
ROCI-CY MOUNITAIN.1

TIC TALK

VOL III, NO 3 	DENVER, COLORADO USA 	 NOV 1984
Non-member Subscription Rate - $7.50 Annually 	Single Copy Price - 75 cents

Hello out there!

Ivt:, name is David Owen, and I think I am your new editor. The last

time I said something similar, I was commandered to help edit,

collate, staple, sticker and stamp a Submarine Veterans paper.

Fortunately, this one is not a 2,000 mailer, and all I have to do

is edit, and then send the mess to the printer and let him worry

about it.

All articles and programs will be greatly appreciated (saves me a

lot of time, besides I'm still new at this). Camera ready copy (o•

TI-Writer compatible disc) would be great. We'll be glad to

receive anything thou_h!!!'! All material should be in by the 15th

of the month, so I can get this to you before the meeting date.

Don't forget to vote on the 6th, and I'll see you on the 13th!

NOVEMBER MEETING

NOVEMBER 13

Jef-ferson County Fairground•

Auditorium 7:00 PM

6th Ave. West to Indiana Ave.

_NO E IBER
1984

SMTWTFS
1 2 3

4 5 	7 8 9 10
11 12 13,a 14 15 16 17
18 19 	21 22 23 24
25 26 27 28 29 30

ASSEMBLY LANGUAGE DISK CATALOGER
Part 2

by Mike Holmes

Page 2

I know that it has been almost a year since I wrote part one of this
article and I did promise to write a follow up when I had completed the program
so here it is. This program was the first original program that I wrote in
assembly language and I little knew when I started it that it would hold so
many pitfalls. Some of these I mentioned in the first article but I wasn't
through stumbling yet. When I wrote the last article I had completed the code
in assembly language to read the disk catalog file and print the file names.
The next item on the agenda was to retrieve the numerical information from the
catalog and interpret that. My first step was to get out the disk controler
manual and check out exactly what the information stored in the catalog meant.
Fortunately TI is very free with this information, (unlike some other
information that they guard with their very lives.) and this is very well
documented in the manual. Unfortunately when TI stores any number on disk they
use RADIX 100 floating point format. Fortunately you don't have to understand
this stuff in order to use these numbers since there are several ROM routines
which will convert numbers to and from floating point and so on. The routine I
used in the program converts the Floating point number directly to a binary
integer. The format of the numbers on disk consists of nine bytes as, follows.

1.length of number in bytes - always 8 for floating point numbers.
2. exponent of 100
3. hexidecimal representation of decimal number

fills the remaining seven bytes.

The exponent and seven bytes of the number must be moved into the
floating point accumulator in RAM before executing the BLWP IXMLLNK with a
data statement to access the convert to integer routine in ROM. The integer
number is then left in the first word of the Floating Point Accumulator for
your use. O.K. now you have binary integer numbers representing the number of
sectors on the disk, the number of used sectors on the disk, the sizes of
files, the file type and the number of bytes in a record, how do you interpret
this information? There are two routines which carry out this interpretation.
If a number is to be displayed it must be converted to ASCII from binary. This
is the routine to convert to displayed decimal ascii from binary.

1. The bilary number is divided by 10 (decimal) and the remainder is
kept.
2. The ascii value of decimal zero is added to the remainder to get
the ascii code of the digit.

3. This digit is displayed at the right of the display field.
4. The quotent of the division is used to replace the original
number and steps 1 on are repeated until the field is filled.

File types were determined through the use of a loop which counted
down from the number stored as the file type. Each time through the loop the
address of the string to be printed was updated by the length of the string so
that when the file type reached 0 the address of the string to be displayed was
all ready to go.

A couple of notes are in order. When you look at the text strings
used for file descriptions you will see that I have called what are usually
called program files M/I for Memory Image files. 	I feel that this is more
descriptive of the file type but if you wish .just change the TEXT statement to
read ' PGM'. Make sure to leave the spaces before the file descriptions in
order to get a readable display. If you are using a double sided drive or
double density controler you should be able to display most of the files on a
disk on one screen. If your catalog runs over one screen the program halts and
waits for you to press any key to see the files on the next screen.

