
o)01
<-0) -Jr refitor

0.121 -99 ERS 11. C. NEIWSLETTER
D 	nib r- 1987

The QS MONITOR is the Newsletter of the OB-99'ers User Group, is printed Sept. thru June and sent in exchange for other User Group
Newsletters. Send Exchange Newsletter to Frank Cotty, Queensborough Cosaunity College, Bayside, NY 11364. Credit original sources.

The QB 99'ers meets the second Saturday
of each month September through May, at
Queensborough Community College, Bayside
New York, room S225. See the calendar at
right for the dates

In January all QB 99'ers must pay $10.00 Dues. Failure to pay dues will

cause revolutionof membership and termination of subscription to the Monitor.

Forward your check for dues to Frank Cotty at Queensborou9h Community College.

C:(Dra.11-,Eritss

Editor's Note 	 2

FORTHward H0 1 	 3

Fortune of Wheels 	 5

Setting Your Printer 	 6

CTRL Key Codes and Rave 101 Keyboard 	 8

LA STYLER 	 9

Articles for the FEB issue must be in by JAN Z9

CUB MONITOR — QB— 9 9 Jr- NEWSLETTER

Editor's Note

The current issue of the QB Monitor
contains 	items of interest to most
TI-99/4A computer users. 	Programming
information in FORTH and in Extended
BASIC. Both articles by very articulate
and knowledgable programmers. For those
without a printer Mike continues with
FORTHward Ho! and Ed has contributed
FORTUNE OF WHEELS. I'll let Ed describe
that, one for you,

Ed loves to chat with his fellow
computerites. The result is often
enlightening to those just sitting by
and watching. Tom Freeman of the LA
99'ers wrote some programs in the TopIcs
newsletter in addendum to Ed's "BASIC
tinygram". His results are given here
with Ed's last word (yes he said that).
LA STYLER is Ed's last word on print
styles.

For those with a RAVE 101 keyboard
there also appears in this issue a
listing of the Control Key Codes as used
for the Rave keyboard.

Thanks to John Wilforth of the West
Penn 99'ers we have the following
listing of T.I. Vendors. This listing
includes cnly current distributers of TI
Hard and Software. I urge you to
support these and other suppliers which
have not been listed. If you write them
they will return information to you
regarding their products.

	

Horizon RAM Disk, P.O. 	Box 554,
Walbridge, OH 43465

Quality 99 Software, 1884 Columbia
Rd. #1021 Washington D.C. 20009-5161

--DM IV, Draw n' Plot, Screen DumpIl

Amnion Helpline, 116 Carl St, San
Francisco, CA 94117, Free not for profit
help and freeware programs

Disk only software P.O. 	box 244
Lorton, VA 22079, Horizon, MYARC etc.

McCann Software, P.O. 	box 34160,
Omaha, NE 68134. Printers Apprentice

DataBiotics 	P.O. 	Box 1194 Palos
Verdes Estates, CA 90274

Tenex Computer Express, P.O. 	Box
6578, South Bend, IN 46660

Tex-Comp, P.O. 	Box 33084, Granada
Hills, CA 91344

Texaments, 53 Center St. 	Pathogue,
NY 11772

Triton Products Co., P.O. Box 8123,
San Francisco, CA 94128

Genial Computerware, 835 Green Valley
Drive, Philadelphia, PA 19128

Ryte 	Data, 	210 	Mountain 	St.
Halburton, Ont. KOM 150

Micropendium, P.O. Box 1343, Round
Rock, TX 78680

Corcomp, 2211-C Winston Rd., Anaheim,
CA 92806

THIRD ANNUAL T.I.C.O.P.F. IS MARCH 26

S.C.OF.?, 	'88

at Roselle Park High School

(Exit 137 - Garden State Parkway)

Saturday March 26, 1988

9 AM to 4 PM Admission $5.00

Featuring:

Huge Indoor Vendor's area, Work Shops
- Fairware - Hardware/Software -
Swap-Shop. For TI-99/4A, MS/DOS and IBM
computers.

Pre-paid admissions get a free disk
of IBM-TI software ---Send check and
ASAE to TICOFF 185 W. Webster Ave.,
Roselle Park, N.J. 07204

For further information call (201)
241-45550/8902

FORTHward HO!
	

THE NEXT STEP

Now that we vo qained a basic
, r standing of FORM, 	lets become a

more intimate with the way
FORTH 	handles, stores, and manipul-
ates various types of data.

WILL ONLY REQUIRE 1 MEMORY CELL IN
WHICH THEY CAN BE STORED. These are
called single length variables, 	and
can 	be declared as follows...

VARIABLE AGE
NikeHl 	OB 99'ers

One of the final goals in
learning how to program in a new
language is to be able to write that
all-time great program, isn't it....
Well, in order to accomplish this, we
as programmers will need to know how
the data to be used in our program is
to be entered, stored, manipulated,
and output.

