

by Geoff Trott
Illawarra regional group - TIsHUG

Some of the hardest things for
assembler language programmers to come to
terms with are the status bits or flags.
These are bits which are set or cleared as
the result of the last operation performed.
This means that a decision can then be made
on that result using one of the Jump on a
condition instruction, Let us examine each
of these flags to find out what information
each one gives to us about particular
instructions.

EQ or Equal flag. This is the easiest one
to understand as it is set if the result
of an arithmetic (A AB AI ABS DEC DECT
NEG S SB INC INCT) or logical (ANDI ORI
INV SOC SOCB SZC SZCB XOR) or shift (SLA
SRA SRC SRL) or move (LI MOV MOVB LDCR
STCR) instruction is zero. If the
instruction is a word instruction, then
all 16 bits must be 0, If a byte
instruction, then just the 8 bits
addressed must be O. In comparison
instructions (C CB CI), the flag is set
if the two pieces of data.being compared
are the same. For the Compare Ones
Corresponding (COC) and Compare Zeros
Corresponding (CZC) instructions, the EQ
flag will set if the bits specified by
the source data are all 1's (COC) or all
0's (CZC). For the CRU instruction Test
Bit (TB), the value of the bit selected
is put into the EQ flag. The EQ flag is
set if the bit is 1 (not zero), which
may seem strange.

C or Carry flag. The C flag indicates that
the operation has required one more bit
than is available for the instruction
(i.e. 9 or 17 bits)., The C flag is
only used for arithmetic and shifting
instructions. In the shifting
instructions (SLA SRA SRC SRL), the C
flag is used to hold the last bit
shifted out of the end of the data.

When using unsigned numbers in addition
operations it is easy to understand that
if the result is greater than 65535 (for
words) or 255 (for bytes) then the C
flag will set. Subtraction involves the
use of negative numbers, as it is
performed by negation and addition,

This means that we need to look at the
representation of negative numbers
before the C flag will make sense for
subtraction.

Negative numbers are represented in
2's complement code by the processor. The
essence of this is that the most
significant bit is the sign bit of the
number and if it is O the number is
positive, and if it is 1 the number is
negative. To find the negative of a
number, complement all bits and add 1 to
the result. Complement means to change all
ls to Os and all Os to ls. To find the
value of a negative number, negate it as
above and then convert it to decimal, For
example in bytes we have :
+1 00000001 >01
-1 11111111 >FF
+127 01111111 >7F
-127 106000001 >81
+16 00010000 >10
-16 11110000 >FO

LU S | I I |
w nnuna

There is one odd number in this code,
and that is the smallest negative number,
~128 (bytes) and -32768 (words). The
negative of these gives the same codes back
again, If 1 is subtracted from these two
numbers, the largest positve numbers are
obtained, 127 (bytes) and 32767 (words) and
if 1 is added to these largest positive
numbers, the smallest negative numbers are
obtained again, The relationship between
negative numbers and unsigned numbers is
that the negative numbers are all unsigned
numbers larger than the largest positive
number, Let us now return to the carry
flag.

For signed numbers and addition (A AB
AI), at least one operand must be
negative to set the C flag., If both
operands are negative the C flag will
set, or if the result of adding a
positive to a negative number is a
positive number, the C flag :ill set.
For subtraction (S SB) simi.ar
conditions hold. The C flag will set if
we subtract a positive number from a
negative number (i.e. add two negative
numbers). It will also set if there is
a positive result after subtracting
numbers which are either both positive
or both negative (i.,e., adding a
positive and a negative number with
positive result). For unsigned numbers,
the C flag will set if a smaller number
is subtracted from a larger number
(including zero result). Increment (INC
INCT) is the same as adding 1, and the C
flag will set when the result changes
from a negative number to a positive
number., Decrement (DEC DECT) involves
adding -1 (or -2) and the C flag will
always set except when the value changes
from positive to negative., The C flag
will set if O is negated (NEG). The C
flag is always cleared by an absolute
value instruction (ABS).

or Overflow flag. The OV flag only
gives information about signed numbers.
In effect it is a carry for the number

excluding the sign bit. If two numbers
of like sign are added (A AB AI) to give
a result which is the opposite sign, the
OV flag will set. Similarly, if one
subtracts (S SB) numbers of unlike sign
and the result is not the same as the
first number the OV flag will set. The
OV flag sets if you try to negate (NEG)
or take the absolute value (ABS) of the
minimum negative number (see above), and
when you increment (INC INCT) past the
largest positive number or decrement
(DEC DECT) past the smallest negative
number. It also sets to indicate that a
division (DIV) cannot take place because
the result would need more than 16 bits.
If the sign of the number changes while
doing a Shift Left Arithmetic (SLA) the
OV flag will set.,

or Aritmetic greater than flag. This
flag indicates that the result of an
arithmetic (A AB AI ABS DEC DECT NEG S
SB INC INCT) or logical (ANDI ORI INV
SOC SOCB SZC SZCB XOR) or move (LDCR LI
MOV MOVB STCR) or shift (SLA SRA SRC
SRL) operation is positive and not zero.
For comparison instructions (C CB CI),
it sets if the first operand is greater
than the second when both are
interpreted as signed numbers.

TIS5-0POLY
FREEURRE
UPDRTE

TO VERSION 1.5
3 2

£ TDITATA TDhJd)

FREEWARE VERSION of TI99-OPOLY.
from Ross Mudie of TIsHUG

The freeware version of TI99-OPOLY has been raised
from version 1.4 to version 1.5 to overcome a bug which
charged rent for an already mortgaged station when a
player is advanced to the station by a Community Chest
card "advance to the nearest railway". This card
charges twice the normal rent if owned or permits the
purchase of the property if unowned.

To raise a copy of the program disk to V1.5 first make
a backup copy of the disk in case of mishap.

Using a Disk Manager, remove write protection from the
programs named LOAD and TIS9-OPOLY.

Go to extended basic with no disk in drive 1. When
* READY * and the cursor prompt is visible, place the
TIG9-OPOLY disk in drive 1 and type OLD DSK1.LOAD .

Modify the LOAD program, when in memory, in lines 120
and 1090 as follows:

120 ! TI99-OPOLY V1.5 LOAD
8th June 1986, Ross Mudie

1090 DISPLAY AT(1,5):"LOADIN
G AND RUNNING": :"TI99-OPOLY
V1.5 ~ Ross Mudie"

Resave the LOAD program by typing SAVE DSK1.LOAD .

Place the TI99-OPOLY program in memory by typing:
OLD DSK1.TI99-OPOLY .

