FEBRUARY 1988
NEWSLETTER VOL 6 NO. 2
POB 5991 MANCHESTER, NH 03108

LG

Last #onth's mesting was consused by several software
desonstrations. Let’s start with Richard’s!

The first disk that coses to mind is the Weodstock -
Chriztgas animated cartoon. This progras is an Extended
EASIC marvel which does an excellent job with character
redefinitions, sprites, colors - the works! This animated
cartoon will really pick up vour spirits. From the flapping
of Wosdstock’s wings, to the sound of snow  crunching
underfont, this program is detailed and quite entertaining.
Richard ran out of topies at the last meastingi hopefully
he'll have it again in March. Flease PLEASE PLEASE (did that
get your attention?) send a donation to the author
{1dentified in the program) for the time put into this.

Another disk which Richard brought contained some of the
aost dazzling graphics I have ever seen on a TI. Anyone
interested in developing graphics on the TI could learn scse

tricks from these pecpie (a European fira seiling gases - 1
thinky. Hopefully, it too will be at the next aaeting.
Disk ¥3 was a game - or saybe an adventure. It is

called Freddy and comes to us from West Germany. Freddy is
trapped in a maze of caves and aust gather up as many
treasures as he can bhefore being poisoned from rat bites and
other nasties. There are ropes to cliamb, ledqes off of which
you may juap for fall), nasties, and treasures. The graphics
are exiellent and the tempo is challenging. Richard has
converted it to English, so it is sehr leicht zu erlernen!
tvery easy to learn!)

Finally, Richard raved about the latest version of Disk
Utilities fros John Birdwell., It edits, catalogs, adds
cosments, copies, renases, slices, dices, chops - and if you
order before sidnight.. Whoops! Wrong comsercial.
Seriously, :f you use DH 1880 and DISKD and ... throw thea
away. You will fxnd this progras as powerful and quite wuser

friendly. This program may be purchased for $20 froal
John Birdwell
T¢32 Seringhill Cir
Ecen Frairie, MN 53744
u

My turn! My turn!

You all know Jim Peterson - the founder of Tigercub and
a most genercus man with his tips, shorts, one liners, and
application programs. He has put together over the yaars
three disks which he calls Nuts ’n’ Holts (#1, #2, and #3)
which contain hundreds of subroutines in MERGE format, These
subroutines do just about everything you would ever want -
fron redefining character definitions, to creating titles,
tlearing the screen in zeveral different ways, to he offers,
14 vou missed his demo disks at the last seeting, I'a sarry,

but I will be sending thes back. I ask you to trust ame on
this one: if you ever wanted to jazz up your Extended BASIC
prograss, this package is for you. Each disk is $15 and
tontains over one hundred subroutines - some of them are
mini-programs’ If you think that I5 cents a routine is tao
much to pay, then 1 suggest you calculate how such your tine
is worth when you are struggling to get that routine to work
*just the way’ you want. There are also many other disks
available inclyding numerous games. A catalog is 31 with the
$1 deducted from the first order. Flease contact Jim now at!

Tigercub Sottware

156 Collingwood Avenue

Columbus, OH 43213

HNEW

The BCS Fayuh will be held the second weekend of April
in the Lexington area (I assumel, Our club plans to be thera
ta sell soms disks. We would liks to bring our club =y:ztes
up to date with the purchase of two half-height, double sided
vand  dauble density) drives. Many club  d=2a0s havae been
Murphied by disk Incompatibility. FBesides, our current 55/%D
lone drive has seen betiter days. Flease bring your most
interesting diskis! to the next meeting so that we can choose
wnich disks wa will offer. Obviously, all material has to be
public domain,

We also have elections cosing up in June. Start
thinking about how you can help the club. There are nussrous
functions which in theaselves are quite easy and consuame
little time. However, when you have to do a few dozen of
them yourself, they begin to add up. HWe are fortunate to
have several people helping us in unofficial capacities, as
well as the four elected officers. Please aake a cosasitaent
tc give something to the club 1nstead of always just taking.
You'll be rewarded in the long run.