Page 3

Here are some ideas that you may want to try in order to adjust the
program for your best use.

1. Make the program store the File information so that you can use
the arrow keys to page back and forth between the pages of the catalog.

2. Fix the program to put the cursor in front of any program name
on the screen and when you press enter have the program loaded and run. (This
is a pretty tall order so don't undertake it unless you feel like going crazy.

* ASSEMBLY LANGUAGE DISK CATALOGER*
* VERSION 2 BY MIKE HOLMES
* ROCKY MOUNTAIN 99 ERS
* ASSEMBLY LANGUAGE S.I.G.

DEF CAT
REF VSBW,VMBW,VMBR,VSBR,GPLWS
REF DSRLNK,SCAN,GPLLNK,VWTR

* *
* DEFINE CONSTANTS AND VARIABLES *
* 	
PABBUF EQU >1920
PAB EQU >1900
SCANO EQU >83DA
KCODE EQU >8375
STATUS EQU >837C
PNTR EQU >8356
SAVRTN DATA 0
ST 	DATA 0
NEST1 DATA 0
NEST2 DATA 0
NESTS DATA 0

*

VDP Buffer for PAB
PAB location in VDP memory
Code for keyboard to scan
Key Code returned by Keyboard scan
GPL Status byte
Pointer to device name length in VDP
Save return address
Saved status
1Save nesting levels

NEXTS DATA 0
D100
	

DATA 100 	Decimal value of 100
PDATA DATA >000D,PABBUF000000000000005

TEXT 'DSK1.' These two lines make up the data for the PAB
EVEN

KSAVE BSS >01 	Save key press
READ
	

BYTE >02 	PAB OP Code to read record
CLOSE BYTE >01 	PAB OP Code to close file
OPEN
	

BYTE >00 	PAB OP Code to open file
Q
	

BYTE >51 	Upper Case 'Q' for quit
01
	

BYTE >71 	Lower Case 'q' for quit
D1
	

BYTE >31 	ASCII value of '1' Lowest drive number
D4
	

BYTE >34 	ASCII value of '4' Highest drive number
ENT
	

BYTE >0D 	ASCII value for enter key
EVEN

ETEXT TEXT 'DRIVE #2 NOT FOUND'
MEN1 	TEXT 'MENU'
MEN2 TEXT 'PRESS "0" TO QUIT'
MEN3 TEXT 'PRESS ANY OTHER KEY TO'
MEN4 TEXT 'CATALOG ANOTHER DISK'
REQ1 	TEXT 'ENTER MASTER DISK: 1'

EVEN
ZERO 	BYTE >00
BLANK BYTE >20
MREGS BSS >20
BUFFER BSS 80

Value of Zero
ASCII Code for blank character
Workspace for the catalog program
80 byte buffer in memory for reads

Page 4

* 	
* BEGIN PROGRAM SET UP TEXT MODE *
* *
CAT 	MOV R11,2@SAVRTN Save return address to Editor/Assembler

LWPI MREGS 	 Load Catalog workspace
BL @@CLEAR 	 Clear the entire screen
LI 	R0,>F001 	Set up to write text mode parameters for timeout
MOVB R0,2a>83D4 	This value determins how screen will be restored
SWPB RO 	 Prepare to set up text mode in VDP RI
BLWP aDVWTR 	 Write to VDP RI
LI 	RO,>0715 	Set colors to black on It blue VDP R7
BLWP WI1VWTR 	 Write colors to VDP R7

AAAAAAAAAAAAAAAAAAAAAAAAAAA^AAAAAAAA

* MAIN PROGRAM CALLS ALL SUBROUTINES *
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

MAIN 	LI R6,PAB+9
BL lIZGETDRV
BL @@GETNAM
BL il@CLEAR
BL al@CLOSOP
BL TilMENU
BL TDGETKEY
CB il@KSAVE,ailQ
JEQ MAINZ

R6 Stores pointer to PAB name length
Find Drive number to catalog and chedk validity
Read and Display data from disk catalog
Clear the screen
Close the catalog file
Display the menu of options
Wait for a key press
Check for capital 'Q'

