
NEW HAMPSHIRE 99'ers
MAY 1887

NEWSLETTER VOL 5 NO, 5
PUB 5891 MANCHESTER, NH 03108

?OLD
The last meeting saw another totally screwed up

demonstration. Yours truly proceeded to show everyone just

how much he didn't know about LOBO. Fortunately, other
members jumped in and provided some relief. Fear not'

LOGO shall rise again!

Welcome back, Richard Bailey' 	Richard 	is our club

librarian and puts countless hours into keeping our library

in excellent shape. A listing of disks is enclosed in this

issue.

Chris Agrafiotis had very favorable comments on Mark

Beck's Creative Filing System. Chris is a recognized

expert on data bases - not necessarily how to write them,

but definately how to use them. Chris probably has

purchased every data base program written for the TI and

has found the majority of them lacking. His initial

comments about Beck's CFS were refreshingly upbeat (instead

of beat up).

A slate of officer candidates was nominated from the
floor and is as follows:

President 	Paul Bendeck

Vice President 	Chris Agrafiotis
Treasurer 	Bob Bouchard
Secretary 	Curtis Alan Provance

I'm quite pleased with the proposed new officer slate.

think you'll find Paul and Chris a very effective

leadership team. Thanks also to Bob for taking over the
club's immeasurable wealth.

Don't forget, however, that this is not a Soviet style

election. You may vote for whomever you please. The above

candidates have the edge in that they are willing to serve.
Thank you in advance! Elections will be in June.

The Treasurer reports that we have over $600 in the
bank, with some minor bills to take care of. I requested

that the officers be allowed to scout out the best deal on

a color monitor - no one objected. With the acquisition of

same, our club system will be complete.

NEB
Next month, Paul Bendeck will give a proper LOGO

demonstration. Paul has probably forgotten more about LOGO
than I ever knew. He has written a game (and other

programs?) which he will demo for us.

In July, Chris Agrafiotis will give us the complete

story on Mark Beck's Creative Filing System. Chris knows

how to tear apart a data base, so this should be

interesting.

As I close, let me mention the nicest 'new' thing in

the club - members. In the last two months we have picked
up several members. The TI is not dead - or even

sleeping! If you know someone who owns a system ('for my

kids...') drag them along to a meeting or share your

newsletter with them. I also encourage you to ask

questions about BASIC, XBASIC, TI-WRITER, or whatever. If
I can't answer them, I'll find someone who can.

The C Column

Jim Jagielski

Route 2, Box 626

Sanbornville, NH 03872
(603) 522-8952

This month we'll briefly go though the process of

compiling and running a c99 program and, in addition, I
want to elaborate on inline push code. If you don't know

what inline push code is please be patient. We'll get to

it very soon.

First thing first, when typing in a c99 program with

TI-WRITER make sure it's saved with the PF option. (Ed.

note - this prevents the TAB settings from being appended

to the end of the file) With that in mind, carefully type

in Demo#1. Demo#1 is a graphic program which attempts to

expoit some of c99's speed and elegance. Due to the lack

of a better name I've labeled the program °Bouncing Ball."

Demo#1 uses graphic functions that are similar in

appearance to some BASIC commands. I don't recommend
equating BASIC with C, but for this particular Demo see if
you can implement a BASIC version of it. I hope you like

this graphic demo because subsequent ones will not be

graphic. Future demos will be straight forward and to the
point, hence not as pretty.

Okay, do you have the first demo ready to compile?

Load the c99 compiler (version 2.1). Find the disk(s) with

the files GRFIRF and RANDOM;C and place it in disk drive#1
and the output disk in a different drive. If you only have

one disk drive copy GRFIRF and RANDOM;C onto the output

disk that you're using. These two files must be in drive#1

because during compilation the compiler will look for them

in drive#1 (NOTE: the drive number which contains GRFIRF
and RANDOM;C can be changed by altering the °#include" name

in the Demo source code). The first prompt will ask if you

would like to include text. Entering Cy> informs the
compiler to include the c99 source code as comments in the
assembler source code. 	Unless you have a good reason, I
don't recommend selecting this option. 	Selecting this
option may provide you with an unneccessary long assembler

source file. For this demo press <enter) or <O.

