M
A

X

T

\é(\ \{"\7\’
)

AN

\\\\\\¥;\\\\\
RS
A
’xj‘i,’\,\ N
SN

New Hampshire 99’ers User Group February 1990
PO Box 5991, Manchester, NH 03108 Newsletter Vol. 8. No.2

CLUB NEWS
by FPaul Bendeck, President

Well, it’'s been snowing now for 2 days and I'm tired of shoveling the snow so I
thought I would do something a little more relaxing like work on this article
for the newsletter. Besides all the snow, 1990 brought renewed interest in
both the club and the TI-99/4A. The club started the new decade with a very
entertaining and interesting meeting in January. I'11 try to cover some of the
highlights.

Thanks to Elliot Hardy, the club has edpanded ouw assets with a complete set of
99 'er Magazines plus all of the disk software that was distributed with the

magazines. In case you have never seen this magazine (they stopped publishing
about I-4 years ago), this was the best all around magazine covering the
TI-99/4A computer. Each issue 1is filled with very descriptive articles on

every subject about the TI-99/4A. Each issue also included several excellent
programs which were distributed on disk. These programs were not only fun to
play with but also educational because they illustrated various programming

techniques. Each of these programs was fully documented and described in the
magazine. The magarzines are on file with the «club and are available for
checking out by club members. See Fhil Davis the newsletter librarian for

details. All of the disk software is now in the club software library. Copies
can be obtained at the meeting.

Speaking of the software library, things are looking up. Besides the 99 er
Magazine software, there were several other donations from club members. Mike
Scanlon demonstrated a disk of very creative games he picked up from the NUTMEG
User s Broup. The single disk included 4 games: Rackgammon, Solitaire,
Monopoly, and Witch/How -, plus & menu loader. All of these games ran in
Extended Rasic and had lots of good graphics. Thig disk is now available in
the software library.

Curtis Provance bhrought in a copy of one of the best Chess programs I have seen

far the TI-99/4A. It's called Sargon Chess and includes programmable levels of
difficulty and very good graphics. This program uses standard Chess notation
for making moves which makes it easy to learn and use. Sargon Chess is

available now in the software library.

Frobably the best demo of the evening was provided by Vince Demers, our
newsletter editor. Vince showed us a game called Carfax Abbey. This is & maze
game consisting of a castle with a lot of rooms (25 rooms per floor, and a
total of 4 floors). Each room has multiple exits and secret passageways to
other rooms, sometimes on different floors. The graphics were top notch in
this game. If you want to find out what is in these rooms, you’'ll have to buy
the disk from our software library.

As a reminder, software disks are available from the software library for a fee
of ¥3.5@0. Copies can be made during regularly scheduled club meetings. Chtis
Agrafiotis, our software librarian, has promised to bring anm updated copy of
the library catalog to the next meeting. (Cen?. - page 7)



DISK DOCTOR

Curtis Alan Provance
Paragon Computing

One member brought a ’damaged’ floppy
to the last meeting. Something had happened
to the disk and all his files were ¢gone!
Actually, he knew that the information was
still there - but he had no access to it.
Within a few minutes, we had successfully
recovered all the files ....

This is the first in a series of
articles on how your disk controller works,
and how vou can recover from several common
disk errors. In order to examine and repair
vour own disk, vou will need a disk utility
program which allows yvou to read and write
individual disk sectors. John Birdwell’s
excellent FAIRWARE offering, "Disk Utility"
is what I will be using. You may obtain the
complete program along with disk based
documentation by sending a minimum donation
of $10 to:

John Birdwell
7052 Springhill Circle
Eden Praire, MN 55344

Secondly, I will be using a ’training’
disk and refering to specific sectors - and
bvtes within those sectors. To ensure that
vour ’training’ disk looks like mine, vou
should tformat (or reformat) a disk and name
it "BLANK". Please format it as a Single-
Sided, Single-Densityv disk (SS/SD) - and
don’t write-protect it!

Finally, if you are not tfamiliar with
using hexidecimal notation, please stop and
read the article on hexidecimal tound
elsewhere in this newsletter. The bulk of
this discussion will use hexidecimal (Disk
Utilities ’native’ mode). Hexidecimal is
not hard to learn, and the few minutes you
spend on the other article will save hours
of frustration later when vou do vour own
disk 'doctoring.’

