

/ 0/

Pq101P41-1 .70111)-)
LIE -99 EFTS 	. C . t-TIEWSLETTEIR

1987 I
The QB MONITOR is the Newsletter of the QB-99'ers User Group, is printed Sept. thru June and sent in exchange for other User Group
Newsletters, Send Exchange Newsletter to Frank Cotty, Queensborough Cosmunity College, Bayside, NY 11364. Credit original sources.

The QB 99'ers meets the second 	Saturday
of 	each 	month September through May, at
Queensborough Community College, 	Bayside
New York, room 5225. 	See the calendar at
right for the dates

November
SM TW
1 	2 	3 	4
8 9 10 11

15 16 17 18
22 23 24 25
29 30

T
5

12
19
26

1987
FS
6 7

1312)
20 21
27 28

December 	1987
SMTWTFS

1 	2 	3 	4
6 	7 	8 	9 10 11

13 14 15 16 17 18
20 21 22 23 24 25 26
27 28 29 30 31

oC)nte11 -t,s ED ZIA.FgE

Editor's Note 	 2

Word Counting 	 2

STYLE A LINE 	 3

DISK LABEL II 	 4

XB Funnelweb Tutorials 	 5

Key Board Layout 	 1.2

TI-MULTIPLAN 	 13

COLISTER 	 16

Articles for the DEC issue must be in by DEC 12

QBt momi -ram 	mo—socp - mpl-

WORD COUNTING WITH TI-WRITER
by Ed Machonis

Did you know that you can count the
number of words in your essay using only
TI-Writer? Neither did I until I made a
mistake one day and interchanged LM and
RM. Just proves that if you make enough
mistakes, something is bound to turn out
right. I may be re-inventing the wheel
but I have never seen this documented.

To count the words in a DV BO file,
load the file into the Editor, Select SD
and note the number of sectors used by
the file. Multiply this number by 40
to get a rough estimate. This number
will be the Page Length. Now just enter
the following line as the very first
lines .LM O;RM 1;FI;PL nnn (nnn being
the Page Length derived above) Next
count the number of blank lines in your
file.

Save to disk, QUIT and select the
Formatter. At the first prompt enter the

Filename just used to save the file. At
the second prompt for Print Device enter
DSKn.FILENAME2. You can use the same
drive but use a different filename.
Accept all the remaining defaults. The
Formatter takes roughly one minute for
each thousand words.

When the Formatter is done, select
Editor and load FILENAME2. You will
notice that each word is on a separate
line - now you get the idea!

Delete those leading 3 blank lines.
Page down using FUNCTION 4 until you
reach the end of the file, deleting any
lines inserted by the Formatter for page
breaks if found. Subtract the number of
blank lines previously counted from the
line number of the last word and you
have your word count.

If your original file was very long,
you may have to load FILENAME2 in
sections to find the end. Total the
number of lines in each section loaded.

There are 313 words in this file.

In the April issue of the QB Monitor
was a "Brain Teasers" article. The
last two answers to these puzzles are
given below (upside down on this page)

Our newsletter exchange is increasing
monthly. We are now exchanging with 90
bona fide Newsletter publishing UGs;
We are always looking for more.
Speaking of newsletters, all
newsletters we receive from other
groups continue to be inserted in
three ring binders by month they were
received. If you haven't looked over
the newsletters we have in the library
you are missing out on the most
valuable source of information for
your computer. As a member you are
entitled to take home a binder and
pass it on to other members.

To show the quality of publication we
are working for we have included two
articles from other groups. The XB
tutorial comes from Australia via the
Grand Rapids Area 99'er Computer Users
Group. The second from the West Jax
99'er News concerns TI-MULTIPLAN.

As usual I have relied on Ed Machonis

to provide our end of the work. Ed
contributed four of the remaining
articles each a gem in brevity of
programming.

I just sat down to do this bimonthly
issue to make up for not publishing an
Oct issue. What a luxury time is!

Note:
At the last meeting the group decided
to have a monthly free disk available
to each attendee. Each member who
attends will receive a disk containing
member selected freeware programs.
Each month a different member will be
in charge of that month's selection.
Copying will be donated by Dennis
Coyle and Helen Griffin. Disks will
be purchased with group funds. If
you want to get in on this just show
up at meetings!

We received the latest version (4.0)
of the Funnelweb loader by way of the
Lima area Users Group, OHIO USA. It's
even better than the previous version
3.4..
We will be sending a check to Jim
Peterson for his tutorial/tips disks
also available in our disk library.

Pg -2
..,A3C4K-1

cla 1,1101%1 I 7131R "6- (2181-9450 	r- NIEWS3L_E-r-TIEFt

STYLE A LINE
A TINYGRAM

by Ed Machonis

TINY6RAM: A short program which can
be typed in its entirety on one screen
without any program lines scrolling off
the screen. (REM statements can scroll
off.) Popularized, I believe, by Mike
Stanfill of the Dallas TI Home Computer
Group.

First of all let me make clear that
this is not a novelty program. It is a
work horse, provided you have the work

S.
 for it. What kind of work? Do you ever

S. have to print just a line or two, such
as a page header, an article or picture
title, a title for a data base printout,
a credit line for a reprinted newsletter

0 article, etc., etc. Further, would you
•" like 	to print this in an Expanded

Compressed Italicized 	Double 	Strike
44 Underlined type style? Yes all the same

time! If so, this program is for you.

What no printer? I will try to have
▪ something for you next month. (A TINY
73 GRAM - NOT a printer!)
• .1

Many of you are familiar with my 10
• Line basic programs, PRINTSTYLE and and

71

•

before I knew the name existed.) I

'2 base 	printouts 	or 	copy 	for 	the

0 PRINTALINE. 	(Both TINYGRAMS, written

. often use both of them in titling data

Ls Newsletter but it got to be a pain to
▪ change between the two every time I
- wanted to change a type style. 	Finally .gr
• the light dawned! Why not marry the two?

• STYLE A LINE is the result of that
g marriage. One major revision was to

change an INPUT statement in PRINTALINE
to a LINPUT. No more need to enclose in

43 quotes any text lines containing commas
• or leading spaces
••••11
•

= m program run in extended basic. After 0
L some 	streamlining 	by 	deletion 	of
2: unneeded features from PRINTALINE and
74 the consolidation of statements into
- multi-statement lines, we wound up with
V. 9 Lines of code. (After merging TWO TEN 0 Line programs. 	The power of extended 0
.2 basic!)

Don't let its brevity fool you. 	You
= 0 can select any of the 128 type styles • available on the Epson RX-80 and many
= compatibles. 	With line spacing and
▪ margin variations, over 2000 different

selections 	can be had. 	(Half line
• spacing and condensed superscript will
t let you tack on several lines of comment
2 onto a photocopied article.)

Although there are better ways of
doing it, you can even produce a right
margin justified letter. (THIS is

novelty!) Using Emphasized Pica, set
Left Margin at 13, and enter text. 	Two
screen 	lines 	will 	print 	text 54
characters 	wide 	(LINPUT 	uses 	two
character spaces.) Justify text by
inserting spaces between words so that
second line ends at screen edge. But it
will NEVER replace TI-Writer!

