GRAN KRACKER &)

COMBPILLED FOR THE LH BS3ERS
BH MIKE DODD

@ 1987 BY

LA 99ERS COMPUTER GROUF
P.O0.B. 3547 GRARIENA CA 290247

TARLE OF GCOQINTENTS

Introduction to Kracker Facts.......... te s ear v 1

Introduction to GPL Ccode€.rcvvvrrrrerrrrrrrrennsrrvrersrs L
by Ccraig Miller

Explanation of the GPL XML statement........co.cc0.0.. 3
by Craig Miller

Programming examples of the GPL MOVE statement....... 4
by Craig Miller

CALL CAT GPL source Code....ticceensosans i s e maeaaa e 7
by Cralg Miller
Extended BASIC auto-load bypass patch..... v e s o s an o ee 14

by Craig Miller
Notes on ROM/RAM space at >6000 - >T7FPFF. .. s a0 eass 15
by Craig Millez

Changing the BEEP and HONK sSounds......ccoo00a0eevauas 16
by Mike Dodd |

Redesigning the title screen.......... P X
by Wwalt Howe

Changing the keyboard........ et s s s e s et s e s e e s .. 18
by Mike Dodd

Notes on MYARC XB II and the GRAM Kracker............ 18
by Cralg Mlller

Disabling the MYARC RAM-disk power up routine........ 139
by Mike Docdd

Checking the write protect switch In XB............. . 18
by Mike Dodd

Changing the Extended BASIC LIST width............... 20
by Craig Millerz

CALL INIT correction.....eoceeviceneennes b e ae s as e 21
by Cralg Mlller

Changing the cursor shape in XB, BASIC, & E/A........ 21
by Mike Dodd

GK Utility I enhancements and modifications.......... 21
by Tom Freeman

Extended BASIC program loader......+ccs0tcaseess veees 24
by Mike Dodd and Tom Freeman

WRTGRM - a routine to write to GRAM from XB..... vaeee 25
by Mike Dodd |

E/A-GRAMDSK information......... Gt e s essen e noen crvssees 27
by Craig Miller

Changing the cursor in E/A-GRAMDSK..... ce e s e e e . 27
by Tom Freeman

Changing the default drive in E/A and TI-Writer...... 28

by Tom Freeman
Changing Disk Manager II to accept nine drives....... 293
by Tom Freeman

Early Logo Learning Fun f£ix............. cecrrevnerens 29
by Craig Miller

Video Chess flillename entry.......... Gt e e e s s s e s s e s e 30
by Mike Dodd

TIW-MOVER f£ix...... s e s e e s e e e v e r e e aetaer e e as sy .. 30

by Cralg Millerx
Removing foreign languge options from TI-Writer & DM2 31
by Mike Dodd

GRAM Packer RinNES. .. c it i aeceecoeecssssesssos s C ke s e e 31
by Tom Freeman
GRAM Packer ald. ... i coceeeeoocosnes v o e w e e e e e e e e e 32

by Mike Dodd

INTRODUCTION TO KRACKER FACTS

Bver since the GRAM Kracker was released in late 1385, people have come up with
many changes to the operating system and the cartridges. Some were uploaded to
CompuServe, some to GEnie, some were published in newsletters, and some were Just
nassed around by word of mouth. Unfortunately, there was no one place that someone

could look foxr ail of the changes.
vhen MG released Danny Michael's excellent GK Utility I disk, it was very helpful
- many changes on one disk, ready to run. But there were still many changes that

people had made, and they were sgscattered all over the four corners of the TI

community.
This booklet, Kracker Facts, is an attempt by the Los Angeles 33er Users' Group

to assemble 211 of the articles and modifications for the GRAM Kracker in one

publication.
In hers are articles by Tom Freeman, Millers Graphics (Craig Miller and D.C.

Wwarren), Mike Dodd, and Walt Howe. All are targeted towards getting more cut of your
GRAM Kracker. We hope you enjoy thenm.

----—----ﬂ----_-----—ﬂﬂ'ﬂ--_--------——--'_-----'I-'---P-I----_-----i---i-ﬂ_i-----------‘-ﬂ‘

A LITTLE INTRODUCTION 7O GPL CCDE
by Craig Miller (MG)

We thought you might like to see what a powerful and compact language GPL code
is. With the GRAM KRACKER and a GPL Assembler you will be abie to write programs that
can reslide in the Module space and will be displayed on your Main Menu as a selection.
GPL can alsoc link to Assembly and BASIC programs! So you will have FULL use of the
THREE built-in lanquages in our 4As (Basic, GPL and Assembly). Eat your hearts out

all you Atari, Commodore, IBM and other computer owners!

* Disassembly of part of the Editor/Assembler Module *
* 3tarting at Grom >6069% thru >6132 *

>6069 MOVE 7 FROM GAREGDAT TC VRO1 Load the Vdp registers

CALL CHKMEM Go check for memory expansion and
load the {(C) character data

MOVE 16 FROM GA&CURSOR TO VA>(08F0 Load the box and solid cursaor data

* Put up the first Menu 3Screen

3T >78,Q8UB3TX Initialize the Sub Return stack pointer
DCLR HAERRCODE Zero out A/L Error Code lndicator

DCLR QGROMFLG Zero the Grom Flag

ALL SPACE ' Clear the screen with space characters
FPMT Start formatted screen output

ROW 2 At row Z

¥XRACKER FACTS - PAGE 1

COL 1 At column 1 (note 0,0 is home position)

HTEXT '* EDITOR/ASSEMBLER * Put up horizontal text

ROW+ 2 At current row plus 2

COL 1 At column 1

HTEXT 'PRESS:' :

ROW+ 2 :

COL 2 ,

HTEXT '1 TO EDIT' . etc,

ROW+ 2 Note: VTEXT, HCHAR, VCHAR are also

coL, 2 allowed in a FMT, so is

HTEXT !'2 ASSEMBLE' FPOR xx - where xx equals

ROW+ 2 the repeat loop counter

COL 2

HTEXT '3 LOAD AND RUN'

ROW+ 2

coL 2

HTEXT '4 RUN'

ROW+ 2

COL 2

HTEXT '5 RUN PROGRAM FILE'

ROW+ 6

COL 2

HTEXT >0A »0A 1is the (C) character

HTBXT '1381 TEXAS INSTRUMENTS'

FEND End the formatted screen ocutput
GETXY SCAN 3can the keyboard for a key press

BR GRTKY BR (Branch on Reset) no NEW key pressed

CEQ PFPCTNI, eKEY Was PCTN 2 (Back) Pressed

BR GETKY1 NO! check the other keys

EXIT YES| Bxecute the Power Up routine
GETKY1 SUB >31,8KEY Subtract >31 from the keycode (0 - ?)

CHE >05,8KEY If it's now Higher than 4 - wrong key

83 GETKY 30, go wait for another key press

CASE @&KEY Otherwise if RAKEY equals

BR EDIT 0 - goto Edit Menu

BR ASSEM 1l - goto Load Assembler Erompt

BR LODRUN 2 - goto Load and Run prompt

BR RUN 3 - goto Run Program prompt

BR RUNPRG 4 - goto Kun Program File prompt

Notes:

The above code only requires 202 bytes of memory and that includes 113 bytes of
text! 3¢ that means the actual inatruction code only uses 83 bytes of memory! There
isn't another language available for our 99/4As that is as compact as GPL. And, when
compared to Assembly, it is much easier to program in., This {s THE Language that TI
should have released to us in the first place!

