
LI! 	I j,

MID—ILLINOIS 	tte °(15

COMPUTER RESOURCE ORGANIZATION
P. O. BOX 766

BLOOMINGTON, ILLINOIS 61701-0766.

MICRO/99 Newsletter
Volume 5, Number 1

January - February 1987

MICRO/99 is a not-for-profit group dedicated to the sharing of information and public domain software
for the Texas Instruments 99/4A home computer. Members have free access to our library of several
hundred programs on cassette and diskette. Meetings are held at 7:00 p.m. on the third Thursday of
each month at the Illinois Agriculture Association building, 1701 Towanda Avenue, Bloomington.
Attendees sign in with the guard at employee entrance number 4 at the rear of the building. Turn left
at the sign for the main reception area and go down the stairs on the far side of it. Visitors are
especially welcome, and may attend one meeting fred of charge. Annual dues are $15 per family.

*** MEETINGS: JANUARY 15 & FEBRUARY 19, 1987 ***

At the January 15, 1987 meeting, Brian McFeeters will demonstrate a program for
combining graphics and TI-Writer. He also plans to show Multiplan templates for
income tax preparation. Yes, it is getting to be that time again!

By the February 19 meeting, Sid Smart will try to learn and share something about
PILOT/99. PILOT stands for Programmed Inquiry Learning Or Teaching. It is a
language particularly well suited for computer aided instruction. (I've intended
to do this for some time. Now I'll have to!)

**** 1987 OFFICERS ****

After a long, hard campaign, the incumbents have beaten off all challengers and
retained their offices for another year! In case you can't tell who the
figureheads are in this loosely structured group, we supply the following list.

President (and assistant editor):
Sid Smart, 884 E. Cherry, LeRoy, IL 61752 (389) 962-9305

Vice President (and newsletter editor):
Brian McFeeters, 751 Pierce, Morton, IL 61558 (389) 263-8887

Treasurer:
Ray Hinrichsen, 407 Hilltop Ct, Bloomington, IL 61701 (389) 827-6965

Software Librarian:
Aubrey Johnson, 518 McKinley, Normal, IL 61761 (389) 452-3218

Newsletter production and distribution:
ray Fisher, 2784 Sheffield, Bloomington, IL 61781 (309) 663-2745

**** SMART REMARKS ****

The new year is here. With the holiday activities behind us and long, cold nights
upon us, most of us find more time to spend enjoying our great little TI/99. For
owners of an orphan computer, the resources available to us through a users group
are particularly important. The software libraries, newsletters, and personal
contacts provided by the groups around the world form an amazing network that have
kept our orphans not only alive, but thriving. That's my lead in to remind you
that annual membership dues ($15 per family - what a bargain) are now due! Anyone
who hasn't received $15 worth of software and information from the group in the
last year really hasn't tried.

Sid Smart, President

Assembler Executing
by

Jim Lohmeyer

Hello from your friendly assembler programmer! I have decided to
start writing some (a series?) of assembly language articles
designed to help clear up some common misconceptions of
assembler; like "I can't program assembly! I have a hard enough
time programming my microwave to cook dinner." The only
prerequisites for using this article are: 1. a TI99/4A computer
2. an Editor Assembler cartridge 3. at least 32K memory 4. at
least one disk drive 5. a knowlege of how to create graphics in
basic or X8 and 6. a knowlege of how to use the EA. There are
two separate parts to this article. The first is on bit-mapped
graphics mode, the second is on using the SAVE utility.

This first article is for a moderate level assembly programmer.
If anyone would l ike, I can do some basic level articles. Just
ask.

PART ONE

BIT-MAPPED MODE EXPLAINED
or

HOW TO COMMIT HARI KARI WITH AN EA CART

Let's go back in time for a moment to the old ENTHUSIAST 99
magazine (published by Charlie Lafara's IUG). In the March 1984
issue their excellent assembly columnist Bill Gronos explained
(finally) the ever mysterious bit map graphics mode. In his
article Bill wondered how many people could still be sane after
the EA manual's explanation of bit map mode (BMM). He then
proceeded to explain BMM with an analogy using egg cartons,
paint, t.v. cameras, and the two fictional characters Godfrey
Grafix and Bob Bitmappe. After reading this article, at the
tender age of 14 I was ready to (and did) give up assembly
programming for about three months. I was thoroughly confused
and really didn't care if Godfrey and Bob were eaten by a giant
program bug. I am not criticising Mr. Gronos' article. Maybe my
young mind was just easily confused or maybe at that point I was
just looking for an excuse for a vacation. Maybe both.

In any event, the BMM is fairly easy to use. Before continuing,
read the explanation of BMM in the EA manual (pp. 334-337).
There. That wasn't so bad, now was it? Confused? If you are,
then go back and re-read the part that gave you the most
trouble. Believe it or not, all of the information that you need
to use BMM is in those 4 pages, and in my opinion, presented
rather well.