Modify the TI99-OPOLY program in line 100 and add line
2045 as follows:

100 OPTION BASE 1 :: ON WARN
ING NEXT :: ON BREAK NEXT !

TIG9-OPOLY V1.5 Ross Mudie

8th June 1986

2045 IF D(PSN(P),2)=6 THEN C
ALL D(14,B$(123)):: CALL D(1
5,B$(124)):: GOTO 2170

Do NOT resequence the program.
Resave the TI99-OPOLY program to disk by typing:
SAVE DSK1.TI99-OPOLY .

Return to the Disk Manager and re-apply write protect-
ion to both programs.

UPDATING AN OLD VERSION OF TI99-OPOLY.

Any person who owns an original copy of the pre-
Freeware version of TI99-OPOLY may return the original
disk and booklet, forward postage paid. The disk and
booklet will be updated to the latest freeware version
at no further cost and the return postage will be paid
by the author.

After enclosing the return disk and booklet in
adequate packaging and including YOUR OWN NAME AND
ADDRESS, post to: Ross Mudie,

47 Berowra Waters Rd,
Berowra. N.S.W, 2081.
AUSTRALIA,

USER PROBLEMS.

I have had some enquiries of how to exit a game with-—
out turning the computer off. .+.In the design of the
program I did everything possible to prevent accidental
loss of a running game. The best method that I can
suggest is to save the game under a file name for un-
wanted games, e.g., DSK1.UNWANTED . A new game may then
be started with previously saved data or a totally new
game may be commenced or the game may be ended. .

>

L> or Logical greater than flag.
indicates that the result of an
arithmetic (A AB AI ABS DEC DECT NEG S
SB INC INCT) or logical (ANDI ORI INV
SOC SOCB SZC SZCB XOR) or move (LDCR LI
MOV MOVB STCR) or shift (SLA SRA SRC
SRL) operation is not zero. For these
instructions it is just the complement
of the EQ flag. For comparison
instructions (C CB CI) however, it sets
if the first operand is greater than the
second when both are interpreted as
unsigned numbers.

This flag

or 0dd Parity flag, This flag is only
used for byte instructions (AB CB MOVB
SB SOCB SZCB), and for the CRU move bit
instructions (LDCR STCR) if 8 or less
bits are moved. The OP flag will be set
if the result of the operations contains
an odd number of 1's.

X or Extended operation flag. This flag is
set when one of the 16 XOP instructions
is excuted, The XOP enables an
effective BLWP to be performed with an

instruction of only one word. Since a
subroutine entered with an XOP
instruction could have been entered with
an BLWP instruction, this flag allows
the subroutine to find which one was
used. The XOP instructions use fixed
addresses to store the context switch
information, starting at address >40.
These addresses are in the System ROM of
the 99/4A and so cannot be set up by us.
In fact the later ROMs have the first 3
XOP addresses set up for use as follows.
The first one (XOP Gs,0) causes a
subroutine in what is obviously a TI
debugging device to be called. The
second one (XOP Gs,l) causes a
subroutinc at >FFF8 to be called using a
workspace area starting at >FFD8, This
is used by DEBUG for breakpoints, The
last one (XOP Gs,2), causes a subroutine
at >8300 (System RAM) to be called with
a workspace area starting at >83A0. The
addresses which would be used by the
other XOP's (3 to 15) have programme
code stored in them which makes them not
easy to use for this purpose.

TISHUG N

LITTLE-ENDIANS AND BIG-ENDIANS

WS DIGEST

by Geoff Trott
Illawarra Regional Group - TIsHUG

In the world of computers there are
two classes of people; those who are
Little-endians and those who are
Big-endians. These classifications have
nothing to do with anatomy, but rather with
the prejudices people have about the order
in which the bits in data and addresses are
numbered., Just a storm in a tea cup you
say? Well I guess that is right, but the
different ways used to number bits and
bytes do cause confusion, particularly to
assembly language programmers, so I will
attempt to explain clearly what it is all
about.

If you look at the circuit diagrams
for the 9900 processor, or any description
of the imnstruction bit codes for example,
you will notice that the most significant
bit of the 16 data bits or address bits is
numbered O and the least significant bit is
numbered 15. This is the pattern for the
Big-endian order of the world. Also the
first byte in the word, which is the even
address, is also in the most significant
position, This means that if words are
written down in their numerical order
across a page, the order of the bits and
bytes all start from the top left and read
naturally to the right., The pairs of bytes
go together naturally to make words and the
character strings are in their correct
sequence. This is all so logical that it
is hard to imagine why another way would be
thought about or even preferred.

Let us have a look at the
Little-endian way of numbering bits and
bytes. The obvious difference is that the
‘least significant bit is numbered O and the
most significant bit has the largest
number. The first byte would also go into
the least significant byte position. This
means that if we lay out the data in bytes
starting from the top left of the page,
then the words are in the wrong order
bytewise as it were, or if the words are
written down in their correct form, the
bytes are not consecutive.

Let us take an example of a character
string of 5 characters, and assume the
format used by TI of the first byte
containing the length of the string. The
bytes would be 05 48 65 6C 70 21 in
hexadecimal for the string 'Help!'. For
the Big-endians this string would pack into
consecutive words like this., 0548 656C
7021 For the Little-endians it would pack
into words in the following way. 4805 6C65
2170 The same sort of problem arises with
the Little~endian way when 16 bit data is
broken into 2 bytes, it is in low byte
followed by high byte order.

Well why would anyone want to be a
Little-endian? For those of us who delve
into the hardware, it is clear that the
hardware manufacturers are confirmed
Little—-endians. This is because the number
of bits used by a piece of hardware is
generally less than that used by a
computer. Several pieces of hardware are
connected in parallel to do the job. In

this case it makes more sense to
consistently number the least significant
bit as 0, because this will be correct for
at least one of the pieces (for a
Little-endian). If you consider the
address lines of memory chips. These can
have anywhere from 8 to 16 address lines,
and there may be families of these
components which change only by an increase
in address lines. The Little-endian
approach allows the address lines to be
increased without requiring all the other
address lines to be renumbered. This is
the main advantage of the Little-endian
approach, the ability to increase the
number of address lines with the smallest
impact on the numbering of the existing
address lines. There are also advantages
when transferring bytes to words and vice

- versa, as the bytes are in the correct part

of the word to carry on normal arithmetic
on the byte value. With the Big-endian
approach the transfer of a byte into a word
leaves the byte at the high end of the
word, which then requires a byte swap
within the word before normal arithmetic
can be used - INC or DEC for example.