Quit if Q was pressed
CB WIIKSAVE,@@01 	Check for lower case Q
JNE MAIN 	 Start over if q was not pressed

MAIN1 LWPI GPLWS 	 Reload GPL work space for return to E/A
BL 	il@CLEAR 	Clear the screen
MOV T@SAVRTN,R1I 	Reset return address to E/A
MOVB TKERO,WISTATUS Clear status byte
RT 	 Return to E/A

>>
* ROUTINE TO GET DRIVE NUMBER TO CATALOG
* CHECKS FOR VALID DRIVE NUMBER AND VALID PAB *
>>
GETDRV MOV R11,@NEST1 	Save return address to main program
GD1 	BL 	V@CLEAR 	Clear the screen

BL 	r@WRREQ 	Write drive request to screen
BL 	@WETKEY 	Wait for keyscan and save results
CB 	WKSAVE,T@ENT Was enter key pressed?
JEQ GD2 	 Yes handle as a default
CB 	TeDKSAVE,T@D1 	Is the value returned less than 1?
JLT ERRORC 	Yes display error message and try again
CB 	il@KSAVE,T1aD4 	Is the value greater than 4 (Cor-Comp card)
JOT ERRORC 	Yes display error message and try again
MOVB WKSAVE,WPDATA+13 Move drive number into correct PAB location

<<<<<<<<<<<<<<<<<<<<<<<(<<<<<<<“<<<<<<<<<<<
* INSERT DRIVE AS DEFAULT IN FUTURE ACCESSES *
<<<<<<<<<<<<<<<<<<<<(<<<<(<<<<<<<<<<<<<<<<<<

MOVB @aKSAVE,@@REQ1+19
///
* INSERT DRIVE INTO REQUEST STRING FOR FUTURE *
///

BL 	il@WRREQ 	Rewrite the request with the proper drive number
GD2 	LI 	RO,PAB 	VDP location for PAB

LI 	R1,PDATA 	CPU location of data for PAB
LI 	R2,›0F 	15 Bytes to write
BLWP TilIVMBW 	 Write into VDP memory
BL 	ir@OPENOP 	Open file for input (Default for enter key)
MOVB WSTATUS,R0 	Check status for non existent device

Page 5
JED 3D3 	 No error then continue

ERRORC BL 	CLEAR 	Clear the screen
LI 	R0,451 	Write error message at this location on screen
MOVE(WKSAVE,WETEXT+7 	Update error text
LI 	R1,ETEXT 	Load error message address
LI 	R2,18 	Length of error message
BLWP WYMBW 	Write to screen
BL 	WGETKEY 	Wait for a key press
JMP GDI 	 Restart routine

GD3 	NOV WNEST1,R11 	Reset return address to malt, --ogram
RT 	 Return to main program

* ROUTINE TO SET PAB OP CODES FOR ACCESS TO CATALOG FILE *

READOP CLR RI

	

LI 	RO,PAB+8
BLWP WVSBW
MOVB WREAD,R1
JMP DSROP

OPENOP MOVB WOPEN,R1
JMP DSROP

CLOSOP MOVB WCLOSE,R1

	

DSROP LI 	RO,PAB
BLWP WVSBW

Clear RI
PAB status byte address
Clear PAB status byte for read
Load R1 with read OP code
Continue with DSR routine
Load Open OP code in RI
Continue with DSR routine
Load Close OP code in RI
Load address of start of PAB
Write selected OP code to PAB BYTE 1

MOV R6,WPNTR 	Set pointer to device name length in PAB
MOVB WZERO,WSTATUS 	Clear status byte (if set DSR is nonexistent) ILE)
BLWP WDSRLNK 	Call DSR LINK Suproutine
DATA 8 	 Required data
RT 	 Return to calling subroutine

**
* SUBROUTINE TO TRANSLATE NAMES FROM VDP BUFFER TO SCREEN *
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-
GETNAM MOV R11,WNEST1

