
Puhlib Ce-ordinater. lrian.Graham [Bunning
the TIaHOG atand in Melbournt

ramT.

vt

HUG NUNS DIGEST
AUGUST'86

TIsHUG, PO Box 149, PENNANT HILLS, NSW Aust.2120 Registered by Australia Post Publication #NBH5933

Myarc's John Ktown at the TT Faire

Software Co-Ordiaator. Terry PbiLlips readiea
the stand in Aelbourne in preparation for the

big nuent

i

 TInERFC NEWS DIt.;EST
V61.5 No.5 June.86

11151-11116 %MS DIGEST

1
I The official Newsletter of the

T.I.'s Homecomputer Users'
Group (Australia). 	___. ,

I Editor and Layout designer:
SHANE K. ANDERSEN

Photographer:
MAURICE STEWARTSON

CONTRIBUTORS:

IN OitDER OF ARTICLES

FRED MORRIS
BRIAN GEAWAM
ROLF SCHRRIBFE
EA.REITINGIsT
MUCK De MARTT
JIM PETERSON
GEOFF TROTT
hOSS MUDIE
SAM. MUNE
PETER laDIR
TERRY PUMPS
BEN rAKACH
ANDY CUOM
JENNY
ROBERT PEVEML
SCOTT DARLING
J.H.VINCENT
RICHARD STANFORD

13,.hlisted by:
TI9HUG - Aumtralla

Printed by: 	 --
APPLE PRINT & COPY CENTRES
160 Castlereagh St,Sydney.2000
(02)264 8111

Club Address:
P.O.Box 149,
Pennant Hills,

. 2124

Monthly Meeting Place:
WOODSTOCK COMMUNITY CENTRE
Church Street, BURWOOD.
First Saturday of each month
except January Public Holidays

Staring at 2pm except on FULL
DAY TUTORIAL/WORKSHOPS.

Co-Ordinator:
FRED MORRIS . . . 02)2.71-38fl
Secretary:

t JOHN ROBINSON : . (02)848-0956

	AlOW 	

IN THIS ISSUE, you'll find a host of different it

add that variety which I hope you will enjoy. 	EM
There are programs in Extended Basic, Basic, Assembler,

Forth plus tips and tricks on both software and

hardware programming. In this particular issuemm11111

however, there is a strong overseas content, because of

the lack of articles from our TIsHUG members. Come on

gang, lets hear from you. Even our Younger Set..n.i .amber4.

have slowed down to a complete halt.

Here now is the listinTOf all-ttose gOo'cries we ti-a

for you this month...

PAGE #1: FRONT'COVER With pictures ot the TIsHUt'stand

TI FAIR

#3: Face to Face with Fred Morris (Co-Ordinator)

#4: PUBLICATIONS LIBRARY REPORT with Brian Graham

#5: Console Writer Review by Roft Schreiber

#6: TYPE IT! with E.H.REITINGER, Chick De Marti

and Jim Peterson.

#7: OF FLAGS AND STATUS BITS by Geoff

#8: Freeware Update by Ross Mudie.

#9: STATIC ZAP!!? by Ross Mudie.

#10: Service Bench by Geoff Trott.

#11: SOFTWARE COLUMN by Terry Philips.

#12: Little Endians & Big Endians by Geoff Trott.

#13: LINKING X-BASIC & ASSEMBLER #6 with Ross Mudie

#14: Programming Tips BASIC/XBASIC .

CAVEAT EMPTOR from Ben Takach.

#15: Tigercub Tips #22 with Jim Peterson.

#16 & 17:More Tigercub Tips #23 with Jim Peterson.

#18 & 19:POOR MANS DOUBLE DENSITY DISK CONTROLLER

111111 CARD by Andy Cooper.
#20: Younger Set (Under 18's page) with Jenny. plus

TECHO TIME with Robert Peverill.

#21: Helicopter Assembly.

#22: SAVE TUTORIAL by Scott Darling.

#23 & 24:TI FORTH PROGRAMMING by J.M. VINCENT

Well, have a good month of fun with your 99/4(A)

Computer, and we'll see you at the coming meeting (see

FACE TO FACE for details of Meeting hall address).

(2

TISHIJI6 NUNS DIGEST

Face to Face

III

..?.w meeting venue - please make a note of this as the
venue can be a little difficult to locate. The address
is Shirley House, Ethel Street Burwood, Gregory's
reference Map 30 (H8) - one street down from Church St.

August Meeting - it is hoped to have some special guests
at this meeting. The big auction day will be carried over
to the October meeting. Don't forget that the September
meeting will be the big full day technical workshop.

CO-ORDINATOR REPORT
AUGUST 1986

of Winterpisgfinally with us! Ddoessthlicsomean that, alici

busily writing all of those programs which were
planned but never completed? Time will tell!

It's now a month since TI-FAIR was held and the
visit of John Keown, Director of Myarc Inc., to our
group. Interestingly, more members of TIsHUG
responded to the quick 'phone around extending the
invitation to meet John and view his company products
than was the paid attendance at TI-Fair! If this then
is the measure of interest and enthusiasm of TIsHUG
members I am certain that we still have far to go.
Thank you all for this.

While I am throwing bouquets around (something
which I don't normally do) maybe I should also
congratulate the members of the Illawarra Regional
Group for their consistent and valuable contribution
to TIsHUG. For the past few months we have enjoyed
some pretty good "stuff" received and published in
this magazine. They have set the pace - which
Regional Group is game enough to take them on? Let's
see. Congratulations Illawarra!

On the subject of Regional Groups, this will be of
interest to Country members, it has become clear that
a tremendous opportunity for TIsHUG service is needed
by our members living outside of the Sydney
Metropolitan area. A survey of member addresses
indicates an almost even division between Town and
Country. As tbe distances between towns, for country
members, is so vast it is not practical for Regional
Home Groups to be formed. So, what do our country
members do if they need assistance and advice? Well,
the mailbag content says it all! The vast majority of
incoming mail and telephone calls are received from
Country members. (hopefully we do get to answer all
queries and calls for help - eventually!)

Your committee debated this issue and and decided,
in the interests of improved communication within
TIsHUG, to form the TIsHUG "COUNTRY CLUB" Regional
Group. All non-metropolitan members of TIsHUG, not
belonging to another RHG, are automatically members of
the "COUNTRY CLUB" which will be co-ordinated from
Sydney. The idea is to provide a
reference/communication point for all country members
in their dealings with their TI.99/4A matters.
'Fortunately, Brian .:,Iraham has made himself available

to act as the Co-Ordinator of this group. 	As you
already know, Brian is also the Publications Librarian
plus he has been instrumental is producing the
Articles of Association needed for the Incorporation
of TIsHUG as a registered company. (Legal Beagle - as
he is known!)

To contact Brian, please address all correspondence
to COUNTRY CLUB RG, P.O. BOX 149, PENNANT HILLS 2120.
NSW. or TEL. (02) 774-3223. In due course Brian
will expand further on how he sees this group
operating. Brian, thank you for volunteering your
services - I am certain that the need for this group
does exist and that your assistance here will further
enhance the TIsHUG reputation of SERVICE to members.
Over to you!

Another little success story comes trom both Keith
de Haan and Peter Young. Remember they offered to
Co-Ordinate the North Shore and Sutherland Regional
Groups? Well, Lhey seem to be getting thing organised
- I believe we will see more coming in from them.
Thanks chaps.

To sum up - while we do adMit to falling
membership, there is still more than enough on going
commitment and development around us which ensures,
for those members who choose to stay with the
TI.99/4A, continued satisfaction from their hobby.
There is still so much ground still to be covered in
SOFTWARE DEVELOPMENT - hopefully, we, of TIsHUG, will
be making some positive contributions in this area.
So, for the TIsHUG PROGRAMMERS, I recommend that they
stay indoors this winter - EXPECTING them to emerge
from hibernation with some software goodies to keep us
going!

Regards to you all,

Fred Morris.

PS. I hear that Michael Slattery is busy with an X/B
program that generates ASSEMBLY SOURCE code - Keep
Poing Michael!

An interested group of members
oberserving the 'Iyarc demonstration
at the hastily convened special
meeting. The Myarc Double Density Double Sided

Disk Controller

3

	 .**
(7) NORTHWEST OHIO USERS GROUP

(OH - MI - TI & New Horizons)
August 1983 to February 1986

(2) INTERNATIONAL 99/4 USERS GROUP

February 1981 to August 1983

It
(3) 99/4 USERS OF AMERICA

November 1982 to July 1983 I (7) PERTH T.I. USERS GROUP (TITBM
May 1982 to November 1985

is
(5) CORCOMP CURSOR

November 1984 to August 198h

(TopIcs) (10) LOS ANGELES - LA 99erg USERs GRauP
January 1984 to April 1984

	■I■1••■■ 	
Ill's*-,.

.t3) SASKATOON T.I. COMPUTER CLUB (S.T.I.c.c. j
January 1985 to September 1985

1.15HILIG NIFINS ILIIGEGI
UNITED KINGDO.0 MAGAZINES

(1) TI HOME (TIdings)
February 1981 to August 1B5.2

(2) TI HOME (Quarterly News)
Autumn 1983 to Summer 1985

UNITED STATES or AHEEIcA HAQALiwka. 	

(1) CENTRAL OHIO USERS GROUP (Spirit of 99)
January 1983 to August 1985 	.

(2) CIN - DAY USERS GROUP (Cincinnatti 	Daytona)
August 1981 to September 1985

(3) HOUSTON USERS GROUP (H.U.O.)
January 1982 to April 1986 	 i*

(4) LEHIGH 99 ' ER USERS GROUP (Pennsylvania)
June 1984 to June 1985

TI - PUBLIB REPORT (5) MID ATLANTIC GROUP (Manners Neligletter)
June 1983 to November 1985 # *

WELCOME to my first column since taking charge of the
Publications Library from our overworked Co-Ordinator
and I hope that I can continue to provide that same
standard of service to ALL club members. I have had the
Publications Library only a few days and would like to
gain some feedback from members as to the type of books
and magazines YOU would like to see provided by the
Publications Library for the TI 99/4A and its family.
The first task I see is the provision of an up to date
list of Library Publications held by the Club for those
like me who did not know what's available . Well, no
sooner said than done. However, don't forget that to
borrow from the Publications Library you must join the
service but this will ONLY cost $ 5.00 per year.

Available to TIsHUG (Australia) Ltd. Publication
Library members ONLY.

	 AUSTRALIAN MAGAZINES *****

(1) ADELAIDE T.I. COMPUTER CLUB (A T T.-I 0)
February 1983 to January 1986

(2) BRISBANE T.I. USERS GROUP (}
August 1982 to October 1985

(3) CANBERRA T.I. USERS GROUP (CHUG*A*LUG)
November 1982 to October 1985

(4) HUNTER VALLEY T.I. USERS GROUP (HV 99er's)
Newsletters 1, 2, 3, 4, 5, 6, 7, and 9.

(5) ILLAWARRA T.I. USERS GROUP
February 1985 to February 1986

(6) MELBOURNE T.I. USERF. .3ROUP (TIMES I
February 1982 to OCtobcr 1W5

(6) MINNESOTA USERS GROUP (MSP 99)
September 1982 to November 1985

(8) ROCKY MOUNTAIN 99'ERS USERS GROUP (TIC TALK)
	1,

(9) SACRAMENTO USERS GROUP (Network)
June 1985 to January 1986

(10) SAN GABRIEL VALLEY USERS GROUP (Printout)
March 1983 to September 1984

(11) SMART PROGRAMMER (Miller Graphics)
March 1984 to September 1984

(12) SOUTHERN CALIFORNIA USERS GROUP
(The Computer Voice)

(13) TACOMA EASTSIDE 99ER'S GROUP
November 1984 to January 1986

(14) TIGERCUB SOFTWARE GROUP
(Jim Peterson)

Various Tips, Hints, EtMi 	!L

OTHER OVERSEAS MAGAZINES *****

(1) 4A PODAY
SepLember 1.4414 only

April 1983 to May 1985

(8) TASMANIAN T.I. USERS GROUP
November 1983 to February 1986

(9) SOFTEX MAGAZINE
November 1983 to march 1985

(10) SYDNEY T.I. USERS GIMP (sND & TND)
May 1985 to May 1986 	 i#

"i21 CANADIAN MAGAZINES

0) cHANNEL 99 HAMILTON (APPLICATION
August 1984 only

(21 NoVA SCOTIA T.I. USERS GROUP TINS)
November 1984 only

(4) BAKERSFIELD USERS GROUP (TEX - BUG)
September 1983 to February 1984

(6) DAYTONA BEACH COMpHTEF c.LIID 4 DayLono .719'41-cf:

June 1985 only

(7) JACKSONVILLE USERS GROUP (J.U.G.S.
September and October 1985 only

(8) KENTUCKIANA 99/4 COMPUTER SOC7F1'''
November 1982 to May 1983

(9) ERIE 99'ER USERS GROUP
December 1985 only

TIGHLIG NEI/II5 DIGEST

(11) LUBBOCK COMPUTER CLUB (Computerbase
January 1983 to June 1983 	 ##

Console Writer 2.1

A Review by Rolf Schreiber
Illawarra regional group - TIMM

q12) LUV - TRONICS USERS GROUP
September 1983 only

113) MENOMEE FALLS USERS GROUP
March 1985 only

(14) MASS USERS & COMPUTER HOBBYISTS (M.U.N.C.H.)
March 1984 only

115) NUTMEG T.I. 99ers
November 1985 only

(16) SAN DIEGO COMPUTER SOCIETY TI - SIG)
March 1985 only

.(17) SOUTHWEST NINETY - NINEKS.
August 1985 only

1.8) TEXAS INSTRUMENTS COMPUTER DIVISION
Official Users Group Newsletter
August 1980 to April 1982 	.

(19)YOUNG PEOPLES LOGO ASSOCIATION (Turtle News)
June 1982 only

(20)UNOFFICIAL 99/4 [A)
May 1983 only

[21) WESTERN REGION USERS GROUP
January 1984 only 	 r

.(22) TIjdingen (from Holland in Dutch)
July 1983 only

	## Denotes Incomplete Series

The best by far current T 	I.99/4A applications magazine
held in the Publications Library is MICROPENDIUM. Copies
are available each month (shipping permitting) for
purchase from the Club's shop. The Publications Library
is extremely fortunate to have a complete set of this
magazine containing a wealth of information. So, if you
have relegated your T.I. to the attic or the basement or
the closet 	 NOW 	 is the time to get it out
and take it for a fast workout in the company of your
copies of MICROPENDIUM.

As time is fast running out and space limitations don't
allow for further ponderance watch out next month for
the next gripping instalment of the Publications Library
listing. I must state now that it is impossible for the
entire Publications Library to be readily transported
to each meeting so if there is a particular publication
you wish to peruse or borrow then contact me prior to
the meeting by phoning (02) 774-3223 (evenings only)
or write to me at the Club's address. I will ensure that
you get the material at the earliest possible time.

Don't forget to join the Publication Library Borrowing
Service 	 it ONLY costs $ 5.00 for the period ending
in April of each year and by joining the service you are
providing a useful tool for it to grow. If you know of
any books or magazines that should be held in the
Publications Library contact me and I will try to get
the required publication for all to use and enjoy.