Again, 	we 	will 	be using BASIC
as a reference platform 	in order to

more eaily explain some of the new

concepts we will 	be discovering 	in
our trek down the road to becomming a
proficient FORTH programmer.

ALL PROGRAMMING LANGUAGES ALLOW
THE PROGRAMMER THE ABILITY
TO RESERVE THE NECESSARY SPACE IN
MEMORY FOR ALL DATA THAT WILL BE USED
IN THE PROGRAM. THE PROCESS OF
RESERVING MEMORY FOR DIFFERENT TYPES
OF DATA IS REFERRED TO AS DECLARING
VARIABLES.

In 	II BASIC we never really
had 	to 	declare 	a 	variable before
using 	it (with the exception of
arrays that contained more than 10
elements which had to be declared
with DIM statements). FORTH is
different. 	IN FORTH WE MUST
EXPLICITLY DECLARE ALL VARIABLES
BEFORE THEY CAN BE USED.

As in TT BASIC, FORTH 	allows
NUMERIC TYPE variable as well as
STRING TYPE VARIABLES. 	There is,
however, 	a slightly different 	way
in which FORTH looks at 	these
variables when compared to TI BASIC.
This is important, so lets pay
attention...

NUMERIC VARIABLES OF' TO 255 ARE
CONSIDERED TO BE ONE BYTE LONG, AND

This statement declares the variable
AGE, thereby reserving 1 byte (or 1
memory cell) in memory for it.

Now if we wanted to store a
person's age in AGE, we would use the
FORTH word 	! 	(pronounced store) to
put the persons age at the memory
location referenced by the variable
AGE.

12 AGE !

s how it is done.

Supposed we wanted to find we didn't
know what the persons age was, but it
was already stored in the variable
AGE, how would we get it? We would
use the FORTH word @ (pronounced
fetch) to get a 	1 byte value from
the variable AGE, 	and put it on the
stack. To print it we use FORTHs dot
command.

AGE B .

...is how you do it.

Ok, 	lets 	look 	at NUMERIC
VARIABLES THAT CONTAIN VALUES LARGER
THAN 255. 	Since 255 is the largest
value that can be stored in a
single memory location, 	any number
greater than 255 will need 2 memory
locations in which to hold its data.

FORTH allows for this by
providing the words necessary to
declare a DOUBLE LENGTH VARIABLE,
store data to a DOUBLE LENGTH
VARIABLE, and to fetch data from a
DOUBLE LENGTH VARIABLE 	(there is
also provisions in FORTH for doing a
lot more with double as well as
single length variables...more on that
later).

...use=, the FORTH word 2VARIABLE 	 Now how do we store data to

and fetch data from, ANYNAME. Well,
VARIABLE YEAR 	 logically we would use a variation

on the FORTH word 	! (store) to store
to declare the double length variable 	a string value... right??

1987. YEAR 2'

...stores the value 1987 to YEAR

with the FORTH word 2! (pronounced
store).

Well... 	you're 	not 	quite right,
but you're not entirely wrong

either..

ANYNAME 70 EXPECT
YEAR 20 0.

...fetches 1987 from year

with 2 (pronounced 2f etch) and puts
it on the stack where it is printed
with the forth word D. (pronounced
double-print ??).

Don't forget the period after

1987 (or any double 	length
number).

Ok, 	that starts us on our way

with numeric variables. 	Next we will

look at STRING VARIABLES in FORTH.

...introduces the

new FORTH word EXPECT. This causes

the computer to immediately wait for
the next string of characters

entered terminated by a carriage
return 	(the ENTER key) 	to be stored

at the location ANYNAME in the order
that they were entered. 	The number

30 preceding EXPECT is the maximum
number of characters to EXPECT from
the keyboard.

To see the string stored at

ANYNAME, we would...

ANYNAME 20 TYPE
In it 13ASIL we didn't have to pre

declare a string variable, and storing
a 	value to a string variable was as
simple as A$—"hello there". 	In

FORTH strings are handled 	a 	bit

differently... (again). The simplest
way, and the way that will serve to

demonstrate how string variables are
declared is as follows...

VARIABLE ANYNAME 30 ALLOT

....uses the familiar

FORTH 	word VARIABLE to declare the
variable ANYNAME, then 30 ALLOT uses

the FORTH word ALLOT preceeded by the

number •0 to reserve 30 more bytes

in memory for the variable ANYNAME.
We now have a 31 byte block of
memroy res.er'red for a string of
characters that are referenced by
the variable name ANYNAME.

...TYPE 	is a FORTH WORD that
types out the designated number of

characters at ANYNAME.

There are other ways to declare

and acces strings in FORTH, which we

will go into later.

