

for G TISHUG \VEWS DIGE-(

TI99/4A Owners Home Computer
User Group
TIsHUG NEWS DIGEST
MARCH 1987
Correspondence to:

PO Box 302
CARLINGFORD NSW 2118

Texpac BBS: Tel.: (02)319.1009

COMMITTEE MEMBERS:

Co-Ordinator:

Chris Buttner..Tel.(02)8717753
Secretary:

Terry Phillips,.Tel,(02)7976313
Treasurer:

Bert Thomas....Tel.(047)541535
Publications:

Bob Montgomery.Tel.(042)286463
Sysop:

Ross Mudie.....Tel.(02)4562122
Merchandise:

Cyril Bohlsen..Tel.(02)6395847
Technical:

John Paine.....Tel,(02)6256318
Librarian:

Terry Phillips.Tel.(02)7976313

REGIONAL COMMITTEE MEMBERS:

Glebe:

Mike Slattery..Tel.(02)6920559
Penrith:

John Paine.....Tel,(02)6256318
Central Coast:

Russell Welham.Tel.(043)924000
Liverpool:

Stan Puckle....Tel.(046)256157
Illawarra:

Rolf Schreiber.Tel,(042)842980
Bankstown:

Peter Pederson.Tel.(02)7722396
Carlingford:

Chris Buttner,.Tel.(02)8717753
Sutherland:

Peter Young....Tel.(02)5288775
Manly Warringah:

Dennis Norman..Tel.(02)4523920
Coffs Harbour:

Keir Wells,....Tel.(066)551487

MEMBERSHIP AND SUBSCRIPTIONS:

Joining Feessvevevanena$ 8.00
Annual Family Dues......$25.00
Dues 0'seas Airmail,..US$30.00
Publications Library....$ 5.00
Texpac BBS.eeuseresesess$ 5.00
BBS Membership:

Other TI User Group
Members..eeevessescssss.$10.00
Public AccesS.eeevece...$25.00

GROUP GENERAL MEETING:

First Saturday of each Month at
Woodstock Community Centre,
Church Street Burwood. Starts 2pm

COMMITTEE MEETINGS:

Held immediately after the
General Meeting at the same
venue,

———

« S/

CONTENTS

— General Information and editorial
AGM Report by Chris Buttner
IBM Compatibility
Techo Time with John Paine
New Secretary Terry
The Communicators by Ross Mudie
Techo Time cont.
RS232 Interface Box with 32K Memory
by Peter Schubert
Software with Terry
XB Screen Colors from Tacoma 99ER's
Programs
Programs
Younger Set with Jenny
TI Shop
Super Widget
Link It with Ross Mudie
A Look at Speed by R.A. Green
A Look at GPLLNK by R.A. Green
Forti Music System by Arto Heino
Multicolor Mode by Stephen Peacock
TI Writer Spricht Auch Deutsch
by Ben Takach
Regional Reports

Page
Page

Page
Page

Page
Page
Page
Page
Page
Page

Page
Page
Page
Page
Page
page

Page

This edition of the TND has been put together Geoff Trott, Rolf Schreiber,
Terry Phillips, Brian Graham under the guidane of Shane Andersen., The new
editor almost missed the pasted up after having been given the wrong address of
Shane's place. Thanks to Shane for allowing the paste up at his place,

A big thank you should be given to Shane for the amount of time that he has
spent in editing for the past six years. Here's hoping he enjoys his
retirement.

Future magazines will be done in Wollongong with the Illawarra Regional Group
assisting.

This issue has a lift out for renewal purposes and should be used when paying
your dues. There are the regular features that have appeared in previous
issues as well as a number of assembler programs.

Finally, I have taken on this position of TND Editor to assist the group to
achieve its aims. I am looking forward to at least maintain the current
standard of the magazine. This will only be done if many members contribute to
its content.

Bob Motppmery

f 510G TISHUG \EWS DIGEST

TECHOTIME with John Paine
Salutations, fellow 99/4a's,

For those of you, that were unable to attend the
Annual General Meeting in February, I wish to introduce
myself as the newly elected "TECHO" of this active
group of TEXAS INSTRUMENT HOME COMPUTERS Users.

My name, as the heading above implies is John
Paine and I live in the far Western Suburbs of Sydney,
at Mt. Druitt, I have been a member of our group for
just under two years so by some standards I may be
considered a relative newcomer to the HOME COMPUTER
USERS GROUP. So be it, although I may not have been
seen to be very active by the majority I have been
playing with our favorite computer for nearly four
years and with the aid of other dedicated users I have
endevoured to learn, cram, steal, borrow as much
knowledge of the innards and strange workings of this
machine as possible and T now believe that we as a
group are in the position to make our selves self
sufficient in terms of hardware and diagnostic support
which allows us to confidently persue our hobby with
out the dreaded fear of writing off our financial
outlays in equipment when and if our little machines
have the occasional hiccup. (just think of how many
manhours of pounding that poor little keyboard you and
your favorite plaything have gone through together.
Good grief,it is part of the family now and I believe
that at last we can say if things are not well....Lets
get the doctor, with out having to consult the
SPECIALIST that resides in North Ryde. Think of your
membership of TIsHUG as your Medicare Card.)

So much for the soapbox routine, I see my
responsibilities as the Resident "TECHO" as many and
varied. I would like to take this opportunity to air my
views on what you, the members may expect in the in the
future.

1) Hardware Support in terms of an alternative
Repair facility for comsoles, PEB cards and bits and
peices,

2) Research and Development of new products with
production done in Australia. (The US Dollar and German
Mark are so expensive.)

3) The ability to acquire some of the more common
spare parts, eg. Keyboards,Power supply boards and
module connectors from the club shop at reasonable
rates,

4) Tips and suggestions to some common failure
avoidance technicques.

5) The ability to implement new technology in
peripherals without resorting to paying excessive
exchange rate fluctuations.

In view of the comments above I would welcome your
advice on "WHAT DO I WANT" and I invite you, The USER
to indicated to "TECHOTIME" c/- of the Club PostBox or

the BBS to User Name "TECHOTIME",
expectations.

to tell all your

Finally, at the AGM I announced the forthcoming
availability of a locally developed Battery Backed
Solid State Floppy Drive Emulator, (Ramdisk).

I can now state that the bare board will be
available from the club shop at $35.00 each. The
functionally equivalent board to import from the US is
$50.00 US and subject to 25% import duty and if you are
unluckly at time of arrival a further 20% Sales tax.
(ouch). For the mathematically inclined you will find
very little change from $100.00.

Once again to introduce this product and refresh
other memories, the TIsHUG ramdisk is a Battery backed
192k byte storage device that thinks it is a double
sided diskdrive which lives quite happily in the PE Box
but allows access of files and programs at (almost)
lightning speed.

The major beneficiery of such a device would be
the owner of a single disk system, but all users will
find this device more than usefull,

Unfortunately deadline time for this edition of
the Magazine precludes too much detail for now but
suffice to say that the initial production run will be
only 50 boards so I suggest that you contact the shop
with your orders and deposits.

The boards will be available for collection in
early April.

One final point, these boards will have gold
plated contacts, throughhole plating and a solder mask
for reliable LONG TERM usage, not like some imported
cards with which production costs were minimised with
long term reliability compromised,

I may be contacted by mail at the normal club
address shown elseware in this edition or if you wish
to phone at reasonable hours i.e. not after 11.00 pm
EST. at home on domestic 02-6256318

int.nat. 612-6256318
or during normal working hours at 02-8197200.

Cheers for now and lets see if our Want List is
achievable, It is up to YOU.

RS232 INTERFACE BOX WITH 32K MEMORY

——————— e ———— e ———]

EXPANDABLE

THRU CONNECT FOR PE BOX,ETC
SHIELDED AGAINST RADIATION
4 RS232 PORTS POSSIBLE

NO POWER CORD

32K MEMORY PROVISION

19200 BAUD MAX SPEED

38400 BAUD FOR MIDI OPTION
BASIC UNIT ONLY $99

e e S He S SR Sk Sk Sk

This new expansion box in its basic form is similar
to the original TI Stand-alone RS232, only it is up-to-
date with the latest technology. The old TI box was
large, used 3 circuit boards and a large power supply.
This new design from TISHUG member Peter Schubert has
only one main board which includes the TI Buss thru
connection, and also provision for 32K memory expansion,
fits into a box measuring 170x120x55mm, but best of all
it uses no separate power supply, only power from your
console, There is no power cord and it uses less power
than a speech synthesizer.

