
USERS GROUP i5UkAmIT 99'ER

' :
2.4^ •-•-• 	'

.!•

tlrfifkztr.n; 	 — 	rc-rs 	 • '
... 	 . 	• 	. 	 • 	• 	' 	 t

JUNE 1984 Vol. 2 No 6

The June meeting will be held on Thursday, June 21 at Cuyahoga
Falls High School on Fourth and Stow St. in Room 413 - Physic's Lab.
The July meeting will be held on July 19. Please remember to sign in.

PLEASE BRING YOUR LIBRARY TAPES IN.

This month's program will be a SWAP MEET. You will be able to
check out library tapes for that night's use from 8:00 to 9:30. We are

asking you to bring your keyboard, monitor, cassette player, dual
cables, power strip and/or extra extension cords if you want to make

copies from our library. If you can't bring in your setup, at least

bring in your dual cables, cassette player, power strip and/or extra

extension cords. You can only check out one library tape at a time,
then when you return that one you can take out another one. If you
need blank tapes we will offer C-10 for .75 each (this is a special

one-time priceY. If you want to check out tapes for the month of July

you can do so after 9:30. If we have a good turn out this month, we may
run the SWAP MEET again in July or August.

F- C31S; I -IF C3IMB int"hi IPA L_PilEcIL_FT__
Paul Hayden, who was our first President, now serving as

Secretary, has stepped down from his position. We thank him for his

service and hope he will still remain an active member.

Tom Sanders, our Program Vice-President, has had to resign from
his position due to conflicting work and family schedules. We will miss

his great programs and hope that he will also remain as active as

possible in our group.

Due to these circumstances, we are looking for a Secretary and
Program Chairman. If you would like to take an active part in making

our group grow, why not volunteer for the position of Secretary or

Program Chairman. For details about the responsibilities of either of
these positions, call Pat Bowen at 920-1884 or me, Kathi Anderson at
923-7570.

1.41 	 Fzif- T

If you want to share a programming tip, review a piece of software

or hardware, or have written programs you want to share with us, we

would like to know what you are interested in. We need input from
you.

from the May 1984 issue of Spirit of 99, out of

search,replacement and
deletion of strings.

This article comes

Columbus, Ohio.

ICCIMPAIN I CON %,E3
11- I-141F2I1rE

By Nira., N. Shah

This is a review
/comparison of two word
processors named
COMPANION and TI-WRITER.
COMPANION was developed
by Intelpro and TI-
WRITER by Texas
Instruments. The thing
that makes the COMPANION
unique from most word
processors is that a lot
of it is written in
Assembly Language. The
only part that is
written in Basic is the
system monitor for
COMPANION. TI-WRITER is
written entirely in
Assembly Language.
COMPANION is available
only fn a Disk form and
TI-WRITER is available
in a module and disk
form. The COMPANION is
available for $79.95
(U.S.A.) at this
address:

INTELPRO
5825 BAILLARGEON STREET
BROSSARD, QUEBEC, CANADA
34Z 1T1

The COMPANION is
the only word processor
on the market can be
compared to TI-WRITER
(that I know of). Keep
in mind that each has
its advantages and
disadvantages. I will
try to point out the
differences between the
two word processors in
an objective manner.

Obviously, the main
difference and the most
important is that
COMPANION has an 40
column editor where
TI-WRITER has a variable
column (maximum of 80
columns) editor. If you
need to see how the text

is going to look on the
paper prior to printing
then you should choose
TI-WRITER as your word
processor. The second
major difference between
the two is that
COMPANION has to be
loaded into memory only
once, no swapping of
disks! TI-WRITER forces
you to swap disks (for
one disk drive systems)
if you desire to use
Text Formatter. But
remember because of this
second major difference
TI-WRITER is capable of
handling more text than
is the COMPANION. The
third major difference
between the two is how
they print out the text
onto a printer and what
options they provide.
COMPANION does NOT
provide a right justify
command where the
TI-WRITER has that
command. Intelpro has
stated in their
documentation that right
justification is in
being worked on in their
R/D department.