Articies?.... [ was tempted to not gput together 3
newsietter again this aonth, Come on, people! A4a I the only
serson still interested in learning about the TI? Don’t  any
ot you oplay adventure games? Create graphics? Exercise
utility programas? If you want se to edit vour articles, |
will do that happily. The only thing I ask 1s that I get the
article on a disk (which will be returned). 1 aay even put
sgae stuff on the disk for you before [ return it....

Thanks for the sesories....

So long to Mike Mannion, a former vice President, and a
good friend of the club. Mike donated auch effort to put out
the newsletter each month. Mike also added many programs to
the library and was often the first one on the block with a
nzw program or piece of hardware. Thanks again, Mike, for
all vou've done. We'll miss vou!



Infinite Sounds
Curtis Alan Provance
Paragon Computing

in Estended BASIC and BASIC, tha CALL 30UND subroutine
requires that you specify a time duration (a little over four
seconds Aax) and you must access registers in seguence - I.e.
to access register 3, you must also send values for registers
I and 2. Both of these *features’ may be easily discarded by
redefining CALL SOUND in 3 subroutine. To do this requires
esganded meadry and Extendsd BASIC. Note that the CALL
LDAD s may also be performed in BASIC with a cartridge ar LGR
rard which supports CALL LOADs,

This redefinition provides access to each of the three sound
registers independaatly and does not automatically turn off
generation. In other words, once you have turned on a
register, you must turn it off with anocther CALL LDAD., The
systes will alsc turn off all registers after a BEEP or HONK.
This means that [NPUT, ACCEPT ... BEEP ... and any 2rror
reporting will reset all registers (turn thea off),

The CALL SOUND redefinition is fairly short:

18889 SUB SCUNDIRES, FRER,VOL)

J9081 A=111868.8 :: B=INT{A/FRER/16)

32082 CALL LOAD(-31744,96+32%REG+R/FREQ-154B)
18883 CALL LDAD(-21744,R)

J3084 CALL LOAD(-31744,128+16#REG+VOL/2)
288835 SUBEND

38896 SUB NDISE(TYPE,VOL)

23847 CALL LOAD(-31744,223+4TYPE)
38098 CALL LDAD(-31748,248+V0L/2)
22389 SUBEND

HOM IT WORKS

Tha sound chip is "memory mapped’ meaning that talking to the
thip reguires that you send data to a specific address, in
this case -31744 {in hex code - »8488). It also means (at
least on the TI) that you can only read or write one byte at
a tise - a byte representing any integer from 8 to 235, The
scund register requires that certain bits be set, in this
tase, the bit that represents integer 128 {I'1l explain the
9 in line 3$862 aomentarily). Other bits tell the chip
which reqister is being accessed and what the following bytes
gean - frequency or voluse. In the case of the frequancy,
there are more than eight bits of information, sc two bunches
nust be sent.

Here's how tha hits tell the chip what’s going on:
1998a5xx - (12B) Freguency for register 1.
1881axax - (144) Volume for register i.

1818xxux - {148) Frequency for register 2.
[31fzxxx ~ (176} Volume for register 2,

{180xxxx - 1192) Freguency for register 3

Htaxux - (208) VYolume for register 3,

Hifxxux - (224) Noise control,

I tsuxy ~ (Z48) Noise volume,

Note that the register frequency control differs fros one to
the other by 32, The register volume control differs by l&.
Therefore , to access register |, we need to send 128 (=96 +
I2#1) for frequency control and 144 (=128 + 16#1} for volume
rontrol,  Of course, there are cther bytes to be sent as
well,

The freguency code consists of ten bits and is computed by
dividing 111848.8 by the fraguency. At this point, the LAST
faur hits nust be sent with the register freguency access
code; the highest six are sent in the next byte.

The volume byte is simply the access code plus the volumes2
{I’1} explain later).