Most instructions can work with bytes or worda. The D in front of an instruction
indicates a word operation. The first operand to is SOURCE and the second is the
DESTINATION. le: ST >03,dTEMPl stores one byte with the value o¢f 3 Iinto location
TEMP1.

The COND bit in the GPL Status register (>837C) is turned ON if the test is TRUE
and OFF when PALSE, [t is also turned on when a NEW key is pressed on a keyboard scan

KRACKER FACTS - PAGE 2

or when the result of certaln lnstxuctions is zero.
BR = Branch On Reset... or Branch lf the COND bit in the GPL 3tatus register is

OF¥

BS = Branch On Set..... or Branch if the COND bit in the GPL Status register is
Ol

CASE s like ON X GOTO except it starts at zero instead of 1 (Note: the
COND bit is always turned OFF (resset) for a CASE or DCASE)

A CALL works like a GOSUB or Assembly's BL (Branch and Link)

'ALL' fills the screen with the one byte character following the instruction.
(That's right only 2 bytes to clear the screeni!i!)

MOVE Is a very powerful GPL instruction. VWith It you can MOVE x number of bdytes
FROM any type of memory TO any type of memory You can also move bytes to the VDP
Registers! The MOVE instruction only requires 6 to 7 bytes for its object code!

SCAN (to scan the keyboard) only requires 1 byte of object code!!! (SCAN = >03)

Speed Test:
We ran the old 1 to 10,000 timing test in GPL to see how it compares to the other

langquages and here s how {t came out.
1. In an incrementing loop with a DCEQ {double Compare Equal} 6.8 seconds.
2. In a decrementing loop [no compare just BR {not zero}l 4.3 seconds.

As we have seen from previous tests thls places third on the list.
1. Assembly - well under .5 second

2. Forth - approx 1.3 seconds

3. GPL - 4,3 to 6.8 seconds

4. Pascal - I think this is where it falls
4, XB - 33.9 =zeconds

5. Baslc - weeks (just kidding)

Since its not as fast as Assembly or Forth you are probably wondering why we ars
so excited about GPL?! True, a CRAY 3 it's not. However, it requires LESS THAN one
half the space of Assembly code! With the Gzam Kracker you have up to 58K of GPL
program space (with 6K reserved for the Operating System), which would require AT
LEAST 116K of Assembly code. This still leaves ALL of memory expansion free plus the
16K of cartridge RAM free <for other things or for Assembly routines for your GPL
programs to link to (another 48K). That gives us a TOTAL program space of 106K plus
16K of VDP Ram for a total of 122K (128K with the Operating System area). Also with
GPL you can EXPAND or modify existing Modules. And, last but certainly not least, GPL

is the controlling langquage for our 4As, 50 now you make it do most anything you want!

Start thinking about those changes you've wanted to make for the last 6 years, vyour
thance is comingl!!

-#—ﬂ__--‘----------—--ﬂ—-—-—-------_---ﬂ-ﬂ#__-ﬂ----—--__---_-__—-—------—-_-ﬂ——---—- " A - ol

AN EXPLANATION OF THE GPL XMi. INSTRUCTION
by Craig Millaer (MG)

If you are using Gram to store an Assembly file in that is MOVEd ocut by a CALL or
a GPL program (patch) you can start the Assembly program with a GPL XML =statement.

The Opcode for GPL XML is >0F xx - where xx represents the XML table to use for
the 3tart vector (S5ee the Explorer Manual page 77 for the XML tables)}. For example
let's say you used a GPL MOVE to move an 8K assembly program out of Gram 7 (>E000) to
high Memory BExpansion and now you want to go out of GPL and execute your Assembly
program. Let's say that your Assembly program starts at address >A040, this could be

KRACKER FACTS - PAGE 3

the code you could use to do this task.

31 20 00 MYPROG MOVE >2000,G&>B000,8>A000

8fF 1D 00

B0 00

BF 00 AO DST »A040,8>8300 (store start address)
40

OF FO XML >»F0 {go to »>8300 to get start address)
00 RTN

Wwhen your Assembly program is finished you can then B @>006A to go back to the
GPL Interpretsr. Don't forget to reset the Grom Address 1f your Assembly program
changed [t. Wwhen the GPL Interpreter starts back up it will grab the >00 opcode (RTN)
and return from the CALL MYPROG that you set up somewhere else in Gram to start the
above routine. By the way, the Opcode for a CALL is >36 so the CALL MYPROG would be

06 xx xx where xx XX = the address in Gram where you placed the above code.

-*_--*#---_----ﬂ.—-L‘--_-_-—--“----—-------_---lﬂﬂ---_ﬂ-‘_l—--__---“-----——*—--—-‘_--ﬂﬂ‘

PROGRAMMING EXAMPLES DOF THE GPL "MOVE" INSTRUCTION
by Craig Miller (MG)

,isted below are a number of examples of the GPL MOVE statement. This is a LIST
file generated by the GPL Assembler.

when the GPL Interpreter talks to CPU Memory it offsets the CPU address by >8300.
™is can be seen in the OPCODBS for the third move atatement which breaks down as

Eollows:

»35 MOVE

1234 >1234 bytes

»8F to CPU Memory (non-indexed) (>AF = VDP memory)
>9000 at >2000 (>9000+>8300=>2000)

>8F from CPU Memory {(non-indexed)

>1D0¢ at >A000 (>1D00+>8300=>A000)

when the GPL Interpreter talks to CPU Scratch Pad Memory Below »8380 or when a
3crateh Pad address is used for indexing it is referenced by one byte [(i.e. >831F
will appear as >1F ln the Opcode).

99/4 GPL-ASSEMBLER (Pass 1)} correct PAGE 0001
GROM 3 - MOVE TEST

<Q001L>

Q002> GROM 3

{0003> AORG 0

<0004

<0005> * GPL MOVE STATEMENT

<00Q6> x

{0007> * MOVE Bbytes,source,destination
<0008> X

<0009> 6000 21,12,34 MOVE >1234,GR>C000,Ga>E000

6003 E0,00,CO

KRACKER FACTS - PAGE 4

<0010>

<0011>

{00125

<0013>

<0014>
<0015>

<0016>

<0017>

<0018>

{0019>
{00290>

00215

<0022>

<0023>

<0024>
<0025>

<0026>

Q027>

<0028>

<0029%>

<0030>
<0031>
<0032>
<0033>
{0034>
0035>
<0036>

6006
6007
600A

600D
6010
5013
6016
6019
6Q1C
601F
6020
6023
6026

6028
602B
602E
6030
6333
6036
6038
603B
603E
6041
6044

5045
6048
604B
604D
6050
6053
6356
60593
605C
605D
6060
6063

6065
6068
606B
606D
6070
6073
60756
6079
6078
6078
6081
6082
6085

831F
839E

6088

00
35,12, 34
AF, 30,00
AF, 10,00
35,12, 34
8F, 9D, 00
8F, 1D, 00
35,12, 34
17, 87, 1D
00
35,12, 34
80,98, 8F
1D, 00

31,12, 34
AR, 30,00
cg,00
31,12, 34
8F, 9D, 00
co, 00
31,12, 34
1¥,C0,00
31,12, 34
30,98, CO0
00

