requires planning, but so it
should. A certain amount of predefined graphic
characters can be incorporated into this screen to add
some "panache" and "colour" to the proceedings.

Reports require very 	careful 	attention 	and
experimentation. Up to 5 separate reports may be
configured and called up. To set them up, you need to
know about your printer codes etc.

Disk access time, when writing and reading to disk
is certainly not time consuming. The ease of editing
screens and searching for and altering data is truly a
joY.

At this stage I feel that I am warning people away
from attempting to use the program. Please give it a
number of tries, because when it is finally under way,
you will have learnt a lot about your computer and
printer, and about the data you wish to use.

One of the main uses of data bases is to present
specific data sorted in special ways. For example, all
those children in class 5C sorted into age groups in
houses alphabetically. Unfortunately P.R.B will find
this difficult, unless some of the special utilities
are used as, you see, PRbase only sorts on 2 fields.
(Once I have said this, someone will shoot me down.
Please do, but show me how it can be done, simply, time
after time.) Individual screens can be printed simply.

I guess I am never happy (completely that is) but
I do have a wish list of things which I would love to
be able to do with PRbase, I think that it would make
it perfect for my use. (**Note, this is a very
subjective point of view.)
1. Mathematical functions being added would allow a
variety of uses.

2. A combined index and sort routine. Although fast,
the sort routine is still rather time consuming.

3. A method of varying the size of the sort field.
As it is based on 10 characters and can often

involve more than 1 field in the sorting process,
which can lead to errors in data output. For
example, I have 2 fields side by side, HOME CLASS
and READING CLASS. If I sort "HOME CLASS" on say
"4D", and have a "4D" in my "READING CLASS", often
the child, with "4D" in "READING CLASS" will show up
in the sort. This is easily fixed by careful naming
of classes, but could be eliminated if the sort
field length was "definable?".

4. 	Global 	alterations. 	Global 	searches are
available, but boy, it would be nice to be able to:
(a) do global maths activities. For example, last
year my childrens' ages were one year less than
this year on 1/1/88. It would be great to be able
to add a given quantity to a field in all records.
This would allow me to change childrens' ages at
the beginning of the year.

(b) Do 	the 	equivalent 	of 	TI-Writer's
"Replace String" 	that 	would allow easier
correction of errors.

5. The ability to sort on more than 2 fields is often
needed and would be an advantage to have. (For
example, all 8 year old boys in Newman House in
class 3V)
I feel I have not done this wonderful program

justice with my comments about my "wish list", as even
without these functions it is fantastic and I am more
than happy to recommend it to anyone. I congratulate
the author for such a fine job and the support he gives
to users having problems, even if they live half way
round the world from him and have simply had a glitch
in printing out the comprehensive instructions.

I have a couple of hints which may help you.
1. When setting up the printer, I have found that
PIO.EC works. I tried just about everything else.

2. Remember that all data is kept as strings and this
means that if we do a sort on "ages" we can end up
with some funny results. 	For example, 7.2, 9.6,
7.1, 10.4, 7.11 sorted from smallest to largest
becomes 10.4, 7.1, 7.11, 7.2, 9.6. I have found it
necessary to use 4 digits as follows; 07.01, 07.02,
07.11, 09.06, 10.04.

3. When using the Option facility to redirect the
output to disk, make sure that you use spaces to
fill the field when prompted for the output device.
For example: 	DSK3.FILE1 (and spaces until cursor
stops)
I would encourage you, if you have stuck with me

this far, to try the program, as it is good; but, ah
well, I would love an Alpha GTV 2000 too!! 0

TqaUrtqa Shaa 30/1117111ra ONM.Tn110
by Lou Amadio

Have you ever 	looked 	through 	a 	copy 	of
Micropendium and marvelled at the prices of software
(and hardware) in the advertisements? The prices,
although listed in $US, were sufficiently low to tempt
me to send away for some module software that I had not
seen before. I mentioned this to some of my friends,
and, before I knew it, I had enough requests for a
sizeable order.

The order consisted of:
$US130.95 22 modules

5 joysticks 	$US 39.75
Postage (airmail) MIS 87.00
US State Tax 	 7.73

65.43

Convert to $A at 73.9 = $A 359.17
Aust Import Duty $A 55.54

Total $A 414.71
' The final landed prices were considerably higher

than what one would expect from a simple conversion
from $US to $A. In fact the ratio turned out to be
approximately 2.43.
Note:

1) The above items were purchased at a time when the
$A was worth approximately 74c US. Current exchange
rates (81c, May 88) will help to offset the direct
purchases by approximately 9.5%.
2) Surface mail rates would be considerably cheaper
than airmail, 	but you will have to wait
approximately 3 months. 	 a

a

T151-111G NUNS DIGEST
	

July 1988, Page 12

HUG
	

TISHIIG ‘111AIS DIGEST
	

July 1988, Page 13

113
by Robert Brown and Stephen Judd

This tennis program features most of the actions
of a real tennis match, including:

- serves;
- forehand and backhand shots;
- lobs, volleys;
- balls out or in the net;
- defensive or offensive play;
- tie-breaker; and
- scores announced by the referee via the speech

synthesizer.
And even better, you can play against a wonderful

partner: the TI99/4A computer; or against a second
player. Three different levels allow you to select a
perfect partner, really adapted to your training and
skill, from beginner to professional.

Furthermore, a live demonstration game between two
computer players will show you how realistic the action
is, and perfectly illustrate all the capabilities of
this program.

Users' instructions
1- Loading the program

Required configuration:
- TI99/4A;
- peripheral expansion system with disk drive and
memory expansion (it is also possible to load it
from cassette using Extended BASIC with just 32K
memory expansion, ED);

- joysticks;
- Speech Synthesizer (optional); and
- Editor/Assembler cartridge (or Extended BASIC,

ED).
Select the Editor/Assembler option 3 (Load and

run)
-File Name: DSK1.TENNIS
-Program Name: TENNIS

The program is now ready for use.
2- Selecting game options

The introduction screen appears, announcing the
program. After a few seconds, a demonstration game
starts automatically, showing live action. Press BACK,
then any key to get the option selection screen.

TENNIS
OPTION SELECTION

1
	

2
PLAYER
	

PLAYERS
	

DEMO

NOVICE 	- -0
AMATELTR
PRO

Select the level and the number of players (or a
demonstration game) by moving the small racket shown in
the chart by using the joystick or the arrow keys
(S,D,E,X). Press ENTER or FIRE once your selection is
made.

You are then prompted for the name of the players.
You can also give a name to the computer champion. If
you do not enter a name, the computer will just assign
a standard one to allow the two players to be
distinguished on the score board. Note that a coloured
player indicates the colour of the player to which the
name is assigned.

Then the following message appears at the bottom
of the screen: "REMOVE THE ALPHA-LOCK THEN PRESS ENTER"

You are now ready to start your tennis match.
3- Playing a tennis match

Move the players with the joysticks. Press the
FIRE button to swing the racket in order to hit the
ball. 	You can position the player to receive the ball
either on the forehand or on the backhand. 	When you
press the FIRE button, the racket starts moving. The
direction of the shot is determined by the relative
position ball and racket when the coincidence is

\,detected.

Serving
When it is your turn to serve, use your joystick

to give the direction of the ball, relatively to the
serve area (left, center or right) but also the
strength of your serve (up or down for fast serve,
center position for normal serve). Then press FIRE
while keeping the joystick in the selected position.
If your first serve is out, you are naturally given a
second chance. the probability of success is related
to the direction and strength you selected as in a real
tennis game.

Positioning the player to return the ball
Moving your player to the right (left) results

automatically in a positioning of his racket for a
forehand shot (backhand shot). However, in order to
allow a fine positioning of players, they can move a
few steps left or right before the racket gets actually
positioned. In any case, hitting the FIRE button
results in moving the racket from backhand to forehand
and vice versa.

Returning the ball
The ball speed control can be achieved by the

players' motion when they hit the ball.
- If the player moves towards the net, the ball will

be accelerated.
- If the player moves backward, the shot will be a

lob if the opponent is close to the net.
- If the player does not move vertically, the ball
will be hit at normal speed.
The ball direction is also affected by the

movement of the player.
Scoring

All the tennis rules are respected. 	the players
change sides after every odd game. 	The referee
announces the score. The match takes place in five
sets. A tie-break game takes place when necessary.

Levels
The three levels are characterized by the pace of

the action and by the increasing aggressiveness of the
computer champion. At novice level, the computer
champion returns the ball in your direction and is not
aggressive. At professional level, the champion
becomes merciless; he alternates fast and normal shots,
executes lobs and volleys. He will not let you breathe
a second. At amateur level, the computer champion
plays at an intermediate level, but be careful;
sometimes he will play as a real professional. At the
end of a match, the level and the number of players is
displayed, showing the level of a performance.

SI '11 options
- Pause: pressing 	results in stopping
temporarily the action. Press any other key to
resume the game.

- Speed: the keys + and - allow to increase or
decrease by step the pace of the game.

- Colour: the colour of the court can be changed by
pressing the function key followed by 1, 2 or 3.
This simulates various kind of tennis courts
(grass, clay or decoturf).

- Redo: the key sequence FCTN[8], allows a restart of
a match from the beginning.

- Back: the key sequence FCTN[9] takes you back to
the options selection screen.

_RAMtlak Melina nip
by Lou Amadio

I do not remember reading about the following in
the Menu documentation, so I am presenting it for what
it is worth.

Whilst using the SHOW DIRECTORY option from the
primary Menu screen I discovered that it is not
necessary to revert back to the primary menu in order
to do a show directory on another drive. All that
needs to be done is to press the number of the next
drive that you want to access. For example, to show
the directory of drives 2, 5, 8 simply enter these
numbers in any order (after first selecting "SHOW
DIRECTORY" from the primary menu).

If, on the other hand, you wish to list the
directory of a number of floppy discs in drive 1,
simply press 1 after replacing each disk with the next

one. continued on page 30

1-15HUG NIMIS DIGEST July 1988, Page 14

410 PRINT "LT. BLUE 	6","D
R. RED 	7","CYAN
","MED. RED 	9","LT. RED

10","DR. YELLOW 11",
420 PRINT "LT. YELLOW 12","D
R. GREEN 13","MAGENTA 	14
","GRAY 	15","WHITE

16": :
430 ROW=15
440 OCHAR=3[
450 OROW=1
460 IF SPCH THEN 480
470 CALL SPGET("ENTLR",ENTS)
:: CALL SPGET("SQUARE",SQRS)
:: CALL SPGET("SCREEN",SCRS)
:: CALL SPGET("COLOR",COL$)
480 OCOL=1
490 PRINT "ENTER SCREEN COLO
R CODE: 8";
500 IF SPCH THEN 520
510 CALL SAY(,ENTS,,SCRS„CO
L$)
520 ACCEPT AT(24,26)SIZE(-3)
BEEP VALIDATE(DIGIT):SCR_COD

530 IF (SCR_CODE>16)0R(SCR_C
ODE=0)THEN 510
540 PRINT "ENTER SQUARE COLO
R CODE: 7";
550 IF SPCH THEN 570
560 CALL SAY(,ENTS„SQRS„CO
L$)
570 ACCEPT AT(24,26)SIZE(-3)
BEEP VALIDATE(DIGIT):K
580 IF (K>16)0R(K=0)THEN 560
590 SC=K*4+76
600 CALL CLEAR
610 CALL SCREEN(SCR_CODE)
620 CALL SETCOLOR
630 CALL KEY(1,K,S)
640 CALL GCHAR(ROW,COL,FLASH

650 CALL HCHAR(ROW,COL,30)
660 CALL HCHAR(ROW,COL,FLASH

670 IF S=0 THEN 940
680 IF K=16 THEN 790
690 ADDROW=(K=5)+(K=6)+(K=4)
-(K=14)-(K=0)-(K=15)
700 ADDCOL=(K=15)+(K=2)+(K=4
)-(K=6)-(K=3)-(K=14)
710 ROW=ROW+ADDROW
720 COL=COL+ADDCOL
730 ROW=(ROW>0)*(ROW<25)*ROW
-(ROW<1)-(ROW>24)*24
740 COL=(COL>0)*(COL<33)*COL
-(COL(1)-(COL>32)*32
750 CALL HCHAR(ROW,COL,SC)
760 OROW=ROW
770 OCOL=COL
780 GOTO 630
790 IF SPCH THEN 810
800 CALL SAY(,ENTS„SQRS,,C0
L$)
810 CALL GCHAR(24,16,CGC)
820 CALL GCHAR(24,17,CG2)
830 CALL GCHAR(24,18,CG3)
840 ACCEPT AT(24,14)SIZE(3)V
ALIDATE(DIGIT):K$
850 IF KS="" THEN 840
860 K=VAL(K$)
870 IF (K>16)0R(K=0)THEN 840
880 SC=K*4+76
890 CALL HCHAR(ROW,COL,SC)
900 CALL HCHAR(24,16,CGC)
910 CALL HCHAR(24,17,CG2)
920 CALL HCHAR(24,18,CG3)
930 GOTO 630
940 CALL KEY(2,K,S)
950 IF S=0 THEN 630
960 IF K=11 THEN 1220
970 IF K=13 THEN 1100
980 ADDCOL=(K=15)+(K=2)+(K=4
)-(K=6)-(K=3)-(K=14)

10 ! CRAYON PROGRAM--DISK
20 ! DATE 10/23/81
30 1 BY JEFF COOPER
40 CALL CLEAR
50 CALL SCREEN(3)
60 PRINT "GOING TO USE SPEEC
H? Y";
70 ACCEPT AT(24,23)SIZE(-2)V
ALIDATE("YN")BEEP:I$
80 IF IS="Y" THEN 100
90 IF IS="N" THEN SPCH=1 ELS
E 60
100 CALL CLEAR
110 PRINT "FROGRAMS:": :"1 C
REATE A DESIGN.": :"2 DISPLA
Y OLD DESIGNS (DISK) ": :
120 INPUT "ENTER PROGRAM It":

130 IF N=2 THEN 1570
140 IF N<>1 THEN 120
150 CALL CLEAR
160 PRINT "COLOR CRAYON PROG
RAM.": : :
170 INPUT "WOULD YOU LIKE IN
STRUCTIONS Y OR N: ":1$
180 IF I$="N" THEN 310
190 IF IS<>"Y" THEN 170
200 PRINT : : :"THIS PROGRAM
LETS YOU DRAW":"DESIGNS ON
THE SCREEN.": :"YOU HAVE A M
OVABLE SQUARE"
210 PRINT "WHICH CAN CHANGE
COLOR.":"YOU CAN ALSO CHANGE
THE":"SCREEN COLOR.": : :

220 INPUT "HIT ENTER TO CONT
INUE ":1$
230 CALL CLEAR
240 PRINT "TO CHANGE THE COL
OR OF THE":"SQUARE, PRESS TH
E SHIFT KEY":"('B'*) THEN A
COLOR CODE 	(1-16) THEN PR
ESS ENTER."
250 PRINT : :"TO CHANGE THE
SCREEN COLOR":"PRESS ENTER('
.'*) THEN A COLOR CODE,TH
EN PRESS ENTER.": : :
255 PRINT "* ON 99/4A":
260 INPUT "HIT ENTER TO CONT
INUE ":1$
270 CALL CLEAR
280 PRINT "MAKE A DESIGN BY
LEAVING A":"TRAIL: PUSH S TO
GO <,":"D TO GO >, E ", X V
,":"ANDWRZCFOR DIAGONAL
S."
290 PRINT : : :"TO SKIP OVER
A LINE PUSH:":"J<, K>, I",
MV, AND U 0 N .":"FOR DIAGON
ALS.": : :
300 PRINT "TO END PROGRAM PU
SH CLEAR.":
310 PRINT : :"WILL YOU WANT
TO SAVE THE"
320 INPUT "DESIGN ON DISK Y
OR N: ":1$
330 IF IS="N" THEN 380
340 IF IS<>"Y" THEN 320
350 FLAG=1
360 PRINT : :"TO SAVE YOUR D
ESIGN PRESS P":"(PERMINATE)
AND THEN ENTER.":"THE SCREEN
WILL BE PUT ON":"DISK."