A full description of the progran follows:

Line 389@8: REG is the register nusber: I, Z, or 3. FREG s
the frequency with lisits of 118 to 35,938, Volume ranges
from loudest=8 to off=38. Note that the volume is divided by
two. Although both BASIC's provide you with a volume range
of #-38, the sound generator actually can only racognize 14
difterent values {# to 15). If you remesber to use only 6 to
15, vou can elininate the /27,

Line 36681: Since the value 111648.8 shows up four times (if
you count appearances in B) I decided to assign it toc A, Ey
taking the integer of this value divided by the FRED and 18,
we are effectively =liminating the last four bits, i.e.
isclating the highest six bits:

Line 7@82: This is tha LODAD that sets the access code for
the frequency register (the 94+IZ#REE part) as well as
sending the lowest four bits of the frequency code. A/FRER
gives all ten, while 164B gives the sase high six bits with
the four lowest bits set to 8, Subtracting gives just the
low four bits.

Line 7#903: Yes, B is the value of the high six bits, dividad
by 14 (that’s the way the chip wants it!}

Line J9#@4: The volume registar code is 1ZB+154REG and the
volume is VOL/2. Reweaber that you are free to eliminate the

Ti2" portion is you use just 8 to 15 as voluse codes.

Line 28896: Type is the type of noise (1 to B} as descrised
in both BASIC’s. Volume is the same as in sound.

Line @897: Although the BASIC’s make you use values of 1 to
B, the npise register only accepts values from # to 7. The
rorsal noise ‘type code is 224, but I subtracted one to fix
your noise type.

Line 38888: Nothing new with the voluse code here.

NARNING!

While this technique works well with the sound chip, 1t #ill
not work with the video chip or GROX chips. This is hecause
the BASIC and Extended BASIC interpreters use both the video
and  GROM ports while executing your cosands. You may have
luck accessing the speech device - [ frankly have never
tried.



STAND-ALONE ROUTINES
Curtis Alan Praovance
Faragon Computing

Stand-alane routines allow your assembly program to run
eroserly without the aid of CALL INIT or routines built into
cartridgas. Some prograss - in an effort to save memory -
still insist on pulling data or instructions from the ROM ior
even SROM!) of a cartridge. This is a dangerous practice
which must be avoided now that so many loading options exist
tor PROGRAM IMABE files.

Mary newsletters have published ’“stand-alone® routines
for  vour use, some specializing in  speed, others
toncentrating on compactness of code. There is a happy
pedium that 1 strive for when | write sy stand-alone
routines, There are & few programming tricks which are
widely attepted, while other tricks are ‘boo-hoo’ed by
"serigus programmers.’ One of these tricks is self-modifying
code,

Seli-modifying code seans that one portion of your
program will actually change the sachine instructions in
another portign, This can be quite serious, particularly if
there are 'bugs’ anyshere - sho knows what code vou'll have
shen you're done? Used judicigusly in. manageable block
sizes, this code can cospact vyour program, free valuable
registers, or allow instructions to use registers when they
might otherwise require separate data locations, Let’s take
a look at a few examples:

SUB-ROUTINES
Suppose.vou have a few subroutines which are called from
varigus parts af your program. Furthersors, let us constrict

them by saving that they are not recursive in any way, that
is, they never branth and link to thesselves, or branch and
tink to anv other subroutinels) which aight branch and link
back on the original. This isn’t too bad of a restrictian,
and it fits aost subroutines (at least the ones I write!} If
vou want recursion, you'll need a stack which I will address
in another article.

Jome of the subroutines may have to branch and link to
other subroutines. How do you save the return address each
tise? You could move RIl to another register:

5UB!
M0V Rif,Ri2 Save return address - Z bytes
BL  &5uB2 Branch and link to another
B *Ri2 Return - 2 bytes

This only uses four bytes of memory for progras control
and would be fine, except for two limitations which really

namper develigpment:

1} Ypu will run out of usable registers if vou "nest’
your routines too deeply.

