

IMKIHMG RSIC

TO ASSEMBLY

#10 ‘m‘m‘m ' |-’QO

BY ROSS MUDIE.

LINKING TO ASSEMBLY FROM EXTENDED BASIC.
By Ross Mudie of TIsHUG. TND February 1987.

SUBJECT.

A disk or cassette loadable PEEKER for DSR ROMs and
and all of the CPU address space, with the capability
of output to printer, disk or RS232.

INTRODUCTION.

which I have
assembly from
have no doubt
always heavily

This is the tenth article in the series,
written on the subject of linking to
basic or extended basic. As readers
noticed the assembly source files are
documented., The purpose of this is to help those who
are trying to learn assembly. This month I have
presented the extended basic program with the assembly
object file in CALL LOADS so that the program can be
typed in and run from cassette for people with 32K
memory expansion and no disk drive in addition to prov-
iding the source file.

The program will also be included in the downloadable
programs on TEXPAC Bulletin Board in February 1987.

For those starting to learn assembly, I believe that
linked assembly is a good way to go. You can get a
useful program up and running much more easily than a
full assembly program by just using assembly for the
parts which basic or extended basic can not do. Linked
assembly can also be used to speed up the functions
which execute too slowly in one of the basics. This
program includes assembly because some things could not
be done in extended basic & because in the formulation
of the print string the extended basic was painfully
slow,

The programs presented this month were developed to
allow peeking at any Device Service Routines (DSR) ROM
which is connected to the computer using assembly and
extended basic.

The program can be fully contained in extended basic
making it capable of being loaded from cassette. This
is extremely handy if you wish to view a disk DSR ROM,
when doing diagnostics if the disk controller is faulty
or on a cassette system to view the program contents of
an Axiom interface or any other peripheral device.

In addition to being able to peek and view the DSRs
the program also permits peeking anywhere in the CPU
address space from 0000 to FFFF, This allows convenient
viewing of how the extended basic program is stored in
in memory or viewing the system ROM.

PROGRAM OVERVIEW.

In the extended basic program, you are given a list of
some of the common CRU addresses and then you can enter
the required CRU address in HEX. The extended basic
program then converts the HEX value to decimal & passes
it to assembly where it is stored.

The start and finish addresses are then entered in HEX
and converted to decimal for passing to assembly & for
control purposes, (when to finish). The assembly prog-
ram prints on the screen and returns the print string
to extended basic for use with a printer or disk drive.
This even allows peeking at the RS232 ROM then printing
out to a printer via the same RS232 card.

The required CRU address needs to be passed into the
assembly program only once for the device to be read.
If no CRU address is given then the default is the TI
Disk Controller at CRU >1100. If a CRU address is not
required, e.g., peeking outside the range hex 4000 to

hex 5FFF, then the extended basic will still prompt for
the CRU address but it should have no harmful effect.
If in doubt use a spare CRU address, e.g., hex 1200.

This is the extended basic program containing the
assembly object program in CALL LOAD format.

100 ! SAVE DSK1.LOAD
110 CALL CLEAR :: CALL SCREEN(6):: CALL KEY(3,X,S)
120 ! This program, is written to allow the inspection

130 ! of the DSR ROM programs.

140 ! It is intended for use in the diagnosis of

150 ! partially or fully dead ROMs or just looking

160 ! at the programs in the DSR ROMs.

170 ! This is version 1.4 of the program, written by

180 ! Ross Mudie, 22nd December 1986.

190 ! The program allows inspection of any DSR ROM.

200 | It will also allow peeking at any area of CPU

210 ! address space from >0000 to DFFFF. Just enter

220 ! any address for the CRU address, 1200 is safe,

230 ! then enter the start and finish addresses, e.g.,

240 ! start EEFO, finish FFFF will examine part of
250 ! this program.

260 XX(1)=4096 :: XX(2)=256

PR$="Y"

270 FOR S=0 TO 14 ;: CALL COLOR(S,16,1):: NEXT S

280 H$="0123456789ABCDEF" :: CRU$="1100"

290 DISPLAY AT(1,9)ERASE ALL:'"DSR PEEKER": :TAB(5);"for

Cassette load in":TAB(6);"32K extended basic" :: TAB(7)
;"By Ross Mudie."