	

Ok, 	we've covered the basics of
variables in FORTH as it applies to
the TI-99/4A. 	This should provide a

little food 	for thought. Take some
time to do a little experimenting with
what you've just learned...

	

Next 	installment will look at

strings in depth, 	and cover loops,
and conditional branching. Then we
will be able to begin work on our

first real program in FORTH.

till next time...

dB MONITOR — cam—simp-mpr- mlawsErmiR

FORTUNE OF WHEELS
A Tinygram

by Ed Machonis

Last month I promised that I would
have something this month for the people
without printers. In lieu of Epsons and
Axioms I give you a Fortune of Wheels.
Just to prove that I CAN write a program
that doesn't use a printer.

I must admit I had a little help. The
Tinygram presented here is an enhanced
version of son Michael's WORDGUESS which
is on the TIMARC disk. Originally a TI
Basic 10 Liner, it has been recast in
Extended Basic and the hidden phrase
display resembles that used in a popular
TV show of similar name. Sorry, no Vanna
White to turn over the letters. What do
you expect from a TINYgram?

Unlike the TV show, where the amount
of the prize depends on the random spin
of a wheel, the prize in this game is
proportionate to the relative difficulty
of the puzzle and how quickly you solve
it. The longer the phrase, the greater
the prize; the fewer tries, the greater
the prize.

Fortune of Wheels is a two player or
two team game. The first player or team
leaves the room or turn their backs to
the screen while the second player or
team enters the mystery phrase. As soon
as ENTER is pressed the screen will
clear. Alternatively, if you are sure of
your typing, the TV brightness or
contrast can be turned down, or the
program revised to black out the screen
during entry.

If you wish to black out the screen
during entry of the mystery phrase,
change Line 2 to read as follows:

2 CALL SCREEN(2)11 INPUT M$
ss CALL CLEAR is CALL SCREEN
(8):: LaLEN(M$)

The first player or team can now try
to guess the individual letters or the
entire phrase. You must enter the entire
phrase to be recognized as a winner. If
you do not enter the entire phrase, do
not enter more than one character.

Entering a wrong letter, or more than 1
letter, or an incorrect phrase will cost
you a try and reduce your prize.

Cumulative totals can be kept on
paper. (Horrors! Let it be a challenge
to you. Either sharpen your pencils or
your programming skills!) Negative
amounts 	won 	(Possible!), should be
subtracted from the cumulative totals.

This Tinygram is easy to type in,
quick to load (cassette users take
note), and FUN to play. It can be as
simple or challenging as you and your
opponents care to make it.

	

Minimum requirements are 	Console,
Cassette Player, TV and Extended Basic.

1 ! *** FORTUNE OF WHEELS **
* A TINYGRAM 	*
* by Mike & Ed Machonis*
***********************4

2 CALL CLEAR si INPUT "ENTER
THE MYSTERY PHRASE "sM$
so CALL CLEAR st L ■LEN(M$)

3 D ■RPTS(CHR$(30),L)ss FOR
J ■ l TO L a: IF SEG$(M$,J,1)<
>" " THEN 4 ELSE D ■SES$(13,
1,J-1)&" "&SES$(13,11+1,L)

4 NEXT J ss PRINT D$

3 T=T+1 se PRINT OTRY No.";
Ti;: is INPUT "TYPE LETTER 0
R ENTIRE PHRASE":A$ Is IF LE
N(A$1>1 AND LEN(AWL THEN 5

6 W ■L+1-T is IF A$ ■ 4$ THEN 9

7 FOR Jul TO L ss IF SEG$(M$
,J,1)11A$ THEN DO8E8CD$ 1 1,J
-11&A$&SESS(D$,J+1,L)ELSE 8

B NEXT J ss PRINT IDS ss GOT
0 5

9 FOR Jul TO W 11 CALL SOUND
(200+J*10,330+40*J,0):: NEXT
J II PRINT s"YOU WIN "ISTRS
(W);°,000 WHEELS!":;: le INP
UT "PRESS ENTER TO PLAY WI
N":6$:: T ■O 1: SOTO 2

mat rimmi -rmiR 	ma—cpst'empr-
Plaspr- ',taloa Prom

11111111101.1111111.11111.1.11=111111111111111111* * Topics - LA 99ers * *

SETTING YOUR PRINTER

by Tom Freeman, LA 99ers
from an idea by Ed Machonis, QB-99ers

•

My article this month is going to go 'back to
basics' - literally! It began with a 'BASIC Tinygram,'
as he called it, sent to us by Ed Machonis of Floral
Park, NY, to show what could be done with just 10 lines
of Basic code. It follows this paragraph in exactly the
fora that Ed sent it to us, with two exceptions: for some

reason I typed an extra space before the ? in line 5, and
I have provided the XBasic Checksums for all the programs
in this article. Although this is a program that can be
run in Basic as well as XB, I advise you to do your
typing in)(Basic and use the Checksum program, so as to
ensure accuracy.