370 OPEN #1:"DSK1.2180/D",AP
PEND,VARIABLE 254,INTERNAL
379 INPUT "HIT ENTER ":1$
380 CALL CLEAR
390 COL=15
400 PRINT "HERE ARE THE COLO
R CODES.": :"TRANSPARENT 1",
"BLACK 	2","MED. GREEN
3","LT. GREEN 	4","DR. BLU

E 	5",

990 ADDROW=(X=5)+<K=6)+(K=4)
-(K=14)-(K=0)-(K=15)
1000 ROW=ADDROW+ROW
1010 COL=COL+ADDCOL
1020 ROW=(ROW>0)*(ROW<25)*R0
W-(ROW<1)-(ROW>24)*24
1030 COL=(COL>0)*(COL(33)*C0
L-(COL<1)-(COL>32)*32
1040 CALL GCHAR(ROW,COL,NCHA
R)
1050 CALL HCHAR(OROW,OCuL,FL

ASH)
1060 FLASH=NCHAR
1070 OROW=ROW
1080 OCOL=COL
1090 GOTO 630
1100 IF SPCH THEN 1120
1110 CALL SAY(,ENTS„SCRS„C
OLS)
1120 CALL GCHAR(24,16,CGC)
1130 CALL GCHAR(24,17,CG2)
1140 CALL GCHAR(24,18,CG3)
1150 ACCEPT AT(24,14)SIZE(3)
VALIDATE(DIGIT):Kl$
1160 IF Kl$="" THEN 1150
1170 SCR_CODE=VAL(K1$)
1180 IF (SCR CODE>16)0R(SCR_
CODE=0)THEN 1150
1190 CALL SCREEN(SCR_CODE)
1200 IF SCR_CODE<3 THEN CALL
COLOR(0,8,1)ELSE CALL COLOR
(0,2,1)
1210 GOTO 900
1220 IF FLAG=0 THEN 630

1230 IF SPCH THEN 1250
1240 CALL SAY("TO SAVE+SCREE
N+0N+DISKETTE, PRESS ENTER")
1250 CALL KEY(0,K,S)
1260 IF (S=0)+(S=-1)THEN 125
0
1270 IF K<>13 THEN 630
1230 IF SCR_CODE>9 THEN 1310

1290 BS$="0"&STRS(SCR_CODE)
1300 GOTO 1340
1310 BS$=STRS(SCR_CODE)
1320 CC=0
1330 NLINES=9
1340 FOR R=1 TO 3
1350 8$=""
1360 IF R=3 THEN NLINES=6
1370 FOR COUNT=1 TO NLINES
1380 CC=CC+1
1390 FOR C=3 TO 30

1400 CALL GCHAR(CC,C,CGC)
1410 138=13$&CHRS(CGC):: NEXT
C :: NEXT COUNT
1420 IF R=3 THEN 1450
1430 PRINT #1:13$
1440 NEXT R
1450 FOR C=1 TO 2
1460 GOSUB 1540 :: NEXT C
1470 FOR C=31 TO 32
1480 GOSUB 1540 :: NEXT C
1490 0$=13$&SEG$(81$,1,84)
1500 BIS=SEG$(818,85,12)
1510 PRINT #1:0$
1520 PRINT #1:131$&BS$
1530 GOTO 630
1540 FOR R=1 TO 24
1550 CALL GCHAR(R,C,CGC):: B
1$=131$&CHRS(CGC):: NEXT R
1560 RETURN
1570 CALL CLEAR
1580 PRINT "DISPLAY DESIGNS
PROGRAM."
1590 PRINT : : :"YOUR DESIGN
S WILL BE":"RETRIEVED FROM D
ISK AND":"DISPLAYED ON THE S
CREEN.": :
1600 PRINT "IF YOU HAVE MuRE
THAN ONE":"DESIGN, HIT THE

SPACE BAW:"YOUR NEXT DES1G
N WILL BE":"DISPLAYED."
1610 PRINT : :"END PROGRAM B
Y PUSHING CLEAR": : : :

continued on page

680 CID=32
690 CALL CLEAR
700 DIM CRD(52)
710 IF CID=52 THEN 740 ELSE
720
720 GOSUB 4380
730 GOTO 770
740 FOR I=1 TO 52
750 CRD(I)=I
760 NEXT I
770 XP=2
780 YP=2
790 A$="BET: 	CHIPS 	BANK:
$"&STR$(BANK)

800 GOSUB 3020
810 YP=4
820 XP=8
830 A$="CHIP VALUE: $"&STR$(
CVAL)
840 GOSUB 3020
850 FOR C=144 TO 156
860 READ C$
870 CALL CHAR(C,C$)
880 NEXT C
890 RESTORE
900 FOR C=128 TO 140
910 READ C$
920 CALL CHAR(C,C$)
930 NEXT C
940 READ C$
950 CALL CHAR(157,C$)
960 READ C$
970 CALL CHAR(158,C$)
980 CALL CHAR(159,"")
990 READ C$
1000 CALL CHAR(141,C$)
1010 READ C$
1020 CALL CHAR(142,C$)
1030 FOR C=120 TO 125
1040 READ C$
1050 CALL CHAR(C,C$)
1060 NEXT C
1070 READ C$
1080 CALL CHAR(96,C$)
1090 READ C$
1100 CALL CHAR(97,C$)
1110 READ C$
1120 CALL CHAR(98,C$)
1130 READ C$
1140 CALL CHAR(99,C$)
1150 CALL CHAR(35,"010204089
0A000F0")
1160 DATA "0038440810207C"
1170 DATA "00384418044438"
1180 DATA "00081828487C08"
1190 DATA "00784078044438"
1200 DATA "00384078444438"
1210 DATA "007C0408102020"
1220 DATA "00384438444438"
1230 DATA "003844443C0478"
1240 DATA "004CD25252524C"
1250 DATA "00040404044438"
1260 DATA "00384444544C3C"
1270 DATA "00485060504844"
1280 DATA "003844447C4444"
1290 DATA "10387CFEFE7C3810"
1300 DATA "6CEEFEFE7C7C3810"
1310 DATA "10383854FE7C1038"
1320 DATA "10387CFEFE6C1038"
1330 DATA "FF"
1340 DATA "0101010101010101"
1350 DATA "8080808080808OFF"
1360 DATA "0000000000000OFF"
1370 DATA "8080808080808080"
1380 DATA "FF01010101010101"
1390 DATA "0707070707070707"
1400 DATA "0000000000000OFF"
1410 DATA "0101010707070707"
1420 DATA "0000000000000001"
1430 FOR Z=1 TO 8
1440 CALL COLOR(Z,2,13)
1450 NEXT Z
1460 K=16
1470 CALL COLOR(9,2,K)
1480 CALL COLOR(13,2,K)

1490 CALL COLOR(14,2,K)
1500 CALL COLOR(12,2,13)
1510 CALL COLOR(15,14,K)
1520 CALL COLOR(16,14,K)
1530 CALL COLOR(10,14,K)
1540 CALL COLOR(11,2,K)
1550 CALL SCREEN(2)
1560 REM *******PROGRAM****
**

1570 FOR F=10 TO 23
1580 CALL VCHAR(7,F,32,12)
1590 NEXT F
1600 CALL HCHAR(23,l,32,32)
1610 CALL HCHAR(24,1,32,32)
1620 GOSUB 2930
1630 GOSUB 2180
1640 GOSUB 4010
1650 CRDNUM=1
1660 X=10
1670 Y=14
1680 GOSUB 2310
1690 S(1,CRDNUM)=SUIT
1700 S(2,CRDNUM)=CARD
1710 GOSUB 2550
1720 FOR CRDNUM=2 TO 5
1730 X=X+2
1740 Y=Y+1
1750 GOSUB 2310
1760 S(1,CRDNUM)=SUIT
1770 S(2,CRDNUM)=CARD
1780 GOSUB 2620
1790 NEXT CRDNUM
1800 CRDNUM=CRDNUM-1
1810 XP=7
1820 YP=20
1830 AWDISCARD ANY CARDS?"
1840 GOSUB 3020
1850 CALL KEY(0,KEY,STATUS)
1860 IF STATUS<=0 THEN 1850
1870 IF (KEY=49)+(KEY=50)+(K
EY=51)+(KEY=52)+(KEY=53)+(KE
Y=32)THEN 1900
1880 CALL SOUND(1,110,1)
1890 GOTO 1850
1900 IF KEY=32 THEN 1980
1910 KEY=KEY-48
1920 IF D$(KEY)=" " THEN 195
0
1930 D$(KEY)=" "
1940 GOTO 1960
1950 D$(KEY)="#"
1960 CALL HCHAR(13+KEY,8+2*K
EY,ASC(D$(KEY)))
1970 GOTO 1850
1980 X=10
1990 Y=14
2000 CALL HCHAR(20,1,32,32)
2010 FOR II=1 TO 5
2020 IF D$(1I)<>"#" THEN 209
0
2030 CRDNUM=CRDNUM+1
2040 GOSUB 2310
2050 GOSUB 2790
2060 H(S(2,II))=H(S(2,II))-1
2070 S(1,II)=SUIT
2080 CALL HCHAR(Y,X,32)
2090 X=X+2
2100 Y=Y+1
2110 NEXT II
2120 GOSUB 3070
2130 IF RANK<>0 THEN 2150
2140 GOSUB 3200
2150 GOSUB 3460
2160 CALL KEY(0,KEY,STATUS)
2170 IF STATUS<=0 THEN 2160
ELSE 1570
2180 A$=" 	 SHUFFLING

2190 XP=1
2200 YP=12
2210 GOSUB 3020
2220 FOR T=I TO CID
2230 RANDOMIZE
2240 N=INT(CID*RND)+1
2250 P=CRD(I)

WOG
	

T151-111G RAMS DIGEST
	

July 1988, Page 15

100 REM ************
110 REM *DRAW POKER*
120 REM ************
130 REM TISHUG LIBRARY 1&2
140 REM TI BASIC
150 CALL CLEAR
160 PRINT TA4(11);"DRAW POKE
R"
170 PRINT "AUTHOR..": :TAB(6
):"MANUEL CONSTANTINIDIS"
180 DIM UC$(13)
190 DIM RR(9)
200 UC$(1)="003E040810221C"
210 UC$(2)="001C222018221C"
220 UC$(3)="00103E12141810"
230 UC$(4)="001C22201E021E"
240 UC$(5)="001C22221E021C"
250 UC$(6)="0004040810203E"
260 UC$(7)="001C22221C221C"
270 UC$(8)="001E203C22221C"
280 UC$(9)="00324A4A4A4B32"
290 UC$(10)="001C2220202020"
300 UC$(11)="003C322A22221C"
310 UC$(12)="0022120A060Al2"
320 UC$(13)="0022223E22221C"
330 US$(1)="081C3E7F7F3E1C08

340 US$(2)="081C3E3E7F7F7736

350 US$(3)="1C083E7F2A1C1C08

360 US$(4)="1C08367F7F3E1C08

370 DIM S(2,5)
380 DIM H(13)
390 DIM D$(5)
400 FOR DE=1 TO 1500
410 NEXT DE
420 CALL CLEAR
430 PRINT TAB(10);"INSTRUCTI
ONS": : :
440 PRINT "TO DISCARD A CARD
PRESS A":"NUMBER FROM 1 TO
5.WITH THE":"TOP CARD BEING
NUMBER 1":
450 PRINT "DO THE SAME FOR A
LL CARDS TO":"BE DISCARDED T
HEN PRESS THE":"SPACE BAR.IF
YOU CHANGE";

460 PRINT "YOUR MIND ON A CA
RD SIMPLY":"PRESS THAT NUMBE
R AGAIN.":"CARDS TO BE DISCA
RDED ARE":"INDICATED BY AN";
470 PRINT " ARROW.": : :
480 PRINT "TO CHANGE THE VAL
UE OF THE":"CHIPS DURING THE
GAME PRESS":"0 WHEN ASKED T

0 MAKE A BET."
490 PRINT "PRESSING THE SPAC
E BAR FOR":"A. BET WILL TAKE
THE PREVIOUS":"BET VALUE.":
: :
500 INPUT "VALUE OF EACH CHI
P?":CVAL
510 IF CVAL<=50 THEN 540
520 PRINT "HOUSE LIMIT $50"
530 GOTO 500
540 CALL CLEAR
550 RANDOMIZE
560 INPUT "HOW MUCH TO START
WITH?":BANK
570 IF BANK<=1000 THEN 600
580 PRINT "DON'T BE GREEDY":
"LESS THAN $1000 PLEASE"
590 GOTO 560
600 CALL CLEAR
610 PRINT "WILL YOU USE A 1
. 7 UP DECK":"
2. FULL DECK"

620 CALL KEY(0,KEY,STATUS)
630 IF STATUS<=0 THEN 620
640 IF KEY=49 THEN 680
650 IF KEY<>50 THEN 620
660 CID=52
670 GOTO 690

	

11111111■P 	

July 1988, Page 16 TISHUG NUNS DIGEST

2260 	CRD(I)=CRD(N) 2890
2270 	CRD(N)=P
2280 NEXT I 2900
2290 	CALL HCHAR(12,1,32,32) 2910
2300 RETURN 2920
2310 	IF 	(CRD(CRDNUM)>=1)*(CR 2930
D(CRDNUM)<=13)THEN 2320 ELSE 2940
2370 2950

2320 	SUITCHR=157 2960
2330 SUIT=1 2970
2340 CARD=CRD(CRDNUM)-13*(SU 2980
IT-1) 2990
2350 CRDCHR=CRD(CRDNUM)+143 3000
2360 GOTO 2530 3010
2370 	IF 	(CRD(CRDNUM)>=14)*(C 3020
RD(CRDNUM)<=26)THEN 	2380 ELS 3030
E 2430 3040
2380 SUITCHR=158
2390 SUIT=2
2400 CARD=CRD(CRDNUM)-13*(SU
IT-1)
2410 CRDCHR=CRD(CRDNUM)+130
2420 GOTO 2530
2430 IF (CRD(CRDNUM)>=27)*(C
RD(CRDNUM)<=39)THEN 2440 ELS
E 2490
2440 SUITCHR=141
2450 SUIT=3
2460 CARD=CRD(CRDNUM)-13*(SU
IT-1)
2470 CRDCHR=CRD(CRDNUM)+101
2480 GOTO 2530
2490 SUITCHR=142
2500 SUIT=4
2510 CARD=CRD(CRDNUM)-13*(SU
IT-1)
2520 CRDCHR=CRD(CRDNUM)+88
2530 H(CARD)=H(CARD)+1
2540 RETURN
2550 CALL HCHAR(Y-7,X+1,123,
4)
2560 CALL VCHAR(Y-6,X+5,124,
6)
2570 CALL VCHAR(Y-6,X,121,6)
2580 CALL HCHAR(Y,X+1,120,4)
2590 GOSUB 2750
2600 GOSUB 2790
2610 RETURN
2620 CALL HCHAR(Y-7,X+1,97,2

2630 CALL HCHAR(Y-7,X+3,122)
2640 CALL HCHAR(Y-7,X+4,123)
2650 CALL VCHAR(Y-6,X+5,124,
6)
2660 CALL VCHAR(Y-7,X,99)
2670 CALL VCHAR(Y-6,X,98)
2680 CALL VCHAR(Y-5,X,96,4)
2690 CALL VCHAR(Y-1,X,125)
2700 CALL HCHAR(Y,X+1,120,4)
2710 GOSUB 2750
2720 CALL HCHAR(Y-5,X+1,SUIT
CHR)
2730 GOSUB 2790
2740 RETURN
2750 FOR L=(Y-6)TO (Y-1)
2760 CALL HCHAR(L,X+1,159,4)
2770 NEXT L
2780 RETURN
2790 CALL HCHAR(Y-6,X+1,CRDC
HR)
2800 CALL HCHAR(Y-5,X+1,SUIT
CHR)
2810 IF (CRDNUM=5)+(II=5)THE
N 2820 ELSE 2920
2820 IF (SUIT=1)+(SUIT=2)THE
N 2830 ELSE 2880
2830 CALL CHAR(104,UC$(CARD)

2840 CALL CHAR(105,US$(SUIT)

2850 CALL HCHAR(Y-2,X+4,105)
2860 CALL HCHAR(Y-1,X+4,104)
2870 RETURN
2880 CALL CHAR(112,UC$(CARD)

CALL CHAR(113,UWSUIT)

CALL HCHAR(Y-2,X+4,113)
CALL HCHAR(Y-1,X+4,112)
RETURN
FOR I=1 TO 13
H(I)=0
NEXT I
FOR I=1 TO 5
S(1,1)=0
S(2,I)=0
D$(1)=" "
NEXT I
RETURN
REM
FOR I=1 TO LEN(A$)
CALL HCHAR(YR,I+XP,ASC(

SEG$(A$,I,I)))
3050 NEXT I
3060 RETURN
3070 RANK.°
3080 IF (S(1,1)=S(1,2))*(S(1
,1)=S(1,3))*(S(1,1)=S(1,4))*
(S(1,1)=S(1,5))THEN 3090 ELS
E 3100
3090 RANK=4
HOO T=0
3110 I=I+1
3120 IF I>=10 THEN 3190
3130 IF H(I)=0 THEN 3110
3140 IF (H(I)=H(I+1))*(H(I)=
H(I+2))*(H(I)=H(I+3))*(H(I),_
H(I+4))THEN 3150 ELSE 3190
3150 IF RANK<>4 THEN 3180
3160 RANK=1
3170 RETURN
3180 RANK=5
3190 RETURN
3200 1=0
3210 I=I+1
3220 IF 1=14 THEN 3380
3230 IF H(I)=0 THEN 3210
3240 ON H(I)GOTO 3210,3250,3
340,3440
3250 1=1+1
3260 IF 1=14 THEN 3400
3270 IF H(I)=2 THEN 3300
3280 IF H(I)=3 THEN 3320
3290 GOTO 3250
3300 RANK=7
3310 RETURN
3320 RANK=3
3330 RETURN
3340 I=I+1
3350 IF 1=14 THEN 3420
3360 IF H(I)=2 THEN 3320
3370 GOTO 3340
3380 RANK=9
3390 RETURN
3400 RANK=8
3410 RETURN
3420 RANK=6
1430 IMURN
3440 RANK-2
3450 RETURN
3460 ON RANK GOTO 3470,3510,
3550,3590,3630,3670,3710,375
0,3790
3470 A$=" 	A STRAIGHT FLUS
H 100/1"
3480 CALL SOUND(4000,440,2,6
59,2,880,2)
3490 BON=100
3500 GOTO 3820
3510 A$=" 	FOUR OF A KIN
D 30/1"
3520 CALL SOUND(3600,440,2,6
59,2,880,2)
3530 BON=30
3540 GOTO 3820
3550 A$=" 	 FULL HOUSE
20/1"
3560 CALL SOUND(3200,440,2,6
59,2,880,2)
3570 BON=20