Some problems arise when the two
concepts are mixed in the same system.
This occurs within the design of some
systems (DEC computers and the Motorola
68000 are examples), but it can occur in
any system if the software is written
accordingly. Most of the 99/4 computer was
designed by Big-endians, but some of the
disk operating system, was written by a
Little-endian., It may be that the disk
operating system is reasonable close to
some other disk operating system from
another computer, or just that whoever
wrote it was a Little-endian at heart.
This is why the file segment entry table
appears mixed up, and the bit map is also
in an odd order. So if you are delving
into the disk.operating system, or you find
what appears to be an odd ordering of bytes
in a word, brush up on your Little-endian
thinking!

The Illawarra Regional Group

This group holds regular meetings in
Saint Matthews Church Hall, Philip
Crescent, Mangerton, on the third Monday of
each month (except January) at 7.30 p.m.
We also hold occasional hardware and other
special interest group meetings at
irregular intervals. We are offering
memory expansion and other simple hardware
expansions upon request, and are working on
software for systems without disks but with
memory expansion,

The meetings normally start with a
tutorial session on Extended BASIC,
followed by a talk and demonstration of
some other topic of interest. This leads
to some refreshments while members meet
each other and chat about problems and
interests, We maintain various 1libraries
for the use of members.

I o 510G TISHUG NEWS DIGEST

LINKING EXT'D

BHSIE—HSSEHBLY

WITH ROSS HUDIE.

This program allows values to be examined in the VDP
RAM (PEEKV), poked into the VDP RAM (POKEV) and poked
into the VDP registers (POKER). Take care with what
you poke where in VDP RAM and registers since the
wrong thing in the right place will crash ext'd basic
or the VDP, especially poking to the VDP registers.

The program is shortened from that in tutorial disk
MUDIE 86/3 by using XMLLNK with DATA >20 to eliminate
some maths.

VDP PEEKV, POKEV & POKER
Based on a program by John Brown in Millers Graphics
The Smart Programmer, April 1984, Modified & remarks
added by Ross Mudie of TISHUG, 26th June 1986.

PEEKV & POKEV can peek or poke up to 15 values.

DEF PEEKV,POKEV,POKER

NUMREF EQU >200C
NUMASG EQU >2008
XMLLNK EQU >2018
VMBW EQU >2024
VMBR EQU >202C
VWIR EQU >2030
FAC EQU >834A
BUFF BSS 18
STORE DATA 100
MYWS BSS >10

* PEEKV reads VDP RAM Values.

* Extended basic format: CALL LINK("PEEKV",add,v,v...)

* where v is from 1 to 15 numeric variables.

PEEKV LWPI MYWS
LIMI O
CLR RO
LI R1,1
BLWP @NUMREF
BLWP @XMLLNK

Simple variable for NUMREF

Point to first argument in NUMREF
Gets address (first argument)

To convert floating point value

for address in FAC to integer in FAC
Data value for CFI using XMLLNK
Integer value of address in RO
Address of Temp store for peeks
Number of arguments in LINK is
placed in left byte of R2

Swaps byte in R2, left byte zeroed
Number of bytes to be read by VMBR

DATA >12B8
MOV @FAC,RO
LI R1,BUFF
MOVB @>8312,R2

R2,8
R2,-1

the number of arguments less one for the address,

BLWP @VMBR Bytes from VDP RAM, put in BUFF
CLR RO Simple variables in NUMASG
LOOP1 MOVB @BUFF-1(R2),R4 Takes the last byte first;
* subsequently, (as R2 is decremented) working left
* along BUFF with each LOOP until all bytes are
® transferred to x/b
SRL R4,8 Swaps byte R4 & zeroes left byte
MOV R4,@FAC R4 value in first word of FAC
BLWP @XMLLNK Convert Integer to Floating point
DATA >20 Data for CIF in XMLLNK
MOV R2,R1 One less than argument number
INC R1 Equal to argument number now,
* remember that the peek address was the first argument
* in LINK which we do not want to try to transfer to.
BLWP @NUMASG Transfer to x/b variable from FAC
DEC R2 To point to next peeked value,
(back one, working backwards thru BUFF).
JNE LOOP1 If more to do jump to LOOP1

B @RETURN

* POKEV Writes VDP RAM Value(s)
* Extended basic format: CALL LINK("POKEV",Add,nv,nv..)
* where nv is 1 to 15 numeric values or num variables.
POKEV LWPI MYWS
LIMI O
CLR RO
LI Rr1,l
MOV R1,@STORE
BLWP @NUMREF

Simple variable in NUMREF

First argument in call link

Place a 1 in STORE as a word

Gets first address of where to
poke into FAC in radix 100 format
Convert floating point address

in FAC into integer in FAC

DATA >12B8 DATA for CFI routine in XMLLNK

MOV @FAC,@BUFF Places integer address in BUFF

* the first poke address is a byte at BUFF+l
AB @>8312,@STORE+1 STORE (first word) now

* contains the number of arguments in the x/b LINK +1
LI R3,2 Ready for NUMREF to point to

* argument 2 in x/b LINK
LOOP2 MOV R3,R1 Put R3 value in Rl to point to
* argument number in LINK & byte in BUFF
BLWP @NUMREF Get value to be poked into VDP

BLWP @XMLLNK Convert floating point in FAC

to integer in FAC

DATA >12B8 Data for CFI routine in XMLLNK

MOVB @FAC+1,@BUFF(R3) Moves the byte size values

to be poked into BUFF starting at BUFF+2

To point to next argument in
LINK & next byte in BUFF

All poked yet?

No! get next one

Got all values, place poke start
address in RO for VMBW

Rl contains the address in BUFF
of the first lst to poke

R2 has the # of args in link +1
Actual # of bytes for VMBW to write
Transfers poke values to VDP RAM

BLWP @XMLLNK

INC R3

C R3,@STORE
JNE LOOP2
MOV @BUFF,RO

LI R1,BUFF+2

MOV R3,R2
Al R2,-2
BLWP @VMBW

CLR RO

MOVB RO,@>837C
LWPI >83E0

B @>0070

To indicate no errors on return
Load GPL Workspace
To return to extended basic

* POKER Writes to a VDP Register

* Extended basic format: CALL LINK("POKER",VReg #,nv)

* where nv may be a numeric value or numeric variable.

POKER LIMI O
CLR RO
LI R1,1

Simple variable in NUMREF
First argument in NUMREF
BLWP @NUMREF Get VDP register number
MOV @FAC,@STORE Places both exponent & value
VDP register number (in radix 100 format) in STORE
LI R1,2 Second argument in link
BLWP @NUMREF Get value from link & place in
FAC in radix 100 format
Convert floating point value
in FAC into integer in FAC
DATA >12B8 Data for CFI routine in XMLLNK
MOV @FAC,R0 Integer value in right byte of RO
MOVB @STORE+1,R0O Move byte for VDP register #
from right byte of STORE into left byte of RO
BLWP @VWTR Write to VDP reg from RO
RT To return to extended basic

BLWP @XMLLNK

END

-

13)

IS by 1P

TIPS FROM THE TIGERCUB
#22
Copyright 1985

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Distributed by Tigercub
Software to TI-99/4A Users
Groups for promotional
purposes and in exchange for

_their newsletters., May be
reprinted by non-profit
users groups, with credit to
Tigercub Software.