1 DIN P$(15)!155
2 READ P$(1),P3(2),P$(3),P$(
5),P$(6),P$(7),P$(8),P$(9),P
$(10),P$(11),P$(12),P$(13),P
$(14),P$(15)!254
3 OPEN kl:TIO" !253
4 PRINT :s1 PICA/REET',"9 T

EST','2 ELITE',"10 EXIT','3
EXPANDED","11 SUPERSCRIPT','
4 C1MPRESSED', 1 12 SUBSCRIPT'

!004
5 INPUT '5 EMPHASIZED 13 1/
2 LINE SP6 ITALIC 14 L
MARGIN 137 D'BLE STRIK 15 R

MARGIN 678 UNDERLINE 	1 ":
I '221
6 PRINT 111:CHR$(27)&14(1) 1 16
0
7 IF I<>4 THEN 9 !203
8 PRINT k1:CNR$(27)&CHR$(15)
'23

9 IF I<>10 THEN 4 !244
10 DATA @,M,W1,E,4,6,-1,' QU
ICK BROWN FOX JUMPS OVER THE
LAZY RED DO6 1234567890 TIM

ES" „60,61,1,1,&C !012

Ed's notes for this program included a warning that
the next to last data item is the lower case letter 1,
not the number 1, and that the space following the
quotation mark in line 10 is important (because each
string sent to the printer is preceded by Esc - ASCII 27
- and Esc Q has an affect an the printer, whereas Esc
space does not). Naturally you will need to check the
specific codes for your printer - these are for an Epson
RX -80 but east aodern printers are compatible with it.
The program is used by combining succesive entries.

After I typed in the program and ran it, I found
that there were a few minor problems: 1) because the
printer was opened as PIO, each time a code was sent to
it, a line feed ensued, which you may not want, 2) for
some strange reason ay printer (Citizen MSP-10) would not

turn off underline with the Esc @ code, 3) there were no
options to pick the left and right margins or the line
feed- the C following the 61 in the data for P3(15)
defined a right margin of 67 and the carriage return that
automatically followed the 1 defined a left margin of 13,
and 4) typing line 2 was a pain! Therefore I revised the
program slightly to fix these problems. The first was
solved by opening the printer file as P10.01 so there
would be no line feeds (but note that I then had to add a
carriage return and line feed to the test line), the
second by putting in a specific option to turn off
underline. For the third I put in a second input request
to pick the actualy number desired, and for the fourth I
read the data statements in a loop. kbat follows is my
first revision of the program.

100 DIM P3(16)!156
110 FCR X=1 TO 16 !126
120 READ PCX)!208
130 NEXT X !238
140 OPEN klePIO.CR° !195
150 PRINT :°1 PICA/RESET 9
NO UNDRLINE2 ELITE","10 TES

T","3 EXPANDED","11 EXIT",'4
COMPRESSED 12 SUPERSCRIPT"

!I56
160 PRINT '5 EMPHASIZED 13
SUBSCRIPT 6 ITALIC 14
1/72 IN.LF 7 D'BLE STRIK 15
L MARGIN X' !026
170 INPUT 'B UNDERLINE 16
R MARGIN X ':I !032
1 	IF 1)16 THEN 150 !205
190 IF I<14 THEN 210 !006

200 INPUT "X?":M !244
210 IF I<>10 THEN 240 !224
220 PRINT il1:PS(10)&CHRI(13)
&CHRS(10)!163
230 GOTO 150 !229
240 PRINT k1:CHR$(27)&11(1)!
160
250 IF I<14 THEN 270 !067
260 PRINT a1:CHPUM)!216

270 IF 1011 THEN 150 !135
280 DATA 0,11,W1,° ",E,4,6,-1
,-0,' WICK BROWN FOX JUMPS
OVER THE LAZY RED DOG 123456
7890 TIMES" „60,61,1,1,Q !17
2
290 CLOSE kl !151

<PAGE 6

MONITOR 	ma —sos■ - 014- NEWSLETTER
FRappr^ n Ned Pro" com

SIMMOINIII■1•1■1111* * Top Ics — LA 99ers * *

Some things to note about this version. It is still
a Basic program, although again I have provided checksums
so you can type it with accuracy in XBasic. Also, the
fourth data item did not have to be separately defined.
Were you see a space on this page you should type
CTRL 0. Although you will still see a blank on the
screen what is actually there is ASCII 143, which is an
acceptable printer code for compressed mode. By the way,
I believe I made a mistake in this version - the third to
last data item which is presently a 1 should be an A.

Type it the 'wrong" way first, to get the correct
checksum, then make the substitution.