Libris Studius.

Console writer is, as the name implies, a word
processing 'package' requiring only the TI99/4A console
and a suitable cassette recorder. The 'package'
consists of a plug-in ROM module and an 8 page manual.

Although Console Writer can be used with both disk
and cassette based systems, it is aimed mainly at the
cassette based user interested in word processing. By
no stretch of the imagination could it be considered a
viable alternative to TI-Writer, but it should prove
vastly superior to XB word processing programs such as
'Tex Scribe'.

Console Writer does have some VERY useful features.
and, in my opinion, some glaring deficiencies. This
article is not meant to be a full blown review, but
will only mention the more prominent of the module's
good and bad points.

BAD POINTS

1) Does not have a lwrap-around' text mode.
During input, words are truncated at ,:olumn 80 and the
input continues on the next line

2) The editing screen is only the standard 28
chars wide, and 3 windows' are required to cover the
80 columns

3) A loud 'DONG' accompanies every prompt and many
of the inputs. This feature may not annoy everyone,
but I don't like it.

4) The buffer is limited to 115 lines of text
(irrespective of the number of columns used) before it
becomes necessary to SAVE (to either cassette or disk.)
For long articles this would mean saving (or loading)
several files each time you wanted to EDIT or PRINT
that article.
- ,;5) The module will NOT work with 1983 V2.2

'Consoles.
' 	6) Does NOT allow formatting output to a printer.
This program uses a what you see is what you get
approach, so you must screen format prior to printing.

7) Does NOT have the 'FIND STRING' and 'REPLACE
STRING' features of TI Writer.

8) Each time you SAVE to cassette, the whole of
the text buffer is SAVEd (all 9200 bytes!), even if you
only typed in one word.

9) The only way to exit from the program is tn
turn off the computer!

GOOD POINTS

1) It is probably the most versatile word
processing program for a cassette based user (with or
without 32K memory expansion). N.B. this program DOES
NOT require (or even make use of) the 32K memory
expansion. The maximum possible storage is 9200
characters (115x80 bytes), or approximately 2 pages of
text.

2) It allows loading and saving text to cassette
as a 'memory image' file, which is similar to the way
our computer stores BASIC programs, and is 10-30 times
FASTER than using INT/FIX 64 or INT/FIX 192 data files.

3) It is possible to verify the data after it has
been SAVEd to cassette in the same way that programe
can be verified after being SAVEd.

4) The program is instantly available once the
cartridge is plugged in and Console Writer is selected.

5) Becoming familiar with the program only
requires about a 10 minute reading of the brief, but
sufficient, instruction manual.

6) Saving text to disk is also possible. The file
structure is compatable with TI-Writer, so that a
Console Writer text file saved to cassette can be later
loaded back in and saved to disk. The resultant disk
file can then be EDITed and FORMATted with TI Writer.
Converting a DIS/VAR 80 disk file to a cassette file is
also possible. This facilitates the transfer of text
or data between cassette and disk.

In my opinion, for a cassette-bused user wanting
to do word processing, the advantages far outweigh the

. 	, GO FOR IT!!!

TYPE IT ! Here's some great little routines, easy to type in, that
you will be impressed with. All came via Jim Peterson,
although other author credit is shown where applicable.
Hope you like them. The first one is COLOR EDITOR and
shows how to mix colors on the screen. It requires
Extended Basic. The program DISK MEMORY will quickly
show you how much space remains on a disk. The program
SLANT will give you a new perspective on your computer.
Probably the most interesting one is SLASHER which when
run will turn your screen dark blue with white lettering
and put a / through all zeros. This program remains in
memory and can only be stopped by typing BYE. It
requires 32K expansion. By the way Jim sent dozens of
these small programs and if you like this sample
arrangements could be made to publish more here for you
to type in or they could be released on disk through the
club shop.

1 ! 	COLOR EDITOR
for mixing any desired
2 colors with joyst or

keyboard.
2 ! With Greetings

E.H. REITINGER
Vienna, Austria

3 ! TI99-Journal-Klub
A-1150 Wein

Felberstrabe 24/26
(published in The Smart Pro

grammer May 1984)
4 ! Use E and X keys to move
mouse to desired color, the
n any key on left side to ch
ange foreground to that colo
r; press again to change the
5 1 background to the same.
10 CALL SCREEN(16):: CALL CL
EAR
20 M$="55AA55AA55AA55AA"
A=122
30 CALL MAGNIFY(2):: CALL CH
AR(64,RPT$("F",16),34,"FF181
8FFFFFF",128,"FFFFFFFFFFFFFF
",73,M$):: CALL COLOR(3,16,2
,4,16,2,6,1,1,5,2,1)
40 CALL VCHAR(1,27,64,192)::
CALL HCHAR(23,1,64,162):: H

=1
50 G=-2 :: FOR 1=3 TO 16 ::
CALL SPRITEUI,64,I,(G+I)*12
,230):: NEXT I :: CALL SPRIT
E(#2,34,16,5,230)
60 CALL SPRITE(#1,42,2,A,231

70 FOR S=4 TO 22 :: CALL HCH
AR(S,3,73,24):: NEXT S
80 CALL JOYST(1,X,Y):: ON (S
GN(Y)+2)GOTO 90,130,110
90 A=A+12 :: IF A>170 THEN A
=2
100 CALL LOCATE(#1,A,231)::
GOTO 130
110 A=A-12 :: IF A<0 THEN A=
170
120 CALL LOCATE(#1,A,231)
130 CALL KEY(1,K,S):: IF S=0
THEN 80
140 IF K=5 THEN 110 :: IF K+
1=1 THEN 90
150 F=INT(A/12+2):: CALL SOU
ND(200,660,2):: GOTO 180
180 CALL COLOR(6,F,H):: DISP
LAY AT(24,9)SIZE(7):USING "
## ## ":F,H 	H=F 	GOTO 8
0

turns screen blue with w
hite characters, and slashes
zeros, until you return to

the title screen
100 CALL CLEAR :: DISPLAY AT
(11,5):"ONE MOMENT PLEASE...
" :: CALL PEEK(8198,A):: IF
A<>170 THEN CALL INIT
110 FOR A=1 TO 126 :: READ B

C=C+B :: NEXT A :: IF C<
>10146 THEN PRINT "DATA ERRO
R! PLEASE CHECK." :: STOP
120 RESTORE :: CALL PEEK(819
4,A,B):: C=A*256+B :: CALL P
EEK(8196,D,E):: F=D*256+E
IF F-C<126 THEN PRINT "NOT

ENOUGH MEMORY TO LOAD!" 	E
ND
130 FOR D=0 TO 125 :: READ E
:: IF E>255 THEN GOSUB 330

:: COTO 150
140 CALL LOAD(D+C,E)
150 NEXT D
160 B=B+106 :: IF B>255 THEN
B=B-256 	A=A+1
170 CALL LOAD(8194,A,B)
180 CALL PEEK(8196,A,B):: B=
B-24 :: IF B<0 THEN B=B+256

A=A-1
190 CALL LOAD(8196,A,B):: F=
C 	C=A*256+B
200 FOR D=0 TO 19 :: CALL PE
EK(F+106+D,G):: CALL LOAD(C+
D,G):: NEXT D
210 CALL PEEK(-31804,C,D)::
CALL LOAD(F+12,C,D):: CALL L
OAD(-31804,A,B):: END
220 ! DATA FOR MAIN PROGRAM
230 DATA 244,0,0,58,68,76,84
,100,68,184,0,60,0,0,152
240 DATA 32,256,1,131,68,22,
37,2,1,0,135,208,96,256,0
250 DATA 216,1,140,2,6,193,2
16,1,140,2,2,1,0,72,216
260 DATA 1,140,2,6,193,216,1
,140,2,2,0,0,32,216,32
270 DATA 256,0,140,0,6,0,22,
251,2,1,128,68,216,1,140
280 DATA 2,6,193,216,1,140,2
,2,1,256,2,216,49,140,0 	.
290 DATA 2,129,256,10,22,251
,192,32,256,12,19,1,4,80,4,9
1
300 ! DATA FOR INTERRUPT SER
VICE
310 DATA 192,32,32,2,2,128,2
56,106,26,2,4,96,256,14,4
320 DATA 224,131,196,4,91
330 READ G 	E=E-256+A 	G
=G+B :: IF G>255 THEN G=G-25
6 :: E=E+1
340 CALL LOAD(D+C,E,C):: D=D
+1 :: RETURN

100 REM
110 REM DISK MEMORY AVAILABL

120 REM BY CHICK DE MARTI 19
83
130 REM IN LA 99ers Computer
Group TOPICS Newsletter Dec
. 1983
140 CALL CLEAR
145 PRINT "SHOWS DISK NAME,
SECTORS":"USED AND SECTORS A
VAILABLE "• • • •
150 PRINT "PRESS <S> SCREEN
ONLY": :
160 PRINT " 	<P> COPY AL
SO": :
170 PRINT " 	<ENTER> TO EX
IT"
180 FOR ROLL.' TO 6
190 PRINT
200 NEXT ROLL
210 GOSVB 380
220 OPEN #1:"DSK1.",INPUT ,R
ELATIVE,INTERNAL
230 INPUT #1:A$,J,J,K
240 IF AN$="P" THEN 250 ELSE
270

250 OPEN #2:"PIO",OUTPUT
260 PRINT #2:" - DISKNAME=";
AWAVAILABLE=";K;" USED=";J
-K
270 DISPLAY "DISKNAME - ";A$
:"AVAILABLE=";K;" USED=";J-K
280 PRINT
290 PRINT " 	ENTER NEXT
DISK 	
300 PRINT
310 IF AN$="P" THEN 320 ELSE
330

320 CLOSE #2
330 CLOSE #1
340 ANWNUL"
350 GOTO 210
360 CALL CLEAR
370 END
380 REM CHOICE FROM MENU
390 CALL KEY(3,A,SY
400 IF S=0 THEN 390
410 IF A=13 THEN 360
420 IF A=83 THEN 440
425 IF A=80 THEN 430 ELSE 39
0
430 AN$="P"
440 RETURN

YING
	

TISHIIIG 11111-INS DIGEST

OF FLAGS AND STATUS BITS

by Geoff Trott
Illawarra regional group - TIsHUG

Some of the hardest things for
assembler language programmers to come to
terms with are the status bits or flags.
These are bits which are set or cleared as
the result of the last operation performed.
This means that a decision can then be made
on that result using one of the Jump on a
condition instruction. Let us examine each
of these flags to find out what information
each one gives to us about particular
instructions.

EQ or Equal flag. This is the easiest one
to understand as it is set if the result
of an arithmetic (A AB AI ABS DEC DECT
NEG S SB INC INCT) or logical (ANDI ORI
INV SOC SOCB SZC SZCB XOR) or shift (SLA
SRA SRC SRL) or move (LI MOV MOVB LDCR
STCR) instruction is zero. If the
instruction is a word instruction, then
all 16 bits must be O. If a byte
instruction, then just the 8 bits
addressed must be O. In comparison
instructions (C CB CI), the flag is set
if the two pieces of data.being compared
are the same. For the Compare Ones
Corresponding (COC) and Compare Zeros
Corresponding (CZC) instructions, the EQ
flag will set if the bits specified by
the source data are all l's (COC) or all
O's (CZC). For the CRU instruction Test
Bit (TB), the value of the bit selected
is put into the EQ flag. The EQ flag is
set if the bit is 1 (not zero), which
may seem strange.

C or Carry flag. The C flag indicates that
the operation has required one more bit
than is available for the instruction
(i.e. 	9 or 17 bits). The C flag is
only used for arithmetic and shifting
instructions. In the shifting
instructions (SLA SRA SRC SRL), the C
flag is used to hold the last bit
shifted out of the end of the data.
When using unsigned numbers in addition
operations it is easy to understand that
if the result is greater than 65535 (for
words) or 255 (for bytes) then the C
flag will set. Subtraction involves the
use of negative numbers, as it is
performed by negation and addition.
This means that we need to look at the
representation of negative numbers
before the C flag will make sense for
subtraction.

Negative numbers are represented in
2's complement code by the processor. The
essence of this is that the most
significant bit is the sign bit of the
number and if it is 0 the number is
positive, and if it is 1 the number is
negative. To find the negative of a
number, complement all bits and add 1 to
the result. Complement means to change all
ls to Os and all Os to ls. To find the
value of a negative number, negate it as
above and then convert it to decimal. For
example in bytes we have :

	

+1 = 00000001 	>01
-1 = 11111111 = >FF

+127 = 01111111 = >7F

	

-127 = 10000001 	>81
+16 = 00010000 = >10
-16 = 11110000 = >F0

There is one odd number in this code,
and that is the smallest negative number,
-128 (bytes) and -32768 (words). The
negative of these gives the same codes back
again. If 1 is subtracted from these two
numbers, the largest positve numbers are
obtained, 127 (bytes) and 32767 (words) and
if 1 is added to these largest positive
numbers, the smallest negative numbers are
obtained again. The relationship between
negative numbers and unsigned numbers is
that the negative numbers are all unsigned
numbers larger than the largest positive
number. Let us now return to the carry
flag.

For signed numbers and addition (A AB
AI), at least one operand must be
negative to set the C flag. If both
operands are negative the C flag will
set, or if the result of adding a
positive to a negative number is a
positive number, the C flag :ill set.
For subtraction (S SB) simi,ar
conditions hold. The C flag will set if
we subtract a positive number from a
negative number (i.e. add two negative
numbers). It will also set if there is
a positive result after subtracting
numbers which are either both positive
or both negative (i.e. adding a
positive and a negative number with
positive result). For unsigned numbers,
the C flag will set if a smaller number
is subtracted from a larger number
(including zero result). Increment (INC
INCT) is the same as adding 1, and the C
flag will set when the result changes
from a negative number to a positive
number. Decrement (DEC DECT) involves
adding -1 (or -2) and the C flag will
always set except when the value changes
from positive to negative. The C flag
will set if 0 is negated (NEG). The C
flag is always cleared by an absolute
value instruction (ABS).

OV or Overflow flag. The OV flag only
gives information about signed numbers.
In effect it is a carry for the number
excluding the sign bit. If two numbers
of like sign are added (A AB AI) to give
a result which is the opposite sign, the
OV flag will set. Similarly, if one
subtracts (S SB) numbers of unlike sign
and the result is not the same as the
first number the OV flag will set. The
OV flag sets if you try to negate (NEG)
or take the absolute value (ABS) of the
minimum negative number (see above), and
when you increment (INC INCT) past the
largest positive number or decrement
(DEC DECT) past the smallest negative
number. It also sets to indicate that a
division (DIV) cannot take place because
the result would need more than 16 bits.
If the sign of the number changes while
doing a Shift Left Arithmetic (SLA) the
OV flag will set.

A> or Aritmetic greater than flag. This
flag indicates that the result of an
arithmetic (A AB AI ABS DEC DECT NEG S
SB INC INCT) or logical (ANDI ORI INV
SOC SOCB SZC SZCB XOR) or move (LDCR LI
MOV MOVB STCR) or shift (SLA SRA SRC
SRL) operation is positive and not zero.
For comparison instructions (C CB CI),
it sets if the first operand is greater
than the second when both are
interpreted as signed numbers.