This . challenge was
printed in Tips #21-July TND

100!The Unprintable Unkeyabl
e Program!

110!To shuffle the numbers 1
to 255 into a random sequen
ce without duplication
120!The strings contain the
ASCII characters 1 to 127 an
d 128 to 255

130!Most of the ASCII charac
ters below 32 or above 159 c
annot be input from the keyb
oard

140'So how was this program
programmed?

150 Mg=""

TMESTR () ¥+, -./0

123456789: ;<=>7@ABCDEFGHIJKL
MNOPQRSTUVWXYZ[\]“_‘abcdefgh
ijklmnopgrstuvwxyz{|} "

160 M2$="

170 M$=M3$&M2$

180 L=LEN(M$):: RANDOMIZE ::
X=INT(L*RND+1):: N=ASC(SEG$
(M$,X,1)):: M$=SEG$(M$,1,X-1
)&SEG$(M$,X+1,LEN(MS$))

190 PRINT N;:: IF LEN(M$)=0

THEN STOP ELSE 180

And here is the answer -
It was written by a program
that writes a program!
Key this din and run it to
create a MERGE format disk
file, Then type NEW, then
type MERGE DSK1.LONGSTRING
and you will have a RUNable
program consisting of lines
150-170 of the puzzle!

100 OPEN #1:"DSK1.LONGSTRING
" VARIABLE 163

110 LN=100 :: GOSUB 190 :: A
$=L$&"M$"&CHR$(190)

120 FOR J=1 TO 127 :: C$=C$&
CHR$(J):: NEXT J :: A$=A$&CH
R$(199)&CHR$(127)&C$&CHRS(O)
130 PRINT #1:4$

140 GOSUB 190 :: B$=L$&"M2$"
&CHR$(190)

150 FOR J=128 TO 255 :: D$=D
$&CHR$(J):: NEXT J :: B$=B$&
CHR$(199)&CHR$(128)&D$&CHR$(
0)
160 PRINT #1:B$
170 GOSUB 190 :: F$=L$&"M$"&
CHR$(190)&"M$"&CHR$(184)&"M2
$"&CHR$(0)
180 PRINT #1:F$:: PRINT #1:
CHR$(255)&CHR$(255) :: CLOSE
#1 :: END
190 L$=CHR$(INT(LN/256))&CHR
$(LN-256*INT(LN/256)):: LN=L
N+10 :: RETURN

Now type in the
remaining lines, and you
will have a speeded-up
version of the Tigercub
Scramble which was published
in Tips #10. It is still
not as fast as the CALL PEEK
versions but is much more
useful 'because you can
modify it to scramble a
sequence of any length
anywhere between 1 and 255.
For example, to shuffle the
numbers 100 to 150 into a
random sequence without
duplication, just add a line
175 M$=SEG$(M$,100,50).

The method of writing a
"program that writes a
program" was fully explained
by John Clulow in the 99%er
magazine Vol. 1 Nos, 3 and
4, It is a little-used but
very valuable technique.

For instance, Tips#9
contained the following
routine to turn the alphabet
upside-down,

100 FOR CH=33 TO 127 :: CALL
CHARPAT(CH,CH$):: FOR J=1 T
0 16 STEP 2 :: X$=SEG$(CH$,J
,2)&X$:: NEXT J :: CALL CHA
R(CH,X$):: X$="" :: NEXT CH

110 INPUT A$:: GOTO 110

The only trouble with
that is that it takes about
50 seconds to run. Try this
instead -

100 FOR CH=33 TO 127 :: CALL
CHARPAT(CH,CH$):: FOR J=1 T
0 16 STEP 2 :: X$=SEG$(CH$,J
,2)&X$:: NEXT J :: CALL WRI
TE(CH,X$):: X$="" :: NEXT CH
1000 SUB WRITE(CH,X$):: IF F
LAG=1 THEN 1010 :: FLAG=1l ::
OPEN #1:"DSK1,WRITE",OUTPUT
,DISPLAY ,VARIABLE 163 :: LN
=3000 :: GOSUB 3000
1010 X=X+1 :: L$=L$&CHR$(200
J&CHR$(16)&X$:: IF X<5 AND
CH<127 THEN L$=L$&CHR$(179):
: SUBEXIT
1020 X=0 :: PRINT #1:L$&CHR$
(0):: L$="" :: IF Cli=127 THE
N 1030 :: GOSUB 3000 :: SUBE
XIT
1030 PRINT #1:CHR$(255)&CHR$
(255):: CLOSE #1 :: GOTO 301
0

3000 L1=INT(LN/256):: L2=LN-
256*L1 :: L$=CHR$(L1)&CHR$(L
2)&CHR$(147):: LN=LN+10 :: R
ETURN

3010 SUBEND

RUN that, type NEW,
then MERGE DSK1.WRITE, and

" you will have a program

consisting of DATA
statements containing the
hex codes for all the
upside~-down characters. Add
a line 100 FOR CH=33 TO 127
:3 READ CH$ HH CALL
CHAR(CH,CH$):: NEXT CH, and
you can turn everything
upside-down in only 12
seconds.

Someone sent me a
classified ad, clipped from
an unknown publication,
which read -

TI-WRITER COMPANION.
Loaded with ingenious ways
to make your TI-Writer more
effective. Well written.
Send $6.50 to MNr. Bill
Browning, 7541 Je.sey Avenue
North, Brooklyn Park, MN
55428, Money back
guarantee.

I sent off my money and
have just received 29 pages,
3-hole punched, loaded with
useful and ingenious tips
and ideas for getting more
out of TI-Writer, I
recommend it - it's worth
twice the money and then
some! NOTE! Now $6.50!

The K-Town newsletter
recently published a utility
routine that is so useful
that I want to pass it on to
everyone, If a program is
not resequenced after it is
modified, this will compare
it with the original and
prepare a MERGE format file
of all the changes, for the
use of others to update
their copy.