2} Each routine in a series must have its own dedicated
register, so that no two related routines will atteapt to
store their return addresses in the same register.

We could use starage spaces for each routine, something
Jike what the Editor/Assesbler book recommends:

SUBLSY EQU  B328 Address stored here - 2 bytes

SURY
MOV R1],85UBISV Save address - 4 bytes
BL  &5UB2 Branch and link to ancther
MOV @SUBISY,RIl Restore address - 4 bytes
RT Return - 2 bytes
Wow! We just tripled the amount of memory needed to
keep track of program flow - from four bytes to twelve

{counting the two bytes at »B388). On top of that, we have
to deal with the extra execution time of the MOV
instructions. HWell, we'll have to save Ri! somewhere other
than a register, 5o let’s accept the MOV RIL,BSUBISY a5 a
given, We can tighten up three other lines, tho':
guB!
MOV R11,8SUBIEV Save address - 4 bytes
BL  &50B2 Branth and link to another
SURISY EQU §+2 Points to 28288 - 2 bytes
B @#gad Return - 4 bytes

§e are down to eight bytes of nmesory for prograas
rontrol, versus twelve with the previous method. We also
have remgved the execution time of a MOV instruction, tho' I
adeit that the new Eranch will take a little longer than the
register version. 2aving four bytes hardly seeas werth the
gffort, until you start adding up the number of routines you
have - the TI isn’t generous on memory, so use as little as
you possible.

The first two esamples are 'ROMable’ code wmeaning you
tould burn them into a chip and they would function properly.
Alas, example three is self-modifying and therefore not
‘ROMable’ - doomed to be forever esecutsd from RAM. If this
is acceptable to vou, then I recommend example three over the
gther twa.

I have another example of code which modifies itself
depending on the routine to be performed. This is ay latest
attept at a tight set of video routines. While it may not
look any tighter on the surface. I can assure you that this
saves guite a few bytes of memory over cther versions. [t
also allows the easy implementation of 3 CLEAR, HCHAR, and
BCROLL routine.



VEER
YHBR
VEERW
VMEW
VIWTR
CLEAR
HOHAR
SCROLL

* For most of the routines,

DATA
DATH
DATA
DATA
DATH
DAETA
DATA
DATH

YDFWS, VEER
YDEWS, VMER L
VDFWE, VEEWL
YDPRE, VMEWL
YDFWE, VWTRL
YDFWS, CLEARL
YDFWS, HCHAR
VDFWE, SCROL1

* address of the string

VEER1

YHMBRI

VREAD

VWTR1

VBEW1

VMERW1

VWRITE

VWRITF

YIFDO

VLUF

LI
Mav
INCT
JMF

EL.
MoV
CLR
JMF
LI
CLR
JMF
LI
MOV
INCT
JMF
EL
Mav
MOV

A
Bl

DEC
JLT

¥ The video

VDFWES
DOIT

VRTWF

DATA
JMF

RTWF
DATH
MOVE
MOVE
DATA
DETHA

Ri2, 1
RiZ,R1@
Rl
VREAD

EYME
RS, R

RS

VDFDO

RS, BOHD
R1% '
VWRITF
R1%, 1
R1Z,R1i0
R1
VHRITE
BYME

R, K9

R, R

*R1T, RY
BVLOAD

R12
VRTWF

workspace actually contains some instructions and permanent data

@
VLLUF

REIUInIG]
#R1d+, #Ré
#RE, *R1@-+
FRLEE
»RCEY

These video routines function identically to
those described in the Editor/Assembler manual

Takes no arguments
REg = address, Rl(high byte) = byte, RZ2 = count
Takes no arguments

R? contains the VDF addresss: R1¥d contains the CF
(or the actual bvie) and R12 contains the count

We“ll only read one byte

Address of RE of calling workspace
Address of Rl of calling workspace
Generic read routine