3580 GOTO 3820
3590 A$=" 	 FLUSH 15/
1"
3600 CALL SOUND(2200,440,2,6
59,2,880,2)
3610 BON=15
3620 GOTO 3820
3630 A$=" 	 STRAIGHT 10
/1"
3640 CALL SOUND(1500,440,2,6
59,2,880,2)
3650 BON=10
3660 GOTO 3820
3670 A$=" 	THREE OF A KIN
D 5/1"
3680 CALL SOUND(1000,440,2,6
59,2,880,2)
3690 BON=5
3700 GOTO 3820
3710 A$=" 	 TWO PAIRS 3
/1"
3720 CALL SOUND(1000,440,2,6
59,2,880,2)
3730 BON=3
3740 GOTO 3820
3750 AS=" 	 ONF PAIR I
/1"
3760 CALL SOUND(500,440,2,65
9,2,880,2)
3770 BON=1
3780 GOTO 3820
3790 A$=" 	 NOTHING"
3800 CALL SOUND(500,110,1)
3810 BON=0
3820 RR(RANK)=RR(RANK)+1
3830 XP=1
3840 YP=23
3850 GOSUB 3020
3860 WIN=BET*CVAL*BON
3870 IF BON=0 THEN 4000
3880 A$="YOU WIN $"&STR$(BE1
*CVAL)&" X "&STR$(BON)&"
"&STR$(WIN)
3890 XP=INT((32-LEN(A$))/2)
3900 YP=24
3910 GOSUB 3020
3920 FOR P=1 TO 20
3930 CALL SOUND(50,RANK*100-1
1000,2)
3940 NEXT P
3950 BANK=BANK+WIN
3960 A$=STR$(BANK)&" "
3970 XP=24
3980 YP=2
3990 GOSUB 3020
4000 RETURN
4010 A$="BETTING? 1_5 CHIT7"
4020 XP=6
4030 YP=12
4040 GOSUB 3020
4050 CALL KEY(0,KEY,STATUS)
4060 IF STATUS<=0 THEN 4050
4070 IF KEY=32 THEN 4110
4080 iF KLY=48 THEN 4210
4090 IF ((KEY<=48)+(KEI
)THEN 4050
4100 BET=(KEY-48)
4110 BANK=BANK-(BET*CVAL)
4120 CALL HCHAR(12,1,32,32)
4130 XP=7
4140 YP=2
4150 A$=STR$(BET)
4160 GOSUB 3020
4170 XP=24
4180 A$=STR$(BANK)&"
4190 GOSUB 3020
4200 RETURN
4210 CALL CLEAR
4220 CALL SCREEN(13)
4230 INPUT "VALUE OF EACH C11
IP?":CVAL
4240 IF CVAL<=50 THEN 4270
4250 PRINT "HOUSE LIMIT $50"
4260 GOTO 4230
4270 CALL CLEAR

4280 AS="BET: 	CHIPS 	BANK
: $"&STR$(BANK)
4290 XP=2
4300 YP=2
4310 GOSUB 3020
4320 AWCHIP VALUE: r&STR$
(CVAL)
4330 XP=8
4340 YP=4
4350 GOSUB 3020
4360 CALL SCREEN(2)
4370 GOTO 4010
4380 CC=0
4390 FOR 1=6 TO 13
4400 CC=CC+1
4410 CRD(CC)=I
4420 NEXT I
4430 FOR 1=19 TO 26
4440 CC=CC+1
4450 CRD(CC)=I
4460 NEXT I
4470 FOR 1=32 TO 39
4480 CC=CC+1
4490 CRD(CC)=I
4500 NEXT I
4510 FOR 1=45 TO 52
4520 CC=CC+1
4530 CRD(CC)=I
4540 NEXT I
4550 RETURN

continued from page 14

1620 INPUT "HIT ENTER TO CON
TINUE. ":1$
1630 OPEN #2:"DSK1.2180/0",1
NPUT ,VARIABLE 254,INTERNAL
1640 CALL CLEAR
1650 CALL SETCOLOR
1660 COUNT.°
1670 IF EOF(2)THEN 1830
1680 INPUT #2:A$
1690 INPUT la:BS
1700 INPUT #2:C$
1710 INPUT #2:1$
1720 DS=SEWC$,1,168)
1730 1$=SEGS(C$,169,84)&1$
1740 PRINT AS;B$;D$:
1750 FOR C=1 TO 2
1760 GOSUB 1870 :: NEXT C
1/70 FOR C=31 TO 32
1780 GOSUB 1870 :: NEXT C
1790 CALL SCREEN(VAL(SEG$(18
,97,2)))
1800 CALL KEY(0,K,S)
1810 IF S=0 THEN 1800
1820 IF K<>32 THEN 1800 ELSE
1660

1830 CLOSE #2
1840 IF SPCH THEN CALL CLEAR
:: STOP

1850 CALL SAY("END+0F+DATA,
PRESS+CLEAR TOESTOP")

1860 GOTO 1860
1870 FOR R.1 TO 24
1880 COUNT=COUNT+1
1890 CALL VCHAR(R,C,ASC(SEG$
(IS,COUNT,1))):: NEXT R
1900 RETURN
1910 SUB SETCOLOR
1920 FOR I=1 TO 15 STEP 2
1930 CALL CHAR(I*4+76,"FFEFF
FFFFFFFFFFF")
1940 CALL CHAR(I*4+80,"")::
NEXT I
1950 C=1
1960 FOR 1=7 TO 14
1970 CALL COLOR(I,C,C+1):: C
=C+2 :: NEXT I
1980 SUBEND

3unEEfil
by Robert Brown and Stephen Judd

Sneggit is a game requiring fast reactions, quick
planning, and a small dose of caution. Those evil
forces of chaos have struck the henhouse, scattering
all the eggs around where some hungry snakes are ready
to make a quick meal if you do not stop them. But
watch it! These snakes are not about to just slink
around while you rescue all the eggs; they think you
taste pretty good, too.

You control the chicken who was left to guard the
henhouse. By moving next to an egg and pressing the
fire button, you can pick up the egg onto your back,
where you can carry it to a nest and drop it off
safely. Defend the nest long enough, and your egg
hatches into a baby chick, who runs off the screen and
leaves you another egg to save. The snakes will leave
eggs in the nest as long as you are there to guard the
nest, but slip away to get another egg and your nest
egg is fair game. If you can put 16 eggs into nests,
the chicken in the sky will give you a helper to take
over in case of snakebite. There are a lot of weeds
and rocks scattered around the barnyard which just get
in your way and make it hard to get around. The snakes
are smaller than you, so they can sometimes go places
you cannot. Snakes can also go down snake holes when
they feel like it, and they come up where you least
expect them. Watch your nests! You can face down a
snake, but turn your back on one and you are his next
meal.

The chicken is controlled by either a joystick or
the standard keyboard keys for directional control
(S/J, D/K, E/I, and X/M for left, right, up, down, and
Q/Y for fire). Since Sneggit can be played by two
players, only the active player's keys are enabled.
During play, the REDO key will take you back to the
secondary title screen where you can restart another
game or go back to the main title screen. Pressing the
BACK key during play takes you back to the main title
screen.

A round ends when all eggs have been eaten or
after the snake has you for lunch. Three rounds make a
game. Your highest score is kept as long as Sneggit is
running. The scores of the last game played are shown
for comparison.

V10111=111■1=IMMIMIiIIMI■11■1=11 	

Sneggit may be played by one or two players.
There are three levels of play; Novice, Advanced, and
Expert. 	The Novice level is set up for easy learning
and a slower playing speed. 	After you master the
Novice level, you can move up to the Advanced level.
Advanced gives twice as many points per egg, but is
quite a bit faster to play. When even the Advanced
level is too easy, you can move on to the Expert level.
This scores four times the points as the Novice level,
but there are two snakes, and they move much faster.

Each colour egg gives a different number of points
when it is picked up; see the help screen for a picture
which shows the scoring. The help screen also shows
you where you can pick up eggs and where you must stand
to drop them into the nest. You may call up the help
screen from the main title screen by pressing the AID
key. If you are not close enough to the nest, or if
you hold the fire button too long, you will drop the
egg and smash it. The FIRE button needs a lighter
touch for each advanced level of play, so you need a
very quick touch at the Expert level.

Eggs are scored once when you pick them up, again
when you successfully put them into the nest, and one
You must protect the eggs
until they hatch.

A nest can only hold eight eggs at one time; if
you try to put more than eight into a nest, the new
eggs will fall out onto the ground. It is not a
problem but you can prevent it from happening by not
putting all your eggs in one basket. Sometimes eggs
can be very hard for you to see, but the snake still
knows where they are.

I cannot tell you any more. If you want to learn
more, you will have to play the game! Happy egging!

continued from page 20

Table 4 - TMS9902 ACC Control Register Format

Address Name
	

Description

7 	SBS1 Stop Bit Selection. ([0,01: 1.5 bits;
6 	SBS2 	 [OW: 2 bits; fl,x): 1 bit)

5 	PENS Parity Enable
4 	PODD Odd Parity Select
3 	CLK4M. Input Divide Select
2 	- 	Not used
1 	RCL1 Character Length Select ([0,01: 5 bits;
0 	RCLO 	 [0,11: 6 bits; [1,01: 7 bits;

[1,11: 8 bits.

HUG TISHIIG NFU% DIGEST July 1988, Page 18

]_[)(0 	 /:11I)d-11111
by Jim Peterson, Tigercub Software

'174 -" 	 4 r 	 ' 11-1,41A

What the heck are those, you say? 	You may well
ask. The "blue book" that came with your computer says
nothing about them, and most of the programming
tutorial books on the subject are equally silent. If
you waded through the computerese and mathematese text
of the User's Reference Guide, you found them discussed
on page II-14 under Relational Expressions and on page
II-51 under IF THEN ELSE, but you probably did not
realize their potential. Then, you graduated to
Extended BASIC and found those easy to use, in the
clear logical expressions AND, OR, NOT and XOR, and you
looked no further.

So, what can a relational expression do? Nothing
that cannot be done without it. But it can often do
the job so much more compactly, so much more
efficiently, and therefore so much faster!

So, let us learn to use them. And let us learn in
plain English, not computerese. The following may not
be technically correct, but it is the way it all works
out.

First, every expression has a true/false value,
which is entirely different and separate from the value
of the variables or numbers or strings it contains. On
the TI99/4A, a false statement has a value of 0, which
is easy to remember. A falsehood is worth nothing.
Unfortunately, a true statement has a value of -1,
which does not fit in too well! On some other computer
you may have learned that a true expression has a value
of +1, but on the TI99/4A it is -1.

So, in ...F=7 :: IF F=8 THEN 	 F-7 has a value
of -1 because obviously F does equal 7, and F=8 has a
value of 0 because it is not true.

Second, when an IF refers to a variable without an
"=" sign, it means "00". For instance, IF X THEN 1000
means "if X is more or less than 0, if it is not 0, if
it is anything other than 0, then go to 1000".

Third, the computer will try to use the expression
mathematically before it tries to interpret its
true/false value. Remember that everything within
parentheses is worked first. For instance ...X=1
Y=2 :: IF (X=1)+(Y=2) THEN 1000... Since both are
true, this works out to IF (-1)+(-1)<>0 THEN 1000, and
since -1 plus -1 is not 0, we go to 1000. On the other
hand, X=1 :: Y=2 :: IF X=1+Y=2 THEN 1000 will first be
calculated as X=1+Y, which comes out as X=3, and then
as X=3=2, which has a true/false value of 0 (false)
because X=3 has a true/false value of 0 (false), not 2!

Finally, always remember that a variable keeps its
previous value until the calculation of an entire
equation is completed. X=3 :: X=X+(X+3)*X-X/X"X+(X=0)
is worked as X=3+(3+3)*3-3/3"3+(3=0).

Now that you have assimilated this vast knowledge,
how can it be used? The most common way is in the
expression IF (X=1)+(Y=2) THEN 200. In this case, if
it is true that X=1 but Y does not equal 2, then -1+0
is <>0 so you go to 200. If X is not 1 but Y=2, then
0+-1 is still 00, and if X=1 and Y=2 then -1 plus -1
is still 00, so you still go to 200, but if X is not 1
and Y is not 2 then 0+0 is not 00 so you do not. Of
course, in Extended BASIC, you could simply write IF
X=1 OR Y=2 THEN 200.

If you want to go to 200 only if X=1 or if Y=2 but
not if both are true, then you can write IF
(X=1)+(Y=2)=-1 because either -1 plus 0 or 0 plus -1
will equal -1. In Extended BASIC, this is the
"exclusive OR", IF X=1 XOR Y=2.

And if you want to go to 200 only if both are
true, you can write IF (X=1)+(Y=2)=-2, or more commonly
IF (X=1)*(Y=2) because if either or both are not true
the multiplication by 0 will give O. In Extended
BASIC, this is IF X=1 AND Y=2 .

And you can write more complicated versions,
carefully watching your parentheses, such as IF
(X=1)+((Y=2)*(Z=3)) which translates to IF X=1 OR Y=2
AND 2=3.

So, if you are programming in Extended BASIC, why
bother with all those parentheses? Why not just use OR
and AND? In the above cases, that is true. But you
have not yet begun to see the power of relational

kexpressions!

Since the true/false value is a numeric value, it
can be used in calculations, and it does not have to be
used with an IF statement.

For instance, this is a statement that I have used
within a loop to alternate control of the two joysticks
between two players....X=X+1+(X=2)*2 :: CALL
JOYSTICK(X,Y,Z) . In this, the first time around, X
has not been given a value, so the equation is read
X=0+1+(0=2)*2 and, since 0 does not equal 2,
0+1+(0*2)=1 and joystick #1 is activated. Next time
around, X=1 and X=1+1+(1=2)*2 gives X a value of 2,
since 1=2 has a true/false value of O. The 3rd time
around, X now has a value of 2, and X=2+1+(X=2)*2 which
is worked as X=2+1+(-1)*2 and then X=2+1+(-2) which is
X=2+1-2 and X=1 again!

If you think that is neat, look at this one from
the Airport Area UG newsletter, credited to Robert
Cooley. X=X=0 :: CALL JOYST(X+2,Y,Z). Here, the first
time around, X does equal 0 so the statement X=0 has a
true/false value of -1 so X=-1 and X+2 activates
joystick #1. Then X=-1 so X=0 has a true/false value
of 0 so X=0 so X+2 activates joystick #2, and so on!
Of course, you could also write IF X=1 THEN X=2 ELSE
X=1 if you prefer.

Another example: A=INT(10*RND):: B=INT(10'1010)::
FOR J=A TO B.. Now, if the random B happens to be
smaller than the random A, the loop falls through with
nothing happening. 	You could add a line IF A>13 THEN
T=1 ELSE T=-1 and FOR J=A TO B STEP T . 	But why not
just FOR A TO B STEP (13(=A)+ABS(A<=B) . If B<A then
-1+ABS(0) gives a STEP -1 to count backwards, but if
A<B then 0+ABS(-1) gives STEP 1, and if A-141 then
0+ABS(0) equals STEP 0! Here is another example - 100
INPUT "SCREEN COLOR? ":S :: FOR SET=1 TO 14 ::
X=SET+1-(SET>=S):: CALL COLOR(SET,X,X):: NEXT SET..
That changes the character sets to colors 2 to 16 in
sequence, skipping over whatever color has been
selected for the screen.

Strings can also be manipulated.
100 ps(1)=“s“
110 INPUT "HOW MANY? ":N :: PRINT "THE PRICE IS "&

STR$(n)& " DOLLAR" & P$(ABS(N>1)) 	GOTO 110
Or, more efficiently:

100 INPUT "HOW mANy? ":N :: PRINT "THE PRICE IS "&

	

STRS(N)& SEG$("DOLLARS",1,7-(N>1)) 	GOTO 100
However, it is also possible to overdoit. The

following routine will read key input to move the
cursor around the screen in all 8 directions, stopping
at the borders or travelling along them if struck
diagonally. However, it requires so many calculations
for each key input that it is not the fastest method
for accomplishing this.

100 CALL CLEAR :: R=1 :: C=3
110 CALL KEY(3,K,ST):: IF ST=0 THEN 110
120 C=C+((K=82)+(K=68)+(K=67))*

(C<32)-((K=87)+(K=B3)+(K=90))*(C>2)
130 R=R+((K=90)+(K=B8)+(K=67))*

(R<24)-((K=87)+(K=69)+(K=B2))*(R>1)
140 CALL HCHAR(R,C,42):: GOTO 110
So, for compact, efficient, programming, learr f-

use the relational expressions! But also learn wher,
not to use them!

ROT 311h
TI99/4A console complete with power 	supply 	and
modulator
TI Peripheral Expansion Box
RS232 card
32K bytes memory expansion card
TI disk controller card
Single sided drive
TI joysticks
5 modules
Completed RAMdisk
Epson RX80 printer
Manuals and lots of software
Take the lot for $1400. 	Ring Jack on (02)546 2234
after hours. Will negotiate either way.

