

UnTnl- . su New nu ouvw

puy. o S P

CALL LOAD TO ASSEMBLY AND BACK

by Tom Freesman

This article and the programss
that accompany it are another in
ay intermittent series to help
those interested in understanding
assembly programs better. You
will find XBasic programs that
will convert assembly language
programs in various formats,
which wmight have one of two
purposes. Either you wish to
increase the portability, of a
program, or you wish to
disassemble it to understand what
the programmer was doing.

Many programs that
assembly subprograms
publ ished in a
format. In other words, the
XBasic program directly "pokes"
the assembly program into memory,
byte by byte. This is done
because it might be cumbersome to

use
are
"CALL LOAD"

type in the source code for the
assembly pregram and then
assemble it, or you might not
have the Editor/Assembler
(everyone should, however').
Nevertheless I have published
most of my programs this way.

The author might also publish the
(uncompressed) DIS/FIX 80 object
file, but if you have ever looked
at one of these, each line is
just a long string of numbers and
letters that make no sense, and
it would be almost impossible to
avoid a typing mistake! The CALL
LOAD’s on the other hand, are
full of commas and easily read
numbers, so typing them in is
easier. However that portion of
the program must be run every
time the program is run, which
takes extra time, so it would be
nice to be able to convert them
to a real assembly file. Two
recent examples of pograms that
use this method are:
_"Artist to XB" in Smart
Programmer, September 1986 -
contains two columns packed with
CALL LOAD’ s, and

~Improved Unrunnable Basic in
Topics, September 1986.

The first program, entitled
CL/ABL, that follows this article
(1 have placed all the programss
together, for neatness’ sake, soO
that they could be in 28 column
format which looks EXACTLY the
way you type it in) provides a
method of ¢turning a CALL LOAD
XBasic into either a source code
file, which can be run through
the Assembler to produce an
object +file, or an object file
directly. Thus there are resally
two programs here — lines 190-280
could be deleted if you only want
to make source code, or 298-350
for only object code. I haven’t
been able to test this program on

lots of files, so I suggest you
use them both, in case one
produces errors. Naturally 1

have tried to account for all the
errors I could think of! One that
cropped up was when the CALL LOAD
began with an odd address.
Assembly files normally insist on
even addresses. I compensated
for this by backing up to the
even address one lower and
beginning with the last byte from
the previous line. Try this out
with a sample two or three line
file to see what I mean. The
assembler automatically backs up
one byte if the AORG or RORG
address is odd, and inserts a
zero byte first. This would mess
up the code, which is why I
retained the previous byte.

The only constraints on the
input file are that it must 1) be
saved in merge format (DIS/VAR
163) not as a program file, 2)
contain only CALL LOAD’s (delete
all other 1lines and any other
statements on the CALL LOAD lines
before saving) and 3) only one
CALL LOAD(Address,byte,byte,...)
per line. The program makes
heavy use of a knowledge of how
the program lines are tokenized.
You can see this for yourself by
running the last program in this
article on a sample File and

OH-NI-TI and WEW HORIZIONS

page 83 SEPTEMBER 1989

comparing the bytes generated
wWith the 1list of tokens also
provided.

I +found one interesting quirk
in the way TI handles these
assembly DIS/F1X 8a files.
Normally the author of a CALL

LDAD type progran needs to set
the REF/DEF table just bel ow
16384 (hex >4000) byte by byte,
and then insert the address of
the beginning of the table into
8196 (>2004). I originally tried
to do this just with ADRGs, but
the XB loader just won’t insert
the bytes there even if the
assembly file tells it ¢to! CALL
LOAD works fine however. 1 fixed
this up by assuming that all code

above 146225 is +for the REF/DEF
table (this leaves room for 20
DEF’s and it appears that no one

ever has actual assembly code at
this location) and then actually
construct a real DEF table. Then
the loader sats the proper
address into >2004 by itsel¥.