Load registers for multiple byte operation

load "DOITY with MOV RB,#R1d+
Don"t fiddle with address bits
Generic video bvte move routine

Set high bit to signify register writing
Don"t write any bytes after address is set
Go to generic write routins

Orne byte to write

Address of RE of calling workspace
Address of R! of calling workspace
Generic write routine

Load registers for multiple byte operation
Set write bit in address register
Set *DOITY to MDY #Flde, #Ré

Add caller’s R¥ to whatever bits were et (i
lLoad the address register

Count off each byte (VWTR uses &)
Don*t move any more bytes — RTWF

R — either read or write instruction will go
Rl - lpop back for next bvtie

RZ — return with workspace pointer

RE - used to set and reset the write bit
R4 — write from CFU to VDF

RS — write from VDOF to CPU

& — VDFWD

R7 — VDPWE

"

U

an :‘,y" }

hers



DATA »B8aH R - VDFRD

BESE 14 R? through R1S

VME :
MOV B4 (R1Z),R12 Get count of number of bvtes to read
MOV EBE(R1IZ),,R1IE CFPU address of data (or byte in HCHAR)
RT

* ] set the write bit here for those routines which can use it

V9L.OADW
s0C RI,R9 Set the write bit
VL.OAD
SWFER R9 Low byte must be loaded first
MOVE R9, *R7 Load low byte of address into VDF address register
SWFE R9 Restore to original form
MOVE R%7,*R7 Load high byte into address register
RT

* CLEAR *¥¥XXXXXXXXXXXXXXX4%% Fills screen with space character

CLEAR]
BL BEETWID Futs width in RI12, screen end in SCREND

* R? should still be zero — left over from the MFY @DEC24,R9Y in GETWID

LI R1g, »2@a Use the space character

MOV @BCREND,R12 Address of last character (screen size-1)

INC R1Z2 Correct count to cover address rU@HE

JMF HCHARZ Let HCHAR do the rest
* HOHAR #*¥% %% ¥R XXXXAXXXHXXX%% RE = address, Rl (high byte ) = byte, RZ = count
HCHARL

BL EBEETWID Futs width in RI1Z2, screen end in SCREND

MOV *¥R13,R9 VDF address where HOHAR is to start

EL BVME Get count and byte to be written

* If the ending address is greater than the end of the screen, HCHAR will wrap
¥ around to zero and finish loading characters.

HCHARZ
EL BVLOADW Load the address register with write bit set
8ZC R3I,R9 Restore to normal address
HCHARS
DEC Ri12 Have we written all the bytes?
JNC  HCHARS Yes, return
c R9, BSCREND Fast the end of the screen?
JGT HCHAR4 No, it's Ok to write this byte
HCHARC
MOVE Rid, *Ré Write the byte into position
INC R% Next address in VDF
JMF HECHARZ Loop back to check for proper addresses
HCHAR4S
INC RiI2 Adjust R12 to cover the DEC after HCHARST
CLR R% Start over at >@@@Eg
JMF HOHARZ We have to reselt the video addrese register
HCHARS

RTWF



# SOROLL #¥%%%AXRHXHXHXHEX¥X*%¥% Moves all lines up one row, writes line of spaces

SCROLAY
BL
MOV
SCROLE
BL
MoV
EL
=
EL
MoV
EBL
85ZC
A
A
c
JLT

* At this point,
* row and the

LI
MOV
EL
RTWF
SCRLUF
LI
SCRLF1
MOV
SCRLDO

DATA

DEC
JGET
RT
SCROLE ES8S

DECZ24 DATA

@EETWID
R1Z,R9

&VLOAD

RS, BSCRLDO
@SCRLUF
R12, R9
&VLOADW
R4, @SCRLDO
@SCRLUF
R, RS

R1Z, R
R1%, RS9

RY, BSCREND
SCROLZ

Ridgh, =2060

EHCHARE , BSCRLDO

EBSCRLFL

Rig, SCROLE
R12, R

#

R

SCRLDO

44
=4

Futs width in R12, screen end in SCREND
We'll start reading at the second line

Load the address register

We*ll be moving from VDF to CFU

Read in one line’s worth of characters
Foint to previous line in VDF

Load the address register with write bit set
We'll be moving from CFU to VDF

Move one line's worth of characters
Restore R? to actual address

Foint to line just moved

Foint to next line to be moved

Are we past the end of the screen?