Both processors
have the capability to
move, copy, and delete
blocks of text.
COMPANION deals with
hl sacks of text via
special indicators.
TI-WRITER does it with
line numbers. The
documentation for both
processors is quite
extensive and easy to
understand. Thus, no
matter which word
processor you choose,
you most likely will not
be left in the dark.
But as usual,
experimentation is the
only way to find out
what you can and cannot
do with the word
processor. Both word
processors can do global
or selective

The COMPANION has
two added significant
features which TI-WRITER
does not .gave.
COMPANION can count the
number of occurences of
a unique string within a
body of text. The
second feature is that
COMPANION lets you
customize all the
defaults for printing
via a program on the
program disk. But keep
in mind that the
cusomizAtion invalidates
the warranty! Both word
processors have unique
symbols to indicate the
beginning of a
paragraph, line feed,
center a string and
start a new page. But
the COMPANION also has a
one keystroke command
that enables one to tab
over a specified number
of columns for things
such as salutations in a
letter.

The thing that
COMPANION is sorely
missing is an OOPS!
feature, which recovers
inadverdantly deleted
text. It also needs a
Delete-To-End-Of-Line
k.!!y-tr-krz -mnmand. I
would also like to see
Intelpro add a Delete
Line command in future
revisions of the
program. COMPANION also
needs some way to move
the cursor in a vertical
motion through the
middle of the text. In
other words, when I use
the Up Arrow key in
COMPANION it will
eventually left justify
over to the first column
thus making it almost
impossible to see if the
columns of two tables
are even. TI-WRITER

does not have this
problem; when changing
rows the columns do not
change and vice versa.
The labeling of the
function keys in
COMPANION seems to be
rather backward. To
scroll down 12 lines I
must press <FCTN 4>
(CLEAR) and to scroll up
I must press <FCTN 6>
(PROCEED). To me, the
word PROCEED means to go
to the finish or the end
of the text. But not so
in Intelpro's
interpretation! Also,
to use the Editing
commands in COMPANION I
must press <FCTN 9>
(BACK) and to get the
the main menu I must
press <FCTN 7> (AID).
To me the word BACK

- means to go back to the
main menu. Again,
Intelpro seems to have
their English mixed up.

Never fear,
COMPANION does have some
advantages over
TI-WRITER. The main
advantage is the
considerable speed in
which COMPANION deletes,
moves, and copies blocks
of text. The speed
difference is quite
obvious when using the
auto-repeat feature of
any key being pressed is
used. If you hold down
the left arrow key then
you will see the cursor
move to the left at
normal speed then
accelerate to the speed
of light! This is quite
evident when deleting
characters, the letters
move so fast that they
become a blur! The
COMPANION has three
different symbols for
the cursor: Edit, Text
and Insert. When
inserting characters

into.the text the
COMPANION does not split
the line into two
sections, before and
prior the cursor. The
COMPANION's insert
feature is a normal one,
just like the TI BASIC
editor. The lower case
letters in COMPANION are
true lower case, not
small capitals as they
are in TI-WRITER. The
scroll up and down
blocks of text in the
COMPANION consists of
scrolling 12 lines of
text in a smooth but
fast manner. TI-WRITER
scrolls in an
instantaneous scroll of
24 lines of text. When
typing text into the
COMPANION the text is
never re-configured by
the program unless you
specifically tell it to
do so. So, when you
reach the end of the
line in the middle of a
word, COMPANION will
merely wrap around to
the next line. The word
is NOT shifted to the
next line as it is in
TI-WRITER. This was
done to fully utilize
all 40 columns of the
screen.

Both word
processors enable you to
send all the ASCII
characters (0-255) to
the printer. Both allow
you to change the
background color of the
screen. But
unfortunately, COMPANION
adopted white for the
color of the foreground
of the text. So, if you
have a Black & White
T.V. then you may have a
problem in reading the
text on the screen. I
know that I certainly
do! Both programs
enable you to print text
in a single sheet or in

• continuous form
fashion. Both
processors have a
warning message to
signal impending
overflow of the text
buffer. But COMPANION
also tells you how much
text is currently in the
buffer, thus, you can
keep an eye on how much
is in the buffer.

