

interrupl swiitch

:::) LOAD INTERRUPT SWITCH+SOME SOFTWARE TO USE IT WITH.

Our beloved 4A runs along doing what it was told to do
unless something interrupts it. Pushing a module into
the slot will cause a "reset" interrupt. On a reset
the computer knows that it must look at a certain area

. of memory to get a new <W>orkspace <P>ointer and
<P>rogram <{C>ounter and proceeds to execute from there.
Trouble is, these interrupt vectors are in ROM and
can't be changed. However, there is an exception to
this rule. It is called the "LOAD" interrupt. This
causes the computer to look at >FFFC for a new WS and
SFFFE for a new PC.

The interrupt is generated by momentarily shorting out
ground and pin 13(LOAD) on the I/0 port. The way that
I did this is with a common doorbell button mounted on
my speech synthesizer. Just drill a small hole for the
switch and run 2 small wires from it to pin 13 and
ground. Pins 21,23,25 and 27 are all ground. You can
use any one of them. The odd numbered pins are on the
bottom side of the synthesizer. Be careful-try it, If
I can do it, anybody can.

The November 1983 Enthusiast 99 had some of the above
and also the test program below.

REF VMBW
ST LI 0,302
Lr 1,TX
LI 2,4
BLWP @VMBW
LIMI 2
JMP
TEXT 'TEST'
BSS 32
AORG >FFFC
DATA WS,ST
END

Assemble and load into memory then go to the title
screen, push the button and test should appear on your
screen. Hint:look close! Corcomp disk controller
owners will have no trouble finding it.

The following is Compuserve message by Paul Charlton of
Fast-Term fame.

#: 46939 S5/Tips & Tricks
20-Jul-85 18:08:33

Sb: #2 NEAT LOAD INTS!

Fm: Paul Charlton 75136,2256

HERE ARE TWO NEAT LOAD INTERRUPT ROUTINES. FIRST
CHANGES TE2 CART TO 1200 BAUD (DON'T HOLD YOUR BREATH
THOUGH) AND SECOND TO CHANGE NAME OF PRINTER FOR TAX
INV. RECORD KEEPING

* LOAD INTERRUPT ROUTINE TO PUT
* TE2 CART INTO 1200 BAUD
*

REGS BSS 32

ENTER CLR @LOADWP
LWPI REGS
CLR RO

El DEC RO
JNE El
LIMI O
LI R12,>1340
SBO 31
LDCR @CNTRL, 8
LDCR @INTVL,8
LDCR @RDR,11
LDCR @XDR,12
SBO 18

STWP RO

MOV RO, @LOADWP
RIWP

CNTRL BYTE >83
INTVL. BYTE 1600/64
RDR
XDR DATA >I1Al
*
AORG >FFFC
LOADWP DATA REGS

DATA ENTER

END
AND THE NEXT ONE...
*
* LOAD INTERRUPT ROUTINE TO PUT
* A NEW PRINT FILE IN TAX INV. RECORD KEEPING
*

REGS BSS 32
NAMLEN BYTE 3
NAME TEXT 'PIO’
EVEN
CLR @LOADWP
LWPI REGS
CLR RO
El DEC RO

JNE El

CHANGE FOR ANOTHER PRINT DEVICE
"

ENTER

*

LIMI O
LI RO,>0589
ORI RO,>4000 'FOR WRITE TO VDP
SWPB RO
MOVB RO, @>8C02
SWPB RO
MOVB RO,@>8C02
LI R1,NAMLEN
MOVB *R1,RO
SRL RO,8
MOVB *R1+,@>8C00
DEC RO
JOC LOOP1 'LEN + 1 # BYTES TO REPEAT
STWP RO
MOV RO, @LOADWP
RTWP
*
AORG >FFFC
LOADWP DATA REGS
DATA ENTER
END

OK??? THE 1ST YOU MUST ASSEMBLE THEN LOD FROM E/A 3.
THEN REMOVE E/A CART (DONT TURN P-BOX OFF) AND INSERT
TE2 CART GO INTO TE2 (ALL THE WAY TO THE BLANK SCREEN
WITH CURSOR IN CORNER AND PRESS YOUR LOAD INTERRUPT
BUTTON (EZ TO ADD IF YOU DONT HAVE ONE, ASK!)

TI/RK...SAME PROCEDURE AS ABOVE,,BUT GO ALL THE WAY TO
PRINTER (Y/N) ANSWER YES THEN TYPE RS232 (OR "TP") HIT
ENTER THEN HIT LOAD INT BUTTON....VO LA! HELPFULLY,
PAUL...

Lastly, we have my first Assembly program.
<-FOR THE MINI-MEMORY CARTRIDGE->

THIS PROGRAM WILL JUMP TO ITSELF WHEN A LOAD INTERRUPT
IS GENERATED IT WILL PUT A MENU ON THE SCREEN ALLOWING
YOU TO SELECT EDITOR OR FORMATTER IT DOES NOT RESET THE
PROGRAM NAMES IN THE REF/DEF TABLE, BUT BRANCHES
DIRECTLY TO THE PROGRAM'S START ADDRESSES. THE START
ADDRESSES FOR THE EDITOR AND FORMATTER DEPEND ON THE
VERSION OF TOM KNIGHT'S LOADER THAT YOU ARE USING. TO
USE: USE A BASIC PROGRAM TO LOAD THIS AND TOM KNIGHT'S
TI-WRITER LOADER INTO MEMORY, CALL LINK("START") AND
AWAY YOU GO. AFTER USING EITHER THE EDITOR OR
FORMATTER AND YOU WANT TO GO TO THE OTHER ONE, JUST HIT
THE LOAD INTERRUPT BUTTON.

,

||[1 Here is a schematic of the circuit:

/ = KEYBOARD SWITCH = DIODE

!

MUSIC WRITER
BY ARTO HEINO 1986

At the time of this article the
program is still mostly in XBasic, but
with the help of a basic compiler such
as 9900BASIC, I will speed up all the
graphic routines.

o € ——
< —w
H < —uU

Requirements to run music writer are
EXBASIC,32K and DISK system.