Using the program is very easy. When
RUN, a menu is displayed for programming
the printer. It is always best to
select "I" to clear the printer. If
your printer doesn't support a master
reset code, turn it off then on to clear
it. Combine styles by successive
selections. 	Select Option 10 to input
text.

If you wish to change the type style,
or do repeated printings of the same
text, typing "ZZZ' or "zzz" will return
you to the menu. Option 9 will do
repeat printing of the same text and
styles can be changed as required. To
input new text, select Option 10 again.
When in text mode, pressing ENTER with
no text input will print a blank line.

	

Watch those commas in Line 10. 	The
next to last data item is a lower case
"L", not the figure 1.

BRAIN TEASER: Where is the data to
set the left margin at column 13?

1 ! *** STYLE A LINE 	***
a TINY6RAM by Ed Machonis

QB-99ers, Bayside, NY

2 DIM P$(15):: FOR I=1 TO 15
:: READ P$(1):: NEXT I

3 OPEN 4111"PIO",VARIABLE 132

4 CALL CLEAR 	PRINT "I PIC
A/RESET" 1 "9 PRINT TEXT","2
ELITE","10 INPUT TEXT","3 EX
PANDED","11 SUPERSCRIPT","4
COMPRESSED","12 SUBSCRIPT'

5 INPUT 1 5 EMPHASIZED 13 1/
2 LINE SP6 ITALIC 14 L
MARGIN 137 D'BLE STRIK 15 R
MARGIN 678 UNDERLINE ?":I

6 P$(9)=" "&TEX$:: PRINT 111
:CHR$(27)0$(1):: IF 1=4 THE
N PRINT •1iCHR$(27)&CHR$(15)

7 IF 1010 THEN 4

8 PRINT :"INPUT TEXT OR 'ZZZ
' FOR MENU" :11 LINPUT TRY$

9 IF TRY$="ZZZ' OR TRY$="zzz
I THEN 4 ELSE TEX$=TRY$ 	P
RINT 411tTEX$ 	SOTO 8

10 DATA 0,M,W1„E,4,6,-1,„S
0,91,1,1,QC

Using LINPUT 	required 	that 	the

Pg-3

tom: moiNsr -truFt 	ua—sw(5*-opr- rkmawL_a -r -riaFt

rp I S K 	I—Pi OE: L. 	I I

Print Utility BU
A TINYGRAM From The

Library of Ed Hachon is
.0....--i

The original DISK LABEL was a 10 Line
Basic program and is on the TINARC 4/86
disk in our library. It was written to
solve the problee of the missing disk
labels which were not included with
packages of bulk diskettes.

I have been using sailing labels as
disk labels for over two years without
any problems. They are the preferred
label for my disks; the 'store boughten'
kind are only used as temporary labels
until a permanent one can be printed. I
find it much easier to locate a disk in
a storage case when the name is printed
with an expanded type style. Colored
ribbons add a nice touch.

The label used as a title for this
article is an example of the labels
generated by the program. The disk name
appears on the first line in expanded
emphasized underlined double strike type
and is limited to 17 characters. The
second line if available for those disks
with longer titles or where two titles
are appropriate (great for Hippies);
the same type style is used. Centering
of titles is done by the program. If not
required, the second line is left blank
to enhance appearance and locatability.

The 3rd, 4th and last lines are
limited to 28 characters, are printed
expanded compressed double strike and,
except for the last line, are
underlined. The last line is also
italicized.

The 3rd line is used for describing
the disk contents, such as BANES,
UTILITIES, NP DATA, etc. The end of the
line can be used to identify back ups or
disk format such as BU, DSDD, etc.

The 4th line is for remarks and can
be used for language, loading info,
program names, etc. Nhen required, the
3rd and even the 5th line can also be
used for remarks.

The last line is used to identify the
owner; handy for those round robin copy
sessions, ensuring you go home at least
with the disks you arrived with.
Centering is automatic. It is also
useful for identifying a User Group's

library copies.
Soon after DISK LABEL was published,

a fellow group member suggested a
modification to enable text typed for a
particular line to be used for the next
label if desired. This was done in
console basic and the original 5 sector
program grew to 10 sectors.

In cleaning up and consolidating the
code for this article, it was apparent
that Extended Basic's 'Accept At'
statement would make the program a lot
sore user friendly. The program was
rewritten and a 4 sector Tinygram is the
result.

Using the program is very simple,
Just respond to the prompts. The program
automatically limits the number of
characters for the various lines of the
label so that you cannot type in too
long a line. If you notice a typing
error after pressing enter, not to
worry. Just continue with the other
entries and for 'Now Many?' enter zero.
You will be returned to the first line
and need only to accept the defaults
until the error is displayed. No need to
retype, just correct the error.

I always enter 1 for a quantity at
first and look over the label to see if
its as intended and then print the
number of copies required. I often print
a few extra copies for later use and
either place them in the back up's
Jacket or in a label box. Saves
reloading the blank labels at some
future time just to print a label or
two. If you trade many disks, the last
line of the extra copies can be left
blank.

Usage is not limited to disk labels.
It has been used to identify binders of
our User Group's newsletter library,
name tags, place cards, bookplates, etc.

Epson compressed mode is 137 columns
wide. Printers with other widths may
change length of underlining. If so Just
change the TAB setting of the null
strings for the respective lines.
Epson's Emphasized mode takes precedence
over Compressed and cancels it upon

return to line 6. Your printer may
require print code cancellation at the
end of line 1.

The print codes are for the Epson
RI-80 printer. If your printer requires
different codes, the cast of characters,
in order of appearance, are as follows:

IESCeDsCHR$(27)]
EWE' 	Emphasized
ESCD°6° 	Double Strike
ESC&'-l'
	

Underline
ESCV111 1
	

Expanded
ESC&'F'
	

Cancel Emphasized
C181$(15)
	

Compressed
ESCI"-0°
	

Cancel Underline
ESC104 1
	

Italics
ESC105 1
	

Cancel Italics

1 ! '*4 DISK LABEL II ***
A Tinygram by Ed Machonis

08-99ers, Bayside, NY

2 OPEN 111:"PIO"

3 DISPLAY AT(3,1)ERASE ALL:'
DISK NANEr:D$ ACCEPT AT(
4,1)SIZE(-17):D$ 1: DISPLAY
AT(7,1h*Continued?':C$:: A
CCEPT AT(8,1)SIZE(-17):C$

4 DISPLAY AT111,1WTYPE?°:T
$ ACCEPT AT(12,1)SIZE(-28
l:T$:: DISPLAY AT(15,1)ORE
NARKS?":R$ Is ACCEPT AT(16,1
)SIZE(-28)111$ 11 EOCHR$(27)

5 DISPLAY AT(19,11:"YOUR NAN
E?':N$:: ACCEPT AT(20,11S11
E(-211:N$:: INPUT 'HON MANY
COPIES? '0 :1 FOR Jul TO Q

6 PRINT IIIIEWEe;Dle6';E$11
'-1 1 1E$1[41 1 ;TA8(08-LEN(131
1/210$1TAB(18);";TAB((18-L
EN1C$1)/2);C$ITAB(1811";En
'F';CHR$(15);TA8(21;T$1

7 PRINT 41:TAB(30);";TAB(2)
;RWAB(301;";E$101 -0 1 ;E$P4
";TAB((30-LEN(N$11/21;NW$11
'5' :: NEXT J 1: SOTO 3

October 1987 	Ca 1 1 Say
	

Pa.g

C113 MONITOR — 6113 —

The following tutoral comes from
Funnelweb 	Farm and 	are 	excellent
information 	on 	Extended 	Basic
programing. These were downloaded from
GEnie. And will take the next 3 issues
of Call Say. There is a lot of material
on subprograming technic. These came
from a BBS called the EASY CHAIR
1-414-384-2720, 300/1200 baud, 24 hours,
8N1. It has RLE viewing and downloading
with Omegaterm and also Masstransfer MXT
(muliple xmodem transfers) for
downloading after you are verified. The
sysop told me that he got the Funnelweb
tutorials with the BBS software so
that's all I know of their history.

