
146,- 	—7-41.0M
40W

-116

/7 	
/—Th A 	IFTA, 	 A 3

-

4 	 F WAN' A MP cHIR F :-9 9 P
,%2-,-" AILA IL A la A_Z Aw...1" LIP 111.1■AL ..ta 	 1 A!

7-7 " ..t11111/ AF:"; ROW Art-AIKIW 	 Af:-Almb- 	ti:01-*
FEBRUARY 1988

NEWSLETTER VOL 6 NO, 2
POB 5991 MANCHESTER, NH 03108

)OL
Last month's meeting was consumed by several software

demonstrations. Let's start with Richard's:
The first disk that comes to mind is the Woodstock -

Christmas animated cartoon. This program is an Extended

BASIC marvel which does an excellent job with character

redefinitions, sprites, colors - the works! This animated
cartoon will really pick up your spirits. From the flapping
of Woodstock's wings, to the sound of snow crunching

underfoot, this program is detailed and quite entertaining.

Richard ran out of copies at the last meeting; hopefully

he'll have it again in March. Please PLEASE PLEASE (did that

get your attention?) send a donation to tne author

(identified in the program) for the time put into this.

Another disk which Richard brought contained some of the

most dazzling graphics I have ever seen on a TI. Anyone

interested in developing graphics on the TI could learn some

tricks from these people (a European firm selling games - I
think). Hopefully, it too will be at the next meeting.

Disk 13 was a game - or maybe an adventure. It is

called Freddy and comes to us from West Germany. Freddy is
trapped in a maze of caves and must gather up as many

treasures as he can before being poisoned from rat bites and

other nasties. There are ropes to climb, ledges off of which

you may jump (or fall), nasties, and treasures. The graphics

are excellent and the tempo is challenging. Richard has

converted it to English, so it is sehr leicht zu erlernen!

(very easy to learn!)
Finally, Richard raved about the latest version of Disk

Utilities from John Birdwell. It edits, catalogs, adds

comments, copies, renames, slices, dices, chops - and if you

order before midnight.... Whoops! Wrong commercial.

Seriously, 14 you use DM-1000 and DISKO and ... throw them

away. You will find this program as powerful and quite user

friendly. This program may be purchased for $20 from

John Birdwell

752 Springhill Cir
Eden Prairie, MN 55:44

My turn! 	My turn!
You all know Jim Peterson - the founder of Tigercub and

a most generous man with his tips, shorts, one liners, and
application programs. He has put together over the years

three disks which he calls Nuts 'n' Bolts (#1, #2, and #3)

which contain hundreds of subroutines in MERGE format. These
subroutines do just about everything you would ever want -
from redefining character definitions, to creating titles,
clearing the screen in several different ways, to he offers.
If you missed his demo disks at the last meeting, I'm sorry,

but I will be sending them back. I ask you to trust me on

this one: if you ever wanted to jazz up your Extended BASIC

programs, this package is for you. Each disk is $15 and

contains over one hundred subroutines - some of them are

mini-programs! If you think that 15 cents a routine is too

much to pay, then I suggest you calculate how much your time
is worth when you are struggling to get that routine to work
'just the way' you want. There are also many other disks

available including numerous games. A catalog is $1 with the

$1 deducted from the first order. Please contact Jim now at:

Tigercub Software

156 Collingwood Avenue

Columbus, OH 43213

>MEV
The BCS Fayuh will be held the second weekend of April

in the Lexington area (I assume). Our club plans to be there

to sell some disks. We could like to bring our club Piste:5

up to date with the purchase of two half-height, double sided

and double density) drives. Many club lEAOS nave been
Murphied by disk incompatibility. Besides, our current 5S/51)

lone drive has seen better days. Please bring your most

interesting disk(s) to the next meeting so that we can choose

wnich disks we will offer. Obviously, all material has to be

public domain,

We also have elections coming up in June. 	Start

thinking about how you can help the club. There are numerous

functions which in themselves are quite easy and consume

little time. 	However, when you have to do a few dozen of

them yourself, they begin to add up. 	We are fortunate to

have several people helping us in unofficial capacities, as

well as the four elected officers. Please make a commitment

to give something to the club instead of always just taking.

You'll be rewarded in the long run.

Articles?.... 	I was tempted to not put together a

newsletter again this month. Come on, people! Am I the only

person still interested in learning about the T1? Don't any

of you play adventure games? Create graphics? Exercise

utility programs? If you want me to edit your articles, I
will do that happily. 	The only thing I ask is that I get the

article on a disk (which will be returned). 	I may even put

some stuff on the disk for you before I return it..,.