Now when the file is ready you
can replace ALL the CALL LOAD’'s
by CALL LOAD ("D8K1.YOURFILE")
where YOURFILE is whatever you
named your DIS/FIX 80 file
(produced directly by my prograam,
or assembled from the source code
it produced). By the way, I lied
a little when I wrote above that
the assembly program nesds to be
reloaded every time you RUN the
XB program. When a program is
finished, the assembly code
remains in memory unless you quit
or CALL INIT again. So you can
add a line to any such program
that "PEEK"s at a couple of bytes
that you know the value of (do
the peeking after the program is
run the first time) and then
bypass the CALL INIT and the CALL

LOAD if the bytes are what they
should be. This works with
either method of 1loading the

assembly file (CALL LOAD(dis/fix
80 file) or CALL
LOAD (address,bytes) .

By the way, the program takes

Quite a bit of time to run,
especially if the CALL LOAD's are
numerous, but at least it only
has to be done once!

The second program, entitled
ABL/CL, reverses the process.
Why would you want to do this?
There are two possible reasonsi
one might be that you have an XB
program and wish to publish it,
or l1igt it for a friend. Putting
the assambly code into CALL LOAD
format makes it all readable 1in
one program. Ancther reason
could be that you wish to have
the program on tape for soasone

who has memory expansion but not
a diek drive (my SON was
originally in this position).

The program as listed also is a
“double program, as it allows you
to construct te CALL LOAD file
from a memory range, or directly
from a DIS/FIX 88 file. Most
object files can be simply loaded
from command mode by CALL INIT 13
CALL LDAD(“DBK1.XXX") and my
program then run with the sesory

range option. [This part of the
program runs considerably
faster.]l WARNING -~ a Jew files

insert the start address into the

IS8R hook at >83C4, and will thus
auto start. You will need to run
the program on the DIS/F1IX

directly or use a sector editor
to change that value (you would
find &at the end of the file
something like 983C4BXXX where
XXX is the start address. It
should be changed to 200) .
Please note that the program ends
with a statement on the SCREEN
that you should type in one or
two extra CALL LOAD’s. I could
have had the program do this, but
1 didn’t get arocund to it and
time is short! [Please note that
if the program does use the above
auto-start wmethod, then you will
need to add one additional CALL
LOAD(-3184,x,y) where x and y are

the decimal representations of
the two bytes following 983C4B
above, e.g. if you saw 24F4 than

x and y would be 3& and 2441.

MX" Cop:'lr):g;ﬂ[]@glls‘)ﬂg, 'ag by
DOS Milo Tsukroff

MX-DOS 3.0 For T1-99/4A Disk Systems Released

At the January ‘89 Nutmeg T{-89ers Users Group meeting, Milo
Tsukroff released his MX-DOS 3.0 for TI-99/4A disk systems. The
MX-D0S 3.0 system is a utility which combines features of a disk
manager and an auto-ioader.

The MX-D0OS 3.0 system allows the average TI1-99/4A user to see
files on a disk. The user can then run programs, view or print text,
and even delete files. MX-DOS 3.0 uses a "Macintosh"-style graphical
interface. The user can use just a8 joystick to perform neariy ail
MX-DOS operations. The keyboard is also fully supported.

The MX-DOS 3.0 system is distributed on one single-
sided/single-density diskette. Demonstration programs and full
documentation are included.

At the Users Group meeting, MX-D0OS 3.0 was given out as the 'Disk
of the Month". Milo is distributing it on the 'Fair-Ware' concept, with s
fee of $8.00 suggested. This fee includes registration, support, and
.one free copy of the next major update.

Minimum requirements for MX-D0S 3.0 are a T|-99/{1A console; Tl
Extended BASIC; a single disk drive; and a 32K memory axnension.

Additional peripherals supported are joysticks, print - ior
monitor, and more than one disk drive. :

Additional features for MX-D0S, and speed improve: i
come when version 3.1 is released. Milo is waiting to se. e

Fair-Ware registration response is before continuing to impro.2 his
product. Even in its current condition, which includes long ' *7 ng
times and sluggish response, MX-DOS 3.0 represents an er- 1y
easier operating environment to work on disk systems witk

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