BL 	CLEAR
CLR R7
LI 	R13,2

GN1 	BL WREADOP
LI 	RO,PABBUF
LI 	R1,BUFFER
LI 	R2,80
BLWP WYMBR

Store Return address to main program
Clear the screen
Clear the file counter
Set the screen location pointer
Call subroutine to set PAB OP code to read

Load address of VDP RAM buffer containing record
Load address of CPU RAM buffer ro receive record
Load number of bytes to transfer from VDP to CPU
Transfer data to CPU buffer

C(C(CC(CMCC(MCCM(CMCC(CM(CMCCM(C
* SUBROUTINE TO GET NAMES OF DISKS AND FILES *
CCMCC(CC(CCMCMCCC(CMCMCCC(CCC(CCMC
NAMIT CLR R2 	 Clear pointer reoester

LI 	R1,BUFFER 	Load address of CPU buffer
CB 	*R1,WZERO 	Compare Length byte to 0
JLE STOPIT 	If length is zero or less stop
INC R1 	 Skip over name length byte in buffer

CONTIT CI 	R700000 	Is this the first name?
JED WRIT 	Yes write it out
CI 	R7,23 	Is this the 23 name?
JNE SAMCOL 	Yes write in the same column
LI 	R13,101 	Otherwise write in second column 3rd row

SAMCOL CI 	R7,46 	Is this the 46th name?
JNE WRIT 	No write it out
BL 	WNEXTSC 	Otherwise wait for a key press
LI 	R13,82 	Start next name in first column of row 3
LI 	R700001 	Reset file count to 1
JMP GN1 	 Read another name

Page 6

WRIT 	MOV R13,R0 	Set screen location
AI 	R13,40 	Add 40 to screen location pointer •egester
CI 	R7,>0000 	First name?
JNE WRIT2 	 No continue
AI 	R13,40 	Yes skip one row for next name

))3)))))))))))))))))))))
* THIS ROUTINE SCANS CPU BUFFER FOR LENGTH BYTE OF THE FIRST FP NUMBER *
))>)))))
WRIT2 CB 	@i1BUFFER+1(R2),WOD8

JEQ WRIT1 	 If the byte value equals 8 the name has ended
CI 	R2,10 	 If the name length equals 10 this is the maximum
JEQ WRIT1 	 Continue
INC R2 	 Advance pointer
JMP WRIT2 	 Check next value

WRIT1 	INC R7 	 Increment file counter
BLWP @@VMBW 	 Write name on screen
A 	R2,R1 	 Add Length of name to start of buffer
INC R1 	 Increment buffer location
BLWP TilFLP 	 Branch to floating point routines
JMP GN1 	 Get another file name

STOPIT BL 	WINEXTSC 	Wait for key press
MOV i ► laNEST1,R11 	Reset return address to main program
RT 	 Return to main program

*111111111111:111111 lll 1111111111111 ll 	11111111 	llllll *
* ROUTINE TO PREPARE TO SHOW ADDITIONAL FILE NAMES *
*11111111111111 	lllllllll 	1111111111 	llllllll 	1 	lllllllll *

NEXTSC MOV R11,iGNEST2 	Save return to calling program
BL 	TDGETKEY 	Wait for key press
BL 	T ► PCLEAR 	Clear part of screen
MOV ?@NEST2,R11 	Reset return address
RT 	 Return to calling program

/////////////////
* KEYSCAN ROUTINE *
/////////////////
GETKEY LWPI GPLWS 	 Load GPL work space

MOVB @WERO,TilISCANO Scan keyboard zero
GK1 	BL 	'@ZSCAN 	 Branch to scan routine

MOVB il@STATUS,R1 	Was a key pressed
JEQ GK1 	 No rescan
MOVB aZKCODE,Z ► KSAVE Save Keycode
LWPI MREGS 	 Reload catalog work space
RT 	 Return