300 IF F THEN 510

310 CALL INIT

320 CALL LOAD(16368,67,82,85,32,32,32,36,244)

330 CALL LOAD(16376,68,83,82,32,32,32,37,10)

340 CALL LOAD(8194,40,118,63,240)

350 CALL LOAD(9460,200,11,38,52,2,224,38,86,6,160,38,10
,200,32,131,74,38,28,4,96,37,250)

360 CALL LOAD(9482,200,11,38,52,2,224,38,86,152,32,38,3

0,38,32,19,20,2,4,0,16,2,5)

370 CALL LOAD(9504,38,36,2,2,38,118,2,6,0,16,2,7,38,36,

220,149,220,183,6,6,22,252)

380 CALL LOAD(9526,5,133,6,4,22,245,216,32,38,30,38,32,

2,6,0,16,192,96,38,30,2,2)

390 CALL LOAD(9548,38,54,204,129,6,6,22,253,195,32,38,2

8,29,0,6,160,38,10,192,160,131,74)

400 CALL LOAD(9570,216,32,38,33,38,55,210,32,131,74,9,1

36,10,24,200,40,38,118,38,56,210,32)

410 CALL LOAD(9592,131,75,9,136,10,24,200,40,38,118,38,

58,2,10,38,61,2,6,0,6,210,50)

420 CALL LOAD(9614,9,136,10,24,194,104,38,118,222,137,6
,201,222,137,5,138,6,6,22,245,192,160)

430 CALL LOAD(9636,131,74,2,6,0,6,152,18,38,30,17,5,152
,18,38,35,21,2,222,178,16, 3)

440 CALL LOAD(9658 222, 160 38,34,5,130,6,6,22,243,2,6,0
,29,2,0,2,225,2,2,38, 56)

450 CALL LOAD(9680 208 114,2,33,96,0,4,32,32,32,5,128,6
,6,22,248,4,32,32,24,0,38)

460 CALL LOAD(9702 4,192,2,1,0,2,2,2,38,55,4,32,32,16,1

95,32,38,28,30,0,2 224)

470 CALL LOAD(9724 131,224,4,192,216,0,131,124,194,224,

38,52,4,91,4,192,2,1,0,1,4 32)

480 CALL LOAD(9746 32 12,4,32 32,24,18,184,4,91,17,0,32
,32,0,29,46,126,48,49,50,51)

490 CALL LOAD(9768 52,53,54,55,56,57,65,66,67,68,69,70)
500 F=1

510 DISPLAY AT(16,1):"Some CRU Addresses:": :"1100 TIL D

isk Controller":"1300 RS 232 (Primary)": "1500 RS232 (Se

condary)":"1800 Thermal Printer"

520 DISPLAY AT(22,1):"1B00 AXIOM Parallax TI":"1DOO Tri

ple Tech Clock":"1FO0 P- Code"

530 DISPLAY AT(9,1):"CRU address HEX ";CRU$:: ACCE

PT AT(9,21)SIZE(~-4)VALIDATE(H$)BEEP:HS$:: CRU$=HS$::

GOSUB 750 :: CALL LINK("CRU",DEC)

540 CALL HCHAR(16,1,32,288)

550 DISPLAY AT(11,1):"Start address HEX 4000" :: ACCE

PT AT(11,21)SIZE(-4)VALIDATE(H$)BEEP:HS$:: GOSUB 750
: ADDR=DEC

1 XX(3)=16 :: XX(4)=1 ::

LINKING BASIC TQ ASSEMbL
LRTIRE i o)

3

BY ROSS MUDIE.