(

	1
T151-111G NEVIN DIGEST

7)

21 22123124125126127128129130

2

FREEWARE VERSION of TI99-0POLY.
from Ross Mudie of TIsHUG

1
2

20
3
5
3

19
18
17

1 1
1 °I 91 81 1 9 51 41 3

35

1199 ()POLY
FREELIWIRE

UPDATE
TO VERSION 1. 5

2

4

36
37
38
39
40

2

33
34

16
15
14
13
12

1-151-111G 	INGEST
1090 DISPLAY AT(1,5):"LOADIN
G AND RUNNING": :"TI99-0POLY
V1.5 - Ross Mudie"

Resave the LOAD program by typing SAVE DSK1.LOAD .

Place the TI99-0POLY program in memory by typing:
OLD DSK1.TI99-0POLY .

Modify the TI99-0POLY program in line 100 and add line
2045 as follows:

100 OPTION BASE 1 :: ON WARN
ING NEXT ;: ON BREAK NEXT !
TI99-0POLY V1.5 Ross Mudie
8th June 1986 '

2045 IF D(PSN(P),2)=6 THEN C
ALL D(14,B$(123)):: CALL D(1
5,B$(124)):: GOTO 2170

Do NOT resequence the program.
Resave the TI99-0POLY program to disk by typing:

SAVE DSK1.TI99-0POLY .

Return to the Disk Manager and re-apply write protect-
ion to both programs.

The freeware version of TI99-0POLY has been raised
from version 1.4 to version 1.5 to overcome a bug which
charged rent for an already mortgaged station when a
player is advanced to the station by a Community Chest
card "advance to the nearest railway". This card
charges twice the normal rent if owned or permits the
purchase of the property if unowned.

To raise a copy of the program disk to V1.5 first make
a backup copy of the disk in case of mishap.

Using a Disk Manager, remove write protection from the
programs named LOAD and TI99-0POLY.

Go to extended basic with no disk in drive 1. When
* READY * and the cursor prompt is visible, place the
TI99-0POLY disk in drive 1 and type OLD DSK1.LOAD .

Modify the LOAD program, when in memory, in lines 120
and 1090 as follows:

120 ! TI99-0POLY V1.5 LOAD
8th June 1986, Ross Mudie

UPDATING AN OLD VERSION OF TI99-0POLY.
Any person who owns an original copy of the pre-

Freeware version of TI99-0POLY may return the original
disk and booklet, forward postage paid. The disk and
booklet will be updated to the latest freeware version
at no further cost and the return postage will be paid
by the author.

After enclosing the return disk and booklet in
adequate packaging and including YOUR OWN NAME AND
ADDRESS, post to: Ross Mudie,

47 Berowra Waters Rd,
Berowra. N.S.W. 2081.
AUSTRALIA.

USER PROBLEMS.
I have had some enquiries of how to exit a game with-
out turning the computer off. ...In the design of the
program I did everything possible to prevent accidental
loss of a running game. The best method that I can
suggest is to save the game under a file name for un-
wanted games, e.g., DSK1.UNWANTED . A new game may then
be started with previously saved data or a totally new
game may be commenced or the game may be ended. •

L> or Logical greater than flag. This flag
indicates that the result of an
arithmetic (A AB AI ABS DEC DECT NEG S
SB INC INCT) or logical (ANDI ORI INV
SOC SOCB SZC SZCB XOR) or move (LDCR LI
MOV MOVB STCR) or shift (SLA SRA SRC
SRL) operation is not zero. For these
instructions it is just the complement
of the EQ flag. For comparison
instructions (C CB CI) however, it sets
if the first operand is greater than the
second when both are interpreted as
unsigned numbers.

OP or Odd Parity flag. This flag is only
used for byte instructions (AB CB MOVB
SB SOCB SZCB), and for the CRU move bit
instructions (LDCR STCR) if 8 or less
bits are moved. The OP flag will be set
if the result of the operations contains
an odd number of Ps.

X or Extended operation flag. This flag is
set when one of the 16 XOP instructions
is excuted. The XOP enables an
effective BLWP to be performed with an

instruction of only one word. Since a
subroutine entered with an XOP
instruction could have been entered with
an BLWP instruction, this flag allows
the subroutine to find which one was
used. The XOP instructions use fixed
addresses to store the context switch
information, starting at address >40.
These addresses are in the System ROM of
the 99/4A and so cannot be set up by us.
In fact the later ROMs have the first 3
XOP addresses set up for use as follows.
The first one (XOP Gs,0) causes a
subroutine in. what is obviously a TI
debugging device to be called. The
second one (XOP Gs,1) causes a
subroutine at >FFF8 to be called using a
workspace area starting at >FFD8. This
is used by DEBUG for breakpoints. The
last one (XOP Gs,2), causes a subroutine
at >8300 (System RAM) to be called with
a workspace area starting at >83A0. The
addresses which would be used by the
other XOP's (3 to 15) have programme
code stored in them which makes them not
easy to use for this purpose. •

C8

Want HELP with 'BASIC, EXTENDED BASIC,
or MINI MEMORY languages?
Just starting out with programming?
Written a program, but stumpt with a
problem and need assistance?
Well, perhaps our PROGRAMMERS CRISIS LINE
can help you!

I/0 (401:,,, 992229
rvy44r _$1,e

Pprograirs,

HOC 	TISHIlti NUNS DIGEST

7LSTATIIL! LW II?
DANGER of STATIC ELECTRIC DISCHARGE to the COMPUTER.
by Ross Mudie of TISHUG.

This article is by no means a complete work on this
complex subject. It is intended to provide a practical
introduction to the subject of the winter zappies.

TI in their literature on the TI99/4A home computer
warn against the destructive effect of static discharge
to the computer.

A static charge in the order of tens of thousands of
volts can build up on your body without you being aware
of the condition. Many people have experienced this
when getting out of a car and then touching, or even
getting near the door handle.

The static electricity problem is most prevalent in
the winter months when the humidity is low, but do not
think that it is a winter only problem. If a heater is
being used, by raising the temperature the humidity is
lowered. Airconditioners actually remove moisture from
the air, accentuating the problem.

The Static Charge can build up on a body, human or
other, when there is friction, or even movement between
two bodies which are separated by good electrical
insulation. Low levels of humidity contribute to good
electrical insulation and Sydney's westerly winter
winds are an absolute menace.

When you walk around a room, especially on a nylon
carpet wearing synthetic soled shoes or get up from a
synthetic material or plastic covered chair, you are
likely to be carrying a highly destructive static
charge. If you discharge this static energy into a
solid state module or your computer, static sensitive
CMOS integrated circuits are likely to be destroyed and
you may not even feel it until the repair bill comes.

SOME METHODS of CONTROLLING STATIC BUILDUP.

Antistatic sprays are available for carpets and syn-
thetic cloth furniture. These sprays tend to trap and
retain a low level of moisture which allows static
charges to leak away harmlessly. These treatments must
be repeated periodically to retain effectiveness.

The table top on which the computer is located can be
covered by an antistatic mat to assist with the safe
dissapation of static charges. The earthed mat should
protrude in front of the keyboard to the edge of the
table and either side of the console so that the oper-
ators hands will regularly contact the mat. If it is
not feasible to provide a mat then even a conveniently
positioned earth connection will suffice. If an earth
connection is provided it should have a resistance of
between 470Kohms and 1Megohm to earth. The earth conn-
ection may be obtained from the rear case of the expan-
sion unit, the metal case of other earthed appliances
or from an earthed water pipe. Anti static floor mats
are also available to provide additional protection in
areas of very high static risk. Floor mats should be
earthed in a similar manner to the table mat.

Immediately before you touch a command module or the
computer, momentarily touch the antistatic mat or earth
point to drain away any static charge. If your chair
has a metal frame then touch the frame whilst getting
off the chair to equalise any possible static build up
as it occurs. Avoid touching the TV screen, but if you
must, then discharge the static charge which results
from touching the screen as previously discussed. It is
also good policy to turn the console off before insert-
ing or removing a solid state cartridge.

The principle of the mat or resistive earth is to
provide a high resistance path to earth giving a safe
discharge current which is limited by the resistance of
the mat and earth connection.

Never touch any connector area of the computer or
solid state cartridges since a static discharge to a
static sensitive connection will result in failure.

STATIC PRECAUTIONS if DOING TECHNICAL WORK.

If any technical work is contemplated, then an anti-
static work place MUST be established. An antistatic
mat must be placed on the work surface with a resistive
earth connection provided to the mat. Any soldering
iron tip must be connected to earth at the mat and the
person carrying out the work must be connected to the
mat via a resistive wrist strap. The earth of the com-
puter must be in contact with the mat or an additional
earth lead provided for this purpose.

WHERE to OBTAIN an ANTISTATIC MAT.

I have not done a full market survey but there are
several suppliers of antistatic products including 3M,
Circuit Components Alsia and Royston Electronics. The
mat which I use is available from:

ROYSTON ELECTRONICS, 59 MOXON PDE, PUNCHBOWL.
PHONE (02)709 5099.

The part number is 1420ASK, price is $68.88, ex stock
Melbourne. This kit contains a black, high carbon con-
tent mat, 460 x 610mm with two straps, one for the
earth connection, the other for the wrist (when perfor-
ming technical tasks or operating under extreme static
conditions).

*** WARNING ***

Static electricity is one of the few things which
works in total cooperatioft with Murphy's Law.

...or... One flash and the CMOS is ash.

Don't forget about the predominantly Summer static
discharge problem, thunderstorms! See my article on
power and telephone line filters on page 5 in the April
1986 issue of the SND.

-11511-111G NM% INGEST

SPI-MICP bench

by Geoff Trott
Illawarra Regional Group — TIsHUG

As time passes, some of our trusty
consoles develop problems and need some
repairs. I have seen a few of these now,
and have been able to fix some of them up,
while others are still being investigated.
Here is the story of a few of them.

One of the first faults I had a look
at concerned a keyboard where over vigorous
use by several children at once had caused
the alpha lock key to "explode" into its

, constituent parts. The owner had carefully
collected all the pieces he could find, and
even shaken some out of the console itself,
without taking it apart. I must admit that
when I first looked at the pieces I could
not imagine how they all went together.
There were two pieces of stiff wire, one
straight and quite long, and the other bent
into a particular shape. This one matched
up with some parts of the plastic moulding
and was responsible for the mechanical
locking. Then there was a spiral spring
and a little round plastic piece about the
same diameter as the spring. By taking the
cap off my own alpha lock key I could see
that the spring went up the middle of the
square plastic, and the bent wire had one
arm which came up the outside of the
plastic as expected. The straight wire was
the means of locking the bent wire, and so
the key itself into its holder and goes
across the bent wire and is held by some
shoulders in the plastic base. The plastic
circle fits on the end of the spring and
then is also on top of the bent wire. So I
had all the pieces and it was only a matter
of fitting the Chinese puzzle together.
That was a bit fiddly and required that the
long piece of wire was quite straight. One
satisfied customer in short order!

The next successful customer had a
console which worked fine when running a
module plugged in to the cartridge port but
would not give the TI BASIC option and if
no module was plugged in gave a message to
PLEASE INSERT CARTRIDGE instead. This
clearly meant that the BASIC GROM was not
being recognised, and sure enough when the
first of the two BASIC GROMs was replaced
all returned to normal. There are 3 GROM
chips in the console, all of them in
sockets. The lowest number of these (2155)
is the system GROM which initialises the
system on reset, produces the title screen
and finds what is plugged into the system
when the first key is pressed. It does
this by looking at the data in the first
bytes of all the possible GROMs (addresses
>2000, >4000, >6000, >8000, >A000, >C000,
>E000), and if version 1.1 system also at
ROM address >6000, to see if any have data
>AA there. If they do that indicates that
a programme is present in that GROM or ROM
and it then gets the programme name or
names and puts them in the menu next to a
number. When we press a number the system
transfers control to that particular
programme. So in this console, the GROM
with the >AA byte was not working so the
system could not find TI BASIC, but could
find anything else which happened to be
plugged in.

The third success was a console which
came up with a title screen which had some
wrong colours in the colour bars and some
wrong characters in the text on the screen.
Otherwise it seemed O.K. and would enter
TI BASIC, still with what only seemed like
bad spelling. By typing the alphabet in
BASIC and comparing what appeared (ADDED..)
to the ASCII codes of the letters typed, it
appeared that one bit was always O. This
pointed to a possible failure of a memory
chip as the VDP memory is uses eight 16K by
1 bit chips. There was another strange
abberation which did not fit that theory,
but I decided to investigate this first.
Looking at the data signal out of the
suspect chip it was always too low and so
was the culprit. When replaced the title
screen became correct except for the
appearance of odd ! characters where there
should have been spaces. These were
grouped near the text, usually below it.
Most peculiar I thought, and tried to see
if it was another memory chip or the VDP
processor perhaps. The data signals looked
all the same now, but I ran a memory check
programme which has a clock on the screen
and noticed that when the clock had odd
numbers the character 2 rows below the odd
number changed from a space to a ! and back
to a space when the number was even. Then
I realised that all the ! were 2 rows below
(and above sometimes) the characters with
an odd ASCII code. The memory must be
storing the same bit in several addresses
at once. Replacing that memory chip and
all was fine. Unusual to have 2 faults at
the same time and both different, but
similar.

In case you think that all is success
down here there are some problems which are
still defying me. One is my own console (I
have bought a spare) which works fine for
hours of TI—Writer or some other cartridge,
but when trying to return to the title
screen gets into all sorts of problems.
Sytem GROM you say? My thoughts also but
changing it did not solve the problem, just
changed the time taken to fail. Obviously
a heat problem, but spraying with cooler on
various chips does not help. Turning off
and back on again only helps if enough time
elapses to allow it to cool down. I shall
find it one day. The other problem at the
moment is a console which does a similar
thing when in BASIC, but when turned off
and on again behaves normally straight
away. That fault appears to have now
develOped into a more major one and is
still unsolved.

Q0

11151-111116 NUJ1/5 1E11116E51F
•

EOT LhliS months uurcynfe rolimame4.

First up this month news of recent software
acquisitions from both local and overseas sources. I.
will give a brief description of each. All will be
released over the coming months at the TIsHUG Shop with
notification being in this column.

FUNLWRITER V3.3 - a copy of this was purchased at the
TI Faire in Melbourne. Those wanting to update to this
version will require 2 disks unless you have double
sided drives when only 1 disk is needed. There is a lot
of documentation included with this updated version
with a copy of the latest version of 'C' thrown in for
good measure. Those with Myarc controllor cards will be
able to load that version of disk manager to the
Funlwriter disk and access it from the Utilities
option.

CHARACTER DEFINITION UTILITY - written in Extended
Basic by a young TIsHUG member, Craig Sheehan. With his
program you may design graphics on an 8x8 grid, place
graphics on a 4x4 character pad, manipulate graphics,
display hex code of graphics and save and reload pads
to cassette. Craig has forwarded a very detailed
instruction manual with his program as well as a Quick
Reference Guide. There are also some demo pads on the
cassette. Well done Craig, keep programs of this
standard coming.

A DISK OF HYMNS - all with graphics, written in
Extended Basic by Bill Knecht of the Houston Users
Group. If you like music then this is for you.

