
 

\itete\i\NI/otilt ‘Ni\N \NeN/WN 

4M/ 0'\/4c 	NH99'ers User Group ,e # b\i\ /\/‘ 
tv kik \ fr 	\ WAW4ZV,_NAZWZ'"V" 

/ 	iAlAW 

" 
\* ag /\ 

AtAit.# 

 

 

New Hampshire 99'ers User Group Newsletter PO Box 5991, Manchester, NH 03108 
Febru,ary 1990 
Vol. 8, No. 2 

CLUB NEWS 
by Paul Bendeck, President 

Well, it's been snowing now for 2 days and I'm tired of shoveling the snow so I 
thought I would do something a little more relaxing like work on this article 
for the newsletter. Besides all the snow, 1990 brought renewed interest in 
both the club and the TI-99/4A. The club started the new decade with a very 
entertaining and interesting meeting in January. I'll try to cover some of the 
highlights. 

Thanks to Elliot Hardy, the club has expanded our assets with a complete set of 
99'er Magazines plus all of the disk software that was distributed with the 
magazines. In case you have never seen this magazine (they stopped publishing 
about 3-4 years ago), this was the best all around magazine covering the 
TI-99/4A computer. Each issue is filled with very descriptive articles on 
every subject about the TI-99/4A. Each issue also included several excellent 
programs which were distributed on disk. These programs were not only fun to 
play with but also educational because they illustrated various programming 
techniques. Each of these programs was fully documented and described in the 
magazine. The magazines are on file with the club and are available for 
checking out by club members. See Phil Davis the newsletter librarian for 
details. All of the disk software is now in the club software library. Copies 
can be obtained at the meeting. 

Speaking of the software library, things are looking up. Besides the 99'er 
Magazine software, there were several other donations from club members. 	Mike 
Scanlon demonstrated a disk of very creative games he picked up from the NUTMEG 
User's Group. 	The single disk included 4 games: Backgammon, Solitaire, 
Monopoly, and Witch/Hour, plus a menu loader. 	All of these games ran in 
Extended Basic and had lots of good graphics. This disk is now available in 
the software library. 

Curtis Provance brought in a copy of one of the best Chess programs I have seen 
for the TI-99/4A. It's called Sargon Chess and includes programmable levels of 
difficulty and very good graphics. This program uses standard Chess notation 
for making moves which makes it easy to learn and use. Sargon Chess is 
available now in the software library. 

Probably the best demo of the evening was provided by Vince Demers, our 
newsletter editor. Vince showed us a game called Carfax Abbey. This is a maze 
game consisting of a castle with a lot of rooms (25 rooms per floor, and a 
total of 4 floors). Each room has multiple exits and secret passageways to 
other rooms, sometimes on different floors. The graphics were top notch in 
this game. If you want to find out what is in these rooms, you'll have to buy 
the disk from our software library. 

As a reminder, software disks are available from the software library for a fee 
of $3.50. Copies can be made during regularly scheduled club meetings. Chris 
Agrafiotis, our software librarian, has promised to bring an updated copy of 
the library catalog to the next meeting. C.C. 74, - 73A c 7) 



DISK DOCTOR 

Curtis Alan Provance 
Paragon Computing 

One member brought a 'damaged' floppy 
to the last meeting. Something had happened 
to the disk and all his files were gone! 
Actually, he knew that the information was 
still there - but he had no access to it. 
Within a few minutes, we had successfully 
recovered all the files .... 

This is the first in a series of 
articles on how your disk controller works, 
and how you can recover from several common 
disk errors. In order to examine and repair 
your own disk, you will need a disk utility 
program which allows you to read and write 
individual disk sectors. John Birdwell's 
excellent FAIRWARE offering, "Disk Utility" 
is what I will be using. You may obtain the 
complete program along with disk based 
documentation by sending a minimum donation 
of $10 to: 
John Birdwell 
7052 Springhill Circle 
Eden Praire, MN 55344 

Secondly, I will be using a 'training' 
disk and refering to specific sectors - and 
bytes within those sectors. To ensure that 
your 'training' disk looks like mine, you 
should format (or reformat) a disk and name 
it "BLANK". Please format it as a Single-
Sided, Single-Density disk (SS/SD) - and 
don't write-protect it! 