100 !
110 !* COMPARE PROGRAM *
120 ' - by Mike Dodd *
130 13
131 ! In K-Town 99'er V.2 #1
April 1985
140 'Version 85.0406.1XB
Requires disk drive.
Compares two programs,
gives list of all diff-
erences,
150 ISAVE old program in
MERGE format (SAVE DSK1.(ol
dfilename) ,MERGE). SAVE up-
dated program in MERGE for-
mat(SAVE DSK1.(newfilename)
,MERGE)
160 'RUN this program, answe
r prompts for OLD FILE name,
NEW FILE name, and a differ
ent OUTPUT FILE name.
170 !'When finished, type NEW
, then MERGE DSK1.(outputfil
ename) and ENTER
180 !Can be MERGED into othe
r copies of OLD program to
update them
190 DEF @(@$)=ASC(SEG$(@$,1,
1))*256+ASC(SEG$(@%,2,1))
200 A$=CHR$(255)&CHR$(255)::
DISPLAY AT(1,1)ERASE ALL:"O
LD FILE:": :"NEW FILE:
": :"OUTPUT FILE:"

TISHUG \TWS DIGEST

210 ACCEPT AT(1,13)BEEP:B§ :
: ACCEPT AT(3,13)BEEP:C$::
ACCEPT AT(5,13)BEEP:D$:: OP
EN #1:B$,INPUT ,VARIABLE 163
220 OPEN #2:C$,INPUT ,VARIAB
LE 163 :: OPEN #3:D$,0UTPUT,
VARIABLE 163

230 LINPUT #1:@$:: LINPUT #
2:E$:: F$=SEG$(@$,1,2):: G$
=SEG$(E$,1,2):: A=@(F$):: B=
@(G$)

240 IF F$=A$ AND G$=A$ THEN
CLOSE #1 :: CLOSE #2 :: PRIN
T #3:A% :: CLOSE #3 :: STOP
250 IF B>A THEN PRINT #3:F$&
CHR$(131)&" **DELETED LINE *
*"QCHR$(0):: LINPUT #1 :: @$
:: F$=SEG$(@$,1,2):: A=Q(F$
:s GOTO 240

60 IF A>B THEN PRINT #3:E$
¢ LINPUT #2:E$:: G$=SEG$(E
,1,2):: B=0(G$):: GOTO 240
70 IF @$<>E$ THEN PRINT #3:
$

)
2
$
2
E

280 GOTO 230

Thanks to some ideas
from Joyce Corker, I have
made some more improvements
to the Tigercub Menuloader,
and I have used the above
utility routine to list all
the changes made since it
was published in Tips#l5.

100 !'by A. Kludge/M. Gordon/
T. Boisseau/J. Peterson/etc.
modified in Tips #22
102 OPTION BASE 1 :: DIM PG$
(127),Vv(127),VX(127)+: GOTO
110
105 @,A,A$,B,C,D$,FLAG,I,J,K
,KD,KK,N$,NN, P$,PG$(),Q$,5,S
T,T$(),TT,VT,VV(),VX(),¥$,X,
X$,K2,82
106 CALL INIT :: CALL LOAD :
: CALL LINK :: CALL PEEK ::
CALL KEY :: CALL SCREEN ::
ALL COLOR :: CALL CLEAR ::
ALL VCHAR :: CALL SOUND ::
@p-
150 ! **¥DELETED LINE *¥
160 T$(1)="d/f" :: T$(2)="d/
v g2 T$(3)="i/f" :: T$(4)="
i/v" ¢t T$(5)="pro" :: ON WA
RNING NEXT
170 IMAGE ###
180 DISPLAY AT(1,4):"TIGERCU
B MENU LOADER"
210 D$="DSK1," :: OPEN #1:D$
,INPUT ,RELATIVE,INTERNAL ::
INPUT #1:N$,A,J,K :: DISPLA
Y AT(1,2)SIZE(27):SEG$(D$,1,
4)&" -~ Diskname= "&N$;
230 FOR X=1 TO 127 :: IF X/2
0<>INT(X/20)THEN 260
240 DISPLAY AT(24,1):"Type c
hoice or O for more 0" :: AC
CEPT AT(24,27)VALIDATE(DIGIT
)SIZE(~-3):X :: IF K=0 THEN 2
50 :: IF VV(K)<>5 THEN 411 :
: IF K>O AND K<NN+1 THEN 420
ELSE 240
290 DISPLAY AT(X+4,2):USING
170:NN :: DISPLAY AT(X+4,6):
P$:: PG$S(NN)=P$:: DISPLAY
AT(X+4,18):USING 170:J :: DI
SPLAY AT(X+4,22):T$(ABS(A))
291 VV(NN)=ABS(A):: VX(NN)=A
BS(B)
295 X$=" "&STR$(B):: DISPLA
Y AT(X+4,26):SEG$(X$,LEN(XS$)
-2,3):: VI=VI+J

C
C
!

350 DISPLAY AT(X+6,1):" C

hoice?" :: ACCEPT AT(X+6,16)
SIZE(3)VALIDATE(DIGIT):K ::
IF K<ONN AND K<ONN+1 THEN 41

0

410 IF K<1 OR K>127 OR LEN(P

G$(K))=0 THEN 320

411 IF VV(K)=5 OR(VV(K)=4 AN

D VX(K)=254)THEN 420

412 ON ERROR 417 :: CALL CLE

AR :: OPEN #2:D$&PG$(K):: CA

LL SCREEN(16)

413 LINPUT #2:W$:: PRINT W$
:: IF EOF(2)THEN 416

414 CALL KEY(0,K,S):: IF S=0
THEN 413

415 CALL KEY(0,K2,82):: IF S

2<1 THEN 415 ELSE 413

416 CLOSE #1 :: CLOSE #2 ::

END

417 DISPLAY AT(12,10):"UNLIS

TABLE" :: CALL SOUND(200,110
,0):: RETURN 400

430 ON ERROR 417 :: CALL INI

T :: CALL PEEK(-31952,A,B)::
CALL PEEK(A*256+B~-65534,A,B
):: C=A*256+B-65534 :: A$=D$

&PG$(K):: CALL LOAD(C,LEN(A$
))

The Menu Loader will
now list up to 127 programs
and files, showing the
number of sectors in each
and the file type, record
type and record length of
each file. It will stop at
the end of each page, and
continue on a defauvlt value
of 0, or will stop for
selection when any key is
pressed. It gives disk
name, number of sectors used
and available, It adds up
sectors actually used and
gives a warning if all
sectors are not accounted
for. It will load and rum
any program which can be
loaded from Extended Basic,
displaying the program being
loaded. It will delete any
program or file, after first
displaying the filename and
requesting verification. It
will list any listable file
to the screen, pausing on
any key input, and can be
very easily modified to list
to a printer, If a file is
not listable, it will inform
you so, and restart the menu
selection, It has the
pre~scan option to speed it
up.