TERMINOLOGY

Let’s review some terminology (as it
applies specifically to TI99/4A computers):

f%ye yA

SECTOR: A continuous section of your disk
which holds 256 bytes of information. Each
byte can have any one of 256 values. Other
computers may have 256 byte sectors, 312
byte sectors, or whatever. There is
information stored in between the sectors,
but we won’t concern ourselves with it
during the course of these articles.
TRACK: 1 continuous collection of sectors.
TI99/4A disks typically have 9 sectors
(Single-Density) or 18 sectors (Double-
Density) in each track (although MYARC’s
preferred number of sectors for Double
Density disks is 16). A TI%9/4A floppy
usually has 40 tracks per side (some have
only 35 - more on that later).
SIDES: How many sides of a disk are used.
either a Single-Sided (usually the side
without the label) or Double-Sided disk.
DENSITY: How many sectors are packed in each
track - typically 9 for Single-Densityv and
18 (or 16) for Double-Density.

Therefore, if vou do your math right,
a Single-Sided, Single-Density (SS/SD) disk
having 256 bytes per sector, 9 sectors per
track, and 40 tracks per side has the
capability of holding 360 sectors, or 92160
byvtes (usually just called "20K"” because a
"K" is 1024 bytes). A Double-Sided. Single-
Density (DS/SD) disk [(or Single-Sided,
Double-Density) (SS/DD) holds 180K, and n
Double-Sided. Double-Densitv {(DS/DD) disk
holds 360K (all figures based aon 9 or 18
sectors per track. as appropriate}).

DISK USAGE

Computer makers use different formats
for their floppy disks. This includes how
the tracks and sectors are set up, as well
as which sectors are used for control
information. ’'Soft-sectored’ disks can be
formatted in a varietyv of wavs - TI's wayv,
IBM’s wav, or whatever. ¥e will only deal
with TI's format during these articles.

TI chose to use the first ftwo disk
sectors for their control information. This
is whv vou get the message "358 sectors
free” when vou format a ¢ood SS/SD «isk.
There are really 360 sectors - but two are
needed by the controller.



SECTOR 0

The first sector on a disk (all the
way out on the rim) is sector 0. Let’s see
what the first sector looks like. Load the
disk utility and select "SECTOR EDIT" from
the menu. Place the disk in drive 1, select
drive 1, then select sector 0 as the sector
you want to edit. The screen should look
like this:
124D 414F 4C20 2020 2020 0168 0944 334B
2028 0101 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0300 0000 0000 0000
... (the rest are all 0000’s or FFFF’s)

If vou want to see the characters in
ASCII. press the control and A kevs at the
same time. The screen should now be:

BL AN K . h D S K

L e e e e e e

...{(the rest all appear as . .)

This sector holds the following data:
BL AN K . h D S K
424D 414F 1C20 2020 2020 0168 0944 334B

[
|

Name of disk — (10 bvtes)

Number of sectors —— —— |
Sectors per track —_—

Standard disk (3 byvtes ’'DSK') ——

2028 0101 0000 OO0 0000 0000 0000 0000
L |
' |
Disk protection (>20=no, >30=yes) J
Tracks per side
Number of sides (1 or 2)
Density (l=single, 2=double)
The remaining hvtes on this line are
reserved for future use.

Please note that the disk protection
used here does not refer to the write
protection you get by covering the notch on
the side of the disk. This is a software
protection scheme developed by TI which we
will discuss in a moment.

/7;7::’ 3

The next row of bvtes are ulso
reserved for future use, along with the
first eight bytes of the fourth row.

The ninth byvte of the fourth row is
the first byvte of the sector bit-map. A
bit-map means that each bit in each bvte
represents a larger object {(in this case,
a sector).

Each byte consists of eight bits, and
each bit represents a sector. If a sector
is currently being used (or if it is damaged
and the controller couldn’t initialize it)
the bit will be set to 1. Otherwise, the
bit is 0. Since sectors 0 and 1 are alwavs
in use, the first bvte will alwavs have the
tfirst two bits set.