~

Hd—N
H<—Ww
o € —n

Listed below is some of the programs
capabilities:

1) MUSICAL NOTATION
TWO AND A HALF OCTAVES ON SCREEN
JOYSTICK OR KEYBOARD EDITING
HERES DUMP
CREATE BASIC MERGE FILE
ABLE TO USE EXTERNAL MUSIC KEYBOARD
ATTACHED TO THE JOYSTICK PORT
SAVE AND EDIT THE MUSIC YOU PLAY ON
EITHER KEYBOARD

o
g ———
o —N
Hq —W

@
i\

o
— oo —
H < —u

@
e
~

- P*PAPW
|

!H<—n—-
IH<—J-\
H < —wW

Some of the commands available will
be of great use to the musically minded,
all these commands can be used on any
portion of your score.

g

< —N
- < —
H < —W

1) REPEAT

2) REVERSE

3) INVERT (melody)

4) CHANGE DURATION

S) CHANGE PITCH

6) INPUT TO CHANNEL 1,2 OR 3

>
e

e lelal el
S~

|
|
]
|

o]
~
e € ——

The most interesting will be the joy
stick music keyboard. The types of uses
it lends it self to are:

1) PLAY THE MELODY AND ADD HARMONY
AFTER

2) PLAY ALONG WITH OTHER TUNES YOU
WRITE

3) ROUGH OUT A TUNE AND CAREFULLY EDIT
IT IN THE EDIT MODE

4) HAVE A HARD COPY OF YOUR LOOSE JAM

I built the musical keyboard using
diodes and an old organ I had. I am
working on using chips for the next
one I build and a have been trying to
track down a source of keyboards. If
you are interested let me know.

If you want to build the device here
is the parts list:

PART

1IN914 DIODES JOYSTICK PORT
9 PIN FEMALE PLUG [,
SMALL VERO BOARD

LENGTH OF 6 WIRE RIBBON
ASSORTED LENGTHS OF WIRE
MUSICAL KEYBOARD 32 KEYS
STARTING AT A natural

””0 TISHUG NEWS DIGEST

L0

Floor 2 - is the follow on from Flooraway which was
released on tape 1986/9A last month. This is a very
difficult and challenging game and you will need to be
precise in planning your moves.

Greensleeves ~ a great musical version of this popular
tune with some very nice graphics.

Marilyn Quiz - this one has some trivia questions and
ends with a sort of nude picture. Not in the best of

taste I suppose but if you don't like it then you can
eagily delete it from the disk.

Cannonball Chess - this is a fairly complex game with
the idea being to capture your opponents cannons, gold
and food stockpiles. There are some quite good graphics
together with lengthy instructions. I would imagine

that to complete a game would take the best part of an
hour,

5, More of the Same - again disk based only.

Axel Foley — this is the music from Beverly Hills Cop
and it is extremely well programmed. Good foot tapping
stuff!

Roman War - another complex and challenging game. Read
the instructions on the disk at least twice before even
attempting to play the game.

Texas Rangers - this is a keyboard manouvering game
that is reasonably difficult to play. Instructions are
included in the game.

Rising Sun (House of the) - this is probably the best
piece of music every written on the TI. This version
has been enhanced with the addition of graphics.

Zodiac - an astronomy quiz and tutor.

1. Tape No, 1986/10 will contain the following

programs. The programs will also be on disk for those
prefering that format.

The Game of 1 or 2 - in Basic - is a game for 2
players, the idea being to be the one to pick up the
last stick., Full instructions are included in the
program.

Asteroid Mission -~ in Extended Basic ~ is a moonlander
type of game but you have to avoid the asteroids while
trying to land on the pad, There are 3 pads ~ the
smaller one attracting the most points.

Death Mobile - in Basic - manouver the Death Mobile to
hit the screen object. The game gets harder the more
times you hit it. Instructions are in the program.

Grandfather Clock ~ in Extended Basic - not a game but
a screen clock which keeps fairly close time. You can
set alarms and have chimes on the hour.

Patscram Mission — in Extended Basic - a multi screen
space game which should keep you occupied for a fair
while. Instructions are included as a seperate
program.

Lets Play Trains — in Extended Basic ~ this is one for
the "littlies". By pressing keys you can change shape
of one of the wagons, add a watertower and train
station and make the train whistle. The young kids
should get a kick out of it,

Radio Ratings Game — in Extended Basic - the object is
to get more listeners to tune into your station than
your opponents by putting the radio into the ears. A 2
player game with joysticks.

SN

School Daze - in Extended Basic - instructions includé;‘\
but basically you have forgotten to do your homework

and are being pursued around the school by 6 of your

teachers. Good fun for the kids as they can use their
own teachers names!

2. Tape No. 1986/10A will contain the following
assembly games and is only suitable for those with 32K
memory expansion, either inside or on an expansion
card.

Kluuto Empire - when this game opens (after you press
ENTER when it has loaded) you control the RED ship and
have to destroy all the buildings by hovering over them
and pressing the FIRE button on your joystick. Sounds
easy, but the WHITE ship follows your every move -
avoid it at all costs!

Mastermind -~ an old favourite color code game. The on
screen messages are in French but the game is easy to
learn., First select how many colors you want in your
code, 2 to 10. With 2 there are 32 possible
combinations, while if you select 10, there are
100,000. Good luck if you select 10. On the main screen
the number of colors you have selected are displayed
with a number beside each. To enter your guess, press
the number corresponding to the color. Press ENTER when
all selections have been made. Errors in your logic
will be "rewarded" with musical bells. Have fun and
enjoy the challenge.

Pinball - when loaded, press "8" to reset and start a
new game, "O" to fire the ball and "1" and "=" to work
the flippers. Unlike Mastermind, no thinking needed but
still good fun.

Video Vegas - a very colorful "poker machine" which
should keep you out of the club for a while. I
actually got 3 bars when test playing. Now if only it
was real money. You can play with $1, $2 or $3 "bets".