Personally, I think
that the COMPANION has a
better printer formatter
and the TI-WRITER has a
better text editor.
Unfortunately, the two
cannot be merged to form
the ultimate word
processor. Due to TI's
decision to drop out of
the market it may be
hard to acquire a
TI-WRITER. Intelpro is
going to continue
marketing the COMPANION.
Also, Intelpro is
willing to personalize
their product just for
you and based on that
fact I think it would be
wiser to buy the
COMPANION. Keep in mind
the minimal sytem
configuration for either
word processor is
Extended Basic, Disk
Drive, 32K memory and an
optional RS232 and
printer for the
COMPANION. Replace the
Extended Basic with the
TI-WRITER module for the
TI-WRITER word
processor.

I*0-1

This article comes from the HUGGERS HOOSIER USERS GROUP. MAY 1984.

BEST OF THE NEWSLETTER

THE HEART AND SOUL OF PERSONAL RECORD KEEPIN6

by Don Donlan

Those HUGgers who subscribe to the 99'er HCMagazine probably welcomed the 'CALL PEEKV
and CALL POKEY' information related to the MinHMemory Command module. With this article I
would like to begin sharing some of the 'secret' subprograms that are a part of the
PERSONAL RECORD KEEPING module. A subprogram is an independent program which usually
performs only one task or function. Because the subprogram performs only a single or
rather narrow task, several subprograms are usually bundled together when making a program
or, as in this case, a command module. Subprograms allow a programmer to perform tasks
over and over again using the same code. A subprogram is like a meat grinder--it performs
one task. But depending on what you 'feed' the meat grinder, you get different results.
If I put pork in my 'meat grinder', I would get sausage; with beef, I get hamburger; with
ham, I get the base for ham salad. Similarly, you can 'feed' a subprogram differing
infr.rmation to get different results. The ii“ormiation you 'feed' a subprogram is contained
in PARAMETERS. These parameters are like serving trays that carry information back and
forth between the main body of a program and the subprogram you select to use. Since you
probably have more than one subprogram (or more than one task or function you wish to
accomplish), you need to be able to select a particular subprogram. A name is given to
each subprogram. In this way the computer knows which task or function to perform when you
CALL the subprogram by name. Pages 71 through 90 of the TI 99/4A USER'S REFERENCE GUIDE
that came with your computer tell about the color graphics and sound subprograms that are
part of TI BASIC. You're probably already using the CALL CLEAR subprogram when you want to
'blank out' or erase the screen. Perhaps you've used the CALL SCREEN subprogram and passed
along the required parameter (that is, a number from 1 to 16). The CALL SOUND subprogram
has the ability to receive nine (9) parameters, but only three are required for the
subprogram to do its job of producing a single tone. These subprograms are explained with
examples in the USER'S REFERENCE GUIDE. They should give you some basic understanding of
how subprograms work. You may want to start there.

For now let's return to the task at hand: defining and describing the subprograms that
are available in the PERSONAL RECORD KEEPING cartridge. There are seven subprograms in the
PRK command module. A program written in TI BASIC can use these subprograms if you plug in
the PRK module and take option 1 (TI BASIC) BEFORE you try to load any program. I will go
into more detail in following articles, but at this time I merely wish to list the seven
subprograms, their parameters, and some comments on the function they can perform. In the
final article of this series, I will be including a TI BASIC program that can be used on a
system with a disk drive to access the records created by the PERSONAL RECORD KEEPING
command ffiodule. This will provide greater 41.e.5%ibi;ity in the fi le or this csrtridge.

SUBPROGRAM NAME
==========

PREP SUBPROGRAM
Code as:
CALL P(V)

LOAD SUBPROGRAM
Code as:
CALL L(VS,V)

SAVE SUBPRO61lN1
Code as:
CALL S(VS,V)

PAIWIETERS DESCRIPTION OF FRICTION

• 	

V 	The amber of bytes of
characters you wish to
reserve for est.

VS Data file ease.
V 	Retire code.

VI Data file ease.
V 	Retire code.

Prepares a work area or space that is to be cud for
the storing of information. Allocates a data area is VDP
NAM.

Loads a data file from a disk and indicates , in the
retire code, whether the subprogram seccessfilly
loaded the file.