It is important to note that bit 0 is
the right-most bit. In other words, if vou
were to expand a brvte into its individual
eight bits, the bits would look iike this:
7654 3210.

On a fresh disk the bit-map table will
start with >0300 >0000 .... In other words,
since >03 = 00000011, this bit map indicates
that sectors 0 and 1 are in use. This bit-
map can hold data for a DS/DD disk (takes
128 byvtes). Since we formatted the disk as
SS/8D, the last 96 bvtes are FFFF - meaning
that thev aren’t available.

DISK PROTECTION

The Disk Manager module suppplied with
the TI «¢isk controlicr —-ontained )
undocumented feature which would provide
disk protection. This reature was enabled

bv pressing (I believs) the ¢ontrol and %
kevs simultaneously - fen times. Unce done,
vou could <create a1 disk which +as

"protected” from being cuplicated by the
disk manager.

The only protection this reature
provided was to alter the first byte in the
second row from a space character to a ‘P’
(for protected) character. Until the advent
of DM-1000, Disk Utilities. and similar
programs, this protection thwarted most of
the wouid-be copiers. it 1s useless now,
except against users oif TI’'s original Disk
Manager cartridge.

NEXT MONTH: FILE HEADERS AND SECTOR 1






HEXIDECIMAL

Curtis Alan Provance
Paragon Computing

With a few exceptions, humans around
the world have adopted the base ten
numbering system. One can presume this is
due to the ten digits found on our hands.
¥hile base ten is 'easy’ for us, it is not
always the best numbering gystem for the
Jjob. For computers, the best numbering
gystem is binary. For computer
programmers, the best numbering system i=s
(usgually) hexidecimal. Why use
hexidecimal? What iz a numbering system,
anyvay? Let’s =tart with the =second
quegtion firgt....

What is a numbering system, anyway?

You can think of the ‘base’ of a
numbering system as the number of digits
used to make numerals. My dictionary says
(ag one of many definitions): "The number
that is raised to variocus powvers to
generate the principal counting units of a
number system." In other words, if you
vrite the numeral "2539", what you are
saying is:

"2x1000 + 35x100 + 3x10 + Sxl1"

I realize that I won't get a noble prize
for this, but bear with me, please. We can
take the about expression, and convert the
1000, 100, 10, and 1 intoc ’'powers’ of ten:
"2x10* + S5x10% + 3x10*' + 9x10°"

Please note that the ‘powers’ of ten
correspond to the column number, assuming
that we start at the right side with column
Zero. So, in basge ten, we represent
numbers by breaking the oaumber into
multiples of powers of ten.

Before introducing hexidecimal or
binary, let's get a few terms straight. In
particular, the terms digit, numeral, and
number should be made clear.

DIGIT: "... 3a. Any one of the ten
Arabic number symbols, O through 9. b.
Such a symbol wused in a system of
numeration. "

NUMBER: "A member of the set of
positive integers; ...."

/Oa ?c’ f

NUMERAL: "A symbol or mark used to
represent a number.’

Your dictionary may disagree, but
let’s go with these definitione for the
moment. Ae you can see, digits are
individual symbols used to make numerals.
Numerals are symbols (made of one or more
digitsg) which repregent numbers. For
example, FE, 376, 254, and 11111110 are
all numerals representing the the number
two hundred fifty four in base 16, base 8,
bage 10, and base 2, respectively. The
first numeral is composed of two digits,
the second and third numerals are composed
of three digits, and the last - eight
digits. Asz you may have guesged by now,
there are the same number of digits as the
bage. Base ten (decimal) has ten digite (O
through 9), base 2 (binary) has two digits
(0 and 1), base eight (octal) has eight
digits (0 through 7) and bage 16
(hexidecimal) has sixteen digits - whoa!
After we use up 0 through 39, where do we
get the other six digits?