BMM has it's advantages and disadvantages. On the pro side: you
can define up to 3 sets of 256 DIFFERENT characters, Each
character can use all of the 16 colors (two per dot row), and
sprites can be used (unlike in text mode). On the con side:
although you can use sprites, their automatic motion feature
can't be used. Also beause of the amount of graphic power
available, BMM uses over 12K of the available 16K of VDP memory,

which, for one thing, reduces the amount of free VDP memory for
sound tables.

AN OVERVIEW OF THE THREE VDP TABLES

There are three tables in VDP RAM that are used for screen
access. They are: the Screen Image Table (SIT), the Pattern
Descriptor Table (PDT) and the Color Table (CT). Each of the
three tables is divided into thirds. Each third of each table is
usable only with the same third of the other two tables. For
example, the second third of the SIT is only usable with the
second third of the other two tables. The computer automatically
assumes this fact. Unfortunately, there is not a way around
this.

The SIT

The Screen Image Table is 768 bytes long (one byte for each
screen position). Each byte in the SIT contains a number from
>80 to >FF (8-256). This table has 3 sections of 256 bytes each
(256*3=768). The first section describes the first third of the
screen (rows 1-8). The second third is for rows 9-16, and the
last third is for rows 17-24. The character number placed in
this table points to the proper character in the PDT. (REMEMBER:
whatever third of the SIT you are working with is described by
the SAME third of the PDT.) Each 32 byte block (starting from
byte 8) will describe each line of the screen. The SIT is
normally placed at address >1880 by setting VDP Register 2 to
>86

The PDT

The Pattern Descriptor Table is 6194 bytes long (eight bytes for
each character pattern). This table has three 2848 byte segments
containing 256 separate character definitions each. The CHAR
subprogram description in the USERS REFERENCE GUIDE (pp. 11-76 -
II-79) discusses the creation of character patterns. The
patterns in the first third of the PDT describe ONLY the
characters for the first eight lines of the screen. The second
third describes characters for lines 9-16 ONLY and the last
third describes characters for lines 17-24 ONLY. If, for
instance, you wanted to write a program to put text on the
screen, you would have to define the alphabet, and place it at
the beginning of each third of the table. Conversely, you could
define the alphabet in the last third only and use the other two
thirds of the screen for graphics. Since these tables are set up
this way, you could theoretically make each of the 768
characters on the screen be DIFFERENT! Quite a change from X8
graphics, isn't it? The pattern descriptor table MUST be placed
at either >8888 or >2800 in memory by placing >83 or >87 in VDP
Register 4. If it is placed at >8888, the Color Table must be at
>2000, and vice versa. When I am using BMM, I usually Place it
at >0800, with the CT at >2000.

The CT

The Color Table describes the colors of the characters in the
PDT. It is also 6194 bytes long (eight bytes for each color on a

character's dot row). This table is much simpler to use than
many people think it is. It is also divided into thirds, with
each third operating in the same manner as the previous two
tables. Each entry in this table is in the form of eight bytes.
Each byte describes the color of one of the eight dot rows of
the character. Now is when most people start to panic. Each of
those bytes is divided into halves with each half called a
nybble. The first nybble of the byte is the color of the pixels
that are ON in this dot row. The second nybble is the color of
the pixels that are OFF in this dot row. So, with some simple
multiplication, we find that each character can have 16 colors
in BMM as opposed to only 2 as in XB's graphic mode. Quite a
difference! The color codes are in the EA manual (p. 338). The
color table MUST be at either address >0008 or >2888, and is
placed there by putting either >lF or >FF in VDP Register 3.

COMMENTS AND RAMBLINGS

I would suggest that you study the examples on pp.336-337 for an
even better understanding of the tables. The pixel-calculating
program segment on p.336 is not only very useful, but also self
explanatory.

PROGRAM DESCRIPTION

The program listing is a short program to demonstrate BMM. The
source is completely commented, so it is pretty much
self-explanatory. The character used, and the first set of
colors are from the EA manual (p. 337). The major steps to using
BMM mode in this program are:

1. REF/DEFS
2. set up workspace
3. set BMM
4. set up table addresses
5. clear tables
6. load tables with desired data
7. loop so screen is visible and QUIT key is active

The program is mainly to demonstrate the principle that the
three sections of each table are separate and how they interact
with each other. It also demonstrates the procedure of setting
up the tables. The program in itself is really not something to
write home about, but I think it serves its purpose. One thing
to remember is that for really elaborate graphics you will
create MANY long DATA statements. But it's well worth it.

In the next newsletter, we will take the source code from this
article and convert it to program image using the SAVE utility.
A small tutorial on just how that utility works will also
accompany it. Until then, have fun playing with bit map
graphics, and remember: the EA manual can answer almost ALL of
your questions, sometimes you just have to LOOK HARD.