Finally, if you are not familiar with 
using hexidecimal notation, please stop and 
read the article on hexidecimal found 
elsewhere in this newsletter. The bulk of 
this discussion will use hexidecimal (Disk 
Utilities 'native' mode). Hexidecimal is 
not hard to learn, and the few minutes you 
spend on the other article will save hours 
of frustration later when you do your own 
disk 'doctoring.' 

TERMINOLOGY 

Let's review some terminology (as it 
applies specifically to TI99/4A computers): 

SECTOR: A continuous section of your disk 
which holds 256 bytes of information. Each 
byte can have any one of 256 values. Other 
computers may have 256 byte sectors, 512 
byte sectors, or whatever. 	There is 
information stored in between the sectors, 
but we won't concern ourselves with it 
during the course of these articles. 
TRACK: A continuous collection of sectors. 
TI99/4A disks typically have 9 sectors 
(Single-Density) or 18 sectors (Double-
Density) in each track (although MYARC's 
preferred number of sectors for Double 
Density disks is 16). 	A TI99/4A floppy 
usually has 40 tracks per side (some have 
only 35 - more on that later). 
SIDES: How many sides of a disk are used, 
either a Singie-Sided (usually the side 
without the label) or Double-Sided disk. 
DENSITY: How many sectors are packed in each 
track - typically 9 for Single-Density and 
18 (or 16) for Double-Density. 

Therefore, if you do your math right, 
a Single-Sided, Single-Density (SS/SD) disk 
having 256 bytes per sector, 9 sectors per 
track, and 40 tracks per side has the 
capability of holding 360 sectors, or 92160 
bytes (usually just called "90K" because a 
"K" is 1024 bytes). A Double-Sided, Single-
Density (DS/SD) disk (or Single-Sided, 
Double-Density) (SS/DD) holds 180K, and a 
Double-Sided. Double-Density (DS/DD) disk 
holds 360K (all figures based on 9 or 18 
sectors per track, as appropriate). 

DISK USAGE 

Computer makers use different formats 
for their floppy disks. This includes how 
the tracks and sectors are set up, as well 
as which sectors are used for control 
information. 'Soft-sectored' disks can be 
formatted in a variety of ways - TI's waY, 
IBM's way, or whatever. We will only deal 
with TI's format during these articles. 

TI chose to use the first two disk 
sectors for their control information. This 
is why you get the message "358 sectors 
free" 1:hen you format a good SS/SD disk. 
There are really 360 sectors - but two are 
needed by the controller. 

1°a.r e 2- 



SECTOR 0 

The first sector on a disk (all the 
way out on the rim) is sector O. Let's see 
what the first sector looks like. Load the 
disk utility and select "SECTOR EDIT" from 
the menu. Place the disk in drive 1, select 
drive 1, then select sector 0 as the sector 
you want to edit. The screen should look 
like this: 
424D 414F 4C20 2020 2020 0168 0944 534B 
2028 0101 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0300 0000 0000 0000 
... (the rest are all 0000's or FFFF's) 

If you want to see the characters in 
ASCII, press the control and A keys at the 
same time. The screen should now be: 
BL ANK 	 .h .DSK 

( 	. 	. 	 • 	• 	• 	• 

...(the rest all appear as . .) 

This sector holds the following data: 
BL ANK 	 .h .DSK 
424D 414F 4C20 2020 2020 0168 0944 534B 

Name of disk 	(10 bytes) 
Number of sectors 	 
Sectors per track 	 
Standard disk (3 bytes 'DSK') 

. 	. 
2028 0101 0000 0000 0000 0000 0000 0000 

I 	I 
1 	I 	  

Disk protection (>20=no, >50=yes) 
Tracks per side 	  
Number of sides (1 or 2) 	  
Density (1=single, 2=double) 	 
The remaining bytes on this line are 
reserved for future use. 

Please note that the disk protection 
used here does not refer to the write 
protection you get by covering the notch on 
the side of the disk. This is a software 
protection scheme developed by TI which we 
will discuss in a moment. 

The next row of bytes are elso 
reserved for future use, along with the 
first eight bytes of the fourth row. 

The ninth byte of the fourth row is 
the first byte of the sector bit-map. A 
bit-map means that each bit in each byte 
represents a larger object (in this case, 
a sector). 