3. Character Definition Utility by Craig Sheehan.

An excellent utility for designing screen graphics with
a whole host of interesting features, like inverse
characters, mirror image, rotate left and right and the
ability to save your creations to tape. The program
comes with a 13 page instructional document, a quick
reference card and 2 lots of 8 demo files on the tape.
This is really good material from a TIsHUG member and I
thoroughly recommend you get a copy. It will probably
cost you a little more than the normal tape due to
having to re-produce the documentation, but at any
price it is well worth purchasing., Extended Basic is
required

Software News

I have received 2 disks of assembly utilities, one from
the Lehigh User Group (USA) and the other from TICHUG
(Canberra). Thanks in particular to Peter Hancock of
TICHUG for sending me his work. I have given both disks
to our resident assembly expert, Ross Mudie to have a
look at and evaluate for me. Some of the programs on
the Lehigh disk appear to have duplicated some of Ross'
earlier efforts with disks Mudie 1, 2 and 3, It is
likely that both these disk will be released very soon.

I have received a copy of Funlwriter 3,3D which appears
to have been slightly updated. If anyone would like a
copy, 1 disk double sided or double density else 2
disks please see me to order at the October meeting. I
will copy the disk(s) for you and have them avallable
at the November meeting. If you are unable to attend
the meeting you may order by mail.

From Barry Gibbins of Wyoming (Gosford) comes a great
Extended Basic game called QBIT. Barry tells me he
designed the game using a black & white monitor, It
sure comes up good in color, Barry. Watch for this game
on tape and disk 1986/11,

Scott Becker of Albuquerque, New Mexico, was kind
enough to send me a copy of his great disk cataloguing
utility. Watch for it also at the November meeting.

-y |

.'J' :

??.
2222223323

Did you ever wonder why it was
difficult to get a square or round shape
on the screen, and if you managed to do
that why it printed out rectangular or
oval? This is particularly annoying in
TI-LOGO and GRAPHX.

There is a logical reason for this if
we look at the way the picture is put on
the screen. The Video processor produces
a picture using 256 dots across the screen
and 192 dots down the screen. This
corresponds to 32 columns and 24 rows of 8
dot by 8 dot cells, If each of these
cells (or dots) was an exact square, then
the area produced by the video processor
would have an aspect ratio of 3 units to 4
units, This is the aspect ratio of
television screens, so to get the cells to
be an exact square, the picture would have
to fill the whole screen. We all know
that it does not, but in fact has large
gaps at the top and the bottom. Why did
TI do such a foolish thing? In fact TI
did a reasonable job for the American
television system, as can be seen if you
examine closely a picture of a screen
produced there. Their picture almost
fills the television screen in the
vertical as well as the horizontal
direction. To understand why there is a
difference, we must consider how the
picture is produced on the screen.

A television picture is made up a
number of horizontal lines, upon which the
dots are produced as the electron beam
moves across the screen, That is, there
are a fixed number of lines and hence
dots, in the vertical direction. In the
horizontal direction the signal can change
at any time so that the number of dots is
dependant on other factors like bandwidth,
Because of the fixed number of lines in
the vertical direction, each dot must take
one line and cannot use parts of a line,
If we want 192 dots in the vertical
direction, we must use 192 lines for them.
The American NTSC system has 262 lines
(525 with interlacing), and the 192 dots
use 73% of the height of the picture. If
the horizontal signal is arranged to also
use 73% of the total width (it actually
uses 256 out of 342 dots which is 75%),
the picture would come out with square
cells, Television sets are normally
adjusted so that the edge of the picture
does not appear on the screen so that this
73% would probably f£ill most of the
screen,

In the PAL system there are 313 lines
(625 with interlacing), and so the 192
dots use only 61,5% of the height, while
the horizontal signal is unchanged. This
gives the rather squashed effect we are so
used to, and makes it difficult to get the
same effect from a screen dump to a
printer as is on the screen. The only
solution is to reduce the width and
increase the height of the television,
which would limit its usefulness as a
normal receiving set.

Did you ever wonder why clock
programmes and timers using the CALL SQUND
routine run slow? The reason is that the
timing for the processor comes from the
interrupts generated by the video
processor. These are generated at the end
of every vertical scan of the screen and

occur normally at approximately the
frequency of the AC mains. In America and
some European countries the frequency is
60Hz, while here it is 50Hz. This means
that if the software counts the number of
these interrupts to determine when one
second has elapsed, we must count 50
interrupts while in America they must
count 60. If the software counts 60
interrupts at a frequency of 50Hz, it will
take 1.2 seconds and not 1.0 seconds. The
CALL SOUND duration timing is set up to be
correct for 60Hz and so will be 20% longer
than expected here.

It is interesting that the RS232
requires a clock to derive the timing for
the transfer of data in serial mode. The
clock signal that is provided is that of
the 9900 cpu clock, nominally at 3,0 MHz.
This is divided down by the necessary
number to provide the correct frequency
for the RS232 operation. The software
that does this has the choice of two
numbers for each required frequency, and
the ratio of these pairs of numbers is 5
to 6., This must be a relic of the 99/4
days, when the video processor was the
same for our computer and that sold in
America., To provide for both 50Hz and
60Hz picture scanning rate the processor
must have been slowed down for us, The
software switch for selecting which clock
is in use is in the system ROM.