My next version (which follows the 2nd below) merely
put the above program into true)(Basic format, with
multiple statement lines. It actually takes up one bite
MORE of code, despite being 11 program lines shorter, but
it should be easier to type in. Note that the mistake
mentioned above is corrected here, and that the 4th data
item is still CTRL O.

100 DIM P$(16):: FOR X=1 TO
16 :: READ 11(X):: NEXT X ::
OPEN #1:TIO.CR" !163
110 DISPLAY AT(3,1)ERASE ALL
:"1 PICA/RESET 9 NO UNDRLI
NE2 ELITE","10 TEST","3 EXPA
NCED","11 EXIT","4 COMPRESSE
D 12 SUPERSCRIPT" !131

120 DISPLAY AT(7,1):"5 EMPHA
SIZED 13 SUBSCRIPT 6 ITALI
C 14 X/72 IN.LF 7 D'BLE
STRIK 15 L MARGIN X 8 UNDER
LINE 16 R MARGIN X" !168
130 ACCEPT AT(11,1)VALIDATE(
DIGIT)BEEPH 126
140 IF I>16 THEN 110 ELSE IF

I>=14 THEN DISPLAY AT(12,1)
:"X?" :: ACCEPT AT(12,3)VALI
DATE(DIGIT)BEEPIN !225
150 IF I=10 THEN PRINT #1:P$
(10)&CHR$(13)11OHR$(10):: GOT
0 110 !072
160 PRINT #1:CHRS(27)&PS(I):
: IF I>=14 THEN PRINT #1:CHR

$(M)!036
170 IF I<>11 THEN 110 ELSE C
LOSE 111 !119
180 DATA 4,M,W1," I,E,4,6,-1
,-0,' QUICK BROWN FOX JUMPS
OVER THE LAZY RED DOG 123456
7890 TIMES"„SO,S1,A,1,0 !18
a

For the last version I decided to take a completely
different approach. I noted that many current printers

ive a "master' print control code, usually Esc ! n.
Seven of the eight bits in the number n each control a
print mode. For the Citizen MSP-10, starting with the
rightmost bit, they are elite/pica, no effect,
compressed, emphasized, double strike, expanded, italics,
and underline. The advantage of this method is that each
mode can be toggled on and off separately by toggling the
appropriate bit on and off. All bits "off" (ASCII 0) is
the equivalent of resetting to defaults, except that I
continued to have the problem that even when I did this
the underline was not turned off - must be some quirk in
my printer! I decided that I would also like to be able
to toggle near letter quality on and off, and that I
wished to display on the screen what the current
'settings" are.

To understand how I did this, you need to know how
CBasic handles "logical operators.' This will also be
applicable to assembly language programming. There are
fcur such expressions: AND, OR, XOR, and NOT. When used
on numbers, they operate on full 16 bit numbers (which
because the highest bit must be reserved for the sign of
the number range from -32768 to 32767). NOT operates on
a single number and reverses each bit in it. The other
hree work on two numbers and produce a third. In the

case of AND, corresponding bits are compared in the
original two numbers, and a 1 put in that 'place' if both
bits were 1, otherwise a 0. For OR, the result is a 1 if
either number contained a 1 - only if both were 0 is the

result a 0. And finally XOR will place a 1 in the proper
position in the result only if one of the numbers had a 1
there. If both were 1 or both were 0 then the result is
a 0. For you assembly language programmers exactly the
same procedures apply, but see your manual for addressing
modes.

Now we can combine these operators with the ASCII
codes that must follow Esc ! to the printer. Since we
want to treat each bit independently, the logical
operators make it easy to reverse them or test thee.
Note that the first seven data items are numbers each of
which have only one bit on, namely bit 1 and 3 to 8 (2 is
not used). By using AND on this value and the current
value of Q all the bits of Q except the one of current
interest are turned off, and this particular bit is also
off if it was off in Q (remember that AND insists that
the bit be on in both numbers). The resultant number
will still be a power of 2 however. By using the SGN
function it becomes either a 1 or a 0 and this is listed
on the screen to indicate the current state of the
particular print mode. Thii is all done in line 130.

The rest of the lines through 170 complete the setup
of the menu. Note that I have also read some of the cenu
lines into an array with data statements - this was done
so that I could use the SIZE command in line 150 and not
erase to the end of the lines on the screen. Line 180
accepts the input number, and also sets M=0 (used in menu
items 10 to 13) because CHRCM) will always be sent to
the printer, but we want it to have meaning only for

(PAGE 47. ,

Eli Et MI CI NI I 1" MIR 	Ek — 450 5* 	r- NI E 	L_ -r -T- Ft
Meriorintwa prom

* Top Ics — LA 99ers * *

10-13 - CHR$(0) has no effect an the printer, unless it
is needed by a previous code. Line 190 now sends the
program to the appropriate line number. Line 200 is for
NLQ mode. The logical operator XOR is used here. Since
it requires that only one of the two numbers operated on
have a 1 in the bit position under consideration, we can
reverse the state of the bit by doing an XOR with 1.
Siailarly line 230 does an appropriate bit reversal for
each of the first 7 menu items by using XOR an Q and the
current data item, which has only 1 bit turned on.