THE MS ADVENTURE SERIES - is made up of the MS
adventure program and three MS adventure data-bases,
The Search for Murgens Keep, The Enchanted Keep and The
New King. Written in assembly, the MS series requires
Extended Basic, 32K expansion and disk drive.
Frustrated adventures will like this one because if you
get stuck the solutions are also on the disk.

DISK MANAGER 99 - this is a resident disk manager which
stays in memory at all times. Requires either Extended
Basic, Mini Mem or Editor Assembler plus 32K expansion
and a disk drive. With DM99 loaded you can catalog,
rename, initialise, rename, change protection and test
a disk all from command mode without destroying the
program in memory.

The Forth competition has now closed with only the
single entry being received from Terry Johnsen.
Terry's entry is a spell checking program which
contains a dictionary of about 28,000 words expandable
to about 34,000. 2 disk drives are required to operate
his program. The program searches the file being
checked and catalogs words not in the resident
dictionary, outputs them to the printer and suggests 3
alternatives. Terry wishes to market this program
through the shop. Copies have been given to committee
members to evaluate and a decision is expected soon.

[Ask:

Universal dis-assembler. See the July TND for a
description. This was in fact on sale at the July
meeting, however I omitted to announce its availability
in this column last month.

The MS Adventure Series, also mentioned above. Please
try not to cheat and look up the solutions before
attempting to solve the puzzles.

Tape (No. 1986/8);

Will contain 8 programs with all bar Blackbox requiring
Extended Basic. Here they are -

Blackbox - full instructions are included in the
program. The idea is to locate objects by shooting into
the blackbox. It is quite an entertaining, yet
difficult game.

Blockz - instructions are also included with this one.
Try to keep your "man" alive for as many movements as
you can.

Crab Attack - no instructions with this one but you
move your crab with the arrow keys and try to eat the
fish while avoiding the killer crabs.

Go Kart - again no instructions but you control your
racing Go Kart with a joystick. Once you complete
course No.1 you move to course 2 with a 100% increase
in speed. If you complete the second course I guess you
go to No. 3 with a 50% increase in speed. I didn't get
that far when playing.

Golf - no instructions but .easy to play either with a
joystick or keyboard. Press the fire button or "Q" key
to increase driving power, move joystick left or right
to change directional arrow or keys "S" or "D" do the
same. Try to avoid the trees and water hazards.

Ninja - simple instructions included in the game. Belt
your opponent before he does it to you.

Survival - instructions included. Try to complete the
screens without falling into pits.

TI Targets - instructions again included. Shoot the
moving targets with your supply of 30 arrows.

These games will also be available on disk if you
prefer. On the disk is also a copy of a load program
with the TIsHug logo. This program was recently written
by Russel Welham and will be included on all future
appropriate disk releases.

Recently I commenced corresponding with Jim Peterson of
Tigergub Software. We have exchanged copies of each
others software catalogs and are now in the process of
exchanging disks on an ongoing basis. Jim has a very
extensive public domain library and his catalog runs to
well over 2000 separate programs some of which sound
very interesting. Watch this column for more news.

BUG Department - Xwingpilot released on tape 1986/7 has
some bugs throughout. The problems have occured when I
resequenced the program after adding some lines at the
start and deleting some REM's in the listing. To
correct the program make these changes in the line
numbers indicated -

Line 390 - change the 32767 to 420
Line 440 - change the 32767 to 470
Line 510 - change the 32767 to 560
Line 650 - change the 32767 to 340
Line 720 - change the 32767 to 840

Well that's it for this month. More software news next
time.

If copying time permits there will also be some copies
of FUNLWRITER 3.3 available at the shop at the August
.meeting,

	 j

DIGEST

LITTLE-ENDIANS AND BIG-ENDIANS

by Geoff Trott
Illawarra Regional Group - TIsHUG

In the world of computers there are
two classes of people; those who are
Little-endians and those who are
Big-endians. These classifications have
nothing to do with anatomy, but rather with
the prejudices people have about the order
in which the bits in data and addresses are
numbered. Just a storm in a tea cup you
say? Well I guess that is right, but the
different ways used to number bits and
bytes do cause confusion, particularly to
assembly language programmers, so I will
attempt to explain clearly what it is all
about.

If you look at the circuit diagrams
for the 9900 processor, or any description
of the instruction bit codes for example,
you will notice that the most significant
bit of the 16 data bits or address bits is
numbered 0 and the least significant bit is
numbered 15. This is the pattern for the
Big-endian order of the world. Also the
first byte in the word, which is the even
address, is also in the most significant
position. This means that if words are
written down in their numerical order
across a page, the order of the bits and
bytes all start from the top left and read
naturally to the right. The pairs of bytes
go together naturally to make words and the
character strings are in their correct
sequence. This is all so logical that it
is hard to imagine why another way would be
thought about or even preferred.

Let us have a look at the
Little-endian way of numbering bits and
bytes. The obvious difference is that the
'least significant bit is numbered 0 and the
most significant bit has the largest
number. The first byte would also go into
the least significant byte position. This
means that if we lay out the data in bytes
starting from the top left of the page,
then the words are in the wrong order
bytewise as it were, or if the words are
written down in their correct form, the
bytes are not consecutive.

Let us take an example of a character
string of 5 characters, and assume the
format used by TI of the first byte
containing the length of the string. The
bytes would be 05 48 65 6C 70 21 in
hexadecimal for the string 'Help!'. For
the Big-endians this string would pack into
consecutive words like this. 0548 656C
7021 For the Little-endians it would pack
into words in the following way. 4805 6C65
2170 The same sort of problem arises with
the Little-endian way when 16 bit data is
broken into 2 bytes, it is in low byte
followed by high byte order.

Well why would anyone want to be a
Little-endian? For those of us who delve
into the hardware, it is clear that the
hardware manufacturers are confirmed
Little-endians. This is because the number
of bits used by a piece of hardware is
generally less than that used by a
computer. Several pieces of hardware are
connected in parallel to do the job. In

this case it makes more sense to
consistently number the least significant
bit as 0, because this will be correct for
at least one of the pieces (for a
Little-endian). If you consider the
address lines of memory chips. These can
have anywhere from 8 to 16 address lines,
and there may be families of these
components which change only by an increase
in address lines. The Little-endian
approach allows the address lines to be
increased without requiring all the other
address lines to be renumbered. This is
the main advantage of the Little-mdian
approach, the ability to increase the
number of address lines with the smallest
impact on the numbering of the existing
address lines. There are also advantages
when transferring bytes to words and vice

. versa, as the bytes are in the correct part
of the word to carry on normal arithmetic
on the byte value. With the Big-endian
approach the transfer of a byte into a word
leaves the byte at the high end of the
word, which then requires a byte swap
within the word before normal arithmetic
can be used - INC or DEC for example.

Some problems arise when the two
concepts are mixed in the same system.
This occurs within the design of some
systems (DEC computers and the Motorola
68000 are examples), but it can occur in
any system if the software is written
accordingly. Most of the 99/4 computer was
designed by Big-endians, but some of the
disk operating system, was written by a
Little-endian. It may be that the disk
operating system is reasonable close to
some other disk operating system from
another computer, or just that whoever '
wrote it was a Little-endian at heart.
This,is why the file segment entry table
appears mixed up, and the bit map is also
in an odd order. So if you are delving
into the disk.operating system, or you find
what appears to be an odd ordering of bytes
in a word, brush up on your Little-endian
thinking!

The Illawarra Regional Group

This group holds regular meetings in
Saint Matthews Church Hall, Philip
Crescent, Mangerton, on the third Monday of
each month (except January) at 7.30 p.m.
We also hold occasional hardware and other
special interest group meetings at
irregular intervals. We are offering
memory expansion and other simple hardware
expansions upon request, and are working on
software for systems without disks but with
memory expansion.

The meetings normally start with a
tutorial session on Extended BASIC,
followed by a talk and demonstration of
some other topic of interest. This leads
to some refreshments while members meet
each other and chat about problems and
interests. We maintain various libraries
for the use of members. •

LINKING EXTID BASIC-ASSEMBLY

WITH ROSS MUDIE.

TISHUG %MS DIGEST

This program allows values to be examined in the VDP
RAM (PEEKV), poked into the VDP RAM (POKEV) and poked
into the VDP registers (POKER). Take care with what
you poke where in VDP RAM and registers since the
wrong thing in the right place will crash ext'd basic
or the VDP, especially poking to the VDP registers.

The program is shortened from that in tutorial disk
MUDIE_86/3 by using MUNK with DATA >20 to eliminate
some maths.

• VDP PEEKV, POKEV & POKER
* Based on a program by John Brown in Millers Graphics
* The Smart Programmer, April 1984. Modified & remarks
* added by Ross Mudie of TISHUG, 26th June 1986.
• PEEKV & POKEV can peek or poke up to 15 values.

DEF PEEKV,POKEV,POKER
NUMREF EQU >200C
NUMASG EQU >2008
XMLLNK EQU >2018
VMBW EQU >2024 •
VMBR EQU >202C
VWTR EQU >2030 •
FAC 	EQU >834A
BUFF BSS 18
STORE DATA 100
MYWS BSS >10

* PEEKV reads VDP RAM Values.
* Extended basic format: CALL LINK("PEEKV",add,v,v...)
* where v is from 1 to 15 numeric variables.
PEEKV LWPI MYWS

LIMI 0
CLR RO 	 Simple variable for NUMREF
LI R1,1 	Point to first argument in NUMREF
BLWP @NUMREF 	Gets address (first argument)
BLWP @XMLLNK 	To convert floating point value

for address in FAC to integer in FAC
DATA >12B8 	Data value for CFI using XMLLNK
MOV @FAC,R0 	Integer value of address in RO
LI R1,BUFF 	Address of Temp store for peeks
MOVB @>8312,R2 	Number of arguments in LINK is

placed in left byte of R2
SRL R2,8 	Swaps byte in R2, left byte zeroed
AI R2,-1 	Number of bytes to be read by VMBR

is the number of arguments less one for the address.
BLWP @VMBR 	Bytes from VDP RAM, put in BUFF

CLR RO 	 Simple variables in NUMASG
LOOP1 MOVB @BUFF-1(R2),R4 Takes the last byte first;

subsequently, (as R2 is decremented) working left
along BUFF with each LOOP until all bytes are

transferred to x/b
SRL R4,8 	Swaps byte R4 & zeroes left byte
MOV R4,@FAC 	R4 value in first word of FAC
BLWP @XMLLNK Convert Integer to Floating point
DATA >20 	 Data for CIF in XMLLNK
MOV R2,R1 	One less than argument number
INC R1 	 Equal to argument number now,

* remember that the peek address was the first argument
* in LINK which we do not want to try to transfer to.

BLWP @NUMASG Transfer to x/b variable from FAC
DEC R2 	 To point to next peeked value,

(back one, working backwards thru BUFF).
JNE LOOP1 	 If more to do jump to LOOP1
B 	@RETURN

* POKEV Writes VDP RAM Value(s)
* Extended basic format: CALL LINK("POKEV",Add,nv,nv..)
* where nv is 1 to 15 numeric values or num variables.
POKEV LWPI MYWS

LIMI 0
CLR RO 	 Simple variable in NUMREF
LI 	R1,1 	 First argument in call link
MOV R1,@STORE 	Place a 1 in STORE as a word
BLWP @NUMREF 	Gets first address of where to

poke into FAC in radix 100 format
BLWP @XMLLNK 	Convert floating point address

in FAC into integer in FAC
DATA >12B8 DATA for CFI routine in XMLLNK
MOV @FAC,@BUFF Places integer address in BUFF

the first poke address is a byte at BUFF+1
AB @>8312,@STORE+1 	STORE (first word) now

* contains the number of arguments in the x/b LINK +1
LI R3,2 	 Ready for NUMREF to point to

argument 2 in x/b LINK
LOOP2 MOV R3,R1 	Put R3 value in R1 to point to

argument number in LINK & byte in BUFF
BLWP @NUMREF 	Get value to be poked into VDP
BLWP @XMLLNK 	Convert floating point in FAC

to integer in FAC
DATA >12B8 Data for CFI routine in XMLLNK
MOVB @FAC+1,@BUFF(R3) Moves the byte size values

to be poked into BUFF starting at BUFF+2
INC R3 	 To point to next argument in

LINK & next byte in BUFF
C 	R3,@STORE 	 All poked yet?
JNE LOOP2 	 No! get next one
MOV @BUFF,R0 Got all values, place poke start

address in RO for VMBW
LI R1,BUFF+2 RI contains the address in BUFF

of the first 1st to poke
MOV R3,R2 R2 has the # of ergs in link +1
AI R2,-2 Actual # of bytes for VMBW to write
BLWP @VMBW Transfers poke values to VDP RAM

RETURN CLR RO
MOVB RO,@>837C To indicate no errors on return
LWPI >83E0 	 Load GPL Workspace
B 	@>0070 	To return to extended basic

* POKER Writes to a VDP Register
* Extended basic format: 	CALL LINK("POKER",VReg #,nv)
* where nv may be a numeric value or numeric variable.
POKER LIMI 0

CLR RO 	 Simple variable in NUMREF
LI 	R1,1 	

• 	

First argument in NUMREF
BLWP @NUMREF 	 Get VDP register number
MOV @FAC,@STORE 	Places both exponent & value

VDP register number (in radix 100 format) in STORE
LI 	R1,2 	 Second argument in link
BLWP @NUMREF 	Get value from link & place in

FAC in radix 100 format
BLWP @XMLLNK 	Convert floating point value

in FAC into integer in FAC
DATA >12B8 Data for CFI routine in XMLLNK
MOV @FAC,R0 Integer value in right byte of RO
MOVB @STORE+1,R0 Move byte for VDP register #

from right byte of STORE into left byte of RO
BLWP @VWTR 	 Write to VDP reg from RO
RT 	 To return to extended basic

END

CAVEAT EMPTOR

by Ben Takach

The program copy session went like house on fire. Not
being a game addict, I have paid my $6.- for three disk
full of utilities.
One had plenty of time to chat once queued up armed
with ready to use initialized disks.
Then it was my turn. One of my choices was some kind
of disk fixer utility, which would only copy on virgin
uninitialized disk. So there went two of my dollars
down the drain. The remaining programs were on my two
disks in a few minutes.
Would you believe it, I was chained to my computer for
the rest of the weekend playing electronic Sherlock
Holmes trying to get them run. To be more precise,
trying to get them down-loaded into X.NElq. Alas, I
remembered too late: "Caveat Emptor!". One particular
batch of 6 programs were especially stubborn to leave
the cosy grooves of DSK1.TRANSFER1. These all cataloged
as programs, but got zapped with an I/0 ERROR 50 as
soon as XB called them OLD. I knew that XB is far more
informative than a mere error code number, and would
have given me an explicit explanation -even if this
would at times be absolutely wrong-, so the message had
to come from DISK MANAGER. However DISK MANAGER does
not use error codes between 45 99. It's BASIC
interfering with transactions between XB and TI-DOS!
Why does it do so? It is none of its business! Let this
be a lesson to you: there is no respect for privacy in
the computer business! Anyhow, lets get back to the
problem.
I tried TI-WRITER and the various options of ED-ASS. in
desperation, only to be greeted with other versions of
error messages. By then I was too tired to look up the
respective manuals to decode them all. It was time to
call on DISK FIXER to give me a hand. It was friendly
and accomodating. The programs definitely looked like
BASIC or XBASIC, yet none of the tricks I know would
shift them.
At 3 AM on Monday morning my patience was definitely at
its end. I was tempted to phone the guy who copied the
files.
Then as a last ditch effort, a final defiant act, I
bashed in his stubborn brain:

10 PRINT "GET WELL AND TRULY *@XCP*!!!"
20 RUN "DSKLCOMPRESS-3"
RUN

You have guessed it! It sensed instantly that I was not
joking. The drive clicked and EXP.MEM swallowed the lot
without any fuss or complaint like the sweetest of
sweet mothers milk. Then I discovered that COMPRESS-3
is the EDITOR program of the TI PROGRAM AID-3 disk in
disguise. I purchased this disk some 18 months ago for
$29.95.
This is the essence of the proverb CAVEAT EMPTOR.
I still have some programs, which so far defied every
attempt to do anything useful apart from painting the
screen dark green and locking up the system tight.
Someone with a weird sense of humor called them AIDE
and AIDF. Any of you, who has the urge to possess a
permanently locked crash proof green screen should
phone me. AIDE and AIDF can be yours for just $2.-.
The moral to the story?
If the guy looks much stronger than you are, then it is
wiser to think up an apt proverb than phoning him at
3 AM in the morning.
Thus, yours with caveat emptor.