Did you ever wonder about the
peculiarities of the character sets of
BASIC? Why do the character codes for
BASIC have 96 added to them and why only
the characters up to 159 for BASIC and 143
for Extended BASIC can be used? The
answer to these questions is contained in
the Video processor chip and the way it
uses its memory for the screen and
character definitions. The VDP memory is
used for all the screen functions and also
for storage of programmes and for buffer
areas for input and output (Disk,
cassette, RS232). This makes it a very
busy memory in a system without memory
expansion, and it is important that no
space is wasted. With this in mind let us
look at the requirements of the video
processor in regard to the screen
functions., The normal mode that is used
in BASIC is called graphics mode. This
sets the screen up as 24 rows and 32
columns of cells containing 64 dot
positions each (8*8). Each of these cells
can be made to show a shape by storing a
code in an area of memory called a screen
image table. The position of the screen
image table is defined by a number stored
in VDP register 2, and is given by that
number times 1024. The screen image table
takes up 768 bytes of memory. The code
which defines the shape to be shown in a
cell can be any number from O to 255.
each of these possible codes could be
defined as a different shape by storing 8
bytes with a 1 for a dot and a O for no
dot in the respective 64 bit positions.
This means that to define a different
shape for each of the 256 possible codes
would require 2048 bytes of memory. The
area of memory used for this pattern
descriptor table is defined by a number
stored in VDP register 4, and this number
is multiplied by 2048 to give the first
address of the pattern descriptor table.

So far we would need 3072 bytes to
give the full capabilities of the graphics
mode, In this mode the colours of the
dots and the background can also be
specified, but only in groups of 8 pattern
codes at a time.

~

-

U

511G TISHUG NVIWS DIGEST

There are 16 possible
colours and these can be stored in 4 bits
with the dot colour and background colour
in one byte. This means that 32 bytes are
needed to specify the colour combinations
for the 256 possible patterns. The colour
table memory area is defined as 64 times
the value stored in VDP register 3. In
graphics mode sprites can be used. It is
possible to define 32 sprites at a time,
and this is done by the sprite attribute
table, Each sprite requires 4 bytes, 2
for the position of the sprite on the
screen, 1 for the pattern code, and 1 for
the colour and early clock attribute.

This means an area of 128 bytes is needed
for the sprite attribute table, and its
location is defined as 128 times the
number in VDP register 5. The sprites
also need an area for their shapes to be
stored. Although there are only 32
sprites possible at a time, the pattern
code can be from O to 255, and each sprite
needs 8 bytes for standard size and 32
bytes for double size, This means an area
of 2048 bytes should be set aside for the
sprites although only 1024 bytes could be
used at any one time, The sprite pattern
area is defined as 2048 times the number
stored in VDP register 6.

If we add up the amount of memory
required to allow the full capabilities of
the VDP processor it comes to 4000 bytes
or about 257 of the total memory, Rather
than allow this, TI decided to minimise
the use of memory for the screen functions
and yet still provide most of the
functions of the VDP processor with a few
limitations, Let us examine what has
happened in BASIC and Extended BASIC.

Screen image table ... : 0 to 767
Colour table ..eeeesess ¢ 768 to 799
Pattern descriptor table: O to 2047

Sprites are not used in BASIC, but
their attribute table and pattern table
addresses are still set up.

768 to 895
0 to 2047

Sprite attribute table :
Sprite descriptor table :

As you can see some of the tables
overlap and the maximum memory used is
2048 bytes. To solve the problem of the
overlap, the patterns we normally want to
use, starting at ASCII code 32, begin at
address 1024, that is for code 128 or 96
added to the ASCII code of 32, This means
that the ASCII code of the last pattern we
can use is 255 - 96 = 159, as it says in
the BASIC manual, There are some patterns
defined for codes 126 and 127 (ASCII codes
30 and 31) for the cursor and screen
surround characters, The first half of
the colour table is not used, while the
second half determines the colour of our
characters and any other patterns we
define, There is a conflict between the
colour table and the sprite attribute
table which would make it difficult to use
sprites.

Extended BASIC:

Screen image table : 0 to
Pattern descriptor table: O to
Colour tablese.. :2048 to
Sprite attribute table 768 to
Sprite descriptor table 0 to

The sprite motion table uses
addresses 1920 to 2047 to store the
information needed by the system to
calculate the position of the sprites from
their velocities.

With the 96 added to the character
code, the first pattern for the cursor
starts at 126 *¥ 8 = 1008 for both BASICs.
Here is a table of the VDP memory which
attempts to summarize the information
above.

Address BASIC use Ex BASIC use

0
to Image table
767

Image table

768
to Colour table Sprite
799

Attribute
800
to Crunch buffer table
879

880
to System area
1007

System area

1008 | character 30 character 30
to to to

1919 | character 143 | character 143
1920 | character 144 Sprite

to to motion table
2047 | character 159

2048
to Colour table
2079

By this means we are given the
maximum memory for storing our programs
and data in the VDP RAM, .

|‘Iln corner”®

If you have some early TI or other Command Modules
which only have the provision for RS232 (serial) menu
choice for a printer and your printer happens to be a
PIO (parallel) input only, there is a way you can
generally get it to work:

{1} When you set up your files, tell the computer that
you are not using a printer, and create your data files
as if you weren't using a printer.

{2) During the review of the file after its creation,
then put in a totally false printer call out (like
RS-232/9) and the computer will then give a DEVICE NOT
FOUND error message. At this point, enter PIO and
generally the computer will access the parallel
printer.

The procedure might vary some depending on the module,
but the important thing is to avoid entering a printer
identification when you are entering the data, putting
it in later (falsely) during the recall and review.

Kent Maxwell

TIPS FROM THE TIGERCUB
for TIsHUG
#25
Copyright 1985

TIGERCUB SOFTWARE
156 Collingwood Ave,
Columbus, OH 43213

Distributed by Tigercub
Software to TI-99/4A Users
Groups for promotional
purposes and in exchange for
their newsletters. May be
reprinted by non-profit
users groups, with credit to
Tigercub Software.

It seems that I had
better <clear up a few
misunderstandings. The
"freeware" offers I have
mentioned 1in past Tips are
NOT available from me - send
your disk and returnable
mailer AND RETURN POSTAGE to
the author of the program.

And, my copyrighted
Tigercub Software programs
are NOT freeware. They can
only be legally obtained by
mail order from me - if you
copy them from anyone else,
you are stealing!

As for the programs
which I write and publish or
distribute without
copyright, they are also not
Freeware,
doit't want to be paid for
them, and I don't think
anyone else should be paid
for them.