Each byte consists of eight hits, and 
each bit represents a sector. If a sector 
is currently being used (or if it is damaged 
and the controller couldn't initialize it) 
the hit will be set to 1. Otherwise, the 
bit is O. Since sectors 0 and 1 are always 
in use, the first byte will always have the 
first two bits set. 

It is important to note that bit 0 is 
the right-most bit. In other words, you 
were to expand a byte into its individual 
eight bits, i-he bits would look iike this: 
7 6 5 4 3 2 1 O. 

On a fresh disk the bit-map table will 
start with >0300 >0000 .... In other words, 
since >03 = 00000011, this bit map indicates 
that sectors 0 and 1 are in use. This bit-
map can hold data for a DS/DD disk (takes 
128 bytes). Since we formatted the disk as 
SS/SD, the last 96 bytes are FFFF - meaning 
that they aren't available. 

DISK PROTECTION 

The !Disk Manager module suppplied with 
the TI (iisk :'ontained 
undocumented feature Mich ,:ould provide 
disk protection. This feature was enabled 
by pressing (I beiievel the rontrol and X 
keys simultaneously - ten times. Once done, 
you could create a disk which ,as 
"protected" from being duplicated by the 
disk manager. 

The only protection this feature 
provided was to alter the first byte in the 
second row from a space character to a 'P' 
(for protected) character. Until the advent 
of DM-1000, Disk Utilities, and similar 
programs, this protection thwarted most of 
the would-be copiers. It is useless now, 
except against users of TI's original Disk 
Manager cartridge. 
NEXT MONTH: FILE HEADERS AND SECTOR I 

e 



-T- I NI 	 G tcl 1'1 S 

V ICI O US 

This was taken from the 
West Penn NL Aug 1989. No 
credit given to an author. 
An X8 program that will run 
in a bare console W/XBASIC. 
Will remind some of "SPYS". 
Very good and accepts 
either keyboard or joy-
sticks. May download from 
Spirit of 99 BBS if you do 
not want to type it in. 

100 @=1 	22 :: CALL CLEAR 
:: CALL SCREEN(_):: RANDOM 

ZE :: CALL MAGNIFY(3):: FOR 
A=@ TO 14 CALL COLOR(A,16 
,@):: NEXT A :: CALL COLOR(1 
1,11,@):: CALL CHAR(48,1007C 
44444444447C") 
110 CALL CHAR(96,10708132141 
81E3FFFFE3814121130807E000C8 
848281C7FFFFC7818284C8DOE") 
120 CALL CHAR(100,'030C30204 
040808080804040203000O3CO300 
C040202010101010202040C30C", 
108,1007E7E7E7E7E7E001C2A497 
F492A1C") 
130 CALL CHAR(112,"808080808 
08080800101010101010101FF000 
000000000000000000000000OFF" 
):: DISPLAY AT(@,81:"VICIOUS 
CIRCLE' 
140 DISPLAY AT(4,@):"AVOID T 
HE CIRCLES WHILE":"CLEARING 
THE GRID.": :"USE THE JOYSTI 
CK OR ARROW KEYS TO MOVE.° 
150 DISPLAY AT(10,@):"YOU RE 
CEIVE 10 PTS FOR EACH SQUARE 
, OR 1000 PTS FOR AN ENTIRE 
GRID.": :"ONCE YOU HAVE BEE 

N HIT 10 TIMES, THE GAME W 
ILL END.' 
160 DISPLAY AT(17,@):"FOR EV 
ERY 5000 PTS, YOU":"GET AN E 
XTRA LIFE.' DISPLAY AT(23 
,71:"JOYSTICKS?(Y/N)" 
170 CALL KEY(E,B,C):: IF C.( 
THEN 170 

180 D=[ :: IF B=89 OR B=I21 
THEN D=4*:: IF B=121 THEN 21 

0 
190 IF D=[ THEN 210 
200 FOR A=@ TO 4 :: DISPLAY 
AT(23,4):"RELEASE ALPHA-LOCK 
KEY" :: FOR E=@ TO 40 :: NE 
XT E DISPLAY AT(23,4):: N 
EXT A 
210 CALL CLEAR 
220 F=85 :: G=117 :: H,I,J=[ 
:: K=10 :: L=5000 : 	CALL H 