Fairly often, the disk
directory will lose track of
one or a few sectors during
the process of loading
records, even though the
Disk Manager showed all 358
were initialized. That's
why I put the -<checking
routine in the Menu Loader.
The figure shown as "used"
is actually 358 minus the
number of sectors still
available, and is checked
against the total sectors of
all files,

The loss of a few
sectors is no serious
matter, but once in a great
while you may notice that
the "available" and '"used"
sector quantities have
obviously been reversed. I
have found that this is a
signal that the disk is
about to go haywire and you
had best back it up
immediately!

Programs and files are
loaded in the first
available sector, and
continued in the next
available sector. If a
number of small files are
deleted from a disk, and a
long file is then loaded, it
may thus be fractured into
many parts, If you have a
work disk on which you
continvally add and delete
files of various lengths, it
will become badly fractured.
This can cause disk errors,
and it also badly overworks
your drive. It is a good
idea to recopy your work
disk occasionally - file by
file, not sector by sector
with a quick copier.

TIPS FROM THE TIGERCUB #23

Several different
routines have been published
which will extract and save
a specified series of lines
out of a program, but this
one by George Steffen of the
L.A. 99ers is certainly the
best.,

1 !SUBROUTINE EXTRACTOR by G
eorge F, Steffen. SAVE in ME
RGE format, MERGE into any p
rogram (with line # starting
above 8), RUN to extract
2 !selected lines, Deletes i
tself. Then BE SURE to SAVE
the selected lines in MERGE
format because the remaining
lines are still in memory!
3 CALL CLEAR :: CALL INIT ::
INPUT "Line numbers of rout
ine to be saved: First,Last?
":L,M :: G=256 :: CAL
L PEEK(-31952,H,I,J,K)
4 C=INT(M/G):: D=M-C*G :: F=
(J-G)*G+K :: FOR E=(H-G)*G+I
TO ¥ STEP 4 :: CALL PEEK(E,
A,B):: IF A=C AND B=D THEN 6
5 NEXT E :: PRINT :"LINE";HM;
"'NOT FOUND!"™ :: STOP !@P-
6 H=INT(E/G):: I=E-(G*H):: H
=H+G :: C=INT(L/G):: D=L-C*G
:: FOR E=E+4 TO F STEP 4 ::
CALL PEEK(E,A,B):: IF A=C A
ND B=D THEN 8 1@P-
7 NEXT E :: PRINT :"LINE";L;
"not found!" :: STOP !E€P-
8 E=E+3 :: J=INT(E/G):: K=F-
(G*¥J):: J=J+G :: CALL LOAD(-
31952,H4,1,J,K):: STOP !@P-

-7

o 550G TISHUG NEWS DIGEST

Some folks were
interested in the idea of a
program that writes a
program, so let's write a
program that will write a
program to list the token
codes that you need to use
to write a program that will
write a program -

100 OPEN #1:"DSK1.TOKENLIST"
,OUTPUT,DISPLAY ,VARIABLE 16
3 :: FOR N=129 TO 254 :: Ll=
INT(N/256):: L2=N-256%L1

110 PRINT #1:CHR$(L1)&CHR$(L
2)&CHR$(131)&CHR$(N)&CHR$(0)
:: NEXT N

120 PRINT #1:CHR$(255)&CHR$
255):: CLOSE #1 :: END :

Key that in and SAVE it
just in case, then RUN it.
When READY, type NEW, then
MERGE DSK1.TOKENLIST. Now
LIST it and you will see a
list of ASCII codes 129
through 254 and their token
meanings. Delete lines 171
through 175, 185, 198, 226
through 231, and 242,
Change the definition of 199
to QUOTED STRING, of 200 to
UNQUOTED STRING, and 201 to
LINE NUMBER, and add line
255 END OF FILE.

You don't need all
those exclamation points, so
change the program to a
DIS/VAR 80 file by LIST
"DSK1.TOKENLIST"., Then key
in this little routine.

100 OPEN #1:"DSK1.TOKENLIST"
:: OPEN #2:"pIO"

110 LINPUT #1:A$:: PRINT #2
:SEG$(A$,1,4)8SEG$(A$,6,LEN(
A$)):: IF EOF(1)<>1 THEN 110
120 CLOSE #1 :: CLOSE #2 ::
END

RUN it, and print out a
list of all the token codes.
More on this next month -~ if
someone buys a few programs
so that I can afford another
month,

Now that we've done
about all that we can with
the Menu Loader, here is
another version to use on
your finalized library disks
of programs. It lacks the
features that you will no
longer need, but will list
your programs by their full
names, up to 24 characters
long.

100 fNAMELOADER by A. Kiudge
/M. Gordon/T. Boisseau/J. Pe
terson/etc,

110 CALL CLEAR :: CALL SCREE

N(5):: FOR S=1 TO 14 :: CALL
COLOR(S,7,16):: NEXT S :: C

ALL VCHAR(1,31,1,96):: CALL

COLOR(0,2,16)

120 OPTION BASE 1 :: DIM PG$

(99),M$(99)

130 ! List the full names of
the programs on the disk in
the DATA statements, in the
sequence in which they are
listed by an ordinary disk
cataloger program

140 !'Then SAVE this program

under the filename LOAD

150 DATA

160 DATA

170 DATA

180 DATA

190 DATA END

200 FOR J=1 TO 99 :: READ M$

(J):: M$(J)=SEG$(M$(J),1,24)

210 IF M$(J)="END" THEN M$(J

)y=""" :: GOTO 230

220 NEXT J

230 IMAGE ##

240 DISPLAY AT(1,4):"TIGERCU

B NAMELOADER"

250 D$="DSK1." :: OPEN #1:D$

,INPUT ,RELATIVE,INTERNAL ::
INPUT #1:P$

260 FOR X=1 TO 99 :: IF X/20

<>INT(X/20)THEN 290

270 DISPLAY AT(24,1):"Type #
of choice or Enter 0" :: AC

CEPT AT(24,27)VALIDATE(DIGIT

)SIZE(-3):K :: IF K=0 THEN 2

80 :: IF K>O AND K<NN+1 THEN
390 ELSE 270

280 X=1

290 I=I+1 :: IF I>127 THEN K

=X :: GOTO 370

300 INPUT #1:P$:: NN=NN41

310 IF LEN(P$)=0 THEN 350

320 DISPLAY AT(X+3,2):USING

230:NN :: DISPLAY AT(X+3,5):

M$(NN):: PG$(NN)=P$

330 CALL KEY(0,KK,ST):: IF S

T=0 THEN 340 :: FLAG=1 :: GO

TO 350

340 NEXT X

350 DISPLAY AT(X+4,1):" ™ ::
DISPLAY AT(X+5,2):USING 230

sNN+1 :: DISPLAY AT(X+45,6):"