**
* ROUTINE TO WRITE MENU TO SCREEN *
**

MENU 	LI 	R0,18
LI 	RI,MEN1
LI 	R2,4
BLWP T@VMBW
LI 	R0,210
LI 	R1,MEN2
LI 	R2,17
BLWP ar@VMBW
LI 	R0,248
LI 	R1 ,MEN:
LI 	R2,22
BLWP aWMBW
LI 	R0,289
LI 	R1,MEN4
LI 	R2,20

Page 7

BLWP
RT

VX74%%%%%%%=%%747,M74%%
* CLEAR SCREEN ROUTINES *
WXY.Y.XXXXX=XY.Y.XXVXX747:
PCLEAR LI 	R2,880 	- Clears the screen starting at the first column of the

LI 	R0,81 	- third row.
JMP CLR1

CLEAR LI 	R2,960 	* Clears the entire screen
C:LR RO

CLR1 	MOVB @WLANK,R1 *
BLWP WVSBW
INC RO
DEC R2
JNE CLR1
RT 	 Return to calling program

&&&&&&&&8484&&&&&&&&&&&&&8484&&&&&&&&&&&&&&&&&
* ROUTINE TO WRITE DRIVE REQUEST TO SCREEN *
&&&&&848488e84848480Se&&&&&&&&&&&&&&&&&&&&&&848484&&&
WRREQ LI 	R0,450

LI 	R1,RE01
LI 	R200014
BLWP gilVMBW
RT

* *
* FLOATING POINT HANDLING ROUTINES FOR DISK CATALOGER *
* STATISTICS HANDLING
* *

REF 	XMLLNK 	Ref xmllnk to gain access to the floating point
FLREGS BSS 	>20 	Workspace for floating point
FLDATA DATA 0
FLP 	DATA FLREGS,GETSTS Context switch vectors
*
TOTAL DATA >0000 	Store total sectors on disk (binary).
AVAIL DATA >0000 	Store available sectors on disk (binary).
USED 	DATA >0000 	Store used sectors on disk (binary).
* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>*
* MESSAGE STRINGS FOR DISK MESSAGES. *
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
DSKMS1 TEXT 'TOTAL SECTORS =
SIZE1 TEXT
DSKMS2 TEXT 'AVAILABLE =
SIZE2 TEXT '
DSKMS3 TEXT ' 	USED =
SIZES TEXT '
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
* GET THE VALUES FROM THE CALLING ROUTINE'S WORKSPACE *
(<<<<<<<<<<<<<<<<<<<<<<<<<“<<“<<<<<“<<<<<“<<<<<<<
GETSTS MOV R13,R4 	Copy the address of the calling workspace

MOV *R4,R0 	Move value of screen address to floating point RO
INCT R4 	 Increment ti: the address of calling R1
MOV *R4 ,R1 	Move buffer address value to +p R1
INCT R1 	 Increment to the address of calling R2
AI 	R4,12 	Add offset to calling R7
MOV *R4,R7 	Move value of file counter to fp R7
CI 	R7,>0001 	Is this the disk name?
JEQ DISK 	 Yes, display the disk statistics.
B 	►FILE 	No 	display the file statistics.

	 Page 8

* CODE FOR DISK STATISTICS *

DISK AI R1,9 Add 9 to the buffer offset (skip the file type)

BL 	WMOVFAC 	Move 8 bytes into the floating point accumulator
BL 	WICNVINT 	Convert floating point number in FAC to integer.
MOV WFAC,WTOTAL Move integer value to total sectors.
MOV WTOTAL,WUSED Copy total into used sectors
BL 	WMOVFAC 	Move another 8 bytes into FAC
BL 	WCNVINT 	Convert to integer
MOV WFAC,WAVAIL Move value to available sectors
S 	WAVAIL,ZUSED Subtract avail from the copy of total to get used
LI 	R0,19 	Load 19 as screen address in RO
LI 	R1,DSKMS1 	Message to write to screen
LI 	R2,20 	Write 20 characters
BLWP WVMBW 	Go ahead.
LI 	R3,35 	Load 35 in R3 (beginning of display field).
LI 	R0,38 	Load 38 in RO (end of display field).
MOV WTOTAL,R5 	Move total to R5 (Binary number to display).
BL 	WCNVASC 	Convert to ascii display and strip leading O's
LI 	R0,42 	Load location to display next message.
LI 	R1,DSKMS2 	Load start of message
LI 	R2,29 	Write 29 bytes in message
BLWP Z@VMBW 	Do it.
LI 	R0,57
LI 	R3,54
MOV WAVAIL,R5
BL WCNVASC
LI 	R0,70
LI 	R3,67
MOV WUSED,R5
BL OWNVASC
JMP GOBAK