A1l of TI's RS232 commands are supported
(BA=,DA,PA,etc) Speed 300 to 19200 Baud (NOTE 110 baud
has been deleted).If you already have a RS232 card, this
unit can be used for ports 3 and 4, It is supplied ready
to plug in and tested with one port for $99 without box.
Cutting and drilling details are supplied so you can
make your own box, or Peter will fit it into an
Aluminium diecast box for you, paint sprayed in Beige
for $30. A second RS232 port can be fitted with extra
connector on back for $45, or without RS232 conversion
(for experimenting with Sv TTL interface) for $30. 32K
Memory fitted costs $35 extra. This is the latest
design using a single CMOS 32K chip and 3 small IC's.

If this all sounds good to you dont hold your
breath, for there is more to come. This main circuit
board design is called the 'Mini TI Expansion- Part
One', On each end of the board where the connectors are
there is a row of pins extending up from the board onto
which can be plugged another circuit board extending the
interface to this board also.

The first such board that will be designed to plug
into it is a very powerful DSDD Disk Controller. Another
planned add-on will be a Parallel Port. The basic RS232
board with second Port added has available direct access
for experimenting with your own gadget, such as RTTY
interface, Robot control, Remote control, Alarm systems,
Digitizer drawing pad, Midi interface, Mouse interface,
etc, to mention just a few ideas that come to mind.

The Mini Expansion Box RS232 can be ordered from:

Peter Schubert

P.0.Box 28

Kings Cross.2011

Phone (02)358 5602

PETESAKE on TEXPAC BBS

Postage for the unit without box is $3 or $6 fitted
into box. It is available to Regional Group leaders for
meetings if they can arrange to pick it up from Peter. @

=" 100 REM 99 ARTIST

110 REM MARCELLO ZANNINI
120 REM RIDEFINITI

130 REM BASIC OR EXT BASIC
140 CALL CLEAR

150 REM 99 RIMINI VERSION
160 REM DEF. COLOR E SOGGETT
0

170 CALL COLOR(1,7,16)

180 CALL CHAR(32,"")

190 CALL CHAR(33,"0000001818
"

200 CALL CHAR(35,"007E7E6666
7E7E")

210 CALL CHAR(36,"1F13131FFF
FFFF66")

220 CALL CHAR(37,"98987E3D3C
242462")

230 CALL COLOR(2,6,16)

240 CALL CHAR(40,"183C66C3C3
663C18")

250 CALL CHAR(41,"8142241818
244281")

260 CALL CHAR(42,"FFFFFFFFFF
FFFFFF")

270 CALL CHAR(43,"2424FF2424
FF2424")

280 CALL CHAR(44,"2424E70000
E72424")

290 CALL CHAR(45,"E7C3993C3C
99C3E7")

300 FOR I=3 TO 8

310 CALL COLOR(I,2,16)

320 NEXT I

330 CALL CHAR(58,"181818FFFF
181818")

340 CALL CHAR(61,"2424242424
242424")

350 CALL CHAR(63,"0000FFO000
FF")

360 CALL CHAR(64,"2424272020
3r")

370 CALL CHAR(67,"0000001818
"

380 CALL CHAR(69,"2424F40404
FC“)

390 CALL CHAR(68,"0000FC0404
E42424")

400 CALL CHAR(83,"00003F2020
272424")

410 CALL CHAR(90,"0000001808
1")

420 CALL COLOR(9,4,16)

430 CALL CHAR(96,"E7C3993C3C
99C3E7")

440 CALL CHAR(97,"0609FF0810
1")

450 CALL CHAR(98,"0000996600

'9966")

460 CALL CHAR(99,"6699182424
189966™)

470 CALL COLOR(10,15,9)

480 CALL CHAR(104,"FF8181818
18181FF")

490 CALL CHAR(105,"FF1818181
81818FF")

500 CALL CHAR(106,"118844221
1884422™)

510 CALL COLOR(1l,14,16)

520 CALL CHAR(112,"FF7F3F1F1
F3F7FFF™")

530 CALL CHAR(113,"FFFEFCFSF
8FCFEFF")

540 CALL CHAR(114,"FFFFFFFFF
FFFFFFE")

550 CALL CHAR(115,"FEFFFFCFC
FFFFEFF")

560 CALL COLOR(12,12,16)

570 CALL CHAR(120,"050519FE3
82CC602')

580 CALL CHAR(121,"007E42427
ESATE24")

590 CALL CHAR(122,"F8ABASFSF
FFFFF66")

600 REM
610 REM
620 CALL HCHAR(1,1,35,32)

630 CALL VCHAR(2,32,35,23)

et oLy ayouy0ly
650 CALL vcnak(2,1,35,23)
660 CALL HCHAR(24,1,35,31)
670 FOR Y=2 TO 20

680 CALL HCHAR(Y,2,32,30)
690 NEXT Y

700 REM
710 REM
720 A$="1%2$3:4@556=7E8D9?0
Q(T, Y*U+I)0-P*AaFbGcHhJ1iK jLp
sqVrBsMxZyCz"

730 A=LEN(A$)

740 B=2

750 FOR I=1 TO A STEP 2

760 CALL HCHAR(22,B,ASC(SEG$
(A$,1,1)))

770 CALL HCHAR(23,B,ASC(SEG$
(4%,1+1,1)))

780 B=B+1

790 NEXT I

800 REM
810 REM
820 Y=16
830 VR=16

840 W=16

850 Z=32

860 X=16

870 GOTO 1060
880 REM
890 REM
900 CALL KEY(0,K,S)

910 IF S=0 THEN 900

920 IF K<44 THEN 900

930 IF K>59 THEN 950

940 ON K-43 GOTO 1000,900,10
20,900,1570,1590,1610,1490,1
550,1470,1510,1430, 1450, 1530
,900,1110

950 IF K<65 THEN 900

960 IF K>79 THEN 980

970 ON K-64 GOTO 1250,1150,1
930,1770,1650,1270,1290,1170
,1370,1190,1210,1090,1040,10
60,1330

980 IF K>90 THEN- 900

990 ON K-79 GOTO 1230,1350,1
810,1730,1310,1410,1130,1870
,1690,1390, 1990

1000 SUJ=121

1010 GOTO 2070

1020 SUJ=122

1030 GOTO 2070

1040 SUJ=120

1050 GOTO 2070

1060 M=2

1070 N=N+1

1080 IF N=1 THEN 2140 ELSE 9
00

1090 SUJ=112
1100 GOTO 2070
1110 SUJ=113
1120 GOTO 2070
1130 SUJ=114
1140 GOTO 2070
1150 SUJ=115
1160 GOTO 2070
1170 SUJ=104
1180 GOTO 2070
1190 SUJ=105
1200 GOTO 2070
1210 SUJ=106
1220 GOTO 2070
1230 SUJ=96
1240 GOTO 2070
1250 SUJ=97
1260 GOTO 2070
1270 SUJ=98
1280 GOTO 2070
1290 SUJ=99
1300 GOTO 2070
1310 SUJ=44
1320 GOTO 2070
1330 SUJ=45
1340 GOTO 2070
1350 SUJ=40
1360 GOTO 2070
1370 SUJ=41

GOTO 2070
SUJ=42
GOTO 2070
SUJ=43
GOTO 2070
SUJ=69
GOTO 2070
SUJ=68
GOTO 2070
SUJ=83
GOTO 2070
SUJ=58
GOTO 2070
SUJ=61
GOTO 2070
SUJ=63
GOTO 2070
SUJ=64
GOTO 2070
SUJ=32
GOTO 2070
SUJ=37
GOTO 2070
SUJ=36
GOTO 2070
REM
REM
Y=Y-1

IF Y>1 THEN 2120

Y=Y+1

GOTO 900

Y=Y41

IF Y<21 THEN 2120

Y=Y~-1

GOTO 900

=X~1

IF X>1 THEN 2120

X=X+1

GOTO 900

X=X+1

IF X<32 THEN 2120

X=X-1

GOTO 900

Y=Y-1

IF Y>1 THEN 1830 ELSE 1

X=X+1

IF X<32 THEN 2120

X=X-1

GOTO 1670

Y=Y-1

IF Y>1 THEN 1890 ELSE 1

X=X-1

IF X>1 THEN 2120

X=X+1

GOTO 1670

Y=Y+1

IF Y<21 THEN 1950 ELSE

X=X+1

IF X<32 THEN 2120
X=X-1

GOTO 1710

Y=Y+1

IF Y<21 THEN 2010 ELSE

X=X-1

IF X>1 THEN 2120
X=X+1

GOTO 1710

REM
REM SCRITTURA SOGGETTO
CALL HCHAR(Y,X,SUJ)
M=0

CALL GCHAR(Y,X,B)

N=0

GOTO 2170

IF M=2 THEN 2140

GOTO 2070

CALL GCHAR(Y,X,B)

CALL HCHAR(VR,W,Z)
CALL HCHAR(Y,X,33)
VR=Y

W=X

Z=B

2200 GOTO 900 >

.