Many problems have more than one
correct solution. For instance, how to
branch to one of six locations
depending upOn a particular combination
of two variables. For reasons of
memory and speed efficiency, we needed
the absolute minimum number of
variables and lines of code. The two
variables involved were X and Y. X
could be equal to either 1, 2, or 3,
and Y could equal either 2 or 17.

The problem: How to combine X and Y
in such a way as to have the total
equal 1, 2, 3, 4, 5, or 6.

One solution to this problem is to
temporarily change Y to either 0 or 3,
then Y can be added to X to achieve the
desired output. This can be done with
a series of IF-THEN statements of a
"dummy" variable for Y. However, the
number of lines and extra variables
required in this solution proves to be
excessive.

Upon re-reading the ON-GOTO in-
formation in the User's Reference
Guide, one will find when the numeric
expression is evaluated, the result is
reduced to an in- teger. By re-reading
information about the INTeger function,
we will discover that the function
rounds the fractional values down.
This means that a positive fraction
which is less than 1 will yield an
integer result of 0 and a decimal
number of 3, plus a fraction will yield

3. We now have a possible solution.
Dividing Y by 5 will yield 0.4 when

Y=2 and 3.4 when Y=17. When those
numbers are added to X, the result will
be 1.4, 2.4, 3.4, 4.4, 5.4, or 6.4.
When the computer reduces the result to
an integer, the expression will
evaluate to 1, 2, 3, 4, 5, or 6,
respectively.

Shown here is the algorithim
submitted. Three alternate ones are
also shown to illustrate the space and
efficiency savings when using the
ON-GOTO numeric expression. Submitted
algoiithim: 100 ON X+(Y/5)GOTO
200,300,

400,500,600,700 200 (Code for X=1 &
Y=2)

: 300 (Code for X=2 & Y=2)
: 400 (Code for X=3 & Y=2)
: 500 (Code for X=1 & Y=17)
: 600 (Code for X=2 & Y=17)
: 700 (Code for X=3 & Y=17)

***************************** ALTERNATE
NO. 1 100 IF Y=17 THEN 120 110 ON X
GOTO 200,300,400 120 ON X GOTO
500,600,700
***************************** ALTERNATE
NO. 2 100 D=0 110 IF Y=2 THEN 130 120
D=3 130 ON X + D GOTO 200,300,400,

500,600,700

ALTERNATE NO. 3 100 IF Y=17 THEN 130
110 IF X=1 THEN 200 120 IF X=2 THEN 300
ELSE 400 130 IF X=1 THEN 500 140 IF X=2
THEE 600 ELSE 700

BRANCHING ON TWO VARIABLES
SOME LESS THAN OBVIOUS HINTS ON EFFICIENT
PROGRAMMING TIPS BASIC X-BASIC

1-15H1111i aims nuasi
(y

(

111111111S DIGEST

BPS b .1P I

TIPS FROM THE TIGERCUB

#22

Copyright 1985

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Distributed by Tigercub
Software to TT-99/4A Users
Groups for promotional
purposes and in exchange for
their newsletters. May be
reprinted by non-profit
users groups, with credit to
Tigercub Software.

This challenge 	was
printed in Tips #21-July TND

100!The Unprintable Unkeyabl
e Program!
110!To shuffle the numbers 1
to 255 into a random sequen

ce without duplication
120!The strings contain the
ASCII characters 1 to 127 an
d 128 to 255
130!Most of the ASCII charac
ters below 32 or above 159 c
annot be input from the keyb
oard
140!So how was this program
programmed?
150 M$="

!""#$%&'()*+,-./0
123456789::<=>?@ABCDEFGHIJKL
MNOPQRSTUVWXYZ[\r:abcdefgh
ijklmnopqrstuvwxyz(1) "
160 M2$="

I t

170 M$=M$M2$
180 L=LEN(M$):: RANDOMIZE ::
X=INT(L*RND+1):: N=ASC(SEG$
(M$,X,1)):: M$=SEG$(M$,1,X-1
)&SEWM$,X+1,LEN(M$))
190 PRINT N;:: IF LEN(M$)=0
THEN STOP ELSE 180

And here is the answer -
It was written by a program
that writes a program!
Key this in and run it to
create a MERGE format disk
file. Then type NEW, then
type MERGE DSK1.LONGSTRING
and you will have a RUNable
program consisting of lines
150-170 of the puzzle!

100 OPEN #1:"DSK1.LONGSTRING
",VARIABLE 163
110 LN=100 	GOSUB 190 :: A
$=14&"14$"&CHR$(190)
120 FOR J=1 TO 127 :: C$=C$&
CHR$(J):: NEXT J AS=AUCH
R$(199)&CHR$(127)&C$&CHR$(0)
130 PRINT #1:A$
140 GOSUB 190 :: B$=L$&"M2$"
&CHR$(190)

150 FOR J=128 TO 255 :: D$=D
$8,CHRW):: NEXT J B$=B$&
CHR$(199)&CHRS(128)&DUCHRU
0)
160 PRINT #1:B$
170 GOSUB 190 :: F$=L$&"M$"&
CHR$(190)01W&CHR$(184)&"M2
MCHR$(0)
180 PRINT #1:F$:: PRINT #1:
CHR$(255)&CHR$(255):: CLOSE
#1 :: END
190 LS=CHRUINT(LN/256))&CHR
$(LN-256*INT(LN/256)):: LN=L
N+10 :: RETURN

Now type 	in 	the
remaining lines, and you
will have a speeded-up
version of the Tigercub
Scramble which was published
in Tips #10. It is still
not as fast as the CALL PEEK
versions but is much more
useful 'because you can
modify it to scramble a
sequence of any length
anywhere between 1 and 255.
For example, to shuffle the
numbers 100 to 150 into a
random sequence without
duplication, just add a line
175 10=SEG$M,100,50).

The method of writing a
"program that writes a
program" was fully explained
by John Clulow in the 99er
magazine Vol. 1 Nos. 3 and
4. It is a little-used but
very valuable technique.

For instance, Tips#9
contained the following
routine to turn the alphabet
upside-down.

100 FOR CH=33 TO 127 :: CALL
CHARPAT(CH,CH$):: FOR J=1 T
O 16 STEP 2 :: X$=SEG$(CH$,J
,2)&X$:: NEXT J :: CALL CHA
R(CH,X$):: X$="" :: NEXT CH
110 INPUT A$ 	GOTO 110

The only trouble with
that is that it takes about
50 seconds to run. Try this
instead -

100 FOR CH=33 TO 127 :: CALL
CHARPAT(CH,CH$):: FOR J=1 T
O 16 STEP 2 :: X$=SEGUCH$,J
,2)&X$:: NEXT J :: CALL WRI
TE(CH,X$):: X$="" :: NEXT CH
1000 SUB WR1TE(CH,X$):: IF F
LAG=1 THEN 1010 :: FLAG=1
OPEN #1:"DSK1.WRITE",OUTPUT
,DISPLAY ,VARIABLE 163 :: LN
=3000 :: GOSUB 3000
1010 X=X+1 	L$=L$&CHR$(200
ACHR$(16)&X$:: IF X<5 AND
CH<127 THEN 14=LUCHR$(179):
: SUBEXIT
1020 X=0 :: PRINT #1:14&CHR$
(0):: L$="" :: IF CH=127 THE
N 1030 :: GOSUB 3000 :: SUBE
XIT
1030 PRINT #1:CHR$(255)&CHR$
(255):: CLOSE #1 :: GOTO 301
0
3000 L1=INT(LN/256):: L2=LN-
256*L1 	L$=CHRS(L1)&CHML
2)&CHR$(147):: LN=LN+10 	R
ETURN
3010 SUBEND

RUN that, type NEW,
then MERGE DSK1.WRITE, and
you will have a program
consisting of DATA
statements containing the
hex codes for all the
upside-down characters. Add
a line 100 FOR CH=33 TO 127
:: READ CH$:: CALL
CHAR(CH,CH$):: NEXT CH, and
you can turn everything
upside-down in only 12
seconds.

Someone sent me a
classified ad, clipped from
an unknown publication,
which read -

TI-WRITER 	COMPANION.
Loaded with ingenious ways
to make your TI-Writer more
effective. 	Well 	written.
Send 	$6.50 to Dr. 	Bill
Browning, 7541 Je,.sey Avenue
North, 	Brooklyn Park, MN
55428. 	Money 	back
guarantee.

I sent off my money and
have just received 29 pages,
3-hole punched, loaded with
useful and ingenious tips
and ideas for getting more
out 	of 	TI-Writer.
recommend it - it's worth
twice the money and then
somet NOTE! Now $6.50!

The K-Town newsletter
recently published a utility
routine that is so useful
that I want to pass it on to
everyone. If a program is
not resequenced after it is
modified, this will compare
it with the original and
prepare a MERGE format file
of all the changes, for the
use of others to update
their copy.

lop !***********************
110 !* COMPARE PROGRAM 	*
120 ! 	by Mike Dodd

!:1c**********************
131 ! In K-Town 99'er V.2 #1

April 1985
140 !Version 85.0406.1XB

Requires disk drive.
Compares two programs,
gives list of all diff-
erences.

150 !SAVE old program in
MERGE format (SAVE DSK1.(ol
dfilename),MERGE). SAVE up-
dated program in MERGE for-
mat(SAVE DSK1.(newfilename)
MERGE)
160 !RUN this program, answe
r prompts for OLD FILE name,
NEW FILE name, and a differ
ent OUTPUT FILE name.
170 !When finished, type NEW
, then MERGE DSK1.(outputfil
ename) and ENTER
180 !Can be MERGED into othe
r copies of OLD program to
update them
190 DEF @(@$)=ASC(SEG$0$,I,
1))*256+ASC(SEG0,2,1))
200 A$=CHR$(255)&CHR$(255)::
DISPLAY AT(1,1)ERASE ALL:"0
LD FILE:": :"NEW FILE:
": :"OUTPUT FILE:"

15)

whilIG
	

TISHUG ‘1111115 DIGEST

210 ACCEPT AT(1,13)BEEP:B$:
: ACCEPT AT(3,13)BEEP:C$
ACCEPT AT(5,13)BEEP:D$:: OP
EN #1:B$,INPUT ,VARIABLE 163
220 OPEN #2:C$,INPUT ,VARIAB
LE 163 :: OPEN #3:D$,OUTPUT,
VARIABLE 163
230 LINPUT #1:@$ 	LINPUT #
2:E$ 	F$=SEG$(@$,1,2):: G$
=SEG$(E$,1,2):: A.4(F$):: B=
@(G$)
240 IF F$=A$ AND G$=A$ THEN
CLOSE #1 :: CLOSE #2 :: PRIN
T #3:A$:: CLOSE #3 :: STOP
250 IF B>A THEN PRINT #3:F$&
CHR$(131)&" **DELETED LINE *
*"&CHR$(0):: LINPUT #1 @$

F$=SEG$(@$,1,2):: A=@(F$
):: GOTO 240
260 IF A>B THEN PRINT #3:E$

LINPUT #2:E$ G$=SEGUE
$,1,2):: B=KG$):: GOTO 240
270 IF @$<>E$ THEN PRINT #3:
E$
280 GOTO 230

Thanks to some ideas
from Joyce Corker, I have
made some more improvements
to the Tigercub Menuloader,
and I have used the above
utility routine to list all
the changes made since it
was published in Tips#15.

100 !by A. Kludge/M. Gordon/
T. Boisseau/J. Peterson/etc.
modified in Tips #22
102 OPTION BASE 1 :: DIM PG$
(127),VV(127),VX(127):: GOTO
110

105 @,A,A$,B,C,D$,FLAG,I,J,K
,KD,KK,N$,NN,P$,PG$(),Q$,S,S
T,T$(),TT,VT,VV(),VX(),W$,X,
X$,K2,S2
106 CALL INIT :: CALL LOAD :
: CALL LINK :: CALL PEEK ::
CALL KEY :: CALL SCREEN :: C
ALL COLOR :: CALL CLEAR :: C
ALL VCHAR :: CALL SOUND :: !
@P-
150 ! **DELETED LINE **
160 T$(1)="d/f" 	T$(2)="d/
v" 	T$(3)="i/f" 	T$(4)="
i/v" 	T$(5)="pro" :: ON WA
RNING NEXT
170 IMAGE ###
180 DISPLAY AT(1,4):"TIGERCU
B MENU LOADER"
210 DWDSK1." :: OPEN #1:D$
,INPUT ,RELATIVE,INTERNAL
INPUT #1:N$,A,J,K 	DISPLA

Y AT(1,2)SIZE(27):SEGUD$,1,
4)&" - Diskname= "&N$;
230 FOR X=1 TO 127 :: IF X/2
0<>INT(X/20)THEN 260
240 DISPLAY AT(24,1):"Type c
hoice or 0 for more 0" :: AC
CEPT AT(24,27)VALIDATE(DIGIT
)SIZE(-3):K :: IF K=0 THEN 2
50 :: IF VV(K)<>5 THEN 411 :
: IF K>0 AND K<NN+1 THEN 420
ELSE 240
290 DISPLAY AT(X+4,2):USING
170:NN :: DISPLAY AT(X+4,6):
P$ PG$(NN)=P$:: DISPLAY
AT(X+4,18):USING 170:J :: DI
SPLAY AT(X+4,22):T$(ABS(A))
291 VV(NN)=ABS(A):: VX(NN)=A
BS(B)
295 X$=" "&STR$(B):: DISPLA
Y AT(X+4,26):SEG$(X$,LEN(X$)
-2,3):: VT=VT+J

350 DISPLAY AT(X+6,1):" 	C
hoice?" :: ACCEPT AT(X+6,16)
SIZE(3)VALIDATE(DIGIT):K
IF K<>NN AND K<>NN+1 THEN 41
0
410 IF K<1 OR K>127 OR LEN(P
G$(K))=0 THEN 320
411 IF VV(K)=5 OR(VV(K)=4 AN
D VX(K)=254)THEN 420
412 ON ERROR 417 :: CALL CLE
AR :: OPEN #2:DUPGUK):: CA
LL SCREEN(16)
413 LINPUT #2:W$:: PRINT W$
:: IF EOF(2)THEN 416

414 CALL KEY(0,K,S):: IF S=0
THEN 413
415 CALL KEY(0,K2,S2):: IF S
2<1 THEN 415 ELSE 413
416 CLOSE #1 :: CLOSE #2 ::
END
417 DISPLAY AT(12,10):"UNLIS
TABLE" :: CALL SOUND(200,110
,0):: RETURN 400
430 ON ERROR 417 :: CALL INI
T :: CALL PEEK(-31952,A,B)::
CALL PEEK(A*256+B-65534,A,B
):: C=A*256+B-65534 A$=D$
&PGUK):: CALL LOAD(C,LEN(A$
))

The Menu Loader will
now list up to 127 programs
and files, showing the
number of sectors in each
and the file type, record
type and record length of
each file. It will stop at
the end of each page, and
continue on a default value
of 0, or will stop for
selection when any key is
pressed. It gives disk
name, number of sectors used
and available. It adds up
sectors actually used and
gives a warning if all
sectors are not accounted
for. It will load and run
any program which can be
loaded from Extended Basic,
displaying the program being
loaded. It will delete any
program or file, after first
displaying the filename and
requesting verification. It
will list any listable file
to the screen, pausing on
any key input, and can be
very easily modified to list
to a printer. If a file is
not listable, it will inform
you so, and restart the menu
selection. It has the
pre-scan option to speed it
up.