I suppose the first people toc use
hexidecimal could have come up with weird
looking characters for the last six digits,
but they didn’t. The last six digits are
repregented by the characters A through F
(or a through f - if your program doesn’t
care about case). Therefore, in the
example above, i1f we take the numeral FE in
hexidecimal (base 16), we can write it as:
"Fx10,.* + Ex10,." - note that "10,." in
hexidecimal is the same as "16,.)" in base
ten. In other words, to represent "ten" in

base ten, you write "10,." - to represent
"two" in base two, you write "10." - to
represent eight in base eight, you write
"10," - to represent "sixteen" in base

sixteen, you write "10 ,".

¥hen we write a number in base ten,
ve often don‘t add the bage value, i.e. ve
write 234 and not 234 . When we want to
vrite a number in another base, we need
some way to indicate that it isn’t in base
ten. If we didn’t, then someone seeing
11111110 might think it was eleven millien,
one hundred eleven thousand, one hundred
ten instead of two hundred fifty four.

In the TI9S/4A world, we don’t use
binary or octal so we don‘t need special



characters to alert us. Hexidecimal,
hovever, is usgsed extensively in aasembly
language for the TIS9/4A and is represented
by preceeding a numeral with a greater-
than sign as in the following expression:
>FE = 234,

Why use hexidecimal?

The first computers ever built used
the binary number system extensively. This
ig because our computer circuits only
recognize two values - call them on/off,
up/dawn, high/1lovw, 1s0, vhatever.

Eventually, computers were built
vhich could manipulate groups of bits all
at the same time. Octal notation (base 8)
became very popular because processors
could handle eight bits at once. When TI
(and oathers, later) moved to 16 bit
microprocegsors, hexidecimal notation got
a big boost.

Please realize that at the computer’s
level, things are still O0‘s and 1’s8. The
advantage to using octal or hexidecimal
notation i8 that these numerals can be more
eagily converted into binary than can
decimal. For example, given the following
table of numerals:

BINARY OCTAL DECIMAL HEXIDECIMAL
0000 0000 0000 0000
0001 0001 0001 0001
0010 0002 6002 ocooz
0011 0003 0003 0003
o100 0004 0004 0004
0101 000S 0005 0003
0110 0006 0006 0006
0111 0007 0007 0007
1000 0010 0008 coos
1001 0011 0009 ooos
1010 0012 0010 000A
1011 0013 0011 oooB
1100 0014 001z ooocC
1101 0015 0013 oooD
1110 0ole 0014 OO0E
1111 0017 0015 O00F
10000 0020 0016 o010

.. how would you repregent the number
gixty five thousand, four hundred seventy
nine in binary? In base ten, it is 65479.

Pese ©

In octal it is 177707, In hexidecimal it
is FFC7,. or simply >FFC7. 1In binary it is
1111111111000111, (Trust me ....)

To convert from octal or hexidecimal
to binary is easy! Looking at the chart
above, vwe can convert each octal digit
directly into a string of three binary
digits:

l, 7. 7, 74 04 7,°
1,111,111, 111, 00O, 111,
or 1111111111000111,

Similarly for hexidecimal:
FlS FIS C:s 7:6 =

1111, 1111, 1100, 0111,
or 1111111111000111,

This still doesn’t explain why we
deal with hexidecimal. The reasan is that
wvhen you get down to the bare bones of the
machine (the registers) many things get
done either at the bit level or in groups
of bits. For example, 1if you want to
change the video registers (change the
gcreen color, go from 32 to 40 columnsg, or
vhatever) you will have to load one of the
video registers with a certain bit pattern.

For example, video register 7 agets
the background color of the screen (and the
foreground, tog, if you are in 40 column
made). . The register is eight bits wide and
"looks’ like this:

BACKGROUND FOREGROUND

| i I i I [ |

e R e R R ]

The first four bitg (first starting at the
left) are the background color and the last
four bits are the foreground color. Let’s
gay that you want the screen to have white
text on a cyan background. The color codes
are 8 for cyan and 15 (>F) for white. How
do you shce-horn these values 1ianto the
register? You have to get the 8 value 1into
the first four bits - to do that you have
to multiply by 16. In other vwords, to locad
the register use 8x16 + 15 This isn’t
difficult - but it’s not necessary.

If you used the hexidecimal version
of the color codes - all you would have to
do is "glue™ them together to get your
register value - >8F.