8

)

10 REM ########4###A#EF HERS
48K JOY DRAW
EXT. BASIC+48 K EXP,.
+JOYSTICK
20 REM #########1EHHEHHH
30 REM BY MARCELLO ZANNINI
40 REM *PLOT* ROUTINE (START
AT MEMORY LOCATION >2700)
50 CALL CLEAR :: DISPLAY AT(
4,3) :"PERSONAL JOYSTICK DRAW
ER"
60 DISPLAY AT(10,3):"MACHINE
LANGUAGE UTILITY TO":"":"LO
AD FROM MEMORY EXPANSION ?":
"":" (Y/N)"
70 ACCEPT AT(15,15)VALIDATE(
"ynYN")BEEP:R$:: IF R$="N"
OR R$="n" THEN 280
80 DISPLAY AT(18,3):"LOADING
MACHINE UTILITY":" ":" F
OR YOUR PERSONAL '":""."
JOY-DRAWING "
90 CALL INIT :: CALL LOAD(-3
1878,0,'"",8196,63,248,"",163
76,80,76,79,84,32,32,39,20):
+ MEM=9992
100 FOR I=1 TO 412 :: READ X
:: CALL LOAD(MFM,X):: MEM=M
EM+1 :: NEXT I
110 DATA 0,1,64,65,96,100,12
8,192,255,191,191,0,194,139,
2.0,8.29,4,32.32,40,2,0,8,30
120 DATA 4,32,32,32,2,0,8,31
,4,32,32,32,4,192,2,1,0,3,6,
160,40,42,176,160,39
130 DATA 12,152,2,39,14,26,9
,152,2,39,18,19,6,112, 160,39
»9,216,2,39,18,216,2,39, 17
140 DATA 4,192,2,1 ,0 6,160
,40,42,152.2,39,15.26,2,112,
160,39.15,208,194,9,51,4150°
DATA 192,2,1,0,2,6,160,40,42
,9,50,4,196,209 ,196 10 8
44,192,208, 2
160 DATA 161,
,83,209,67,6,
»9, 82 209 194 6
170 DATA 6 128,
22,16,252,192
,192,208,1,209,1
DATA 10,48,2,1,3
4,32,32,44,249,70,
,39,17,27,16,184
190 DATA 32,39,9,39,18,152,3
2,39,8,39,18,19,34,209,224,3
9,18,4,192,208,160,39,18,2,1
200 DATA 0,3,6,160,40,100,4,
192,208,7,6,192,10,48,2,1,39
,0,2,2,0,8,4,32,32
210 DATA 36,4,192,2,1,0,4,20
8,135,6,160,40,100,192,4,208
,71,4,32,32,32,194,202,4,192
220 DATA 216,0,131,124,4,91,
2,0,30,0,4,32,32,52,4,194,4,
32,32,12,152,32,131, 74,39
230 DATA 8,19,6,152,32, 131 7
4,39,10,22,3, 208 160 131 75,
4,91,152,32,131,74,39,11,22,
234
240 DATA 4,192,208,32,131,75
,6,192,176,160,39,13,6,0,22,
252,176,160,131,76,4,91,2,3,
0
250 DATA 7,216,192,131,74,6,
3,22,252,2,3,0,1,112,160,39,
12,216,32,39,10,131,74,152, 2
260 DATA 39,13,26,11,216,32,
39,11,131,74,184,32,39,9,131
,75,112,160,39,13,2,3,0,2,16
270 DATA 242,216,194,131,74,
4,32,32,8,4,91
280 FOR I=96 TO 143 :: CALL
CHAR(I,""):: NEXT I

’
l6'
0,4
197
’
0

290 FOR I=1 TO 14 :: CALL CO

LOR(I,4,2):: NEXT I

300 CALL CLEAR :: PRINT "PLE

ASE RELEASE ALPHA LOCK

WAITING FOR YOUR JOY-MOVE" :
: FOR S=1 TO 24 :: PRINT ::

FOR T=1 TO 100 :: NEXT T ::

NEXT S

310 NN=34 :: CALL CLEAR :: C

ALL SCREEN(4):: CALL CHAR(33
,"COCO"):: CALL SPRITE(#1,33
,16,100,100)

320 CALL JOYST(1,XR,YR)

330 CALL MOTION(#1,-YR¥2,XR*
2):: CALL MOTION(#1,0,0):: C
ALL POSITION(#1,DOTR,DOIC)::
GOSUB 340 :: GOTO 320

340 IF NN>156 OR DOTR>192 TH
EN RETURN

350 CALL LINK("PLOT",DOTR,DO
TC,NN,KR):: RETURN

100 CALL CLEAR :: CALL SCREE

N(6):: PRINT TAB(6) "SPACE B

OMBS AWAY" : 3

¢ :: PRINT " PRESS ANY KEY

TO CONTINUE":

110 CALL KEY(3,K,S):: IF S=0
THEN 110

120 CALL CLEAR :: CALL SCREE

N(2):: CALL MAGNIFY(3):: RAN

DOMIZE

130 CALL CHAR(128,"0103070B0

A1B2A2B2A2B4A4B4A7BOEOAQO80C

OAOAOBOASASBASASA4ALALBCEOA™)
140 CALL CHAR(132,"™C000000F1

F357F3F001204020000000000000

OEOF0OS58FCF80050A08"™)

150 CALL CHAR(136,"000000000

00001021F7F02070000000000000

0007E84007E840810E")

160 CALL CHAR(96,"0000"&RPT$
("01",12)&RPT$("0",36),100,R

PT$("0",13)&"1030301"&RPT$("

0",24)&"80C0C08")

170 CALL CHAR(112,RPT$("F",1
6))

180 CALL COLOR(11,6,1):: FOR
X=0 TO 8 :: CALL COLOR(X,15
,1):: NEXT X

190 CALL HCHAR(22,1,112,96):
: SC=0 :: DISPLAY AT(2,3):"S
CORE= 0"

200 CALL SPRITE(#1,128,3,153
,121)

210 CALL JOYST(1,CV,RV):: IF
Cv=0 THEN CALL JOYST(2,CV,R
V)

220 CALL MOTION(#1,0,CV*2)::
CALL KEY(1,X,S):: IF S=0 TH
EN CALL XEY(2,K,S):: IF S=0

THEN 230 ELSE GOSUB 380 ELSE
GOSUB 380

230 IF F=0 THEN 260

240 FOR X=4 TO 7 :: IF A(X)=
1 THEN CALL COINC(#X,#2,16,2Z
):: IF Z=-1 THEN GOSUB 410 E
LSE CALL COINC(#X,#3,8,Z2)::
IF Z=-1 THEN GOSUB 410