End of next number field
Beginning of next number field
Number to convert
Convert to ascii

End of next number field
Beginning of next number field
Number to convert
Convert to ascii

Return to calling program

* CODE FOR FILE STATISTICS *

TYPE 	DATA >0000
SIZE 	DATA >0000
BPR 	DATA >0000
TYPES TEXT ' D/F'

TEXT ' D/ V'
TEXT ' I/F'
TEXT ' I/V'
TEXT ' M/ I/

Store file type (binary).
Store file size (binary).
Store bytes per record (binary) (not used)

* Display form of file types
*
*
*
*

*
FILE MOV R1,R9 	Copy buffer offset

BL 	► MOVFAC 	Move next 8 bytes to FAC
BL 	WCNVINT 	Convert to integer
MOV WFAC,WTYPE 	Save as file type
AI 	R9,8 	Add 8 to buffer offset
MOV R9, R1 	Move new offset to RI
BL 	WMOVFAC 	Move next 8 bytes to FAC
BL 	WCNVINT 	Convert to integer
MOV WFAC,WSIZE 	Save as file size
AI 	R9,8 	Add 8 to buffer offset
MOV R9, R1 	Move new offset to R1
BL 	WMOVFAC 	Move 8 more bytes to Fac
BL 	WCNVINT 	Convert to integer.
MOV WFAC,WBPR 	Save as bytes per record
AI 	R0,11 	Add 11 to the last screen location

Page 9
NOV R0,R3
INCT RO
MOV
ABS R5
BL WCNVASC
LI 	R4,TYPES
MOV T@TYPE,R5
ABS R5
DEC R5
JEQ FIL1

NXTTYP AI 	R4,4
DEC R5
JNE NXTTYP

FIL1 	INC RO
LI 	R2,4
MOV R4,RI
BLWP @@VMBW

GOBAK RTI.4P

Copy to R3 (start of display field).
Add 2 to RO (end of display field).
Number to convert.
Take the absolute value of the number.
Convert to ascii and display
Start of array of display file types.
Integer value of type

Take the absolute value of the file type.
Decrement type by 1
If type is 0 then print file type from addr in R4
Add 4 bytes to the file type address in R4
Subtract 1 from type
If type is not zero then do it again
Add 1 to screen address in RO
Put a length of 4 in R2
Move address of display file type from R4 to RI
Write to the screen
Return to calling routine.

* CODE FOR CONVERSION TO INTEGER *

VSPTR EQU >836E 	Value Stack PoinTeR
FAC 	EQU >834A 	 FloAting Point accumulator
*
CNVINT CLR R12 	 Clear R12

MOVB R12,@@STATUS Clear status byte
LI 	R12,>06FB 	Initialize VSPTR to >06FB (reccommended by TI I

don't kno w why.)
MOV R12,@@VSPTR Move to VSPTR
BLWP al@XMLLNK 	Call XMLLNK subroutine
DATA >1200 	 Call Convert to integer routine
RT 	 Return to calling routine.

* ROUTINE TO LOAD FLOATING POINT ACCUMULATOR WITH 8 BYTES *

D8 	BYTE 8

EVEN
MOVFAC LI 	R4,7

LI 	R5,FAC
GETSTR CB *R1,WD8

JEQ SKPLEN
DEC RI
JMP GETSTR

SKPLEN INC RI
ANOTH MOVB *R1+,*R5+

DEC R4
JNE ANOTH
MOVB *R1,*R5
INC RI
RT

This byte represents the length of a FP number.