560 DISPLAY AT(13,1):"Finish Address HEX 5FFF" ::
ACCEPT AT(11,21)SIZE(-4) VALIDATE(H$)BEEP:HS$:: GOSUB
750 :: LASTADDR=DEC
570 DISPLAY AT(15,1):"Print out? Y/N ";PR$:: ACCEPT
AT(15,21)SIZE(~1) VALIDATE("YN")BEEP:PR$:: IF PR$="Y"
THEN PRINTER=1 ELSE PRINTER=0
580 IF PRINTER=0 THEN 630
590 CALL HCHAR(17,2,80):: DISPLAY AT(17,1):"rinter? PIO
or DSK1.DUMP etc": :"PIO"
600 ACCEPT AT(19,1)SIZE(-28)BEEP:PN$ 610 OPEN #1:PN$
:: IF ADDR>16383 AND ADDR<24577 THEN PRINT #1:"Printing
DSR ROM opened by CRU >"&CRU$
620 PRINT #1:"ADDRESS * HEX * Interpret"
630 PRINT "HOLD...SPACE BAR to pause": :TAB(8);"<FCTN>9
to escape": :
640 PRINT "ADDRESS * HEX *
650 CALL LINK("DSR",ADDR,RS$)
660 IF PRINTER THEN PRINT #1:RS$
670 ADDR=ADDR+6
680 CALL KEY(3,K,S):: IF K=15 THEN 720 ELSE IF S=0 THEN
710
690 CALL KEY(3,K,S):: IF K=32 THEN 690
700 CALL KEY(3,K,S):: IF S=0 THEN 700
710 IF ADDR<LASTADDR THEN 650
720 IF PRINTER THEN CLOSE #1
730 PRINT :"Press E to End or any other key to redo" ::
CALL SOUND(130,1400,4)
740 CALL KEY(3,K,S):: IF S=0 THEN 740 ELSE IF K=15 THEN
740 ELSE IF K=69 THEN END ELSE 290
750 1| HEXDEC
760 DEC=0 :: FOR X=1 TO 4 ::
DEC=DEC+(POS(H$,SEG$ (HS$,X,1),1)-1)*XX(X):: NEXT X
770 IF DEC>32767 THEN DEC=DEC-65536
780 RETURN

Interpret":

This is the source file for the CALL LOADS in lines
320 to 490 of the extended basic PEEKER program.

IDT 'DMPmudie'
DEF DSR,CRU

Ross Mudie 22nd December 1986
Source=D8 obj=DD8 Vers l.4.

* CRU Routine. This routine tells the DSR routine which
* Device Servive Routine to read.

* Extended Basic format:

* CALL LINK("CRU",ADDRESS) The address is in decimal.

CRU MOV R11,@SAVRTN
LWPI WS
BL @SUBREF
MOV @FAC,@CRUADR
B @END

Get CRU address
Save CRU address

* DSR Routine. This routine opens the DSR page then
*gets the address to start reading from extended basic.
*The HEX start address is placed in the print BUFFER
*followed by the HEX representation for the six bytes
*peeked. The program places the ascii interpretation
*for the bytes in the BUFFER.

* The routine then prints the 29 byte BUFFER on the
*screen with hex 60 added for the extended basic
*environment. The screen is then scrolled up one line
*and then the string is returned to extended basic for
*printing to the printer or disk drive if required.

* Extended basic format: CALL LINK("DSR",RS$) .

Save return address to x/b

DSR MOV R11,@SAVRIN
LWPI WS

CB @D2020,@NFULL Has the block N been filled?
JEQ CLRBUF If yes then go to CLRBUF

* This routine creates the HEX character look up table
* in the Block with the Symbol Starting (BSS) N.
* This table contains 00, 01, 02 through to FD, FE, FF.

LI R4,16 Counter for most significant chars
LI R5,TEXT Where to get the most signif chars
LI R2,N Where to start putting the chars

LL KO, 10 vounter for least signit characters
LI R7,TEXT Where to get the least signif chars

MOVB *R5,*%R2+ Put a most signif character in N
MOVB *R7+,*R2+ Put a least signif character in N

DEC R6
JNE LOOP1

Finished this group of characters?
If no, go and do the next

INC R5 Point to the next most signif char
DEC R4 Finished 16 groups of 16 yet?
JNE LOOP2 If no go and do the next group of 16
MOVB @D2020,@NFULL Flag to indicate N is FULL