25,12, 34
0,00, AP
10,00
15,12, 34
8¥, 90,00
AF, 10,00
35,12, 34
1F,AF,10
00
35,12,34
80,98, AP
10,00

25,12, 34
C0,00,8F
9D, 00
35,12,34
AF, 10,00
aF, 9D, 00
35,12, 34
¥, 1F
35,12, 34
30, AR, 80
9
35,12, 34
1F,80,9E

29,12,34

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

HOVE

MOVE

TEMP1 EQU
TEMP2 EQU >833E

MOVE

>1234,V@>1000,va>3000

>1234,@>A000,@> 2000

>1234,@>A000,8>831F

»1234,@>A000,@>839E

>1234,G@>C000, VE>3000

»1234,G8>C000,@>2000

>1234,G@>C000,8>831F

»>1234,G@>C000,@>833E

>1234,Va>1000,G&>C000

>1234,V@>1000,@>2000

51234,V@>1000,@>831F

>1234,Va>1000,8>839E

»1234,8>2000,Ga>C000

>1234,8>2000,V&>1000

»>1234,8>831F,85837F

1234, 8>839E, 8>83AR

>1234,0>839E, >831F

* INDEXED MOVES --—-==—mm—mm==————mmma e oo m o

>831F

>1234,G&>C000,GA2{ATEMP2)

KRACKER FACTS - PAGE 5

<0037>

00385

<0039>

<0040>

<0041>
<0042>

<0043>

<0044>

<0045>
0046>
C0047>
(0048>

<0049,

<0050>

<0051>

<0052>
<0053>

<0954>

<00S5>
<0056>

---‘'_-----_---——-_---—-#-_--—-—ﬂ—.----*ﬂ----——-__—_——“----——ﬂ—_---—-—-#
mhlls T T W =gl whil Gl - T -

6088
608E
6090
6033
6096
6098
6098
609E
60A1
60A4

60A7
60A9
60AC
60AF

6082
6085
6088
60BB
60BE
60C1
60C4
60C7
60CA
60CD

60CF
6002
60D5
60D6
6009
50DC
60DD
6080
60E3
60ES
50E8
60EB

50ED
60FQ
60F 3
60F6
60F8
60FB
60FE

00,02, 9E
cs, 00

31,12, 34
£0,02,9E
co, 00

31,12, 34
CF, D, 02
98, C0,00
31,12, 34
co,0F, 17
cg, 00

28,12, 34
00,02, 9E
00,01,1F

20,12, 34
00,02,9E
8F,1D, 00
35,12, 34
20,02,9E
B0,01,1F
35,12, 34
CF, 70,02
98, C¥, 7D
01,1F

31,12, 34
80,98, CO
00
31,12, 34
90, 9K, CO
00
31,12, 34
09, 0F, 1P
co, 00
13,12, 34
90, 98,00
01,1F

35,12, 34
FF,7D,02
9E,FF, D
01,1F
35,12, 34
30, 98, 90
1P

MOVE

MOVE

MOVE

MOVE

MOVE

HOVE

MOVE

MOVE

HMOVE

MCVE

MOVE

MOVE

MOVE

END

»1234,G@8>C000,VA2(ATEMP2)

»1234,G@>C000,82(ATEMP2)

>1234,G8>C000,8>830F (ATEMP])

>1234,GR1(QTEMP1) ,GR2 (ATEMPZ)

51234, @>A000,GA2(@TEMP2)

>1234,VR1(ATEMPL1} ,VRZ{QTEMP 2]

>1234,81{ATEMP1)} ,82(ATEMP2)

£ INDIRECT MOVES -=ve—-—=mem————mocomea—m——————

»1234,G@>C000, VX*TEMP 2

»1234,GA>C000, *TEMP2

»>1234,G8>C000,*>830F (ATEMPL)

»1234,G@81{@TENMP1) , *TEMP2

>1234,V*1{QTEMPL) ,V*2(QTENP2)

51234, *TEMP1, *TEMP2

KRACKER FPACT3 - PAGE 6

“CALL. CAT" SPL SCOURCE CODE
by Craig Miller (M3)

The following file is a LIST file from the GPL Assembler. We uploaded it to give
you an example of a GPL progqram that is on the £inal Gram Kracker Utliity diskette,
This 18 a new CALL for Extended Basic that will patch ltself to XB version 110. The
call is CALL CAT("DSK1.")} to catalog the floppy in drive L. This cataloger will also
support other divices that contain a "CATALOG" routine such as the MYARC Hard Disk and
the MYARC RAM dizk.

By comparing the OPCODEs in the third column with other Grom/Gram code you should
be able find out what is going on in other modules and in Grom 4.

Hope this flle helps you understand GPL a little more. Have fun.

TI99/4 GPL-ASSEMBLER

GROM 6 - XB Cat 12,17,85

<QQ01> GROM 6

<0002> AORG >1C00 * Routine lvads at GRAM >DCOC
<0Q03>

<0004> *

<0005 * Absolute equates into version 110 X~BASIC cartridge
<0006> X

(Q30G7> 5473 CHKEND BQU >6A78 Routine to check end of statement
<0Q008> 6D738 ERR BQU >6D78 Brror routline

<0009> (€533 BRRSYN EQU >C533 SINTAX error

{D010> CH992 BRRCIP BQU >C592 COMMAND ILLEGAL IN PROGRAM arror
<0011> CS9A BERRBA EQU >C593) BAD ARGUMENT error

<0012> *

<G013> * PAD equates

<0014> X

<G015> 8304 PABPTR EBQU >8304 PAB pointer register

(0016> 3310 TEMP BEQU >3310 Temporary registers

<0017> 8312 TEMP1 EQU >8312 .

<0018> 8314 TEMPZ BQU >8314 .

<0019> 8342 CHAT EQU >8342 Last character register
<0020> 8344 RUN EQU >8344 Running proqram flagq

<0021> 8356 NMPNTR BQU >8356 DSR name length pointer
<0022> 8375 KEY BQU >8375 Key code returned by key acan
<0023> %

Q024> * XML equates (nto X-BASIC cartridge

<0025> x

<0026> 0073 CNS BQU >73 Convert floating to string
<0G827> G074 PARSE BQU »>74 Parse routine

{0028> 0079 PGMCH EQU >79 Advance character routine
{0029> 0083 SCROLL EQU >83 Screen scroll routine

{0030> %

<0031> ¥ YDP equates

<0032> *

£0033> 0820 PAB EQU >(820 PAB. Crunch buffer area
(G034> 0836 VBUFF BQU >0836 Buffer location

{0035> 0828 VLENA EQU >0828 File name length in crunch buffer
<0036> 0829 VLENB BEQU >082% File name length Lo PAB
<0037> 08CA RCLBUF EQU >08CA Recall buffer address

<0038> *

<3039 * Misc. equates

<0040> x

KRACKER

FACTS ~ PAGE 7

{0041>
<0042>
{00435
{0044>
<0045>
<0046>
<0047
<0048>
<0049>

<0050>

<0031>
£0052>
0033>
<0054>
£0055>
<0056>
<0057>
<0058>
<0059>
<0060>
<0061>
<0062>
0063>
{0064>
<0065>
<0066>
0067>
<0068>
{0069>
<070
Q071>
<C072>
<0073>
Q074>
<0075>
<0076>
<0775
<0078>
<0079>
<0080>
<0081>
<0082>
<0083>
<0084>
<0085>
<0086>

<0087>
<0088>
<0089>5
<0030G>

<00%1>
<0092>
<0093>
<0094>
£0095>

G0Bé
DOB?
020D
010D
0020
0002
0012

pCOQ
DCO2

DC{4
DCO7?