Set R4 to 7 bytes to move
FAC is the address to move to
Check to see if this is the length of the number.

Yes the continue
No back up one byte.
Check again
Skip over length byte.
Move a byte from the buffer to FAC
Decrement the count of bytes to move.
If R4 is not 0 move another byte
Move another byte to FAC (8 bytes total).
Increment Rl.
Return to calling program

* ROUTINE TO CONVERT TO ASCII DISPLAY ON THE SCREEN AND *
* STRIP LEADING ZEROS.
* ASSUMES NUMBER IS IN R5 END OF FIELD TO DISPLAY
* NUMBER IS IN RO AND THE BEGINNING IS IN R3

TEN 	DATA • >000A
AO 	BYTE 48

EVEN
*

The Editor/Assembler SIG meeting
will be Wednesday November 7, 1984
at Unique Systems,located at Bates
and Broadway behind the Oak and
Pine store.

Page 1E

CNVASC ► LR R4
DID.! 	ilalTEN,R4
AI 	R5,48
SWPB R5
MOVB R5,R1
BLWP i►@VSBW
DEC R8
MOV R4,R5

RO,R3
JHE CNVASC
INC RO
AI 	R3,2

STRIP BLWP @IDVSBR
CB R1,1ii@AO
JH CNX
LI 	R102000
BLWP WilVSBW
INC RO
L 	RO,RS
JLE STRIP

CNX 	MOB.! R3,R0
RT
END CAT

Clear R4 to prepare for division.
Divide number in R4 and R5 (32 bits) by 10

Add 48 (difference between binary 0 and ascii 0)
to the remainder in R5 and make MSB
Move byte value of number to R1
Write number to the screen
Decrement RO address
Move dividend from R4 to R5
Is RO less than the beginning of the field?
No continue conversion.
Add 1 to address in RO (beginning of field)
Add 2 to address in R3 (end of field)
Read the byte at the address in RO
Is that byte an ascii 0?
If greater than 0 exit the routine.
Load R1 with an ascii space.

Replace the ascii 0 with a space.
Move to next screen address.
End of the field?
No the strip another character
Reset RO to the end of the field
Return to calling routine.
End of program to stop auto running remove CAT
and this comment.

<<<<< DISPLAY ADS >>>>>

18 in X 7.5 in - $15.88 	ALL 	DISPLAY 	ADDS 	must 	be 	camera 	ready
RATES: 5.5 in X 7.5 in - $8.88 	and 	must 	be 	received 	before 	the 	15th

3 in X 7.5 in - $4.58 	of 	the 	month 	and 	accompanied 	by 	a
check made out to the ROCKY MOUNTAIN 99ers P.O. Box

3488, Littleton, CO 88161. Since the Club is a non-profit organization all money collected
for advertizing goes toward the publishing costs of this newsletter.

<<<<< WANT AD RATES >>>>>

MEMBERS - FREE (25 word max) We must have your add by the 15th of the month to assure
insertion in the next issue. 	Call 458-7315 or mail to BOX 3488 Littleton, 	CO
88161. 	NON-MEMBERS must use DISPLAY ADS!

PRINTER SPECIALS MONITOR SPECIALS

EPSON RX-80 (100cps) 	$ 245.00
BMC BX/80 (80cps-sqr dot) 	$ 269.00
POWERTYPE Daisywheel 18cps $ 385.00

BMC 13" COLOR w/Non-Glare 	$ 218.00
AMDEK 13" COLOR 1+ w/Non-Glare$ 259.00
COMREX 13" COLOR 	 $ 279.00

itIll___IL.P1'-'11121I !ME C."1"CXPIIIF'1J ir EE IFE3
	 Page 11

6926 W FREMONT PLACE
LITTLETON, CO 80123

795-5225 (Daytime)
	