Fairly often, the disk
directory will lose track of
one or a few sectors during
the process of loading
records, even though the
Disk Manager showed all 358
were initialized. 	That's
why I 	put the checking
routine in the Menu Loader.
The figure shown as ."used"
is actually 358 minus the
number of sectors still
available, and is checked
against the total sectors of
all files.

The loss of a few
sectors is no serious
matter, but once in a great
while you may notice that
the "available" and "used"
sector quantities have
obviously been reversed. I
have found that this is a
signal that the disk is
about to go haywire and you
had best back it up
immediately!

Programs and files are
loaded in the first
available 	sector, 	and
continued in the 	next
available sector. 	If a
number of small files are
deleted from a disk, and a
long file is then loaded, it
may thus be fractured into
many parts. If you have a
work disk on which you
continually add and delete
files of various lengths, it
will become badly fractured.
This can cause disk errors,
and it also badly overworks
your drive. It is a good
idea to recopy your work
disk occasionally - file by
file, not sector by sector
with a quick copier.

TIPS FROM THE TIGERCUB #23

	

Several 	different
routines have been published
which will extract and save
a specified series of lines
out of a program, but this
one by George Steffen of the
L.A. 99ers is certainly the
best.

1 !SUBROUTINE EXTRACTOR by G
eorge F. Steffen. SAVE in ME
RGE format. MERGE into any p
rogram (with line # starting
above 8). RUN to extract
2 !selected lines. Deletes i
tself. Then BE SURE to SAVE
the selected lines in MERGE
format because the remaining
lines are still in memory!
3 CALL CLEAR :: CALL INIT
INPUT "Line numbers of rout

ine to be saved: First,Last?
":L,M :: G=256 :: CAL

L PEEK(-31952,H,I,J,K)
4 C=INT(M/G):: D=M-C*G 	F=
(J-G)*G+K :: FOR E=(H-G)*G+I
TO F STEP 4 :: CALL PEEK(E,
A,B):: IF A=C AND B=D THEN 6
5 NEXT E :: PRINT :"LINE";M;
"NOT FOUND!" :: STOP !@P-
6 H=INT(E/G):: I=E-(G*H):: H
=H+G 	C=INT(L/G):: D=L-C*G

FOR E=E+4 TO F STEP 4 ::
CALL PEEK(E,A,B):: IF A=C A

ND B=D THEN 8 !@P-
7 NEXT E :: PRINT :"LINE";L;
"not found!" :: STOP !@P-
8 E=E+3 J=INT(E/G):: K=E-
(G*J):: J=J+G :: CALL LOAD(-
31952,H,I,J,K):: STOP !@P-

(16

TISHI1G VMS DIGEST
Some 	folks 	were

interested in the idea of a
program that writes a
program, so let's write a
program that will write a
program to list the token
codes that you need to use
to write a program that will
write a program -

100 OPEN #1:"DSK1.TOKENLIST"
,OUTPUT,DISPLAY ,VARIABLE 16
3 :: FOR N=129 TO 254 :: Ll=
INT(N/256):: L2=N-256*L1
110 PRINT #1:CHR$(1,1)&CHRUL
2ACHRS(131)&CHR$0)&CHR$(0)
:: NEXT N
120 PRINT #1:CHR$(255)&CHR$(
255):: CLOSE #1 :: END

Key that in and SAVE it
just in case, then RUN it.
When READY, type NEW, then
MERGE DSK1.TOKENLIST. Now
LIST it and you will see a
list of ASCII codes 129
through 254 and their token
meanings. Delete lines 171
through 175, 185, 198, 226
through 231, and 242.
Change the definition of 199
to QUOTED STRING, of 200 to
UNQUOTED STRING, and 201 to
LINE NUMBER, and add line
255 END OF FILE.

You don't need 	all
those exclamation points, so
change the program to a
DIS/VAR 80 file by LIST
"DSK1.TOKENLIST". Then key
in this little routine.

100 OPEN #1:"DSK1.TOKENLIST"
:: OPEN #2:"PIO"

110 LINPUT #1:A$:: PRINT #2
:SEG$(A$,1,4)&SEWA$,6,LEN(
A$)):: IF EOF(1)01 THEN 110
120 CLOSE #1 :: CLOSE #2 ::
END

RUN it, and print out a
list of all the token codes.
More on this next month - if
someone buys a few programs
so that I can afford another
month.

Now that we've done
about all that we can with
the Menu Loader, here is
another version to use on
your finalized library disks
of programs. It lacks the
features that you will no
longer need, but will list
your programs by their full
names, up to 24 characters
long.

100 !NAMELOADER by A. Kludge
/M. Gordon/T. Boisseau/J. Pe
terson/etc.
110 CALL CLEAR :: CALL SCREE
N(5):: FOR S=1 TO 14 :: CALL
COLOR(S,7,16):: NEXT S C
ALL VCHAR(1,31,1,96):: CALL
COLOR(0,2,16)
120 OPTION BASE 1 :: DIM PG$
(99),M$(99)
130 ! List the full names of
the programs on the disk in
the DATA statements, in the
sequence in which they are
listed by an ordinary disk
cataloger program

140 !Then SAVE this program
under the filename LOAD
150 DATA
160 DATA
170 DATA
180 DATA
190 DATA END
200 FOR J=1 TO 99 :: READ M$

M$(J)=SEG$(M$(J),1,24)
210 IF MS(J)="END" THEN MS(J
)=" " GOTO 230
220 NEXT J
230 IMAGE ##
240 DISPLAY AT(1,4):"TIGERCU
B NAMELOADER"
250 DWDSK1." :: OPEN #1:D$
,INPUT ,RELATIVE,INTERNAL
INPUT #1:P$
260 FOR X=1 TO 99 :: IF X/20
OINT(X/20)THEN 290
270 DISPLAY AT(24,1):"Type #
of choice or Enter 0" :: AC

CEPT AT(24,27)VALIDATE(DIGIT
)SIZE(-3):K :: IF K=0 THEN 2
80 :: IF K>0 AND K<NN+1 THEN
390 ELSE 270

280 X=1
290 I=I+1 :: IF I>127 THEN K
=X :: GOTO 370
300 INPUT #1:P$ 	NN=NN+1
310 IF LEN(P$)=0 THEN 350
320 DISPLAY AT(X+3,2):USING
230:NN :: DISPLAY AT(X+3,5):
M$(NN):: PGS(NN)=P$
330 CALL KEY(0,KK,ST):: IF S
T=0 THEN 340 :: FLAG=1 :: GO
TO 350
340 NEXT X
350 DISPLAY AT(X+4,1):" "
DISPLAY AT(X+5,2):USING 230
:NN+1 :: DISPLAY AT(X+5,6):"
Terminate"
360 DISPLAY AT(X+6,1):" 	C
hoice?" :: ACCEPT AT(X+6,16)
SIZE(2)VALIDATE(DIGIT):K
IF K<>NN AND K<>NN+1 THEN 38
0
370 IF K=NN+1 THEN CALL CLEA
R :: CLOSE #1 :: END
380 !IF K<1 OR K>99 OR LEN(P
G$(K))=0 THEN 350
390 CLOSE #1
400 CALL INIT :: CALL PEEK(-
31952,A,B):: CALL PEEK(A*256
+B-65534,A,B):: C=A*256+B-65
534 :: A$=DWG$(K):: CALL L
OAD(C,LEN(A$))
410 FOR I=1 TO LEN(A$):: CAL
L LOAD(C+I,ASC(SEWA$,I,1))
):: NEXT I :: CALL LOAD(C+I,
0)
420 CALL VCHAR(1,3,32,672)::
CALL SCREEN(8):: FOR S=0 TO
14 :: CALL COLOR(S,2,1):: N

EXT S :: DISPLAY AT(12,2):"L
OADING ";M$(K)
430 RUN "DSK1.1234567890"

Last month I forgot
to have anything for the
kids, or anything in Basic,
so -

100 CALL CLEAR
110 REM by Jim Peterson of
Tigercub Software
120 PRINT TAB(1);"****AUTOMA
TIC MOUSE MAZE****": : 	:"

Choose your mouse and":"wa
tch it try to find its way"
130 PRINT "through the maze.
": :" When one of the mice
has":"taken 50 extra steps,
the":"cat gets it!"

140 PRINT : :"Touch any key"
150 CALL KEY(0,K,ST)
160 IF ST<1 MEN 150
170 CALL CLEAR
180 CALL CHAR(120,"0078FEFFF
E78")
190 CALL CHAR(121,"1038387C7
C7C7C38")
200 CALL CHAR(122,"387C7C7C7
C383810")
210 CALL CHAR(123,"001E7FFF7
FlE")
220 CALL CHAR(128,"001E61816
11E")
230 CALL CHAR(129,"384444444
4242410")
240 CALL CHAR(130,"102828444
4444438")
250 CALL CHAR(131,"007886818
678")
260 CALL SCREEN(5)
270 T1=610
280 T2=610
290 CALL CHAR(136,"FFFFFFFFF
FFFFFFF")
300 CALL COLOR(14,16,16)
310 CALL COLOR(13,2,16)
320 CALL COLOR(12,2,16)
330 R=10
340 GOSUB 1460
350 R1=10
360 C=2
370 C1=2
380 CALL HCHAR(R,C,136,2)
390 C=C+1
400 .Is'120
410 M2=128
420 RANDOMIZE
430 A=(INT(2*RND)+1)*2
440 B=INT(10*RND)+1
450 ON B GOSUB 470,470,470,4
70,510,510,550,550,590,590
460 GOTO 420
470 IF C+A>30 THEN 630
475 if (c>20)*(x<10)then 500
480 CALL HCHAR(R,C,136,A)
490 C=C+A
500 RETURN
510 IF R+A>20 THEN 540
515 x=x+1
520 CALL VCHAR(R,C,136,A)
530 R=R+A
540 RETURN
550 IF R-A<2 THEN 580
555 x=x+1
560 CALL VCHAR(R-A+1,C,136,A

570 R=R-A
580 RETURN
590 IF C-A<3 THEN 620
595 x=x+1
600 CALL HCHAR(R,C-A+1,136,A

610 C=C-A
620 RETURN
630 CALL HCHAR(R,C,136)
640 C=C+1
650 IF C<31 THEN 630
660 R2=R
670 C2=C
680 CALL HCHAR(R1,C1,M)
690 CALL HCHAR(R2,C2,M2)
700 Y=Y+1+(Y=2)*2
710 IF Y=2 THEN 1020
720 CALL HCHAR(R1,C1,136)
730 ON M-119 GOTO 800,900,74
0,850
740 IF C1=31 THEN 950
750 CALL GCHAR(R1,C1+1,G)
760 IF G=32 THEN 850
770 C1=C1+1
780 M=120
790 GOTO 950
800 CALL GCHAR(R1-1,C1,G)

17)

BSS 32
DEF START
REF DSRLNK,VSBW,VMEW
REF VOR,KSCAN

LWFI MYREG
CLR @>43374
BLWP RSCAN
CB @MY,OSPACE
JBE 1kOF
CLR R4
CLR R5
CLR R6

LOGP1 CI R4,360 	;72n FOR noMALR SIDE
JL LOOP2
LINT. 0
LIMI 2 	 ;WA1T FOR (Au
J1,11) LOOP1

LOOP2 HOV k4,@SECTOR ;SECTOR TO PROCESS
BL @RSECT 	;READ SECTOR
NOV R5,@SECTOR ;SECTOR TO WRITE
BL INSECT 	;WRITE SECTOR
INC R4 	;INCREMENT READ SECTOR (LINEAR)
MOV R4,R1
CLR RO

	.1■1. 	

MEG

START

LuJIJ

TIGHUti runs DIGEST

ri.••

ASSEIIIIE11_111

•

POOR HANS DOUBLE

DENSITY DISK

CONTROLLER

or how to get 360K bytes per drive
using the TI Disk Controller Card
and 96 tpi double side drives.
(eg TEAC 55f, TANDON TM100-4

This code, when substituted for the
existing DSR code, converts disk #4
and disk #5 into 40/80 track inter-
lace mode and disk #9 to 40/80 track
non-interlace (single side). The
modification has been completely
compatable with all software tested
including P-System, Disk Manager,
Editor Assembler and Basic. Note
however that files can only be
exchanged with "normal" format disks
using the disk copy routines or dsk3
(disk #9).

This code is placed into the public
domain by the author for non comm-
ercial use.

Any questions may be directed to the
author at

Andy Cooper
121 Clearview Drive
Downingtown Pa 19335

or Compuserve 71016,1743
Delphi 	andy4820

.absolute
„proc newdsk
.org 4116h
clr 	r7
ci 	rii 	1440
jhe 	$+152
ci 	rl, 	1
jh 	$5
bl 	@4524h

$5 	clr 	r0
cb 	@004Ch(r9),@4BA6h
jl 	$10
div 	@441Eh„ r0
jmp 	$20

$10 	div 	@547Ch, r0
$20 	swpb 	E.°

inv 	r0
bl 	@4614h
movb 	rO, 	@OFFFEh(r15)
movb 	rO, 	OFFEh
ci 	rl, 	9 	•
jl 	$30
ai 	rl,
sbo

r7, 	0100h
830 	swpb 	rl

inv 	rl
movb 	rl. 	@5FFCh
jmp 	$40

$40 	cb 	r0„ 	05FF2h

; existing code
; 1440 is max sector #
; jump to error if greater
; check for sector = 0
; jump if not
; if sector = 0 then restore

; compare drive # to 3
; jump if 1 or 2
; If drive = 3 use 9 sectors per track

; if drive < 3 use 18 sectors per track

; RO msb contains inverted track #
; set up vdp write
; Store new (calc) track #
; write trk # to 1771 disk controller
; check for sector > 8 (side two)

; If >9 subtract nine and....
; select side two (head 2)

; R1 msb contains inverted sector #
; write to 1771 sector register
;- waste a word !!!!!!
; Back to original code.