1 	113

2 17

3 16

4 15

5 14

6 13

7 12

8 	11

9 10

kayunthursuawas Canurnaultmakaas
CwAr(DIE1(51. fAZ(C)

by Mack McCormick, USA

Many people have asked me to explain, in more
detail, how they can directly access the RS232 ports on
their T199/4A for such things as terminal emulators,
BBS Software, protocol file transfer software, and so
on. Many of thpse people have made some attempt at
tryinc! to do single byte I/0 using the standard DSR
.ntries, but soon get frustrated with the hassle that
is invotved, not to mention the lack of ability to tell
when a character has arrived at the port, detecting
carrier and ringing signals and other such useful
feature:i. In this article we will give you an overview
of the TMS9902 Asynchronous Communications Controller
(ACC) chip used in the TI99/4A RS232 card and define
the input CRU testing bits. The final article will
explain the details of programming the TMS9902 directly
with some code examples.

TMS9902 Overview
FigurP I shows the pinout of the TMS9902 ACC chip.

INT(L)-

XOUT(H)-

RIN(H)-

CRUIN(H)-

RTS(L)-

CTS(L)-

DSR(L)-

CRUOUT(H)-

VSS-

Figure 1. TMS9902 pinout

The TMS9902 is fabricated using NMOS and uses standard
TTL level signals on all inputs and outputs. The
device is capable of handling asynchronous
communications, with word lengths from 5 to 8 bits with
1, 1.5 and 2 stop bits, full parity checking
(even/odd/none), with built in data rate generation (no
external bit rate generators required) up to 19,200
bits per second. The TMS9902 also includes an interval
timer with resolution from 64 to 16,320 microseconds.
Interfacing between the TMS9902 and the TMS9900 host
environment is done through the Communications Register
Unit, the CRU. As you look at Figure 1 you can see SO
to S4, which are the CRU address lines that are used to
interface the TMS9902 to any TMS9900 series
microprocessor. When the chip enable (pin 17) is
asserted the TMS9902 is placed on the bus and the
function requested is determined by SO to S4 and the
CRU control logic. CRUCLK (pin 15) provides the CRU
timing while the system clock (pin 16) provides the
timing for the rest of the 9902. CRUIN (pin 4) and
CRUOUT (pin 8) are the CRU input and output bits,
respectively. In addition to the CRU logic, additional
lines are provided for Request To Send (pin 5), Clear
To Send (pin 6) and Data Set Ready (pin 7). The
received data is on pin 3, the transmitted data is sent
out on pin 2, and the interrupt line for the TMS9902 is
on pin 1. Finarly, +5 volts goes on pin 18 and logic
zero (ground) is on pin 9. For RS232 applications, the
widely used 75188/75189 buffer chips are used for
bringing out the transmit/receive signals, as well as
DSR, RTS and CTS. In the TI99/4A, RTS and CTS are tied
together.

The interrupt pin will go to a low logic level
when certain conditions occur during the operation of
the TMS9902. These will be explained shortly.

TMS9902 	Input Assignments
Accessing the '' —02 in your program requires the

use of assembly language with the CRU instructions TB,
SBO, SBZ, LDCR and STCR. Check your Assembly Language

. reference manual for the format of the instructions.

Table 1 - TMS9902 ACC Input CRU Bit Assignments

Address 	Base: Name : 	Description
SO S1 S2 S3 S4 10
1111131 	INT 	Interrupt
1111030 	FLAG Register load control flag
1110129 	DSCH Data set status change
1110028 	CTS 	Clear to send
1101127 	DSR 	Data set ready
1101026 	RTS 	Request to send
1100125 TIMELP Timer elapsed
1100024 TIMERR Timer error
1011123 	XSRE Transmit shift reg empty
1011022 	XBRE Transmit buffer reg empty
1010121 	RBRL Receive buffer reg loaded
1010020 DSCINT Data set status change intr
1001119 TIMINT Timer interrupt
1001018 	- 	Not used, always 0
1000117 XBINT Transmitter interrupt
1000016 RBINT Receiver interrupt
0111115 	RIN 	Receive input
0111014 	RSBD Receive start bit detect
0110113 	RFBD Receive full bit detect
0110012 	RFER Receive framing error
0101111 ROVER Receive overrun error
0101010 	RPER Receive parity error
01001 	9 RCVERR Receive error
010008 	- 	Not used, always 0
00xxx7-0 	RBR7 Receive buffer register,

-RBRO 	received data

Table 1 shows the input bit assignments which go as I
follows.
Bit 31: Interrupt (INTR). When programmed, any of the

following conditions, if met, will set this bit and
also cause the interrupt pin on the TMS9902 to be
asserted: DSCINT, TIMINT, XBINT, RBINT. In
addition, the respective bit that raised 	this
condition will also be set.

Bit 30: Flag (FLAG). Set when any of the load register
commands are issued or when the break bit is set
(See Table 2.)

Bit 29: Data Set Status Change (DSSC). Set when DSR or
CTS changes logic states and is stable for 2 clock
cycles. This bit is cleared when an output to bit
21 (DSCENB) is made.

Bit 28: Clear To Send (CTS). Indicates the logic level
on the Clear To Send pin. Note that the bit present
will be the inverse of the logic level on the pin.

Bit 27: Data Set Ready (DSR). Indicates the logic
level on the Data Set Ready pin. The bit will be
inverse of the input.

Bit 26: Request To Send (RTS). 	Indicates the logic
level of the Request To Send pin. The bit will be
the inverse of the pin.

Bit 25: Timer Elapsed (TIMELP). 	Set when the timer
register equals zero. Cleared by an output to bit
20 (TIMENB).

Bit 24: Timer Error (TERR). This bit is set when the
timer has reached zero and when TIMELP is set. This
is raised when the software fails to recognize
TIMELP and reset it before another interval passed.
This is also cleared by an output to bit 20.

Bit 23: Transmitter Shift Register Empty (XSRE). Set
when the Transmitter shift register is not sending
data (also indicates that XOUT is at a high logic
level.) When this bit is at logic zero, character
transmission is in progress.

Bit 22: Transmit Buffer Register Empty (XBRE). 	When
set, this indicates that there is not a character
waiting to be transmitted. It is set to a logic
zero when a character is written to the transmit
buffer register.

Bit 21: Receive Buffer Register Loaded (RBRL). 	When
set, indicates that a complete character has been
assembled in the receive buffer register. It is
cleared by an output to bit 18 (RIENB).

Bit 20: Data Set Status Change Interrupt (DSCINT). Set
when either DSR or CTS changes state and the Data
Set Status Interrupt has been enabled.

Bit 19: Timer Interrupt (TIMINT). Set when the timer
has elapsed and the Timer Interrupt has been
enabled.

- VCC

-CE(L)

- SYSCLK(L)

- CRUCLK (H)

-SO(H)

- S1(H)

- S2(H)

- S3(H)

- S4(H)

TISHILIG IIIFINS DIGEST
	

July 1988, Page 19

	 .•

July 1988, Page 20 TIFING 	 ‘11-11115 DIGEST
/Bit 17: Transmitter Interrupt (XBINT). 	Set when the

Transmit buffer 	register 	is 	empty 	and 	the
Transmitter Interrupt has been enabled.

Bit 16: Receive 	Interrupt 	(RBINT). 	Set when the
Receive Buffer register is loaded and the receive
interrupt has been enabled.

Bit 15: Receive Input (RIN). 	The logic level of the
RIN line at the time that the input was sampled.

Bit 14: Receive Start Bit Detect (RSBD). Set during
transition of the first bit of a word. Normally not
used.

Bit 13: Receive Full Bit Detect (RFBD). Set when the
first bit of the character (excluding the start bit)
is received, and is cleared when the character is
completed. Not normally used.

Bit 12: Receive Framing Error (RFER). 	Set when the
stop bit of the received character is a logic zero
(should be a logic one), indicating a transmission
error. Reset when a character with a correct stop
bit is received. It is recommended that this bit
only be sampled when RBRL is set.

Bit 11: Receive Overrun Error (ROVER). 	Set 	when
another character is being assembled in the TMS9902
and the previous characeter has not been acquired
from the TMS9902 by the software and the RBRL flag
reset.

Bit 10: Receive Parity Error (RPER). 	Set when the
parity of the incoming character is incorrect,
indicating transmission error. Reset when a
character with correct parity is processed.

Bit 9: Receive Error (RERR). Set when RFER, ROVER, or
RPER is set.

Bits 7-0: Receive Buffer Register (RBR). This is the
register where the received character is stored.
For data lengths shorter than eight bits the data is
right justified in the register.

Ta-ble 2 - TMS9902 ACC Output CRU Bit Assignments

Address 	Base: Name 	Description
SO S1 S2 S3 S4 10 :
1111131 RESET Reset

	

30-22 	- 	Not used
1010121 DSCENB Data Set Status Change

Interrupt Enable
1010020 TIMENB Timer Interrupt Enable
1001119 XBIENB Transmitter Interrupt

Enable
1001018 RIENB Receiver Interrupt Enable
1000117 BRKON Break On
1000016 RTSON Request To Send On
0111115 TSTMD Test Mode
0111014 LDCTRL Load Control Register

	

0110113 	LDIR Load Interval Register

	

0110012 	LRDR Load Receiver Bata Rate
Register

	

0101111 	LXDR Load Transmit Data Rate
Register

	

10-0 	Control, Interval, Receive
and Transmit Data Rate, and
Transmit Buffer Register

CRU Output Bit Assignments
(Also see Table 2.) Described below are the Output

CRU Bit assignments and their function:
Bit 31: Reset (RESET). Setting this bit high causes

the TMS9902 to reset the entire chip. All
interrupts are disabled, RTS is set high, all
register flags (LDCTRL, LDIR, LRDR, LXDR) are set
high and the BREAK flag is reset. No operation to
the TMS9902 should be performed for 11 clock cycles
after setting'this bit.

Bits 30-22: Not used.
Bit 21: Data Set Change Interrupt Enable (DSCENB).

Setting this bit causes the TMS9902 to generate an
interrupt when input bit 29 (Data Set Status Change)
is set. Resetting this bit disables the DSCINT
interrupt. Writing any value to this bit will reset
input bit 29.

Bit 20: Timer 	Interrupt Enable. 	Setting this bit
causes the TMS9902 to generate an interrupt when
TIMELP (Input bit 25) is set. Resetting this bit
disables the TIMELP interrupts. Writing any value
to this bit will reset input bit 25.

Bit 19: Transmit 	Buffer Interrupt Enable (TBIENB).
Setting this bit causes the TMS9902 to generate an
interrupt 	when 	XBRE 	(input bit 22) is set.

Resetting this bit disables XBRE interrupts. 	This
bit dos not affect the current value of XBRE.

Bit 18: Receiver Interrupt Enable (RIENB). Setting
this bit causes the TMS9902 to generate an interrupt
when RBRL (input hit 21) is set. Resetting this bit
disables RBRL interrupts. Writing any value to this
bit causes RBRL to reset.

Bit 17: Break On (BREAKON). 	Setting this bit causes
the XOUT line to go to logic zero whenever the
transmitter is active and XBR and XSR (both
transmitter buffer and shift registers) are empty
and inhibits loading characters into the transmit
buffer register. Resetting this bit causes the
transmitter to return to normal operation.

Bit 16: RTS On (RTSON). 	Setting this bit causes the 	.
RTS handshake signal to be active (low). Resetting
this bit causes RTS to go high after XSR and XBR are
empty and BRKON is reset. (RTS will not go inactive
until a character has completed transmission.)

Bit 15: Test Mode (TEST). Setting this bit causes RTS
to be internally connected to CTS, XOUT to RIN, DSR
held internally low, and the interval timer to
operate at 32 times its normal rate. This is useful
for debugging programs that are transmitting and
receiving data and for tsting to insure that the
internal TMS9902 functions are working properly.
Resetting this bit causes the TMS9902 to return to
normal operating mode.

Bits 14-11: Register Load Control Flags. These bits
are described below.

Bit 14: Load Control Register (LDCTRL). This bit whe:n
set (either explicitly or after the RESET bit is
set) causes the control register in bits 0-7 to be
loaded into the TMS9902. Resetting this bit (or
upon reception of the last control register bit)
causes the control register to be inhibited from
loading.

Bit 13: Load Interval Register (LDIR). 	Setting this
bit causes the next 8 bits (bits 0-7) to be loaded
into the TMS9902's interval timer register. The hit
is reset when the last data bit is loaded or a logic
zeo is written to LDIR. To load this regiter,
LDCTRL must be reset (See Table 3.)

Bit 12: Load 	Receive 	Data 	Rate Register (LR.DR).
Setting this bit causes the next 11 bits (0-10) ta
be loaded into the TMS9902's Receive data rate
register. The bit is reset when the last data bit
is loaded or a logic zero is written to LRDR. T,
load this register LDCTRL and LDIR must be zero.

Bit 11:Load Transmit Data Rate Register (LXDR).
Setting this bit causes the next 11 bits (0-10) to
be loaded into the TMS9902's Transmit data rate
register. 	The bit is reset when the last data bit
is loaded or a logic zero is written to LXDR. 	To
load this register LDCTRL and LDIR must be zero.
Note: It both the transmit and receive data rates
are the same both registers can be loaded
simultaneously by setting both LRDR and LXDR.

Bits 10 through 0: Data. Depending on the control bits
set, 	either data rate registers, the interval
register, the control register or data to 	be
transmitted are written to these bits.

Table 3 - TMS9902 ACC Register Load Selection

LDCTRL LDIR LRDR LXDR
	

Register Enabled
1 	x 	x 	x
	

Control Register
0 	1 	x 	x
	

Interval Register
0 	0 	I 	x
	

RecPive Data Pat, Pell
0 	0 	x 	1
	

Transmit Data Rate Register*
0 	0 	0 	0
	

Transmit Buffer Register

The Control Register

	

The 	control register is used to define the
character 	size, the parity of the word, the numbet 	ol
stop bits and the operating frequency of the TMS99u2.
Table 4 outlines the bit positions and their settings.
Of importance is bit 3. For the TI99/4A environment
this bit should always be zero. The PENB bit
determines if parity checking is done, if set, parity
checking is done, if reset no parity checking is done.
The PODD bit determines if the TMS9902 wili check for
and generate odd parity. If set, odd parity is
processed, if reset even parity is processed.

continued on page 174

itir/H110 TISHUG 	DIGEsT July 1988, Page 21

'I'll DOC
by Terry Atkinson, Canada

With thanks to: SUBFILE 99 (the SOURCE), with the
permission of Mike Amundsen, Rich Stanford and others
too numerous to mention, who have contributed their two
cents worth.

Buzzwords
DF: Diskfixer
AU: Allocatable Units (sectors)
VIB: Volume Information Block (AUO)
<: Less than
>: Denotes hexadecimal number (or greater than)
DM2: Disk Manager II
FDC: Floppy Disk Controller
FDIR: File Descriptor Index Record
FDR/B: File Descriptor Record/Block (AU2 to AU23)

General
To have a look at a disk, sector by sector, you

will have to use one of the many Disk Fixer (DF)
programs. The TINS library has the TI in house Disk
Fixer (DISKO) available for a small price. Others,
such as the Navarone V1, Navarone V2 (Potts) and a
couple of Forth versions are also kicking around. The
TI version has a capability of toggling between
hexadecimal and ASCII, but has no printer dump routine.
I prefer the Potts program. A great deal can be
learned from experimenting with a DF program.
Practically, you can also repair a blown directory, or
restore files which have been accidentally erased.
Yes, when you delete a file, it is still on the disk!
Only the pointers are deleted. You will understand
this better as you practice what you will (hopefully)
learn from this article.

General physical layout
The TI disk is formatted with 360 Allocatable

Units (AUs). These AUs are more commonly called
sectors, and can hold 256 bytes each. Of course, with
TI Dos and a Teac drive, there can be 360x2=720 AUs,
and with the new CORCOMP DSDD controller, each disk is
capable of handling 1440 AUs. For simplicity sake, and
because this is the more common configuration, we will
stick with the standard TI SSSD set up. Unfortunately,
TINS newsletter formatting precludes giving actual
examples of sectors, but I am sure the information
contained here will be sufficient to get you started.
Practice is the key. Now, initialize a disk and put a
file, any file, on it. Run the DF, and load sector O.
Let us have a look at what is there.
Sector 0: Volume Information Block (VIB)

This AU contains information about the disk and
how it is formatted. Here is a complete breakdown of
all addresses on sector O.
A" .ss 	Contents
C 	0009 Disk Name (up to 10 characters). If the

disk name is less than 10 characters, it is
padded with space characters (>20).

000A-000B Number of sectors on disk. (>0168=360,
>02D0=720, >05A0=1440)

000C 	Number of sectors per track (>09=9, >10=16,
>12=18)

000D-000F Characters "DSK" (>44534B). When a disk is
initialized, these characters are placed on
the disk. If, during a disk access for
example, the FDC does not find these
characters, a "disk not initialized" error
is issued. This may be important in fixing
a blown disk. Remember it!

0010 	If this address contains >20, the disk is
not proprietory. The disk is flagged as
proprietory (not copiable by DM2) if it
contains >50.