	

Edited 	08/22/87

EXTENDED BASIC TUTORIALS FUNNELWEB FARM

I. INTRODUCTION

In this series of notes on TI
Extended Basic for the TI-99/4a we will
concen- trate on those features which
have 	not received due attention in
User-group newsletters or 	commercial
magazines. In fact most of the programs
published in these sources make little
use of that most powerful feature of XB,
the user defined sub-program, or of some
other features of XB. Worse still is to
find commercially available game
programs which are object lessons in how
to write tangled and obscure code. The
trigger for this set of tutorial notes
was a totally erroneous comment in the
TI - S.H.U.G Newsdigest in Jun 1983.
Some of the books I have seen on TI
Basic don't even treat that simpler
language correctly, and I don't know of
any systematic attempts to explore the
workings of XB. The best helper is TI's
Extended Basic Tutorial tape or disk.
The programs in this collection are
unprotected and so open for inspection
and it's worth looking at their listings
to see an example of how sub-programs
can give an easily understood overall
structure to a program.

Well, what are we going to talk
about then ? Intentions at the moment
are to look at:

(1) User-defined sub-programs (2)
Prescan switch commands (3) Coding for
faster running (4) Bugs in Extended
Basic (5) Crunching program length (6)
X13 and the Peripheral Box (7) Linking in
Assembler routines

II. SUB-PROGRAMS in OVERVIEW

Every dialect of Basic, Extended
Basic being no exception, allows the use
of subroutines. Each of these is a
section of code with the end marked by a
RETURN statement, which is entered by a
GOSUB statement elsewhere in the
program. When RETURN is reached control
passes back to the statement following
the GOSUB. Look at the code segments.

290 	300 GOSUB 2000 310
2000 CALL KEY(Q,X,Y):: IF Y=1 	THEN
RETURN ELSE 2000

This simple example waits for and
returns the ASCII code for a fresh key-
stroke, and might be called from a
number places in the program. 	Very
useful, but there are problems. If the
line number of 	the 	subroutine 	is
changed, other than by RESequencing of
the whole program (and many dialects of
Basic for microcomputers aren't even
that helpful) then the •GOSUBs will go
astray. 	Another trouble, which you
usually find when you resume work on a
program after a lapse of time, is tha -
the statement GOSUB 2000 doesn't car: .'
the slightest clue as to what is at 2r 0
unless you go and look there or use
statements. 	Even more confusingly 	le
2000 will usually change on RESec 	c-
ing, hiding even that aid to m 	y.
There is an even more subtle prot

9 9' e 27 N EW S L.ETTE]R.
Initially the discussion will be

restricted to things which can be done
with the console and XB only. Actually,
for most game programming the presence
of the memory expansion doesn't speed up
XB all that much as speed still seems to
be limited by the built-in sub-programs
(CALL COINC.etc) which are executed from
GROM through the GPL interpreter. The
real virtue of the expansion system for
game programming, apart from allowing
longer programs, is that GPL can be
shoved aside for machine code routines
in the speed critical parts of the game,
which are usually only a very small part
of the code for a game. Even so careful
attention to XB programming can often
provide the necessary speed. 	As an
example, the speed of the puck 	in
TEX-BOUNCE is a factor of 10 faster in
the finally released version than it was
in the first pass at coding the game.

Other topics will depend mainly on
suggestions from the people following
this tutorial series. Otherwise it will
be whatever catches our fancy here at
Funnelweb Farm.

October 1987
	

Ca 1 1 Say 	Page 6

Q13 MONITOR — Q13— 99 	NEWSL.ET TER

you don't really care what the variable
"Y" in the subroutine was called as it
was only a passing detail in the sub

-routine. However, if "Y" is used as a
variable anywhere else in the program
its value will be affected. The
internal workings of the subroutine are
not separated from the rest of the
program, but XB does provide four ways
of isolating parts of a program.

(1) Built-in sub-programs (2) DEF
of functions (3) CALL LINK to machine
code routines (4) User defined BASIC
sub-programs

The first of these, built-in sub-
programs, are already well known from
console Basic. The important thing is
that they have recognizable names in
CALL statements, and that information
passes to and from the sub-programs
through a well defined list of
parameters and return variables. No
obscure Peeks and Pokes are needed. The
price paid for the power and express
iveness of TI Basic/XB is the slowness
of the GROM/GPL implementation.

DEF function is a primitive form of
user defined sub-program found in almost
all BASICs. Often its use is restricted
to a special set of variable names,
FNA,FNB, but TI Basic allows complete
freedom in naming DEFed functions (as
long as they don't clash with variable
names). The "dummy" variable "X" is
used as in a mathematical function, not
as an array index

100 DEF CUBE(X)=X*X*X

doesn't clash with or affect a
variable of the same name "X" elsewhere
in the program. "CUBE" can't then be a
variable whose value is assigned any
other way, but "X" may be. Though DEF
does help program clarity it executes
very slowly in TI Basic, and more slowly
than user defined sub-program CALLS in
XB.

CALL LINK to machine code routines
goe under various names in other
dialects of Basic if it is provided (eg
USR() in some). It is only available
in BS when the memory expansion is
attached, as the TI-99/4a console has
only 256 bytes of CPU RAM for the
TMS9900 lurking in there. We will take
up this topic later.

You should have your TI Extended
Basic Manual handy and look through the
section on SUB-programs. The discussion
aiven is essentially correct but far too

brief, 	and 	leaves too many things
unsaid. From experiment and experience
I have found that things work just the
way one would reasonably expect them to
do (this is not always so in other parts
of XB). The main thing is to get into
the right frame of mind for your expect
-ations. This process is helped by
figuring out, in general terms at least,
just how the computer does what it does.
Unfortunately most TI-99/4a manuals
avoid explanations in depth presumably
in the spirit of "Home Computing". TI's
approach can fall short of the mark, so
we are now going to try to do what TI
chickened out of.