* This routine CLeaRs the print BUFfer by writing >20s

CLRBUF LI R6,16

@D2020,R1

Number of 2 byte words to write

What to write is placed in Rl
R2,BUFFER Where to start writing in R2
R1,*R2+ Write the hex 20s in the BUFFER
R6 Decrement counter, finished yet?
CLOOP If no, go and write the next

CLOQP

@CRUADR, R12
SBO O

CRU address from CRU routine
Turn on DSR with Set Bit One

BL @SUBREF
MOV @FAC,R2

Get address in DSR range
Save address in R2

BUFFER is 32 bytes in length and the bytes are used
as follows:

Byte O, unused. Byte 1 is the 1length byte of 29.
Bytes 2 to 5, First address which is peeked e.g 4006.
Bytes 6, 9, 12, 15, 18, 21, 24 space, remain hex 20.
Bytes 788, 10&11, 13814, 16&17, 19&20, 22823; these
words contain the two character hex representation of
the byte value at a location which has been examined.
Bytes 25 to 30, this 6 bytes contain the interpreted
values for the peeks of printable ascii characters.
Unprintable characters are replaced by a dot, i.e., a
period (.). Byte 31 is unused.

Bytes 0 & 31 are unused to allow even word addressing
in the ADdARESS routine.

MOVB @B29,@BUFFER+1 Length byte for BLWP @STRASG
ADRESS MOVB @FAC,R8 Peek address first byte in R8
SRL R8,8 Right justify in R8, clear left byte

SLA R8,1 Multiply x 2 for offset in N
MOV @N(R8),@BUFFER+2 Move the WORD into BUFFER

MOVB @FAC+1,R8
SRL R8,8
SLA R8,1
MOV @N(R8),@BUFFER+4

peek address second byte in R8

* This routine places a 2 byte hex representation in
* the BUFFER for each byte peeked, e.g, A5, followed by
* a space (hex 20).

LI R10,BUFFER+7 Where to start in buffer
LI R6,6
MOVB *R2+,R8

Number of peeks to perform
Put the peeked byte in R8
SRL R8,8 Swap bytes and clear left byte
SLA R8,1 Multiply x 2 for char lookup in N
MOV @N(R8),R9 Get char from look up table
MOVB R9,*R10+ Move most signif byte into BUFFER
SWPB R9 So that next line can get at LS Byte
MOVB R9,*R10+ Move least signif byte into BUFFER
INC R10 To allow for the space between HEX's
DEC R6 Finished the 6 peeks yet?
JNE BLOOP IF NO, go and do the next

Intepretation for ascii printable characters.
MOV @FAC,R2 Where to do the interpretation from

LI R6,6 How many bytes to do
CB *R2,@D2020 Is char below ascii printable #
JLT DOT . If yes, go and do a dot (.)
CB *R2,@Bl126 Is char above ascii printable #
JGT DOT If yes, go and do a dot (.)
MOVB *R2+,*R10+ Put ascii printable in BUFFER

—

— I h Programming

by Robert Montgomery
Illawarra Regional Group - TIsHUG

There are many methods used to program music.
Each requires a basic knowledge of music conventions.
The style the program has, can either be simple; e.g.
a CALL SOUND statement that uses a single frequency
that is changed in consecutive statements; to a complex
statement that uses a number of programming features,

This article will concentrate on the complex
style.

The tune "Peter Gunn", by Henry Mancini, has been
programmed using this style and will be critically
examined. The full listing is at the end of this
paper. Breaking the program into its components
reveals the use of strings, loops, SEG$ statements,
arrays, READ..,.DATA statements and CALL SOUNDS.

The program is written in Extended BASIC.,

Program Style
Line 100 - 160

These lines are used to identify the program,
170

An array of 22 members is dimensioned., Each
member will have a value corresponding to a
certain frequency, The reason for this will be
explained when discussing the CALL SOUND
statement.

180

A loop wused to fill a number of arrays. It is
pertinent to note that only the F(I) was
dimensioned. The other arrays C(I), T(I), M$(I),
B$(I) will each have only 10 members. The
TI-99/4A automatically allows 11 member arrays
without being dimensioned, Because F(I) goes to
22 members, it has to be dimensioned.