The rest of the program follows closely those that
appear above. However please note the quoted string in
line 290. What looks like two spaces following the
numbers is NOT - you should type CTRL J and CTRL M !!
Also, type line 300 carefully, or the screen setup will

not be correct. The program is presented in 2B columns
here, so 'what you see is what you get' and the checksum
should also help.

I might add that with careful attention to these
operators you can use one variable to represent 16, if
they are to be only 1 or 0. Each variable that you are
interested in can be one bit in the program variable, and
you can use the logical operators to manipulate them.

This program was written more out of ay interest in
programing techniques and in teaching them to our
readers. Hopefully it may also be of some use to you.
Just remember not to turn off your printer after sending
the codes to it!

100 DIM P$(16)'156
110 FOR X=1 TO 16 :: READ P$
(X):: NEXT X :: FOR X=1 TO 4
:: READ 11(X):: NEXT X :: N

LQ$(1)=TN° NLQ$(0)=IFF•
:: OPEN 111:"PIO.CR" '141

120 DISPLAY AT(3,1)ERASE ALL
:°MODE°,°1=014,0110FP,*1 ELIT
E/PICA':'2 COMPRESSED':"3 EM
PHASIZED°:"4 DOUBLE STRIKE":
'5 EXPANDED':"6 ITALICS°:°7
UNDERLINE' !109
130 DISPLAY AT(13,19):°12'
: FOR X=14 TO 16 :: DISPLAY
AT(X,19): 10° :: NEXT X !007
140 FOR X=1 TO 7 :: DISPLAY

AT(X+3,14):S9N(Q AND VAL(4(
X))):: POT X !180
150 DISPLAY AT(11,1):'8 SIPS
RSCRIPT°: 19 SUBSCRIPT' FO
R X=1 TO 4 :: DISPLAY AT(X+1
2,1)SIZE(18):Tf(X):: NEXT X
!233
160 DISPLAY AT(17,1)SIZE(23)
: 1 14 NEAR LETTER QUALITY" '2
19
170 DISPLAY AT(18,1):°15 TES
T°:'16 RESET':•17 EXIT' !251
180 ACCEPT AT(21,1)VALIDATE(
DI6IT,")SIZE(-2)BEEP:l
M=0 !081
190 IF 1)17 DIEN 180 ELSE ON

I SOTO 230,230,230,230,239,
230,234,250,250,240,240,240,
240,200,260,220,280 '032
200 P=P XOR 1 :: IF P THEN P
$(14)eml° ELSE PS(14)=IxOR
!026
210 GOTO 250 173
220 Q,P=0 :: SOTO 250 '214
230 Q=Il XOR VAL(PS(D):: GOT
0 270 !109
240 ACCEPT AT(I+3,19)VALIDAT
E(DIGIT,° °)SIZE(-2)BEEP:M '
226
250 PRINT i1:CHRS(27):: DISP
LAY AT(17,24):NLQS(P)!213
260 PRINT $1:PS(D&CHRS(M)::

IF I=16 THEN 130 ELSE 140 '
201
270 PRINT 01:CHRS(27)10""tCH
R$(61):: GOTO 140 !008
280 CLOSE el '151
290 DATA 1,4,8,16,32,64,126,
S9,S1,A,1,Q,N,x1,"QUICK BROW
N FOX JUMPS OVER THE LAZY RE
0 DOS 1234567890 ',0 195
300 DATA 10 X/72 IN. LF X=,
11 L MARGIN 	X=,12 R MARS
IN 	X=,13 SKIP X LINES X=
!061

CONTROL KEY CODES AND THE RAVE 101 KEYBOARD....by Ed Machonis - QB-99'ers

If you are using a RAVE 101 Keyboard, pressing CTRL J or CTRL M will not
produce CHR$(10) or CHR$(13). Actually, the Control key codes produced by
either RAVE or TI-99 keyboards range from 129 thru 159. (Pg 111-2 User's
Ref. Guide) Most printers apparently subtract 128 and interpret the codes
as 1 thru 31. The RAVE 101 Keyboard requires different key presses from
those shown in the Reference Guide for CTRL codes 10, 13, and 27 thru 31.
The following table shows the key presses required for CTRL codes 1 - 31.

