‘ The MANNERS Journal of
Mar—Apr, 89 TI Computing

FORTRAN=9@

ASBIIABLY
etz @l In This
LagYC €99 l1ssue:

Function Libraries in C99
A Comparison of BASIC, Extended
BASIC and Assembly Language

Long Integers in C99

Casselte System;
Netnotes : Info About Delphi;

Benchmarking Fortran—99
AND MORE!

MANNERS NEWSIETTFR Mar — Apr '89

MANNERS President: Jerry Coffey
Mesbership Chairmem: Bill Howard
Newsletter Editor: Dave Ramsey

TI Vendors wishing to place ads in The MANNERS

Jourmal of TI Computing are encouraged to
cmtact the editor at (301) 757-8413, evenings.

The theme of the May-June issue will be HARTWARE!
(IF I can get any of you hardware types to writet)

Table of Contents - Mar/Apr Issue:

ARTICLES:

A Comparison of Languages................. 4
Long Integer Utilities for €9%............ 3
Getting the Most Fram Your Cassette
Syatem, Part IT..........v0ovnnennnes veess 10
(99 and Internal Filea.... 16
99 Fortran Benclmark Tests................ 22
How to Buy New Flopgw Disk Drives......... 25
FEGULAR QOLIMNS:

NetNotes.viivvinnnrnncnnsinnanae ‘e 15
MISCELI ANFIDUS

The Editor's Page.............. cerenens ven 3
TI BBS Support....... Svtaratisaadvannnnnas 22
Assembly Language Level zaoutmes 21

*********k**ﬁ***k****************‘k**m**m****

This month's newsletter has feser hut longer
articles. Hopefully, everyome will find them of
use and learn scmething from them.

The user group would be very interested in any
articles on Forth, Fortran-99, C99, using TI
Writer, using Multiplan, and other applications
on the TI-99/4A or the Myarc 9640. We are also
interested in articles describing hardware
add-ons, upgrades, and modifications to improve
our TI machines,

If there is a topic you would like to see covered
in the MANNERS Newsletter, write to the editor
at the new PO Box address on the back ocover. Or
write the article yourself and submit it on disk.
1'11 be sure to dress it up and put your name in
lights! Hope to hear from you soon! — The Editor.

The Washingtan DC Area TT Home Cosputer
User Group meets monthly. The regular
meeting night is the second Thursday of
each month. The May meeting will be held
on THURSDAY, the 11th of May at the
FATRFAX HIGH SCHOOL. The June meeting is
scheduled for THURSDAY, the 8th of Jume
also at the FATRFAX HIGH SCHOOL. The topic
for May has pot been anmounced, Also,
the Jme topic has not been armounced.
For directions or other informatiom,
call Jim Horn at (301) 340-9617 or
Jerry Coffey at (301) 928-1217,

Membership Dues are 516.00 per year and
may be sent to the MANNERS Membership
Chaiman, Bill Howard, at 15204 Louis
Mill Drive, Chantilly, VA. 22021. Bill
can be reached by phane at {703) 378-10%0.

E Mid-Atlamtic Ninety-Niners Computer
User Group is dedicated to helping users
of TI-99/4A computers and all related 4A
offspring such as the TI-99/2, the TT-99/8
and the Myarc 9640 computer. ¥We also
would be happy to welcome into our group
users of any other T™MS9900 based aricro-
processor system. -

This publication is available to all
MANNERS membors as part of their armual
membership dues. Any other TI-99/4A Home
Compuiter User may also join The MANNERS
User Group at the annual dues rate of $16
per year. MANNERS would also like to make
arrangements to exchange newsletter with
your user group. Newsletter editors for
other TI user groupe are encouraged to
contact either Mark Georges at the club
mailing address or Dave Ramsey at {301)

7578413 to make appropriate arrangements.

Remember! The MANNERS Newsletter is a
USER SUPPORTED PUBLICATION. If vou dom't
write anything, you won't get anything!

Page .2

G

Page 4

The MANNERS Journal of TI Computing

A Comparison of Languages
by Ed Hall

Since the theme for this journal is
languages, I thought I would show a
comparison of how to perform a
particular routine by writing the
steps involved in three different
lanquages., I chose TI BASIC, TI
EXTENDED BASIC (XB)} , and ASSEMBLY
using the TI EDITOR/ASSEMBLER (E/A).
In order to run the programs I have
included, it will be necessary to have
a joystick which operates as number 1.
To see the entire comparisom it will
also be necessary to have on hand
EXTENDED BASIC AND EDITOR/ASSEMBLER
packages,

In writing programs it is important to
plan out the functions that you wish
to perform as completely as possible.
Figuring out how to fill in all the
holes and squish bugs will be tasking
enough while writing, so we should
start with a pretty well-defined set
of parameters. The parameters I have
chosen will remain the same for each
program. This dis a must in
comparisons, rirst 1 want to place a
0 somewhere near the middle of the
screen, Next I want the 0 to be
movable by the joystick in all eight
directions. I also want the 0 to
leave a trail of asterisks behind as
it moves, and flash as it resats in one
spot. Last, I want the asterisks to
change color by stepping through all
sixteen available upon the press of
the fire butten. Throughout each
program, I want all action to be able
to occur simultaneously.

Now that we have the basics chosen,
let's move on to the writing.
Remember that these programe are just
what came out of MY head, so later if
vyou would 1like, go ahead and write
some of your own to compare their
operation with these. The program
listings can be found at the end of
the article, The first program is in
TlI BASIC and as vou will notice, it
consists of 26 statement lines. Go

ahead and enter this program into your
system and save it. Then see howv it
runs and check to see if it meets all
the parameters above.

Lines 100 and 110 set variables which
will later be used to place the 0/*s
on the screen. Line 120 invokes a

resident subroutine to check the
joystick port for activity. In basic
“"CALL" ia used to run resident

subprograms similar to using GOSUB ..
to run subprograms within vour main
progranm. In this dinstance the 1
within the parentheses tells the
routine to check joystieck number 1 and
the X and Y will be where the results
are placed. Line 130 is used to allow
the picking up of fire button
activity. This is very poorly
documented, but to check tfor the
activation of a fire button, you must
perform a key scan using split
kevyboard and gearch for an occurrence
of 18 in the K variable. Line 140
places an asterisk on the screen.
Line 150 modifies the variable X1
which is wused in the Thorizontal
placement of the 0/*s, The variables
returned by the JOYST routine are
4/0/-4 s0 X/4 is used to modify X1.
Line 160 is a trap in case X1 leaves
the boundaries of the screen. Line
170 is the same as 150 except it
modifies the Y1 variable. Line 180 is
a trap for Y! as 160 was for X1. Line
190 places the 0 using the modified
coordinates. Line 200 checks to see
if the fire button was pressed and if
not sends the operation back to 120
where the loop continues. If the fire
button was pressed, it falls through
to 210, Line 210 increments the
variable € and Line 220 checks to
insure the color will be in bounds.
If it is, it skips to line 240, but if
not € is reset to 1 in 230 before
moving to 240 where the COLOR
subroutine is CALLed. Line 250 sends
the program back as did 200. Lines
260 - 300 insure X! stays within the
bounds of the screen and allow direct
wraparound. Lines 310 - 350 do the
same for the Y1 coordinate.

March-April

The MANNERS Journal of TI Computing

Page 5

At this time let's start up the
EXTENDED BASIC. After starting up XB,
load in the program from above and run
it. Could vyou tell a difference in
apeed? You should have noticed a
marked improvement in the movement of
the 0 and the change in c¢olor, even
though it's the same program that was
run in BASIC. Still it can be
improved. XB adds the abilitv to
create multiple lines which is both a
memory saver and time saver in running
a program. Our next step is to take
advantage of this new ability. The
program 1lines under listing {#2 are
more compressed, vet the program runs
the same wav. This XB program takes
only 9 lines to equal 26 in BASIC.

Line 100 now performs the operations
of two lines from the first program.
Notice that C had to be initialized in
this file., In the first program C was
able to start off as 0 but in this one
it has to be greater than 0 to work.
Line 110 represents lines 120 - 160 of
the first program. Line 120
represents 1lines 170 and 180. Line
130 representg lines 190 - 230. Line
140 is equal to lines 240 and 250.
Line 150 represents 260 290. 160
equals 300 and line 170 replaces 310 -
340 with 180 equalling 350.

Once vou’ve keved this one in, see how
it compares to the other one when run.
Did it run faster? It should have, but
it still disn't reallv fast, is it?
Well maybe we can speed it up a little
more in a while.

Let's regress for a moment and bring
back up BASIC with either the MINIMEM
or E/A in place and 1load in the
original program from above. If you
are using BASIC while the MINIMEM or
E/A cartridge is in place additional
resident subroutines are available.
Among them 1is an alternate way to
place characters on the screen called
POKEV. CALLing POKEV {place, character
ASCII#+96) writes the character
directly into VDP RAM where the screen
information is. Flace is a number
from 0 to 767 which directly

represents a screen location from the
upper left corner to the lower right
corner respectively. The character is
whatever vou choose to write to the
screen. To alter the program to
support this, change these two lines:

140 CALL POKEV{Y1%32+X1-1,128})
190 CALL POKEV(Y1*32+X1-1,144)

The expression is equivalent ta nsaing
HCHAR even though the position is
represented by a single number.
Before we move on, make a mental note
of the speed with which the 0 can be
moved around the screen. Now that
we've seen vhat a little programming
in BASIC or XB can do 1o meet our
parameters, let's see how to
accomplish them in ASSEMBLY.