.end

To install a 2732 or 2732A prom on
the TI Disk controller card with the
above changes perform the following
steps_

Remove the ROM at location U26.

On the back (non component) of the
board cut the wide (+5v) etch between
U26 pins 21 and 24.

NOTE: to ensure that the etch is cut
I recommend that two cuts 1/16 inch
apart be made and the copper trace
be removed between the two cuts.

Install a 24 pin socket at U26

On the back (non component) side of
the board add the following wires:

U26 pin 18 to U26 pin 20,

U27 pin 18 to U26 pin 21.

The following is an Editor Assembler
program that may be used to convert
normal disks to interlace format
prior to changing the Disk DSR. If
you wish drive 3 can be used to copy
single side disks to drives 1 and 2
using the P-System filer or Disk
Manager. (adapted from sector RW
tutorial writen by Tod Kaplan).

On the front of the board cut the
wide etch going to U26 pin 21.

On the front (component side) of the
board cut the etch going to U26
pin 18.

Via hole in center of chip area
between U26 pin 21,22 to junction
of C26 and U36 pin 24 (+5v).

install prom in socket and 	

thats all!

18

TISHUG WINS DIGEST

810 IF G=32 THEN 740
820 R1=R1-1
830 M=121
840 GOTO 950
850 CALL GCHAR(R1+1,C1,G)
860 IF G=32 THEN 900
870 R1=R1+1
880 M=122
890 GOTO 950
900 CALL GCHAR(R1,C1-1,G)
910 IF G=32 THEN 800
920 C1=C1-1
930 M=123
940 GOTO 950
950 CALL HCHAR(R1,C1,M)
960 IF (C1=31)*(C2=2)THEN 13
20
970 IF Cl<31 THEN 700
980 12=T2-10
990 CALL SOUND(50,T2,5)
1000 IF T2=110 THEN 1340
1010 GOTO 700
1020 CALL HCHAR(R2,C2,136)
1030 ON M2-127 GOTO 1040,120
0,1090,1150
1040 CALL GCHAR(R2+1,C2,G)
1050 IF G=32 THEN 1090
1060 R2=R2+1
1070 M2=129
1080 GOTO 1250
1090 IF C2=2 THEN 1250
1100 CALL GCHAR(R2,C2-1,G)
1110 IF G=32 THEN 1150
1120 C2=C2-1
1130 M2=128
1140 GOTO 1250
1150 CALL GCHAR(R2-1,C2,G)
1160 IF G=32 THEN 1200
1170 R2=R2-1
1180 M2=130
1190 GOTO 1250
1200 CALL GCHAR(R2,C2+1,G)

1210 IF G=32 THEN 1040
1220 C2=C2+1
1230 M2=131
1240 GOTO 1250
1250 CALL HCHAR(R2,C2,M2)
1260 IF (C2=2)*(C1=31)THEN 1

• 320
1270 IF C2>2 THEN 700
1280 T1=T1-10
1290 CALL SOUND(50,T1,5).
1300 IF T1=110 THEN 1370
1310 GOTO 700
1320 CALL HCHAR(1,1,32,768)
1325 X=0
1330 GOTO 330
1340 GOSUB 1460
1350 PRINT "THE CAT GOT THE
WHITE MOUSE": :
1360 GOTO 1390
1370 GOSUB 1460
1380 PRINT "THE CAT GOT THE
BLACK MOUSE": :
1390 PRINT "TO PLAY AGAIN, T
OUCH ANY KEY"
1400 CALL KEY(0,K,ST)
1410 IF ST<1 THEN 1400
1420 T1=610
1430 12=610
1440 CALL HCHAR(1,1,32,768)
1450 GOTO 330
1460 CALL HCHAR(23,1,32,32)
1470 PRINT CHR$(120);(610-T1
)/10;TAB(20);CHR$(128);(610-
T2)/10
1480 RETURN

Did you know that
ACCEPT AT(1,0) will accept a
full line of 28 characters?
Did you know that ACCEPT AT
(R,O)SIZE(-28) and Enter

will accept everything on
row R? And did you know that
ACCEPT N$ will accept a
string of 255 characters?

Need a filler, so -

100 !MUSICAL BARGRAPH by Jim
Peterson
110 CALL CLEAR :: CALL SCREE
N(5):: FOR J=2 TO 14 :: X=J-
(J>4):: CALL COLOR(J,X,X)::
NEXT J

' 120 DIM N$(13),N(13):: M$="(
08@HPX‘hpx"&CHR$(128)&CHR$(1
36):: FOR J=1 TO 13 :: N$(J)
=SEG$(M$,J,1):: DISPLAY AT(J
+6,1)SIZE(1):N$(J):: NEXT J
130 X=110 :: FOR J=1 TO 13 :
: N(J)=X*1.059463094"0-1)::
NEXT J
140 A=INT(13*RND+1):: B=INT(
25*RND+1):: DISPP.Y AT(A+6,2
)SIZE(28):RPT$(N$(A),B):: CA
LL SOUND(B*40,N(A),O,N(A)*2+
4,0,N(A)*4+6,0)
150 DISPLAY AT(A+6,2):""
GOTO 140

MEMORY FULL

Jith Peterson

DIV @NINE,R0 ;CALC TRACK
MOV RO,R2 	;TRK TO R2
ANDI R2,1
JEQ EVEN
	

;JMP IF EVEN TRACK
ODD

CLR R2
MOV RO,R3
DIV @TWO,R2
CLR R3
MPY @NINE,R2
LI 	R2,711
S 	R3,R2
A 	R1,R2
MOV R2,R5
JMP LOOP1

EVEN
CLR R2
MOV RO,R3
DIV @TWO,R2
CLR R3
MPY @NINE,R2
A 	R1,R3
MOV R3,R5
JMP LOOP1

* READ SECTOR ROUTINE

RSECT
MOV @DUMPAB,R0
LI R1,DUMDAT
LI R2,2
BLWP @VMBW
MOV @KD1RD,@DRVFLG ;READ FROM DRIVE 1
MOV @DUMBUF,@BUFADD
MOV @DUMPAB,@PABADD
BLWP @DSRLNK
DATA 10
RT

* WRITE SECTOR ROUTINE

WSECT
MOV @DUMPAB,R0
LI R1,DUMDAT
LI R2,2
BLWP @VMBW
MOV @KD2WR,@DRVFLG ;WRITE TO DRIVE 2
MOV @DUMBUF,@BUFADD
MOV @DUMPAB,@PABADD
BLWP @DSRLNK
DATA 10
RT

* DEFINES AND DATA

NINE 	DATA 9
TWO 	DATA 2
KKEY • EQU >8375
PABADD EQU >8356
BUFADD EQU >834E
SECTOR EQU >8350
DRVFLG EQU >834C
SPACE DATA >2020
DUMPAB DATA >1500
KD1RD DATA >0101
KD1WR DATA >0100
KD2WR DATA >0200
KD3WR DATA >0300
DUMDAT DATA >0110
DUMBUF DATA >1000

END

•

;TRK TO R3
;DIVIDE IT BY 2

;INTERLACE (SIDE 2) TRK/SECTOR

;TRACK T0 R3
;DIVIDE TRACK BY 2

;SIDE 1 TRACK

19

Hello to all my Younger Set friends. I
dont't have a real lot for you this month
as once again ndhmany of you have taken
the effort to write to me and let me
know, plus all other readers, just what
you are doing with your computer.
Remember I like to hear from you and hear
about your high scores on your favourite
games. Anyway I did hear from both Sam
Mudie (age 13) and his younger brother
Peter (age 9). Both sent me in

This is just to remind you all that the September
meeting is going to be our 32K memory upgrade day.

Those wishing to take advantage of this project should
make sure that you have all the equipment as listed in
last months magazine, as well as sufficient funds to
cover the cost of the kit.

For next month I will provide a circuit diagram for a
colour difference to composite video signal circuit
(similar to the old TI modulator) to use with the video
signal buffer in the March '86 magazine.

Technical manuals (which include circuits of the
computer and expansion system) are available for $15 at
club meetings or from the club Lihrerian (please add
$3.50 postage & handling).

If anyone has a technical problem or wishes to
contribute technical articles then contact me (ROBERT)
on
602-4168 between 5.00-8.30 PM
(PLEASE STICK TO THESE TIMES)
or send a letter to

TECH TIME
P.O. BOX 149
PENNANT HILLS 2120

ANYONE WISHING TO OBTAIN INFORMATION, PLEASE SEND A
SELF-ADDRESSED ENVELOPE (WITH SUFFICIENT POSTAGE
STAMPS) TO THE ABOVE ADDRESS.

All members who can offer assistance at the September
Techo day should see me at the beginning of the meeting
please.

NIE11115IfiE511-

TECHO
TIME

-1140r

.

e_94CL-0

3 entries each to the Mouse competition which was run a
couple of months back. So sorry but their entries were
received too late to be included in that competition
but as the programs are all short ones I have included
them in this column for all other Younger Set members
to type in and enjoy. Here are the programs. I hope to
have a bit more news for you next month.

TALKING TO YOUR PRINTER
By Ed Machonis

(QB 99'er Newsletter)

100 T=96 :: CALL CLEAR :: CA
LL CHAR(T,"000C1E3F5E924038"

110 CALL SPRITE(#1,T,16,T,T)
:: CALL MAGNIFY(2)
120 CALL KEY(1,K,S):: CALL .1
OYST(1,X,Y)
130 IF K=5 THEN Y=4 ELSE IF
K=0 THEN Y=-4 ELSE IF K=2 TH
EN X=-4 ELSE IF K=3 THEN X=4
140 CALL MOTION(v1,-Y*8,X*8)

GOTO 120

- 	 :

100 T=96 :: CALL CLEAR :: CA
LL SCREEN(2):: CALL CHAR(T,"
00E0BOD73F1832787F3E1F2D54A3
010000070DEBFC184C1EFE7CF884
2AC580")
110 CALL SPRITE(#1,T,9,T,T)2
: CALL MAGNIFY(4)
120 CALL KEY(1,K,S):: CALL
OYST(1,X,Y)
130 IF K=5 THEN Y=4 ELSE IF
K=0 THEN Y=-4 ELSE IF K=2 TH
EN X=-4 ELSE IF K=3 THEN X=4
140 CALL MOTION(#1,-Y*8,X*8)

3 	Pt,tiA,

Yiliw 3 .bew, Atimv

‹%-----,________

100 N=96 :: CALL CLEAR :: CA
LL SCREEN(2):: CALL CHAR(N,"
00E0BOD73F1832787F3E1F2D54A3
010000070DEBFC184C1EFE7CF884
2AC580")
110 CALL SPRITE(#1,N,9,N,N):
: CALL MAGNIFY(4)
120 CALL KEY(1,K,S):: CALL J
OYST(1,X,Y)
130 IF K=5 THEN Y=4 ELSE IF
K=0 THEN Y=-4 ELSE IF K=2 'TH
EN X=-4 ELSE IF K=3 THEN X=4
ELSE IF K=6 THEN X,Y=4 ELSE
IF K=4 THEN X=-4 Y=4 ELS
E IF K=15 THEN X,Y=I4 ELSE I
F K=14 THEN X=4 	Y=-4
140 CALL MOTION(#1,-Y*10,X*1
0):: GOTO 120

100 OPEN #1:"PIO"
110 INPUT A$
120 PRINT #1:A$
130 GOTO 110

Ed goes on to elaborate with this
10 line program:

1 PRINT ::::"TO INDENT TEXT
OR TO USE A COMMA, BEGIN &
END THAT LINE WITH QUOTE MARKS"::
2 INPUT "PRESS ENTER TO SKIP A LINE.

HOW WIDE?(80 CHARACTERS MAX):
WIDTH
3 MARGIN=INT((80-WIDTH)/2)
4 OPEN #1:"PIO"
5 INPUT "INPUT A LINE OF TEXT:":TEXT$
6 IF LEN(TEXT$)>WIDTH THEN 7 ELSE 9
7 PRINT :"LINE TOO LONG! SHORTEN TO"::
WIDTH;"CHARACTERS MAX."::SEG$(TEXT$,1,
WIDTH)::
8 GOTO 5
9 PRINT #1:TAB(MARGIN);TEXT$
10 GOTO 5

C20

115HUG NEVIN DIGEST

100 T=4 :: X=g6 :: CALL CLEA
R :: CALL CHAR(X,"2C5EFF3F4F
1D827C"):: CALL SPRITE(#T,X,
2,X,X)
110 CALL KEY(1,K,X):: CALL J
OYST(1,X,Y):: IF K=5 THEN Y=
T ELSE IF K=0 THEN Y=-T ELSE
IF K=2 THEN X=-T.ELSE IF K=

3 THEN X=T
120 CALL MOTIONOT,-Y*T,X*T)

GOTO 110

100 T=4 :: X=96 :: CALL CLEA
R :: CALL SCREEN(T*T):: CALL
CHAR(X,"000003173F6FFF7F360

CO300000403000000C0E0F0F8F8F
C72E1C10618608"):: CALL SPRI
TE(#T,X,15,X,X):: CALL MAGNI
FY(T)
110 CALL KEY(1,K,X):: CALL J
OYST(1,X,Y):: IF K=5 THEN Y=
T ELSE IF K=0 THEN Y=-T ELSE
IF K=2 THEN X=-T ELSE IF K=

3 THEN X=T
120 CALL MOTIONUT,-Y*T,X*T)

GOTO 110

100 T=4 	X=96 :: CALL CLEA
R ;: CALL SCREEN(15):: CALL
CHAR(X,"000003173F6FFF7F360C
0300000403000000C0E0F0F8F8FC
72E1C10618608"):: CALL SPRIT
EOT,X,T*T,X,X):: CALL MAGNI
FY(T)
110 CALL KEY(1,X,X):: CALL J
OYST(1,X,Y):: IF K=5 THEN Y=
T ELSE IF K=0 THEN Y=-T ELSE

. IF K=2 THEN X=-T ELSE IF K=
3 THEN X=T
115 IF K=6 THEN X,Y=T ELSE I
F K=T THEN X=-T Y=T ELSE
IF K=15 THEN X,Y=-T ELSE IF
K=14 THEN X=T Y=-T
120 CALL MOTIONUT,-Y*T,X*T)

GOTO 110

0„,,,L6,

iteer4 14,9._ 1,90!

Avekal 	Arke,rah" .