0011 	Number of tracks per side (>28=40, >23=35)
0012

	

	Number of sides (01=single sided, 02=double
sided)

0013 	Density 	(01=single density, 	02=double
density)

0014-0037 Unknown. Set to zero. Anyone have any
information?

0038—end Sectors used/available bit map flags
(1=used, 0=unused). The first byte (at
>0038) is for sectors 0 to 7, the next byte

(at >0039) would be for sectors 8 to 15, the
third byte for sectors 16 to 23 and so on.
You would decode the value into binary, and
read from right to left. For example, let
us say >0038 contained the value >813.
Convert to binary: 1000 1011. Read from
right to left flags sectors 0, 1, 3 and 7 as
used, and sectors 2, 4, 5 and 6 as
available. You could continue in this
manner and find out all the actual sectors
that are in use on the disk. The flags are
updated whenever files are added to or
deleted from the disk. Information for the
second of a DSSD formatted disk starts at
address >0065 and ends at >0091.

OK, here are a few things to test out. See if you
can read the sector as explained above. Does it
contain what you would expect? Now change the contents
of address >0010 to >50. See if you can copy the disk
with DM2. Reload the DF and change >0010 back to >20.
Now put any hexadecimal code in address >D, >E, >F.
Now see if you can access the disk. Experiment! When
you are satisfied with AU0 restore it to normal and
read in sector 1 (AU1).
Sector 1: File Descriptor Index Record (FDIR)

This sector (AU1) contains the alphabetical index
of all files on the disk. 	It is fairly straight
foward, and simple to figure out. 	Each 16 bit word
contains the sector number of the File Descriptor
Record (FDR) for a file. The list is terminated by a
(word) >0000. Since these pointers are in words, and
an AU has 256 bytes, this means that the disk has a
potential of 256/2=128 files. However, remember the
(word) >0000 to terminate the list is required. This
leaves 128-1=127 possible files per disk. When a new
file is created, the FDRs (2 to 33) are scanned, sorted
and sector pointers are set into AU1 in the new
alphabetical order. Should the alphabetical order be
corrupted, the binary search method used to locate
files could be affected, and some files may become
inaccessible.

By way of an example, let us say that address
0000/01 contain the value 0005. That means that the
first file FDB (alphabetically) is located in sector 5.
Easy enough?

That is all there is to sector one (AU1). Load a
few files onto a blank disk and get into your DF.
Examine AUl. See if the above makes sense, then change
a few numbers around to see the results. Try a few
experiments of your own.
Sectors 2 to 33 inclusive: File Descriptor Block (FDB)

The FDBs contain all the information specific to a
file. Each file has its own FDB for the purposes
keeping track of file descriptions, begining and ending
AUs, and where the sectors belonging to fractured files
are, etc. Below is a break down of each address of an
FDB.
A 	ss 	Contents
0 	0009 Filename (up to 10 characters). Shorter

names are padded with "space characters.
(>20).

000A-000B Unknown
0000 	Bit map file type. 	(bitO: 0=data file,

1=memory image 	(program) 	file; 	bitl:
0=display, 	1=internal 	format; 	bit3:
0=unprotected, 1=protected; bit7: 0=fixed,
1=variable 	record 	length; bits2,4,5,6:?
(always 0). Or, (for those that hate
binary) >01=Program or memory image,
>00=display fixed >02=internal fixed
>80=display variable >82=internal variable.
If the file is protected, a value of >08 is
added to the above, so if you find an >88 in
this address, it means a write protected
DIS/VAR file.

000D 	Number of records per sector.
000E-000F Number of sectors allocated to the file.

The value does not include the FDB,
therefore, add 1 (as DM2 does) to get the
total sectors used by the particular file.

0010 For variable length data (and memory image)
files, this byte contains the number of
bytes used in the last sector for that file.
Simply stated, it is an EOF pointer or
offset.

0011 	Maximum record size of data file.
0012-0013 File record count. The value in >0013 is

the most significant byte of the count, and
the value at >0012 is the least significant
byte of the count.

0014-001B Unknown. 	Any 	information would be
appreciated.

001C-end Block Link Pointers.
Files are put on the disk in a first come first

served basis. The first file written will be placed at
>0022, and each subsequent file will be placed
immediately following the first. If the first file is
deleted, a newer file will occupy the sectors formerly
used by the deleted file. If this space is not large
enough, the new file is "fractured" and the remainder
is placed following the last sector used. The block
link pointers keep track of this "fracturing". It is
also the most complicated to understand. To quote one
source: "Each block link is 3 bytes long. The value of
the second digit of the second byte followed by the 2
digits of the first byte is the address of the first
sector of the fracture. The value of the third byte
followed by the first digit of the second byte is the
number of sectors the fracture occupies". Let us see
if we can simplify the above with an example.

Let us say addresses >001C to 1F contain the
values OB Fl 03 xx (xx=does not matter):

Address: 00-> 1C 1D lE 1F
Value : 	OB Fl 03 xx
Nybble#: 	12 34 56 78
Rearranging the above to conform with the above

statement produces:
10B..which is the first sector of the fracture

(sector 267 dec);
03F..which is the number of sectors in the

fracture (63 dec).
At this point, I should mention that disks copied

with DM2 are copied file by file (as happens with file
copy by any disk manager), 	thereby eliminating
fractures entirely. 	Since disk accesses to a program
or data with many fractures slows down the retrieval
process considerably, I recommend you occasionally copy
the disk over to a new disk to remove the fractures for
the sake of maximum speed, and for backup purposes.
Not because you will overextend the fracturing
capability, you can have up to 76 different fractures
of the same file!

OK, so now something for you to do. Initialize a
disk and put a short file on it. Call it "A". Then
save the same file as "B". Now, delete "A" and place a
larger file called "C" on the disk. Boot your DF and
take a look at sector 2. This should contain the file
"C", and it should be fractured. See if you can locate
the fractured portion. An interesting idea here: can
you figure out a way to read a program file like a data
file? This has some very interesting possibilities.
After some experimentation, you should be able to
restore "blown directories" or retrieve improperly
closed files.
Sectors 34 to 359: File storage space.

This is the space where all data and programs are
held. Since it is impossible to give specific
examples, I leave it to you to explore. Just remember
that BASIC programs are stored on disk in memory image
format (just as they sit in memory), so do not expect
to see your line numbers in chronological sequence all
the time.

A hint
Since the maximum record size is 255 bytes (fixed)

or 254 bytes (variable) and a record is never
fractured, plan your record size such that it will fit
the maximum number of records into each sector. For
example:
DF80: 3 records per sector (80x3=240 bytes used; 16

unused).
IF10: 25 records per sector (10x25=250 bytes used; 6

unused).
DF130: 1 record per sector (126 bytes unused, what a

waste!).
(Note also that Display type file length is limited to
around 148 to 155 characters.) (By Extended BASIC? ED)

July 1988, Page 2,4S`z

	1
CCELezz 	11.1d4Z

by George Melclrum

(Black)

8

7

6

5

4

3

2

abcdef gh
(White)

White to play and mate in two moves
In a book designed to test your chess, and

appropriately titled "Test Your Chess", the above
diagram appears. The problem is to find a move for
White, called the "Key Move", to which any Black
response is unsuccessful in preventing checkmate by
White's next move. The story goes that it took an
electronic brain a little over 15 minutes to solve tins
teaser back in about 1950.

Time had come to power up the TI99/4A and plug in
the old TI Video Chess Cartridge. The Video Chess
Cartridge has a "SET UP A PROBLEM" selection on the
menu. So set it up and 83 seconds later, bingo, there
is the answer. But what of those dedicated computers
that devote their entire electronic lives to the eight
by eight matrix? Drag out the SciSys Chess Computer
and, whiz, 2 seconds later, there is the answer.

The TI Video Chess Module, although slow, does
have one most endearing feature for problem solving.
That feature is that it does not stop after finding a
solution to the problem but rather goes through every
possible move so that all solutions are found. The
solutions are then displayed at the end of the search.
Chess problems are meant to have only one solution,
however sometimes a second, unintended solution creeps
in, this in chess terms is refered to as a "cook". If
you are into composing chess problems then the TT Video
Chess Cartridge is an invaluable aid for testing tor
"cooks".

By the way, I did manage to personally solve the
problem above in a time that somehow escapes my
(convenient) memory. See how you fare.

V7111.11.1.1 3t inceisi
by Peter Schubert

Those who have the AT RS232 system with PIO port_
either on the Mini-PE System or the Multifunction Card,
can now use our favourite Viatel program to dump
screens to printer thanks to the efforts of Shane
Ferret, otherwise known as WEASEL. The original
version only dumped to the TI or Corcomp RS232 Cards
due to its unusual method of accessing the printer.
Contact Shane or myself for a copy of the program.

TISHUG NEWS DIGEST

&110011 represents binary 110011.
#5506 represents the decimal number 5506.
:A: is the ASCII equivalent >41.

Well this has been a very general overview of GPL.
Let us look at some actual GPL source code and my
interpretation of the 9900 assembler equivalent. This
routine could have been shortened but I tried to keep
it as close to GPL as possible. Hope you enjoy it. If
you have questions just ask. My 6 GPL manuals cover .
thousands of pages and we have just skimmed the surface I
here. I plan to write a GPL disassembler and
interpreter to convert GPL to 9900 object code within
the next six months if my schedule permits. That
should make the job easy!

DEF START
REF KSCAN,VSBW,VSBR,GPLLNK

* just a little routine to test subroutine *
START LWPI WS

MOVB @HOO,@KEYVAL scan entire keyboard
LOOP 	BL 	@READLN

DATA >002,>2FE start, end positions
JMP LOOP

**

* This is the console GPL READLN routine at (>2A42 in
* GROM 1) converted to 9900 assembler. Interprets
* backspace, insert, delete, and forward. Uses
* scratch pad RAM. Total number of characters may be
* limited by changing the start value of ARG+2 (upper
* limit) and entering at READLl. VARW is the start
* address of the field. VARA is the current highest
* write address. Entering at READL1 allows us to
* pre-specify the minimum number of characters to be
* read for default creation. Entering at READOO
* allows specification of the initial cursor position.
* In this case ARG+6 has to be set to the cursor
* position and ARG+4<>0. Programmer responsibility to
* ensure that VARW <= ARG+6 <= VARA <= ARG+2. ARG+4
* indicates if the line has been changed. If so,
* ARG+4=0.
* This is a possible call:
* BL 	@READLN
* DATA >1DF,>35D lower,upper screen limits
**
* Equates *
WS 	EQU >8300 	 my workspace
ARG 	EQU >835C
VARW 	EQU >8320 	 abs lower limit
VARA 	EQU >832A 	 current end of line
TEMP 	EQU 0 	 RO used for temp storage
TEMPI EQU I 	 RI used for addl temp storage
R1LB 	EQU WS+3
TEMP2 EQU 2
TEMP3 EQU 3
TIMER EQU >8379 	VDP timer inc every 1/50 sec.
KEYVAL EQU >8374 	 keyboard to scan
RKEY 	EQU >8375 	 key code
STATUS EQU >837C 	 GPL status byte
* Constants
* (Should be EQU with byte values in code to save
* memory.)
HOO 	BYTE 0
H01 	BYTE 1
HFF 	BYTE >FF
HSO8 DATA 508
H60 	DATA 60
H14 	BYTE 14
H766 	DATA 766
BREAK BYTE >02
DLETE BYTE >03
INSRT BYTE >04
CLRLN BYTE >07
BACK 	BYTE >08
FORW 	BYTE >09
DOWN 	BYTE >OA
MVUP BYTE >OB
CHRTN BYTE >OD
CURSOR BYTE >1E
SPACE BYTE >20
VARV BYTE 0 (this is at >8301 in GPL but I

used >8300 for workspace)
VAR1 	DATA 0 	 auto repeat counter (this is

1 byte .t >830D in GPI-)

July 19 88, Page 2N. NIMIS DIGEST

L-1Ttlpialta Ta-%8-Turnm1118- liwarm48-e (GPL) Tull)lea'.
Routine to Read/Edit Text from KSCAN

by Mack McCormick 74206,1522
I have always avoided delving into the study of

GPL because I felt it was too difficult, cumbersome,
executed too slowly, and had little to offer. Boy, was
I wrong. It makes writing routines used by BASIC a
snap in assembler. For example, I recently needed a
routine to read text from the screen which would allow
full editing including erase, 	insert, delete, quit,
bonk 	tone at right margin, and enter, up arrow,
down arrow. I also wanted the neat auto-repeat feature
used by TI, where there is a slight pause before the
key takes off repeating. I began to consider writing
the routine but then remembered that an identical
routine resided in GPL in GROM (Graphics Read Only
Memory) in the console. I first considered using the
routine from GROM but then remembered that it added the
screen offset of >60 to each character and I did not
need that. I could have done some fancy trick to make
it work but decided to convert GPL to 9900 assembler
code.

You will find two programs here. One to link you
to the routine in console GROM with a CALL LOAD from
E/A BASIC and the identical (almost) routine in 9900
assembler code ready to link into any program you may
have that needs this utility. I have included in the
9900 routine the actual GPL code used by the Pre-Scan
routine of the monitor so you may see what conversions
were necessary. Try reading the GPL instructions
(marked with three *) to get a flavour for GPL. If the
GPL gets in the way of using the routine in your
program, you may delete the GPL statements, although
they will have no effect if they are allowed to remain.

It has really become obvious to me why TI invented
GPL, although I used to condemn them for it. The major
reason is that it uses about 59% of the code that
straight assembler would use. GROM, as you may know,
is only used by TI, and is a chip which supplies a byte
at a time to a memory mapped address and
auto-increments to the next byte (like VDP RAM) unless
you change the address to be read from. It is a great
way to save memory. TI calls it medium speed memory.
It is 6K bytes big and resides on 8K boundaries. It is
an ideal medium to hold the console BASIC routines,
because the TMS9900 CPU chip in the console can only
directly address 64K. The GPL actually does not
execute any code. GPL is interpreted in console ROM
beginning at >0024 and extending to >D18. This
interpreter is straight assembler code which acts as
directed by the GPL bytes coming from the GROM. Hence
you see one reason TI BASIC is slow. It is an
interpreted by GPL and GPL is interpreted by assembler.
Two interpretations! Instructions in GPL usually have
two operands and most instructions can access RAM,
GROM, or VDP RAM. Most instructions are single byte
operands unless the operand is preceded by a D for
double operand. GPL uses two stacks, a data stack at
>83A0 and a subroutine address stack at >8380 (this
allows arbitrary nesting of subroutines). Here are a
few types of instructions:
Data transfer - Single/Double Byte

- Block to Block
- Formatted Block Moves

Arithmetic - Add, subtract, multiply, divide, negate,
absolute value.

Logical - AND, XOR, shifts.
Condition - Arithmetic and logical.
Branching - Conditional and unconditional.
Bit manipulation - Set, reset, test.
Subroutine - Call, return.
Stack operations - Push and pop.
Miscellaneous - Random number, KSCAN, coincidence

detection, sound, input and output.
The closest language to GPL is assembler and any

experienced assembler programmer should have little
difficulty learning GPL. One major difference is the
use of MACRO instructions by the GPL assembler, such as
REPEAT.. ..UNTIL and IF.. ..THEN.. to 99000 assembly
language.

	

A few words about how memory is addressed. 	Here
are a few of the most common ways and their syntax.
5 represents the decimal byte 5.

4233 represents hexadecimal 33.