First off when using ASSEMBLY, we must
take into account many more things
than we do in BASIC. We need to
access certain memory locations
directly and place and manipulate data
in precise ways. There are
subroutines but they must called only
after we have data in the correct
places. You'll notice first that the
SOURCE code has almost three times as
many lines as the BASIC version.
However, when this is ASSEMBLED it
will run much faster and take up less
space in memorv. To run the following
program - you will have to type the
vhole program into a D/V 80 file as it
is written and ASSEMBLE it using the
E/A. If vyou are unfamiliar with the
procedures for running the ASSEMBLER,
after inputting and saving the text
SOURCE code, perform these steps: 1)
Plug in the E/A cartridge and press 2
twvice to bring up the E/A menu; 2)
With the E/A disk in drive #1, press 2
for ASSEMBLE; 3) Press Y at the LOAD
ASSFMBLER? prompt and enter the file
name you saved the text under as the
SOURCE FILE NAME; 4} Enter the name
vou want the finished file to be
called under the OBJECT FILE NAME; 5)
If vou want a listing of the code,
enter a filename or printer under LIST
FILE NAME: &) Enter at a minimum the
letter R under options. You might

March-April

Page 6

The MANNERS Journal of TI Computing

also add the letters CSL but do not
add L or S if you've not given a name
for the list. The above steps can be
found in chapter 2.2 of the E/A
manual.

Before we get into the program itself
let me give a little extra info for
the beginners to ASSEMBLY. The syntax
of BASIC lines must be met in writing
programs in those languages. In
ASSEMBLY this same rule applies,
however the syntax is much more
straightforward. For an explanation
of the syntax refer to chapter 3.3 of
the E/A manual, Whether you
understand how the program works or
not, go ahead and try to rum it sc you
can compare its operation with those
written in the BASIC languages. The
source code is listed as PROGRAM
LISTING ¥#3 at the end of this article.
When you type it in please observe
spaces where they exist and do not
place spaces where they don't exist in
the code.

Tt would be much Loo time consuming
and take up too much newsletter to
describe in detail the lines of code
for this ASSEMBLY language program.
Instead I will describe the functions
of areas in a more general sense. If
further details are needed perhaps a
discussion of the code can be arranged
at one of our meetings.

The first few lines define the name
the program will run under when loaded
and set up the parameters for use
within the program. Two resident
routines will be used. These are VDP
Single Byte Write (VSBW) and Keyboard
SCAN (KSCAN). The first will place
all characters on the screen and the
second accepts input from the joystick
and keyboard. Since ASSEMBLY does not
automatically allow for a FCTN-4 to
break program executiom, I have
allowed for the pressing of letter A
to cause the program to stop. As used
in this program, the letter A will
actually send the computer to the
title screen.

On the extreme left of the file vou
will see words 1like JOY and KEY.
These are Kknown as labels and must
start in the first column of the text.
The two 1lines at JOY set up values
that will place the initial O near the
center of the screen, The KEYSRC
lines calculate the value to use in
the placement of the 0, The first
time through the values loaded at JoOv
are used bhut from then on the values
created by the program are used. The
lines at KEY actually place the 0 on
the screen and read the input from the
keyboard or joystick. The only inputs
accepted from the keyboard are Q which
equals the fire button and A which
causes program termination. The only
other inputs accepted are from the
joystick. One of the inputs accepted
ig the fire button. Remember, the
fire button is being used to change
the color of the asterisks. The lines
at KEY2 do the color change based on
values from KEY. The lines at MOVCUR
place the asterisks on the screen in
place of the 0 and determine how to
move the cursor if a direction has
been given from the joystick. The
lines at ADDY, XCHK and ADDX set up
the values to be used by Lhe next pass
of KEYSRC in placing the next 0 on the
screen. These routines alsc take care
of wraparound. The last line of
program execution is the EXIT routine
which tells the computer to go back to
the title screen if the letter X was
pressed in KEY above. The statement
END under the EXIT 1label has no
function within the program, but is
necessary te tell the ASSEMBLER to
stop processing the file.

In order to run this program once il
is ASSFMBLED, vyou will need to uge
option 3, LOAD AND RUN from the E/A
menn. At the FILE NAME? prompt enter
the drive and filename you have given
the ASSEMBLED code and then press
ENTER again. At the PROGRAM NAME
prompt enter the name JOY. The
program will immediately start. After
running it for a while to check
operation, press A to stop and return
to the title screen. If vou would like

March-April

e

The MANNERS Journal of TI Computing

Page 7

to run this from basic, you will need
to change 3 linres in the source code
and reASSEMBLE the file. The 3
changes are:

KEY change >3000 to >9000
KEY2 change >0385 to »0311
MOVCUR change »2A00 to »8A00

With E/A or MINI-MEMORY in place vyou
¢an use the following program in BASIC
to run the ASSEMBLY program:

10 CALL INIT
20 CALL LOAD(“DSK?.7272777")
30 CALL LINK("JOY")

* 2.222?22? ic the drive and filename
you gave to the ASSEMBLED file,

As yon can see, there are more ways to
write a program than there are
languages. You can even combine a
BASIC program with some ASSEMBLY
routines held in memory and perform
CALL LINKs to use them. Let me close
vith a thought for those who own MINI
MEMORIES. How could the ASSEMBLY
source code be changed to be able to
type it into the line-by-1line
ASSEMBLER?

******f(**kt**************************k

PROGRAM LISTING #1 (TI BASIC):

100 Y1=12

110 X1=16

120 CALL JOYST(1,X,Y)

130 CALL KEY(1,K,$)

140 CALL HCHAR(Y1,X1,42)

150 X1=X1+{X/4)

160 IF (X1>32)+(X1<1)THEN 26
0

170 Y1=Y1-(Y/4)

180 IF (Y1>24)+(Y1<1)THEN 31
0

190 CALL HCHAR{Y1,X1,48)

200 IF K¢>18 THEN 120

210 C=C+1

220 IF C<17 THEN 240

230 C=1

240 CALL COLOR(2,C,1)

250 GOTO 120

260 IF X1>32 THEN 290

270 X1=32

280 GOTO 120

290 X1=1

300 GOTO 120

310 IF Y124 THEN 340
320 Y1=24

330 6OTO 120

340 Y1=1

350 GOTO 120

PROGRAM LISTING $2 (EXTENDED DASIC}) :

100 €=2 :: Y1=12 :: X1=1§
110 CALL JOYST{1.X.Y):: CALL
KEY(1,K,S):: CALL HCHAR(Y1,

X1,42):: X1=X1+(X/4):: IF (X
1>32)+{X1<1)THEN 150

120 YI=Y1-(Y/4):: IF (Y1>24)
+{Y1<1)THEN 170

130 CALL HCHAR(Y1,X1,48):: I

F K=18 THEN C=C+1 :: IF =17
THEN (=1

140 CALL COLOR(2,C,1):: GOTO
110

150 IF X1>32 THEN X1=1 ELSE

X1=32

160 GOTO 120

170 IF Y1>24 THEN Yl=1 ELSE

¥1=24

180 GoTO 110

PROGRAM LISTING #3 (E/A SOURCE CODE):

DEF JoOY
REF VSBW,KSCAN

KEYBRD EQU 8374
JOYSTK EQU >8376
YOFFST DATA 32

KEYCK1 DATA >0100
KEYCK2 DATA >1200
DIRCHK DATA >0000

JOoy

LI R8,12
LI R9,16

KEYSRC MOV R9,R0O

KEY

March-April

MOV R8,R6

MPY @YOFFST,R6
A R7,RO

LI R1,>3000
BLWP @VSBW

LI R3,»0100
MOV R3,@KEYBRD
BL¥P @KSCAN
MOV @KEYBRD,R3
SWPB R3

CB R3,@KEYCK1

Page 8

The MANNERS Journal of TI Computing

KEY2

MOVCUR

ADDY

XCHK

ADDX

EXIT

JEQ
CB
JNE
Al
CI
JLT
CLR
MOV
LI
MOV
SWPB
BLWP
MOV
LI
BLWP
MOV
cB
JEQ
JLT
DEC
CI
JGT
Al
JMP
INC
CI
JLT
Al
SWPB
CB
JEQ
JGT
DEC
€1
JGT
AI
JMP
INC
CI
JLT
Al
JMP
BLWP
END

EXIT
R3,@KEYCK2
MOVCUR
R5,1¢6
RS, 240
KEY2

R5

RO, R4
RO,>0385
R5,R1

R1

@vVSBW
R4,RO
R1,>2A00
@VSBW
@JOYSTK, R3]
R3,@DIRCHK
XCHK
ADDY

R8

R8,-1
XCHK
R8,24
XCEK

R8

k8,24
XCHK
R8,-24
R3
R3,@DIRCHK
KEYSRC
ADDX

R9

R%,-1
KEYSRC
RS, 32
KEYSRC
R9

R9,32
EKEYSRC
R9,-32
KEYSRC
@0

Long Integer Utilities for c%9
Tom Wible

When I was writing high gravity, I
found I needed more preeision in my
calculations. Although the screen is
only 256 pixels wide by 192 high, to
calculate the distance between
opposite corners requires 2 words of
precision. The GPL floating point
routines are teoo slow, so I wrote the
following long integer utilities.