	

The user 	defined 	sub-program
feature of XB allows you to write your
own sub- programs in Basic which may be
CALLed up from the main program by name
in the same way that the built-in ones
are. Unlike the routines accessed by
GOSUBs the internal workings 	of 	a
sub-program do not affect the main
program except as allowed 	by the
parameter list attached to the
sub-program CALL. Unlike the built-in
sub-programs which pass infor- mation in
only one direction, either in or out for
each parameter in the list, a user
sub-program may use any one variable in
the .list to pass information in either
direction. These sub-programs provide
the programming concept known as
"procedures" in other computer
languages, for instance Pascal, Logo,
Fortran. The lack of proper
"procedures" has always been the major
limitations of BASIC as a 	computer
language. 	TI XB is one of the BASICS
that does provide this facility. 	Not
all BASICs. even those of very recent
vintage are so civilised. 	For example
the magazine Australian Personal
Computer in a recent issue (Mar 84)
carried a review of the IBM PCJr
computer just released in the US of A.
The Cartridge Basic for this machine
apparently does not support procedures.
Perhaps IBM don't really want or expect
anyone to program their own machine
seriously in Basic. You will find that
with true sub-programs available, that
you can't even conceive any more of how
one could bear writing substantial
programs without them (even within the
14 Kbyte limit of the unexpanded
TI-99/4a let alone on a machine with
more memory).

The details of how procedures or
sub- programs 	work 	vary from one
language to another. The common feature
is that the variables within a procedure
are localised within that procedure.

Data it ig8Y 	Caiii Say 	12;'aig 	7

H91413thergOgiArgAgR'uitilth4Z4IAr-440 9 it 47 irPTIN4ArtiUMARIWEIWnndex of
tne program, and what happens to them 	built in sub- program names. You can
when the sub-program has run its course 	run a quick check on this process by
varies from language to language. 	XB 	entering the one line program
goes its own well defined way, but is
not at all 1lexible in how it 	it, 	 100 CALL MOTHING

Now let's look at how Extended
Basic handles sub-programs. The RUNning
of any XB program goes in two steps.
The first is the prescan, that interval
of time after you ,type RUN and press
ENTER, and before anything happens.
During this time the XB interpreter
scans through the program, checking a
few things for correctness that it
couldn't possibly check as the lines
were entered one by one, such as there
being a NEXT for each FOR. The TI
BASICs do only the most rudimentary
syntax checking as each line is entered,
and leave detailed checking until each
line is executed. This is not the best
way to do things but we are stuck with
it and it does have one use. At the
same time XB extracts the names of all
variables, sets aside space f r

them, and sets up the procedure by
which it associates variable names with
storage locations during the running of
a program. Just how XB does this is not
immediately clear, but it must involve a
search through the variable names every
time one is encountered, and appears to
trade off speed for economy of storage.

XB also recognizes which built-in
sub-programs are actually CALLed. How
can it tell the difference between a
sub-program name and a variable name?
That's easy since built-in sub-program
names are always preceded by CALL. This
is why sub-program names are not
reserved words and can also be used as
variable names. This process means that
the slow search through the GROM library
tables is only done at pre-scan, and
Basic then has its own list for each
program of where to go in GROM for the
GPL routine without having to conduct
the GROM search every time it encounters
a sub-program name while executing a
program. In Command Mode the computer
has no way provided to find user defined
sub-program names in an KB program in
memory even in BREAK status. XB also
establishes the process for looking up
the DATA and IMAGE statements in the
program.

Well then, what does XB do with
user sub-programs? First of all XB
locates the sub-program names that
aren't built into the language. It can
do this by finding each name after a
CALL or SUB statement, and then looking

TI Basic will go out of its tiny
26K brain and halt execution with a BAD
NAME IN 100 error message, while XB,
being somewhat smarter, will try to
execute line 100, but halts with a
SUBPROGRAM NOT FOUND IN 100 message.
The XB manual insists that all
sub-program code comes at the end of the
program, with nothing but sub-programs
after the first SUB statement (apart
from REMarks which are ignored anyway).
XB then scans and establishes new
variable storage areas, starting with
the. variable names in the SUB
xxx(parameter list), for each
sub-program from SUB to SUBEND, as if it
were a separate program. It seems that
XB keeps only a single master list for
sub-program names no matter where found,
and consulted whenever the interpreter
encounters a CALL during program
execution. Any DATA statements are also
thrown into the common data pool. Try
the following little program to convince
yourself.

100 DATA 1 110 READ X :: PRINT X ::
READ X :: PRINT X 120 SUB NOTHING 130
DATA 2 140 SUBEND

When you RUN this program it makes
no difference that the second data item
is apparently located in a sub-program.
IMAGEs behave likewise. On the other
hand DEFed functions, if you care to use
them, are strictly confined to the
particular part of the program in which
they are defined, be it main or sub.
During the pre-scan DEFed names are kept
within the allocation process separately
for each subprogram or the main program.
Once again try a little programming
experiment to illustrate the point.

100 DEF X=1 :: PRINT X;Y :: CALL
SP(Y) :: PRINT X;Y 110 SUB SP(Z) DEF
X=2 	Z=X 	DEF Y=3 120 SUBEND

This point is not explicitly made
in the XB manual and has been the
subject of misleading or incorrect
comment in magazines and newsletters. A
little reflection on how XB handles the
details will usually clear up
difficulties. TI BASICs assign nomina_
values to all variables mentioned in tl:e
program as part of the prescan, zero f r
numeric and null for strings, uni e
some languages (some Basics even) w :h

7c-1

Q]B MC) 1'4 I TOR --

will issue an error message if 	an
unassigned variable is presumed upon.
This means that XB can't work like TI
LOGO which has a rule that if it finds
an undefined variable within a procedure
it checks the chain of CALLing
procedures until it finds a value.
However, unlike Pascal which erases all
the information left within a procedure
when it is finished with it, XB retains
from CALL to CALL the values of
variables entirely contained in the
sub-program. The values of variables
transferred into the sub-program through
the SUB parameter list will of course
take on their newly passed values each
time the sub-program is CALLed. A
little program will show the difference.

100 FOR I=1 TO 9 :: CALL SBPR(0)::
NEXT I 110 SUB SBPR(A):: A=A+1 B=B+1
:: PRINT A;B 120 SUBEND

The first variable printed is reset
to 0 each time SBPR is called, while the
second, B. is incremented from its
previous value each time. Array
variables are stored as a whole in one
place in a program, within the main
program or sub-program in which the
DIMension statement for the array
occurs. XB doesn't tolerate attempts to
re-dimension arrays, so information on
arrays can only be passed down the chain
of sub-programs in one direction. Any
attempt by a XE sub-program to CALL
itself, either directly or indirectly
from any sub-program CALLed from the
first, no matter how many times removed,
will result in an error. Recursive
procedures, an essential part of TI
LOGO, are NOT possible with XB
sub-programs, since CALLing a sub-
program does not set up a new private
library of values.

All of this discussion of 	the
behaviour of TI Extended Basic comes
from programming experience with Version
110 of XB on a TI-99/4a with 1981 title
screen. Earlier Versions and consoles
are not common in Australia, but TI
generally seems to take a lot of trouble
to keep new versions of programs
compatible with the old. On the other
hand TI has also been very reticent
about the details of how XB works. The
Editor/Assembler manual has very little
to say about it, less by far even than
it tells about console Basic. I am not
presently aware of any discussion of the
syntax of the Graphics Programming
Language (GPL). let alone of the source
code for the GPL interpreter which
resides in the console ROM of every
99/4a.