No, move this line back one row

the VDF address is pointing to the first column in the last
write bit is still active.

We can now clear the last line.
We'll use space characters

We*ll use the same command as HCHAR

Write one line’s worth of spaces

CFU address of SCROLL bu+ffer

Make a copy of the width for use as a counter
Operation will be stored here before called
Count of one line's worth of characters

Loop until done

Has tc be able to hold forty characters max
Ueed to calculate the snd of soreen address

* BETWID %%%%%%% %365 % %W %44 %% %% Determines the width of the screen from >83ID4

¥ For this to worlk,
* the mode bit (GRAFH =

GETWID

MOVE @:383D4,R9

ANDI
SRL
MOV
MFY
DEC
MoV
RT
SCREND DATA

R9, *SEGEH
R%, 9

R, K12
@DECT4, R
Rl

R1, BSCREND

1274

the screen must be ON, i.e. *BIEID4 = 1limioix where m is
TEXT = 1) and we don’t care about the #'s

Copy of register #1, 111llmxxx or 111@xn

R now equals »S@E@E (TEXT) or »4@8@ (GRAFH) mode
Make the screen width a word - >@@28 or »@@E20
Store this for use by the calling routine
Multiply by 24 to get the number of bytes
Address of last character in screen

Total Pumber of bytes in the screen

Will hold the address of the last screen character



MEMEBERSHIP RENEWALS

Just a reminde- to evervona. £ vour duss are not
up by  the March club meeting, yowr name will be dr-
from the club mailiv, ! .st. We sim ply canrnot afford to
sending Dut G 4+ 4 ome newsletters svery month. Duss are
$15.00 a year, payable to the <lub: “N“w Hampshire 99"ars

User Grmup”. Please help to auppn't the club.

THE COMFUTER FAIRE

At the last club mesting we agreed to participate in the
upcaming Tl Faire (second weekend in April) sponsored by the

Boston Computer Society. Our goal is to raise money Lo
finance 2 new disk deives for the club syvstem. To o thiszs we
plan to sell disks. Bring vour favorite demos, games,

utilities, graphics, stoc. to the March meeting and wse  will
review them. The best disks will be selected and copies made
to sell at the faire. I+ we can come up with B-1@ demo disks
and make 1@ copies sach, we could zell them for £4-% sach and

malie aporoximatsly $480-$5 U4 cowrss, we could make mr e
demas  and  more coplias. Tt all depends on yvou! We need club
support to make this happan. We need several vaoluntsers  to
make coplies of the various demo disks We also nesd people
to help out abt the faire selling disks mnd q1v1nq demos. i

will prepare a catalog listing of all of the disks that can
be handed out at the Ffaire. Even i+ we run out of disks o
s=2ll at ths faire we could ztill take orders. I hope Lo have
twn Full systems running demos at the faire ho catch people’s
attsnticn.

When vou bring youwr demos to the mseting, pleass include
a description of what’ s on yvowr disk{s; Long wikth & listing
or printout of what files are on gach disk. I nesd this in
to make the catalog. Wi could also maks copies of  ow  olub
library listing to give ocut s people could order disks $r
our club library. That*s just an  ides. Ering anv other
suggestions or comments you might have to the meeting.

e Last T the Faires. i 1l
every faire [ go Yol

something interest ng anal
! bargains and great

can wsually Find lobs
ancourags vou to go even ; are nobt helping with  ths
club, For those helping with the club booth, lest's have fun

cloing 4!







	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