Thanks for the wearies.—
So long to Mike Mannion, a former vice President, and a

good friend of the club. Mike donated much effort to put out

the newsletter each month. Mike also added many programs to
the library and was often the first one on the block with a
new program or piece of hardware. Thanks again, Mike, for

all you've done. We'll miss you!

Infinite Sounds
Curtis Alan Provence

Paragon Computing

In Extended BASIC and BASIC, the CALL SOUND subroutine
requires that you specify a time duration (a little over four

seconds max) and you must access registers in sequence - i.e.
to access register 3, you must also send values for registers
1 and 2. Both of these 'features' may be easily discarded by
redefining CALL SOUND in a subroutine. To do this requires

expanded memory and Extended BASIC. Nate that the CALL

LOAD's may also be performed in BASIC with a cartridge or DSR

card which supports CALL LOAD's.

This redefinition provides access to each of the three sound

registers independently and does not automatically turn off

generation. In other words, once you have turned on a

register, you must turn it off with another CALL LOAD. The

system will also turn off all registers after a BEEP or HONK.

This means that INPUT, ACCEPT ... BEEP ... and any. error
reporting will reset all registers (turn them off).

The CALL SOUND redefinition is fairly short:

30000 SUB SOUND(REO,FREO,VOL)

30001 A=111860.8 :: B=INT(A/FRED/16)

30002 CALL LOAD(-31744,96+32*RE64A/FREQ-16*B)
30003 CALL LOAD(-31744,B)
1000 CALL LOAD(-31744,128+16*REGOOL/2)

30005 SUBEND

30006 SUB NOISE(TYPE,VOL)

30007 CALL LOAD(-31744,223+TYPE)

30008 CALL LOAD(-31744,240+VOL/2)

30009 SUBEND

HON IT NARKS

The sound chip is 'memory mapped' meaning that talking to the
chip requires that you send data to a specific address, in

this case -31744 (in hex code -)8400). It also means (at

least on the TI) that you can only read or write one byte at

a time - a byte representing any integer from 0 to 255. The

sound register requires that certain bits be set, in this
case, the bit that represents integer 128 (I'll explain the
96 in line 30002 momentarily). Other bits tell the chip

which register is being accessed and what the following bytes
mean - frequency or volume. In the case of the frequency,

there are more than eight bits of information, so two bunches
must be sent.

Here's how the bits tell the chip what's going on:

1000xxxx - (128) Frequency for register 1.
1001xxxx - (144) Volume for register 1.
1010xxxx - 160(Frequency for register 2.
1011xxxx - (176) Volume for register 2.
1100xxxx - (192) Frequency for register 3
1101xxxx - (208) Volume for register 3.

1110xxxx - (224) Noise control.

11Ilxxxx - (240) Noise volume.

Note that the register frequency control differs from one to

the other by 32. The register volume control differs by 16.

Therefore , to access register 1, we need to send 128 (=96 +
32*1) for frequency control and 144 (=128 + 16*1) for volume
control. Of course, there are other bytes to be sent as

well.
The frequency code consists of ten bits and is computed by

dividing 111860.8 by the frequency. At this point, the LAST
four bits must be sent with the register frequency access

code; the highest six are sent in the next byte.

The volume byte is simply the access code plus the volume/2

(I'll explain later).

A full description of the program follows:

Line 30000: REG is the register number: 1, 2, or 3. FREE is

the frequency with limits of 110 to 55,938. Volume ranges

from loudest=0 to off=30. Note that the volume is divided by

two. Although both BASIC'S provide you with a volume range

of 0-30, the sound generator actually can only recognize 16

different values (0 to 15). If you remember to use only 0 to

15, you can eliminate the '/2',

Line 30001: Since the value 111860.8 shows up four times (if
you count appearances in B) I decided to assign it to A. By

taking the integer of this value divided by the FRED and 16,

we are effectively eliminating the last four bits, i.e.

isolating the highest six bit's'.

Line 30002: This is the LOAD that sets the access code for

the frequency register (the 96+32*RE6 part) as well as

sending the lowest four bits of the frequency code. A/FREQ

gives all ten, while 164 gives the same high six bits with
the four lowest bits set to 0. Subtracting gives just the

low four bits.
Line 30003: Yes, B is the value of the high six bits, divided

by 16 (that's the way the chip wants it!)

Line 30004: The volume register code is 128+16*REG and the
volume is VOL/2. Remember that you are free to eliminate the

'12' portion is you use just 0 to 15 as volume codes.

Line 30006: Type is the type of noise (1 to 8) as described

in both BASIC's. Volume is the same as in sound.
Line 30007: Although the BASIC's make you use values of 1 to

8, the noise register only accepts values from 0 to 7. The

normal noise type code is 224, but I subtracted one to fix

your noise type.