The first two, getrem and hiword,
merely access registers that the ¢99
compiler ises. Getrem is the
equivalent of the remainder operation,
but without the need to redivide. As
agsembly programmers know, the 9900
divide puts the quotient in the
register specified, and the remainder
in the next register.

The function hiword merely returns the
high-order word of the result of a
multiply. €99 ignores this value.

The mpydiv function completely
bypasses 99 arithmetic so that the
2-word product of a multiply can be
divided by the 3rd argument in the
call. Again, I wrote this to improve
the precision of my gravitational
calculations.

And of course, any calculation of
distance between points requires a
square root. I found this algorithm in
Dr. Dobb's(sorry, can't remember the
issue, but it was in an article on
graphics primitives for the comode-
door 64;-). The algorithm involves
testing each bit in the answer against
each bit in the square, along with
carries between words. The original
was written for 2 words on the c64: 16
bital

(Ed. note: It was issue #103, May
1985 and the article was "Solid
Shape Drawing on the Commodore 64" by
Richard Rylander. I highly recommend
Dr. Dobb's Journal, fondly known as

DDJ, to any programmer looking for a

March-April

The MANNERS Journal of TI Computing

Paye 9

computer magazine of real substance!]

The hypotr function merely computes
the sum of the squares of the numbers

before falling into the square

routine.

* % M ¥

root

leong integer utilities for c99

tom wible

DEF GETREM,HIWORD,HYPOTN,MPYDIV

get remainder from last c¢99 division

%
%
*
* i=5/13; /* 1
* j = getrem(); /* j
*
GETREM MOV 1.8
B *13

*

*

get high order word

* mltiply

*

*
*
“

i~ 32000 % 5;
j = hiword();

HIWORD MOV 7.8

* % % %*

*> % kB N

B *13

1 %/
::2

== 5 % 3 */

from last c99

J* i == -
/*j

*/
*/

multiply 1st arg X 2nd arg, divide
by 3rd carrying 2 word intermediate
value

i

= mpydiv(a,b,c);

/* 1 == {a*h)/c */

MPYDIV MOV @>0006(14),0

MPY

@50004(14),0

DIV @ 0002(14),0
* check for overflow

JNO NOVERF

* set both quotient and rewmainder
* to max positive

NOVERF MOV

L . S

LI
MOV

0,>7FFF
0,1
0,8
B *13

* to max positive

compute integer hypotenuse

from 2

1-word arquments,
using 2-word sqrt

h = hypotn(oppesite, adjacent);

* f* == sqrt(opp*opp + adj*adj) */
*
HYPOTN MOV @>0002{14),1
MOV @:0004{14),3
ABS 1 * agssume signed
ABS 3
MPY 1,1 * product in rl,2
NPY 3,3 * product in r3,4
A 4,2 * loword
JNC HYPTN * no carry?
INC 1 * yes
HYPTN A 3.1 * hiword
JMP SQRT
x
* compute integer square root from 2
* word arqument using algorithm from
* dr. dobb's journal
* translated from 6508 assembly
*
* i = 1sqrt{high_word, low_word};
X
LSQRT MOV @0004(14),1 * hiword
MOV @30002(14),2 * loword
RDCNHI EQU 1
RDCNLO EQU 2
TESTHI EQU 3
TESTLO EQU 4
TEMPHI EQU 5
TEMPLO EQU 6
ROOTHT EQU 7
ROOTLO EQU 8
* counter, start at 16 shifts
SQRT LI 0,18
CLR TESTHI
CLR TESTLO
"CLR TEMPHI
CLR TEMPLO
CLR ROOTHI
CLR ROOTLO * the answer
LOOP SLA ROOTHI,1
SLA ROOTLO,1 * guess LSB =1
JNC SQRTOQZ
INC ROOTHI
SQRT0O2 INC ROOTLO * try next bit on
JNE SQRTO3
INC ROOTHI
* ghift radicand into temp
SORTO3 SLA TEMPHI,}
SLA TEMPLO,1
JNC SORT04
INC TEMPHI
SORTO04 SLA RDCNHI.1
JNC SOQRTOS

March-April

Page 10 The MANNERS Journal of TI Computing
INC TEMPLO
SQRTO5 SLA RDCNLO,1 Cetting The Most From
JNC SQRTO06 Your Cassette System
INC RDCNHI _ by Mickey Schmitt
* shift radicand into temp 2nd bit
SQRTO06 SLA TEMPHI,1 [This 1is the second in a series of
SLA TEMPLO,1 articles covering use of the TI cas-
JNC SQRTO7 sette gystem. Part 3 will appear in
" INC TEMPHI the next issue of The MANNERS Journal
SQRTO7 SLA RDCNHI,1 of TI Computing. - The Ed.]
JNC SQRTOS
INC TEMPLO IV. Cassette - Tips - Tricks - and
SQRT08 SLA RDCNLO,1 Tidbits - Part I
JNC SQRTO9
INC RDCHHI This topic may sound a 1little
SQRTO9 MOV TEMPHI,TESTHI strange to you, but I hope that it
MOV TEMPLO, TESTLO proves to be well worth reading, as I
S ROOTLO, TESTLO rass along what I've learned about
JOC SQRT10 computers the hard way, and what 1I've
DEC TESTHI learned from my fellow TI friends.
SQRT10 § ROOTHI, TESTHI Looking back on my very "“first
JLT SQRT11 computer days", it's hard to believe
MOV TESTHI, TEMPHI that I was once such a "rookie". I
MOV TESTLO, TEMPLO knew absolutely nothing about comput-
INC ROOTLO - ers back then {as you will soon find
JNE SOQRT12 out!}
INC ROOTHI I will always remember the very
SQRT12 DEC O first thing that I ever learned about
JNE LOOP the computer, and to this day I am
JMP SQRT14 still impressed with the fact! “The
SQRT11 DEC ROOTLO computer uses the same type of cas-
JOC SQRT15 sette recorder and cassette tape to
DEC ROOTHI store a "program" on, as you would use
SQRT15 DEC 0 to record your favorite music on."
JNE LOOP With this thought in mind, I soon
SQRT14 SRL ROOTLO,1 learned that it wasan't necessary to
SRL ROOTHI,1 purchase "special data cassette tapesg”
JNC SOQRT16 for the computer. The “"standard" c-60
AT ROOTLO, » 8000 cassettes will work just fine with
SQRT16 B *13 your computer and they are so much

more "economical", than those "special
computer cassetteg!"

Over the vears I have decided on
using maxell c-60 cassette tapes for
my own personal computer use, but I
will be the first to admit that there
are alot of other brands of cassette
tapes that would work with vour com-
puter just as well. I would however,
caution you against using any type of
radio shack cassette tape (computer or
standard}) and any type of Certron
tape, as these particular brands of
cagsette tapes have been known to give
people trouble in the past.

March-April

The MANNERS Journal of TI Computing

Page 11

Believe me, there is nothing more
frustrating than finding out that a
program which you just saved onto one
of these types of cassettes, will not
load back properly from the 3ame
cassette at a later time! The reason
for this particular problem occaring
is that the program is being played
back at a slightly different tape
speed than which it was recorded at,
thus creating a slight distortion in
the sound of the tape. As a word of
warning, using either of these two
brands of cassettes may be hazardous
to your present state of mind!

In keeping with my promise that I
made last month that you would enjoy a
good laugh at my own expense, just
wait till vou hear what I used to do!
Would you believe that I used to 1load
programs into my computer, run them,
and then save them back onto their
original cassettes in the very same
location as they were recorded on the
tape in the firat place. (Without
ever even editing any of the pro-
grams!) Don't ask me where I ever got
the idea that once yon loaded a pro-
gram off of a cassette tape that it
was physically removed from the cas-
sette tape but that is the impression
that I was under at that time.

Of course, I plead that at that
time in my "computer learning" I was
not a member of any computer club nor
did I know anyone who even owned a
computer so I was left to struggle on
my own and make alot of mistakes along
the way in the process. I did 1learn
this the hard way but I bet that I'll
never forget it either: "If you are
only running a program and you are not
making any changes in the program
whatsoever it is not necessary to save
the program back onto its original
cassette in its original tape location
because it never really left the tape
in the first place!"™ It 1is always
there (unless you record over it!) you
may Jlaugh if you wish but it's all a
part of Jlearning and we all had to
start somewhere!