The next option is the inline push code. Let's take a

time-out from compiling the demo and investigate inline

push code. If you were to look at an assembler source code

produced by the the c99 compiler, you may find several B 15
assembler instructions at various location in the source

code. B. 15 forces a branch to the first address of the

push routine (located in the C support object file - CSUP)

which "pushes' a value onto the c99 stack. Stacks are the

subject of another column, but it would suffice to say that

a stack is a dynamic buffer - dynamic in that the buffer

grows when values are pushed onto the stack and shrinks

when values are popped off the stack. c99 uses this data

structure to store variables (i.e. local variables),

values, and return addresses. The push routine is
comprised of two primary instructions:

DECT 14

MOV 8,

The explanation of these two instructions will be

addressed in a later column when I cover stacks and the c99

environment. Essentially, by selecting the inline push

code option, every 8 15 instruction in the assembler source

code is replaced with a DECT 14 and MOV 8,. 	To the
assembly 	language programmer this resembles a macro,

because there seems to be 	a 	visible 	direct 	text

substitution. As you can probably deduce, if inline push
code is selected, the assembler source code will be

slightly longer than normal, therefore the program will

take up more memory. Why use this option? The answer is

speed: the 8 15 instruction requires several clock cycles

to complete a branch and return, By have the push routine

directly embedded in the code there is no need to branch

and return, hence we save some time.

A good habit is to ask yourself two questions about

your C programs. (1) Is memory space a big factor in this

program? (2) Does this program really need to execute as

fast as possible? If you answered yes to question #1 then
you probably wouldn't want to select inline push code
option. On the other hand, if you answered no to question

11 and yes to question #2, then you probably should select

the option. I've written quite a few c99 programs for
myself and about 807. of the time I don't select the option.
It all depends on the type of program and its application.

How much speed is really gained with inline push

code? To answer this question I wrote the program labeled
Demo#2. First I ran a version of the program with NO

inline push code for ten trial runs while concurrently

observing the execution times. I then did the same thing

	

with an inline 	push 	code
experiment follow:

	

trial' 	1 	NO, 	inline

version. 	The 	results 	of 	my

YES, 	inline

1 	1 10.36 sec. : 	10.14 	sec. 1

2 	1 10.32 sec. 1 	10.05 	sec. '

3 	: 10.26 sec. 1 	10.01 	sec.
4 	1 10.28 	sec. 10.00 	sec.
5 	1 10.25 sec. 1 	10.04 	sec.

6 	1 10.30 	sec. 1 	10.00 	sec.

7 	1 10.37 	sec. 110.01 	sec.
8 10.27 	sec. 10.04 	sec.

9 	1 10.29 	sec. 10.06 	sec.

10 	1 10.30 	sec. 10.05 	sec.

average: 10.30 ' vs. 	10.04 "

•
* execution time difference of 0.26 seconds or 2.52X

With more 	branches 	(1.e B 	15) the time difference

would be more apparent then it is now. 	Is the 2.52X

execution time decrease significant? Well, I've presented

the facts. 	I'll leave it up to you to answer that question

for yourself. 	When programming in C always keep in mind

the time and memory tradeoffs. 	The tradeoffs should be

evaluated for each individual program.

Now, let's get back to compiling Demoil. For the
inline push code option enter a (y) for YES, because Demoill

doesn't hog a lot of memory and time is somewhat of a

critical factor. The next prompt is the name of the c99

source code to compile. Enter the filename which you gave

Demo#1. The next prompt (i.e. output prompt) is the

assembly source code filename. Enter an appropriate output

filename. This output file is going to be assembled by the

TI-Assembler. If any error messages are received during

compilation, exit the compiler and examine your Demoill

source file for typos and recompile.

At this point load the TI Assembler and assemble the

c99 generated assembler source code for Demoll. After

assembly, select Load and Run option of the E!A and load

the following files in this order:

1. load Demo#1 object file

2. place disk with CSUP and load CSUP

3. find the disk with 6RF1 and load 6RF1
Now, press enter to input entry name: type in START to

begin program.
If everything worked well for you an orange ball

should be bouncing all around the screen by hitting walls

and bumpers. Press any key to get the system 'exit-rerun'

prompt. Entering yes to the prompt will signal the program

to generate new locations for the bumpers. Unfortunately I

don't have enough time and newsletter space to explain how

the program operates, but if you have any questions please

send them to me and I will answer them directly or in the

next C Column.
If you find c99 useful, please send your donations to

Clint Pulley. He has done a MAGNIFICENT job with the c99

- package and should be rewarded for his efforts. Clint has

told me that he plans to release a new c99 update sometime

in the third quarter of this year. Gifts of this nature

will only come with financial support, so please mail those

donations. Well, I hope you've learned something from the

demos. 	'Till next time, 'C' you later...