Saves a data file from the work area prepared by the
PREP subprogram to a disk. Retire code tells whether
the SAVE subprogram did its job OK.

SUBPROGRAM NAME

ACCEPT SUBPRO6R44
Code as:
CALL A(Y,X,W,C,V,L,H)

or
CALL A(Y,X,W,C,V)

or
CALL A(Y,X,W,C,V,F)

or
CALL A(Y,X,W,C IVS)

DISPLAY SUBPROGRAM
Code as:
CALL D(Y,X,W,V)

or
CALL D(Y,X,W,V$)

or
CALL D(YI,X1,W1,V1,

Y2,X2,W2,01,
Y3,X3,W3,V3,...

6EIPU1 SUBPROGRAM
Code as:
CALL 6(RAW,REC I FLD,V)

or
CALL G(R/W,REC,FLO,V$)

or
CALL 6(R/W I REC,FLD,M1S,V2)

or
CALL 6(R/W,REC,FLD,M1S,V2$)

HEADER :4=0=4
Code as:
CALL H(R/W,INFO,FLD,V)

or
CALL H(R/W,INFO,FLD,V$)

PARAMETERS
NZ=

Row number.
X
	

Column somber
W
	

Field size or the
number of characters

C
	

Return code.
V
	

*attic variable.
VS Character variable.

Low value is a range of
numbers.

H
	

High value in a range
of sobers.

F
	

Field number of a piece
of information within a
PRK record.

Y 	Row number.
X 	Column number.
W 	Number of characters or

field width.
V 	Number to display.
VS Characters you want to

display.

R/W Read or Write code.
REC Record number.
FLD Field number.
V 	Number written.
VI Characters written.
V2 Number written.
V2$ Characters read.
MIS 'Missing' return code.
articles.

RN :fad c Write ci:de.
INFO Header record item.
FLD Field cumber.
V 	Numeric variable.
V$ Character variable,

THE HEART AND SOUL OF PERSONAL RECORD KEEPING, 	cont'd

DESCRIPTION OF Fle4CTION

Works much like the 'Extended BASIC 'ACCEPT -AT'
code. it 'captures' informatics from the
keyboard as you key it and them echoes or displays that
informatics on the screen for you to see. Various
parlatters may be used, depending on whether you
want to 'read' numbers, sobers within a certain
range, or a character string. The return code
tells whether a valid, invalid, or function key was
pressed. The F or field parameter can be used to
validate data entered ONLY if your program has a second
type of record - -a header record--which it uses to
cross-check the information you enter.

Similar to Extended Basic's 'DISPLAY AT' operation, this
subprogram places either Numbers or characters on the
screen. Row number ranges from I to 24, while the
column number ranges from I to 28. Multiple displays
can be done or performed with one CALL D.

Retrieves and places information from or into the
work area defined by PREP subprogram. The subprogram
identifies missing data (information not found) when
reading a record. This allows the subprogram to
tell the difference between a field that has never been
entered ('missing') and a field that is all blanks or
all zeroes. Saves space in memory by using this code.
Values for these codes will be discussed in later

it.is is a core 7.4borciras 	PR% dale. It is used to
establish and maintain a kind of 'data dictionary'.
This dictionary defines the kinds of information and the
location of the information within the PRK records.
Fourteen (14) kinds of information or header record
items are stored here. This one record is the key to the
entire 'data base' created by the PRK module. It gives the
characteristics of each field within a record (name, type,
size, decimals (if any)), storage space and position). The
PRK file name, date, number of fields per record, the total
number of records, the length of the header record itseli, and
the length of each data record are all a part of this one
record.

Because of its central role in organizing the Personal Record Keeping command module, this
is where we will begin our article in next month's newsletter.

	

'TI 	t 	e come.,e,

	

AO!' i 1 	1 C-1 84 I leRIS.1 	t t rr .