CHAR(„9,115,17):: 	LL HCHA 
R(20,9,114,17):: CALL VCHAR( 
3,8,113,17):: CALL VCHAR(3,2 
6,112,17) 
230 DISPLAY AT(@,_):"00000" 
240 FOR A=4 TO 18 STEP _ 
DISPLAY AT(A,81SIZE(16):RPT$ 
("1 1,8):: NEXT A :: FOR A._ 
TO 9 	IF A/2INT(A/_)THEN 
M=-@ ELSE M=@ 
250 M=MtINT(RNDt10+12+J):: C 
ALL SPRITP#A,100,INT(RNDt14 
+31,200,A:16+370,D:: NEXT 
A :: GOSUB 420 
260 DISPLAY AT(22,9):"PRESS 
ANY KEY" DISPLAY AT(22,9) 
:: CALL KEY(C,N,0):: CALL KE 
YR,P,Q):: IF 0=[ AND 0=[ TH 
EN 260 ELSE CALL SOUND(500,2 
62,3,330,3,392,3) 
270 CALL SPRITE(#@,96,15,F,G 
):: GOTO 300 
280 IF D=[ THEN 370 ELSE CAL 
L JOYST(@,B,C):: IF ABS(B)=A 
8S(C)THEN 320 
290 G=M1N(181,MAX(69,G+B$4)) 

F=MIN(133,MAX(21,F-Ct41): 
: CALL LOCATE(#@,F,G) 
300 CALL GCHAR(INT(F/8)+_,IN 
T(G/B+JA:: IF R014 THEN 
320 ELSE CALL SOUND(I40,-6, 

3,900,4,1100,5,1300,6) 
310 CALL HCHAR(INT(F/8+_),1N 

I=I+@ :: IF 
1=64 THEN 330 

320 CALL COINC(ALL,R):: IF R 
=[ THEN 280 ELSE CALL SOUND( 
200,-6,_):: K=K-@ 	GOSUB 4 
20 	IF K=C THEN 350 ELSE 2 
80 
330 CALL SOUND(1600,131,_,39 
2,_,1047,_):: J=J+_ 	CALL 
D4SPRITE(ALL):: 	F=85 

,Tz.r  

:: G=117 :: H=H+1000 	DIS 
PLAY AT(@,7-LEN(STRCH))1SIZ 
E(6):STRS(H) 
340 IF H=L THEN K=K+@ 	GOS 
UB 420 :: L=L+500 	GOTO 24 
0 ELSE 240 
350 FOR A=@ TO I 	H=H+10 
: CALL SOUND(30.523,_):: DIS 
PLAY AT(@,7-LEN(STRS(H))):ST 
RCH):: CALL SOUND(20,200,30 
):: NEXT A DISPLAY AT(22, 
111:"GAME OVER" 	FOR A=@ 
TO 340 :: NEXT A 
360 DISPLAY AT(22,8):"PLAY A 
GAIN/(Y/N)" 
370 CALL KEY([,B,C):: IF C=[ 
THEN 370 

380 IF B=89 OR B=121 THEN CA 
LL DELSPRITE(ALL):: CALL CLE 
AR :: GOTO 220 ELSE END 
390 CALL KEY([,N,0):: B,C=[ 
:: IF N=83 OR N=115 THEN B=- 
4 ELSE IF N=68 OR N=100 THEN 
B=4 
400 IF N=69 OR N=I01 THEN C= 
4 ELSE IF N=88 OR N=I20 THEN 

c 

410 GOTO 290 
420 DISPLAY AT(@,16):RPTS(" 
1,13-Ki&RPT$("m",K):: RETURN 

STRESS SYNDROME 

This article and program 
sas taken from the PUNN 
newsletter - issue Aug 1999 
STRESS is on the SPIRIT OF 
99 BBS if you do not want 
to type it in. 

This month we are offering 
a little program to test 
your courage, patience and 
composture. It is very easy 
to type in, just be sure 
you check the DATA numbers 
carefully before you run 
the program. 

I have heard that some 
folks have had a severe 
stress syndrome after  

running this program, but I 
am sure that none of our 
members have any of those 
symptoms. 

However, run the 
program at your own risk 
and the Editor and the 
entire PUNN staff will not 
be responsible in any way 
for liabilities. 