(Evenings) 979-6677

NOVEMBER 1, 1984
	

HOLIDAY SPECIALS
	

NOVEMBER 1, 1984

$5.95 each 	6 for $29.95
	

12 for $58.95

All titles below now in STOCK but prices good while supply lasts

EDUCATIONAL
Early Learning fun 	 PHM3002
Equations 	 PHM3100
Fractions 	 PHM3095

INFORMATION MANAGEMENT
Home Financial Decisions 	PHM3006
Household Budget Management 	PHM3007
Personal Realestate 	 PHM3022
Tax/Investment RecOrd Keeping PHM3016

ENTERTAINMENT
A-Maze-ing 	 PHM3030

Alpiner 	 PHM3056
Attack 	 PHM3031
Blasto 	 PHM3032
Car Wars 	 PHM3054
Hopper 	 PHM3229
Hunt the WUMPUS 	PHM3023
Jawbreaker II 	 PHM3194
Moonmine 	 PHM3131
Munch Man 	 PHM3057
Parsec 	 PHM3112
Sneggit 	 PHM3145
TI Invaders 	 PHM3053
Tombstone City 	PHM3052

Many more Educational and Entertainment Module Software HEAVILY DISCOUNTED!!
I have many modules in stock for the Holidays. You can pickup without waiting.

WHY NOT GIVE A 99/4A FOR A CHRISTMAS PRESENT!!!

99/4A CONSOLE w/Plastic Cover 	 $ 79.00
99/4A CONSOLE W/TI SOFTWARE VARIETY PACK(4 cassette programs) 	$ 89.00

PERIPHERAL EXPANSION SYSTEM (Disk Dr, Controller, and 32k Memory)$399.95

INTRODUCTORY SPECIAL PRICES -- EPSON COMPUTERS -- INTRODUCTORY SPECIAL PRICES

PX-8 GENEVA Portable Computer 64k RAM CP/M 	 $ 849.00

QX-10 256k RAM Standard Desk Top Unit 	 $ 1685.00
QX-10 w/256k MS/DOS Board(run both CP/M and IBM programs) 	 $ 2247.00
QX-10 Basic Accounting System w/RX-100 printer 	 $ 2450.00
QX-10 Office Productivity System w/FX-100 printer 	 $ 3725.00

Rocky Mountain 99 1 erc...

I C:

This publication is printed monthly for the benifit of the membership of the Rocky Mountain
99'ers Computer 'Club. • The Club and the paper are not for the benifit nor backed by any
commercial enterprize. Both are non-profit in nature and are for the sole purpose of
computer education. Any fees collected are used to defray any cost to maintain the
organization. Neither the paper nor the Club have any affiliation with Texas Instruments.
Any statements published in this paper are not necessarily the opinion of the membership.

' OFF I CERS
	

r, 	C H I RI-1 ENI =

PRESIDENT 	 TED MICHELSEN 	 986-3513
VICE PRESIDENT 	 MIKE HOLMES 	 751-7945
SECRETARY 	 MARTHA WEEG 	 320-5589
TREASURER 	 KEN MONSON 	 233-1788
EDITOR 	 DAVID OWEN 	 458-7315
LIBRARIAN 	 PETE CROWELL 	 750-5949
MEMBERSHIP 	 MARTHA WEEG 	 320-5589
PROGRAM CHAIRMAN 	 TED MICHELSEN 	 986-3513
EDITOR/ASSEMBLER—SIG 	 MIKE HOLMES 	 751-7945
TI FORTH 	SIG 	 PETE CROWELL 	 750-5949
MULTIPLAN 	SIG 	 BEN KRAMER 	 237-1056
THE STAR BOARD....BBS 	 455-3113

* * ROCKY M101.111TAIN 99ers * *
P.O. Box 3488

Littleton, CO 88161

RETURN TO SENDER:
INT'L LETTER CLASS
MAIL MUST BE ENCLOSED
IN ENVELOPES.

FIRST
CLASS

ii*****************iimili*********
* Do you see stars on the label *
* this means your membership is *
* now due. Send in your renew- *
* al today so you don't miss a *
* single issue of TIC-TALK!!! *
**********144********************

d7LJ7 115'83

Edmonton,Alberta Canada T5J3L1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