250 NEXT X

260 FOR X=1 TO 2 :: IF B(X)=
0 THEN 280 ELSE CALL POSITIO
N(#X+7,R,C):: IF R>165 THEN
CALL DELSPRITE(#X+7):: B(X)=
0

270 CALL COINC(#1,#X+7,14,2)
:: IF Z=-1 THEN 440

280 NEXT X

290 IF A(7)=0 THEN 320 ELSE

IF B(1)=1 AND B(2)=1 THEN 32
0

300 CALL POSITION(#7,R,C)::

FOR X=1 TO 2 :: IF B(X)=0 TH
EN CALL SPRITE(#X+7,100,10,R
,C,16,0):: B(X)=1 :: GOTO 32
0

310 NEXT X

320 Y=Y+1 :: IF Y<>15 THEN 3

50 ELSE Y=0 :: IF A(4)=0 AND
A(5)=0 AND A(6)=0 AND A(7)=

0 THEN 450

330 FOR X=4 TO 7 :: IF A(X)=

0 THEN CALL SPRITE(#X,132,14

» 240 ,RND*256+,5,RND*541 ,RND*

14-7):: A(X)=1

340 NEXT X

350 IF F=0 THEN 210 ELSE CAL

L POSITION(#2,R,C):: IF R>19

2 THEN CALL DELSPRITE(#2)::

F=F-1

360 CALL POSITION(#3,R,C)::

IF R>192 THEN CALL DELSPRITE

(#3)::-F=F-1

370 GOTO-210

380 IF F»1 THEN RETURN ELSE

F=F+1 :: CALL SOUND(-200,-1,

5):: CALL POSITION(#1,R,C)::
IF F=2 THEN 390 ELSE CALL S

PRITE(#Z 96,16,145,C,-24,0):
RETURN

390 CALL POSITION(#2,S,S)::

IF S=0 THEN S=2 ELSE S=3

400 CALL SPRITE(#S,96,16,145

,C,—24,0):: RETURN

410 F=F-1 :: CALL POSITION(#

2,S,8):: IF S=0 THEN CALL DE

LSPRITE(#3)ELSE CALL DELSPRI

TE(#2)

420 CALL SOUND(-400,-6,3)::

CALL DELSPRITE(#X):: A(X)=0

t: Y=0 :: IF X=7 THEN SC=SC+

20 ELSE SC=SC+10

430 DISPLAY AT(2,9):SC :: RE

TURN

440 CALL COLOR(#1,16):: CALL
SOUND(-500,~7,0):: SC=SC-50
+: DISPLAY AT(2,9):SC :: CA

LL COLOR(#1,3):: GOTO 290

450 FOR S=1 TO 3 :: FOR X=15

0 TO 130 STEP -2 :: CALL SOU

ND(-99,X,8):: NEXT X :: CALL
SPRITE(#S+3,136,11,249,256,

RND*5+1,~-RND*10-5):: NEXT S

460 A(4),A(5),A(6)=1

470 CALL JOYST(1,CV,RV):: IF
CV=0 THEN CALL JOYST(2,CV,R

V)

480 CALL MOTION(#1,0,Cv¥2)::
CALL KEY(1,K,S):: IF S=0 TH

EN CALL KEY(2,K,S):: IF S=0

THEN 490 ELSE GOSUB 380 ELSE
GOSUB 380

490 IF A(4)=0 AND A(5)=0 AND
A(6)=0 THEN 330

500 IF F=0 THEN 530

510 FOR X=4 TO 6 :: IF A(X)=

1 THEN CALL COINC(#X,#2,16,Z

Y:: IF Z=-1 THEN GOSUB 410 E

LSE CALL COINC(#X,#3,8,2)::

IF Z=-1 THEN GOSUB 410

520 NEXT X

530 IF F=0 THEN 470 ELSE CAL

L POSITION(#2,R,C):: IF R>19

2 THEN CALL DELSPRITE(#2)::

F=F-1

540 CALL POSITION(#3,R,C)::

IF R>192 THEN CALL DELSPRITE

(#3):: F=F-1

550 GOTO 470

TISHUG

NEWS DIGEST

q | |
'___..ha'

T.I, SHOP MARCH 1987

This is to introduce myself. I am Cyril Bohlsen, the
new Merchandise Co—ordinator. For better or worse you
will have to put up with me running the the shop for
the next year.

SHOP INVENTORY,

At this stage our stock includes:
Micropendiums .eeeeeescescsssossssssee$2,90
(1986—June to December;)(1987 January)
Spike Protectors ...eeesssasssscssaass$29
Console Writer Modules ...ceavsessssae$dd
Consoles Version 2.2 sessssvssssseess$65
1 only Double Disk Drive Cable .e.....$30
Disk Storage BoXeS sveceessessseasnases$18.60
Boxes of disks (10) cevescesssscnencss$ld
Club Software Disks .eecceescscsaaseaa$5
Club Software Tapes ...ceecesescsasese$3
Millers Graphics Smart Prog.Guide.....$7.50
32k Matchbox memory expansion kits....$45
(Should be available for the March meeting)

There will be some of the 32k memory exp. boards fully
assembled and tested for members at an additional fee
of approx $10 (five solder connections will still have
to be made to the console.,) Also the grom port you take
out of your console will have to be returned to the
Club shop.

In the near future we will be carrying some second hand
spare parts for the T,I. Console:

Keyboards

Grom Ports

Power Supply Boards

Ivory Console Cases

Chips for converting V2 to V1
All the above parts will have been tested by our
Technical Co—ordinator.

Being new in this position I would like to hear from my
fellow members as to the type of items that they feel
the shop should carry.

NOW _FOR A FREEBY :

Also in stock are a few copies of the old Magazines
H.C.M, 1985— Vol 5/2
H.C.M. 1985— Vol 5/5
Softex Nov. 83 Vol 1/1
Jan. 84 Vol 1/2
May. 84 Vol 1/3
Sept.84 Vol 1/4
Dec. 84 Vol 1/5
Mar. 85 Vol 1/6
For the initial release these magazines will be made
available to members for the cost of postage only, this
is to make it fair for Country members if they require
them. The distribution will be first in best served.

METHOD OF CONTACTING SHOP,
Electric mail,....SHOP
Written mail......TISUG P,0.BOX 302, CARLINGFORD
Phone(02)6395847 7.00 PM to 10.00 PM
METHOD OF PAYMENT
Bankcard & Mastercard (full details required)
Cash & Cheque

CYRIL

SUPER WIDGET

The following information is from the Victoria (B.C.,
Canada) 99'er Group's August newsletter.

Over two years ago Johan Vaniaschoot had spoken with me
about a large high quality widget type device for more
than three modules. The concept was a six or eight slot
expansion box with line drivers and a buffered selector
for each module. This was to resove the Navarone Widget's
worst features, limited expansion and noisy switching.

This idea has hung around and a couple of months ago he
and I were talking about it, and I mentioned that I had
read about supposed software existing in the TI for
sultiple pages of cartridges. This built in software
would supposedly work with the proper extra hardware.
Lending credence to this information was a Millers
Graphics newsletter (The Smart Programser) referring
to the address decoding required. Johan and I both had
a screen with "REVIEW MODULE LIBRARY" come up from time
to time during assembly language development. We talked
about the hardware problea and devised a simple schese
to test how the software worked (and if it would work
at all).

I loaned Johan a wire wrap and breadboard prototyping
systea I had built for the cartridge port and with
considerable effort Johan managed to locate some 36
pin sockets.

THE SOFTWMRE DOES WORK ! This is what appears to be
poasible :

The TI menu comes up as it usually does and an extra
selection is added " REVIEW MODULE LIBRARY ". If this
option is chosen the next available cartridge page is
displayed on the menu as if it were the only cartridge
plugged in and the option " REVIEW MODULE LIBRARY " is
also displayed. This action continues in a loop thru
all modules until a selection is made of an application.
Now this is nice, no need to flick switches and up to
16 modules could be available in a monster box. But
there is more.

The GPL (Graphics Programming Language) systea is
designed 8o that with this hardvare the built in
software allows one cartridge to access the devices
and calls in another. This allows for example, console
basic to access all of the plugged in modules' call
routines and device names at one time. * MINIMEM] ",

" MINIMEM2 ", and " SPRECH ™ and CALL PEERV, POKEV,
LOAD, etc. are all available from basic.

TI FORTH can access " MININEM1 " and " MINIMEM2 * and
" SPEECH " as devices with no need to switch anything
or to modify any console hardware. The operating systes
in the console handles all accesses transparently.

This was built in from day one with the 99/4 and is on
ay pre 1983 black and silver console. I don't know for a

fact if this is on the newer models, but I suspect it is.

The software during the module library selection finds
only those pages that contain grom or grom and rom
combined. The slots with rom only (third party stuff)
do not come up on the menu. Much like the post 1983
consoles.