IV. Casgette - Tips - Tricks - and
Tidbits - Part II

In this part, I am continuing
with the topic of cassette tips,
tricks and tidbits, as I try to pass
along more of what T've learned the
hard way, and what I've learned from
my fellow TI friends.

In Xkeeping with the spirit of
learning from one's own mistakes, I
would highly recommend using the
following guidelines whem vyou are
working with your cassette system.

When saving vour programs onto a
cassette, vou should get into the
habit of recording them onto a counter
reading which ends in a zero. This
may sound like an unnecessary
procedure to follow at first but 1let
me agsure you that it is a very good
habit to get into as it actually
serves tvo useful purposes. First, it
will make it much easier to locate a
program on your cassette tape as you
are watching the counter reading speed
by, and gsecond, (and far more
important} it will allow you some
additional blank space between your
programs. That way vyou can make
changes on a program and then save it
back onto your cassette at the same
tape location as the original was
located without accidently writing
over the first part of the following
program or the ending of the
preceeding program! Believe nme, I
learned this the hard way. If you
don't- give vourself a 1little extra
room to wurk wilh, you run a very high
risk of overwriting vour programs when
you try to save them back over your
originals!

If you have a cassette tape that
you wish to keep permanently and are
afraid that vou mav accidently record
over it vyou can break out the Jleft
rear tab of the side of the cassette
that vyou want to save, or you can
break out hoth tabs if you wish to
save Dboth sgsides of the cassette.
Following this procedure will prevent
vou from accidently recording over
yOour programs. 1f, however, vou
decide at a later time that vou would
like to record over a cassette that
has had its tabs broken out, all is

March-April

Page 12

The MANNERS Journal of TI Computing

not lost. A piece of cellophane tape
Placed over the tab opening will allow
you to once again record Programs onto
the cassette,

One of the most important things
that I have learned about cassette
tapes is that if You don't keep up
with them you start to collect alot of
junk. This junk that I am referring to
is the many bits and pieces and parts
of programs that were saved when vyou
were creating or wusing a program,
Once vyour fipal program is completed
get rid of all your junk saves! If vou
dor't do it right avay you'll forget
about it and the next thirg vou know,
you atart saving new programs onto a
Ccassette that is full of junk and then
You end up having to waste alot of
valuabhle time, checking an entire
cassette just to find out what's what !
Once a junk tape has served itg
purpose record over it with a volume
setting of zero. That way the junk
will be erased and you won't have to
wonder if that particular program or
tape was important anymore!

V. Understanding Cassette Error Codes
and Meggages — Part I

Understanding casgsette error
codes and messages is not ag difficult
as it may seenm, Unfortunately, trying
to find a list of the error codes and
messages that deal specifically with
the cassette recorder hag been a
difficult task! 1In doing my research
for thig particular article, I have
had to combine many Qifferent sources
of information in order to be ag
informative and complete as possible.

Basically, cassette error codes
and messages can occur during one of
tvo different types of commands. More
specifically, I am referring tg the
loading (o0ld cs1} procedure and the
saving (save cgl) procedure. In this
part, T will be examining the error
codes and messages that ¢an occur
during the loading procedure,

When the computer finishes
loading the data, it tells you whether
or not it read the data Droperly. If
the data were read correctly, vyou

would see the following messaqe appear
On your monitor or tv screen:

* data ok *
press cassette stop csl
then press enter

If, however, the computer did not
successfully read your program into
memory, an error occurs and the
computer prints one of the following
error messages:

* ERROR - NO DATA FOUND
PRESS R TO READ Cs1
PRESS € TO CHECK
PRESS E TO EXIT

or
* ERROR DETECTED IN DATA
PRESS R TO READ €81
PRESS C TO CHECK
PRESS E TO EXIT

When this occurs, You have a
choice of using one of the following
three optiong, Note, however, that the
single-letter responses (R, C, or E)
that vou type in at this time must be
in uppercase characters)

Press R to repeat the reading
procedure. However, before repeating
this procedure, check to make sure
that you have put the cassette tape in
correctly, that it is the correct
cassette tape and that it hag been
Placed 1in the cassette recorder with
the correct side facing up. Then
follow the directions as they appear
On your monitor or tv screen.

2. Press C to check the data you have
read into memory. At this point you
may wish to adjust your caggette
recorder's volume control and tone
setting, Then follow the directionsg
as they appear on your momitor or tv
screen.

3. Press E to exit from the loading
procedure, At this time another error
mesgage is displayed, indicating that
the compute: @id not properly read
your program into memory :

* WARNING: CHECK PROGRAM IN MEMORY *

I/0 ERROR 56

March-April

The MANNERS Journal of TT Computing

Page 13

If I/0 error 56 appears, something
definitely went wrong. But don't
panic! Generally speaking, when the
error message "error - no data found"
occurs, the computer did not recognize
the cassette recorder at all during
the "old csl" routine. On the other
hand, when the error message "error
detected in data” occurs, the computer
recognized only part of the data that
the cassette recorder was sending to
the computer.

When this happens, recheck your
cassette recorder's volume control and
tone Setting. Then recheck your
cassette cable., make sure that both
ends of the cable are attached to the
computer and to the cassette recorder.
¥While vyou are at it, make sure that
the color-coded wires leading to the
cassette recorder are connected
correctly. The cassette recorder will
not operate properly if the color-
coded wires are reversed!

V. Understanding Cassette Error Codes
and Messages - Part II

In this part, I will be examining
the error codes and messages that can
occur during the "saving" (save CS51)
procedure.

When the cassette recorder
finishes saving your program, the
computer will tell you whether or not
the program was recorded successfully.
If the program was recorded
successfully, you would see the
following message appear on your
monitor or tv screen, after you
completed the necessary steps in the
checking procedure:

* DATA OK
* PRESS CASSETTE STOP Cs1
THEN PRESS ENTER

If, however, the cassette
recorder did not successfully record
your program onto the cassette tape,
an error occurs and the computer
prints one of the following messages:

* ERROR - NO DATA FOUND
FRESS R TO RECORD C51

PRESS C TO CHECK
PRESS E TQ EXIT

* ERRCR IN DATA DETECTED
PRES55 R TO RECORD Cs1
PRESS C TO CHECK
PRESS E TO EXIT

When this occurs, you have a

choice of using one of the following
three options. Note. however, that
the single-letter responses (R, C, or
E) that you type in at this time must
be in uppercase characters!
1. Press R to repeat the recording
procedure. However, before repeating
this procedure, check to make sure
thal you have put the cassette tape in
correctly, and that there is enough
blank tape left on the cassette tape
in which to record the program on.
Then follow the directions as they
appear on your menitor or tv screen.

2. Press C to check the data you have
read into memory. At this point you
may wish to adjust vyour cagsette
recorder's volume control and tone
getting. Then follow the directions
as they appear on your monitor or tv
screen.

3, Press E to exit from the saving
procedure. At this time another error
mesgsage is displayed, indicating that
the cassette recorder did not properly
save your program onto the cassette
tape..

* WARNING:
CHECK PROGRAM IN MEMORY
* I/0 ERROR 66

If I/0 error 66 appears,
something definilely went wrong. Butl
don't panic! generally speaking, when
the error message "error - no data

found" ocecurg, the computer did not
recognize the cassette recorder at all
during the "save c¢sl1" routine. On the
other hand, when the error message
"error 1in data detected" occurs, the
computer recognized only part of the
data that the cagsette recorder was
sending to the computer. ¥hen this
happens, recheck vyour casgette

March-April

Page 14

o

The MANNERS Journal of TI Computing

recorder’s volume control and tone
setting.
cable. Make sure that both ends of
the cable are attached to the computer
and to the cassette recorder. While
vyou are at it, make sure that the
color-coded wires leading to the
ctassette recorder are comnected cor-
rectly. The cassette recorder will
not operate properly if the color-
coded wires are reversed!)

V. Understanding Cassette Error Codes
and Messages - Part ITI

AhhhRKARKEKRA KRR KRR AAR IR KR kR Ak kkdhdoh bk kh

* General areas to check when *
* cassette error codes and messages *
* pocour : *

ARAKAEKAKKARAARAKR AR ARRRA LA AR AR A kAR Ak Rk

1. Make sure that your cassette
recorder is connected to your computer
congole correctly. The cassette
recorder interface cable must be

connected to the 9-pin plug at the
rear of the computer console. Don't
confuse this plug with the 9-pin
joystick port om the side of the
console; they are not interchangable!
While you are at it, make sure that
the color-coded wires which plug into
the cassette recorder are attached
correctly as well, The cassette
recorder will not operate properly if
the color-coded wires are reversed!
They must be "black" to the recorder's
remote jark, "white” to the recorder's
earhone jack, and "red" to the record-
er's microphone jack.

2. If yow are using d4/c current
instead of a/c current, make sure that
your batteries are fresh! Weak bat-
teries will cause vour data to he
distorted! - .

3. Make sure that vyour cassette
recorder's volume control and tone
settings are adjusted properly.
Generally speaking, a volume control
of "8" and a tone setting of "9" are
recommended.

4. Make sure that vour cassette tape
head is clean. If vou can't remember
the last time that vou cleaned it -
then it's been too long!