Some users groups are
putting my copyrighted
programs, and those of other
programmers, in their
software library, "for wuse
but not copying" or "for
review and evaluation only".
Who do you think you're
kidding? I know I won't sell
any software to members of
pirate clubs, so why should
I support them?

If you didn't solve the
Long Division Puzzle in Tips
#24, try dividing 230709 by
835. As for the solution to
the Tigercub Challenge, it
was right on the same page!
Try creating those DATA
statements with the
LINEWRITER routine. I don't
know why it works, but it
does.

I've been asked to
print more information on
the "program that writes a
program". I don't have room
for a detailed account, but
here are the basics. If you
tried my TOKENLIST routine

they are FREE. I

in Tips #23 you already have
a list of the token codes
you will need.

I won't go into the way
that the computer squishes a
program line number into
only two characters, but you
can accomplish it with DEF
L$=CHR$(INT(LN/256))&CHR$(LN
-256*%INT(LN/256)), where LN
has been predefined as the
value of the line number.

If you need to refer to
a program line in a
statement, as in GOTO 500,
use DEF R$=CHR$(201)&CHR$(IN
T(RN/256))&CHR$ (RN-256*INT(R
N/256)), RN being the line
number.

To print a statement or
command, simply print its
token character, For
instance, the token for DATA
is 147, so you would print
CHR$(147). Note that all
the punctuation marks used
in programming, such as (
and +, are also represented
by token codes which are NOT
the same as their keyboard
ASCII value.

To print a variable
name, either numeric or
string, just enclose it in
quotes, "A" or "AS$".

To print a value, or an
unquoted string (as in a
DATA statement), or the word
which follows a CALL, you
must print CHR$(200)
followed by a token giving
the number of characters to
follow, such as CHR$(5) for
a 5S5-character word such as
CLEAR, then the value in
quotes. For instance, the
token for CALL is 157, so
CALL CLEAR is CHR$(157)&CHR$
(200)&CHR$(5)&"CLEAR"

You can simplify that by
predefining DEF U$(V$)=CHR$(
200)&CHR$(LEN(VS$))&VS, and
then simply print CHR$(157)&
U$("CLEAR")

A quoted string is
handled in the same way
except that it is preceded
by token 199 instead of 200,
so you can predefine it as
DEF Q$(V$)=CHR$(199)&CHRS$ (LE
N(V$))avs - the computer
will take care of the quote
marks.

FEach program line must
end with CHR$(0), and the
last record you print must
be CHR$(255)&CHR$(255).

A MERGE format file 1is
D/V 163, so open the file
with OPEN #1:"DSK1.MERGEFILE
",VARIABLE 163 .

Don't print more than
163 characters in a record
or the computer will blow
its mind! You can print
multiple-statement XBasic
lines, but be sure to use
the double-colon token
CHR$(130) as the separator,

not two of the CHR$(181)
colon tokens.

Any errors you make
will wusually not show up
until you try to MERGE or
use the program you have
created. I/0 ERROR 25 means
that you forgot the final
255 & 255; DATA ERROR or
SYNTAX ERROR probably means
that you left off a CHR$(0)
or gave the wrong count of
characters after CHR$(200).

Here's a bit of
delic blues - -

psyche-

100 REM - FRANKIE & JOHNNIE
by Jim Peterson

110 DIM S(12)

120 CALL SCREEN(2)

130 FOR R=1 TO 12

140 CALL COLOR(R+1,1,1)

150 FOR T=R TO 25-R

160 CALL HCHAR(T,R,32+R*8,34

-2%R)

170 NEXT T

180 NEXT R

190 DATA 262,294,311,330,349

,392,440,494,523,587,40000

200 FOR N=1 TO 11

210 READ S(N)

220 NEXT N

230 FOR J=1 TO 110 STEP 2

240 CALL COLOR(A+1,1,1)

250 READ T,A

260 CALL COLOR(A+1,A+2,A+2)

270 FOR TT=1 TO T

280 CALL SOUND(-999,S(A),0)

290 NEXT TT

300 NEXT J

310 RESTORE 330

320

330

1,1,

340 DATA

1,1,7,

350 DATA

360 DATA

9,1,11,1,
370 DATA

,2,1,11,4
,8,11

You can too have a
space in your disk
use FCTN V

blank
filenames! Just
for the blank, instead of
the space bar. You can even
have a diskfull of 10
programs with invisible
filenames consisting of 1 to
10 of those FCTN V's.
However, those invisible
characters can do strange
things when you 1list your
disk catalog to a printer.

If you want to INPUT a
string with leading and/or
trailing blanks, just
enclose the whole works in
quotation marks. Try this -

100 INPUT A$!type TEST

110 PRINT A$;LEN(AS)

120 INPUT A$!type ™ TEST "
130 PRINT A$;LEN(AS)

140 GOTO 100 !you can even

input a blank string of 136
characters

\2/

LINKING EXT’D BRASIC-ASSEMBLY

BY ROSS MUDIE.

October 1986

—=¥=e

—=¥—

EXTENDED BASIC & ASSEMBLY MORSE PROGRAM.

This article introduces a morse code program and
details a special KEY SCAN program which was developed
to meet exacting requirements of a real time applicat-
ion. The Key Scan directly interfaces the keyboard
using CRU bits. The discussion on CRU bits may provide
readers with a better understanding of the operation in
assembly of part of the CRU Input / Qutput.

I would like to hear from user group members
type of article is fulfilling a need.

if this

I have recently developed a keyboard to morse code
program suitable for the console with a 32K memory
expansion. This program should be popular with
TI99/4A owners who hold novice or full amateur radio
operator licences. The program allows the message to
be typed on the keyboard and simultaneously be trans-—
mitted. The morse output can be heard in tone form
from the computer. By connecting the CS1 motor control
to the transmitter, the computer can directly key the
transmitter, providing that the computer - transmitter
interfacing is compatable.

The main program is written in assembly but I have
used extended basic to make easy the task of allowing
versatile options which can be edited and resaved as
the user's requirements dictate. The cassette version
of the program loads the assembly in CALL LOADS first
and then loads the extended basic program, allowing
loading from tape on a 32K expanded console. The disk
version loads the extended basic first and then loads
the assembly with CALL LOAD(''DSK1.XBMO™).