Terminate"

360 DISPLAY AT(X+6,1):" C

hoice?" :: ACCEPT AT(X+6,16)

SIZE(2)VALIDATE(DIGIT):K ::

IF K<>NN AND K<>NN+1 THEN 38

0

370 IF K=NN+1 THEN CALL CLEA

R :: CLOSE #1 :: END

380 IIF K<1 OR K>99 OR LEN(P

G$(X))=0 THEN 350

390 CLOSE #1

400 CALL INIT :: CALL PEEK(~-

31952,A,B):: CALL PEEK(A*256

+B-65534,4,B):: C=A¥2564B-65

534 13 A$=D$&PG$(K):: CALL L

OAD(C,LEN(A$))

410 FOR I=1 TO LEN(A$):: CAL

L LOAD(C+I,ASC(SEG$(A$,I,1))

):: NEXT I :: CALL LOAD(C+I,

0)

420 CALL VCHAR(1,3,32,672)::
CALL SCREEN(8):: FOR S=0 TO
14 :: CALL COLOR(S,2,1):: N

EXT S :: DISPLAY AT(12,2):"L

OADING ";M$(K)

430 RUN "DSK1.1234567890Q"

Last month I forgot
to have anything for the
kids, or anything in Basic,
so -

100 CALL CLEAR

110 REM by Jim Peterson of

Tigercub Software

120 PRINT TAB(1);'"****AUTOMA

TIC MOUSE MAZE*¥*x"g 5 ¢ "
Choose your mouse and":"wa

tch it try to find its way"

130 PRINT "through the maze.

": :" When one of the mice
has'":"taken 50 extra steps,
the":"cat gets itt"

140 PRINT : :"Touch any key"
150 CALL KEY(0,K,ST)

160 IF ST<1 THEN 150

170 CALL CLEAR

180 CALL CHAR(120,"0078FEFFF
E78™)

190 CALL CHAR(121,"1038387C7
€7C7C38")

200 CALL CHAR(122,"387C7C7C7
€383810")

210 CALL CHAR(123,"00lE7FFF7
F1E")

220 CALL CHAR(128,"00lE61816
11E™)

230 CALL CHAR(129,"384444444
4242410™)

240 CALL CHAR(130,"102828444
4444438™)

250 CALL CHAR(131,"007886818
678"™)

260 CALL SCREEN(5)

270 T1=610

280 T2=610

290 CALL CHAR(136,"FFFFFFFFF
FFFFFFF")

300 CALL COLOR(14,16,16)

310 CALL COLOR(13,2,16)

320 CALL COLOR(12,2,16)

330 R=10

340 GOSUB 1460

350 R1=10

360 C=2

370 Cl=2

380 CALL HCHAR(R,C,136,2)
390 C=C+l

400 M=120

410 M2=128

420 RANDOMIZE

430 A=(INT(2*RND)+1)*2

440 B=INT(10¥RND)+1

450 ON B GOSUB 470,470,470,4
70,510,510, 550,550,590, 590
460 GOTO 420

470 IF C+A>30 THEN 630

475 if (c>20)*(x<10)then 500
480 CALL HCHAR(R,C,136,A)
490 C=C+A

500 RETURN

510 IF R+A>20 THEN 540

515 x=x+1

520 CALL VCHAR(R,C,136,4)
530 R=R+A

540 RETURN

550 IF R-A<2 THEN 580

555 x=x+1

560 CALL VCHAR(R-A+1,C,136,A
)

570 R=R-A

580 RETURN

590 IF C-A<3 THEN 620

595 x=x+1

600 CALL HCHAR(R,C-A+1,136,A
)

610 C=C-A

620 RETURN

630 CALL HCHAR(R,C,136)

640 C=C+1

650 IF C<31 THEN 630

660 R2=R

670 C2=C

680 CALL HCHAR(R1,Cl,M)

690 CALL HCHAR(R2,C2,M2)

700 Y=Y+1+(Y=2)%*2

710 IF Y=2 THEN 1020

720 CALL HCHAR(R1,C1,136)
730 ON M-119 GOTO 800,900,74
0,850

740 IF Cl=31 THEN 950

750 CALL GCHAR(R1,Cl+1,G)
760 IF G=32 THEN 850

770 C1=Cl+l

780 M=120

790 GOTO 950

800 CALL GCHAR(R1-1,C1,G)

eraDavEe Fase 19—

SAVE TUTORIAL

By Scott Darling

After reading some messages concerning using the Save
utility in the Editor Assembler package 1 awaited one
individuals tutorial on the subject. But none appeared.
So I decided to sit down and write one for it. Now some
of you may know how to do this, but evidently not
everyone does; so here goes.

Obviously to use the Save utility, you need the E/A
package. But a couple of programs are helpfull, A
sector editor such as DISK-AID, DISKO, and the like.
The Mini-Memory module is a nice shortcut for finding
addresses.

USING THE SECTOR EDITOR

First off any D/F 80 file will work, compresed or
uncompressed. You should copy the program to a clean
disk to make it easier to find using the sector editor.
Load the editor and search for the end of the program.
Disk~Aid will tell you where the last sector of a
program lies, Toggle to Ascii and look at the sector
info, There should be some names and references to
VSBW, VMBW, START and so forth., Compressed code is
easier to read by the way. Look carefully to see if the
words SFIRST, SLAST, or SLOAD are there, IF they are
skip the rest of this and go directly to "USING THE
SAVE PROGRAM"!!

If those words are not there. Look to see if there are
any lines of code that look like the actual program.
The below will serve as an example. It is non-
relocatable code. The "9" stands for that. An "A"
stands for relocatable. (much easier to work with by
the way) (this code was loaded into E/A editor, it will
look different in sector editor)

0023 9E1D8BO3807FDO1F
0024 1E0467FEBIF

0025 6EO46START 7FDO6F
0026 : 99/4 AS

You will notice that at the line 24 there is a "1" to
designate an auto start program. Change the "1" to a
"F", This will defeat auto-start. There may be a "2"
there, it also means auto-start.

Directly after that 1 or 2 is an address. This is the
"START"ing address of the program. SFIRST and SLOAD
will equal this address, The starting address also
appears in front of the word "START". As is the case
with most "DEFS" in this location.

To determine the SLAST is a little trickier. Just
before the 1 or 2 auto-start was an address >EID8. Now
count over 1 byte for each 2 letter number combos.
Excluding the B and 7. In other words:
9E1D8_0380_FDI1_.