Afta-L 4,,tW

Ye9-6'41P1- 	•

14kk-7/44` ./619---- •

141A"c°

E/1 	A

	

. 	. 	.
SPEED DATA >0A0F,>0000
STATUS EQU >837C

	

VDP 	DATA >01E0
MYREG EQU >8300

START LWPI MYREG
CLR @>8375
MOV @VDP,R6
LI RO,>0400
LI 	R1,HELI
LI 	R2,32
BLWP @VMBW

DEF START
REF VHNOWT2tLam

HELI DATA >007F,>0000,>0107,>0E0E
DATA >1EBE,>FFBF,>OF07,>020F
DATA >00FF,>8080,>C0F8,>04C2
DATA >DACA,>FEFC,>F8E0,>40F8 4

SDATA DATA >7080,>8008 INITIAL SPRITE DATA
DATA >D000 	>DO PREVENTS GHOST SPRITE4

CALL SPRITE
PROGRAM PLACES A HELICOPTER

SPRITE IN MOTION BY ENABLING
INTERRUPTS. PRESS ANY

KEY TO ALTER MAGNIFICATION

SPRITE SPEED FOR AUTO 'mom
GPL STATUS BYTE
INITIAL VALUE OF VDP REGISTER 1
MYREG IN 16 BIT HIGH SPEED AREA OF pony

LOAD (BASE ADDRESS OF SPRITE DESCRIPTOR TABLE)
SPRITE

DESCRIPTOR
TABLE

KEYBOARD DEVICE = O. SCAN ALL.

HELICOPXEa.PATTERN DESCRIPTION
BLOCK k,it

A..

LI RO.>0300
LI R1,SDATA
LI 	R2,E0
BLWP @VMEN

LOAD (BASE ADDRESS OF SPRITE ATTRIBUTE TABLE)
SPRITE

ATTRIBUTE
TABLE

LOOP

CHECK

GO

* FOR EXTRA PRACTICE ADD A ROUTINE THAT SHOWS THE X AND Y POSITION OF THE SPRITE
* ON THE SCREEN AS IT MOVES. HINT: Y LOCATION IS 1ST BYTE IN SPRITE ATTRIBUTE
* LIST. X SECOND BYTE. READ THEM, CONVERT TO ASCII DECIMAL AND REDISPLAY WITH
* APPROPRIATE TEXT. WHO'LL BE FIRST?

CLR @STATUS
BLWP @KSCAN
MOVB @STATUS,@STATUS HAS KEY BEEN PRESSED?
LIMI 2 	 ENABLE INTERRUPTS FOR AUTO MOTION
LIMI a 	DISABLE INTERRUPTS SO VDP IS NOT AFFECTED ON READ/WR
JEQ 'LOOP

INC R6
CI 	R6,>01EA
JLT GO
MOV qVIDP,R6

MOV R6,R0
BLWP @VWTR
B @LOOP
END

LI 	Rlt>0100
MOVE Ri,@>B37A 	On SPRITE IN MOTION

LI 	RO,>0780
LI R1,SPEED
LI 	R2,4
BLWP

R6 IS USED AS A COUNTER TO KEEP
TRACK OF WHICH MAGNIFICATION
LEVEL (1 TO 4) WE ARE ON.

LOAD RO WITH DATA TO LOAD INTO VDP R1
CHANGE THE VDP REGISTER

LOAD (BASE ADDRESS OF SPRITE MOTION TABLE)
SPRITE

KOTION
TABLE

CLASSIFIED ADVERT

WANT TO SELL:
FE BOX, 32K CARD, DISK DRIVE
AUJ COMTROLIERt RS232 $850
o.n.o.

Plua 	Logo 2 	 $65
Turminal Emulator 2 	$2Q

CouLact Roliert on (0..) bol64412.

FfEKT MEETING:

Eatarday 2nd August
(2pm.4pm) at

*SHIRLEY ROUSE,
Ethel Street.
Burwoo.13„,
be4ind Woodstock.

See you thert !!1

2 I)

HOC

SAVE TUTORIAL
By Scott Darling

After reading some messages concerning using the Save
utility in the Editor Assembler package I awaited one
individuals tutorial on the subject. But none appeared.
So I decided to sit down and write one for it. Now some
of you may know how to do this, but evidently not
everyone does; so here goes.

Obviously to use the Save utility, you need the E/A
package. But a couple of programs are helpfull. A
sector editor such as DISK-AID, DISKO, and the like.
The Mini-Memory module is a nice shortcut for finding
addresses.

USING THE SECTOR EDITOR

First off any D/F 80 file will work, compresed or
uncompressed. You should copy the program to a clean
disk to make it easier to find using the sector editor.
Load the editor and search for the end of the program.
Disk-Aid will tell you where the last sector of a
program lies. Toggle to Ascii and look at the sector
info. There should be some names and references to
VSBW, VMBW, START and so forth. Compressed code is
easier to read by the way. Look carefully to see if the
words SFIRST, SLAST, or SLOAD are there. IF they are
skip the rest of this and go directly to "USING THE
SAVE PROGRAM"!!

If those words are not there. Look to see if there are
any lines of code that look like the actual program.
The below will serve as an example. It is non-
relocatable code. The "9" stands for that. An "A"
stands for relocatable. (much easier to work with by
the way) (this code was loaded into E/A editor, it will
look different in sector editor)

0023 9E1D8B03807FD91F
0024 1E0467FEB9F
0025 6E046START 7FDO6F
0026 : 	99/4 AS

You will notice that at the line 24 there is a "1" to
designate an auto start program. Change the "1" to a
"F". This will defeat auto-start. There may be a "2"
there, it also means auto-start.

Directly after that 1 or 2 is an address. This is the
"START"ing address of the program. SFIRST and SLOAD
will equal this address. The starting address also
appears in front of the word "START". As is the case
with most "DEFS" in this location.

To determine the SLAST is a little trickier. Just
before the 1 or 2 auto-start was an address >E1D8. Now
count over 1 byte for each 2 letter number combos.
Excluding the B and 7. In other words:
9E1D8_0380_FD9l_.

ElD8 9ABC= ElDC This will make SLAST = ElDC Another
example is for RELOCATABLE code:

0023 AO1D8B03807FD91F
0024 100007FEB9F
0025 60000START 7FDO6F
0026 : 	99/4 AS

In the above example I have changed a few numbers to
show what relocatable code might look like. You will
notice the "1" for auto-start is still in place, but

there now are "0000" instead of and addres. But 0000
is an address. It means that no matter what the lead
address is, that the start of the program is "x000" So
SFIRST equals "A000" and SLOAD is the same. Now slast
will work the same as above except this time it equals
AODC.

Confused?? I hope not. If so reread this before
continuing!!

ADDING AN ASSEMBLY DEF PROGRAM

I hope that you realize that there was a reason for all
of the above jumble! Be- cause now you are going to use
those address to build a short ASSEMBLY program!

Type in the following:

DEF SFIRST,SLOAD,SLAST
SFIRST EQU >A000
SLOAD EQU >A000
SLAST EQU >AODC

END

Save this program using whatever name strikes your
fancy. Load the assembler and assemble using another
name. Bypass list, and bypass options. It will take a
whole 2-3 seconds to assemble and you are ready for the
next step. This source code can be used indefinitely.
Just plug in the appropiatte addresses.

USING THE SAVE PROGRAM

1) Bring up the "LOAD & RUN" option of the E/A module.

2) Load your non auto-start program.

3) Load the "DEF" program that you wrote. (unless the
program already has the DEFs in the program)

4) Load the E/A "SAVE" utility

5) Hit enter to "PROGRAM NAME" and hit enter

6) The next prompt will ask for a name. Remember that
it will increment the name the next ASCII character if
the resulting is going to be larger than 8K (33
sectors), plan accordingly.

7) Now hit enter, and try running your NEW program in
"RUN PROGRAM FILE" option.

If it runs you are home free. If not you may want to go
back and check to see if used the correct addresses.
Most of what I wrote above was trial and error on my
part, so experiment and play around with the programs.

The above was a rather short description. There is a
shortcuts to find addresses that uses the Mini-Memory.

Initiate the M-M, then load the program. If it starts
running you know that you have to defeat the auto-start
feature. Escape the M-M and bring up Easybug. Do
"M7020" and look at page 74 of the M-M manual. 7020 is
default entry address. Or SFIRST and SLOAD. Step down
to 7024 and this is the last free address in high
memory or the end of the program. IF 7024 is "0000"
then you know that the program is probably absolute
code.

1-15H11G NUNS olGrs-r

(22 	

RUC 415111111G runs nIGEs-i

Ely only dissapointment is determining how to save low
and high memory code. If a program loads at >2000 to
>4000 then continues at >A000. The above steps are
useless, because it assumes a continuous count between
two addresses. I have not figured out or taken the time
to attempt this format.

The following is verbatim from CorComp Cursor, a newsletter to TI-99/4
user groups. When I called to see if they minded if I put this up here I
was told the intent of the newsletter was that it be given the widest
dissemination possible. So here is what they say about TI-Forth and DSDD
(and other) set-ups. Hope you find it useful.

Rich Stanford

TI FORTH

This article is intended for all TI FORTH users who have (or plan on
having) double density and/or double sided disk capabilities. While the
techniques described should work with any disk controller capable of double
density, the author's CorComp 9900 Disk Controller card is the only one that
has been tested. The purpose of this article is to illustrate both how to
access the additional screen capacity and how to modify the FORTH words and
disc to be compatable with the new format and Disk Manager.

Throughout this article lowercase letters used in a FORTH definition
will indicate a variable value to be entered. The following terms will be
used to refer to the various formats a FORTH disc may have.

90 SCRN or SSSD

180 SCRN

360 SCRN or DSDD
SSDD
DSSD

- the original 90 screen single sided
single density format.

- either a SSDD or DSSD disk when
comment applies to both.

- a double sided double density disk.
- a single sided double density disk.
- a double sided single density disk.

The first step is to use Disk Manager to format (initialize) a 180 or
360 SCRN disk. Next, you must copy FORTH from the 90 SCRN disk to the new
180 or 360 SCRN disk. The disk copy feature of CorComp's Disk Manager will
d this properly for you. If you have two drives, the FORTH-COPY word in the
-COPY screens will also do it properly (do 0 DISK_LO ! first). However, if
you are using TI's Disk Manager II, after copying the three files you must
use FORTH to copy screens 1 to 9 because Disk Manager II puts them in the
wrong place! To do this, enter the following for each of the nine screens.

n BLOCK UPDATE (where n is the screen number to be read from old
disk)

FLUSH 	 (after inserting the new disk - note: up to five
screens may be entered at a time)

Now edit screen 3 of your new disk and add the following commands:

x DISK_SIZE ! (where x=180 or 360 as appropriate)
y DISK_HI 	! (where y=x times 1, 2 ,3 or 4 depending on the

number of drives you have)

Unfortunately, TI FORTH does not provide a method for configuring each
drive individually. Therefore, the user must be cognizant of which screens
are available on each drive when there are differences between them.

At this point, FORTH can be booted and it will recognize the full
capacity of your 180 or 360 SCRN disk. You can create, edit, list, and load
from screens greater than 89. however, neither Disk Manager nor FORTH-COPY
will recognize this disk as having more than 90 screens. To fix this
problem you must modify the -COPY screens (39 and 40), the disk header
(sector 0) and, the SYS-SCRNS file header (sector 4).

First edit screen 39. Change the value 90, which appears once in DTEST
and twice in FORTH-COPY to 180 or 360 as appropriate. Next, edit screen 40
as follows:

Line 3 - change 168 to 2D0 for 180 SCRN or SAO for 360 SCRN.

Line 4 - change 944 to 1244 for SSDD or DSDD (no change for DSSD).

Line 5 - replace entire line with:

2 3)

90 REM SLANTED UPPER CASE LE
TTERS, NUMBERS, PUNCTUATION
100 DATA 33,000404080808001,
35,0009127F24FE489,36,001F24
283E0Al27C,40,00010204080808
04,41,002010101020408,43,000
004083E081'
110 DATA 48,001F11222222447C
,49,0001010202020404,50,001F
01023E20407C,51,001F01023E02
047C,52,001111223E020404,53,
001F10203E02047C
120 DATA 53,001F10203E22447C
,54,001F10203E22447C,55,001F
010202020404,56,001E11223E22
447C,57,003F21427E02047C,58,
00000000001818
130 DATA 59,000000000018081,
63,000F11020E08001,65,001F11
223E224444,66,001E11213E2242
7C,67,001F10202020407C,68,00
1E11212122427C

140 DATA 69,001F10203E20407C
,70,001F10203E204040,71,001F
10202E22447C,72,001111223E22
4444,73,001F04080808107C,74,
000101020222447C
150 DATA 75,001111223C284444
,76,001020202040407C,77,0037
294A52428484,78,0011112A2A2A.
4444,79,001F11222222447C,80,
001F11223E204040
160 DATA 81,001F1122222A447A
,82,001F11223E284444,83,001F
20203E02027C,84,001F04080808
1010,85,001111222222447C,86,
0011111222242438
170 DATA 87,002121424A5294EC
,88,0011110A0C142222,89,0011
11223E081010,90,001E02041820
407C
180 FOR CH=1 TO 45
190 READ CHN,CH$
200 CALL CHAR(CHN,CH$)
210 NEXT CH
220 INPUT M$
230 GOTO 220

11151-11UG WING IIIIGEGT

DUP 10 + 2028 SWAP ! DUP 12 + a SWAP ! DUP 14 + 24 0 FILL

where a = 0201 for DSSD, 0102 for SSDD, or 0202 for DSDD.

Line 10 - change 165 to 2CD for 180 SCRN, or 59D for 360 SCRN.

Line 13 - change 4016 to CO2C for 180 SCAN, or CO59 for 360 SCRN.

Next edit screen 33 to modify the FORMAT-DISK word to:

: FORMAT-DISK 1 + a 33616 ! 18 SYSTEM ;

	

where a 	258 for 	DSSD, 513 for SSDD, 514 for DSDD.

Finally, you need to create a word that will modify the header sectors
on your new disk. This word only needs to be executed once since copies of
this disk, once it's modified, will not require modification. Here is the
way to do it:

HEX 0 DISK LO ! 	 (removes disk fence)
: DD-FORTTI 0 BLOCK UPDATE (read screen 0 and mark as updated)

	

DUP A + a SWAP ! 	(a = 2D0 for 180 SCRN, 5A0 for 360 SCAN)

	

DUP C + b SWAP ! 	(b = 944 for DSSD, 1244 for SSDD or DSDD)

	

DUP 10 + c SWAP ! 	(c = 2028 for all versions)

	

DUP 12 + d SWAP ! 	(d = 201 on DSSD, 102 on SSDD, 202 on DSDD)
38 + C8 FF FILL (flag all sectors as in use)

1 BLOCK UPDATE 	(read screen 1 and mark as updated)

	

DUP E + f SWAP ! 	(f = 2A0 for 180 SCRN, 570 for 360 SCRN)

	

DUP 1C + g SWAP ! 	(g = 4D20 for 180 or 360 SCAN versions)

	

DUP lE + h SWAP ! 	(h = 2805 for 180 SCRN, 5205 for 360 SCRN)

	

20 + i SWAP ! 	(i = F029 for 180 SCRN, F059 for 360 SCRN)
FLUSH ; 	 (write modified screens to disk)

DECIMAL DD-FORTH

Now your new high capacity copy of FORTH is fully compatable with Disk
Manager, the FORTH format, copy, test, and header words and your double
density and/or double sided drives and controller. Enjoy!

#4,***

Special thanks to Jim Vincent who is the FORTH columist for the 99'ers Users
Group Association.

(24 	

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