Chuck Ball, Editor 

100 REM SAVE DSKI.HELLO 
110 REM 
120 REM Mystery Program 
130 REM by Chris Schan 
140 REM 
150 REM Requires Memory Expa 
nsion 
160 REM and Synthesizer 
170 REM 
180 REM Runs in Extended Bas 
ic or Console Basic 
190 REM with Editor/Assemble 
y or Mini-Memory 
200 REM 
210 REM 
220 REM 
230 DATA 71,64,72,65,70,75 
240 DATA 73,70,76,67,66,66 
250 DATA 65,68,76,68,77,68 
260 DATA 78,71,77,66,68,66 
270 DATA 66,67,74,67,74,77 
280 DATA 74,68,73,71,64,67 
290 DATA 72,68,76,65,72,68 
300 DATA 76,65 
310 CALL INIT 
320 CALL PEEK(-28672,A) 
330 IF A096 THEN 430 
340 FOR Z=1 TO 11 
350 FOR X=I TO 4 
360 READ A 
370 CALL LOAD(-27648,A) 
380 NEXT X 
390 CALL LOAD(-27648,64) 
400 CALL LOAD(-27648,80) 
410 NEXT Z 
420 STOP 
430 PRINT 'You don't have a 
Speech' 
440 PRINT "Synthesizer attac 
hed!" 

SPIRIT OF 99 
	

57 4( 



HEXIDECIMAL 

Curtis Alan Provance 
Paragon Computing 

With a few exceptions, humans around 
the world have adopted the base ten 
numbering system. One can presume this is 
due to the ten digits found on our hands. 
While base ten is 'easy' for us, it is not 
always the best numbering system for the 
job. For computers, the best numbering 
system is binary. For computer 
programmers, the best numbering system is 
(usually) hexidecimal. Why use 
hexidecimal? What is a numbering system, 
anyway? Let's start with the second 
question first.... 

What is a numbering system, anyway? 

You can think of the 'base' of a 
numbering system as the number of digits 
used to make numerals. My dictionary says 
(as one of many definitions): "The number 
that is raised to various powers to 
generate the principal counting units of a 
number system." In other words, if you 
write the numeral "2539", what you are 
saying is: 
"2x1000 + 5x100 + 3x10 + 9x1" 
I realize that I won't get a noble prize 
for this, but bear with me, please. We can 
-..ake the about expression, and convert the 
1000, 100, 10, and 1 into 'powers' of ten: 
"2x10' + 5x102 + 3x101 + 9x10'" 
Please note that the 'powers' of ten 
correspond to the column number, assuming 
that we start at the right side with column 
zero. So, in base ten, we represent 
numbers by breaking the number into 
multiples of powers of ten. 

Before introducing hexidecimal or 
binary, let's get a few terms straight. In 
particular, the terms digit, numeral, and 
number should be made clear. 

DIGIT: "... 3a. Any one of the ten 
Arabic number symbols, 0 through 9. b. 
Such a symbol used in a system of 
numeration." 

NUMBER: "A member of the set of 
positive integers; ...." 

NUMERAL: "A symbol or mark used to 
represent a number." 

Your dictionary may disagree, but 
let's go with these definitions for the 
moment. As you can see, digits are 
individual symbols used to make numerals. 
Numerals are symbols (made of one or more 
digits) which represent numbers. 	For 
example, 	FE, 376, 254, and 11111110 are 
all numerals representing the the number 
two hundred fifty four in base 16, base 8, 
base 10, and base 2, respectively. The 
first numeral is composed of two digits, 
the second and third numerals are composed 
of three digits, and the last - eight 
digits. As you may have guessed by now, 
there are the same number of digits as the 
base. Base ten (decimal) has ten digits (0 
through 9), base 2 (binary) has two digits 
(0 and 1), base eight (octal) has eight 
digits (0 through 7) and base 16 
(hexidecimal) has sixteen digits - whoa! 
After we use up 0 through 9, where do we 
get the other six digits? 