Then recheck vour cassette

5. Make sure that you are using a
high-quality cassette tape. A tape of
poor-quality yields "poor-performance"
headaches and total frustration!

6. Make sure that vour cassette tape
is not ary longer than a C-60 cas-
sette. (which 1is 30 minutes per
side) . Longer tapes are thinner and
provide less fidelity,

7. Make sure that your cassette tape
is in good condition - that it has not
been damaged or accidently erased. If
in doubt, try another tape!

8. Make sure that you have put the
cassette tape in correctly - that it
is the correct cassette tape and that
it has been placed in the cassette
recorder with the correct side facing
up. Also, make sure that the cassette
tape has been positioned at the begin-
ning of the desired program.

9. Make sure that your cassette tape
was recorded with your cassette re-
corder or an identical model. If the
cassette tape was originally recorded
using a different type of cassette
recorder, it 1is possible that the
program will not load properly. When
this occurs, you have no choice but to
either obtain another copy of the
program, using vour cassette recorder
to "save" the program or "load" the
program again this time wusing the
cassette recorder that had originally
"saved” the program.
*****k***k***k*********k******k*****k*
[Editor's Note: Anyone wishing to help
rebuild the MANNERs cassette library
should contact Jerry Coffey who ecan
put you in touch with others
interested in working on this project.
The MANNERS cassette 1library ceased
when many users migrated to disk
systems and our cassette librarian
left the club. With the influx of new
members, some using cassette systems,
restoring the cassette library has
become important.]

March-April

The MANNERS Journal of TI Computing

Fage 15

NetNotes - Around the The
¥orld of TI Computing
Dave Ramsey

There are a few updates to last
month's NetNotes column. First and
perhaps foremost, Bob Fowler and Bill
Cavanaugh have done it again! The BBBR
now boasts an online librarv of almost
200 TI-99/4A programe and data files
and almost 100 Myarc 9640 programs and
data files. Bob is now trying to get
the users to help pitch in to add a 40
megabyte hard drive to the BBS and
when that happens, the BBEBB will have
the capacity for literally thousands
ot TI and 9640 programs! Good luck Bob
and all BBBB users are encouraged to
send Bob 510 to help defray the cost
of the 40 mey hard drive. (Bob doesn't
use these hard drives himself. They
are dedicated to the BBS and hold the
files for running the BBS and the
programs that the users can download.)

On another front, PC Pursuit has
made drastic changes to their rate
structure. PC Pursuit was once the
finest telecommunications service that
& user could subscribe to. It didn't
offer online databases or forums or
anything like Delphi or CIS. But it
did give unlimited dialing privileges
into the 30 PC Pursuit cities around
the country for a flat rate of only
525 per month. By using this service
yon conld avoid all long distance
charges for calling any of these
cities from your hometown - if you had
a Telenet "“indial" node that was local
to you. And since Telenet has over
10,000 indial nodes around the US, it
was very easy for most telecommuters
to access the various BBSs around the
country through PC Pursuit.

Alas, those days are now over. PC
Pursuit has raised their price to 530
per month. But that is not the bad
part. The difficult part is that there
is now a 30 hour cap per month on use
of the network. Now 30 hours may seem
like alot to many computerists who
don't use telecommunications. And
vhile I can go for several months with

usage under 30 hours, there were also
many monthe when I used PC Pursuit for
perhaps as many as 60 hours. But now
is you violate the 30 hour cap, you
will be slapped with a $4.50 per hour
charge for network usage.

Nov the reason that I say that
this isn't competitive anymore+* is
because Delphi, a ‘leading
telecommunications service firm, has
recently begun to offer access to
Delphi for $4.80 per hour under their
"Advantage Plan". Delphi offers
forums, online shepping, online games,
databasesg, program libraries, and
much, much more, PC Pursuit is only
offering access to the Telenet packet
switching network with no further
bells or whistles.

It 1is because of this excellent
price offered by Delphi, and the
perhaps fatal rate hike made by
Telenet for PC Pursuit, that I can no
longer recommend PC Pursuit to -TI
computerists entering the world of
telecommunications. Instead, I now can
recommend Delphi as the finest and
most eronomical telecommunications
bargain in the United States.

And since I have changed my
recommendation, it is only fitting
that I spend a little time bringing
MANNERS memhers up to date about
Delphi. Delphi has many services
available for non-computer use. But
for the TI-99/4A hobbyist, the biggest
allure of Delphi must certainly be the
rcvamped TI Net area on Delphi.

Our own Jeff Guide is the system
manager of the TI-Net area on Delphi.
Likewise, T am currently the MANNERS
representative online there, Our own
Jerry Coffey is also present there to
help new users and coordinate
activities,

In addition to manv of our own
users online at Delphi, many of the
notable authers of the TI world are
regular participants there. Al Beard,
author of Portran-99 for the TI is a
regular vistor as is Mike Dodd, who
authored the latest versions of
Myarc's Disk Manager software for use
with the Myarc floppy disk controller
card. Another TI notable who is

March-april

Page 16

The MANNERS Journal of TI Computing

frequently present is Barry Traver,
the TI Computer Shopper columnist and
BASIC programming authority. Paul
Charlton, author of the 9640 MDOS
operating system and J. Peter Hoddie,
author of MyWord and co-owner of
Genial Computerware also regularly
frequent TI-Net. There are many others
as well but I will sum this up by
saying that if you cannot get an
answer to your technical or
programming questions from the crowd
on TI-Net, then you probably can't get
an answer!

But what else does Delphi offer?
In addition to the TI-Net Forum, where
everyone can and does leave messages
and questions about programming, using
software, and comments about software,
thre is also the TI-Net database area.
In this area, the Delphi user has
access to thousands of TI-99/4A
programs. These programs are separated
out into categories for easier
browsing. After the user selects " a
category, he can perform a DIR
command, which gives a summary of the
programs available in that area. The
summary allots one line to each
program and shows when it was
uploaded, who uploaded it to Delphi,
and a short description.

After you check out the category
with the DIR command, you can issue
the READ command. For example, say
that the . latest version of some
adventure game was listed as entry
npumber 36. You could tell Delphi to
“READ 36" and the Delphi computer
would display on your screen the full
description of that item. After
showing the description for it, vyou
would be given the option to download
this program to your TI-99/4A Home
Computer, to look at the next entry in
that category, or to quit. Needless to
say, this gives the TT user access to
a veritable treasure trove of software
and information about his TI computer.

There is much more to say about
Delphi but it will have to wait wuntil
next month! I'm out of space for now.
See you on the bit stream!

¢99 and Internal files
by Dan Gazsy

¥hen Clint Pullev first released
the c99 compiler, an individual by the
name of Tom Bentley had the foresight
to provide library functions for the
floating point accumulator (FAC) and a
general purpose I/0 1library called
TCIO. Initially I didn't find much of
a need for the FLOAT 1library other
then to implement SIEVE type programs.

Two months ago, I decided to
write some c¢ programs to perform file
maintenance on a bbs message base. My
first course of action was to check
around to gee what ¢ code had been
written along these lines. I found
the FLOAT and TCIO libraries were all
I needed to implement my application.
As an added bonus, I ran across a disk
catalog function written by Tom
Bentley which used both libraries.

Before vou write any applications
to process internal type files, you
should have an understanding of how
internal records are structured. V¥hen
the file is created, you allocate the
number of bytes for each record. The
fields associated with each record can
be either numeric fields or string
fields. Numeric fields use 9 bytes;
the first byte contains the length of
the field <(always 8 bytes) wused to
represent the value in float format.
String fields are stored in the same
manner as dv80 or df80 strings. The
first byte contains the string length;
immediately followed by the string.
The fields are stored in the record in
the sequence they appeared in the
print statement {or however the file
was created). All unused characters
are filled with nulls (0). For example
if I created a file of 70 characters
and wrote 3 fields (name, address and
age} to it, they would look like the
following:

byte 01 - length of name string
byte 02-10 - Name string

March-April

T

The MANNERS Journal of TI Computing

Page 17

byte 11 - length of address string

byte 12-24 - Address string

byte 25 - length of age field
{always 8)

bvte 26-33 - Age field
byte 34~70 - Null characters

Great you might say! Now how do I
read these records from a file into my
c program and make decisions based on
the values of the fields? Well to
start, you open the file with "topen"
and read the records with a "tread".
In the event you are not sure of the
gize of the input record, set up an
array of 256 bytes to be on the safe
side. Once you complete the “tread",
the entire record is in the array vyou
specified as the buffer arqument. Now
all that's left is to parse the record
into fields. To do this, vou must know
how many fields are in each record,
what type field they are
(string/numeric) and the order they
appear in the record. Below appears
six functions which we will use to
parse the records. The first two
functions (getstr and getnum) will be
used to parse the input record and the
next two functions (putnum and putstr)
are used to parse the output recard.
The 1last two functicns (strlem and
getfn) are used to size strings and to
open TESTFILE for input or update
mode. We lumped all of these into this
section because it's what I'd consider
a utility. In the interests of good
programming practice, we'll compile
the following 79 lines of code as you
would create a support library. 1In
addition to compiling this program,
vou'll also have to assemble it. For
test purposes, let's call these 79
lines UTILITY;C and the output of the
c compiler will be called UTILITY;S.
As expected the input file for the
Asgsembler will be called UTILITY:S and
the output will be called just plain
old UTILITY. Congratulations, you've
just created a support library! [ed.
note: gsee listing #1]

To demonstrate that this isn't
magic and is compatiable with files
created by other programming

languages, I've created the input file
from a Basic program! [gee listing
$2.1]

What follows now is simple c
program to read the file we created in
the above Basic program and display
the fields. We will be referencing the
library functions we created earlier
and code will be included in our main
program which will demonstrate how to
reference these functions. [gee
listing #3.]