TENDERFOOT TEcitzli I

ehderfool. 	from the Spiri of

AL"
180 END

BY NIRAJ N. SHAH

I would like to give credit to
Curtis Garcia of the South Bay TI
Users Group for giving me the
incentive to write this month's
article on Relational Operators. I
apologize to those of you who were
expecting a TENDERFOOT BASIC column
in last month's newsletter. I was
too busy with my homework for OSU
to find the time to write my
column. For those of; you who do
not know me, I am an Electrical
Engineering student at the Ohio
State University. I expect to
graduate in June of 1984 and become
another member of the unemployed
club.

This month I am going to discuss
Relational Operators. What are
Relational Operators? They are the
greater than(>), less than(<) and
the equal(=) operators. The term
relational implies that the
operators show the relation between
two operands.

To illustrate what I am saying lets
look at an example. Suppose Tom
and Dick are bidding at an auction.
We want to find out whose bid was
the highest. Here is one possible
solution to the problem.

100 INPUT "TOM'S BID = ":TOM
110 INPUT "DICK'S BID = ":DI
CK
120 IF TOM>DICK THEN 130 ELS
E 140
130 PRINT "TOM'S BID WAS GRE
ATER THAN DICK'S BID"
140 IF DICK>TOM THEN 150 ELS
E 160
150 PRINT "DICK'S BID WAS GR
EATER THAN TOM'S BID"
160 IF DICK=TOM THEN 170 ELS
E 180
170 PRINT "BOTH BIDS ARE EDU

Lines 100 and 110 ask the user what
are the respective bids for Tom and
Dick. Line 120 compares Tom's bid
with Dick's bid, in particular, it
checks to see if Tom's bid is
larger than Dick's bid. If so,
then the corresponding message is
printed by Line 130 otherwise
execution skips to Line 140.

Line 140 checks to see if Dick's
bid is greater than Tom's bid. If
so, then the appropriate message is
printed by Line 150. Otherwise,
the computer skips to line 160,
which compares the two bids to see
if they are equal. Again, if they
are equal then a message is printed
by Line 170. Then the program
stops execution by Line 180.

I know that some of you more
advanced programmers are wondering
why I put'Line 160 in there. The
main reason for the inclusion of
that line is clarity. It is easier
for the novice to understand the
flow of execution if Line 160 is
used. However, if you want to
change that then both Lines 140 and
160 have to be changed:

140 IF DICK>TOM THEN 150 ELS
E 170

160 GOTO ,180

Try it out and you will see that
both versions accomplish the same
thing. But, the first version is
easier to understand than the
second version.

Now that you have seen a concrete
example on how relational operators
are used in a program lets examine
how the computer evaluates
expressions that contain those

CONTINUED

relational operators. When the
computer encounters an expression
such as, A<B, it evaluates it to
see if A is indeed less than B. If
that is the case then the computer
will replace that expression by a
-1. Otherwise if it turns out that
A is not less than B then the
computer replaces that expression
by a zero(0).

100 A=5
110 B=10

Here is an example.

120 PRINT "A<B IS";A<B
130 PRINT "A>B IS";A>B
140 PRINT "A=B IS";A=B
150 PRINT "A<=B IS";A<=B
160 PRINT "A>=B IS";A>=B
170 END

has been pressed then it checks to
see if the key that was pressed was
a numeric key, the numbers zero
through nine. If so, then the
program prints a one(4) to indicate
a valid key was pressed. But if a
valid key was not pressed then a
value of zero(0) should be
printed.

100 CALL KEY(0,K,STATUS)
110 IF STATUS=0 THEN 100
120 IF K<ASC("O") THEN 140
130 IF K>ASC("9") THEN 140 EL
SE 160
140 PRINT 0
150 GOTO 170
160 PRINT 1
170 END

Type in this program and observe
the results. In Lines 100 and 110
the variables, A and B, are
assigned their respective values of
five and ten. Then in Lines
120-160 the computer is asked to
compare the two variables and print
the results of the comparisons.
Since A is indeed Less than B but
not equal to B only Lines 120 and
150 should result in printing a -1.
The other Lines should print a
zero(0).

Why is this? As I stated above, if
the relational expression is
evaluated to be true then the
computer replaces that expression
with a value of -1 otherwise it is
zero(0). Since only the
expressions in Lines 120 and 150
are true then only those lines will
print a true indicator value of -1.
The rest of the lines will indicate
a false evaluation of their
expressions by printing a value of
zero(0).