CRITICAL PROGRAM REQUIREMENTS.

In the assembly part there are multiple tasks which
seem to be operating simultaneocusly. The KEY SCAN is
a fast task which must be responsive to the keyboard.
The sending of the morse code is a slow task which
must maintain pulse duration accuracy for good morse
to be produced. When a key is pressed it must be
displayed on the screen and placed in a buffer which
allows the operator to get ahead of the morse code
output. The timing is critical in the program which
maintains a speed accuracy of better than 1% at the
speeds which divide evenly into the cycle time. These
speeds are any integer number value between 5 and 40
which divide evenly into 840, (the magic number).

In development of the program I found that the inbuilt
KSCAN utility gave a variable execution time, dependant
on the key pressed and for how long it was pressed. To
overcome this problem I wrote my own KEYSCAN program
which had virtually no difference in its execution time

T199/74R
CS1 MOTO
CTL.

2401

11°4880s

regardless of which key was pressed. This part of the
program uses the CRU bits SBO, SBZ, and TB to set up &
scan the keyboard. (I will discuss SBO, SBZ & TB later
in this article).

The program also had to output a control line for the
radio transmitter. For this purpose I chose to use the
CS1 motor control. It would have been more convenient
if I had used the CS2 motor control for this, however
the beige coloured consoles, even if they have a double
ended cassette control cord, are not fitted with the!
appropiate components in the console main PCB,

The MORSE program including the source file, extendec
basic program and this article will be available from
the TIsHUG shop on disk MUDIE 86/5 for the usual media
fee., The cassette version will be a user program only,
without any source file or article. To load CASSMORPT1 |
which is part 1 of the cassette based program on a disk
system CALL FILES(1) must be invoked.

CASSETTE MOTOR CONTROL.

Controlling the cassette motor output is simple as the -
following example shows:

CLR RI12
SBZ 22
SBO 22

Turns CS1 motor control on.
Turns CS1 motor control off.

1f writing a program for a black TI99/4A console then
SBZ 23 & SBO 23 will control CS2 motor off & on.

The following sample program turns the CS1 motor
control ON & OFF at a slow rate to demonstrate the
method.

DEF GO
WS BSS 32
GO LWPI WS

Program entry point

Allocation of register work space
Use the allocated workspace.

CLR RI12 Establish correct base for CRU bit
SBZ Turn off CS1 motor control
LI Value for delay loop timing
DEC Count down
JNE Finished yet ?
SBO Turn on CS1 motor control
LI R2,60000 Value for delay
DEC R2 Count down
JNE LOOP2 Finished yet?
JMP LOOPO Go and do it again.
END GO Auto start once the program is loaded

LOOPO
LOOP1

To monitor the operation of the switching at the CS1
motor control, I used a Light Emitting Diode, a 1K ohm
resistor and a 9 volt battery. These components are
connected as shown in figure 1 to a suitable miniature
(2.5mm) jack socket which plugs onto the cassette cord.

LED
" fmnlk

0.25UW

CS1
CORD

t-I'III‘\I...IFH:,‘I{

Figure 1.

BRATTERY

Once a CRU bit has been turned ON or OFF it will stay
that way until it is swapped to the other state.

KEYBOARD SCAN.

To scan the keyboard there are three outputs from the
TMS9901 communications controller labled P2, P3 & P4,
These are CRU bits 18, 19 & 20 and their function is
keyboard select bit 2, bit 1 & bit 0. These 3 outputs
are connected to a binary to octal decoder. What this
means is that by changing these 3 TMS990l1 outputs in a
binary number pattern there will be one of eight
outputs ON at a time out of the octal decoder. If you
have a technical manual for the computer console, look
at the drawing which shows the outputs to the joystick
and keyboard, Six of the outputs from the octal
decoder drive the keyboard whilst the other two outputs
drive transistors Q300 & Q301 to the Joystick Port.

There are 9 inputs from the keyboard which compect to
the computer via the TMS9901 controls INT3 to INTIO &
P21, 1In the assembly program these are tested by the
TEST BIT instructions TB 3 to TB 10 & TB21.

Table 1 may help you to understand the relationships
of the CRU bits set and scanned to test for operated
keys on the keyboard.

CRU OUTPUTS /——mmoemmmmmmm TB INPUTS e \
201918 7 8 9 3 4 5 6 10 21
0O O O FCIN SHFT CTRL = SPACE ENTER A/L
001 2 S W . L 0o 9 X
010 3 D E , X I 8 ¢
011 4 F R M J U 7 v
100 5 6 T N H Y 6 B
101 1 A Q / ; P 0 2
Joystl

FIRE LEFT RIGHT DOWN

FIRE LEFT RIGHT DOWN

Table 1,

To scan the keys in the first row of table 1,
to A/L) first set register 12 to zero as follows:
CLR R12
To set the CRU outputs to Zero's, use Set Bit Zero as
follows:
SBZ 20)
SBZ 19) Refer to table 1
SBz 18)

(FCIN

The following examples assume these BYTEs:
Ascii key values in decimal

B13 BYTE 13
B71 BYTE 71

To test if the ENTER key is operated:
T 5 If the key is not operated then the
JEQ NOTOP EQual status bit is set
MOVB @B13,@>8375 Store contents of Bl3 in >8375

NOTOP

Another example, to test for the G key:
SBO 20
SBZ 19
SBZ 18
B 8
JEQ NOTOP
MOVB @B71,@>8375 Store contents of B71 in 8375

Refer to table 1

N

NOTOP

If you have made it this far through the article you
may be ready to understand a real program.

To allow this program to work under extended basic,
Remark out the REF VSBW,VMBW & enable the EQUates
for VSBW & VMBW. Change GO LI R0,>0C00 to >0700 .
Enable AT R1,>6000 in DISP after MOVB @KY,R1 .
Save as DSK1.KK . Enter ext'd

* % K O

Assemble as DSK1.XO .