The goal of the function called
"main()" has a rather simple purpose.
It is to open the file called
"TESTFILE", read record 0 into a
buffer, parse the buffer into known
fields and finally display them. As
you can see, T named the program
TESTREAD;C, the output code of the
compiler was called TESTREAD;S and the
assembler output code was named
TESTREAD. To execute the program you
will have to specify the following
files TESTREAD, UTILITY, TCIO, FLOAT
and CSUP. i

The last part of this column will
display a method to combine fields
entered on the screen into a record;
then write the record back to the file
TESTFILE. Like the earlier test, T
called this one TESTWRIT;C, the output
of the ¢99 compiler was called
TESTWRIT;S and the assembler output
was called TESTWRIT. To execute this
program you'll need to load the
following files: TESTWRIT, UTILITY,
TCIO, FLOAT and CSUP. Again remember
these are 1load and run (option 3)
files. {see listing #4.]

To insure that the files written
in ¢99 are compatiable with other
languages, we'll read the file and
display the fields with a basic
program. [see listing #5.]

March-April

Page 18 The MANNERS Journal of TI Computing

Listing #1 - "C99%9 and Internal Flles"

entry getstr,getnum,putnum,putstr,strlen,getfn;
%include "dskl.floati®
tinclude "dskl.tcioi"

getstr(buff,t)
int *buff;
char *t;
{ char *b;
int j,siz;
b=*buff; /* set up b with byte address of input rec */
j=siz=*b++; /* set up j & siz with # bytes in string */
*buff=*buff + j + 1; /* push to next input field */
while(j--)
*t++=*b++; /* transfer string from input rec to string */
t = "\000'; /* terminate with null byte */
return{siz}; /* return size of string */
}
getnum(buff,t, f)
int *buff;
char *t;
float *f;
| char *b;
b=*buff; /* set up b with byte address of input rec */
++h: /* point data past the float size indicator #*/
*buff = *buff + 9;
fepy(b,f); /* copy the input field into the float */

ftos(b,t,0,0,0); /* convert field to string variable */
}

putstr(buff,t)

int *buff;

char *t;

{ char *b;
int j,siz;
b=*buff; /* set up b with byte address of output rec */
j=siz=strlen(t); /* set up j & siz with ¥ bytes in string */
*buff=*buff + j + 1; /* push to next input field */

bt++=j; / put string length in 1st byte of field */
while {(j--)
*b++=*t++; /* transfer string to output rec */
return(siz): /* return size of string */

!

putnum (buff,t,f)
int *buff;
char *t;
float *f;
{ char *b;
int i;
b=*buff;
/* set up b with byte address

March-April

The MANNERE Journal of TI Computing Page 19

of output rec */
*h++=8;

/* put float id in output rec */
*buff = *buff + 9;

| while(*t==" ')
g /* get rid of leading spaces */
: t++;

stof (t.b);
/* copy the string field
into cutput record */
}

strien(s)
: char *s;
i { int n;
; n=0;
while{*s++)
+4+n;
3 return(n);
}

getfn{text,m)
char *text;
int m;
| int unit;
unit=0;
if (m==0)
unit=topen(&text [0], INPUT+RELATIVE+INTERNAL+FIXED, 0) :
else
unit=topen(&text[0],UPDATE+RELATIVE+INTERNAL+FIXED.0):
return{unit);
i

Listing #2 from "C99 and Internal Files"

100 OPEN #1:"DSK1.TESTFILE",
RELATIVE, INTERNAL, QUTPUT,
FIXED 70

i 110 AS="Dan Gazsy"

: 120 B$="22 6th Street"

| 130 C=37

| 140 PRINT #1,REC 0:A$,BS,C

o 150 CLOSE §1

Listing #3 - "(C99 and Internal Files"
TESTREAD;C listed below:

% extern getfn(),getetr(),getnum();
finclude "dskl.tcioi"
finclude "dskl.floati"
tinclude "dskl.stdio"

] main()

March-April

Fage 20 The MANNERS Journal of TI Computing

f
int fp,b_ptr,egize,i;
char buff[256],sdum[81];
float fdum[FLOATLEN];

putchar (FF) ;
for{(i=0;1¢256;i++)
buff[i]=0;
fp=getfn ("DSK1.TESTFILE",0);
if(fp0) |
tread (buff,0,fp, &size);
b_ptr=buff;
getstr{&b_ptr,sdum);
puts {"Name:") ;
putsa {adum) ;
getstr(&b_ptr,sdum);
puts ("\nAddress:");
puts {sdum) ;
getnum(&b_ptr,sdum, fdum) ;
puts ("\nAge:"):
puts (sdum) ;
|
else
puts ("Error, file could not be opened!");

tclose(fp);
puts{"\n\nStrike any key to continue");
getchar():

Listing #4 - "C99 and Internal Files"
TESTWRIT;C listed below:

extern getfn(},putstr();
extern putnum{),strlen();
tinclude "dski.tcioi"
finclude "dski.floati"
finclude "dskl.stdio"

main ()
{
int fp,b_ptr,size,i;
char buff[256],sdum{81] ,ndum{81];
float fdum[FLOATLEN];
putchar (FF) ;
b_ptr=buff;
for{i=0;1¢256;i++)
buff[il=0;
while{1) |
puts("Enter name {max 20 chars):"};
gets (ndum) ;
gize=strlen(ndum);

March-April

TR Yoo

B

P —————

The MANNERS Journal ot TI Computing

Paye 21,

if (size<21) break;
}
putstr(&b_ptr,ndum) ;
while(1} {
puts("Enter addr. (max 20 chars):"};
gets (ndum) ;
size=gtrlen(ndum) ;
if (gize<21) break:;
}
putstr (&b _ptr,ndum);
vhile(1) {
puts{"Enter age (max 3 digits}:");
gets (ndum) ;
size=strlen{ndunm) ;
if(size<4) break:;
i
putnum{&b ptr,ndum,fdum);
fp=getfn{"DSK1.TESTFILE",1};
if(fp>0) |
puts("¥riting record"):
twrite(buff,0,fp,70);
tclose(Ip);
]
}

Listing #5 from "C99 and Internal Files"

100 OPEN #1:"DSK1.TESTFILE",
RELATIVE, INTERNAL, INPUT,
FIXED 70

110 INPUT #1,REC 0:A$,BS,C

120 PRINT "NAME:"&AS

130 PRINT "ADDRESS:"&BS

140 PRINT "AGE:"&STRS{C)

150 CLOSE #1

March-April

Page 22

The MANNERS Journal of TI Computing

TI BBS Support
Dave Ramsey

Bob Fowler recently gave me a
list of changes that have occurred in
the BBBB bulletin board since I last
wrote about. The first change is that
while access to the board is still
free, Bob has decided to grant file
access to only those folks who help
him keep the board running. To gain
access to the file system, Bob
suggests a donation of $10 per vear.
Given the volume of software and the
availability of TI expertise on this
board, I can say that $10 is a bargain
for anvone who uses it.

Another <change has been the
addition of another message base.
There are now separate messaqe bases
for the TI-99/4A and the 9640, Each
message base holds up to 200 messages.
Further, the BBBB has been upgraded to
now support 2400 bhaud access. ‘

Planned enhancements for the
future include wordwrap in the message
editor and the addition of a 40 wmeg
hard disk for the BBBB to increase the
number of files online for the user
community. As of the 5th of February
(vhen I am writing this), Bob has 260
TI-99/4%2 downloads and 134 9640
downloads online. In addition, there
are 50 text files with articles from
other user groups and general
information for TI users on a vwide
range of subjects.

{Ed. Note: Since this issue went
out so late, in early April, the
number of files online has grown
greatly. Check in on Bob's board to
see the curremnt status as it changes
daily with new uploads by prominent TI
shareware and public domain authors.]

Finally, of the 160 |users
currently using the system, about 75%
are Iong distance callers and 30 are
known to be 9640 users.

So, if you haven't called Bob and
Bill's Bulletin Board with your TI and
your modem, give them a ring at (301)

292-1492. They are a local call to the

DC metropolitan area.

99 Fortran Benchmark Tests
Peter McPhie, MCTIUG

In March of 1987, Stephen GShaw
published a series .of mathematical
programs to evaluate all of the
languages of the 99/4A. Since then, a
new language has become available - 99
Fortran from LGMA Products. As a
scientist, this is the first language
I think of when number-crunching scmes
up, so rewriting some of these
programs seemed like a good way to
evaluate this nev package.