CTRL B 3 CTRL C 4 CTRL D 5 CTRL E
CTRL G 8 CTRL H 9 CTRL I 10 CTRL I

13 CTRL \ 14 CTRL N 15 CTRL 0
18 CTRL R 19 CTRL S 20 CTRL T

V 23 CTRL W 24 CTRL X 25 CTRL Y
rm SHFT, FCTN SHFT; 29 SHFT Fll 30 SHFT F8

<PAGE 8;:.

tal El V4 0 IN I TOR ."`• G1113 — SP 9 alp r- h1EW8LETTEE
Si NM UNE KIM EMS= =IN M 1111112 UM NM WE MEI S= NI/ OM MIMI IIMIN EMS MIN MN= 1111E NMI IMP MB WEB MI ONE ENO BM ill MINN MI SEM

LA STYLE*
by Ed Machonis

Based on a Program bys
Toe Freeman LA 99ers

ANOTHER Print Styler??? I can hear
the "Who needs it?"s. If you own a
printer, you do! I promise this is the
last styler we will print. (ORIN>

But there is more here than meets the
eye. First, read the accompanying
article by Tom Freeman, reprinted from
the August issue of LA Topics, paying
particular attention to the last
paragraph. As you may have gathered,
ulterior motives are afoot.

These short programs are not only
useful utilities, they are excellent
learning tools. (For the programmer as
well as the reader.) I, for one, learned
a great deal from Tom's article.

Did 	you notice these techniques:
Displaying menu text using a FOR-NEXT
loop in Line 150 and placing the text in
a DATA statement in Line 300? Using
loops in Line 110 to read in the data
Using ON SOTO in Line 190 to branch to
the program sector associated with the
menu selection? And, the essence of the
program, use of the "master" print
control code, ESC !n.

This was my first contact with the
master print control code as my,
anything but "current', Epson RX-80 does
not support it. Another first was the
use of the XOR "logical operator'. I
have never seen the Exclusive OR
function used in a program before, in
fact, I didn't even know it was
available in Extended Basic. Although I
did have a passing acquaintance with
Exclusive OR gates when I dabbled in
digital electronics, using thee in
programs Just never occurred to me. Yet
its all there in the manual, Just
another case of 'In One Eye and Out the
Other!"

I 	typed 	in Toe's last version,
knowing it could not possibly work with
my RX-80. When I saw the menu and status
display, I knew it was a program I
wanted to have. When a print style is
selected a '1" appears alongside the
selected style on the menu. If that
selection is repeated, the print style
is canceled and a "0" replaces the 1.
Thus individual print modes can be
turned off without using the master
reset code, which cancels all
selections.

I was able to adapt Tom's program so
that it would work with my RX-80. I have
called the result LA STYLER in deference
to its origins. It should work with most
Epson Compatibles.

Tom toggled the print modes on and
off by reversing the state of the
respective master control code bit using
XOR. Since I did not have a master
control code, a different approach was
required.

Both cancel and enable codes for each
mode were placed in the DATA statements.
PS was made into a two dimensional
array, with 16 rows (for menu Items 1
thru 16) and two columns, the first
holding the cancel code and the second
the enable code. Where cancel and enable
were not applicable, as in menu items 10
thru 16, the same DATA was placed in
each column of the respective element.

A second array, N, was added and is
used to display the status of modes 1
thru 9 on the menu, and to point to the
appropriate column of the Pe array when
the print code is sent to the printer. N
is equal to either 0 or 1 and is toggled
by the XOR function in Line 190.

As an example, let us say you elect
to turn on Compressed, Selection 2 on
the menu. Pt(2,0) holds the cancel
Compressed code, and P5(2,1) has the
enable Compressed code. Since this mode
had not previously been selected, N(2)
has a value of 0. In Line 190 the XOR
operator will change the value of N(2)
to 1 and the enable Compressed code is
sent to the printer in Line 270. If
Compressed is selected again, XOR will
change the value of N(2) from 1 to 0 and
cancel Compressed is sent to the
printer.

RX-80 mod, priorities are 1. Elite,
2. Emphasized, 3. Compressed and 4. Pica
(Default Mode). Once a mode is enabled,
a lower priority mode cannot be enabled;
sending its print code to the printer
will have no effect. Line 135 was added
so that the status display would
accurately reflect the priorities
enforced by the printer.

On 	the 	RX-80, 	Subscript 	and
Superscript modes toggle each other on
and off, depending on the last one
selected. Line 136 was added to reflect
this toggle.

Another change deemed desireable was
adding the provision for user input of
text as provided in STYLEALINE, which
appeared in a recent issue of the
Monitor. Line 275 made this possible.

C/13 mom I -rpm - 4113-949 am r — NIE1A1131:_lell—Tk:Ft"

LA STYLER 	 Cont'd

Use of this feature caused the menu
to scroll off the screen. An M array was
added to store the Line Space, Margin,
and Skip Over Perf values so that they
could be displayed when the menu was
restored. (Oh the tangled web we weave -
When we alter what others conceive!) One
plus, we can place values into this
array (Line 100) which reflect initial
printer status.