I suppose the first people to use 
hexidecimal could have come up with weird 
looking characters for the last six digits, 
but they didn't. The last six digits are 
represented by the characters A through F 
(or a through f - if your program doesn't 
care about case). Therefore, in the 
example above, if we take the numeral FE in 
hexidecimal (base 16), we can write it as: 
"Fx101' + Ex10,6')" - note that "10i6" in 
hexidecimal is the same as "161." in base 
ten. In other words, to represent "ten" in 
base ten, you write "10,0" - to represent 
"two" in base two, you write "102" - to 
represent eight in base eight, you write 
"10," - to represent "sixteen" in base 
sixteen, you write "1016". 

When we write a number in base ten, 
we often don't add the base value, i.e. we 
write 254 and not 254i0. When we want to 
write a number in another base, we need 
some way to indicate that it isn't in base 
ten. If we didn't, then someone seeing 
11111110 might think it was eleven million, 
one hundred eleven thousand, one hundred 
ten instead of two hundred fifty four. 

In the TI99/4A world, we don't use 
binary or octal so we don't need special 

e 



characters to alert us. 	Hexidecimal, 
however, is used extensively in assembly 
language for the TI99/4A and is represented 
by preceeding a numeral with a greater-
than sign as in the following expression: 
>FE = 254. 

Why use hexidecimal? 

The first computers ever built used 
the binary number system extensively. This 
is because our computer circuits only 
recognize two values - call them on/off, 
up/down, high/low, 1/0, whatever. 

Eventually, computers were built 
which could manipulate groups of bits all 
at the same time. Octal notation (base 8) 
became very popular because processors 
could handle eight bits at once. When TI 
(and others, later) moved to 16 bit 
microprocessors, hexidecimal notation got 
a big boost. 

Please realize that at the computer's 
level, things are still O's and l's. The 
advantage to using octal or hexidecimal 
notation is that these numerals can be more 
easily converted into binary than can 
decimal. For example, given the following 
table of numerals: 

BINARY OCTAL DECIMAL HEXIDECIMAL 
0000 0000 0000 0000 
0001 0001 0001 0001 
0010 3002 0002 0002 
0011 0003 0003 0003 
0100 0004 0004 0004 
0101 0005 0005 0005 
0110 0006 0006 0006 
0111 0007 0007 0007 
1000 0010 0008 0008 
1001 0011 0009 0009 
1010 0012 0010 000A 
1011 0013 0011 000B 
1100 0014 0012 000C 
1101 0015 0013 000D 
1110 0016 0014 000E 
1111 0017 0015 000F 

10000 0020 0016 0010 

... haw would you represent the number 
sixty five thousand, four hundred seventy 
nine in binary? In base ten, it is 65479. 

In octal it is 177707a. In hexidecimal it 
is FFC7,a or simply >FFC7. In binary it is 
11111111110001112. (Trust me .... ) 

To convert from octal or hexidecimal 
to binary is easy! Looking at the chart 
above, we can convert each octal digit 
directly into a string of three binary 
digits: 
la 	7a 	7a 	7a 	Oa 	7a = 
12 1112 1112 1112 0002 1112 
or 11111111110001112 

Similarly for hexidecimal: 
Fi, 	Fis 	Cla 	7,a 

11112 11112 11002 01112 
or 11111111110001112 

This still doesn't explain why we 
deal with hexidecimal. The reason is that 
when you get down to the bare bones of the 
machine (the registers) many things get 
done either at the bit level or in groups 
of bits. For example, if you want to 
change the video registers (change the 
screen color, go from 32 to 40 columns, or 
whatever) you will have to load one of the 
video registers with a certain bit pattern. 

For example, video register 7 sets 
the background color of the screen (and the 
foreground, too, if you are in 40 column 
mode). .The register is eight bits wide and 
'looks' like this: 

	

BACKGROUND 	FOREGROUND 
,, 

111111111 

The first four bits (first starting at the 
left) are the background color and the last 
four bits are the foreground color. Let's 
say that you want the screen to have white 
text on a cyan background. The color codes 
are 8 for cyan and 15 (>F) for white. How 
do you shoe-horn these values into the 
register? You have to get the 8 value into 
the first four bits - to do that you have 
to multiply by 16. In other words, to load 
the register use axle + 15. This isn't 
difficult - but it's not necessary. 

If you used the hexidecimal version 
of the color codes - all you would have to 
do is "glue" them together to get your 
register value - >8F. 