Q 13 — 9 9 -7' ma x° NEW L.FTTER

Another 	simple 	programming
experiment will demonstrate what we mean
by saying that XB sets up a separate
Basic program for each sub-program. RUN
the following

100 X=1 :: CALL SBPR :: BREAK 110
SUB SBPR :: X=2 :: BREAK :: SUBEND

When the program BREAKs examine the
value of variable X by entering the
command PRINT X, and then CONtinue to
the next program BREAK, which this time
will be in the main program, where you
can once again examine variable values.

(a) XB treats each sub-program as a
separate program, building a distinct
table 	of 	named 	(REFed) and DEFed
variables for each.

(b) All DATA statements are treated
as being in a common pool equally
accessible from all sub-programs or the
main program 	as are also 	IMAGE
statements,CHARacters,SPRITEs,COLORs,
and File specifications.

(c) All other information is passed
from the CALLing main or sub- program by
the parameter lists in CALL and SUB
statements. 	XB does not provide for
declaration of common variables
available on a global basis to all
sub-programs as can be done in some
languages.

(d) Vatiable values confined within
a sub-program are static, and preserved
for the next time the sub-program is
CALLed. Some languages such as Pascal
delete all traces of a procedure after
it has been used.

(e) XB sub-programs may not CALL
themselves directly or indirectly in a
closed 	chain. 	Subject 	to 	this
restriction a sub-program may be CALLed
from any other sub-program.

(f) The MERGE command available in
XB with a disk system (32K memory
expansion optional) allows a library of
XB sub- programs to be stored on disk
and incorporated as needed in other
programs.

III. SUBPROGRAM PARAMETER LISTS

In the last chapter we saw how
subprograms fitted into the 	overall
workings of Extended Basic. 	In this
chapter we are going to go into the
details of writing subprograms. Most of
the fiddly detail here concerns the

OCtc)1r- 1987 	Cal 1 Say 	Pa.gts_. 	C.3
Q$. MONT a" H 	 99 '1 car 	F77.‘esi 	W. T '17 H

construction 	ti‘T2
attached to CALL and SUB statements, and
some of the little traps you can fall
into.

Any information can be transmitted
from the CALLing program to the CALLed
subprogram via the parameter list, and
anything not transmitted this way
remains private for each program, with
the exception of the DATA pool which is
equally accessible to all. If something
is mentioned in the parameter list then
it is a two-way channel unless special
precautions, provided for in XB, are
taken. In this case the CALLing program
can inform the subprogram of the value
of a variable, but not allow the CALLed
program to change the value of the
variable as it exists in the CALLing
program. Arrays however, numeric or
string, can't be protected from the
follies of subprograms once their
existence has been made known to the
subprogram through the parameter list.

Let's for starters take a very
simple but useful example, where a
program needs to invoke a delay at
various points. Now some BASICs (and TI
LOGO) have a built-in function called
WAIT. XB doesn't have this command so
you have to program it. It can be done
by a couple of CALL SOUNDs or with a
FOR-NEXT loop. Let's use an empty loop
to generate the delay, about 4 millisec.
each time around the loop, and place the
loop in a subprogram.

230 CALL DELAY(200) 	670 CALL
DELAY(200/D) 990 CALL DELAY(T) 3000 SUB
DELAY(A):: FOR I=1 TO A :: NEXT I
::SUBEND

This 	is easier to follow when
editing your program then using a GOSUB;
and you would need to enter the
subroutine in every subprogram since
GOSUBbing or GOTOing out of a subprogram
is verboten. Also it's less messy than
writing the delay loop every time. The
example shows several different CALLS to
DELAY. The first supplies a number, and
when DELAY is CALLed, the corresponding
variable in the SUB list, A, is set to
200. This is a particular example of
the kind of CALL from line 670 where the
expression 200/D is first evaluated
before being passed to DELAY to be
assigned to A. Variable D might for
instance 	represent 	the 	level 	of
difficulty in a game. The CALL from
line 990 invokes a numeric variable T.
and A in the subprogram is set to the
value of T in the CALLing program at the
time when the CALL is executed.

Nothing untoward happens to T in
this example, as the DELAY subprogram
does nothing to change A. Now it may
not matter in this instance if T did not
retain its value after the subprogram
CALL. Suppose instead the delay was to
be called out in seconds. Then a
subprogram on the same lines DELAYSEC
might go

230 CALL DELAYSEC(2) 	990 CALL
DELAYSEC(T) 4000 SUB DELAYSEC(A):: A=A0
4010 FOR I= 1 TO A :: NEXT I :: SUBEND

Now after DELAYSEC has been
executed with the CALL from 990, T will
have value 250 times its value before
the CALL. This won't be a bother if you
don't use T again for its previous
value. If the CALLing program specifies
a numeric constant as in line 230, or a
numeric expression, the change in A in
the subprogram has no effect on the main
program. Suppose you can't tolerate T
being changed in line 990 (and this kind
of thing can be a source of program
bugs). You will find that XB allows for
forcing T to be treated as though it
were an expression, thus isolating T
from alteration by the subprogram. if T
is enclosed in brackets in the CALL (not
SUB) list. Suppose DELAYSEC is also
called from line

970 CALL DELAYSEC((T))

If this CALL in line 	970 	is
followed by the CALL from line 990, T
not 	having 	been 	altered 	in 	the
meanwhile, the same delay will be
obtained, but if the order of CALLs were
reversed the second delay would be 250
times the first. In the language of XB
this is known as "passing by value" as
distinct from "passing by reference".
This can only be done for single
variables or particular array elements,
which behave like simple variables in
CALL lists. Whole arrays cannot be
passed by value, but only by reference.
Expressions and constants can only be
passed by value, and its hard to see
what else could be done with them. In
the example as written, a. different
variable name was used in the SUB, but
if you remember the little experiment in
the last chapter you'll see that it
wouldn't make any difference if T had
been used in the SUB list instead of A.

Now let's complicate 	things 	a
little by flashing up a message on - le
bottom line of the screen during -le
delay interval.

Octob er 1987 	Ca.11 -Say 	Page 1 0 -

(a13 MOLT I TOR -- Q13— 9 9 ' ee 3:" N
200 CALL MESSAGE(300," YOUR TURN 	than some others in that they do not

NOW") 270 CALL MESSAGE(T,AS) 3000 SUB 	permit implicit operations on an array
MESSAGE(A,A$):: DISPLAY AT(24,1):AS 3010 	as a whole, a very annoying deficiency.
FOR I=1 TO A:: NEXT I :: DISPLAY
AT(24,1):"" 3020 SUBEND 	 Arrays may be DIMensioned within

subprograms. This will introduce a new

	

The SUB parameter list now contains 	array name to the program, and an array
a numeric variable and a string variable 	or variable name from the SUB parameter
in 	that 	order. 	Any CALL to this 	list can't be used or an error message
subprogram must supply a numeric value 	will result. In the following code the
or numeric variable reference, and a 	main program passes, among other things,
string 	value or 	string 	variable 	an array SC to subprogram BOARD (perhaps
reference, in precisely the same order 	a scoreboard writing routine in a game).
as they occur in the SUB list. 	In the
little program segment above, line 200 	100 DIM SC(2.5) 450 CALL
passes constants by value and line 270 	BOARD(P,ASO,SC(,)) 	4000 	SUB
passes variable references. There is no 	BOARD(P,AS(),S(,)):: DIM AY(5)::
reason why one cannot be by value and 	4080 SUBEND 5000 SUB REF(V,A(),B(,))::
one by reference if so desired. 	 SUBEND