I bought 99 Fortran, version 2.1,
for 550 at Christmas 1987 and since
then have upgraded to version 3.1.3
for another $§15. For your money, you
get a 160 page manual which describes
the language well, but will not teach
you Fortran, plus three 555D disks.
One disk contains the boot program,
menu, editor, debug, compiler, linker,
and a stand-alone run-time module so
you can distribute your programs. The
others contain a collection of
linkable, precompiled subprograms,
routines, and functions. Among these
are 73 mathematical functions and 52
Extended BASIC and assembly language
routines.

¥ith version 3, you can now put
many of the library functions on the
disk with the editor to save alot of
disk juggling. Unfortunately, not all
will fit since a TI disk directory is
limited teo 127 entries.

I sent the original versions of
these programs to Al Beard, the author
of 99 Fortran. Al suggested some
improvements, plus the self-timing
subroutine which I included. I ran all
of these henchmarks aon a black 99/4A
with 32K, TI disk controller, and 2
Tandon drives. Mr. Beard also ran the
programs on a Geneve in TI mode and
got slightly faster times for all of
them, The fastest and slowest times
for other languages are also reported.

The first benchmark evaluvates a
simple mathematical function with
integer variablesg, with 1000 repeats.
It ran with no problems. Memory

March-April

The MANNERS Journal of TI Computing

address 2020 containse the system
clock and can be set to 0 then peeked
to time programs when the disk drives
are not running.

PROGRAM INTMATH
INTEGER I,X,Y,PEEK, IENDTIME
CALL LOADM(Z'Z202A", 0)
¥=19
v =9
WRITE(6,10)

10 FORMAT (' 1START")
DO 20 I =1,1000

20 X=X+ Y - ¥xv/vy
WRITE (6, 30)

10 FORMAT (' FINISH')
WRITE(6,40) X

40 FORMAT {18)
TENDTIME = PEEK(Z'202A')
TENDTIME = TENDTIME/10
WRITE(6,50) 1ENDTIME

50 FORMAT(' TIME = *,18)
STOP
END)

Run Times
v2.1.5 2.5 seconds
vi.l.3 0.5 seconds
CY9 0.5 seconds
Mvarc XB 18.0 seconds

The next program performs a
similar loop but uses real arquments,
which serves to slow thinge down.

PROGRAM REALMATH
INTEGER I,IENDTIME, PEEK
REAL X.Y
CALL LOADM{Z'202i", 0)
=0
Y = 9.9
WRITE(6,10)

10 FORMAT{' 1START')
DO 20 1 = 1,1000

20 X=X +Y - Y*Y/Y
WRITE(S, 30)

30 FORMAT{' FINISH')
WRITE(6,40) X

490 FORMAT(F8.1)
TENDTIME = PEEK(Z2'202a')
IENDTIME = IENDTIME/10
¥RITE(&,50) IENDTIME

Page 213

50 FORMAT(' TIME = ',18)

STOP

END

Run Times

v2.1.5 8 seconds
v3.1.3 14 seconds
TI-XB 22 seconds
Pilot 576 seconds

Benchmark 3 loops through a
complicated trigonometric formula to
check out the accuracy and speed of
the functions called. This program
gives the wrong answer in version
2.1.5 due to an error in ATAN(X) when
X>1, This was corrected in version 3.
Additionally, benchmark results are
given in single precision {$.P.) and
double precision (D.P.)

PROGRAM TRIGLOG
INTEGER I,IENDTIME, PEEK
REAL X,Y,COS, SIN,ATAN,ALOG
CALL LOADM(Z'202a', 0)
X=0
Y =29.9
WRITE(6,10)

10 FORMAT ('1START')
Bo 20 I =1,1000

20 X = COS{ SIN(ATAN(ALOG(Y))}))
WRITE(6,30)

30 FORMAT(® FINISH')
WRITE(6,40) X

40 FORMAT (F8.1)
TENDTIME = PEEK(Z'202A')
IENDTIME = IENDTIME/10
WRITE(6,50) IENDTIME

50 FORMAT (' TIME = ', IB)

5TOP
END
Run Times
v2.1.5
S.P. 670 seconds
D.P. 680 seconds
v3i.1l.3
S.P. 390 seconds
D.P. 400 seconds

March-April

Page 24 The MANNERS Journal of TI Computing
TI-XB 362 seconds TENDTIME = PEEK(Z'202A")
Pilot 1710 Seconds_ ITENDTIME = IENDTIME/10

The most surprising thing about
this proygram is the great similarity
between the less accurate, but usunally
fast single precision mode, where
numbers are represented.by 4 bytes,
and the accurate but slow double
precision mode, where each number is 8

bytes, If vou read the manual
carefully, you'll discover that
FORTRAN 99 only emulates single

precision for input and output, and
that all calculations are carried out
internally as double precision. This
is . where I learned that the
undocumented error message “BAD
REFERENCE" means that a subprogram
that vou used ig not on the library
disk.

The following program was really meant
to use arguments in degrees and
Brigssian (base 10) logs. Most TI
languages only support radians and
natural logs so the routine has to be
rewritten to get the required answer,
with the factors M and L. Note that
FORTRAN 99 does have the functions
LOG10 and DLOG1O but I wrote it this
way to compare with Shaw's routine.
Incidentally, both versions give the
right answer because the argument of
DATAN was less than 1. This example is
written in double precision mede.

PROGRAM DPTLOG
INTEGER T,IENDTIME,PEEK
REAL X,Y,DCOS,DSIN,DATAN,DLOG

REAL M,L

CALL LOADM(Z'202%', 0)
X = 0D0

Y = 9.910

M = 0.01745D0

L = 2.303D0

WRITE(6,10)
10 FORMAT ('1START')
DO 20 1 = 1,1000

20 X = DCOS{M*DSIN{M*DATAN (
+ M*DLOG(Y/L))))
WRITE (6, 30)

30 FORMAT (' FINISH'}
WRITE(6, 420} X
10 FORMAT (F8.3)

WRITE(6,50) IENDTIME

50 FORMAT (' TIME = ',I8)
SToP .
END

Run Times
5

1.
.P. 600 seconds
630 seconds

v

3

-

2.
]
D.P.

3.1.

5.P. 190 seconds

D.P. 410 seconds

TI-XB 386 seconds

TI-BASIC 640 seconds

[Editor's Note - Peter has results and
commentary on another three 99 Fortran
benchmarks. Unfortuntaely, I didn't
have the space to include them in this
issue. Look for the second part of the
"9% Fortran Benchmark Resultg" in the
May-June issue of the newsletter.]

A AAERALE L L L AARAAARAR AR AR IIC RN N K X %Kk k ek

For Sale

1. TI PBox, Disk drive, controller,
RS232 card, 32K card, and TI-Writer

- §275.00
2. TI Writer - 814.00
3. Program recorder witli cassette
cable . - §15.00
4. Serial Printer cable for Smith
Corona printer - $5.00

5. TI Console with manuals, video
modulator, and power supply im origi-

nal box - §35.00
6. TI console (bare) - §20.00
T. TI Joysticks - 88.00
8. Home Computer Magazinee - £1.50 ca.
9. Enthusiast '$9 - §1.00 ea.
10. 99'er Home Computer Magazine

= 81.00 ea.
11. MICROpendium Magazine - $.75 ea.

For more information, call Tom Romig
at (703} 455-9276.

*?***ﬁ“**********k****i***************

March-April

The MANNERS Journal of TI Computing

Page 25

HOW TO BUY NEW FLOPPY DISK DRIVES
Richard Roseen

[Editor's Note: Additional questions
can be directed to Richard through The
MANNERs post office box number listed
on the back of the newsletter.]

1. Check for quality the main
mechanical parts of the drive. They
should be located on a solid die cast
peice of metal. In other words snlid
metal structure throughout as the base
of the drive that holds the motors,
soleniods and other movable parts.
Avoid any drive put together with
metal plates.

2. New drives should be sold to you in
antistatic plastie¢ wrap (nusually
tinted looking) and may have a fitted
styrofoam container, will always be
half height, mnever full height, at
least two sided, at least capable of
360k double sided donbhle density. The
720k 80 track drives are nov getting
rare due to the newer 1.2meq. drives.
The 1.2 meg. drives can be used at
720k (more on that later). New 3.5"
drives are 720k or 1.44 meg. They
should follow the rule of die cast
body as above also. Newer 3.5" drives
will have a thickness much less than a
half height 360k drive. Only the new
Mvarce HFDC has promise of poasible
drivers to support 1.44meg 3.5" or
1.2meqg, 5.25" usge. Certain CorComp
controllers have floppy disk
controller chips that can handle the
1.44 meg data rate, but as for the
device drivers, who knows? No older
Myarc disk controller will be fully
capable of the 1.44 meg. data rate
because of the FDC chips they use.
The above also pretty much applies to
the use of 1.2 meg 5.25" drives. The
5.25" 1.2meg and 3.5" 1.44 meg. drives
can be used for 720k storage with the
eprom driver support of the two Myarc
controllers; however, if disk rotation
speed cannot be jumpered through lack
of information on the drive options,
vou would be forced to live with odd

ball 720k format diszks only readable
by someone else with 720k capability
and 3.5" 1.44 meg. or 5.25" 1.2meq.
drives.