EID8 9 A B C = E1DC This will make SLAST = EIDC Another
example is for RELOCATABLE code:

0023 AO1D8BO3807FDIIF
0024 100007FEB9F

0025 60000START 7FDO6F
0026 : 99/4 AS

In the above example I have changed a few numbers to
show what relocatable code might look like. You will
notice the "1" for auto-start is still in place, but

there now are "000OU" instead of and address. DBut 0000
is an address. It means that no matter what the lead
address is, that the start of the program is "x000" So
SFIRST equals "AO00" and SLOAD is the same. Now slast
will work the same as above except this time it equals

AODC.

Confused?? I hope not. If so reread this before
continuing!!

ADDING AN ASSEMBLY DEF PROGRAM

I hope that you realize that there was a reason for all
of the above jumble! Be- cause now you are going to use
those address to build a short ASSEMBLY program!

Type in the following:

DEF SFIRST,SLOAD,SLAST
SFIRST EQU >A000
SLOAD EQU >A000
SLAST EQU >AODC

END

Save this program using whatever name strikes your
fancy. Load the assembler and assemble using another
name, Bypass list, and bypass options. It will take a
whole 2-3 seconds to assemble and you are ready for the
next step. This source code can be used indefinitely.
Just plug in the appropiatte addresses.,

USING THE SAVE PROGRAM

1) Bring up the "LOAD & RUN" option of the E/A module.
2) Load your non auto-start program,

3) Load the "DEF" program that you wrote. (unless the
program already has the DEFs in the program)

4) Load the E/A “SAVE" utility
5) Hit enter to "PROGRAM NAME" and hit enter

6) The next prompt will ask for a name. Remember that
it will increment the name the next ASCII character if
the resulting is going to be larger than 8K (33
sectors), plan accordingly.

7) Now hit enter, and try running your NEW program in
"RUN PROGRAM FILE" option.

If it runs you are home free. If not you may want to go
back and check to see if used the correct addresses.
Most of what I wrote above was trial and error on my
part, so experiment and play around with the programs.

The above was a rather short description. There is a
shortcuts to find addresses that uses the Mini-Memory.

Initiate the M-M, then load the program. If it starts
running you know that you have to defeat the auto-start
feature. Escape the M-M and bring up Easybug. Do
"M7020" and look at page 74 of the M-M manual. 7020 is
default entry address. Or SFIRST and SLOAD. Step down
to 7024 and this is the last free address in high
memory or the end of the program. IF 7024 is "0000"
then you know that the program is probably absolute
code.

TISHUG V\EWS DIGEST

DUP 10 + 2028 SWAP ! DUP 12 + a SWAP ! DUP 14 + 24 0 FILL
where a = 0201 for DSSD, 0102 for SSDD, or 0202 for DSDD,

Line 10 - change 165 to 2CD for 180 SCRN, or 59D for 360 SCRN.

Line 13 - change 4016 to C02C for 180 SCRN, or CO059 for 360 SCRN.
Next edit screen 33 to modify the FORMAT-DISK word to:
: FORMAT-DISK 1 + a 33616 ! 18 SYSTEM ;
where a = 258 for DSSD, 513 for SSDD, 514 for DSDD.

Finally, you need to create a word that will modify the header sectors
on your new disk. This word only needs to be executed once since copies of
this disk, once it's modified, will not require modification, Illere is the
way to do it:

HEX O DISK_LO I
: DD-FORTH O BLOCK UPDATE
DUP A + a SWAP !
DUP C + b SWAP !
DUP 10 + c SWAP !
DUP 12 + d SWAP !
38 + C8 FF FILL

removes disk fence)

read screen 0 and mark as updated)

a 2D0 for 180 SCRN, 5A0 for 360 SCRN)

b 944 for DSSD, 1244 for SSDD or DSDD)

c 2028 for all versions)

d 201 on DSSD, 102 on SSDD, 202 on DSDD)
flag all sectors as in use)

1 BLOCK UPDATE
DUP E + f SWAP !
DUP 1C + g SWAP !
DUP 1E + h SWAP !

20 + i SWAP !

read screen 1 and mark as updated)

f 2A0 for 180 SCRN, 570 for 360 SCRN)

g 4D20 for 180 or 360 SCRN versions)

h 2805 for 180 SCRN, 5205 for 360 SCRN)
i F029 for 180 SCRN, FO059 for 360 SCRN)
write modified screens to disk)

nounouon

AN NN N AN~ NN NN AN SN

FLUSH ;
DECIMAL DD-FORTH

Now your new high capacity copy of FORTH is fully compatable with Disk
Manager, the FORTH format, copy, test, and header words and your double
density and/or double sided drives and controller. Enjoy!

B3 s e e sl e ol o e el o e et sl S e e Sl o e e e sk e e ek ok o e s s e s e e le e o i e e el e sl s 3l sl sl sk ok e el koK K Sk kK Kk K

Special thanks to Jim Vincent who is the FORTH columist for the 99'ers Users
Group Association,

90 REM SLANTED UPPER CASE LE
TTERS, NUMBERS, PUNCTUATION

100 DATA 33,000404080808001,
35,0009127F24FE489, 36, 001F24
283E0A127C, 40,00010204080808
04,41,002010101020408, 43, 000
004083E08L

110 DATA 48,001F11222222447C
,49,0001010202020404 ,50, 001F
01023E20407C, 51, 001F01023E02
047C,52,001111223E020404, 53,
001F10203E02047C

120 DATA 53,001F10203E22447C
, 54,001F10203E22447C, 55, 001F
010202020404, 56, 001F11223E22
447C,57,003F21427E02047C, 58,
00000C0C001818

130 DATA 59,00000C0C0018081,
63, 000F11020E08001 , 65, 001F11
223E224444 ,66,001E11213E2242
7C,67,001F10202020407C, 68, 00
1E11212122427C

140 DATA 69,001F10203E20407C
,70,001F10203E204040,71,001F
10202E22447C,72,001111223E22
4444,73,001F04080808107C, 74,
000101020222447C

150 DATA 75,001111223C284444
,76,001020202040407C, 77,0037
294A52428484,78,0011112A2A2A
4444,79,001F11222222447C,80,
001F11223E204040

160 DATA 81,001F1122222A447A
,82,001F11223E284444,83,001F
20203E02027C, 84,001F04080808
1010,85,001111222222447C, 86,
0011111222242438

170 DATA 87,002121424A5294EC
,88,0011110A0C142222,89,0011
11223E081010,90,001F02041820
407C

180 FOR CH=1 TO 45

190 READ CHN,CH$

200 CALL CHAR(CHN,CH$)

210 NEXT CH

220 INPUT M$

230 GOTO 220

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