Remember that the TI99/4A is built
around the hexidecimal number system. The
microprocesgor can operate on eight bit
valuee and representing register values is
a lot easier with tvo hexidecimal digits
than it is with eight binary digits! A= a
final example, consgider setting video
register #1 which determines the following
video characteristics:

Bit 0 - 4/16K memory (always sget to 1 -
all TI99/4A's have 16K of video
memory)

Bit 1 - Screen display enable (1) or

disable (0). When disabled, the
screen ig blank.
Bit 2 - Interrupt enable/disable. When

gset (1) the video chip will
generate an interrupt every 60th
(or S0th if you’re running ©n
S0Hz) second.

Bit 2 - Mode bit 1. When set (1) you're
in text (40 column) mode.

Bit 4 - Mode bit 2. When set (1) you're
in multi-color mode (seldom used).

Bit S - Reegerved (for ©possible future
uge?)

Bit 6 - Sprite size selection. Set (1)
meane 16x16 bit sprites. Reset
(0) means 8x8 bit sprites.

Bit 7 - Sprite magnification selection.
Set (1) meane double size. Reset
(0) means normal.

Assume for a moment that you want to be
in 32 column mode {(i.e. not in 40 column
mode, and not in multi-color mode). That
means bits 3 and 4 should both be =zero.
You want double size sprites (16x16) but
youdon’t want them magnified. Therefore,
bit 6 ghould be 1 and bit 7 should be O.
Finally, you DO want the user to see the
gcreen (bit 1 set to 1), you wvant the video
chip to generate an interrupt every 60th of
a second so the sprites will move (bit 2
get to 1), and you know that bit O is
alwvays 1 and bit S is always O. This gives
a bit pattern of:

11100010

In base ten, this would be 226 - but I
vouldn’t want to calculate this each time
I changed bits! In hexidecimal, it is:
1110 0010

E 2 or simply >E2.

Page 7

C(arl ﬁna::p/ From page /)

The catalog will be updated as we
receive new software. I¥f you have some
software that you would like to
demonstrate and/or donate, please

remember to bring it on a single sided,

single density (88/8D) disk. FPlease
label the disk clearly and indicate
what is8 reqguired to run the program
(Rasic, Extended Basic, Editor

Assembler option 3 or 3, etc.). For
each disk of software donated to the
club library, vyou will be reimbursed
with a fresh blank disk.

In addition to all the software demos,
the club witnessed a live demonstration
on disk repairing by Curtis Provance.
Vince Demers brought in a disk with a

corrupted disk header and asked for
some help to restore the disk and save
the information that was still on  the
disk. After giving an  impromptu
overview on TI's disk structure, Curtis
proceeded to demonstrate how to checl
and then repair the contents of the
disk Meader using & sector editor

program, such as John Rirdwell'’'s Disk
information. The disk was successfully
restored to its original condition
right before our eyes. It seems this
was a very popular topic based on the
lavel of interest and all of the
questions. We will try to repeat thisg
demonstration at a fultwe meeting.

In other news, Curtis gave us an update
on his project to develop & cartridge
dumping program. He has the main part
of the code working but there are still
one or two bugs in  it. He showed
saeveral eramples of cartridges he has
successfully gdumped to disk. Once
saved to disk, these cartridge programs
can be loaded anmd run from Extended
Basic with & special loader program.
Curtis is also working on this and will
explain more about it at a future
meeting.

ALl din all, it was a very fun and
informative meeting. Now that I am all
relaed, I guess I should go back out
and shovel some more snow. See you at
the mnext meeting.



SCHEDULE OF MEETINGS

The next club meeting is scheduled for Monday February 19 starting at 6:3I0
FM. Meetings are held the third Monday of each month at the Science
Enrichment Encounter (SEE) Center, IZ24 Commercial Street, Manchester, NH.
Below is a list of dates for upcoming meetings. Annual dues are ¥15 pavable
to the New Hampshire 799 wrs User Broup.

February 19
March 19
April 16
May 21

June 18
July 16

NHS9 "@rs User Group
FO Hox 3991
Manchester, NH 32108
HBIE~6T72-0084




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