#

Basic, type CALL INIT then

CALL LOAD("DSK1,.K0") ,
when loaded type CALL CLEAR then CALL LINK("GO") and
* try with keyboard or joystick.

¥*

IDT 'KKmudie' Special Keyboard scan for
* critical timing applications.

DEF GO Source KK Object KO

REF VSBW,VMBW Editor Assembler option 3

*VSBW EQU >2020)For linked x/b, remark out previous

*YMBW EQU >2024) line and allow these two lines.

KY EQU >8375

JOYCHR DATA >183C,>7EFF,>1818,>1818 UP Joystick
DATA >1818,>1818,>FF7E,>3C18 DOWN direction
DATA >1030,>70FF,>FF70,>3010 LEFT characters

RIGHT
fr FIRE BUTTON

DATA >080C, >OEFF, >FFOE, >0C08
DATA >F080,>C09C,>921C,>1412

* The following look up table determines the character
* value for each key press detected.

* Control + anything & fctn X give the copyright symbol
* (e/a option 3 only).

* Lower case is not implemented.

* The TB number remark shows which TB tests each group.

* TB7 fctm 2 3 4 5 1 Functions
D2 BYTE >FD,50,51,52,53,49, 128 128,>FF,4,7,2,14,3
* @ # 8 1 Ctrls

BYTE >FF,64,35,36,37,33,>04,>04,>04,>04,>04,>0A
* TB8 shift S D F G A fctns {)
BYTE >FC,83,68,70,71,65,>00,>00,>FF,8,9,123,125

* W

BYTE 124,>FF,83,68,70,71,65,>04,>04,>04,>04,>04
BYTE >0A

* TRY ctrlW E R T Q fctn [1
W BYIE >FE,87,69,82,84,81,>00,>00,>FF,126,11,91,93
BYTE >FF, >FF,87,69,82,84,81,>04,>04,>04, >04, >0A
BYTE >0A

TB3 = M N / fire Functions
M BYTE 61, 46 44 77,78,47,132,132,>FF, >FF, >FF, >FF
* + > L - Ctrls
BYTE >FF,>FF,43,62,60,77,78,45,>0A,>04,>04,>0A
BYTE >04,>0A
* TB4 space L XK J H ; 1left Functions
L BYTE 32,76,75,74,72,59,130,130, 32, >FF, >FF, >FF
* Shifts ¢ Ctrls
BYTE >FF,>FF,32,76,75,74,72,58,32,>0A,>04,>04
BYTE >04,>04
* TB5 enter 0 I U Y P right ent ' ? _
0 BYIE 13,79,73,85,89,80,131,131,13,39,63,95,>FF
* "

BYTE 34,13,79,73,85,89,80,13,>04,>04,>04, >04
BYTE >0A

* TB6 9 8 7 6 0 down Functions
D9 BYTE >FF,57,56,55,54,48,129,129, FF,15,6,1,12
* (* & *) Ctris

BYTE >FF,0,40,42,38,94,41,>04,>04,>04,>04,>0A

BYTE >0A

* TBIO X CV B 2 fctn
X BYTE >FF,88,67,86,66,90,>00,>00,>FF,10,96,>FF
* \
BYTE >FF,92,>FF,88,67,86,66,90,>04,>04,>04, >04
BYTE >04,>04
EVEN
* Subroutine for Test Bits
SUBTB .
TB7 T 7
JEQ TB8 If status register is not equal

* then a key press has been detected by this
* CRU bit. Further test & storage follows.
CB @D2(R2),@D2 Test for FCIN key on first pass
JEQ FCIN FUNCTION key detected get offset
MOVB @D2(R2),@Y Place byte for key in KY= >83ii’7’

For those of you who
assembled your own

99/4(A) LIGHTPEN mentioned in
the News Digest a few months
ago, here is another program
for you to type in and use
with it.

Have fun! If you have written
and other program that a
light pen can be used with,
please share it with us.

100
110
120 !
130.
140
150
160
170
180 !
190
200
210 REM : Edwin McFall
220 REM 2005 W. 6th
230 REM ABERDEEN WA.
240 REM 98520
250 REM TI 99/4A VER. 1.1
260 REM REQUIRES LIGHTPEN
270 REM AND EXTENDED BASIC
280 REM
290 REM
300 CALL CLEAR :: CALL SCREE
N(2)
310 FOR X=1 TO 10 :: CALL CO
LOR(X,5-11*(X>8),1):: NEXT X
320 RANDOMIZE
330 FOR X=0 TO 2
340 CALL CHAR(96+8*X,"3C7EFF
FFFFFF7E3C")
350 CALL COLOR(9+X,1,1)
360 NEXT X
370 PRINT "™ ‘hp‘hp

N hp*

P
h ph"
380 PRINT
h p'h
h p'h
p h"
390 PRINT " “hp‘hp
p*h": : & : :
400 PRINT : :"“hp*hp*hp*hp‘h
p*hp hp*hp hp'p BY: EDWI
N MCFALL hh TOUCH DOT T
0 CONTINUE. p'ph'ph ph*ph’p
h*ph*ph ph*ph*"
410 CALL JOYST(1l,X,Y):: IF X
<>0 OR Y<>0 THEN 480
420 FOR C=1 TO 3
430 CALL COLOR(9,7-4*(C=1)-8
*(C=2),1)
440 CALL COLOR(10,7-4*(C=2)-
8*(C=3),1)
450 CALL COLOR(11,7-4*(C=3)-
8*(C=1),1)
460 NEXT C
470 GOTO 410
480 CALL SOUND(100,440,0)::
CALL CLEAR :: SC=0
490 DISPLAY AT(12,9):"EASY
HARD"
500 DISPLAY AT(16,7):"SELECT
DFFICULTY" DISPLAY AT(18
y1):"EASY=LARGE DOTS, HARD=S
MALL."