DCO3

DCOB
RCOD

DCOE
DC1l

DC13
DC15

DC17
DClA

DC1C
DCLF

DC21
DC23
DC26
DC27
DCZA

DC2C
DC2F
DC32

DC35
DC37

DC39
DC3C

8%, 44
15,92

D6,42,87
45,33

P, 74
B6

D6,4C, 65
45,9%A

8F, 50
65,9A

C6,51,08
65,9A

D6,42,86
45,33

86,10
BC,11,A8
i8

8D, 14,10
91,10

35,00,01
£8,28,10
E8,27,10

93,10
5C, 2C

31,00, 09
AS,20,DE

RPAR
LPAR
READ

CLO3E
SPACE
FCTN4

RRTN
%

T E+233 3222330333533 3348323240300 802202ttt Rt

X-BASIC DEVICE CATALOGER

,oads at GRAM address >DC00
Accessed with a CALL
PAB is installed in Crunch buffer area

z
4
¥
)
4
x
b ¢
®

CAT

4

* Set up PAB at V>820

EQU
EQU
EQU
QU
EQU
EQU
EQU

Cl
BR

CEQ
BR

XML

XML
BYTE

CEQ
BR

DCZ
BS

CH
BS

CEQ
BR

>B6
>B7
»>020D
>Q10D
>20
>32
>0012

p.C. ¥Warren 12/17/85

2 i ii2228222224233333333 ¢33 83422232200ttt

RRUM

ERRCIP

LPAR, @CHAT
BRRSIN

PGMCH

PARSE
RPAR *

>65, QFAC+2

ERRBA

AFAC+6
ERRBA

11,8FAC+7

ERRBA

RPAR, @CHAT
ERRSYN

Right paren. token
Left paren. token
DSR read code

DSR close code

Space char.

CLEAR char.

GROM O return routine

Is a program running?
YES! Brror so tell user

Do we have a '(' ?
NO! SYNTAX error

Advance program polinter
Parse to '}'

Do we have a string?
NC! Bad Arqument

Is it a null string?
YES! Bad Argument

pon't allow device name
greater than ll1 chars.

Last char a ')'?
NQ! Syntax error

* The next 7 lines move the name over one byte!!

CAT1

CLR
ST

DST QTEMP,RTEMP2

ATEMP

VRVLENA, ATEMP+1

DINC QTEMP

Get nama length

Save name length
AdjustC TEMP

MOVE 1,VAVLENA-1(QTEMP), VAVLENA(RTEMP} Move a

DDEC QTEMP

BR

MOVE 9,GRPABDAT, VAPAB

CAT1

* byte over
Keep going until whole
name is moved

Install PAB

KRACKER FACTS - PAGE 8

<Q096>
<0097>
<0098>
<0099>

<0100>
<0101>
<0102>
<0103>

<0104>
<0105>
<0106>
<0107>
<0108>
<0109>

<0110>
<011il>
<0112>
<0113
<0114>
<0115>

{0116>
0117>
<0118>
<0119>

<0l1l20>
<0121>
{0122>
<0123>

<0124>
<0125
<0126>
<0127>

DCIF

DC40

DC43
DC46
DC42

DC4B
DCA4D
DC50

DC33
DC54
DCS6
DCS58
DCSA
DC5D
BC60
DCH3

DCES
DC68
DC638
DC6B
DC6E
DCT1
DC74
DC77
DC7A
DC7D

DC7F¥
DC80
DC82
DC85
DC838
DC8B
DCSE
DCA1
DC34
DCIT
DCIA
DCSD

DCAD
DCAl
DCA3
DCAb
DCA9
DCAC
DCAF
pCa

38

06,D8,23

BF, A8, 20
06,DE, 23

67,80
34,14,A2

08

FC, 60
FE,14
FF,09
09,20, 44
69,73,6B
68,61, 6D
65, 30D

AQ

FF, 02
15,41, 76
61,69, 6C
61,62,6C
§5,3D,20
20, 20, 20
20,20,20
55,73,65
64,30

AQ
FF,Q02

1C, 20, 46
69,6C,65
6E,51,6D
§5,20,20
53,69, 7A
65,20,20
20,20, 54
19,70, 65
20,20,20
20,20,50

AQ

FF, 02
ic,2D,2D
2D, 2D, 2D
2D, 2D, 2D
2D, 2D, 20
2D, 2D, 2D
20,20, 20

 ;

* Open Device
x

CALL DSRER Link to device

X

* Read first record

DST READ, VRPAB Make PAB a read

CAT?Z CALL DSRER Link to device
%

* Put disk information on the screen
x

ALL >80 Clear screen
MOVE RTEMPZ,VARCLBUF,V@>282 Put device name up

FMT
SCRO
ROW
COL
HTEX

>60
20
09
' Diskname='

ROW+ 1
COL 2

HTEX ‘'Available= Used="

ROW+ 1
COL 2

HTEX " Filename Size Type p!

ROW+ 1
CoL 2
HTRY '-—-ecmmeem mmsm mcmmc—mme——— _ 4

KRACKER FACTS - PAGE 9

<0128>
<0129>
<01390>
{0131>
<0132>
<0133>

<0134>
<0135>
<0136>
<0137>
<0138>
<0139
<0140>
<0141>

<0142>
<0143>
{0144>
{0145>
<0146>
Q147>

<0148>

<014%>
{0150>
<0151>
01525
<0153>

<0154>

<0155>
<0156>

01575
<0158>
<0159>
<0160>
<016l>
<0162>
<0163>
{0l64>
<0165>
<0166>
<0167>
<0168>
<1635
<0170>
<0171>
Q172>
<0173>
Q174>
{01755
<0176>
<0177>

DCB5
DCa8
DCBB
DCBE
DCC1

DCC2

DCCS
DCC?

DCC3

2D, 2b,2D
20,2D,2D
2D, 2D,2D
2D,20,2D
FB

06, DB, 00
BE, 4B
¢, D3

(]

DCCA FC, 60

DCCC
DCCE
DCDO
DCDZ

DCD3
DCD6
DCD9
DCDA
OCBD
DCDE

DCE1
DCEA
DCES
DCES
DCEB
DCED
DCFO
DCF1

DCF 4
DC?5
DCF7
DCFA
DCFC
DCFF

DDO1
DDO2
DD04
DDQ7
DDO9

DOOC

DDOE

FE, 14
FF,614
E3, 4C
FB

Al,10, 4A
A3,10,00
13
BF, 14,02
AC
06,0D,E4

A7,10,00
09
35,00,08
5¢, 80,10
OF, 07
BF, 14,02
B8
06,DD,EA

03

SD, 0B
D6,75,02
D, C2
D6,75,20
5D, 08

03

50,01
D6,75,02
0,2
D6,75,20
59,01

OF, 83

* put disk name on screen

T

FEND

CALL
CZ
BS

FNT

DISSTR
AFAC+H]
CAT3

SCRQ >60

ROW

CQL

20
20

HSTR 10, @PACH2

FEND

Get string 1nto FAC
Skip 1£ zero length

Put disk name on screen

¥

t Display AVAILABLE device space on screen

x
CAT3

b 4

DADD

@FAC, ATEMP

DADD 19,8TEMP

DST

CALL

»2AC, ATEMPY

DISNUM

Go to next £field
Contlnue to last field

Set up screen address

Display AVAILABLE space

* Display USED device space on the screen

|

* List

CAT4

CAT4A

CAT4B

DSUB

MOVE 8, VXTEMP, RARG

XML

DST >2B8,ATEMP2

CALL

3, 4TEMP

FSUB

DISNU1

catalog

SCAN
BR
CEQ
BS
CEQ
BR

SCAN
BR
CEQ
BS
CEQ
BR

XML

KRACKER

CAT4B
FCTN4, @KEY
DONE
SPACE, @KEY
CAT4B

CAT4A
PCTN4, QKEY
DONE
SPACE, 8KEY
CATHA

SCROLL

Point to FPORMATTED space
Move it into ARG

Developed USED value
Set up screen address

Display USED space

Scan the keyboard
continue Lf no newv key
CLEAR key?