Happy assembling,
Jim

*
*

* *
 *

 *
 *

* *

SOURCE CODE FOR BIT MAP MODE DEMO
FILLS SCREEN WITH 3 SETS OF 3 COLOR
CHARACTERS

MICRO 99 NEWSLETTER JAN. - FEB. '87

SOURCE CODE BY JIM LOHMEYER 1/11/87

REF VSBW,VMBW
REF VWTR

• INITIALIZATION *
MYREGS BSS 32 *
START LWPI MYREGS

LI R8 >8882
BLWP 2VWTR
LI R8 >0483
BLWP VWTR
LI R8 >0286
BLWP 2VWTR
LI R8 >03FF
BLWP 'k.,QTR
LI R8 >8706
BLWP 2VIWTR *

• INIT SIT *

* VDP UTILITIES

* REGISTERS

* LOAD MY REGISTERS
* SET BIT MAP

* PDT 20

* SIT 21800

* COLOR TABLE 22000

* SCREEN COLOR

MON1P
MON1C
MON2C
MON3C

* ADDRESS OF SIT
* CHARACTER 0 IN ALL POSITIONS
* WRITE IT TO VDP
* INCREMENT ADDRESS
* END OF SIT?
* NO, GO AGAIN

* PDT ADDRESS >8
* VALUE=0
* WRITE TO VDP
* INCREMENT ADDRESS
* IS IT THE END?
* NO, CONTINUE

* ADDRESS OF COLOR TABLE
* VALUE=8

* INCREMENT ADDRESS
* IS IT THE END?

* ADDRESS OF PDT (1ST THIRD)
* CHARACTER PATTERN
* 8 BYTES TO WRITE
* WRITE TO VDP
* SECOND THIRD OF PDT
* WRITE IT
* LAST THIRD OF PDT
* WRITE IT
* ADDRESS OF COLOR TABLE (1ST THIRD)
* COLOR OF CHARACTER 1 IN FIRST THIRD OF SCREEN
* WRITE IT
* SECOND THIRD OF COLOR TABLE
* COLOR OF CHARACTER IN SECOND THIRD OF SCREEN
* WRITE IT
* LAST THIRD OF COLOR TABLE
* COLOR OF CHARACTER IN LAST THIRD OF SCREEN
* WRITE IT
* ENABLE INTERRUPTS FOR QUIT KEY
* DISABLE INTERRUPTS
* LOOP THROUGH

* PATTERN CODE FOR CHARACTER
* COLOR CODE FOR CHARACTER 1
* COLOR CODE FOR CHARACTER 2
* COLOR CODE FOR CHARACTER 3

AUTO START

LI R001800
LI RI >00

LOOP1 BLWP iVSBW
INC RO
CI R8 >1800+768
JNE LOOPI

*
• CLEAR PDT
*

CLR RO
CLR RI

LOOP2 BLWP 2VSBW
INC RO
CI R8 >1880
JNE LOOP2 *

• CLEAR COLOR TABLE *
LI R002000
CLR RI

LOOPS BLWP 2VSBW
INC RO
CI R8 >3888
JNE LOOP3 *
CLR R8
LI R1,MON1P
LI R2 8
BLWP 2VMBW
LI R0,2048
BLWP 74.AMBW
LI R8 4096
BLWP iVMBW
LI R0,>2000
LI RI MON1C
BLWP 1VMBW
LI R002008+2048
LI R1 MON2C
BLWP 2UMBW
LI R002000+4096
LI RI MON3C
BLWP 1VMBW

ENDLP LIMI 2
LIMI
JMP ENDLP
DATA >FF99,>99FF,>1924,>42C3
DATA >4646,>4646,>4D4D,>4D4D
DATA >1E1E,>1E1E01D1D,>1DID
DATA >E1E1,>E1E1,>EDEDOEDED
END START * MAKE IT

AlFell"Q01/41A0MW1"

by BMW ICFEETERE

thoirar 	 b-cAdirk.4, p")..rmitoz.,d,

nx,cr-tirnAuC 	 adt4A4., 	ce arm, wet-L-11%4k 	 wurnat
C.+071, ucc uriJthe 7ce-aj-ft,e7oR 	'"2172.etj-19.427e/Z.

L.0.-64, 'tea'

The program I used to convert the different fonts is ARTCDNUERT
from TRID+ SOFTWARE. It will convert small fonts in TI-ARTIST format
that can be printed using TI-kIRITER or FUNLWRITER formatter. The
program disk comes with the script font and several instances. They
can be converted for use on a Prowriter or Epson compatible printer.
It can take up to h7 minutes for the conversion process, but they
only need to be converted once.