The Victoria company Osram Industries is currently
developing an inexpensive " Super Widget " to take full
advantage of this in console software.

Reprinted from the C.A.U.G ALERT Oct. 1985.

Ed. Comment : Assuming the above comes to pass, imagine
the PONER this might add to Extended basic. For
example, with the Mini Memory module plugged into the
‘super widget' you would have an additional 4K for CALL
LINKs to Assembly Language routines as well as CALL
PEEKV and CALL POKEV. Now add the TE II module and
Extended basic would have easy text to speech. Boggles
your mind - doesn't it ?? !!

1)

TISHUG NEWS DIGEST

ASSEVIBILER

A LOOK AT SPEED by R.A.GREEN
Reprinted from Ottawa T.1.99/4 User's Group Newsletter.
January 1986 edition.

The speed of computers is usually specified in "Millions
of Instructions Per Second" or simply, MIPS.IBM's newest
and fastest computer, the 3090-200, is rated at 30 to 45
MIPS. You would not expect that kind of performance from
the TI 99/4 (a $ 99 bargain), but let's have a look at
just how fast our favourite machine is.

There are three areas of CPU RAM in the 99 where machine
language programs and their data can reside: (1) the 256
byte scratch pad memory in the console, which we will
call "PAD"; (2) the 24K bytes in the memory expansion,
which we will call "EXP"; and (3) the 4K bytes in the
MINI MEMORY.

The PAD memory is on the 9900's 16 bit data bus and has
faster access than the EXP or MM which are both on the
8 bit peripheral bus. I found that the MM and EXP are
equivalent.

There are three possible program setups:
(1) All data and instructions in EXP.
(2) Data in PAD, instructions in EXP.
(3) All data and instructions in PAD.

Since the PAD memory is only 256 bytes, option 3 above
is quite impractical for any real programs. Most of the
data that a program works on is in its 16 workspace
registers, so that we could consider the above three
setups to be equivalent to the following:

1. Workspace registers and instructions in EXP.
2. Workspace registers in PAD, ingtructions in EXP.
3. Workspace registers and instructions in PAD.

These are the three situations I experimented with.

The Assembler Language program at the end of this
article was the basis of the tests. The sample program
is set up for situation (1), with no test instructions.
Running this sample would give us the time for the loop
overhead which can be subtracted from the later loop
timings to give the time for the test instruction
itself.

In the sample program, the positions of the Workspace
registers and the program instructions is varied by
changing the first and second statements. The
instruction to be tested is placed inside the TEST
loop. The Mini Memory's EASY BUG was used to display
test results.

The program uses the VDP interrupt which occurs every
1/60th of a second. The program counts how many times
the TEST loop is executed between VDP interrupts. It
does this counting 10 times for each test just to be
sure the results are repeatable. the whole test for

an instruction takes a grand total of 1/6th of a second!

The loop counts obtained are converted to seconds per
loop by the formula :
seconds / loop = 1 / (count * 60)

Then, the time to execute the test instruction is
obtained by subtraction of the time to execute the loop
with no test instruction.

I tested various instructions and found that most of them
are the same, the time to execute an instruction being
dependent upon the number of words of memory to be
fetched and/or stored. I found that the byte instructions
were the same speed as the word instructions. That is,
ADD BYTE took just as long as ADD WORD. Of course,
multiply and divide are the exception to the rule - they
take a long time.

Enough said, here are the numbers ! The instruction times
are in micro seconds.

R XX R K Ak K A I R S A X KX IS XX KT K KA XXX X

Workspace in | PAD i PAD i EXP
Code in PAD EXP PAD

Instruction | Size (1) T (2) (3)
‘XXX!XXI‘IIX‘!!I‘!!!!XIXX!xllllxlllll!llllllllllll!
DEC REG ' .5

ADD REG,REG

ADD @PAD,REG

ADD @EXP,REG

ADD @PAD,@PAD

ADD @EXP,@EXP

MPY REG,REG

MPY @PAD,REG

MPY @EXP,REG | H

t
|
'
)
'
'
'
0
1
'
'
|
)
i
)
v
)
. . 1 .
XXIII!‘X“!!I!I!!!!X!!Ill!l“lltl!l!!tl!l!lx!ll!ll'

'
v
1
1
'
1
[l
i

x
'
)
|
'
*
v
1
v
1
i
»
v
1
i
1
1
1
t

x

So, how many MIPS is the TI 99/4A? As a good guess, we
could average the first six entries in column (2). This
gives us an average instruction time of 10 microseconds
-- that's 0.1 MIPS. The IBM 3090-200 is only 300 to 450
times faster.

ASSEMBLER SOURCE

x

*TITLE

: SPEED TEST PROGRAM
*AUTHORS :
*

R.A. 5.J.GREEN

WSP
INST
x

EQU
EQU

»C000
»A100

Workspace Register in EXP
Test instructions in EXP

AORG »>A000

DEF START
START LIMI 0

LWPI WsP

Driver program in EXP memory

Define entry point
Interrupts off

Load Workspace pointer

Use VDP interrupts for timer

LI
MOV

RO, INT RO=user interrupt routine address
RO,@>83C4 Set the interrupt vector

* Move test loop to test address
x

LI
LI
MOV
MOV
LI
LI

R8, INST

R9, TEST
*R9+, *R8
*R9+,82(R8)
R2,DATA-
R1,10

R8=test loop address
R8=Test instructions
Move test loop to test address

R2 points to 10 counters
Rl = 10 times to test
x

* This loop is restarted each VDP interrupt
x

LOOP CLR
LIMI 2

B *R8

RO Clear timing counter register
Allow interrupts

Go to the test loop

x

* This is the user interrupt routine
x

INT LWPI
MOV
DEC Rl
JNE LOOP

BLWP @0

WsSP
RO, *R2+

Reload workspace pointer
Move count to storage space
Decrement loop counter
Add continue for 10 times
Done, go to title screen
k]

DATA BSS 20 10 speed counters
t 3

* Test loop
X

TEST INC RO

TEST INSTRUCTION
JMP TEST

END

Count times thru loop

Loop till interrupted

Reprinted from The Ottawa T.I. 99/4 User's Group
NEWSLETTER September, 1985

A LOOK AT GPLLNK by R. A. Green.

The Operating System of the TI 99/4A consists of code
in ROM and in GROM. The code in ROM is assembler
language. The code in GROM is TI's proprietary Graphics
Programming Language (GPL }.

The ROM code has three main functions: interrupt
processing, floating point arithemetic and GPL code
interpretation. The GROM code has everything else !

There are, in all this GPL code, several very useful
routines that can be used by Assembler language
programs. The Editor/Assembler and the Mini Memory
modules provide a means, called GPLLNK, to access
these routines in GROM. The Extended Basic and TI
Writer modules do not provide a link to GPL.

1 have developed a GPL link routine that will work for
all modules. The Assembler source listing is shown
below. The code for this routine is a bit trickey, so a
few notes for those who want to understand the code may
be in order.

1. The workspace registers are alraedy loaded with
some necessary values when RAGLNK is called.

2. The first, and only the first, time RAGLNK is
called, it searches all GROMs until the
hexadecimal value OFFF is found.

. The GPL operation code »0F is a call to an
assembler language routine. The byte following
the >0F, in our case, »FF gives the table number
and entry number in that table. Table number 15
(>OF) begins at >8300 in the conscle CPU RAM,
and entry 15 in this table is at address »831E.
. A GPL CALL stacks the current GROM address then
branches to the routine to be called. A GPL
RETURN unstacks a GROM address then resumes
execution at that address. RAGLNK stacks the
GROM address of the »OFFF instruction, then
goes to the GPL interpreter to begin execution
of the GROM subroutine. When the GPL subroutine
does a RETURN, the >O0FFF instruction is
executed, causing GPL to exit to the assembler
language routine whose address is at »831E.

This brings 1 back to RAGLNK who returns to
his caller.

ASSEMBLER SOURCE LISTING :

*TITLE:
*AUTHOR:
*FUNCTION:
x

GPLLNK Subroutine
R.A.Green
Provides access to the GPL routines,
no matter which cartridge you are using.
Same as described for GPLLNK in E/A or
MM manuals, except that the GPL STATUS
byte need not be reset before calling:
BLWP @RAGLNK
DATA GPL-routine-address
*NOTESThis routine depends upon finding the
* value >0FFF somewhere in GROM. This
value occurs at least 3 times in the
console GROMS in my machine. >0F is the
GPL opcode to call an assembler routine.