HOG
	

-FISHING NUNS 11IfiEST
CB 	@VARV,@CURSOR 	if NE exchange again
JEQ L00003

1 July 1988, Page 24

'.. EVEN
READLN
* The GPL code stores >35D at ARG+2 but to give more
* utility replaced with the next two lines of code.
*** 	>35D,@ARG+2 	 GPL double store

*R11+,@VARW 	start address of the field
MOV *R11+,@ARG+2 	 upper limit

• * 	DST @VARW,@VARA

MOV @VARW,@VARA 	 nothing entered yet
* VARA should point to a space location or end of
* field
READL1
*** 	ST 	1,@ARG+4 	 store byte=1 to ARG+4

MOVB @H01,@ARG+4 	means no change in line
READL2
*** 	DST @VARW,@ARG+5 	had to use ARG+6 because
* * * 	 of word boundary problems

MOV @VARW,@ARG+6 	position cursor at
start of field

READOO
*** 	CLR @VAR1 	clear byte. I had to use word
*** 	 because 9900 is so much faster

CLR @VAR1 	 counter for auto repeat
* This is where we return to exit insert mode.
READO1
*** 	CLR @ARG+7 	used ARG+8 because had to use
* * *

	

	
ARG+6 & ARG+7 already

MOVB P00,@ARG+8 normal operation mode
* * * 	ST 	C.)R,@VARV

MOVB 	;OR,@VARV
	

VARV used for
cursor/character

READ$1
* Input 1 char and alternate cursor and character for
* blink
*** 	EX 	@VARV,RAMWARG+5) exchange @VARV with
* * * 	 what is at location ARG+5 in VDP

MOV @ARG+6,TEMP 	 exchange VARV,ARG+6
BLWP @VSBR
SWPB TEMPI
MOVB @VARV,TEMP1
BLWP @VSBW
MOVB @R1LB,@VARV

* * * 	 @TIMER
- 	@HOO,@TIMER 	set vdp timer to zero

*** 	$REPEAT 	 macro. repeat code until
*** 	 Suntil is true
L00001 LIMI 2 	 enable interrupts so the VDP

timer (>8379) can increment
LIMI 0 	 disable interrupts so the VDP

will not get messed up
* * * 	SCAN 	 scan the keyboard

BLWP @KSCAN 	 scan for a character
* * * 	 branch on cond bit (eq) set

MOVB 	,@STATUS 	 equal bit set?
JNE READS2 	 found a new character

* * * 	INC 	.' 	increment the byte @VAR1 by one
INC 	- 	increment auto-repeat counter

*** 	$1F @KKEY .NE. >FF THEN macro 	if RKEY not
*** 	 EQ >FF then execute the following code
*** 	otherwise skip to the $END IF terminator

CB 	@RKEY,@HFF 	 old key?
JEQ L00002 	 yes

* * * 	SIF 	.:.. 254 THEN higher or equal
..I1, 	hold old key for a while

had to double 254 to slow
down assembly code

JLT L00002 	 before starting repeat
* * * 	SUB 30,@%-!7- 	 subtract byte

S 	@H60. 	 control repeat rate
* * * 	B 	REA. - 	 unconditional branch

JMP REA'.
*** 	 IF
*** 	 IF
* * * 	 'L @TIMER .H. 14 	terminator for repeat
*** 	 until higher than 14
L00002 CB 	@TIMER,@H14

JLE L00001
BR READ$1

EX 	@VARV, 	''RG+5)
MOV @ARG+6. 	 exchange VARV,ARG+6
BLWP @VSBR
SWPB TEMPI
MOVB @VARV,TEMPI
BLWP @VSBW
MOVB @RILB,@VARV
$END IF

$IF @RKEY .L. : : THEN 	if RKEY less than
space then execute code

if .LT. space then
control char

JLT L00004
B @LO000C

* This is where you would trap all control codes
* Handle break char first

CB 	@RKEY,@BREAK
• JNE LABLE
* back arrow - space back one position
*** 	$END IF
*** 	STE @RKEY .EQ. BACK GOTO RBACK 	GOTOs do
*** 	 not require an END IF term
L00004 CB 	@RKEY,@BACK 	 back arrow?

JNE B00002 	 to fix out of range error
B @RBACK

had to double 254 to slnw
down assembly code

JLT L00002
	

before starting repeat
*** 	SUB 30,@VAR1 	 subtract byte
B00003 CB 	@RKEY,@INSRT

JNE L00005
* * * 	ST 	1.—.1G+8

MOVB 8 	.@ARG+8 	set insert mode flag
*** 	SEND IF
* delete - delete the current char
*** 	STE @RKEY .EQ. DLETE THEN
L00005 CB 	@RKEY,@DLETE

JNE L00006
* * * 	cLR @ARG+4

MOVB @HOO,@ARG+4 	indicate a change in line
*** 	$1F @VARA .DNE. @ARG+6 THEN 	the d means
*** 	 double or word of memory compare

C 	@VARA,@ARG+6 	 empty line?
JEO L0001F 	 yes

* * * 	 @VARA,@ARG
@VARA,@ARG
	

move everything from
the right

* * * 	DSUB @ARG+5,@ARG double byte (word) subtract
S @ARG+6,@ARG 	of the cursor to the left

*** 	MOVE @ARG FROM RAM(1(ARG+6)) TO RAMWARG+6)
*** 	this is a block move of @ARG bytes of VDP
*** 	 RAM from what is at addr ARG+6 plus 1
*** 	 to what is at address ARG+6. In short
*** 	move everything on screen one byte lower.

MOV @ARG,TEMP2 	 counter
MOV @ARG+6,TEMP
INC TEMP 	move @ARG from RAM(1(ARG+6))

to RAM(@ARG+6)
L00008 BLWP @VSBR

DEC TEMP
BLWP @VSBW
INCT TEMP
DEC TEMP2
JNE L00008

* * * 	DDEC @VARA
* * *

* * *

* * *

B00001 INC @VARA
*** 	$END IF
*** 	ST 	: :+0FFSET,RAM(@VARA)
L0001F MOV @VARA,TEMP

LI TEMP1,>2000
BLWP @VSBW
BR 	READO1

time next character switch
branch cond bit reset, used
to save one byte of memory

restart char blink cycle

* * *

L00003 CB 	@RKEY,@SPACE

decrement the word (double)
at VARA

DEC @VARA 	 pre-update end of string
$1F RAM(@VARA) .EQ. : :+0FFSET GOTO READO1

OFFSET is screen offset >60
MOV @VARA,TEMP
RLWP @VSBR
CB 	@TEmP1,@SPAcE
JNE B00001 	to resolve out_ ot 	Prr
B @READO1
DINC @VARA 	 increment the word nf

memory at VAPA

JMP READ$1
READ$2
*** 	CLR @:• _

CLR 	 clear auto repeat counter
READ$3 	 ***

$1F 	@VARV .NE. @CURSOR THEN

1hr 	

HOG
	

1115MIG 	DIGF51-
	

July 1988, Page 25

B 	@READO1
* clear - clear the entire input line
*** 	SIF @RKEY .EQ. CLRLN THEN
L00006 CB 	@RKEY,@CLRLN

JNE L00009
*** 	BREPEAT
.** 	ST 	: :+0FFSET,RAME@VARA)

MOVB @SPACE,TEMP1
CLRLIN

MOV @VARA,TEMP 	so we can fiddle with
value

BLWP @VSBW
DEC @VARA 	 pre-update end of line

**w 	OUNTIL @VARA .DL. @VARW 	double less than
C 	@VARA,@VARW 	up to and incl first pos
JHE CLRLIN

*** 	 . • ZA
' 27A- 	 undo last subtraction

CLR TARG+4
MOVB @HOO,@ARG+4 	 indicate change

*** 	BR 	_ _ .
restart everything

*** 	SEND IF
* general exit point
*** 	$IF 	• 	.':-. CHRTN THEN
L00009 CB 	 7N 	only react on cr/up/down

JEQ 1.0000A
*** 	$1F @RKEY 	MVUP THEN

CB 	@RKEY, ' 	'
JEQ L0000A

*** 	$1F 	• 	DOWN GOTO READ$1

JEQ 1,0000A
B 	@READ$1

*** 	$END IF
.** 	$END IF
*** 	$IF @IJ• t .DEQ. @ARG+2 THEN 	double equal
L0000A C 	@A, 	@ARG+2 	check for block on last

position
JNE L00008

*** 	 .NE. : :+0FFSET THEN
.

BLWP 0V$8R
CB 	TEMP1,@SPACE 	 blocked?
JEQ L0000B

*** 	DINC @VARA
INC @VARA 	point beyond last char in line

k** 	SEND IF
*** 	$END IF
L0000B RT 	 enter the current line
*** 	$END IF 	 (this is from the $IF that
*** 	 checked for CTRL codes)
* insert routine *
*** 	$1F @A' .8 	0 THEN 	 insert
L0000C CB 	E'• -8, ' 	 insert mode

JEQ 1.0000D
READ$4
*** 	 @ARG

. UALi.,@ARG 	use ARG as temp for insert
*** 	$wHILE 0E06 .DH. @ARG+6
LOOOOF C 	@ARG,@ARG+6 	move everything up to

cursor location
JLE L0000E

*** 	DDEC @ARG
DEC @ARG 	 copy lower location to

higher one
*** 	ST 	RAMWARG),RAM(1(ARG)) 	go from high to

low in VDP RAM

MOV @ARG,TEMP
BLWP @VSBR
INC TEMP
BLWP @VSBW
JMP LOOOOF

*** 	$END WHILE 	 terminator for wh le
*** 	$1F 	Z.A 	@ARG+2 THEN
L0000E C 	@VARA,E'• -2 only update VARA as upper

JHE LOOOOD
*** 	DINC @VARA

INC @VARA 	 has not been reached yet
*** 	$END IF
*** 	$END IF
*** 	ST 	•)ARG+6)
LOOOOD MOVB 	 display the character

MOV @ARG+6,tEMP

BLWP @VSBW
*** 	CLR DARG+4

MOVB @HOO,@ARG+4 	indicate change in line
READO5
*** 	$IF E':.% -5 .DEQ. @ARG+2 THEN

C 	EA! -6,@ARG+2 	hit right margin?
JNE LuutilF

*** 	CALL TONE2 	call another GPL routine in
*** 	 this case bonk

MOVB @HOO,@STATUS 	clear the status byte
before accessing GPL

BLWP @GPLLNK give a bad response tone
DATA >0036

*** 	BR 	--'1$1

	

'D$1 	 stay in current mode
*** 	SEND
*** 	DINC E. 	6
L0002F INC 	6 	 update current address
*** 	$IF @ARG+6 _ . @VARA THEN

C 	@ARG+6,C.' A 	check for last new high
limit

JLE L00010
*** 	DST @ARG+5. ."

MOV @ARG+6. 	 update new high limit
*** 	%.1 IF
*** 	@.' 	.DL. >2FE GOTO READ$1
L00010 C 	@7' :%,@H766

JHE 	 to fix out of range problem
B 	@READ$1 	 still some space to go

L00011
* this is where we could scroll the screen if needed
* update pointers if you scroll *
*** 	SCROT) 	 scroll the screen
*** 	' 	' 	28,(' 	,
• S 	@H28,@VARA 	back to start of line

DSUB 32,@VARW
BLWP @VSBR
INC TEMP
BLWP @VSBW
JMP LOOOOF

*** 	$END WHILE 	 terminator for while
*** 	$IF €.A.A .DL. @ARG+2 THEN
L0000E C 	A,@ARG+2 only update VARA as upper

JHE LootniD
• S 	@H32,@ARG+6 current cursor position also
*** 	BR 	::7.t-31

• :)$1 	start with something else
* forward cursor move
RFORW
*** 	CLR @ARG+8

MOVB @HOO,@ARG+8 	 leave insert mode
*** 	BR

use reet of logic
* back cursor move
RBACK
*** 	$IF @ARG+5 . . @VARW

C 	@ARG+6, 	ZW 	check bottom range
JLE L00012

@ARG+6
@ARG+6

*** 	WID IF
*** 	BR 	-)1
L00012 B 	dkr.A51

END
**

* This is a routine to directly access *
* the GROM READLN routine. Use CALL 	*
* LOAD("DSKl.filename") and CALL LINK *
* ("DSKl.start") from E/A BASIC to see *
* it because of screen offset.
**

DEF START
GPLWS EQU >83E0 	 address for GPL work space
HOO 	BYTE 0
WS 	BSS >20 	 my workspace

EVEN
START

LWPI WS 	 point to my workspace
LI 	RO,>2
MOV RO,@>8320 start screen address for scan
MOVB @HOO,@>837C 	clear the status byte

so we do not get an error
BLWP @GPLLNK link to the routine in GROM
DATA >2A42
MOVB @HOO,@>837C 	return to the calling

program on enter continued on page 26

(

1151-11116 runs plias"- July 1988, Page 2N
	1

Eatly 	D604130(etuatbh IPUNDETICHIS

by Phil R. Storey

One of the ways to learn how to program in
assembler is to look at what other people have written.
To do this you must first disassemble a program and
have it printed out on paper. There are a number of
disassembler programs on the market, including those in
commercial, freeware and public domain. You should
have no trouble finding one. The most favoured one
seems to be DISkASSEMBLER, marketed by Millers
Graphics. This program is capable of disassembling
programs directly from disk, as well as those in
memory. There are a number of features built into this
program that aid re-assembly of the disassembled
programs. The manual is fairly large and
comprehensive.

For your first disassembly project I would suggest
a program that is small, (less than 8K), such as the
SAVE utility on the Editor/Assembler disk. Before you
create a written disassembly of the program, I would
suggest going through the program looking for, and
noting, blocks of text and/or data. (Text and data
produce about 5 times as much code when they are
disassembled as mnemonics rather than data). Text
blocks are easy to recognise, however, data blocks can
be more elusive. They become easier to detect once you
get a feel for program flow.

Data blocks can usually be found by looking at the
mnemonics. They are usually preceded by either a B,
RTWP, or a jump instruction. The mnemonics themselves
will seem to have no direction. Dead give aways are
code sections that contain DATA or INVALID MNEMONIC
statements or strings of similar statements such as
compare instructions. A compare is usually followed by
a conditional jump. (The exception here is when the
compare is used to add 4 to a register, e.g.
C *R1+,*R1+ could be used to add 4 to the contents of
R1).

Once you think you have written down where all of
these data and text blocks are, you can proceed to
disassemble the program. Disassemble the text and data
blocks as such and the remaining code as mnemonics. At
this stage I usually take two pieces of paper and label
one BLWPs and the other BLs. Since we are starting
with a relatively small program, use a single piece of
paper divided into two sections. While looking through
the program code you will usually find many references
to each BLWP and BL subroutine. As you look through
the code write down each BLWP and BL address (and
label, if there is one) you come across. When you
figure out what each routine does, write a short
description of it on your paper. You can refer to this
paper when you come across further links to the same
routine. This technique can save you a lot of time
when working on larger programs.

Your job now is to go through your program listing
making written comments as to what each instruction, or
group of instructions, is trying to accomplish. At
first you may have to look up each instruction in the
Editor/Assembler manual. As you progress you will find
that you need to reference it less and less. You will
probably find that it will be necessary to go through
the program several times. Each time you go through
the code you should discover the purpose of at least
one routine. Continue this process until you have
commented all of the code.

At some point you may find yourself going through
the code and not resolving a single routine. You have
probably reached your level of comprehension and will
either need help or further experience before you can
proceed any further.

The Editor/Assembler Quick Reference Card has
several errors in the way it shows the composition of
the instruction formats on page four. See the
Editor/Assembler manual (pages 65 to 73) for the
correct breakdown. Quick access to the ASCII tables
and the like is an advantage. I have several of those
taped to the wall around the desk where my computer
sits. I should warn you that, if you continue this
work, your Editor/Assembler manual will start to show
signs of considerable wear. When I take mine down from

■ the shelf, several pages fall out, and a few have gone

missing. Tape is holding it together because the cover
is torn.

Do not be suprised to find yourself waking up in
the middle of the night with a solution to some routine
that you were working on earlier. Good luck, and
pleasant dreams.

' . .. and this system was designed for the two fMger typisr

continued from page 11

1200 REM
1210 REM
1220 REM *WRAP DATA*
1230 REM
1240 DATA THIS LINE WAS ORIGINALLY VERY LONG AND IT HAS

BEEN SHORTENED SO THAT IT WILL APPEAR ON THE SCREEN
WITHOUT CUTTING ANY WORDS OFF.

1250 DATA IT'S REALLY AMAZING WHAT CAN BE DONE WITH A
LITTLE PATIENCE AND PERSERVERANCE!

1260 REM
1270 REM *FILL/B*
1280 REM
1290 FOR XL=1 TO LEN(MS)
1300 IF LEN(M$)=28-XI THEN 1360
1310 IF SEGS(M$,XL,1)<>" " THEN 1340
1320 MS=SEGS(MS,1,XL)& " "& SEGS(M$,XL+1,LEN(MS)-XL)
1330 XL=XL+1
1340 NEXT XL
1350 GOTO 1290
1360 RETURN
1370 REM
1380 REM *WRAP/B*
1390 REM
1400 X1=0
1410 MS=M$&" "
1420 X2=POS(MS," ",X1+1)
1430 PRINT SEG$(1i$,X1+1,X2-X1);
1440 IF X2=LEN(M$)THEN 1470
1450 X1=X2
1460 GOTO 1420
1470 RETURN

continued from page 25
LWPI GPLWS
B 	@>0070

* You could have placed an end statement here and
* REF'd GPLLNK instead of using this routine.
* GPLLNK routine *

UTILWS,XGPL 	vector for the GELLNK BLWE
>2094
>8373
>8349
>2030
>20

XGPL
MOVB @SUBSTK,R1
SRL R1,8
MOV *R14+,@>8304(R1)
SOCB @H20,@FLAG2
LWPI GPLWS
MOV @SVGPRT,R11
RT
END

GPLLNK
UTILWS
SUBSTK
FLAG2
SVGPRT
H20

DATA
EQU
EQU
EQU
EQU
BYTE
EVEN

Trla 	 tbaulluna
1151-111G ivins ireicrsT) July 1988, Page 27

	--....,\

Forth Forum <3>
by George L. Smyth

This month I will conclude the discussion of
mathematical operations, and begin to talk about stack
manipulation. There are more mathematical operators
than I have included in this session, but most of those
are floating point routines, and may be discussed
sometime in the future. To tell you the truth, I have
not worked much with the floating point words because
they do not offer any speed advantage over BASIC, and
BASIC being easier and quicker to program, I tend to
write those routines in that language.

Also this month I am presenting a program I
downloaded from Compuserve. At first I had
difficulties understanding how the program worked, but
after figuring it out, I found that this program was
going to be invaluable as far as converting Forth
programs that, having been downloaded, are in a DIS/VAR
80 format, to the Forth format required by that system.
I did not find the 'HELP' files provided very useful,
so I went ahead and rewrote them, along with a few
other things, to make the program a bit more user
friendly. Of course, I may not have succeeded as far
as my 'HELP' files are concerned, but the program does
work, and you can always contact me if you have
problems. So, on with this month's tutorial.