YES! Abort

SPACE key?

NO! Keep goling

Scan keyboard

Loop until new key press
CLEAR?

YES! Abort

SPACE key?

NO! Continue To walt

Scrxell the screen

FACTS - PAGE 10

£0178>
<0179>
<0180>
<0181)
<0182>

<0183>
<0184>
<0185>
<0186>
<0137>
<0188>
<0189>
<0190>
<0191>
<0192>

01335
{01945
<0195>

<0136)
<0197>
<019%8>

<0199>

<0200>
<0201>
<0202>
<0203>
<0204>
<0205>

<0206>
<0207>
<0208>
<0209>
<0210>
<0211>
<0212>
<0213>
<0214>
<0215>
<0216>
<0217>
<0218>
<0219%>
<0220>
<0221>

<0222>
<0223>
<0224>
0225>
<0226>
0227>
<0228)
02295

DD10

DD13

DDlé
DD138

DD1A
DD1B

DD1D

DDLF
DD21

DD23

DD24
DD27

DDZA
DDZB
DD2E
DD30
DD33
DD34

DD37
DD3A
DD3B
DDIE
DD41

DD4 3
DD45

DD47

DD4A
DD4B

DD4D

DD4F
DD51
DD53
DD55
DD37
DD59

DD5B
CD5C
DDSE
D060
DD62
DD65
DDé?d
DD6A
DD6B

DDé6D
DD6E
DD70
DD72
DD74

06,DE,23

06,DE, 00
3E, 4B
1D, 24

g8
FC, 60
FE,17
PF,02
E9, 4C
FB

Al,10,4A
A3,10,00
0A

8¢, B0,10
D, C2
BF, 14,02
EC
06,DD,B4

A7,10,00
09
35,00,08
4A,B0,10
0F, 12

7D, 4D

BE,AZ,FE
B9
83,4A

32,48

8A, 4B
5D, 5B
5D, 6D
50, 7F
SD, 91
50,A3

08
FC, 60
FE,17
FF,12
06,44,69
13,2F, 46
69,78

FB

5D, BS

08

FC, 60
FE,17
F,12
06,44,69

CATS

CATSA

DF

DV

CALL DSRER

CALL PISSTR
CZ @FACtl1
BS CATS

FMT
SCRO >60
ROW 23

coL 02
HSTR 10,8PAC+2
FEND

DADD
DADD

QFAC, @TEMP
10, ATEMP

DCZ V*TEMP
BS DONE
DST >2EC,@TEMP2

CALL DISNUM

MOVE 8, V*TEMP, @FAC

IML CFI

CZ @aracC
BS CATSA

ST >B9,VA)>2FE
DNEG @FAC

DEC AQFAC+l
CASE @FAC+l
BR OF
BR DV
BR IF
BR IV
BR PR

FMT
SCRO >60
ROW 23
COL 18
HTEX 'Dis/Fix'

FEND
BR CATS

FMT
SCRO >60
ROV 23
COL 18
HTEX 'Dis/Var'

KRACKER

Link to device

Get string into FAC
Skip display if zero
length

Put disk name on screen

Go to next field
Continue another field

Time to get out if
zerp flle size

Set up screen address

Display file length

Back a fileld

Move i1t into FAC

Convert it to an int.

Non-negatlive?
YES! File not protected

Put a 'Y'! on screen
Make number positive
Adjust for CASE

Show file type

FACTS -~ PAGE 11

<0230>
<0231>
<0232>
<0233
<0234>
<0235>
<02386>

02375

<0238>
0239>
<0240>
<0241
0242>
<0243>
<0244>
<0245

{0246>
02475
<0248>
<0249>
<0250>
{0251>
(0253>

<0254>
<0255>
02562
{0257>

<0258>

<0259>
<0260>
{0261>
<0262>
<0263>
<026 4>
<0265>
{0266>
<0267>
<0268>
<02693>
<0270>
<0271>
<0272>

<0273>

<0274>
<3275>

<0276>

DOT77
DD7A
DDIC
DD7D

DDTP
DD80
DD82
DD8 4
DD86
pDD8Y
DD8C
DD8E
DD8F

DD31
DD9?2
DD34
DDI6
DDI8
DD9B
DDIE
DOAD
DDAl

DDAJ
DDA4
DDAG
DDAA
DDAD
DDBO
DDB2
CDB3

PDBS
DDB8
DDBS
DODBEC
DDBD
DDCO

DDC2
DDC4
DDC?
DDCI
DDCC
DDCE

DDD1
DDD1
DuD4
DDDS
DDDA8
DDDI
DDOC
DDDF¥
DDED

73,2F,56
61,72

FB

5D, B5S

08 IF
FC,60

FE,17

FF, 12
06,49, 68
74,2F, 46
53,78

FB

5D, BS

08

FC, 60
FE,17
FF,12
06,49, 6E
74, 2F, 56
61,72

FB

5D, B5

IV

08

FC, 60
FE,17
66,50,72
6F,67,72
61,6D

FB

5C, Fd

PR

A3,10,00 CATS
12
BF,14,02
F9
06,DD,B4
SC,F4d
OF,83 DONE
06,DE, 1A
oF, 79
06,6A,78
45,33
06,00,12

%

* File
;
ERROR

BF,04,08

1C

BD,10,A8

20

06,DE, 1A

BD, A8, 20

10

06,6D,78

FEND

BR CAT6

FMT
SCRO 60
ROW 23
COL 18

HTEX 'Int/Fix’

FEND
BR CAT6
FMT
SCRO >60
ROW 23
COL 18

HTEX 'Int/Var'

FEND
BR CAT6
FMT

8CRO >60

ROW 23

HTEX 'Program’

FEND

BR CATHY

DADD 18,QTEMP Advavce two flelds
DST >2F9,4TEMP2 Set up screen address
CALL DISNUM Display record length
BR CAT4 Do it all agaln

XML SCROLL One last scroll

CALL CLSFL Close flle

XML PGMCH Parse past '}

CALL CHKEND SYNTAX error 1f not end
BR ERRSYN .