The loop is wused to READ data into each array.
The first five values from the DATA statements:

F(1) becomes 698
C(1) becomes 262
T(1) becomes 200
M$(1) becomes 1VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIV
B$(1) becomes DADAEBEAFCFAHEGDDADAEBEAFGFAHEGD

F(I), C(I) is a fregency, T(I) is a time or

duration, M$(I), B$(I) are strings that are to be
broken up for the musical score.

Lines 190 - 195
These lines complete the values in the F(I) array.
Lines 200 - to 350

These DATA statements are used to fill all of the
arrays.

Line 360

Two 1loops are set up, One within the other. The
second loop, or nested loop, takes the length of
M$(I) to determine how many times it goes round.
The loop is stepped in two's.

Line 370

This is the line that does all the control of the
sound, and is very complex., The CALL SOUND uses a
negative time and three frequencies to produce the
tune in three part harmony. Because of its
complexity it needs to be explained.

A minus time signifies to the sound chip to change
its frequency immediately another CALL SOUND
statement is encounted. The duration is set up
as:

-T(ASC(SEG$(M$(1),J,1))-48).

To explain this statement, it 1is necesary to
define every thing from the inner-most brackets
(I) and move out in pairs.

(I) is the number used for the first loop.

J 1is the number used in the second or nested loop
and shows the starting position of the SEG$
statement,

M$(I) is wused for the melody line and has the
components of duration and melody in it,
SEG$(M$(1),J,1) tells the computer to select one
character from the character string M$(I)
beginning with the Jth position. SEG$ stands for
"segment" and, of course, stands for a segment of
a character string.

If I=1 then M$(1) is the first character string in
the DATA statement. If J=1 then the SEG$
statement will give the first character of M$(1)
string, That just happens to be 1.

Having sorted that out, what is left is
-T(ASC(1)-48).

Now the ASC(1) value is 49; which will give an
array of -T(1). T(1) has a value of 200. Because
the duration has a minus sign, the value is not
gignificant., Values have been added to this
example of programming only to help fully explain
the style.

The melody frequency is set up with M$(2), using
every second character, A similar breakdown of
the string is employed to create the array member
number. The letters of the alphabet are used., An
array number is calculated by taking 64 from the
ASCII value of the letter. The first £requency
encounted is a V. The V has an ASCII value of 86.
When 64 is taken from it, it gives a value of 22.
The frequency of F(22) is 30000. That is so high
it is not normally heard. It, therefore, gives a
moment of no sound.

Therefore, the very first M$(I) will give a period
in which no sound will be heard in the melody
line.

B$(I) is used for the base lines. In "Peter
Gunn", not only is there a dominating base
prevailing through the piece, but there is a
secondary counter melody being played at a lower
volume.,

The counter melody is used in the second frequency
using C(I) and and a volume of S5, The first
character of B$(1l) is D and has an ASCII value of
68; therefore, the counter melody frequency is
C(4) or 350.

The base is in the third frequency and uses the
F() array, with its value divided by 4. This
gives the melody and base line a tonal separation

of two octaves,

The speed at which the music is played, in this
program, is dependent on how long it take the 9900
chip to compute the various statements within the
CALL SOUND statement. A trick has been used in
each character string M$() and B$(). It is that
each note played is a factor of the shortest note
in the composition, The shortest note played in
"Peter Gunn" is a 1/8th note. That is one letter
is a single note and will sound for a half-beat; 2
letters will sound for 1 beat etc. T

THESE COULD BE THE
KEYS TO YOUR FUTURE

HARDWARE AND PERIPHERIAL SUPPORT FROM
MECHATRONIC OF WEST GERMANY NOW AVAILABLE IN
AUSTRALIA.

THE MECHATRONIC EXTENDED BASIC II PLUS

solid state cartridge for the TI 99/4A comes
with the TI Extended Basic manual and a 96
page supplementary manual covering the
additional commands and statements offered by
this cartridge. It has 19 additional
statements not available from the TI Extended
Basic module; off course all the TI EX.BASIC
functions are fully supported.

Some of the additional statements are:

*> CALL BHCOPY - will generate a hard copy of

the screen on line printers operating in the

bit image mode.