DEMO#1 PROGRAM LISTING:

/* DEMO #1: "The bouncing Ball"

Graphic Demo- by Jim jagielski

Note: also load grfl */

#include dsk1.grf1rf

#include dsk1.random;c

main()

setup();

sprite(0,42,7,50,150); /* create ball sprite */
co();

text()

7* 	 *1

/* This function setups the graphic display and defines the

patterns for the characters used */

setup()

int i; /* loop control variable */

drfl();
screen(2);
color(5,13,13);

color(6,8,1);

/* set graphic mode */

/* set screen color to black */
/* 	set colors 	 */

/* 	 */

chrdef(48,"182452a9954a2418"); /* bumpers */

chrdef(42,"3c7ef3fbffff7e3c"); /* ball 	*/

vchar (1 „ 1,42,72) ;

vchar (1,30,42,72) ;

hchar (1,1,42,32) ;
hchar (24„ 1 „ 42„ 37) ;

/* create walls */

for (i=1; i<=30; 	 /* randomly place bumpers */
vchar(rnd(20)+3,rnd(24)+5,48,1);

/* 	 */

/* This function monitors the location of the ball and takes
the actions needed when the ball hits something. 	 */

go()

int rv,cv; /* row and column velocities of ball */
int rp,cp; /* row and column position of ball */
int cnt; 	/* loop control variable used for delay */

r 	om e

spmotn(00 v 	45,cv=40); /* intialize ball motion */

sc!L boll in ,Lfumetien, NOW!

f 	 munifor the poF.-, ftion of bJti!
	

'

spposn(0,&rp,&cp); 	/* where is ball? */

if ((rp>174) | (rp<11)) /* hitting top, bottom walls? */

spmotn(0,rv=-rv,cv);
for (cnt=0; cnt<100; ++cnt) /* necessary delay */

poll(0); /* enable interrupts while waiting */

else if (6:40= 	(cr.D6)) /* hiLting left or

/* right walls?

spmotn(0,rv,cv=-cv);
for (cnt=0; cnt<100; cnt++) /* delay */

	

poll(0); /* enable interrupts while waiting 	*/

1
else if (gchar((rp/8)+1,(cp/8)+1) == 48) /* hitting

spmotn(0,rv,cy=-cv); 	 /* bumpers 	*/

} while (! poll(0)); /* exit loop if key pressed 	*/

spdall(); /* kill all sprites */

DEMO #2 PROGRAM LISTING:

/* DEMO #2: Simple Inline Push Code Test Program */

/* NOTE: more than one function is needed to analyze
the time difference between selecting and

NOT selecting Inline Push Code option. */

main() /* call functl, funct2 and funct3 32500 times each */

int i; /* loop control variable */

for (i=1; i<=32500; i++)

f ww:IA ;

funct2 () :4'
funct3)

functi() /* first dummy function */

/* null statement */

funct2() 	second dummy function */

/* null statement */

funct3() /* third dummy function */

/* null statement */

*/

* /

6RAPHICS PROGRAMMING LANGUAGE
PART 1

Curtis Alan Provance
New Hampshire 99er's User Group

Graphics Programming Language is a compact, byte

oriented language developed by TI. GPL is interpreted,

meaning that each byte of 6PL must be decoded into a series
of machine instructions. BASIC's and Extended BASIC's

interpreters are written in GPL, as are MULTIPLAN, E/A, and

many other cartridges. 	There are also several console

routines written in 6PL to which you may LINK. 	This

process is mentioned on page 251 of the Editor Assembler

manual.

Unfortunately, information on GPL is very scant. 	The

E/A manual does say that you may link to GPL routines not

decribed on pages 251->257 - provided the routines end with

a RETURN byte (>00). Then the manual goes on to other

things without ever answering the question - 'What other
routines?"