122Ye 



(Co ft t; n aej f/- 0 /0a-f- e 

Remember that the TI99/4A is built 
around the hexidecimal number system. The 
microprocessor can operate on eight bit 
values and representing register values is 
a lot easier with two hexidecimai digits 
than it is with eight binary digits! As a 
final example, consider setting video 
register ill which determines the following 
video characteristics: 
Bit 0 - 4/16K memory (always set to 1 - 

all TI99/4A's have 16K of video 
memory) 

Bit 1 - Screen display enable (1) or 
disable (0). When disabled, the 
screen is blank. 

Bit 2 - Interrupt enable/disable. 	When 
set (1) the video chip will 
generate an interrupt every 60th 
(or 50th if you're running on 
50Hz) second. 

Bit 3 - Mode bit 1. 	When set (1) you're 
in text (40 column) mode. 

Bit 4 - Mode bit 2. 	When set (1) you're 
in multi-color mode (seldom used). 

Bit 5 - Reserved (for possible future 
use?) 

Bit 6 - Sprite size selection. 	Set (1) 
means 16x16 bit sprites. 	Reset 
(0) means 8x8 bit sprites. 

Bit 7 - Sprite magnification selection. 
Set (1) means double size. Reset 
(0) means normal. 

Assume for a moment that you want to be 
In 32 column mode (i.e. not in 40 column 
mode, and not in multi-color mode). That 
means bits 3 and 4 should both be zero. 
You want double size sprites (16x16) but 
youdon't want them magnified. Therefore, 
bit 6 should be 1 and bit 7 should be O. 
Finally, you DO want the user to see the 
screen (bit 1 set to 1), you want the video 
chip to generate an interrupt every 60th of 
a second so the sprites will move (bit 2 
set to 1), and you know that bit 0 is 
always 1 and bit 5 is always 0. This gives 
a bit pattern of: 
11100010 
In base ten, this would be 226 - but I 
wouldn't want to calculate this each time 
I changed bits! In hexidecimal, it is: 
1110 0010 

or simply >E2. 

The catalog will be updated AS we 
receive new software. If you have some 
software that you 	would 	like 	to 
demonstrate 	and/or 	donate, 	please 
remember to bring it on a single sided, 
single density (SS/SD) disk. Please 
label the disk clearly and indicate 
what is required to run the program 
(Basic, Extended Basic, Editor 
Assembler option 3 or 5, etc.). For 
each disk of software donated to the 
club library, you will be reimbursed 
with a fresh blank disk. 

In addition to all the software demos, 
the club witnessed a live demonstration 
on disk repairing by Curtis Provance. 
Vince Demers brought in a disk with a 
corrupted disk header and asked for 
some help to restore the disk and save 
the information that was still on the 
disk. After giving an impromptu 
overview on TI'5 disk structure, Curtis 
proceeded to demonstrate how to check 
and then repair the contents of the 
disk header using a sector editor 
program, such as John Birdwell's Disk 
information. The disk was successfully 
restored to its original condition 
right before our eyes. It seems this 
was a very popular topic based on the 
level of interest and all of the 
questions. We will try to repeat this 
demonstration at a 'future meeting. 

In other news, Curtis gave us an update 
on his project to develop a cartridge 
dumping program. He has the main part 
of the code working but there are still 
one or two bugs in it. He showed 
several examples of cartridges he has 
success.fully 	dumped to disk. 	Once 
saved to disk, these cartridge programs 
can be loaded and run from Extended 
Basic with a special loader program. 
Curtis is also working on this and will 
explain more about it at a future 
meeting. 

All 	in all, 	it was a very .fun and 
informative meeting. Now that I am all 
relaxed, I guess I should go back out 
and shovel some more snow. See you at 
the next meeting. 



SCHEDULE OF MEETINGS 

The next club meeting is scheduled for Monday February 19 starting at 6:30 
PM. Meetings are held the third Monday of each month at the Science 
Enrichment Encounter (SEE) Center, 324 Commercial Street, Manchester, NH. 
Below is a list of dates for upcoming meetings. Annual dues are $15 payable 
to the New Hampshire 99'ers User Group. 

February 19 
March 19 
April 16 
May 21 
June le 
July 16 

NH99'ers User Group 
PO Box 5991 
Manchester, NH 03106 
603-672-0064 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