	

This process can be extended to any 	BOARD generates internally an array
number of entries in the parameter list, 	AY() which 	is 	passed 	to 	another
provided the corresponding entries in 	subprogram 	REF (maybe this resolves
the SUB and CALL lists match up entry by 	ties) along with SC(,). which BOARD
entry. numeric for numeric, string for 	knows as S(,), and REF in its turn as
string. The XB manual does not say so 	B(,) -- the same name could have used in
explicitly, but it appears that there is 	all places. 	There is however no way
no limit apart from the usual line 	that the main program or any subprogram
length 	problems, 	on the number of 	whose chain of CALLs doesn't come from
entries in the list. This is the only 	BOARD can know about the array AY().
apparent 	difference 	between 	the 	This would hold equally well for any
parameter list in XB subprograms and the 	variable or array, string' or numeric,
argument lists for CALL LINK("xxxxxx", . 	first defined within BOARD and whose
...) to machine code routines in XB. 	value has not been communicated back to
and Minimemory and E/A Basics. 	 the CALLing program via some other

variable mentioned in BOARD's parameter
One little freedom associated with 	list. •

built-in subprograms is not available
with user defined subprograms. 	Some 	By following this line of reasoning
built-ins, such as CALL SPRITE permit a 	you can see that there is no way for a
variable number of items in the CALLing 	subprogram whose chain of CALLs does not
list. Parameter lists in user defined 	come through BOARD to know about array
subprograms must match exactly the list 	AY(). 	The only way around this is for
established by the SUB list or an error 	AY() to be DIMensioned in the main
"INCORRECT ARGUMENT LIST in ..." will be 	program 	(even if this is its only
issued. 	To compensate 	for 	this 	appearance there) and the message passed
inflexibility user defined CALLs allow 	down all necessary CALL-SUB chains.
whole arrays, numeric or string, to be
passed to a subprogram. Complete arrays 	This idea of DIMensioning an array
may be passed 	by 	reference 	only. 	only within a subprogram is particularly
Individual array elements may be used as 	useful if the array is to READ its
if they were simple variables and may be 	values from DATA statements and to be
protected from alteration by bracketing 	used in the subprogram. This could be
in the CALL list. An array is indicated 	done again from any other subprogram
in the parameter list by the presence of 	needing the same data, without having to
brackets around 	the array 	index 	pass its name up and down CALL-SUB
positions. 	Only the presence of each 	chains. 	Remember that DATA statements
index need be indicated as in A(). 	act as a common pool from which all
MATCH(„) indicates a three- dimensional 	subprograms can READ. 	If the array
array MATCH previously dimensioned as 	values are the results of computations
such, explicitly or implicitly. Don't 	then these values must be passed through
leave spaces in the list. 	If 	the 	the , CALL parameter lists.
subprogram needs to know the dimensions
of the array these must be 	passed 	 For completeness 	note 	that 	.
separately (or as predetermined elements 	although the XB manual has nothing to
of the array). 	TI Basics are weaker 	say about it, IMAGE statements 	for

0C t <=4:39r- 1987 	C.a. 1 1 Say 	PeacjEa 	11

fgatiWIti.VEloWit are aCalliblt)9 Inait tV3E§'WE-csain v ill3W5§3-ticks on
from any part of a program in the same 	an equal footing as is done by many
way as DATA statements and not confined 	cartridge games. 	On the other hand in
to the subprograms in which they occur 	games where planning and not arcade
as are DEF entries. 	 reaction is of the essence there is no

It is not necessary to nave any
parameters in the list at all.
Subprograms used this way can be very
helpful in breaking up a long program
into more manageable hunks for ease of
editing. We shall also see in later
chapters that there can be other
benefits as well.

One 	more XB 	statement 	for
subprograms remains, the SUBEXIT. This
is not strictly necessary as it is
always possible to write SUBEND on a
separate line and to GOTO that line if a
condition calling for an abrupt exit is
satisfied. Like a lot of the little
luxuries of life however, it is very
nice to have and makes programs much
easier to read and edit. It does not
replace SUBEND which is a signal to the
XB pre-scan to mark the end of a
subprogram. SUBEXIT merely provides a
gracious and obvious exit from a
subprogram (awkward in some Pascals for
instance). The next chapter will
demonstrate typical examples of its use.

IV. USEFUL SUBPROGRAM EXAMPLES

In the previous chapter we used as
an example a DELAY subprogram which
could, with a little refinement, be used
to substitute for the WAIT command
available in some other languages. You
can extend this idea to build up for
yourself a library of handy-dandy
subprograms which you can use in
programs to provide your own extension
of the collection of subprograms that XB
offers.

For our first example let's take
one of the more frustrating things that
TI did in choosing the set of built-in
subprograms. If you have Minimemory or
E/A you know that the keyscan routine,
KSCAN, returns keyboard and joystick
information simultaneously, while XB
forces you to make separate subprogram
CALLS, KEY and JOYST, to dig it out.
Since these GPL routines are slow it is
difficult to write a fast paced game in

forcea to make a once-ana-for-aii choice
and not be able to use either at any
stage of the game.

The subprogrammers approach to this
problem, once it realised that it can be
done (and we have commercial XB games
where the writers haven't) is to write
the game using joysticks, but replacing
JOYST by a user defined sub-program JOY
which returns the same values as JOYST
even when keys are used.

The first step in telling whether
keys or joysticks are being used is to
check the keys, and if none have been
pressed then to check the joysticks. If
a key has been pressed then its return,
K, has to be processed so that the
direction pads embedded in the keyboard
split-scan return the corresponding
JOYST value. A subprogram along the
lines of the one used in TEX-BOUNCE does
just this.

900 	SUB 	JOY(PL,X,Y):: 	CALL
KEY(PL.K.ST):: IF ST=0 THEN CALL
JOYST(PL.X,Y):: SUBEXIT 910 X=4*((K =4
OR K=2 OR K=15)-(K=6 OR K=3 OR K=14))
920 Y=4*((K=15 OR K=14 OR K=0)-(K=4 OR
K=5 OR K=6)) 930 SUBEND

PL is the player (left or right
joystick or side of the split keyboard)
number and is unaltered by the
procedure. The simple-minded approach
for converting K to (X,Y) values by
using the XB logic operators (one of the
more annoying omissions from console
Basic) seems to work as well as any.
The subprogram as written checks the
keys first but balances this out by
putting the processing load on the key
return.

This is as good a time as any to
sharpen your own skills by working out
alternative versions of this procedure,
and also by writing one for mocking up a
substitute CALL KEY routine to return
direction pad values even if a joystick
is used.

• •

4. 	 4, 	•

TI-99/4A KEYBOARD LAYOUT

e •
2

•
3

4.

•

0 r •

•	
T

• 4' • • e •
H J K L

•	 e

6 4

•	
R

•

•	

I.

	e •	

•	

•

4. • 4,
w

•	
S

•

•	

4,
5

•	

HHHHHHHHH
ALPHA

LOCK

ii
CTRL SPACE

SHIFT

PRO , ;RAM NAME:

Notes :

ORIGINAL SOURCE UNKNOWN.