The purpose of this and future articles is to clear

away the cloud of secrecy which has obscured 6PL from many
of us. I will be relying heavily on TI99/4A INTERN by
Heiner Martin as well as Millers Graphics' excellent
EXPLORER program. 	ROM listings and opcode names are in

accordance with those in Mr. Martin's book. 	I recommend
you purchase Mr. Martin's book, though I warn you that you
will still spend innumerable hours doing your own decoding.
I have done some of the decoding and will share my results
with you. Millers Graphics' EXPLORER program is fantastic
and a must for the serious hacker. I say up front that any
information I put out is 'to the best of my knowledge'
which means it may be wrong. Please bear with me.

Our explorations of 6PL will begin with the 6PL
interpreter. The heart of the interpreter resides in
console ROM from address >0060 to >0084. The 6PL status
byte is located at >837C. This byte contains a bit each
for High, Greater Than, Condition, Carry, and Overflow (the
remaining bits are not used). Remember that the 6PL
workspace (>B3E01 uses registers 13 through 15 as follows:
R13 - 6ROM read data address (>9800); R14 - System flag
01000); and R15 - VDP write address (>8CO2).

DI:F ., 3ION: You should note that most references to VDP
and NOM use offsets from these registers, instead of
addressing the memory map directly. What I mean is that
instead of trying to write a byte from RI to the 6ROM
address with MOVE R1,@>9CO2, the interpreter uses MOVE
R1,@>402(R13) (remember that R13 contains >9800). Why?
Because there are routines in the console ROM which will
switch 6ROM addresses in the 6PL interpreter. 	Different
addresses 	would allow you to have several cartidges
accessed by the computer within the same program, and have
all their titles selectable from the menu - something like
a Navarone WIDGET, but without the need for a switch. This
would be handy, for example, if you wanted to use the INIT,
LOAD, and LINK routines from the E/A cartridge, as well as

the 'SPEECH' capabilities of the TE-II module - in the same

BASIC program. Such a device hasn't been commercially
available, though I believe Millers Graphics' GRAMKRACKER
uses this technique to allow selection of a variety of
modules (stored in the GRAMKRACKER) from the main menu.

Here is the core routine with labels representing

their address in hex. An explanation follows:

L0060
MOVE R6,V402(RI3)
MOVE @>83ED,@>402(R13)

LOO6A
SZCB @>01113,@>837C

L0070
LIMI 2

L0074
LIMI 0
MOVE *R13,9
JLT L0086
MOVB R9,R4
SRL R4,12
MOV @>0C36(R4),R5

B 	*R5
L0086

CLR R4

MOV R9,R5
ANDI R5,>0100
EL 	@>077A

SWPB R4
MOV R1,R3
MOV R0,R2

CI R9,>A000

JL LOOBO
COC @>0030,R9

JNE LOOBC
MOV R13,R1
MOVE *RI,R0
DEC RI
EL 	@>07AA
JMP LOOCO

LOOBO

MOV R9,R8
SRL R8,8

SETO RO

MOV @>OBFE(R8),R8

B 	*R8
LOOBC

BL 	@>077A

LOOCO

MOV R9,R8
SRL R8,9

MOV U0C4E(R8),R8

C 	R2,R0
B 	*R8

10060: Load register 6 with the desired 6PL address

and branch here. The address will be loaded into the FROM

address (?83ED is R6's lower byte). 	This iE 	used by the
various GPL branch instructions: Branch, Branch if Reset,

and Branch if Set. Being Set or Reset refers to the
Condition bit of the GPL status byte at >837C. The various

branch bytes will be discussed later.

LOO6A: This is used to clear the condition bit of the
GPL status byte - useful when you want to use a Branch on

Reset as your next command (two bytes) rather than a Branch

(three bytes). It's also used merely to clear the status

byte before continuing.

10070: This is the normal return to the interpreter.

Neither the GROM address nor the status byte is changed.

Interrupts are enabled to service peripherals, move

sprites, count off sound durations, check for the QUIT key,
etc.

10074: Some routines may return here instead of L0070

if they don't want an interrupt serviced; interrupts may

alter the current VDP or GROM address.