CALL RRTN Return to X-BASIC
error

EQU 3

DST PAB-4,RPABPTR Fake a BASIC PAB

DST V@QPAB,QTEMP Save error

CALL CLSFL Close flle

DST H#ATEMP,VAPAB Restore error

CALL ERR Return through ERR

KRACKER FACTS - PAGE 12

<0271>
<0278>
<0279
£0280>
<0281>

<0282>
02835
<N284>

{02855
<0286>
<0287>

{0288>
<0238%>
<0290>

<0291>

<0292>
<0293>
<0294>
<0295>
<0236>
<0297>
<0298>
<0299>
<03606>
<0301>
<0302
<0393>

<0304>
<0345>

<0306>
Q307>
<0308>
<0309>

<0310>

<0311>
<031
<0313>
<0314>
<0315>

<0316>
<0317
<0318>
<3319>
{N320>
<0321>
0322>
<0323>

<0324>

<0325>
<0326>

DDE3

DDE4
DDET
DDEA
DDEC
DDEE
DOF1
DDF2
DOFS
DDF7
DOF9
DDFB
DOFD
DDFF

DEGU
DEO3
DEO 4
DEOG
DEOY
DEOA

DEOC
DEOF
DE12
DEl4
DEL?
DE19

DE1A
DE1D
DE1F
DB22

DB23
DE26
DE28
DEZB
DE2C
DEZE

24

35,00,08
4A,B0,10
86,55
oF, 73
A2,90,55
50

BC, B0, 14
90,55
91,14
90,55
92,56
50, ER

00

BF,10,08
36

86,4A
BC, 4B, BO
10

91,10

BE, 4C, 20
15,00, 09
1D, 4C
34,44, 4C
B0, 10

60

BF, A8, 20
01,0D
06,DE, 2F
00

06,DB, IF
7,01
D6,A8,121
0D

5D, D1

00

BYTE
%

i *

I[/Q ERROR XX

TR R E R E R R A A E R R SR A R R SR L R R X SRR LR AR NS LR R RN RERRRNRIRLR

* Subroutines
ltttt!tttt*ttt!ttttttt!ttttittittttiitttt!tttitttttttttt!t

2

Display number subzroutine

Screen address in TEMP2

%
t RENTER: Floating number in FAC for DISNUL
2
4

DISNUM MOVE

DISNU1 CLR
XML
DISNU2 ADD

3T

DINC
INC
DEC
BR
RTN

w o N N N

DISSTR DST VBUFF,ATEMP

CLR
ST

DINC

ST

8, VXTEMP, GFAC

AFAC+11

CNS

>60, *FAC+11

*FAC+11l, VXTEMP2

STEMP2

AFAC+11
8FAC+12

DISNU2

@FAC

VETEMP ,AFAC+]

ATEMP

»>20,8FAC+2
MOVE 9,@FPAC+2,QFAC+3

Move FLP number to FAC

Indicate a free format
Convert FPAC to a string
Add offset to string

Put a char on the screen

Increment screen addr.
Increment FAC addr.

Decrement string length count
Loop untll done

Return to caller

Prepare a VDP string for FORMAT statement
LEAVE: FAC has string length (word}
FAC+2 has string
TEMP pointing to next string in recozd

Get buffer address

Clear MSB of FAC word
Store disk name length

Point to string

Clear out string space

MOVE QFAC,VXTEMP,QFAC+2 Move disk name into FAC

RTN
*

* Close file

CALL

RTN
*

CLSFL DST CLOSE,VEPAB

DSR

A close operation

Link to device
Return to caller

* DSR LINK with error handling

x

DSRER CALL D3R

BS
CEQ

BR
RTN

KRACKER

ERROR

>0D,VRPAB+1

ERRCR

Branch on no-device
Check for device errors

Return to caller

FACTS - PAGE 13

<0327> * DSR LINK routine
<0328> *
<0329> DE2F BF,56,08 DSR PST VLENB,@&NMPNTR Name length pointer
DE32 29
<0330> DE33 06,00,10 CALL »>10 Call DSR
{0331> DE36 08 BYTE 8§ * DSR call
<0332> DE37 01 RTNC Return with COND Dbit
<0333> X
{0334> * PAB data
<0335> *
<(}336> DE38 00,0D,08 PABDAT BITE »0¢,>0D,>08,>36,>00,>00,>00,>00,>00
DE3B 36,00,00
DE3E 00,000,900
Symbol Table
DCO0 CAT DC2C CAT1 DC48 CATZ DCD3 CAT3 DCF4 CAT4
DDO1 CAT4A DDOE CAT4B DDZ24 CATS DD4D CATSA DDBS CATS
8342 CHAT 6A78 CHKEND 010D CLOSE DE1A CLSFL 0073 CNS
DD5B DF DDEA DISNUl DDEE DISNU?2 DDOE4 DISKNUM DEOO DISSTR
DDCZ2 DONE DE2F DSR DE23 DSRER DD6D DV 6D78 ERR
CS%A ERRBA €592 ERRCIP DDD1 ERROR C533 ERRSYN 0002 FCTHN4
DDTF 1IF DD31 IV 8375 KEY 00B7 LPAR 8356 NMPNTR
0820 PAB DE38 PABDAT 3304 PABPTR 0074 PARSE 0079 PGMCH
DDA3 PR 08CA RCLBUF 020D READ 00Bé RPAR 0012 RRTN
§344 RUN 0083 SCROLL 0020 SPACE 8310 TEMP 8312 TEMP1
8314 TEMPZ 0836 VBUFF 0828 VLENA 0829 VLENB

----_---v---—-i-----l-_---------——-----—-------_—I------nl---lll--l----l----_--—_-----ﬂ-—--‘—

EXTENDED BASIC AUTO-BOOT {(“DSK1.LDAD") BYPASS PATCH

First LOAD Extended Basic into the Gram Kracker.
Prom the Gram Kracker menu select 5 Memory Editor. Then press FCIN = for HEX,
PCTN 1 for the Gram Memory Window and then press FCTN 5 for 3EARCH.

Type in >6300 for the START address and >6400 for the FINISH address. Press FCTHN
9 to put the cursor in the Search String Input area and type in 86 A3 71 and then
press PCTN 3 (left arrow) to put the cursor on the last byte to search for. Next
press ENTER to start the Search.

For most Extended Basic modules this Hex string will be found at >63CD. We'll
call that "address A". Now press FCTN 5 to leave SBARCH and then press FCTN 3 to put
the cursor in the Memory Window. Turn off the Write Protect (turn it to Bank 1). Now
change the first two bytes (86 A3) to 38 00. This is a BRANCH ON RESET to >7800

instruction.

bress FCTS 3 and change the Memory Window to g7800. You will see garbage here
{UNLESS YOU HAVE PREVIOQUSLY PUT SOMETHING IN THIS SPACE!!). The GROMs are only 6K in
length so the bytes in the last 2K are "garbage wrap around" read by the Gram Kracker
3ave routine. 8o, it's a good area for adding routines to your modules.

Press PCTN 9 to put the cursor in the Memory Window and at the g7800 memory
location, put in the following code:

86 A3 71 CLR V&>371 Clear Auto Load needed flag
03 SCAN scan the Keyboard
D6 75 20 CEQ >20,8>8375 Is the Space Bar pressed

KRACKER FACTS - PAGE 14

Now take your "“address A" and add 6 to it I

>63CD + 6 = >63D3]
3D3 BS "address A* plus 6 bytes YES! (Branch on Set)
[Take your “address A", add 3 to it and replace the first digit with 4]

{>63CD + 3 = 83D0 change it to 43D0C]
4300 BR “address A" plus 3 bytes NO! (Branch on Reset)

For a module with a >63CD “address A" your memory window should now look llke

this:
g7800

86 A3 71 03 DG 75 20 63 D3 43 DO xx
XX XX XX XX XX XX XX XX XX XX XX XX
xx = don't care
Nowv restore the Write Protect, return to the Gram Kracker menu and
module.
Now when you select EXTENDED BASIC you can bypass the auto-ioad command by

holding down the space bar!! (No more D3K1.LOAD search)

resave your

NOTE: 1f you are using the GK Utility I versionm of Extended Basic, you do not

need to make this change, as it is included in the GK Utility patches,

----—-—-—----—-—-—-—--—--------—-H---l--l——-—----Il--—---------n—-------l—lr-—--——-———---——-:-—-—----

NOTES ON THE ROM/RAM SPACE AT
>6&80@ - 7FFF
by Craig Miller (MG)

Some of the modules that contain ROM
write to theiz wmemory space, >6000 -
>7FFF, to switch banks or as a form of
protection. If the module loaded into
the Gram Kracker is of this type you MUST
have the Write Protect switch in the
Write Protect position ln order to use
them. One example of this is TI Extended
Baslc. It writes to >86000 to enable bank
1 and >6002 to enable bank 2 of its ROM

memOrY.