More Mathematical Operations
- (nl n2 --- nl-n2)

The minus sign subtracts the value on the top of
the stack from the value just below it, and places the
result on the stack. This is straightforward, in that
to perform the operation 15-3=?1, you need merely enter
'5 3 - .1 to have the answer printed to your screen.

/ (nl n2 --- quot)
The slash divides the integer on the top of the

stack into the integer just below it, and places the
result on the stack. I purposely used the term
"integer" in this definition because this word, more
than the other three arithmetic operators, shows the
exclusive use of integer, or whole number, values. TI
Forth does include a floating point extension, but that
will not be covered for quite a while. The routine
'50 5 / .1 will print "10", the result, to the monitor.
Because we are involved only.with integer values, the
routine '50 6 / .1 will print "8" to the monitor. This
is because 50 can be divided by "6" 8 times. The
remainder is dropped. I think of this routine in the
same respect as I would decide how many dimes I can get
for my quarter. What if we need to know the
remainder? We use 'MOD'.

MOD (nl n2 --- rem)
This word divides the number on the top of the

stack into the number just below it and returns the
remainder to the stack. For instance, '50 6 MOD .1
would print a "2" on the monitor, as that is the
remainder of the division. If the number is evenly
divisible, "0" is returned to the stack. If we want to
find both the quotient and the remainder of a division,
instead of using both / and MOD, we use /MOD.

/MOD (nl n2 --- rem quot)
/MOD divides the value at the top of the stack

into the number underneath it and returns to the stack
both the remainder and the quotient. If we entered
'50 6 /MOD . .1 we would find "8 2" printed, the
quotient and the remainder.

Summarizing:
50 6 / 	prints 8
50 6 MOD . 	prints 2
50 6 /MOD . . prints 8 2

It would be difficult to overemphasize the fact
that the more you experiment with the system and try
things out, the easier working with Forth (or any
language for that matter) will become. One problem you
may have come across while playing with these words, is
that of manipulating large numbers. What happens when
you try to multiply 5,000 by 25? This can be done, but
because your Forth system assumes your values are
single word in size, special instructions must be
implemented to accomodate these conditions. Because I
am getting tired of discussing only the mathematical
aspects of Forth, this subject will be explored more

\,fully some other time. For now we will allow the

limitation of using single word length numbers, that is
integers between -32768 and 32767. I explored this
aspect extensively because the words and their meaning,
as far as stack manipulation is concerned, must_ be
fully understood before you can go any further, so be
sure you have a good understanding up to this point.

Stack Manipulation
Unfortunately, the stack is not always arranged in

the exact order we would like. For instance, in a
BASIC statement, certain mathematical operations are
performed before others because of a hierarchy, as
explained on page 41 of your Extended BASIC manual. In
Forth, this hierarchy does not exist. Therefore, the
values you wish to manipulate must be on the stack in
the order you wish to manipulate them. To find the
value of the expression "(10/2)+7" you would enter
'7 10 2 / + .1. By the time your system reads the
slash, the top two numbers on the stack are 2 and 10.
These numbers are divided and the result, 5, is placed
on the stack. The "+" word is next executed, which
takes the two numbers on the top of the stack, 5 and 7,
adds them, and places the result, 12, on the stack.
The period takes the "12" and prints it to the screen.
This is all fine, but how do you evaluate the
expression "(14+1)/5"? Without manipulating the
position of the values on the stack, there is no way to
perform this operation with one line of code. Here are
some words which will do just that.

DUP (n 	n n)
This word copies and returns the value at the top

of the stack. 	If all you had on the stack was "4",
after entering 'DUP' the stack would hold "4 4". 	An
application that comes to mind immediately is that of
finding the square of a number. Since the square of a
number is that number times itself, the word could be
defined thus:
: SQUARED DUP * . ;

Now if we enter '4 SQUARED', the number "4", after
being placed on the stack, would be copied by the word
DUP. Now the top two values on the stack are 4. The
asterisk multiplies these two numbers and the period
prints the result, 16.

DROP (n)
The DROP word simply removes the value at the top

of the stack. If your stack values are 15 3 11 and you
execute 'DROP', your stack now contains '5 3'. Often,
these two words are used in conjunction with timing
loops. Because Forth is so fast, executing the BASIC
equivalent of "FOR X=1 TO 1000 :: NEXT X"" in Forth
takes almost no time. Therefore, by copying the top of
the stack and dropping the value, all you are doing is
taking up time. DUP DROP results in no change to your
program (note: of course there must be some value on
the stack before 'DUP' is executed).

SWAP (n1 n2 --- n2 nl)
True to its name, this word exchanges the position

of the two top numbers on the stack. The use of this
word enables us to find the result of the operation
(14+1)/5. Here is how to do it : '5 14 1 + SWAP / .1.
The plus sign adds the two numbers and places the
result, 15, on the stack. The stack containing I 15 5
(the symbol "I" is used to indicate the bottom of the
stack. In this case, "5" is the top of the stack value
and "15", just below, is on the bottom), SWAP switches
the stack to I 15 5. Now the slash word can divide the
numbers and the period word prints a "3" to the
monitor.

ROT (nl n2 n3 --- n2 n3 nl)
This word moves the third item on the stack to the

top. If your stack contained I 4 3 2 1 and you
executed ROT, the resultant stack values would be
I 4 2 1 3.

I mentioned it last month after the tutorial, but
I will explain again if that section was skipped. The
stack values can be read by executing the word ".",
however this destroys the stack values. What is needed
is a way of looking at the stack without affecting the
values. If you configured your system in accordance
with the directions in my first article, you will have
access to the word 1.51. If not, load -DUMP into your
system. 1.S1 () displays the stack without
affecting the values or position. The "I" signifies
the bottom of the stack, with the rightmost value 40

Z311/0 	 TISHIIG m-ns DIGEST 4411 July 1988, Page 2t5

representing the top of the stack.
At this point we can configure the order of the

three numbers at the top of the stack in any position,
that is abc, acb, bca, cba, bac, cab. Before you
continue, try to follow the operations leading to each
of these configurations.

	

A B C 	 A B C 	 IABC

	

Do nothing A B C 	SWAP A C B 	ROTIBCA
-- - 	- - -

	

A B C 	 A B C 	 A B C
SWAP 	A C B 	ROT 	B C A 	ROT 	B C A
ROT 	C B A 	SWAP 	B A C 	ROT 	C A B -- - 	- - -

OVER (nl n2 --- nl n2 n1)
The word "OVER" copies the second number down and

returns it to the top the stack. If the stack
contained I 0 1 2 and 'OVER' was executed, the stack
would then hold the values I 0 1 2 1. This is a
standard word found in all systems, but can be defined
with words we have already learned. Try to write this
word on your own, and if you get stuck, I will include
the answer in next month's column.

That about does it for this month. 	After all
this, you may be wondering just where you are in terms
of writing programs. Well, we still have quite a way
to go. The more power you are given, the longer it
takes to learn how to efficiently and wisely use that
power. Anyway, next month I will cover the Editor used
with the TI Forth system. The following month I will
introduce looping structures and finally a few simple
programs that will use much of the words we have
learned up to now. Try playing around with these new
words and do not forget to use '.S' to look at your
stack values.

The Forum
Thought for the month:

"Computers do not do what you want them to do,
they do what you tell them to do!"

Becoming a new member of Compuserve allowed me the
opportunity to engage in some heavy duty downloading of
everything I could find relating to TI Forth. One of
the biggest problems was the fact that the download
file was in a DIS/VAR 80 format, not conducive to the
Forth operating system. One of the offerings was a
program which converted DIS/VAR 80 files into Forth
screens and vice versa. I had previously entered a
program proclaiming the same function but unfortunately
it had a bug and I did not have time to work it out.
This program worked the first time, but because of the
lack of understandable documentation, I did not realize
it for quite some time. Therefore, I decided to change
a few things so that the program could be used by an
individual who did not even understand Forth. I feel
that it is the duty of the programmer to cater to the
lowest common denominator. In this respect, a wider
range of individuals will be able to utilize the
realization of your programming skills.

Here are a couple of the changes I made:
1.) I changed the method of calling the 'HELP' screens,

so that this program can be placed on any series of
screens without the necessity of changing the screen
number to be loaded.

2.) I used vectored execution to determine the proper
routine to be run. The word 'RUN' is universal to
both routines.

3.) I rewrote the field descriptor word, so that the
knowledge and understanding of this routine need not
be necessary.

4.) I rewrote the 'HELP' files so that, hopefully, they
are more useful.

5.) I included the word 'IT', so that when the user is
finished with the program, all of the words can be
erased from the dictionary by entering the phrase
'FORGET IT'.
This routine was written by Jeff Young of

Brooklyn, NY, who otherwise did an excellent job
documenting the functions of the program. One can see
the implementation of the PABS clearly with his
explanations.

Type this program onto a series of Forth screens.
Good luck and, as always, if you have any problems,
give me a call.

George L. Smyth

(File -> Screen -> File converter written by Jell 10ung)
BASE->R HEX 	 (Enhancements by George L. Smyth)
: IT ; 	 (4/85)

O VARIABLE BLKSV
O VARIABLE VEX

: CS 10 SYSTEM 0 0 GOTOXY ; CS CR CR CR
Just a sec ... loading program !"

BLK 0 6 + BLKSV !

: HELP BLKSV @ LOAD ;
: RUN VEX @ EXECUTE ;

(-FTRAN2 - FORTH TO DIS/VAR 80 TRANSFER ROUTINES MCA 19JUL84)

BEP 34 GPLLNK ;
: FLNAME 20 PAB-ADDR M OA + SWAP

WORD HERE COUNT >R SWAP
R VMBW R> N-LEN! ;

(SET UP PERIPHERAL ACCESS BLOCK
O VARIABLE 	FILBUF 50 ALLOT (CREATE AN 80 (>50] CHR BUFFER)

PABS @ A +
	

DATA IS 10 [>A]BYTES INTO PAB)
FILBUF 	1900 (PLACE THE BUFFER AT VDP >1900)

(SET DISK FILE PARAMETERS
FILE 	FILTRAN (REFER TO THIS PAB AS FILTRAN)

: SETFILE 	FTLTRAN SET-PAB (CALL UP PAB AREA
DSPLY
	

(SEQUENTIAL, BILITAY,
• 	50 REC-LEN ; (VARIABLE. 80 Ii51)1

— >

(-FTRAN2 - FORTH TO DIS/VAR 80 TRANSFER ROUTINES 	16AIR;Ba)

DECIMAL
(DEFINE FILE OUTPUT ROUTINE)
	

(Il u)0))

: PUTFILE CR ." Insert data file disk ." CR KEY DROP
APPND FILTRAN OPN
	

OPEN THE PAB FOR OULPUT)
1+ SWAP DO I DUP CR ." Copying screen:' ' . CR
BLOCK 16 0 DO DUP FILBUF 80 BLANKS (LOOP FOR 16 RECORDS)

FILBUF 64 CMOVE (COPY 64 CHAR FROM BUFR)

	

64 WRT
	

WRITE REC# I [64 CHRS])

	

64 +
	

INC I 	ADDR [1 LN])
LOOP DROP LOOP
	

BACK 	NEXT RECORD)
CLSE
	

CLOSE, inz FILE

	

BEP ." Disk file completed. 	CR CR CR QUIT ;

— >

(-FTRAN2 - FORTH TO DIS/VAR 80 TRANSFER ROUTINES
	

16AUG84

(DEFINE FILE INPUT ROUTINE) 	 (Page 4)
: GETFILE CR ." Insert data file disk." CR KEY DROP

INPT FILTRAN OPN 	(OPEN THE PAB FOR INmr)
1+ SWAP DO I DUP CR ." Loading screen:" . CR

DUP BLOCK 	 (GET SCREEN , 	1S)
16 0 DO FILBUF 80 BLANKS (LOOP FOR 16 	RDS)
RD DROP
	

(READ REC FROm u1SK)

	

DUP FILBUF SWAP 64 CMOVE
	

(MOVE LINE INTO BUFFER)
64 +
	

(INC BUFFER CHAR COUNT)
LOOP DROP
	

(BACK FOR NEXT RECORD)

	

BLOCK DROP UPDATE LOOP
	

(UPDATE THE DICTIONARY)
CLSE
	

(CLOSE TEE FILE)
BEP ." All screens loaded." CR CR CR QUIT ;

—>

-FTRAN2 - FORTH TO DIS/VAR 80 TRANSFER ROUTINES
	

16AUG84)

FORTH SCREEN TO DIS/VAR 80 FILE ROUTINE)
	

(Pd,e

: SCR-FILE (scr#[s] scr#[e])
' PUTFcN CiTA VEX I

." Screen to File Transfer"
9 4
CR Lls ,a UA CR
SETFILE BEP

." Enter 'FLNAME' followed by " CR

." a space and the filename 	" CR

." Example: 'FLNAME DSK1.FILE'" CR CR

." Then type 'RUN'. 	 " CR
QUIT ;

(-FTRAN2 - FORTH TO DIS/VAR 80 TRANSFER ROUTINES
	

16AUG86)
(DIS/VAR 80 FILE TO FORTH SCREEN ROUTINE)
	

(Page
: FILE-SCR (scr#[si scr#[e])

' GETFILE CFA VEX !
CS 9 3 GOTOXY ." File to Screen Transfer"

9 4 GOTOXY " 	
CR CR CR CR CR
SETFILE BEP

." Enter 'FLNAME' followed by " CR

." a space and the filename 	" CR

." Example: 'FLNAME DSK1.F1LE'" CR CR

." Then type 'RUN'. 	 " CR
QUIT ;

: INTRO CS 6 6 GOTOXY
.“ Enter 'HELP' 	" CR CR ."
	

'FILE-SCR'" CR CR
." 	or 'SCR-FILE'" CR CR ; INTRO R->BASE

(Help screen) CS CR
This program will convert FORTH screens"

into DIS/VAR 80 files and vice versa, 	"
thus allowing you to download FORTE
programs via modem and convert them to "
run on your FORTH system without re- 	"
typing them.
FILE-SCR is the word which invokes the "

conversion of DIS/VAR files into FORTH "
screens. The starting screen you wish "
to convert the file to, and the ending "
screen the conversion will produce must "
be entered before the word is executed. "
For instance, a 112 line file to be
converted can be placed on screens 41-47"
by entering: 	 >

(Help screen-page #2)
'41 47 FILE-SCR'

Care must be taken to assure that the 	"
file is a multiple of 16 lines or an 	"
I/0 error will result. Also, it is sug- "
gested that the original file be placed "
on a new disk and that the screen desti-"
nation be relatively high, as otherwise "
the file could be overwritten if care "
is not taken. 	* Press any key * 	" 	KEY DROP CS CR ."
SCR-FILE converts a series of FORTH 	"

screens into a DIS/VAR 80 file. The pro-"
cess is the reverse of the previously 	"
discussed routine. The sta, 	screen "
and ending screen of the FI 	program "
must be entered before the .,ouLine name." 	-->

(Help screen-page #3)
For example '41 47 SCR-FILE' will in- "
duce a routine that will convert screens"
41-47 into a DIS/VAR 80 file. One note "
I made was that if an existing filename "
is referenced, the new file does not "
destroy the old file, but concatenates "
following the old file.
Both routines contain self-explanatory "

input requirements during the running of"
the program, but should pose no problems"
to the user. Upon program completion, "
type 'FORGET IT' to remove the words 	"

• from the dictionary. If difficulties are" 	 /I
•

encountered, give me a call." CR ." George L. Smyth (703)533-871
0" CR CR ." 	 * Press any key * 	" KEY DROP INTRO

0

continued from page 1
The Forth Symposium was held on May 19 and 20 at

the University of Technology Sydney, and attracted more
than 180 participants from all over Australia and the
world. Included in the visitors from the USA were
Charles Moore and Elizabeth Rather, who were the first
two people to write programs in Forth. They were also
the founders of Forth Inc., and shared reminiscences of
the early days with the delegates who attended the
dinner at the end of the first day. The Symposium was
organised by a group of people led by Roy Hill and Paul
Wilson, and was probably triggered off by the
appearance of the Novix chip, a Forth processor
designed by Charles Moore and a hardware design team.
This chip runs Forth code extremely quickly, and has
led to an increase in interest in Forth as a language
to solve control problems in particular. Charles Moore
gave two talks which were illustrated with "slides" on
a large colour video monitor. Producing the pictures
was a Forth computer with a Novix chip on a board
smaller than the Mini-PE board. This board had a 3
button keyboard for data entry and produced all the
signals for the monitor at 12 Mhz. As well as that it
could communicate with a 3.5 inch floppy disk if
required. 	Charles Moore has a rather different
philosphy to most computer people. 	He is not too
impressed with .hardware and believes in smaller being
better, but he is also not very impressed with the
conventional approach to software either. Of course
the normal approach to software does not include Forth,
so I guess that is reasonable from his point of view.
He claimed that his company (Forth Inc., pronounced for
think) was used as a safety net, in that when others
could not get complicated software of any type to work
in the specified time, they called in Forth Inc., who
then produced a working system in a few weeks. The
fact that they are still in business would seem to give
credence to his claims. I met a few people at the
symposium who have been producing software locally

A,\,using Forth for several years in a competitive

IISHUG VMS DIGFST) July 1988, Page 29

environment, and say that it is the only way they can
produce the product in a reasonable time. Also of
interest were the number of software products which
have a Forth base or flavour, such as ASYST, a data
acquisition and data processing package for the PC, and
PostScript, a programming language for programming
printers like laser printers to generate graphic and
text output. There was also an announcement at the
symposium by Harris Corporation of a new Forth
processor like the Novix chip but enhanced in some
directions. It appears that Novix have become rather
hard to deal with. Thereis a local company, Maestro,
(at Kincumber, NSW) which is making boards with the
Novix chip on them for insertion in a PC or as a stand
alone unit. What if we could get one which would plug
into the PEB, or Mini-PE system? It certainly is a
very fast processor, and if you agree with Charles
Moore that if you need real numbers you have not scaled
your problem correctly, then it could provide the only
thing that we do not have at the moment with our
beloved little computer, speed.