Now, how can one use this facility
in his programs? Well, lets try to
minimize the following program.
This program scans the keyboard for
a key to be pressed. When a key

Here is a shorter program that
makes full use of the facilities of
relational operators. But it is
also a lot less readable.

100 CALL KEY(0,K,STATUS)
110 IF STATUS=0 THEN 100
120 IF (K<ASC("0"))+(K>ASCC"
9")) THEN 130 ELSE 150
130 PRINT 0
140 GOTO 160
150 PRINT 1
160 END

The key point to be made by the
second version is in Line 120,
which replaced lines 120 and 130 in
the first version of the solution.
Lets say that the key pressed was
less than ASC("O"), maybe the <!>
key was pressed. That means that
the expression K<ASC("0") is going
to be evaluated to be true and
replaced by a -1. So now Line 120
looks like this: (-1)+(K>ASC("9)).
Since the <!> key was pressed, the
expression, K>ASC("9") is false and
thus will be replaced with a
zero(0). Which makes Line 120 look

CONTINUED

looks like this: (-1)+(K>ASC("9)).
Since the <!> key was pressed, the
expression, K>ASC("9") is false and
thus will be replaced with a
zero (0). Which makes Line 120 look
like this: (-1)+(0). But since
there is an addition symbol still
left in the expression the computer
has to add the two numbers. So,
now Line 120 looks like this: -1.
Since the expression in the
IF-THEN-ELSE statement has been
reduced down to a -1 value(true)
the computer recognizes the
IF-THEN-ELSE statement to be a TRUE
one. Which causes execution to
continue on to Line 130 and print a
value of zero(0). Which indicates
that an invalid key was pressed.

Here is a summary of the sequence
of evaluations that the computer
made:

(1) (K<ASC("0")+(K>ASC("9")
(2) (-1)+(K>ASC("9")
(3) (-1)+(0
(4) -1
(5) Aha! It is a True Statement!
(6) So, print a value of zero(0)!

Now, suppose that the key pressed
was indeed a numeric key, such as
<4>. Here is the sequence that
computer would go through in
evaluating the expression in Line
120.

(1) (K<ASC("0")+(K>ASC("9")
(2) (0)+(K>ASC("9")
(3) (0)+(0
(4) 0
(5) Aha! It is a False Statement!
(6) So, print a value of one(1)!

Well, you say that is all fair and
good but it only saved one line!
True, but lets say that the problem
statement was changed to print a 1

when the key being pressed was in
the range:

0 <= KEY <= 9 OR A <= KEY <= Z

In other words, if the key pressed
was between 0-9 or between A-Z then
a print a one(1). In the first
example we would have to add two
more lines. Here is the solution:

100
110

CALL KEY(0,K,STATUS)
IF STATUS=0 THEN 100

120 IF K>=ASC("O") THEN 130 E
LSE 140
130 IF K<=ASC("9") THEN 160
132 IF K>=ASC("A") THEN 134 E
LSE 140
134 IF K<=ASC("Z") THEN 160 E
LSE 140
140 PRINT 0
150 GOTO 170
160 PRINT 1
170 END

Notice that Lines 132 and 134 were
added to the above program. Also,
take a close look at the logic
involved in the IF-THEN-ELSE
statements. The relational
expressions are quite different
from the previous examples. Here
is the second solution which uses
the relational operators more
efficiently.

100 CALL KEY(0,K,STATUS)
110 IF STATUS=0 THEN 100
120 IF (K<ASC("0"))+(K>ASC("
9"))*(K<ASC("A "))*(-1)+(K>A
SC("Z")) THEN 130 ELSE 150
130 PRINT 0
140 GOTO 160
150 PRINT 1
160 END

Notice that in this version only
Line 120 had to be changed. Line
120 has three major checkpoints:

CONTINUED

a) (K<ASC("0"))
b) (K>ASC("9"))*(K<ASC("A"))*(-1)
c) (K>ASC("Z"))

Part (a) checks to see if the key
pressed was less than zero, which
is invalid. Part (c) checks to see
if the key pressed was greater than
<Z>, which is also invalid. The
other invalid range is for any key
that lies between nine(9) and <A>,
not inclusive. This range is
checked by part (b). Lets assume
that a key was pressed in the range
being checked by (b). Assume the
key pressed was <:>. Here is how
the computer would evaluate parts
(a),(b) and (c).