*LINKAGE:

DEF RAGLNK
RAGLNK DATA WSP,$+2
MOV RO,RO

JNE STACK Jump yes
Find an occurrence of >OFFF somewhere in GROM
MOVB RO, *R3 Set the GROM address to zero
MOVB RO,*R3
JMP $+4
SRCH1 INC RO
MOV8 *R4,R1
SRCH2 CI R1,>0F00
SCH1
*R4 R1

Linkage/Transfer Vector
Do we have an address of >OFFF ?

Increment cur GROM address
Get next GROM byte
Is it the start of our value ?
Jump no, keep looking
Get the byte after »0F
Ri, >FF00 Do we have >0FFF 7
STACK Jump yes, EUREKA !
RO Bump our GROM address past >0F
SRCH2 And keep looking.

N\
* Notice that the above loop will not end if we do
* not find an occurrence of >0FFF
* Put our GROM address on the GPL subroutine stack.
STACK INCT *R7 Bump GPL stack ptr at »8373
MOVB *R7,@REG2+1 Get stack ptr into »83xx
MOV RO, *R2 Our GROM address to the stack
MOV *R6,R9 Save contents of »831E
MOV RS, *R6 Put address of BACK into entry
* »F of table »F.
* Get GPL routine address from CALLER
MOVB R10,@>837C Reset GPL STATUS byte
MOV *R14+,R8 Fetch the GROM address
LWPI >83E0 Switch to the GPL workspace
MOV @REGS,R6 Ré=next GROM addr to interpret
B @>0060 Go to GPL interpreter
* Hopefully GPL will come back here
BACK LWPI WSP Switch back to our workspace
MOV R9, *R6 Restore value in »831E
RTWP Return to calling program .
* Qur workspace registers loaded with interestinmg stuff.;
WSP DATA O RO=our special GROM address
DATA O R1 LSB is zero
DATA R2=GPL subroutine stack address
DATA R3=GROM write address address
DATA R4=GROM raed data address
DATA R5=address for GPL to come back to
DATA »B831E Ré=address of entry »F of table »F
DATA »8373 R7=pointer to GPL subroutine stack
BSS 2 RB8=GROM addr of GPL routine
BSS R9=saved contents of »831E
DATA R10=ZERO
BSS R11-R15
END

REG2 »8300
»9C02
>9800

BACK

TND INDEX

Brian Grahas

As a service to members I informed all via this Digest
last month that I had just completed a complete INDEX
to ALL articles in ALL editions of both the SND and
the TND from APRIL 1981 to DECEMBER 1986.

The Index is compiled on DBASEIII - an IBY program -
for ease of operation and is divided into two parts.
Details of its structure was contained in the Jan/
Feb 1987 edition of the TND.

The file is also available as an ASCII text file and I
am still seeing if it can be used with a TI Data Base
Managesent System or some other TI program. I will
let everyone know how I go.

At the A.G.M. I made avajlable as hard copy through the
Club shop some advance copies. They proved quite popular
with all who purchased.

The Index is available in four (4) versions as folows :
(1) 33 page complete index on details of both
articles in the SND / TND and the programs

(2) 33 page complete index on authors of both
articles in the SND / TND and the programs
from same Cost $ 5.00

(3) 7 page complete index on details of all
programs in the SND / THD

Cost § 1.00

(4) 7 page complete index on authors of all

prograns in the SKD / TND
Cost § 1.00

These costs may sound high but all profit is going back
to the Club and ultimately you the members will be the
winners.

A word of warning.... The Index on disk when available
will span three (3) disks so if you are waiting for them
to be released I would advise you to think seriously
about ordering a hard copy to save the time and effort
of printing and save the cost of paper.

1 believe that there might still be some copies available
through the shop. Don’t forget postage $ 1.00 extra.

ORDER YOUR COPY NOW BEFORE IT IS TOO LATE

MULTICOLOR MODE
by Steven Peacock - WEST JAX 99'ers

In multicolor mode the screen is made up of 48 rows of
64 columns. Each of these blocks are 4 pixels by 4
pixels. One of the best things is that each of these
blocks can be any of the 16 colours that the TI
computer can make. Also if you want to use sprites,
you can. The colour of every two boxes are described
by one byte.

The first thing you must do, when using multicolor
mode, is number the rows of the screen. 1In the first
four rows the columns are numbered O to 31. The next
four rows are numbered 32 to 63. This continues for a
total of six groups.

ROWS SCREEN POSITIONS
1- 4 0 1 Zevienrenneeses.s29 30 31
5~ 8 32 33 3heieneveennnse..lb6l 62 63
9-12 64 65 66uieerrrecccanssa93 94 95
13-16 125 126 127..uuvevnvsses..125 126 127
17-20 128 129 130¢evsvseesevesss157 158 159
21-24 160 161 162..00seeeenseesasa189 190 191

In the multicolor mode, the Pattern Descriptor Table
stores the colour of the block, not the character
pattern. This table starts at >0800 and ends at >0EOO.
If you wrote the colour transparent to each of these
addresses, the screen would clear.

To put the TI into multicolor mode, write >E8 to VDP
Write only register number one. This is done with the
command :

LI RO,>01E8

Now that the TI computer is in the multicolor mode and
you have set up a screen numbering system, you must
find the correct byte on the screen. If your starting
row value was 12 and the starting column value was 27,
here is how you would calculate the correct byte:

Y=COLUMN (Y=27)

X=ROW (X=12)

A=Y/2 (A=13.5)

B=INT(Y/2) (B=13)

C=A-B (€C=0.5)

D=X/8 (D=1,5)

E=INT(X/8) (E=1)

F=D-E (F=0,5)

G=>0800+E6+B*8+F (G=2408.5)
This is the position in the Pattern Descriptor Table.
Next you must determine if you need to change the left
or right digit. If the value in F is zero, then change
the left digit if not, change the right digit.

The command ANDI stands for AND IMMEDIATE. When this
command is used to compare two words, the bits that are

set in both are set in the new word. For example:

If REGister 9 has the value of >E318 (1110001100011000)
and you ANDI it with »>2619 (0010011000011001) the
result will be:

>E318

>2619
Register 9 will now contain:

>2218

1110001100011000
0010011000011001

0010001000011000

The other command A stands for ADD, the command

A R8,R9 will add the value in Register 8 and the
value in Register 9 and put the answer in Register 9 -
the second Register (9).
Register 9 holds >108C the command A R8,R9 results
in >E401 plus >108C. The answer is put into Register
9, so Register 9 now holds >f48D. The value in
Register 8 1s unchanged.

Please note that the A command adds words (registers or
a value at an address). The command AI will add a
number to the register. For example:

A R4 ,>E09A
A R4,R5

AL R4,31

Al R4,>20

The following program starts out by turning the screen
black and going into text mode. This is done to set up
the screen. Next the screen positions are numbered.
Then the Pattern Descriptor Table is cleared to
transparent. This loop is also used when you want to
clear the screen from the program.

The main loop scans the keyboard for the following
keys:

W,E,R,S,D0,2,X,C,1,2 and 3. The letter keys are used to
draw on the screen, The number keys are used like
this: 1 to change screen colour, 2 to change block
colour and 3 to clear the screen.

The loop DRAW is the place that computes the location
in the Pattern Descriptor Table. If you follow it
statement by statement you will find it is the same as
I have described above.

One last thing, I have put in a label "RELAY". This is
used because the program must jump more than >100 (256
decimal) bytes. All the "RELAY" is used for is a
double jump.

If Register 8 holds >F401 and !