The next byte from GROM is moved into the high byte of

R9. If it is >00 to >7F, it is handled by a branch table

located at >0C36. If the byte is >80 to >FF, it is handled

by a routine at L0086. The branch table at >0C36 is based

on the first nybble of the byte - with the last bit

ignored. For example, if the original byte from BROM were

>03 or >13, the branch address would come from >0C36(>00) -

remember, the last bit of the first nybble is ignored, so 1

looks like O. The four branch addresses and the bytes

which call them are as follows (X means we don't care what

the nybble is):

BYTES: 	ADDRESS: 	FUNCTION:
>0X, >11 	>0270 	ASSORTED

>21, >3X 	>061E 	MOVE BYTES

>4X, >5X 	>011A 	BRANCH ON RESET

>61, >71 	>010E 	BRANCH ON SET

The 'ASSORTED' functions have a further branch table
which we will discuss shortly. The MOVE instructions are

further decoded, along with additional bytes, to determine

the number of bytes to move, what the source is, and what

the destination is. Sources can be GROM, VDP, and CPU.
Destinations can be VDP, CPU, VDP registers and - in

certain circumstances - GRAM. More on MOVE's later. The

Branch on Reset and Branch on Set are simple to describe:

LOIOE

MOVB @>837C,R4

SLA R4,2
JLT L0122

L0116

MOVB *R13,4

JMP LOO6A

BHA

MOVB @>837C,R4

SLA R4,2

JLT L0116
L0122

MOVB *R13,@183F3

ANDI R901FFF

MOVB @)0002(R13),R6
AND1 R60E000

Sir R9,R6

JMP >0060

Think of these more as jump instructions, with the

base address being the beginning of the GROM chip in use.

Additionally, both the Branch on Reset (BR) and Branch on

Set (BS) require another byte from GROM. Glue the two
bytes together, mask off the first three bits, and you have
the size of the 'jump'. For example, suppose you were in
GROM 1, which starts at >2000. The interpreter reads in a
byte of >74. It decodes this as a Branch on Set and
branches to L010E. 	First, the 6PL status byte is copied
into R4. Next, the condition bit is checked. 	If it is
set, the branch is executed (at L0122) otherwise, the rest
of the address is read into R4 (and discarded) and the

interpreter continues. Assume the condition bit was set.

The rest of the 'jump' is read into the low byte of R9

(>83F3) - the second byte happens to be >38. The whole

word is now >7438 and is stored in register 9. Mask off

the first three bits of register 9 to get >1438. Now make

a copy of the first byte of the current BROM address in R6.

Again, notice we are using @>0002(R13) instead of >9802.

Assume the current address is >2546. Mask off all but the
first three bits of R6 to get >2000. Finally, for each bit

in R9 set the corresponding bit in R6. The interpreter now

has the value of >3438 in register 6. Jump to >0060 to
load the new 6PL address in R13 and you have performed a

GPL branch! Branch on Reset is similar.

10086: This is the interpreter for negative bytes. R4

is cleared because it will be used later to hold various

'flags'. A copy of the GPL byte (R9) is made in R5 then
masked off except for bit 7. This bit flags routines that

the address is made up of two bytes instead of one. The
routine at >077A is invoked to get the destination address.

We'll look at this later (it's rather complicated). I
should mention, though, that the routine at >077A was
written to get the source address and/or byte in RI and RO.

Since we are getting the destination first, we move the

values into R3 and R2 and move the 'flag' value in R4 from

the low byte (source flags) to the high byte (destination
flags). Now look at the GPL byte itself. If it is >8X or

>9X, then it is ready to be executed and we jump to the

routine at LOOBO. Otherwise, we need to check to see if
the 'source' is an immediate value. The value at >30 is
>0200 (LIMI instruction) so we are checking the sixth bit.
If it is set, the source is immediate (in GROM).

Otherwise, the source must be retrieved from memory
somewhere - GROM, VDP, or CPU. Regardless of the source
and destination values, everything eventually comes down to
another branch table. The bytes >8X and >91 use a branch
table located at >OBFE while bytes >AX through >FX use a

branch table located at >OC4E. We'll look at each of these
later,

**NOTE: FREEWARE means you are expected to pay the author of the disk
what you feel the disk is worth, usually <$10. We only charge

fur the blank disk and copying. Make FREEWARE work! PAY!