For Part (a):
1) (K<ASC("O"))
2) 0
3) Aha! It is a false value!

For Part (b):
1) (K>ASC("9"))*(K<ASC("A"))*(-1)
2) (-1)*(K<ASC("A"))*(-1)
3) (-1)*(-1)*(-1)
4) (1)*(-1)
5) (-1
6) Aha! It is a true value!
7) Thus it is an invalid key!

For Part (c):
1) (K>ASC("Z"))
2) 0
3) Aha! It is a false value!

For Line 120
1) (a)+(b)+(c)
2) (0)+(-1)+(0)
3) (-1)+(0)
4) -1
5) Aha! It is a true value!
6) Thus it is an invalid key!

The main point of this way of doing
the invalid key checking is to
'illustrate how one can implement OR
and AND functions. Part (a) and
(c) were strictly relational
expressions. Part (b) was a
mixture; both relational and an AND
function. It was checking for an

invalid key by making sure that the
key was greater than <9> AND less
than <A>. Then finally Line 120 in
itself was an OR function. It was
checking to see if the key pressed
was less than <0> OR greater than
<Z> OR between <9> AND <A>. Thus,
OR functions can be implemented
with the plus(+) operator and AND
functions with the multiply(*)
operator.

Go through the same procedure as I
showed above in evaluating the
expression in Line 120 for a valid
key. This time the second version
of the program saved me four lines
of programming! Thus, if there are
a lot of IF-THEN-ELSE statements in
one part of your program try to get
rid of them by using your
relational operators more
efficiently as demonstrated above.

Finally, 	this last program is a
subroutine that enables one to move
in the arrow directions and also in
diagonal directions. The diagonal
moves are done by using the
<W,R,Z,C> Keys. Otherwise, use the
arrow keys without the <FCTN> key!
Notice how many IF-THEN-ELSE
statements I eliminated by using
the versatility of Relational
Operators! The routine basically
takes place of a Joystick routine
if you do not have Joysticks. Just
insert this in a suitable place in
a Joystick based game and Voila!
You have a keyboard based game!

100 REM KEYBOARD ROUTINE
110 REM BY NIRAJ N. SHAH
120 CALL CLEAR
130 R=12
140 C=12
150 CALL HCHAR(R,C,30)
160 CALL KEY(0,K,STATUS)
170 IF STATUS=0 THEN 160
180 R=R+((K=87)+(<=69)+(K.=82
))+C((K=90)+(K=88)+(r=67))*-
1)
190 C=C+C(K=87)+(K=90)+tK=83
))+(((K=68)+(K=82)+(K=67))*-
1)
200 CALL HCHAR(R,C,30)
210 GOTD 160

This article comes from the Spirit. of 99, Apri1,1984 newsletter.

t•-•1 rmi 	Z I FA
IN REVIE W

By Jake Hinkle
Computue-pub-

lished by Compute

Publications Inc. at

$2.95. This magazine

(Mar. 84) has a

variety of computers.
they are Adam, Apple

Atari, Color

computer (Radio

Shack), Commador 64

& Vic 20, IBM PC and

Jr, Pet/CBm, Texas

Instruments, and

Timex/Sinclair. For

a magazine that
started having the

TI in it about a
year ago. The

ranking of articles
are as such,

Commandore 64-16

articles or programs
, Atari-173, Vic

20-10, and in 4th

place with 5 is TI.

There are 12 other
- articles/features

that are for all 11

machines above. The
TI has a regular

column by Regena. To

my amazement there

are only (2) other

machines which have

there own column.