*PROGRAM BA16A=>BASIC ASSEMBLER
* MULTICOLOR MODE

* STEVE PEACOCK

* via WEST JAX 99'ers

DEF START
REF VSBW, VWTR,KSCAN, VSBR
CLR @>8374
LI RO,>0711
BLWP @VWTR
LI RO,>01F0

BLWP @VWIR

**START S
CLR RO *SCREEN
LI R7,6
CLR R5
LI R3,4
LI R4,32
MOVB R5,R1
BLWP @VSBW
INC RO

*WRITE IT

*SETUP KEY SCAN
*MAKE SCREEN BLACK ON BLACK
*BY WRITING >11 TO WRITE ONLY REG 7
*PUT IN 40 COLUMN MODE BY
*WRITING >FO TO WRITE ONLY REG 1
*. INITIALISATION

_ON IS THE START
*THERE WILL BE 6 GROUPS OF 128 BYTES
#REG 5 WILL HOLD VALUE TO BE WRITTEN
*THERE ARE 4 LINES IN EACH GROUP
*THERE ARE 32 CHARACTERS ON EACH LINE
*THERE IS MORE TO BE WRITTEN

*SCREEN POSITION INCREASED BY ONE
*ADD ONE TO THE VALUE TO BE WRITTEN

AT R1,>0100
DEC R4
JNE LP3
DEC R3
JNE LP2
AI R5,>2000
DEC R7
JNE LP1

Sskskok

*DECREASE THE BYTES TO BE WRITTEN TO LINE
*[F NOT AT END OF THE LINE STAY IN LOOP LP3
*DECREASE THE NUMBER OF LINES IN THE GROUP
*MORE LINES? STAY IN LOOP LP2

*START NEXT GROUP 32 (DECIMAL) HIGHER
*DECREASE NUMBER OF GROUPS

*MORE GROUPS? STAY IN LOOP LP1

CLEAR ALL BOXES TO TRANSPARENT

TISHUG

NIWS DIGEST

RO, >0E00
LP4
RO,>01E8
@VWIR

RO

RO, @>83D4
R3,32
R4,24
R5,>0001
R14,>F000

*START OF PATTERN DESCRIPTOR TABLE

*>00 IS TRANSPARENT

*WRITE IT

*INCREASE POSITION TO WRITE

*>0EQ0 IS END OF PATTERN DESCRIPTOR TABLE
*MORE TO WRITE? STAY IN LOOP LP4

*>E8 TO WRITE ONLY REGISTER=MULTICOLOUR MODE

*WRITE IT

*SWAP BYTE IN REG O = >E801

*>83D4 = VALUE STORED IN VDP REG 1
*COLUMN STARTING POSITION

*ROW STARTING POSITION

*STARTING SCREEN COLOUR (BLACK)
*STARTING BLOCK COLOUR (LIGHT RED)

LOOP

*

2

0
R13,>2500
R13

$-2
@KSCAN

R1
@>8375,R1
R1,83
LEFT
R1,68
RIGHT
R1,69

Up

R1,88
DOWN
R1,49

SC

R1,50

BC

R1,51
CL

R1,82
UPRIT
R1,87
UPLEF
R1,90
DNLEF
R1,67
DNRIT
LL

*FCIN QUIT

*ILL WORK

*DELAY LOOP PRINTING BLOCK TO SCREEN
*INCREASE/DECREASE AS YOU LIKE
*COUNT DOWN DONE? NO? AGAIN

*CHECK FOR KEY PRESS

*REG 1 TO HOLD ASCII VALUE OF KEY PRESSED
*PUT ASCII VALUE INTO RIGHT BYTE OF REG 1
*CHECK ASCII VALUE 83 (S KEY)

*IF EQUAL JUMP TO LEFT

*COMPARE IT TO 68 (D KEY)

*]F EQUAL JUMP TO RIGHT

*COMPARE IT TO 69 (E KEY)

*IF EQUAL JUMP TO UP

*COMPARE IT TO 88 (X KEY)

*IF EQUAL JUMP TO DOWN

*COMPARE IT TO 49 (1 KEY)

*IF EQUAL JUMP TO SC (SCREEN COLOUR)
*COMPARE IT TO 50 (2 KEY)

*IF EQUAL JUMP TO BC (BLOCK COLOUR)
*COMPARE IT TO 51 (3 KEY)

*IF EQUAL JUMP TO CL (CLEAR SCREEN)
*COMPARE IT TO 82 (R KEY)

*IF EQUAL JUMP TO UPRIT

*COMPARE IT TO 87 (W KEY)

*IF EQUAL JUMP TO UPLEF

*COMPARE IT TO 90 (Z KEY)

*IF EQUAL JUMP TO DNLEF

*COMPARE IT TO 67 (C KEY)

*IF EQUAL JUMP TO DNRIT

*ANY OTHER KEY STAY IN MAIN LOOP LL

R3
R3,-1
DRAW
R3
DRAW

*MOVE PRINT POSITION 1 TO LEFT
*CHECK TO SEE IF OUT OF BOUNDS
*JF NOT, JUMP TO DRAW

*IF OUT OF BOUNDS, RESET

*

R3
R3,64
DRAW
R3,63
DRAW

*MOVE PRINT POSITION 1 TO RIGHT
*CHECK TO SEE IF OUT OF BOUNDS
*IF NOT, JUMP TO DRAW

*IF OUT OF BOUNDS, RESET

*

R4
R4,-1
DRAW
R4
DRAW

*MOVE PRINT POSITION 1 UP
*CHECK TO SEE IF OUT OF BOUNDS
*IF NOT, JUMP TO DRAW

*IF OUT OF BOUNDS, RESET

*

R4

R4,48
DRAW
R4 ,47
DRAW

*MOVE PRINT POSITION 1 DOWN
*CHECK TO SEE IF OUT OF BOUNDS
*IF NOT JUMP TO DRAW

*IF OUT OF BOUNDS, RESET

*

R4
R4,-1
N1

R4

R3
R3,64
DRAW
R3,63
DRAW

*MOVE PRINT POSITION 1 UP
*CHECK UP FOR OUT OF BOUNDS

*TF NOT, CHECK RIGHT

*IF IS, RESET UP

*MOVE PRINT POSITION 1 TO RIGHT
*CHECK RIGHT FOR OUT OF BOUNDS
*IF NOT, JUMP TO DRAW

:IF IS, RESET RIGHT

R4
R4,-1

*MOVE PRINT POSITION UP 1
*CHECK UP FOR OUT OF BOUNDS

460 PRINT " ENTER DATA:":

470 FOR I=1 TO C

480 PRINT :NAME$(I);": ";
490 INPUT "":ITEM$

500 IF ITEM$<>"*" THEN 540
510 NN=NN-I+1

520 PRINT : :"THE ABOVE RECO
RD HAS BEEN CANCELLED, TYP
E IN CORRECTEDRECORD:"

530 GO TO 470

540 IF (MEM+4*NN>7800)+(NN>5
99)THEN 650

550 NN=NN+1

560 A$(NN)=ITEM$

570 MEM=MEM+LEN(ITEM$)

580 NEXT I

590 PRINT :"—— e

1"

600 CALL KEY(O,K,S)

610 IF S=0 THEN 600

620 IF K=15 THEN 680

630 IF K=13 THEN 470 ELSE 60
0

640 GO TO 470

650 PRINT : :'"¥*k MEMORY FULL
**M: "THIS ITEM CANNOT BE

INSERTEDPRESS ANY KEY TO RET
URN": :

660 CALL KEY(O,K,S)

670 IF S=0 THEN 660

680 RETURN

690 REM LIST SUBROUTINE

700 CALL CLEAR

710 PRINT "SEARCH UNDER WHIC
H CATEGORY?": : :

720 FOR B=1 TO C

730 PRINT "PRESS";B;"FOR ";N
AME$(B): -

740 NEXT B

750 CALL KEY(O,K,S)

760 IF (S=0)+(K<49)+(K>57)TH
EN 750

770 CALL CLEAR

780 CAT=K-48

790 INPUT "ITEM SEARCHED?

":SEE$
800 PRINT :"** SEARCHING **"
810 LIMIT$=SEG$(SEE$,1,LEN(S
EE$))&CHR$(127)
820 II=0
830 SKIP=0
840 TEMP$=CHR$(127)
850 FOR I=CAT TO NN STEP C
860 IF (A$(I)<SEE$)+(A$(I)>L
IMIT$)THEN 910
870 IF TEMP$<=A$(I)THEN 910
880 IF (A$(I)=SEE$)*(I<=SKIP
)THEN 910
890 TEMP$=A$(T)
900 II=I
910 NEXT I
920 IF TEMP$<CHR$(127)THEN 9
60
930 CALL HCHAR(23,1,32,20)
940 PRINT "#* END QF FILE **
", .