Line 30008: Nothing new with the volume code here.

MANIAS!

While this technique works well with the sound chip, it will
not work with the video chip or GROM chips. This is because

the BASIC and Extended BASIC interpreters use both the video
and GROM ports while executing your commands. You may have

luck accessing the speech device - I frankly have never
tried.

STAND—ALONE ROUTINES
Curtis Alan Provence
Paragon Computing

Stand-alone routines allow your assembly program to run
properly without the aid of CALL INIT or routines built into
cartridges. Some programs - in an effort to save memory -
still insist on pulling data or instructions from the ROM (or
even SROM!) of a cartridge. This is a dangerous practice
which must be avoided now that so many loading options exist
for PROGRAM IMAGE files.

Mary newsletters have published 'stand-alone' routines
for 	your 	use, 	some 	specializing 	in 	speed, others
concentrating on compactness of code. There is a happy

medium that I strive for when I write my stand-alone

routines. There are a few programming tricks which are
widely accepted, while other tricks are 'boo-hoeed by

'serious programmers.' One of these tricks is self-modifying
code,

Self-modifying code means that one portion of your

program will actually change the machine instructions in

another porta. This can be quite serious, particularly if

there are 'bugs' anywhere - who knows what code you'll have
when you're done? Used judiciously in. manageable block
sizes, this code can compact your program, free valuable
registers, or allow instructions to use registers when they
might otherwise require separate data locations. Let's take
a look at a few examples:

SUB-ROUTINES
Suppose.you have a few subroutines which are called from

various parts of your program. Furthermore, let us constrict

them by saying that they are not recursive in any way, that
is, they never branch and link to themselves, or branch and
link to any other subroutine(s) which might branch and link
back on the original. This isn't too bad of a restriction,

and it fits most subroutines (at least the ones I write!) If

you want recursion, you'll need a stack which I will address
in another article.

Some of the subroutines may have to branch and link to

other subroutines. How do you save the return address each
time? You could move RII to another register:

SUB1
MOV RII,R12 	Save return address - 2 bytes
BL 	@SUB2 	Branch and link to another
B 	*R12 	Return - 2 bytes

This only uses four bytes of memory for program control
and would be fine, except for two limitations which really

ramper development:
1) You will run out of usable registers if you 'nest'

your routines too deeply.

2) Each routine in a series must have its own dedicated
register, so that no two related routines will attempt to
store their return addresses in the same register.

We could use storage spaces for each routine, something

like what the Editor/Assembler book recommends:

	

SUB1SV EQU)8300 	Address stored here - 2 bytes

SUB1
MOV R11,12SUBISV Save address - 4 bytes

BL 	@SUB2 	Branch and link to another

MOV OSUB1SV,R11 Restore address - 4 bytes

RT 	 Return - 2 bytes

Wow! 	We just tripled the amount of memory needed to

keep track of program flow - from four bytes to twelve
(counting the two bytes at)8300). On top of that, we have

to deal with the extra execution 	time 	of 	the 	NOV

instructions. Well, we'll have to save R11 somewhere other
than a register, so let's accept the MOV RII,OSUB1SV as a

given. We can tighten up three other lines, tho':

SUB1
MOV Rll,@SUB1SV Save address - 4 bytes

BL 	@SUB2 	Branch and link to another

SUB1SV EOU 4+2 	Points to MOO - 0 bytes

B 	@0000 	Return - 4 bytes

We are down to eight bytes of memory for program
control, versus twelve with the previous method. We also
have removed the execution time of a NOV instruction, tho' I

admit that the new Branch will take a little longer than the

register version. hying four bytes hardly seems worth the
effort, until you start adding up the number of routines you
have - the TI isn't generous on memory, so use as little as

you possible.
The first two examples are 'ROMable' code meaning you

could burn them into a chip and they would function properly.
Alas, example three is self-modifying and therefore not
'ROMable' - doomed to be forever executed from RAM. If this

is acceptable to you, then I recommend example three over the

other two.
I have another example of code which modifies itself

depending on the routine to be performed. This is my latest
attempt at a tight set of video routines. While it may not
look any tighter on the surface, I can assure you that this
saves quite a few bytes of memory over other versions. It

also allows the easy implementation of a CLEAR, HCHAR, and

SCROLL routine.