Some of the software currently
avajlable that 1loads into a 3Super Cart,
>6000 - >7FFF expects RAM in this area
and as such will only work properly if
the ¥Write Protect switch 1s NOT
write Protect position. One example of
this is the modified Super Bug that loads
at >6000. This program sets Iits
workspace {n the >6000 - D>7FFF area of

meMmoOrY.

Since you have manual control over
the Bank 1 - Bank 2 switch it is possible
to have 2 different 8K Assembly programs
in the cartridge RAM area, >6000 - >7FFF.
For example you c¢ould have the above
mentioned Super Bug in Bank 1 and say a

in the -

Screen Dump program, that loads into this
area, in Bank 2. Then with the flip of a
switch you could have one or the other
appear on the menu without having ¢to

re-load |it.

Here is some !nformation on the Bank
gwitching of the 8K ROM/RAM cartridge

space.

With the WRITE PROTECT ON a piece of
software can write to:

>6000, >6004, >6008 ... >TFF8,
>IPFC etc. to select Bank 1

>6002, >6006, >600A ... >TFFA,
>TFFE etc. to select Bank 2

This 1s how Bxtended Basic bank
swaps the upper 4K (>7000 - >7FFF) to get
12K out of an 8K space. This ls also how
the Atarl modules do bank swapping to get
16K out of an 8K space.

The software you write can also do
this with a CLR @>6000 for Bank 1 and a
CLR @&>6002 for Bank 2 - BUT WRITE
PROTECTION MUST BE OM or the banks won't
swap, you'll just clear the word at that
address. Bank swapping is disabled when
Write Protection 1is turned off so0 we
could load thls space without it swapping
banks.

KRACKER FACTS - PAGE 15

To see bank swapping work, go into
the Gram Kracker and load Extended Basic.
Next select 5 Memory Editor from the Gram
Kracker Menu, Type in c6FF0 for the
Memory address and press FCTN = for Hex.
Press FCTN 9 to put the cursor in the
Memory Window, make sure Write Protection
is ON and press and hold down the 1 key.
As the cursor moves across the screen you

will see the address space from >7000 to
>7FFF swap banks. In reality the entire
8K block i3 switching banks but the first
4K (>6000 - >6FFF) is the same 1in both
banks. This glves the appearance that
the last 4K is bank switching and
simulates the 12X of Rom in the Extended
Basic's banks.

my apy e mmy wnb ounk bl mE Wi ol SR mgE Gy Gl Sy anl bl el e il oI e S S e -agly s kol) sk el ol Al A SN

CHANGING THE BEEP AND HONK SOUNDS
by Mike Dadd

To change the sounds of the beep and
honk, go Iinto the GRAM Kracker memory
editor. Press FCTN 1 for GRAM, FCTN =

for hex, and FCTN 5 to seaxrch. Type 0000

for the start, 1000 for the end. Press
FCTN 9 to enter the search window and
type 05 92 OA 01 9F (don't type the
spaces}. vhen it tinds it (mine was at
>047E), press FCTN 5 to leave the search,
FCTN 9 to enter the memory window, enable
bank 1, and change the 0S5 to a new number
(I used 10). |

For the honk sound, follow the same
procedure, except this time search for 20
90 OA 0] 9F. Mine was at >0489. Change
the 20 to a new number (I used 25}.

The best way to hear the new sounds
is to press CTRL = to get out of the
memory editor, press 1 for load wmodule,
FCTN 3 and ENTER. That way you will hear
both the beep and the honk.

When you've set them to your liking,
save GRAM 0 to disk. -

ey R e Ty e e v W § ¥ o §F B B K N 3 K N B B B N B0 B & B

TITLE SCREEN REDESIGN
by Walt Howe

¥ith the help of the GRAM KRACKER
manual, “TI99/4A INTERN" Dy Heiner
Martin, and my own poking around, I have
put together this partial guide to
modifying GROM 0, particularly the title
screen and character sets. I can See
that a lot more thanm this can be done as
I begin to unravel the Graphic
Programming Language code contalned in
GROM 0, but this guide will concentrate
on the changes that can be made by
changing nothing more than data tables
and text strings.

TEXT MODIFICATIONS:

Most of the text on the title screen
and the following menu screen appears in
a single string beginning at (or near)
memory address g048F. The string begins
with the copyright symbol (hex OA). For
the sake of illustration here, I will use

the "@" in its place. The complete
string s "R1931 TEXAS INSTRUMENTSHOME
COMPUTER". The copyright character will

not appear in the GRAM XKRACXER editor in

ASCII mode. You have to switch to hex
mode to see the 0A character. The
copyright symbol itself s defined at

g3998 - more about this later, If you do
not want to keep the copyright symbol,
you can overwrite |t with whatever
character you want or even redefine the
symbol. The top text line on the screen

uses the 8th through 24th characters of
the string. The second 1line uses
characters 25 through 137. The bottom

line on the screen uses characters 1
through 24. Count spaces as characters,
of course, and notice that there are two
spaces after "1981". The top two llnes
are repeated on the following menu
screen. The main things to realize are
that any modifications to the string at
q048F will appear 1Iin three different
places, and that your replacement string
cannot be 1longer than the given one.
Other text appears as ftollows:

g014B - READY-PRESS ANY KEY TO BEGIN

q025D - PRESS

g094D - FOR

The Texas Instruments 1logo - the
state of Texas with the embedded "t* and
®i" - is defined beginning at or near

g09590. ¥ine speclal qraphics characters
are designed which £it together in a 3x3

KRACKER PFACTS - PAGE 16

pattern to create the logo. The patfern

is as follows:
123

456

789

The logo appears on the title
screen, the menu screen, and is sometimes
used by cartridge based programs, as
waell. If you substitute your cown design,
be prepared to find it appeaxing in
unexpected places. The nine charactars
are defined by eight hex character pairs
each or by 16 hex characters just as they
are in basic/xbasic. In case you have
one of the slightly different operating
systems, look at or near g0950 for hex
characters beginning 01 03 03 03 03 03 03
03 03 PC... .

Immediately after the logo patterns
appear 8 hex pairs at or near 90938
defining the copyright sign. This
pattern begins 3C 42 939 Al... tCext
character in your own character string,
or substitute your own pattern for your
own purposes. It is identified in text
by the hex palr GA. It will not show up
on screen in the GRAM KRACKER editor
ASCII mode - only the hex mode.