The converted files are Rctually a series of transliterate
commands (.TL) that when run thru the formatter either prints the
instance or redefines the print style. Before your file can be run,
all carriage returns must be removed. Also ? a line feed must be
added to every line to be printed.

Some of the scripts available from TI-ARTIST data disks are:

orrstAT
ROMAN
SOUND
SLANT
Tom2

Below is an example of an instance printed thru the formatter.
Following that is a partial listing of the file used to create this
article. All the fonts are addressed by include files (.IF DSK1.).

.CO ELONGATED PRINT ON (PROWRITER)

.IF DSK2.0
A
FEBEAT
RTCONVERT -

.IF DSK1.NORMAL

.CO ELONGATED OFF F

.IF DSK2.TECH2

by BRIAN MCFEETERS

.IF DSK1.NORMAL

.00 COMPRESSED AND ELONGATED ON

.IF DSK1.SCRIPT
As you can see, this article is not being printed in

normal print style. I am using different print fonts

".•

The following program was written by Gary Cox of the Mid-South
Users Group. It is a good sprite demo requiring the use of Extended
Basic.

100 ! BOUNCING DANCING SPRITES
110 ! BY GARY COX (NOV86)
120 !
130 !Mid-South TI99/4A Users Group
140 ! Memphis, Tennessee
150 !
160 CALL CLEAR :: RANDOMIZE :: J=16 ::
OOFFF00")
170 CALL CHARPAT(73,A$):: CALL CHARPAT(
180 FOR 1=1 TO 28 :: CALL SPRITE(#I,46,

CALL SCREEN(2):: CALL CHAR(33,"00000000

47,B$):: CALL CHARPAT(45,C$)
16,50,130,12,0):: FOR K=1 TO 38 :: NEXT

K :: NEXT I
190 FOR I=1 TO 28 :: CALL MOTION(#I,4,0):: NEXT I
200 FOR I=1 TO 16 :: CALL COLOR(#I,I):: NEXT I
210 FOR 1=12 TO 1 STEP -1 :: J=J+1 :: CALL COLOP(#J,I):: NEXT I
238 CALL COLOR(1,7,2):: CALL HCHAR(19,16,33,3)
248 FOR I=1 TO 28 :: A=INT(RND):: CALL MOTION(#I,-A,INT(RND)):: CALL SOUND(10,
(A+10)0, 2,300,2,1000,2):: NEXT I
258 FOR I=1 TO 26
260 CALL CHAR(46,A$):: CALL CHAR(46,B$):: CALL CHAR(46,C$):: CALL CHAR(46,B$)
270 CALL DELSPRITE(#I):: CALL SOLND(180,-7,2)
280 NEXT I

1,41191:-.11113 V Tit TIPS

The following tips were collected by Rick Kellogg and appeared in
the OCT86 newsletter of the CINDAY Users Group.

PROMPT 'BEEP'
	

CALL SOUND (150 , 1390 p 2)
PROMPT 'HONK'
	

CALL SOUND (70 9 218 I)

SPECIAL SCREEN CHARACTER CODES:

Slashed Zero
Right Arrow
Left Arrow
Up Arrow
Down Arrow
Solid Line
Copyright Symbol
PI Symbol
Cent Mark
Check Mark

CALL CHAR(48,"0038444C54644438") 0
CALL CHAR(??,°000804027F020408°)
CALL CHAR(??,°00102040FE402018")
CALL CHAR(??,"081C2A4908880800')
CALL CHAR(??,m0008e808492A1C08")
CALL CHAR(48,"00FF°)
CALL CHAR(??,"003E415D515D413EN)
CALL CHAR(??,"0000FE2828282828') T
CALL CHAR(??,"00883C4848483C08") 4,
CALL CHAR(??,'0002020404482810') V

Note: For the above CALL CHAR's with ?? instead of a character number,
you can add any number you are not using in your program.

Also, on some printers you can set the slashed zero as the default.
On the Prowriter, dip switch SW2-1 should be closed for a slashed
zero. Check your printer manual to see if you have that option.

/AG TON

0 	- t- EV1

tV
14 JAN

/981

90Q,

MID ILLINOIS COMPUTER RESOURCE ORGANIZATION
P.O. BOX 766
Bloomington, IL 61701-0766

EDMONTON 991ERS USER SOCIETY
P.O. BOX 11983, EDMONTON
ALBERTA, CANADA T5J-3L1

**
* MMM MMM IIIIII CCCCCCC RRRRRRRR 00000000
* MM M M MM II CC RR 	RR 00 	00
* MM M M MM II CC RRRRRRRR 00 	00
* MM M MM II CC RR 	RR 00 	00
* MM MM II CC RR 	RR 00 	00
*
*

MM MM IIIIII CCCCCCC RR 	RR 00000000

*
* The MID ILLINOIS COMPUTER !RESOURCE ORGANIZATION
**

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