—

510 CALL HCHAR(12,9,112):: C
ALL HCHAR(12,19,104)

520 CALL COLOR(11,16,16,10,2
12)

530 FOR I=1 TO 10

540 CALL JOYST(1,X,Y):: IF X
=4 THEN CALL MAGNIFY(2):: GO

TO 610

550 NEXT I

560 CALL COLOR(11,2,2,10,16,
16)

570 FOR I=1 TO 10

580 CALL JOYST(1,X,Y):: IF X

=4 THEN CALL MAGNIFY(1l):: GO

TO 610

590 NEXT I

600 GOTO 520

610 CALL CLEAR

620 CALL SPRITE(#1,96,16,92,
124)

630 DISPLAY AT(16,6)BEEP:"TO

UCH DOT TO START."

640 CALL JOYST(1,X,Y):: IF X
<4 THEN 640

650 CALL SOUND(-100,220,5)::
CALL SOUND(-100,880,0)

660 CALL CLEAR

670 FOR L=1 TO 20

680 CALL SPRITE(#1,96,16,INT
(RNDO)+1,INT(RNDO)+10)

690 N=0

700 CALL JOYST(1,X,Y)

710 IF X=4 THEN 730

720 N=N+1 :: GOTO 700

730 SC=SC+N :: CALL SOUND(-1

00,440,5)

740 DISPLAY AT(1,1):"SCORE "
3 SC

750 FOR X=1 TO 100
760 NEXT L

770 FOR Z=1 TO SC STEP 10
780 CALL SOUND(-100,Z2+110,0)
790 NEXT Z

800 CALL CLEAR CALL SPRIT
E(#1,96,16,150,123)

810 DISPLAY AT(10,6):"YOQUR S
CORE IS ";SC :: DISPLAY AT(1
8,3):"TOUCH DOT TO PLAY
AGAIN."

820 IF SC>150 THEN 830 ELSE
DISPLAY AT(12,6):" YOU CA
N'T FOOL ME!

YOU CHEATED!" :: GOTO 900
830 IF SC>200 THEN 840 ELSE
DISPLAY AT(12,1):" VERY GOOD
! YOU'VE MASTERED

THE DOTS." :: GOTO 900
840 IF SC>225 THEN 850 ELSE
DISPLAY AT(12,1):"GEE WIZ! I

DIDN'T KNOW THAT HUMANS COU
LD MOVE THAT FAST!"™ :: GOTO
900
850 IF SC>250 THEN 860 ELSE
DISPLAY AT(12,1):"NOT BAD, B
UT YOU'LL NEVER SWAT A FLY

AT THAT SPEED." GOTO 900
860 IF SC>300 THEN 870 ELSE
DISPLAY AT(12,1):"YOU NEED A
LOT MORE PRACTICE" GOTO 9
00
870 IF SC>350 THEN 880 ELSE
DISPLAY AT(12,1):"I THINK YO
U NEED A SLOWER 'GAME.
MAYBE CHECKERS." GOTO 900
880 IF SC>400 THEN 890 ELSE
DISPLAY AT(12,1):"DIDN'T ANY
ONE TELL YOU THAT YQUR TRYIN
G FOR A LOW SCORE!™ :: GOTO
900
890 DISPLAY AT(12,1):"LOOKS
LIKE YOU NEED HELP. TRY PO
INTING THE PEN AT THE DOT ST
UPID!I"

NEXT X

900 FOR Z=1 TO 500 CALL J
0YST(1,X,Y):: IF X=4 THEN 93
0]

910 NEXT Z

920 CALL CLEAR DISPLAY AT
(12,1):" DOTS ALL FOLKS..."
:: END

930 CALL DELSPRITE(ALL):: GO
TO 480

100 REM #ksksoksookolo

110 REM *BE FRUITFUL*

120 REM sk

130 REM IN TI BASIC

140 REM EDUCATIONAL SOFTWARE
150 CALL CLEAR

160 CA..i, COLOR(12,9,11)

170 PRINT "XXXXXXXXXXXXXXXXX

xxxxxxxxxxxx' ; TAB(28) ;"x":"x
BE FRUITFUL AND MULTIPLY xx

- XX

AXXXXXXXXXXXXXXXXXXKXXXXXXXX "
180 CL1=4

190 RANDOMIZE

200 CALL CHAR(128,"000000000

001070F")

210 CALL CHAR(129,"00221C1C3

CFOFOFQO")

220 CALL CHAR(130,"1F3F3F3F3

F3F203F")

230 CALL CHAR(131,"D09010101

0D8OOFC™)

240 'CALL CHAR(152,"0986463C3

C24")

250 CALL CHAR(132,"0020181E3

EFOFOFO")

260 CALL CHAR(146, 000000000

020303F")

270 CALL CHAR(147,"00000COE1

C38FQFQ")

280 CALL CHAR(148,"3F1FOF070

1010300™)

290 CALL CHAR(149,"FOEOEOEQOQ

00080")

300 CALL CHAR(153,"000020601

c1cos")

310 CALL CHAR(136,"162B7D4FB

55D3B5D")

320 CALL CHAR(137,"98B46E7CE

D76FCD4")

330 CALL CHAR(91,"0101010101

0101")

340 CALL CHAR(93,"8080808080

8080")

350 CALL CHAR(154,"1818183C3

C3C18")

360 CALL CHAR(155,"00183C7E7

E3C18")

370 PRINT "ENTER A NUMBER BE

TWEEN 2 AND9.": :"I WANT TO

PRA?TICE MY TIMES TABLES UP

T ";

380 INPUT "NUMBER _":A

390 IF (A<2)+(A>9)THEN 370

400 A5=9

410 IF A<6 THEN 430

420 A5=12

430 CALL SCREEN(14)

440 FOR GRETCHEN=1 TO 8

450 ATT=0

460 ON INT(RND*6+1)GOTO 920,

940,960,980,1000,1030

470 READ A$,B$,MOM1,MOM2,MOM

3,MOM4,CHILD,CL1,CL2,CL4

480 X=INT(RND*(A-1))+2

490 Y=INT(RND*A5+1)

500 ANSWER=X*Y

510 QUEST=QUEST+1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