VSBR DATA VDPWS,VSBR1 These video routines function identically to
VMBR DATA VDPWS,VMBR1 those described in the Editor/Assembler manual.
VSBW DATA VDPWS,VSBW1
VMBW DATA VDPWS,VMBW1 11

VWTR DATA VDPWS,VWTR1
CLEAR DATA VDPWS,CLEAR1 Takes no arguments
HCHAR DATA VDPWS,HCHAR1 RO = address, 	Ri(high byte) 	= byte, 	R2 = count
SCROLL DATA VDPWS,SCROL1 Takes no arguments

* For most of the routines, R9 contains the VDP address; R10 contains the CPU
* address of the string (or the actual byte) and R12 contains the count

VSBR1
LI 	R12,1
NOV R13,R10
INCT R10
JMP VREAD

VMBR1
BL @VMB

VREAD
MOV R5,R0
CLR R9
JMP VDPDO

VWTR1
LI 	R9,>8000
CLR R12
JMP VWRITF

VSBW1
LI 	R12,1
MOV R13,R10
INCT R10
JMP VWRITE

VMBW1
BL @VMB

VWRITE
MOV R3,R9

VWRITF
MOV R4,RO

VDPDO
A 	*R13,R9
BL @VLOAD

VLUP
DEC R12
JLT VRTWP

Well only read one byte
Address of RO of calling workspace
Address of R1 of calling workspace
Generic read routine

Load registers for multiple byte operation

Load 'DOIT' with MOV R8,*R101-
Don't fiddle with address bits
Generic video byte move routine

Set high bit to signify register writing
Don't write any bytes after address is set
Go to generic write routine

One byte to write
Address of RO of calling workspace
Address of R1 of calling workspace
Generic write routine

Load registers for multiple byte operation

Set write bit in address register

Set 'DOIT' to MOV *R10+,*R6

Add caller's RO to whatever bits were set (if any)
Load the address register

Count off each byte (VWTR uses 0)
Don't move any more bytes - RTWP

* The video workspace actually contains some instructions and permanent data

VDPWS
DOIT

DATA 0
JMP VLUP

VRTWP
RTWP
DATA >4000
MOVB *R10+,*R6
MOVB *R9,*R10+
DATA >8C00
DATA >BCO2

RO - either read or write instruction will go here
R1 - loop back for next byte

R2 - return with workspace pointer
R3 - used to set and reset the write bit
R4 - write from CPU to VDP
RS - write from VDP to CPU
R6 - VDPWD
R7 - VDPWA

DATA >8800
BBB 14

MOV @4(R13),R12
MOV 1112(R13),R10
RT

RE) - VDPRD
R9 through R15

Get count of number of bytes to read
CPU address of data (or byte in HCHAR)

VMB

* I set the write bit here for those routines which can use it

VLOADW

VLDAD
SOC R3,R9 Set the write bit

SWPB R9
MOVB R9,*R7
SWPB R9
MOVB R9,*R7
RT

Low byte must be loaded first
Load low byte of address into VDP address register
Restore to original form
Load high byte into address register

* CLEAR ********************* Fills screen with space character

CLEAR1
BL 	@GETWID Puts width in R12, screen end in SCREND

* R9 should still be zero - left over from the MPY @DEC24,R9 in GETWID

LI 	R10,>2000
	

Use the space character
MOV @SCREND,R12
	

Address of last character (screen size-1)
INC R12
	

Correct count to cover address >0000
JMP HCHAR2
	

Let HCHAR do the rest

* HCHAR ********************* RO = address, R1 (high byte) = byte, R2 = count

HCHAR1
BL 	@GETWID
	

Puts width in R12, screen end in SCREND
MOV *R13,R9
	

VDP address where HCHAR is to start
BL 	@VMB
	

Get count and byte to be written

* If the ending address is greater than the end of the screen, HCHAR will wrap
* around to zero and finish loading characters.

HCHAR2
BL @VLOADW
SZC R3,R9

HCHAR3
DEC R12
JNC HCHAR5
C 	R9,@SCREND
JGT HCHAR4

HCHARC
MOVB R10,*R6
INC R9
JMP HCHAR3

HCHAR4
INC R12
CLR R9
JMP HCHAR2

HCHAR5
RTWP

Load the address register with write bit set
Restore to normal address '

Have we written all the bytes?
Yes, return
Past the end of the screen?
No its OK to write this byte

Write the byte into position
Next address in VDP
Loop back to check for proper addresses

Adjust R12 to cover the DEC after HCHAR3
Start over at >0000
We have to reset the video address register

* SCROLL ******************** Moves all lines up one row, writes line of spaces

SCROL1
BL 	@GETWID
MOV R12,R9

SCROL2
BL @VLOAD
MOV R5,@SCRLDO
BL @SCRLUP
S 	R12,R9
BL @VLOADW
MOV R4,@SCRLDO
BL @SCRLUP
SZC RaC,R9
A 	R12,R9
A 	R12,R9
C 	R9,@SCREND
JLT SCROL2

Puts width in R12, screen end in SCREND
We'll start reading at the second line

Load the address register
We'll be moving from VDP to CPU
Read in one line's worth of characters
Point to previous line in VDP
Load the address register with write bit set
Well be moving from CPU to VDP
Move one line's worth of characters
Restore R9 to actual address
Point to line just moved
Point to next line to be moved
Are we past the end of the screen?
No move this line back one row

* At this point, the VDP address is pointing to the first column in the last
* row and the write bit is still active. We can now clear the last line.