DISKNAME LANGUAGE COMMENTS 	 COMMENTS COMMENTS
	 ========

XBASIC
BASIC
XBASIC
XBASIC
XBASIC
XBASIC
XBASIC
XBASIC
XBASIC
XBASIC
TI-WTR
BASIC
XBASIC
XBASIC
XBASIC
XBASIC
E/A
E/A
E/A
XBASIC
XBASIC
E/A-8K
XBASIC
E/A
XAASIC
XBASIC
E/ A
XBASIC
XBASIC
E/A
XBASIC
E/A

XBASIC
XBASIC
XBASIC
BASIC
E/A
XBASIC
XBASIC
XBASIC
XBASIC
XBASIC
XBASIC
BASIC
GRAPHX
HBM
MP
XBASIC
XBASIC
XBASIC

ADRSMASTER *
ADVENTURE1
ASGARD/PD1
ASGARD/PD2
ASGARD/PD3
ASGARD/PD4
ASGARD/PD5
ASSY GAMES
B TRAVER#1
BA-WRITER
BA-WRI-DOC *
BASICS1-9
BBS
BEST/SONGS
BEST/HYMNS
BLUEY
C99REL1
C99UPDATE
C-TUTORIAL
CALENDAR
CALENDAR2
CARTBUSTER
CASHFLOW
CONGOBONGO
COPY/CATXB
CUBIT
DASSM*V1/3
DAYTONA99
DAVISDISK
DEBUGGER
DIAGNOSTIC
DISKE
DM10003/1
-DIRECTOR-
DVECTOR
DVUG/2D5
EE-LIBRARY
FAST-TERM
FINANCE
FUNLWRITER
GAMES 01
GEMINI
GLPDEMO
GRADEBOOK
GRAPH-PACK *
GRAPHX
HBMPRINT
INCOME_ TAX
ISAM
ISS
ISS/MUSIC

JHB database program. LINKMASTER&DVECTOR needed $12
text and graphic adventure games
Public domain
Public domain
Public domain
Public domain
Public domain
arcade quality games. 32K/speech synth. required
good demos and utilities on this FREEWARE disk.
Best FREEWARE TI-WRITER package! A must! > $5 FLIPPY
DIS/VARBO files for the above
T.I.'s basic lessons on disk.
John Clulow's bulletin board software FREEWARE disk. $5
Bill Knecht's tunes with graphics.
Bill Knecht's hymns with graphics.
create and annimate your sprites with this utility.
Curt Pulley's FREEWARE "C" language. \
Modifications to the C99REL1 disk. 	> $6.50
Demo programs and info for "C".
FREEWARE disk of calender programs"with documentation.
makes a calendar with notation.
save rom/prom cartridges to disk. SUPERCARTRIDGE required
financial programs.
arcade qua ity game.
John Clulow's disk copier program.
arcade quality game.
disassemble your assembly programs.
collection of demos/utilities from Daytona User Group.
programs from Davis' book.
debug your assembly language programs.
T.I.'s test disk for the 99/4A.
Sector access program. inspect and/or modify sectors.
DM II replacement. Loads from E/A,TI-WRITER,XBASIC.
Gives good, fast, sorted directory for your library.
JHB database program. ADRSMASTER and LINKMASTER needed.
Shuttle-graphics and music from Deleware UG.
T.I.'s idea of electrical engineering programs. $5
Terminal emulator program that supports TE II and XMODEM.
Financial programs.
Good XBASIC loader version of TI-WRITER.
4 games. CHINACHESS is interesting.
A disk full of 10-X demos.
Printer demos for the Centronics GLP printer.
Gradebook and flashspelling programs w/documentation.
T.I.'s idea of graphing programs. 	$6
6 pictures to be used with the GRAPHX package.
Dump HBM files to printers.
1984 income tax template for multiplan.
ISAM files as described in MICROpendium 12/84 page 35.
Arcade games.
Music programs.

music software from Asgard.
music software from Asgard.
music software from Asgard.
music software from Asgard.
music software from Asgard.