*> CALL VPEEK - will read VDP RAM memory
addresses.

*> CALL VPOKE -~ allows to write bytes directly
to addresses in the VDP RAM.

*> CALL GPEEK ~ will read contents of
addresses in the computers GROMS.

*> CALL ALLSET resets all characters,
including lower case characters.

*> CALL WAIT - introduces a specified pause up
to 327 s.

*> CALL MOVE - allows to move contents of
memory blocks within the RAM (e.g. from VDP
to VDP, from VDP to CPU from CPU to VDP,
from CPU to CPU).

*> CALL MSAVE - will save specified parts of

the CPU RAM contents in program format to an

external device.
*> CALL MLOAD - will load program files into

CPU RAM being previously saved by CALL MSAVE

The most significant feature of this module is
the superb graphic capabilities developed by
APESOFT. These are 39 graphic subroutines
accessed through CALL LINK statements in the
high resolution graphic mode. These enable the
user to execute the most complex graphic
displays with the greatest of ease and minimum
program lines. The Mechatronic users manual
gives many examples to aid understanding of
the APESOFT concept.

Current price $ 177.~

TI-MOUSE.

An other high quality MECHATRONIC product.
This is the most exiting TI peripheriall It
comes complete with power supply, interface,
manual and diskette software. It opens up a
new field of realistic games, graphics and
programs with instant, extremely fast and
unrestricted cursor control. One has to see
the demonstration game on the supplied
diskette to appreciate the potentials of the
TI-MOUSE.

The 19 page manual explains the essential
steps to include the MOUSE calls in a program
- the users imagination is the limit.

The listable disk files give programming
examples of BASIC as well as ASSEMBLY
programming methods (source code is included).
The MOUSE routine may be easily included in
any EXTENDED BASIC program. Disk system and
memory expansion are essential.

Current price $ 266.25

L

32K RAM & CENTRONIC INTERFACE,

128K RAM & CENTRONIC INTERFACE.

These stand alone peripherials plug into the
expansion socket of the console. In addition
to the memory extension it also features a
centronics (parallel) printer outlet. Due to
import pricing (freight,duty and sales tax),
the price difference of these two units is
negligible, Thus we do not recommend the 32K
version. ’

The additional 96K memory of the 128K RAM may
be configured to RAM-CARD (3 Cards in banks of
32K each) or may be used as additional memory
in bank switching mode, which increases the
active console memory to about 142K.
Additional stand alone modules or a PE Box may
be plugged into the RAM module.

The module is supplied with its own plug-pack
power supply and a 23 page users manual.

Current price $ 177.-

MECHATRONIC 128K GRAM CARD.

This card is designed for the PE Box. It is
filled with 43 ic-s, Gram and Rom. Naturally
it does not come cheap. One can save any TI
Module on disk, and subsequently run it from
the Gram Card . The card may also be used to
produce ROM listings of the modules for
subsequent use through the EPROM BURNER.

The card was reviewed in the Sept.1986 issue
of Micropendium. A 24 page manual explains the
options and procedure.

Current price $ 576.~

MECHATRONIC EPROM BURNER.

The EPROMMER will burn in any of the ROM-s
used in the TI system. It can also be used to
produce customised EPROMS, The unit is
entirely software controlled, it has no
switches to manipulate. The diskette will
accept the 2716, 2732 or the 27128 EPROMS, It
is supplied complete with plug-pack power
supply, diskette based software and manual.
The Eprommer was extensively tested in NSW.
Several dead consoles have been successfully
resurrected by newly burned in ROMS. The menu

driven software supports the loading of buffer’

memory direct with contents from ROM, GROM or
RAM,

Essential hardware: Eprommer, 32K Exp.Mem.,
Ext.Basic, E/A module or Mini Mem, and disk
system,

Current Price $ 230.-

TI 99/4A-INTERN,

A 207 page book listing and explaining the
computer's ROM, GROM, GPL and GRAM contents.
An essential and so far not published
information of the internal structure of the
99/4A computer.

It is an invaluable aid to the advanced
programmer .