LI 	R10,>2000
MOV @HCHARC,@SCRLDO
BL 	@SCRLP1
RTWP

SCRLUP
LI 	R10,SCROLE

SCRLP1
MOV R12,R0

SCRLDO
DATA 0
DEC RO
JGT SCRLDO
RT

SCROLB BSS 40
DEC24 DATA 24

We'll use space characters
Well use the same command as HCHAR
Write one line's worth of spaces

CPU address of SCROLL buffer

Make a copy of the width for use as a counter

Operation will be stored here before called
Count of one line's worth of characters
Loop until done

Has to be able to hold forty characters max
Used to calculate the snd of screen address

* GETWID ******************** Determines the width of the screen from >83D4
* For this to work, the screen must be ON, i.e. >83D4 = 111mxxxx where m is
* the mode bit (GRAPH = 0, TEXT = 1) and we don't care about the x's

GETWID
MOVE @>83D4,R9
ANDI R9,>5000
SRL R9,9
MOV R9,R12
MPY @DEC24,R9
DEC R10
MOV R10,@SCREND
RT

SCREND DATA >1234

Copy of register #1, 1111xxxx or 1110xxxx
R9 now equals >5000 (TEXT) or >4000 (GRAPH) mode
Make the screen width a word - >0028 or >0020
Store this for use by the calling routine
Multiply by 24 to get the number of bytes
Address of last character in screen
Total number of bytes in the screen

Will hold the address of the last screen character

MEMBERSHIP RENEWALS

Just a reminde- to everyone. If your dues are not paid
up by the March 	cub meeting, your name will be dropped
from the club 	 1.st. We simply cannot afford to keep
sending out 35 	f ee newsletters every month. Dues are
$15.00 a year, payable to the club: "New Hampshire 99'ers
User Group". Please help to support the club.

THE COMPUTER FAIRE

At the last club meeting we agreed to participate in the

upcoming TI Faire (second weekend in April) sponsored by the
Boston Computer Society. 	Our goal is to raise money to
finance 2 new disk drives for the club system. To do this we
plan to sell disks. 	Bring your favorite demos, games,
utilities, graphics, etc. to the March meeting and we will

review them. The best disks will be selected and copies made
to sell at the faire. If we can come up with 8-10 demo disks

and make 10 copies each, we could sell them for $4-S each and

make approximately $400-$500. Of course, we could make more

demos and more copies. It all depends on you We need club

support to make this happen. We need several volunteers to

make copies of the various demo disks. We also need people

to help out at the faire selling disks and giving demos.

will prepare a catalog listing of all of the disks that can
be handed out at the faire. Even if we run out of disks to

sell at the faire we could still take orders. I hope to have

two full systems running demos at the faire to catch people's
attention.

When you bring your demos to the meeting, please include

a description of what's on your disk(s) along with a listing

or printout of what files are on each disk. I need this info

to make the catalog. We could also make copies of our club

library listing to give out so people could order disks from

our club library. That's just an idea. Bring any other
suggestions or comments you might have to the meeting.

One last thought about the faire. 	I always find
something interesting and new at every faire I go to. 	You
can usually find lots of good bargains and great demos. I

encourage you to go even if you are not helping with the

club. For those helping with the club booth, let's have fun
doing it!

StElr899(E09) 40
HN 1"12 a ti" Rig IS 43.11!11951, SIgo

6-fopenbpeaH sa!IddnS w suuoa Joindtuo3 rnoA

NOCILS NI ISOW — TlEiNflIVAV S3ZIS 1TV

96 -E - OgE ye
°C . !, I- 	- 	COO[. 	Xe ‘.

L09- 1-2 -- 005E xe

Hid -- ISV3 >INV -1R *OF)
—kalwea lgoc7 004.4 -

1113dIld 11131f1dIN0O

NEW HAMPSHIRE 99'ERS USER GROUP

PO BOX 5991

MANCHESTER, NH 03 1 08-599 1

PLEASE SUPPORT BONANZA
THEY SUPPORT US!

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