FCTN

CTRL
SHIFT
NO SHIFT

SHIFT

	4.

FCTN

ENTER

IT-HULTfLLO,H
Hy
Epl -z1Pn

West Jax 99ERS

I think that most of us have at some time acquired a Multiplan

package and because we don't understand the package and it's many
powers, have stored it away with other items that we seldom if over
have occasion to use.

The Multiplan package is a very powerful and useful tool which has
a multitude of uses. I have designed a template or model which allows

me to use Multiplan at least once a month. I decided that as long as I
had it I might as well use it.

In this article I will do a walkthrough on a template that I use to
reconcile my checkbook and do the statement balancing, then save the

file for later recall. This allows me to store the actual statements and

checks away in a box in the attic or garage, or wherever a person stores
things that are seldom used. If I need information concerning my
checking I Just go to that Multiplan file and obtain the data. You can
also do a printout of any given month. The months are also linked.

Before I talk about my template, there was an article in the April
1985 issue of MICROpendium page 35, which was written by Earl Hall of

Chicago Il, that tells how to change disk drive and printer defaults so

that you don't have to change them every time you want to use

Multiplan. At this point I will go through a walkthrough for the

changes using Advanced diagnostics. The first thing to do to make the

job easier is to initialize a disk and copy the MPINTR file to it. The
reason for this is that it makes finding the right data blocks easier.
Another tip which will speed up the use of multiplan is to arrange the

program files in a certain order on the disk, which effects access time.
This should be done in the following order. OVERLAY, MPHLP, MPCHAR,
MPDATA, MPINTR, and MPBASE,

After you have saved the HPINTR file to a new disk, Load up Diaqs.

and Edit Sector >22(34), which will be the first data sector. Shift
into ASCII screen mode and find the words DSK1 and RS232 and it's

defaults. Move the cursor to the appropriate spots to chanae DSK1 to
DSK2 and RS232 to PIO. The RS232 data after that should be blanked out
by using the space bar, if you use delete character, The end of the
data block will be messed up. Now Write Sector back to the disk and you

3.11

The first thing to do is to inSert the Multiplan Cartridge and

place the Program disk in drive #1. For those with two or more drives,
te data disk should be placed in drive #2. I have written this article

with the assumption that you have at least two drives. After loading
the program set, select '0' for OPTIONS and enter 'N' for no

auto-recalc. If you don't make this selection the program will go into
Recalc mode after each entry.

The first thing we want to do after loading the Multiplan files, is

to set up the various workspaces by naming the work areas and afterword

we will enter our formulas for doing the necessary calculations.

Q E3 NIONIT T1 R 	61:13_00 	NEWS E

PA-13
	 3

First use FCTNEll(HOME), this places the cursor at rowl, columnl
(R1C1). Starting at R1C1, select ALPHA and type in 'CHECKS', then press
FCTN X which will enter the name and advance the cursor down one row.
Next enter ' 	' (6 underline characters) and press FCTN P which
will enter the underline characters and advance the cursor one column
to the right. Now use FCTN E to put the cursor at the beginning of the
second column. Now type in 'Date' and FCTN X and then enter'
underline characters) and press FCTN 0 then FCTN E. Repeat the
procedure for the next three columns entering the following names
'PAID_TO', 'AMOUNT', and 'DEPOSIT. For the next column we don't want to
enter the underline characters, the reason will be explained later.
However at R1C6 we want to enter 'BALANCE'. Now we will name your
areas. First HOME the cursor and hit N for Name. The first field
should now display the name that you typed in. Hit CTRL A to advance to
the next field and then FCTN 4 and CTRL 4 twice. Then hit SHIFT colon
and enter 55. The field should now read R1:55CX(where X equals the
current column). Do this for all six of the columns with the names
vihich you have taped in

Now we want to format our columns, I used 55 rows as that was two
more than the largest amount of checks thati had written in a given
month. First HOME the cursor to R1C1 and then check to see if the help
lines are at the lower area of the screen, If not CTRL A will bring
them up. Now enter F for FORMAT and then select columns and using CTRL
A to advance to each field, select the following. Before we start
formatting the columns starting at line three, keep in mind that for
the first field we can hit FCTN 4 which will place the cursor at the F:
in R7CX (with X being the current column). Now hit CTRL 4 twice and
observe the cursor. Hit SHIFT colon and then 55. The field should now
read R3:55CX, which meand from R7CX to F:SSCX. Enter 0 for decimal and
hit CTRL A then C for center then CTRL A and SHIFT dollar sign for
Dollar format. Then use CTRL A again and enter 2 for the default of two
culurnns after decimal point. Now for column two we want to enter G for
Gen, CTRL A, G for Gen, CTRL A, and leave the rest of the defaults. Do
the same with column 3. In columns 4, 5, and 6 we want to enter D for
Decimal, dollar sign for dollars, and 2 for decimal places. However in
column 6 we want to start in row 2 instead of 3. Now we must format
the width of our columns as follows. Here we want to start at row 1 and
select F for format and use the same procedure as before in the first
field. Columns 1 and 2 can be left at te TIME default width. Three
should be 15, 4 and 5 should be 	and column 6 should he 10.

Now lets enter a formula for subtracting the checks and adding the
deposits. Place your cursor in the cell at R3C6 and hit the equal sign.
Note that the command line Asks for a value. Using the up arrow. move
the cursor up one row to R2C6 and then hit SHIFT minus. You will notice
that the cursor returned to R3C6, but a formula started to build on the
command line. Now move the cursor to R3C4 and hit SHIFT plus and the
cursor will again return to R7C6. Now move the cursor to R3C5 and hit
enter this time. This will enter your formula to take the balance at
R2C6 subtract the check value at P7C4 and then add (i. f any) the value
of the deposit at R3CS, then place the new balance at R7C6. The formula
should read thus RC-17C-RCE-211+RCE - lJ. Next use CTRL A to get the help
lines and enter C for Copy. Then select D for down and for the number
of rows as 52 since we are startinc at row 3. This will copy the
formula down to the desired 55 rows.

Q13 1"41C)1■1 =CDR. — C413 — 9 9 	 NEW 1, ET 71.‘ F?.

Now we want to set up an area for- reconciling the checklog against
the monthly bank statement. Advance the cursor to R61C1 and type in
OSTD_CK and this will be where we will enter the checks that were

written after the statement date. At R61C2 enter PND_DEP for pending
deposits after the statement date. Name the cells R62:77CX and then

select Format Cells and use R62:77CX then use D for decimal, Shift

dollar sign for dollar format, and 2 decimal places. Move the cursor to
R7701 and hit the equal sign and type in SUM(OSTD_OK) and hit enter. At
R7702 use SUM(END_DEP). this will cause the total of what is entered in
go to R61C3 and type in 'S -PAL' and these cells 861:6203 as such, this

is where we will enter the ending balance from our bank statement. then

at R64:6507 we want to assign 'CK_BAL' to carry our balance forward and

use it in our next formula. Now assign R67: /8C' 'CORR', this will be

the final value to see whether we need to correct our checkbook or
not.