Price $ 23.-

All above is now available from:
Ben v. Takach

PO.Box 114

Wahroonga NSW. 2076

Tel: (02) 4894492

VIATEL Mail Box: 248449200
MINERVA Mail Box: TUEOO1

23)

#*

All About... MAX/RLE *

* K ¥ ¥ ¥ 9

by Steven Shraibman...(SUS)

* *

I am sure that most of you have
bought a program by the mystefying
name of MAX/RLE from the club shop
recently and I am equally sure that
most of you have been quite
impressed by some of the pictures
provided with it and on the
aditional disks of pictures
available,

Well, going back to the beginning
RLE stands for Run Length Encoded,
something that I am sure is quite
meaningless to most people, To put
it simply, RLE is a standard
protocol that can be used to
describe hi-res screens (without
colour) on all different computers.

This means that the one file is
suitable to describe a hi-res
screen on all computers, all you
need is the program to translate
the file into a picture on the
In the TI's case this is MAX/RLE.

This of course means that all
those great digitized pictures
were most likely not to have been
made on a TI, (However all your
friends with crummydores don't
know that and we won't tell them,
will we?). But RLE does not only
mean digitized pictures, it can
be any hi-res screen, wether from

Basic, Assembly Language or a
drawing program such as Graphx or
TI-Artist.

Most of these pictures are
found on bulletin boards across
America, litrerally in there
thousands. (There is a file
floating around that lists just
some of the pictures available
on a few of the bulletin boards
in America. (Terry, the club
librarian might put it on one of
the future MAX/RLE disks.)

To get these files of a
bulletin board in America all you
have to fo is download with XMODEM
protocol (and pay an ISD fortune).

The other bonus of this being a
standard protocol is that one can
transfer pictures between
different computers direct. I
believe Arty is working on
programs to commect our computer
with some other computers such as
the Apple and the Amiga.

Anyway, getting onto the MAX/RLE
program itself, there are some
functions that many people will
not be aware of.

Firstly, from the main menu,
if you typ in "DSKn.", i.e.
without a filename, you will get
a catalogue of disk drive n.

Obviously if you type in
"DSKn,FILENAME" you will load
the file FILENAME form disk n.
But above that, the program will
load in four types of files:

a) a Graphx file
b) a TI-Artist file
c) a Dis/Fix 128 file

d) a Dix/Var 80 file

(N.B. for TI-Artist, it must be
from V2.0 and don't type in the
"opn op M C"-)

Now that you have the file on
the screen what can you do? Well,
quite a bit, Firstly if you type
the keys O to 9 and A to F will
change the foreground and
background colours depending on
if you are in upper or lower case.

Here is a list of the colours:

|Reys| Colour |Keys| Colour |
0)| transpar |1 !| black

2 @}Med. green(3 #|Light Green
4 $i1Dark Blue |5 Z|Light Blue
6 *| Dark Red |7 &| Cyan

8 *| Med, Red {9 (| Light Red
a A|Darkyellow|b B|Lightyellow
c C|Dark green|d D{ Magenta

e E Gray f F| White

Pressing "P" will print out the
screen to an Epson compatible
printer. And pushing "S" will save
the file in the four above-
mentioned formats, To alter the
format just push the space bar.

Not only is this handy in its own
merits, its just great for trans-
ferring screens between TI-Artist
and Graphx and back.

Finally pushing enter will
return you to the menu to load
another picture,

Quite a handy package indeed. Get
yours now from the club library.
Only $5 plus $5 each for the two
extra disks of pictures, and more
are on the way.

COME AND JOIN US AT OUR AGM VENUE ON SATURDAY 7TH FEBRUARY (2PM)

We have been able to acquire the use of the R.S.L. HALL in Burwood for the
Annual General Meeting. This is a temporary venue because of the expected size
of this very special meeting where all financial members are asked to attend.

Please ensure you bring your Membership Card along with you, and fill in the
Nomination Form on the back pages of our AGM PULL-OUT SUPPLEMENT.

Reap

SHAFTS Bury

CLARENCE -7

Il i

N

cryy

BulwWooj
.5t
W

Wfood STec B

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