Ross Mudie was telling me that there were a lot of

members who came to his tutorial day presentation on
interfacing to the TI99/4A who did not know even the
first thing about hardware, gates and so on. So for
all of you who are in that position and would like to
learn something, Ross is preparing a tutorial on logic
for beginners, and the first one of these should make
these pages next month.

While reading the news letters, I came across some
rather disturbing comments. First there was this one
from Richard Earl in the April 1988 issue of News from
the ATICC.

'Now on to our interstate "friends" who complained
about the fact that we are reprinting so much
interstate material, firstly this newsletter is
primarily for the members of ATICC. secondly if you
feel the material you publish is not up to our standard
then let me know and you wont see any more in our
newsletter.'

Richard admits that he was not in a good mood when
he wrote the editorial of which this was a paragraph,
and he clearly did not have time to proof the editorial
to correct errors. I feel that he has allowed his
emotions to show in a rather unfortunate way. Who is
he talking about? There might be 4 or 5 news letters
who could be "interstate", but it seemed to me it must
be my comments that have caused this outburst. In an
attempt to provide a service to the members of TIsHUG I
have been giving a very brief resume of the contents of
news letters which come across my console. In the
March TND I wrote:

'December 1987 issue of ATICC from Adelaide is
rather thick but contains mainly articles copied from
MICROpendium and IND.'

I guess the trouble with the written word is that
you can read what you want into a sentence. These
words would seem to me to be very bland, but in the
next paragraph about the Melbourne effort, I comment
that TIMES must be all typed in or come from disk as it
appeared on fanfold paper straight from the printer. I
certainly was not trying to judge anyone's efforts at
producing a news letter, as I have enough trouble
myself one way and another. I feel that it is a pity
that the worst connotation is taken of some rather
simple statements, whose purpose was simply to give
information. Surely the benefit of doubt should go to
the best of intentions rather than the worst of
possible intentions? As to whether the contents of the
TND can be copied for other news letters, I am all in
favour of that. In fact it gives me a thrill to see
one of our articles in another place as I assume that
is a pat on the back that we are doing a good job in
editing and layout. If other editors think that our
efforts are good enough to be copied directly, then I
am very pleased. In fact we have no statement about
giving credit and so on for copies, as we assume that
people in the TI community are all good and honourable
people by now and will do the right thing by our
authors. Of course we print articles from overseas and
other sources to which we try to attach accurate credit
and we are fortunate in having volunteers to type these
in for us if needed.

/ 	What I have much more difficulty in understanding,
is the attitude of the Hunter Valley group in taking up
this editorial comment from Adelaide and endorsing it.
Perhaps they will tell us some day how it helps the TI
community to carry on like this and encourage bad
feeling between user groups. How did they know which
group Adelaide was talking about? I still do not know
for sure. I shall try to talk to someone in Adelaide
when I am there.

Finally, 	I do not want these words to be
interpreted just as criticism of peoples' actions and
words. If two or more people have misinterpreted my
words (assuming I am the culprit) and have been upset
by them then there are probably many more also making
the same interpretations. I hope that this will cool
everyone off rather than further inflame their
passions. There is a lesson for us all in this I
think. 	I hope that everyone will think kindly of
everyone else and not assume the worst. 	If there
appears to be a problem then a letter or telephone call
to the person involved would probably solve it with
less acrimony than a broadside in the media.

Now to the newsletters. This is an information

service for TIsHUG members to enable them to decide
which of the news letters they may wish to read in more
detail.

The 99'er Online from Edmonton February 1988 issue
has an article by Yves Chevalier on fixing disks, on
Form letters by John Harbour and programs on printing
listings from files in multiple formats, based on an
idea from TIsHUG by Bob Pass and Disk Labeler by
G. Kivell and enhanced by Gordon Bradlee. In March
1988 there is an article on arrays by Bob Pass and
another on formatting by John Harbour. There is also a
good example of a flowchart for those who have trouble
finding their way around them.

The April and May issues of CIM from Montreal are
virtually all in french which makes it difficult for me
to tell you what information may be in them of interest
to you. All I can say is that there are articles on
assembly (8th part), TI-Runner, Multiplan and PRbase.

The LeHigh 99'er computer group news for February
1988 has a menu flow chart for Funnelweb V4.0 from the
Lima Ohio user group, an article on error trapping
after RUN from CIN-DAY user group and an article on
strings by Jack Shattuck of Delaware Valley users
group. Jerry Boyer has a continuing series on the
Geneve in these news letters. In the March issue he
gives the commands for My-Word. Also in March is an
article by Jack Sughrue of Maryland on 'Good old Days'.
There are also a number of short programs for producing
interesting titles from the Pudget Sound 99er, to dump
a line to a printer by John Witham from MICROpendium,
inverse video character list from MSP newsletter, quick
catalog program or subprogram also from MSP and from
Mike Slattery of TIsHUG a program to TRACE to a
printer. In the April issue there is an article on
PRINT USING, with an program example by Brad Snyder,
along with Jerry Boyer's article on the Geneve which
looks at DOS.

The Northern NJ 99er's Users Group of April 1988
has a hint for people with lines in the picture. It is
suggested that a ground wire connected to the RF box on
the TV would help. Chick De Marti (LA 99ers) has a
column for beginners and there is a PEB speech
synthesizer interface by Joe Spiegel as well as some
information on power supplies (from Charlotte TI99/4A
user group).

The Ottawa Newsletter of May 1988 has some
interesting articles on their local news together with
Lucie Dorias on Extended BASIC (DISPLAY AT and ACCEPT
AT) and Stephen Shaw on BASIC. There is also part 6 of
David Caron's articles on expansion port interfacing;
and games hints in code by Henri Monat.

The ROM newsletter from Orange County has a letter
from Tony McGovern, an article on Forth by Earl Raquse
and some useful general information by Newt.

Network, from the Sacramento 99er users group
(SNUG) has an article about Steve Shakleford and his
portable. He has put a RS232 card, disk controller
card, 32K memory, 2 DSSD disk drives, power supply,
Extended BASIC and Editor/Assembler cartridges, 22 cm
monochrome monitor, speaker, and keyboard into a
portable case. Telco is reviewed by Jeff Braden and

about FORTRAN.

opm, UL 77 k.,..11L1.6, UniU) April_ edition ha-Z.\
columns by Mickey Schmitt on getting the most from your
cassette system, TI-Writer by Stan Katzman, Tips from
the Tigercub #48 by Jim Peterson and Impact-99 by Jack
Sughrue. There is also an article by Dallas Phillips
on building a switch to allow your TI99/4A to use two
printers, one at a time. Jean Hall has a review of
PLUS! from Jack Sughrue with word processing aids and a
short bit on Load interrupt, Hold and Reset switches by
Curt Borders. In May there are the columns by Mickey
Schmitt on a high speed cassette loader, TI-Writer by
Stan Katzman, Tips from the Tigercub #49 by Jim
Peterson and Impact-99 by Jack Sughrue, in which he
talks about the early days and Jim Peterson's
influence. There is also an interesting story from Jim
Peterson, an introduction to a new data base program
FIRSTBASE by Warren Agee, to a new genealogical program
STIRPSLINE by Allan Cox and to a graphics program
called CIASS by Bill Harms. The article on power
supplies (ffom Charlotte TI99/4A user group) mentioned
before also appears.

The Tacoma Informer has some advice from Joe
Nollan that the 6264 memory chips from Hyundai do not
seem to work on the TI99/4A bus. He also talks about
program timing and delays. There is an article about
the TI-XPO-88 in Las Vegas and some programming hints
on RUNning programs from other programs.

The March TI-SIG newsletter from San Diego also
has an article on the TI-XPO-88, another on the Octopus
display by Waldo Hamilton and a status report on the
United 99/4 Data Base. The April issue has Arto Heino
and John Paine's Poor man's disk system with good
comments, and they liked our bumper TI-Writer issue.
Unfortunately they also printed the incorrect version
of the tip for entering Extended BASIC from a RAMdisk
without accessing drive 1.

April TopIcs from Los Angeles has an editorial
deploring the over use of archiving. They are also
worrying about the postal costs involved in exchange
newsletters and suggest that perhaps individual members
should become members on behalf of groups. There is a
mini-mod for super extended BASIC by Tom Freeman, a
review of Graphics Expander by D. R. Fudge, Tips from
the Tigercub #52 by Jim Peterson, some tips including a
bug in Funnelweb 4.? by Chick De Marti who also
contributes a BASIC tutorial, a review of EZ-Keys by
Bill Gaskill and another attempt at creating a data
base of all TI99/4A information by Bill Gaskill.

The April edition of ATICC from Adelaide has a
long article on the G Graphics Language developed by
Gene Krawczyk and written about by Bob Warren. It also
promises some future hardware from Colin Cartwright
such as RGB interfaces, very large memory expansion
cards and the ultimate in digitized graphics boards.

In May the Hunter Valley group newsletter has two
articles by Bob Carmany, the first of which looks at
the way you can use Mini-mem to store programs from
BASIC in 4 different places in memory, and the second
looks at using files from BASIC. There is also the
announcement of a cheque/credit card management program
from Richard Terry, with a review by Al Lawrence.
There is an article on Strings by Jack Shattuck from
the LeHigh user group, another on communicaliou
protocols by L.C. Twiss from the Perth user group,
release information on PLUS! from Jack Sughrue and
descending characters for Extended BASIC from Richard
Terry.

There were two editions from Brisbane. The April
one has an article on M-DOS fro the Geneve and another
on building an analog to TTL circuit for a monitor for
the Geneve. There is also an article on Graphics
compatibility by Don MacClellan of the Bluegrass
Computer Society and an article by Regena on DEFs from
MICROpendium. The May issue is the TI-Faire edition
and is extra thick and recommended reading for all. 0

continued from page 13
The menu program (V7.3 on my system) provides for

a default filename for option 2 (Display a File) and
for option 3 (Run a Program). If you wish to change
these defaults, simply select either 2 or 3 from the
primary menu screen, overtype the default filename that
appears on the bottom left of the screen with the one
that you want, then escape (FCTN[9]), then press
FCTN[5] (for edit mode), escape (FCTN[9]) again, then
hit any key (except escape) to save the menu program
back to your RAMdisk. Note that you need Extended
BASIC and that the MENU program must not be protected.0

-1-15MIG NM% DIGEST
	

July 1988, Page 30

41.aht111 GTbuip RtpDala
Meeting summary.

Banana Coast 	10/7/88 Sawtell
Carlingford 	20/7/88 Carlingford
Central Coast 	9/7/88 Toukley
Glebe 	 7/7/88 Glebe
Illawarra 	18/7/88 Keiraville
Liverpool 	8/7/88 Moorebank
Northern Suburbs 28/7/88 Mona Vale
Sutherland 	15/7/88 	???

BANANA COAST Regional Group
(Coifs Harbour area)

Regular meetings are held in the Sawtell Tennis
Club on the second Sunday of the month. For
information on meetings of the Banana Coast group,
contact Keir Wells at 9 Tamarind Drive, Bellingen,
telephone (066) 55 1487.

CARLINGFORD Regional Group.
Regular meetings are usually on the third

Wednesday of each month at 7.30pm. Contact Chris
Buttner, 79 Jenkins Rd, Carlingford, (02) 871 7753, for
more information.

CENTRAL COAST Regional Group.
Meetings are normally held on the second Saturday

of each month, 6.30pm at the Toukley Tennis Club hall,
Header St, Toukley. Contact Russell Welham
(043) 92 4000

GLEBE Regional Group.
Regular meetings are normally on the Thursday

evening following the first Saturday of the month, at
8pm at 43 Boyce St, Glebe. Contact Mike Slattery,
(02) 692 0559.

Last meeting: (May, attendance 14) We had a
limited demonstration of the SPAD II Mark 2 flight
simulator which was appreciated by all. (Thank you
Peter for bringing it along.) Our TELCO demonstration
involved logging on to 2000&Beyond, Texpac, Prophet and
ISO. The program ran faultlessly. As well as these
there was the Debug tutorial.

ILLAWARRA Regional Group.
Regular meetings are normally on the third Monday

of each month, except January, at 7.30pm, Keiraville
Public School, Gipps Rd, Keiraville, opposite the
Keiraville shopping centre. Contact Bob Montgomery on
(042) 28 6463 for more information.

LIVERPOOL Regional Group
Regular meeting date is the Friday following the

TIsHUG Sydney meeting at 7.30pm. Contact Larry
Saunders (02) 644 7377 (home) or (02) 759 8441 (work)
for more information.

Last meeting was at Stan MacPuckle's house. It
was a very small turn out. Stan had a problem with his
RAMdisk and this was fixed at the meeting. There were
demonstrations of some programs and we had a chat.

Meetings coming up.
July 8th 1988 at Larry Saunders home. 34 Colechin St,
Yagoona West. (02)644 7377
August 12th 1988 ???
September 9th 1988 ???

NORTHERN SUBURBS Regional Group.
Hello again, this is Dick Warburton cordially

inviting you to attend the next meeting of the Northern
Beaches' Group. We have gradually improved our
meetings,and have a small but regular group of 5 or 6
attending. Last meeting, we covered the effective use
of printers with TI-Writer. We have organized our
meetings so that we cover some aspect of FunnelWriter,
look at problems in Extended BASIC programming, and
cover a main topic as well.

Our meetings for the next two months are as
follows:
Thursday July 28th at Dick Warburton's home, 7 Milga
Road, Avalon. 	918 8132. The main topic will be file

Thursday August 25th at Dennis' home at 24 Woolrych
Crescent, Davidson. A technical night: Clock cards;
consoles; drives etc.

Naturally we try to fit in as much copying as
possible. 	We also provide something to eat and drink.
We welcome visitors. 	If you want any information
please ring Dennis Norman on (02)452 3920, or Dick
Warburton on (02)918 8132. See you soon.

SUTHERLAND Regional Group.
Any persons interested in joining the Sutherland

Group on the third Friday of each month, are more than
welcome. The format of the meetings are very informal
as more often than not the conversation digresses onto
matters purely social rather than related to
computerisation. The supper is not bad either.

Meetings are held on the third Friday of each
month. Group co-ordinator is Peter Young,
(02) 528 8775. BBS Contact is Gary Wilson, user name
VK2YGW on this BBS.

The May Regional meeting, saw a change of venue,
with Derek Wilkinson of Gymea making available his home
for the evening. One item of interest at the meeting
was a new keyboard, with function keys etc., which has
been adapted to the TI console. Along with the remote
mounted widget board, Derek's computer is looking less
like a 'Texas' each visit. Joe D'ambra has completed
work on his clock project and two other members have
purchased circuit boards and will follow his lead in
the coming weeks. Many thanks to Gary Wilson who
helped out new member, Kevin Taylor, by replacing a
faulty chip on his 32K card, which was causing no end
of trouble.

Future meetings will revert to the home of Peter
Young at Jannali, on the third Friday of each month at
7.30pm, phone 528 8775.

TIsHUG in Sydney
Regular meetings are normally at 2pm on the first

Saturday the month, except January and possibly other
months with public holidays on that weekend, at the
Woodstock Community Centre, Church Street, Burwood.

Meetings planned this year. July 2 - General
interest. This will be a normal, 2pm start meeting,
where if the GENEVE has not already been demonstrated
at the June meeting, it should be available at this
meeting. OK, so you came along to the June full day
tutorial and went home with a wealth of knowledge, but
now just what did the tutor mean when he said
This is what we call a follow up tutorial when you get
the chance to ask, and hopefully receive an answer, to
those nagging questions. Do not be shy. The quickest
way to learn is to ask questions.

August 6 - Swap meeting and market day. Do you
have some old modules, software or hardware you do not
use anymore? Chances are your unwanted gear is wanted
by someone else and this is your chance to sell it,
trade it or give it away. This meeting will start at
2pm so bring along your unwanted items and perhaps go
home with a few extra $$$ in your pocket. The group
can accept no responsibility for goods on sale or to be
swapped. All are sold/exchanged on an "as is" basis.

September 3 - Software demonstrations and
purchase. Again this will be a normal 2pm start. At
this meeting some of the latest software as advertised
in MICROpendium will be demonstrated and hopefully we
will have imported copies for sale direct to members at
reasonable cost.

1(?)/10/88 9am, Full day Tutorial.

All TIsHUG Regional groups are invited to submit
items for this column. Send details as mail to SYSOP
on the BBS.

The information presented here is obtained from
the BBS. Some Regional groups are not advising of
their meetings, which makes the maintenance of this
file on the BBS very difficult.

0

	■=1110

411/0 11S1-1111G NEVIN DIGEST- July 1988, Page 3110

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