Compute generally

has at least one

program in basic and

one in X-basic. In

the Feb. issue they

even had a Terminal

Emulator II articles
on Spanish. This

month programs are
Roader (B), Aquarium
(X-basic) , File

processing (B), and
sound shaper (8) are
the programs.
Hopefully in the

Library (CONNI)
soon. Some of the

articles are meant
for people with some

experience in
programming. But for

the beginner that

wants to learn about
programming or to

obtain programs
cheap, at $2.95 for

4 programs is a good

buy at Krogers or

Gold Circle and
several of the book
stores have it also.
If you can not find
Compute then you
might try having the
store order it from

Scott Krauss News
for you.

The main feature

of the magazine that
intrigued me was the

"Guide to Prticles &
Programs". This

tidbit list to the

right of the index

page what machine

each articles is for.

And an Astrisk is for
all machines (that is
the 11 I mentioned
earlier). The maga-

zine is divided up

and they are:

Features-basicly
about all machines

but sometimes there

are articles about

a separate machine

but Compute feels

that it is relevant
to all machines.

Education and

Recreation- are

generally about dif-

ferent games. This

month "Roader" has
e of the 11 machines
with side by side

programs of Roader.

Revi ews- are of

different functions
of different

machines or pro-

ducts for specific
computers. Columns
and Departments
include "Editors

Notes", "Reader
feedback", "Program-
ming the TI", ect.
etc... 	The Journal"

includes article= on
various computers.

The last section of
of the magazine

tells you "How to

ENTER Compute's
Programs" a must if

you are jUst

learning tortype on
TI's keyboard.

keyboard. "A

Beginners Guide to

Typing in Programs"

which is self

explan- atory.

"Compute!

Modifications or

cor- rections to

Previous Articles"

or as Games magazine

puts it "Dirty

Laundry". "Product

Mart" a small
classified. The

last section is "Ad-

-vertisers Index".

The mysterious thing

about magazines is

that for the over-

priced machines they

jump on the

bandwagon and pop

out a magazine for
specific machines.

Compute puts out

Compute! Gazette for

Vic 20 & Com madore
64 and now that IBM

introduced the Jr.

Compute now has

Compute! PC & PC Jr.

I cannot tell you

how many magazine

there are for the PC

But. I feel that if
enough people call

or write Compute.

that they might

consider a magazine

dedicated to the 2+
million machines in

use. Toll free # lE

1-S00-334-0868 for
subscriptions. Next

month I will cover
"Home Computer

Magazine" formallv

99'er Home Computer
Magar_ine Till next
month "Happy Com-

putint.:1". 	JAKE
HlWLE b68-0o32

There are 2 wholesale groups in this area we would like to talk

about.

1) The Warehouse Club on Arlington Road. Take 77 South to Arlington

Road exit, turn right and it is next to Gold Circle. Nembership
is free if you belong to a credit union or are a retired state or

federal employee. 	If you are neither, I think the membership is

$70.00 a year. They charge the wholesale price plus 5 percent.

They have great buys on furniture, paper and disks as well as

oLher merchandise. The 3M single sided, single density was %17.50

a box.

2) The Wholesale Club on Rockside Road. Take 271 North to Rockside

Road exit, head west for about six blocks. The membership

requirements are the same as the Wholesale Club

If You have any questions about either of these groups, call PaL

Bowen for more details.

LIST OF BOARD MEMBERS AND THEIR HOME PHONE NUMBERS

President, Pat Bowen 	 920-1884

Vice President, Norm Sorkin 	 479-2340

Librarian, Leroy Martin 	 64-3984

V.P. Program.

Secretary,

Treasurer, Betty Duncan 	 633-5217

Educational Director, John Curry 	 929-8824

Editor, Kathi Anderson 	 923-7530

If you need another computer catalog in your house, you can write

to Quill Corporation, 100 S. Scheiter Road, P.O. Box 4700,

Lincolnshire, IL 60199-4700. Phone number is 1 (312) 634-4850.

If anyone would like to write to Michael Noble at 125 Crestline

Drive #701, Clarksdale, Mis. 39414. Phone: 601-624-9467. Drop him a
line to say hello.

would like to thank all the Users Groups I borrowed articles

from. See you at the meeting. Kathi Anderson, Editor

SUMMIT'99ers USERS GROUP
Kathi Anderson, Editor
3240 Bailey Road
Cuyahoga Falls, Ohio 44221

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