950 GO TO 1030

960 CALL HCHAR(23,3,32,28)
970 ZH=0

980 FOR PRNT=II-CAT+l TO Ii+
C~CAT

990 ZH=ZH+1

1000 PRINT NAME$(ZH)&": ";A$
(PRNT)

1010 NEXT PRNT

1020 PRINT "o

1040 IF S=0 THEN 1030
1050 IF K=6 THEN 700
1060 IF K=13 THEN 790

)

)

TISHUG

NEFWS

DIGEST

*IF NOT, CHECK LEFT

*IF IS, RESET UP

*MOVE PRINT POSITION 1 TO LEFT
*CHECK LEFT FOR OUT OF BOUNDS
*IF NOT, JUMP TO DRAW

:IF IS, RESET LEFT

*MOVE PRINT POSITION DOWN 1
*CHECK DOWN FOR OUT OF BOUNDS
*IF NOT, CHECK RIGHT

*IF IS, RESET DOWN

*MOVE PRINT POSITION 1 TO RIGHT
*CHECK RIGHT FOR OUT OF BOUNDS
*IF NOT, JUMP TO DRAW

*IF IS, RESET RIGHT

*

*MOVE PRINT POSITION DOWN 1
*CHECK DOWN FOR OUT OF BOUNDS
*IF NOT, CHECK LEFT

*IF IS, RESET LEFT

*MOVE PRINT POSITION 1 TO LEFT
*CHECK LEFT FOR OUT OF BOUNDS
*IF NOT, JUMP TO DRAW

*IF IS, RESET LEFT

*

*A RELAY FOR OUT OF RANGE JUMP INSTRUCTIONS

$+4

R5

R5

R5,RO

RO, >0700
@VWTR
R13,>0500
R13

$-2

RELAY

SCREEN COLOUR
*COMPARE TO >F (LAST COLOUR)

*IF >F THEN RESET TO O

*IF NOT >F THEN INCREASE BY ONE
*MOVE REG 5 INTO REG O

*ADD >0700 TO REG O

*WRITE THE NEW SCREEN COLOUR
*DELAY LOOP

*

*
*

R14,>1000
R13,>0500
R13
$-2

BLOCK COLOUR

*ADD ONE TO CURRENT BLOCK COLOUR
*DELAY LOOP '
*

*

R15,2
R3,R7
R6
R15,R6

DRAW

*pUT 2 INTO REG 15

*MOVE COLUMN VALUE INTO REG 7
*CLEAR REG 6

*DIVIDE REG 6 BY 2. QUOTIENT INTO REG 7

R4,R9
R8
R15,8
R15,R8

REMAINDER IN REG 7
*MOVE ROW VALUE INTO REG 7
*CLEAR REG 8
*pUT 8 INTO REG 15
*DIVIDE REG 8 BY 15. QUOTIENT PUT INTO REG 8

SLA
A
A
AT

R6,3
R8,8
R6,R8
R8,R9
R9,>0800

REMAINDER IN REG 9

*SLA R?,3=MULTIPLY BY 8

*SLA R?,8=MULTIPLY BY 256

*ADD REG 6 AND REG 8. ANSWER IN REG 8

*ADD REG 8 AND REG 9, ANSWER IN REG 9

*ADD REG 9 TO >0800. (>0800 IS START OF PATTERN

Mov
CLR

R9,RO
R1

DESCRIPTOR TABLE
*MOVE REG 9 INTO REG O
*CLEAR REG 1. THE VALUE READ FROM THE PATTERN

BLWP
MOV
CI

@VSBR
R1,R10
R7,0

DESCRIPTOR TABLE WILL BE PUT INTO REG O
*READ THE BYTE

*STORE THE BYTE IN REG 1, IN REG 10

*CHECK REMAINDER OF FIRST DIVISION TO SEE IF

JEQ
ANDIL

LD
R10,>F000

LEFT OR RIGHT BYTE IS TO BE CHANGED
*IF ZERO THEN JUMP TO LEFT DIGIT
*RIGHT DIGIT TO BE CHANGED SO CLEAR LEFT DIGIT

SRL
AB

SLA
MOV

R14,4
R14,R10
R14,4
R10,R1

BUT DO NOT CHANGE THE LEFT DIGIT

*SHIFT ALL DIGITS FOUR PLACES TO THE RIGHT
*ADD BYTES

*SHIFT FOUR PLACE TO THE LEFT

*MOVE THE NEW COLOUR INTO REG 1 SO IT CAN BE

BLWP
JMP
ANDI
AB

@VSBW
RELAY
R10, >0F00
R14,R10

WRITTEN TO THE PATTERN DESCRIPTOR TABLE
*WRITE IT ’
*JUMP TO RELAY (ELSE OUT OF RANGE ERROR)
*CHANGE THE LEFT COLOUR DIGIT, RIGHT UNCHANGED
*WRITE THE NEW COLOUR TO REG 10. DO NOT SHIFT

JUP
END

AL
START

IS IN THE CORRECT PLACE
*LEFT DIGIT UPDATED, JUMP BACK AND WRITE IT
*AUTQ START

'\

1070 IF K=15 THEN 110

1080 IF K<>10 THEN 1130

1090 PRINT "#* SEARCHING **"
1100 SEE$=TEMP$

1110 SKIP=II1

1120 GO TO 840

1130 IF K<>3 THEN 1310

1140 IF NN=O THEN 1030

1150 CALL SCREEN(10)

1160 CALL CLEAR

1170 FOR PRNT=II-CAT+1 TO II
+C-CAT

1180 PRINT A$(PRNT)

1190 MEM=MEM-LEN(A$(PRNT))
1200 NEXT PRNT

1210 FOR SHFT=II-CAT+1 TO NN
-C

1220 A$(SHFT)=A$(SHFT+C)
1230 NEXT SHFT

1240 FOR PRNT=NN-C+1 TO NN
1250 A$(PRNT)=""

1260 NEXT PRNT

1270 NN=NN-C

1280 CALL SCREEN(4)

1290 PRINT :"THIS RECORD DEL
ETED- PROCEED;————————————-—
1300 GO TO 1030

1310 IF K<>4 THEN 1030

1320 PRINT "INSERT NEW RECOR
ps:™

1330 GO TO 470

1340 REM SUBROUTINE TO LOAD
1350 OPEN #1:''CS1",INTERNAL,
OUTPUT,FIXED 192

1360 PRINT #1:NN,C,MEM

1370 PRINT #1:NAME$(1),NAMES
(2),NAME$(3),NAME$(4) ,NAMES (
5),NAMES$(6),NAME$(7),NAMES$(8
), NAME$(9)

1380 LINE$=CHR$(127)

1390 FOR CNTR=1 TO NN

1400 SV=SV+1

1410 IF LEN(LINE$&A$(CNTR))<
191-SV THEN 1460

1420 LINE$=STR$(CNTR)&LINE$
1430 PRINT #1:LINE$

1440 SV=0

1450 LINE$=CHR$(127)

1460 LINE$=LINE$&A$(CNTR)&CH
R$(127)

1470 NEXT CNTR

1480 PRINT #1:STR$(CNTR)ELIN

it

1490 CLOSE #1

1500 RETURN

1510 REM READ SUBROUTINE
1520 OPEN #1:"CS1",INTERNAL,
INPUT ,FIXED 192

1530 INPUT #1:NN,C,MEM

1540 INPUT #1:NAME$(1),NAMES$
(2),NAME$(3) ,NAMES$ (4) , NAMES(
5) ,NAME$(6) ,NAME$ (7) , NAMES$(8
), NAME$(9)

1550 FOR RD=1 TO NN

1560 INPUT #1:LINE$

1570 PSN1=POS(LINE$,CHR$(127
), 1)+l

1580 CNTR=VAL(SEG$(LINE$,1,P
SN1-2))

1590 FOR R=RD TO CNTR-1

1600 PSN2=POS(LINE$,CHR$(127
),PSN1)

1610 A$(R)=SEG$(LINE$,PSNL,P
SN2-PSN1)

1620 PSN1=PSN2+1

1630 NEXT R

1640 RD=R-1

1650 NEXT RD

1660 CLOSE #1

1670 RETURN

1680 CALL SOUND(60,1400,0)
1690 RETURN

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