Now we can enter the final mathematics formulas. First at R65C7

enter the following formula by hitting the equal sign and typing
RE-107CE+7]. This will carry the total from column 6 to this space.
Next, at R6803 hit equal again and enter the following formula to
comput the correction if any. RE-6]C-RE+93CE-2]+PE4-93CE-1]-RC-730, then

hit enter. If you follow this -formula step by step you will see that it
takes the S_BAL(statement balance) and subtracts the SUM(OSTDCK) or

total of outstanding checks. then adds SUM(PND_DEP) or the total

pending deposits, and then subtracts the CK_BAL to find out if the

statement balance is equal to our checkbook balance.

If I get a CORE; value other than zero. I first check to see whether
I may have entered a value wrong, and if so enter the correct amount.

If all is well with my entries. I know that I need to change my

checkbook as there is a mistake somewhere in my figures that are
usually done mentally anyway.

Now hit FCTN 8 for Recalc and when it is finished, the areas that

have formulas related to them should contain $0.00. if not, recheck the

formulas and try again. If all goes well we can now lock opur formulas
by selecting L for Lock and then F for formulas and the formulas will

he permenantly locked in. Befure saving your template to disk moce the

cursor to R206 and then when you load it you will start at that point
e',,ery time you load it.

When you go to use the template the first time, just enter the

balance where you wish to start in the checkbook. When saving each
month's file I name it for the statement month such as JA•87 which
contains the last of December and the first of January checks contained
in the statement for January. After the first month has been saved,
from then on, since you will start in R2C6 you can go to External copy

immediately after loading the template, which I named CHECKLOG. To do

this hit X for external, then C for copy then enter the previous
month's file name and then CTRL A to advance to the next field. Now

enter R65C7 and the template will load the previous month's CK_BAL and

continue from there in the calculations.

I hope you find this as useful aE I have and I hope to do some more

Multiplan articles in the near future.

C/JE3 MC> N I TOFL — C113 — 9 9 ' 	NEWSLETTER
Pg -1 5

tacW momx -rimpuR 	met—cps 	miat4stLE -1.

COLISTER
A TINYGRAM

by Ed Machonis

Another 28 column lister? Why not?
This one happens to be my favorite and
not just because I wrote it. I like it
because it does the job the way 1 want
it done, but then 1 wrote it that way.

At the time I wrote COLISTER, I had
no access to any program that could do
what I wanted done, which was to be able
to list a program to disk or printer in
28 column format, the way it appears on
the screen.

A 28 column listing makes it easier
for the reader to type in the program
with less chance for error. It also
sakes it simpler to check for errors
should any creep in. One only has to
check the end of each line as it appears
on the screen against the printed
listing to see if any characters were
omitted or added. (Hose Computer
magazine never did learn this lesson.)

But the biggest reason is that it not
only saves the work of typing in a
program in 28 column format, but it
eliminates the chance for typing errors.
By letting the computer do the work,
nothing can go wrong. (If you believe
this, I have a fantastic deal on a
Bridge I'd like to tell you about!)

Why not just LIST to Printer or Disk?
It's not that simple. The computer will
list the program in 80 column format.
Why not set the printer's right margin
at 28? It will work up to a point. The
point being a program line of more than
80 characters. The computer will send a
carriage return after the BOth character
and start printing the rest of the code
on a new line. Listing to disk will also
give you an 80 column listing.

Since I originally wrote this program
several years ago, two programs that do
the same work have been brought to my
attention. One is 28 Column Converter by
Jim Peterson, published in Tigercub Tips
#18, and the other is MIST, a Fairware
program by the McGoverns. Both are very
nice programs and you say well find thee
more useful to you than the one
presented here. (I had originally named
my program COLIST but have since renamed
it COLISTER to avoid confusion.)

COLISTER has a couple of features not
available in the other programs. First,
it will print a blank line between
program lines. I feel this makes it
easier to 'read' the program, especially
the spaghetti code I am prone to. It
facilitates picking out a line number in
the middle of the program when following
those GOTOs and orELSEs.

Second, it TABS the output 6 spaces.
This centers the listing when merged
into 40 column text in TI-Writer's
Editor, and provides a margin so hard
copies can be loose leaf bound.

COLISTER does not require that a
program's line numbers be resequenced in
order to list it. A lot of my program
lines are numbered from 1 to 10. Default
resequencing (100,101 would sometimes
destroy their Tinygram status. (COLISTER
is a good example. One Tinygram 'trick'
is to use single digit line numbers to
gain a few extra character spaces for
your code.)

COLISTER will print to either disk or
printer. Listings printed to disk can
the be merged with text in TI-Writer's
Editor. Do not print the listing through
the Formatter unless you have modified
your Formatter file to ignore the
special format command characters that
are also often found in programs.

This Tinygram uses only 4 sectors of
disk space, which can be reduced to 3
sectors by deleting Line 1. It earns its
keep on my SSSD utility disk. (Small is
Beautiful)

Using COLISTER is very simple. First,
load into memory the program you want to
list. Next make a DV BO listing by
typing LIST IDSKn.FILENAME% Don't use
the same filename as the program or the
listing can overwrite the program.

Then load and RUN COLISTER. At the
first prompt, enter the DSK number and
the filename used above. For the second
prompt, enter the print device name.
This can be either PIO, RS232, or
DSKn.F1LENAME2. Again, use a different
filename if reading from and writing to
the same drive.

If you don't want the blank line
between program lines, just change the
FOR statement in Line 8 to read: FOR 1=0
TO L-1. The TAB setting in this line can
also be changed or eliminated, as

desired. If for some reason you want a
listing with a different width, say 40
columns for those 'other' owners, just
change the value of C in Line 5. (The
reason it's in Line 5, and being
constantly updated, is because that's
where the room was. Another Tinygram
'trick'.)

If you prepare program listings for
newsletters, I think you'll find this
program useful. The algorithm used to
detect a new line number is relatively
unsophisticated. It hasn't failed me
yet, but I'm sure that someone, someday
will write code that will trip it up.
For that reason it is well to always
look over the output to be sure that
lines have not been split or joined when
they should not have been.

1 ! 	*** COLISTER **1
A Tinygram by Ed Machonis

88-99ers, Bayside, NY

2 PRINT :'1st LIST your prog
rm to diskThen RUN COLISTER'

3 PRINT :;:'INPUT FILENAME?
ex:DSKn.LIST" :: INPUT F$
INPUT 'OUTPUT FILENAME? ex:
PIO or DSKn.LIST28

4 OPEN 11:FS,INPUT :: OPEN #
3:14,OUTPUT 1: ON ERROR 10

5 C=2B 	LINPUT #1:A$:: IF
LEN(A1)<B0 THEN

6 LINPUT #1:81 :: IF VAL(SEG
$(14,1,POS(A1,",2)11<VAL(S
E61(81,1,POS(81, 1 1 ,211)THEN
F=1 :: GOTO 8

7 AS=AUBS :: IF LEN(BS)>=80
THEN 6

B A=LEN(A$):: L=A/C+.99 :; F
OR 1=0 TO L :: PRINT 13:TAB(
6);SE61411,1+1*C,C):: NEXT I
:: IF EOF(11AND F=0 THEN CL

DSE #1 :: CLOSE #3 :: END

9 IF F=I THEN F=0 :: AO" :
: SOTO 7 ELSE 5

10 ON ERROR 10 :: RETURN 7

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