4. The newest drives always ‘tave a
directly driven disk rotation motor.
This means vou will not see any belt
driven disk rotation.

5. Warrantee's: ask what the
manufacturer's warrentee 1is, The
wvarrentee should be at least one vyear
from date of purchase. Also, check to
see what the seller's guarantee is on
the drive. Typically the seller's
guarantee 1is full replacement for 30
to 90 days, in addition to the one
year manufacturer's warrentee. The
warrantee will give vou plenty of time
to verity that you do not have a lemon
drive.

6. Get the seller's business cvard with
address and phone. Get a receipt in
which you and the seller have a copy
which must contain the serial number
of drives bought and date as well as
the cost. If the seller's address is
on the receipt clearly that will
substitute for the business card.
These requirements are necessary for
the manufacture's warrentee and so you
can later find the seller or
manufacture for information. It is not
alwavs possible that the seller has
info on the drive, but it will not
hurt to ask for data manuals or
schematics.

7. For quality look for heads mounted
on assemblies that are mounted to move
solidly not Jjerkily such as on two
rails instead of one. For low
mechanical noise or 1low clattering
{increased reliability and longer
life} 1ook for solid movement of the
head assembly by a stepper motor
through two following exampees:
stepper motor that drives a screw
shaft or two straps that wind on ot
cff the stepper motor shaft and on or
off of the head assemhly as the heads
move in either direction. Heads take
the biggest beating in floppies and

March-April

Page 26

The MANNERS Journal of TT Computing

more often involved in alignment of a
drive. An example of the stepper
motor that drives a screw shaft is the
3.5" 720k Chinnon and Fujitsa. An
example of the strap that winds on or
off the stepper motor shaft and on or
off the head assembly is the Mitsumi
360k 5.25" drives.

8. 13.5" drives can be hooked up bare
without the 5.25" bracket with 34 pin
socket IDC {insertion displacement
connector) connected to the square
pins on the 3.5" drive. If this is
done then the odd ball but findable 4
pin 3.5" drive power connector must be
used. These are odd ball because they
are not the same as the 5.25" drive
power connectors. These connectors do
not have a polarity tabs and can make
difficult getting the proper polarity
or orientation of the connector to
plug in. Go for the works get the
5.25" bracket and the card edge
adapter board that includes standard
5.25" power connector. These adapters
may have a jumper for use on PC XT or
AT clones, be sure to select XT.

9. Unless you have help from a Guru or
user who has successfully installed
and used the same drives, then get
info from the seller or manufacturer
on drive gelects, other jumper options
or features, and resistor packs. On
some new drives the resistor pack is
permenantly soldered to a high density
logic board with a jumper to disable
or enable the use of the resistor pack
for installation as lesser drive or
drives on the chain. If such a drive
is the last drive in a chain whose
other resistor packs can be removed,
there is no problem.

10. Buy or at least shop for any drive
Or power connectors or power SUDDIiES
Qr <cases as you may or may not need
depending on what vou already have,

11. The least expengive power
supplies, drive connectors, cables,
ete. are sold by venders selling chips
and electronic parts, not by the
dealers of floppy drives. The chip

parts dealer will have alot of the
necessary parts for homebuilt linear
supplies at the lowest total cost of
parts. A general list for a linear
supply is a transformer, AC line cord
and plug, switch, filter capacitor
rated above 2200uF {(micro farads},
bridge reectifier or diodes, linear
regulators both % and 12 veolt.

12. Power requirements: some 3.5"
drives require less that 1 amp for 5
and 12 volts. Some 3.5" drives are
very low povwer and some require only a
5 volt supply. 3.5" drives require the
least power. WNew 5.25" half theight
drives never require more than 1 amp
on 5 and 12 velt lines and can be 4as
low 1/2 amp. on the 5 and 12 volt
line. Add the amperage required for
each drive for each % and 12 volt line
to check vour power supply needs for
your drives. Drives can be powered
separatelvy because the 34 npin cable
will carry the common logic signal
ground between all drives on the the
train and the computer. If building a
linear supply be sure the transformer,
bridge rectifier diodes and linear
requiator exceed your amperage needs.
The transformer should be at least
12.6 VAC RMS and 6.3 7 VAC RMS
(transformers are commonly rated with
RMS voltage at their secondaries).

This 1information was kept as
general as possible so as to guide the
4A buver. My preferences are Mitsumi
drives 3.5" and 5.25" any density.
These drives are the most quiet drives
you WILL ever hear. They have a jumper
block to enable disable the registor
pack though have not verified the
identity of the jumper as of vyet.
Another preference are the NEC 1036
3.5" 720k drives. Thev are small,
quiet and durably solid, and like any
other 3.5" drive lightweight and 1low
power. Also, 1 recommend Chinnon 3.5"
720k drives. These are much the same
as the NEC drives except for screw
shaft stepper motoer and extremely low
power and 5 volt only operation make
it better. These drives may be the
lowest power in the industrv.

March-April

The MANNERS Journal of TI Computing Page 27

DOWNLOADED FROM THE SUPER OOPS BBS. SYSOP: RALPH JOHNSON

* Assembly language Level 2 routine table created by
* Ralph T. Johnson (01/31/89)

* DSKx | ¥DSx (on Myarc HFDCC only) |
e LT | = m e :
*3»10 SECTOR READ/WRITE 1>20 SECTOR READ/WRITE !
*3>11 FORMAT "1»21 --- NOT SUPPORTED ——- {
*>12 MODIFY FILE PROTECTION |>22 MODIFY FILE PROTECTION |
*>13 FILE/SUBDIR. RENAME |>23 FILE/SUBDIRECTORY RENAME]
*y14 DIRECT FILE INPUT {EXT)!>24 DIRECT FILE IXKPUT (EXT)!
*>15 DIRECT FILE OUTPUT(EXT) {>25 DIRECT FILE OUTPUT (EXT) |

*>16 BUFFER ALLOCATION 1>26 --- NOT SUPPORTED --- |
*>17 -—— NOT SUPPORTED --- |>27 SET CURRENT PATHNAME i
*>18 --- NOT SUPPORTED --~ 1>28 CREATE SUBDIRECTORY |
*>19 --- NOT SUPPORTED --- |[>29 DELETE SUBDIRECTORY !
K e e e e
* OPERATION PERFORMED

* 110111112113114115116)20122123124125127128129!}

F J— e e e I
*>834A Jlallbl 1 1) 0 b b b bbb

>8350 |5ai5b! |5¢1541541 I5al {5c¢i5d}5d! | | | Error codes returned
A e —————— o |* here
8362 1 L I b b L e by

* la--Sector number returned

* 1b—Total sectors formatted
2a--Dovice number (if MSB is set, file buffer is in CPU)
2b--Device number
2c—-Device number (if MSB is set, filename or pathname is in CPU)
2d--Device number (if M5B is set, filename & buffer are in CPU)
2e--Number of files to reserve buffer space (like call files)
3Ja--Read/Write flag. If O then write. If not 0 then read.
3b——Number of tracks on a format
3c--File protect flag. O=Unprotect, ¢(>0=Protect
3d--0=Open file and Transfer file params, or its the § of

sectors to transfer.

Je--0=Create file and copy additional info, or # of sectors to transfer.

4a--Buffer start address {can be VDP or CPU)
* 4b--Pointer to 10 character filename padded to the right with spaces.

O F X R Xk X E N R

*

March~April

Page 2R The MANNERS Journal of T! Computing

* 4c--Pointer to NEW filename/directory
4d--Pointer to 40 character pathname

*

5a--Sector number
5b—-{MSB) 0 & 1=Single dens., 2=Double dens., 3=High dens. (LSB)} ¥ of sides.
he--Pointer to OLD filename/directory

5d--Pointer to addltlonal file info
K . . i m om om e —m e e e e e e e e = s

* A * F

* *g* MSB sector number for sectors above 65534
*****************k****k****t**k*****************#**?t*****t******ﬁ******ktt****to

Additional info used on 14,15,24, & 25 (pointed to at ~8350)

»83xx Buffer start address

»83xx+2 Number of first sector

>83xx+4 {(MSB} file status, (LSB) Number of records per sector.

y83xx+6 (MSB) EOF offset, {(LSB) Logical record size

»83xx+8 Number of level 3 records

»83xx+10 (MSB) MSB of first sector, (LSB) MSB of level 3 records allocated.

»83xx+12 Extended records length.
*******t**k***k****k***************kk***************k?*****?******?%**%**kf*****o

* %X ¥ X ¥ N x N %

The MANNERS Journal of TI Computing

PO Box 4005

Rockvwille, MD 20850

Datlas TI Home Computer Grp
P O Box 29843
Dallas TX 73522%

12/31/9% =

March-April