JET-DSK01A k XBASTC
JET-DSKO1B * XBASIC
JET-DSKO2A *)(BASIC
JET-DSKO2B * XBASIC
KNIGHTDISK 	XBASIC
LINKMASTER 	XBASIC
LOGO_ DISK 	LoGorr
MASSCOPY
MASTERDISK
MEGABUCKS
MENTOR
MTXT/DISK
MUSIC
MUSIC2
MUSICOMPLR
MUSIC MAKR
NEATLIST
MI-199ERS*1
NH97ERS412
MH99ERS#3
99WRITERII
ON DISKJ/A
ON_DISK4_1
ON DISK4 4
ON_DISK4_5
ON_DISK5_1
ON_DISK5_2
ON_DISK5_3
ON_DISK5_4
GNDISK5_6
OSCARI 	BASIC
OSCAR2 	BASIC
PILOT 	* E/A
PILOT DOC * XBASIC
POTPOURRI 	XBASIC
PRBASE * XBASIC
PRBASE/DOC * XBASIC
PROGAID123 BASIC
RAM/SOFT 	XBASIC
RODSK200 	XBASIC
SAMUSIC/1 	XBASIC
SAME/DIFF 	XBASIC
SAMSGAMES1 * XBASIC
3AMSGAMES2 * XBASIC
3CREENDUMP XBASIC
3ILVERWOLF
>>SPACE!‹<
5PCHTRADE
MiPERBUGII
rAX-INVEST
1E3-DIALER
I/DEMO

S IPS
1I-SINGS
U-SINGSX0

E/A
XBASIC
XBASIC
E/A
TIMP
E/A
BASIC
XBASIC
TE II
XBASIC

TI-TIPS_01 * TIWTR
1-TIPS 02 * IIWIR

XBASIC
XBASIC
XBASIC

Good FREEWARE dis from John Taylor. \
More of the above. 	 > $5 FLIPPY
John Taylor FREEWARE sprite building program.> 115 FLIPPY
127 sprites for the above FREEWARE disk.
FREEWARE disk of utilities from Knight (TK-WRITER).
JHB database program. DVECTOR and ADRSMASTER needed.
Good demo of LOGOs power.
Latest version of this FREEWARE disk copier. V3.25
Directory program.
Megabucks number selection program.

Games.music.word processor.speech, and graphics.
Games for the T.I.
Graphics. (lames, and utilities.
Another TI-WRITER.
Programs from HCM in various languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from HCM in several languages.
Programs from the OSCAR reader.
Programs from the OSCAR reader.
The PILOT language. 	 \ FL I PPY
PILOT documentation w/print function. (1.5hrs !) > $5
Games and utilities. Includes diskjacket/disk labeler.
Database.
Instructions for above. > *5 FLIPPY
T.I.'s programming aids in both basic and xbasic.
Craps game.
Gamma match antenna design for hams.
Moore songs.
Kids matching games. Speech required.
Programs from the SAMS book. \
Continuation of above. 	 > *5 FLIPPY
Or basic. A must FREEWARE disk from Danny Michael.
Assembly language utilities.
Space games with graphics. not as flashy as some.
See and hear Lincoln speak! Speech synthesizer required.
Debugger. Including one for the E/A-BK SUPERCARTRIDGE.
Multiplan overlay.
Good terminal emulator for ASCII files.
Several demos T.I. gave to their dealers.
Tips from the Tigercub.
Hear your computer sing! Speech synth. required.
Xbasic version of above. NH99ER exclusive.
DIS/VARBO files with useful tips. GOOD reading. > *5
More of the above.

)(BASIC Baroraph.monopoly,draw-poker, other goodies.
MINIMEM Minimemory utilities for 40 column.
XBASTC Moore music programs for the T.I.
XBASIC Moore music programs for the T.I.
E/A 	BASIC loader allows music playing as other program runs.
MUSIC 	Music for the MUSICMAKER cartridge.
XBASIC FREEWARE programming aid disk from Danny Michael.
XBASIC
XBASIC
XBASIC
XBASIC

TI-TIPS_03 * TTWTR
TI-TIPS_04 * TIWTR
TI-SORT 	E/A-8K
TIMP&TIWRT WTR-MP
TIWRITER'S 	TT•WTR
TIWRTPIOUP 	TIWTR
TK*S*DUP 	XBASIC
TRIVIA99ER 	XBASIC
TRIVIABASE 	XBASIC
VIDEODEMOS XBASIC
WORDCOUNT 	XBASIC
WORKHORSE 	XBASIC
XB-GAMES 	XBASIC
XB-GAMINGI 	XBASIC
XB-LESSONS XBASIC
XB-WRITERI XBASIC
XBASIC-UT1 * XBASIC
XBASIC-UT2 * XBASIC
X D E/A