Another 	change was to reset the
printer upon initialization (End of Line
110) so that the initial menu display
truly reflects printer status

Although the RX-80 does not have a
Near Letter Quality mode, provisions for
it were left in for those with printers
supporting this mode. Print codes are
compatible with the Epson LX-80. The
values in the N array (Shades of FDR)
are used to display status of this mode,
which enabled elimination of the NLQ$
array used in Tom's program.

The 3rd and 4th DATA items in Line
290 are not blank spaces but CHR$(18)
(Type CONTROL plus R) and CHR$(15)
(CONTROL 0), respectively. Similarly,
the apparent two blank spaces at the end
of EACH quoted string in line 295 are
actually (CHR$(10) (CONTROL J) and
CHR$(13) (CONTROL M). The blank space at
the beginning of EACH quoted string is a
true blank space and required in this
program (as it saves sending an
additional Escape code to the printer).

If you have a modern printer that
supports a master print control code,
you undoubtedly will want to use Tom
Freeman's program which is considerably
shorter and, most likely, faster. If, on
the other hand, you have an obsolete 3
year old printer like mine, you may find
LA STYLER useful. In any event, there is
something to be learned Iron both
programs. And remember - Obsolescence is
a state of mind!

90 ! *5* LA STYLER *5*
by Ed Machonis QB-99ers
Based on a Program by
Tom Freeman LA 99ers

100 DIM P$(16,2),N(18)ss M(1
)•12 is M(2),M(4)•0 as M(3)•
80

110 FOR X ■ 1 TO 16 is FOR J•0
TO 1 it READ PS(X,J)ii NEXT
J is NEXT X ti FOR Pal TO 4
is READ TS(X)Is NEXT X II N

LOS(1)•0N" ii NLOS(0)•"OFF"
:: OPEN *10PIO.CR" ii PRIN

T Il1iCHR$(27)&"4"

120 DISPLAY AT(3,1)ERASE ALL
OMODE","11BON,OsOFF", 1 1 ELI
TE'02 COMPRESSED•03 EMPH
ASIZED's'4 DOUBLE STRIKE','
5 EXPANDED°06 ITALICS°07

UNDERLINE"

125 DISPLAY AT(11,1)08 SUP
ERSCRIPTIO9 SUBSCRIPT"

135 IF N(1)•1 THEN N(2),N(3)
•0 ELSE IF N(3)•1 THEN N(2)•
0

136 IF I*8 THEN N(9)•0 ELSE
r

140 FOR X•1 TO 9 :: DISPLAY
AT(X+3,18)1N(X):: NEXT X

150 FOR X•1 TO 4 II DISPLAY
AT(X+12,1)ITS(X)ISTR$(N(X))1

NEXT X

160 DISPLAY AT(17,1)BIZE(23)
s'14 NEAR LETTER QUALITY"

170 DISPLAY AT(18,1)015 TES
T'016 RESET/PICA's'17 INPUT
TEXT°018 EXIT"

180 ACCEPT AT(22,1)VALIDATE(
DIGIT," ")SIZE(-2)BEEPiI

190 IF I>18 THEN 180 ELSE N(
I)•N(I)XOR 1 ii ON I 80T0 27
0,270,270,270,270,270,270,27
0,270,240,240,240,240,210,27
0,220,275,280

210 DISPLAY AT(17,24)iNLQ$(N
(14))1, 80T0 270

220 FOR X ■ l TO 14 is N(X)•0
NEXT X 1: 80TO 270

240 ACCEPT AT(I+3,19)VALIDAT
E(DISIT," ")SIZE(-2)BEEPtM(I
-9)

260 PRINT Il1iCHR$(27)&P$(I,N
(I))*CHIMM(I-9))11 80T0 135

270 PRINT Il1iCHR$(27)&P$(1,N
(Mil IF 1.16 THEN M(1)•12
Is M(2),M(4) ■0 is M(3) ■80 is
SOTO 135 1: ELSE 135

275 PRINT "INPUT A LINE OF T
EXTRO(ZZZ RETURNS TO MENU)"
is LINPUT A$ Is IF A$•ZZZ"
OR ASsizzzi THEN 120 ELSE P

RINT 4liA4&CHR$(10)&CHR$(13)
is 80T0 275

280 CLOSE *1

290 DATA P,M, 	,F I E,H,S I WO,
W1,5,4,-0,-1,T,SO,T,S1,A,A,1
,1,0,0 1 N,N,x0,x1

295 DATA 'I QUICK BROWN FOX J
UMPS OVER THE LAZY RED DOS 1
234567890 6 ," QUICK BROWN F
OX JUMPS OVER THE LAZY RED D
OS 1234567890 ',I I I

300 DATA 10 X/72 IN. LF X ■ ,
11 L MARGIN 	X•,12 R MARS
IN 	X•,13 SKIP X LINES X ■

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