More of the above. \
More of the above. > $5 FLIPPY
Assembly language sort routines for E/A-BK SUPERCARTRIDGE.
Updates for TI-WRITER and MULTIPLAN.
Reference material for FUNLWRITER and others.
PLO version of TI-WRITER.
Disk copier program.
Trivia database.
Another trivia database.
A must have graphics demo.
FREEWARE assy. lang. utility. GOOD
Good collection of utilities. Don't miss this one!
Arcade quality games.
More arcade quality games.
T.I.'s xbasic lessons on disk.
One of the best TI-WRITER disks available.
Great utility disk from Travers. > $5 FLIPPY

More of the above.
Assembly language utility and demos.

FORTH DISKS

**NOTE: Many 4TH disks have program information on screen 2 and
screen 3. Use LIST or -PRINT to see these screens. Many
of the "programs" on these disks are well documented.

DISKNAME
	

LANGUAGE COMMENTS
	

COMMENTS 	 COMMENTS

4TH/BACKUP
4THCLONER
4thDOODLES
DATADISK02
DATADISK03
DATADISK04
SOURCE-A
SOURCE -B
SYS -DISK02
TE4TH
TI -FORTH
UTILITY4TH
UTILSOURCE
VOLKFORTH1
VOLKFORTH2
XB -FORTH
FORTHXLD1
FORTHXLD2

TS=

XBASIC Disk copier program in FORTH. Donation requested.
E/A
	

Another disk copier program in FORTH.
E/A
	

Good bitmap graphics demo.
E/A
	

Demos, utilities, and games. read SCRs 1, 2, and 3.
E/A
	

More of the above.
E/A
	

More of the above. Includes the game COSMIC CONQUEST.
E/A
	

The sorce code for T.I. FORTH.
E/A
	

Part 2 of the sorce code for T.I. FORTH.
E/A
	

Modified 4TH disk with autorepeat, etc..
E/A
	

Terminal emulator program in FORTH.
E/A
	

T.I.'s original FORTH disk.
E/A
	

Many utilities plus HELP and instruction screens.
F/A
	

Sorce code for UTILITY4TH.
E/A
	

More 4TH goodies. Check line 0 of all SCRs for clues.
E/A 	Mote of the above.
XBASIC 4TH version that loads from XBASIC.
XBASIC Two disk modified 4TH disk set.
)(BASIC continuation of above.

=11111111:11

The service charge per DISKNAME is $3.50 unless otherwise noted. The
•SteriSk after a DISKNAME indicates that the increased charge is due to
printed documentation. PLEASE... it is impossible to anticipate every-
one's needs. Even if you are only interested in a selection, let the
librarian know so he can have copies ready for the meeting. NO COPYING
WILL BE DONE AT THE MEETINGS! As you know, our disks are supplied with
labels and are write-protected. Please use these disks as your MASTERS
only! From time to time there have been updates to programs such as
DM1000, which we provide free of charge for those who have "bought" the
software from us. Your MASTER must be returned for proper credit. Thank
you for your patience in awaiting this listing. If you have further
questions, please contact the librarian: Richard J. Bailey - 68A Church
Street - Gonic, NH 03867 (603) 332-7855

MAIL ORDERS: Please add an additional $1 6/H charge per order!!

11E1114111B

VaNVN08
11 ei Qfr eunl PreN

h138W333(1

Z 838143AON
• 8380130

L 213)3W31d3S
• isnenv
9 AML'

3Nflr
AtoW

:L136I tiOd
SON I 133W $33-111a3H3S

ri!

FIN lialseVuell 1543eng 9SP

suapenbpeaH sa!lcidns suiroaJoIndutopin0A .
>1001S NI !SON 	 SZIS -1 -TV

OgE
0001- xe

1. L,>(-46 	
\:7

AEEd- ISVD >INV-IR OF

gEE
OET

NEW HAMPSHIRE 99'ERS USER GROUP, INC.
PO BOX 5991

MANCHESTER, NH 03109■5991.

PLEASE SUPPORT BONANZA
THEY SUPPORT US!

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