BDITING COLORS & COLOR BARS:
The color table Eor the title screen

and follow-on menu screen ls Jlocated at
or near 90459, beginning with a series of
12 hex 17's. The 17's define the
character set colors (black on cyan),
You can, of course, change these to any
other preferred text and background
colors. Pollowing the 17's, the next 16
hex pairs, all beginning with ¢, define
the different colors that appear in the
coloxr Dbars. Change these to substjitute
your own color pattezns as you wish, 1£
you make them all the same color, the
bars will be a solid color instead of a
pattern of colored squares, for example.
whatever you select will appear in both
the top and bottom coler bars. Finally,
the edge color i{s defined as the second
digit of hex location g0458, which is F7.
change the 7 (cyan) to anythlng else Yyou
want.

CHARACTER SETS:

There are three character sets in
GROM 0 - the large eight dot high
capitals (with numbers and symbols -

ASCII 32 through 95 or hex >20 through
>¢F), the 7-dot high capitals (likewise),
and the so-called lower case characters,
which are really small capitals. The

KRACKER FACT3

NEWCHARS utility provided with Che GRAM

KRACKER alters the last two sets, but not
the title screen capitals set. The aight

dot set begins at g04B4 with a series of
8 00's, which is the space character, of

gourse (ASCII 32 or hex >20}. The
smaller capitals Dbeqin immediately
following the large capitals at g0684

with 7 00's for the space character. The
lower case beqins at g0874 with 00 20 10
08 00 00 00 representing the grave accent
(*} or ASCII! character 96 (>60} and
continuing through character 127 (>7F).
The set concludes at g094C, just befoze
text "FOR" and the TI logo set.

SUMMARY OF KEY ADDRESSES:

HEX
ADDR
0148 52 45 41 4
025D 50 52 45 53
0458 &7

045% 17 17 17 17
0466 @6 03 01 0B
048F OA 31 39 38
04B4 00 00 00 0O

BEGINS WITH TEBIT OR PURPOSE
READY-PRESS ANY KRBY
PRESS
7 1s cyan edge color
Black on cyan chars,
Color bar colors
1981 TEXAS INSTRUM
Large capital set.
0684 00 00 00 00 Regqular capltal set.
0874 00 20 10 08 Lower case char set.
394D 46 4P 52 FOR
6956 01 03 03 03 T! logo definition
0998 3C 42 99 Al Copyright definition

T0 EXPLORE FURTHER:

It is fairly easy to move the <color
bars, change their size, and change and
move text and graphics, but the systems
of numbering screen locations are complex
and far from obvious at first look ({yes,
I meant 3ystems.,] One of the systems is
the consecutlve numbering of locations lIn
hex that Is used in Assembly language.
Another s to specify row and column
addresses, but the addresses as they
appear in hex code (the way you see it
from the GRAM KRACKER) are a different
story. Row addresses begin with A0 and
column addresses begin with 80. A third
system is to specify row and column
of fsets from the last address. 1If you
have the book T"TI39/4A INTERN", this
should be enough to help you fiqure out
the addressing systems. If you do not, [
don't -advise your trying to touch this
aresa unless you are a very Kknowledgable
pProgrammer . To explain the uses of the
different systems used by the GPL would
approach book length {(and I hope someone

writes [t!).

- PAGE 17

CHANGING THE KEYBOARD
by Mike Dodd

With the GRAM Kracker, you can
finally change the keys on the 39/4A,
One productive use of modifying the
xeyboard is to add printer codes - add
keys for consensed, ESCAPE (ASCII 27),
enlarged, etc. That way, while In
console Basic or XB, you can Cype a PRINT
}1:* command and type the keys, ratherx
than having to use CHR§ statements.

Probably the best way to add new
keys is to change the SHIFT, FCTN, and
CTRL key codes for the SPACE and ENTER
keys. TI left the ASCII codes the same
for those two Xeys in all the modes.
Hare are the addresses, Ln GROM 0, of the
SPACE and ENTER combinations.

KEY SPACE BNTER
FCTH 1766 - 1785
CTRL 1796 1795
SHIFT 1736 1735

[£ they aren’t right at those
locations, you can look for them around
there. The hex code for SPACE is >20,
for ENTER it's >0D. -

I£f you want to try to change other
keys, here are the start addresses for
each of the six tables:

16E0 Joystick codes

1700 Lower case

1730 SHIFT codes

1760 PCTN codes

1790 CTRL codesa

17CO0 Key scan unlts 1 and 2

To figure out what keys correspond
to what codes in these tables, convert to
decimal and compare to the charts in the
T Basic manual 1listing PFCTN and CTRL
Keys.

Rememer that all address are In
GROM/GRAM, and you will need to enable
hank 1 or 2 when making any changes.

A note about the lower case key
scanning: when you have Alpha-Lock down,
in the capltals position, the key scan
routine reads the key code from the LOWER
CASE table, NOT the SHIFT table. If the
key Is a letter (ASCII range 97-122) and
the Alpha-Lock is down, the Kkey scan
subtracts ASCII 32 from the Kkey code,
which moves |t from the lower case
portion of the alphabet to the upper case
portion. 1f, however, the Alpha-Lock ls
down AND you are pressing SHIFT, lt gets
the key code from the SHIFT table.

One final caution: a few programs
include thelir own key scan routine, and
as such, the don't scan GROM for the key

code. Thus, the keyboard will revert
back to normal when running these
programs. Two programs that do this are

MG RExplorer and the GRAM Kracker Memory
Bditor. Wwhile these programs are few and
far between, you should keep it in mind
{f considering any major changes o the
keyboard (1.e. converting it to DVORAK).
But you should not let this stop you from
making minor changes, like adding printer
control codes for (X)Basic,

e e ryYr" Y ™™ ™ "rrr ¥y r - r . 1. r rx¥ 8§ §F § ¥ E_ N _§_ §E_ N JE B B B B e Rl

A FEW NOTES ABOUT MYARC 'S EXTENDED

BASIC AND THE GRAM KRACKER
by Craig Miller (MG)

Quite a few people have asked us
about the MYARC Bxtended Basic and Lts
use in the Gram Kracker.

Part of the MYARC XB system is an 8K
RAM Module and a new PROM for your
128K/512K RAM Disk Cards. The module
only contains B8K of statlc RAM, it does
not contain any programmsing. The new
PROM that is installed in your RAM Dlsk
has a power up routine that loads some
information intoc this 8K Ram module every
time you go back to the title screen.

If you want to use this XB with the
Gram Kracker simply leave the Write
Protect switch in the Bank 1 or Bank 12
position and then press RESET. This will
allow the MYARC PROM to down load its
Information into that RAM Bank in the
Gram Kracker, and appear on Yyour menu.
You MUST leave the Write Protect switch
in the Bank 1 or 2 position in oxrder for
MYARC's XB to execute properly.

One thing to remember ls, whatever
was in the selected Ram Bank will be
wiped out by the 128K/512K power up
routine., {See the article on disabling
the MYARC RAM-dlsk to fix thls problem -
MDD.} So if you had TI Extended Basalc
loaded into the Gram Kracker and you left
the ¥Write Protect switch turned cftf, then
both XBs would appear on the menu BUT
only the MYARC XB will work. TI Extended

KRACKER FACTS - PAGE 138

Basic contalns 2 banks of ROM and one of
them will be wiped out so0 it will not
execute properly.

There are a number of TI modules
that do not contain any ROM they only
contain GROM. As such these modules can
properly reside in the Gram Kracker along
with Myarc’s XB. To find out if a module
contains ROM simply plug it into the Gram
Kracker's Module port and select 5 EDIT
MEMORY. Next press FCITN = for HEX and
sat tha address to C5000. If the memory
window 1s full of 00 or FF, depending on
your console, then that module only
contains GROM. A few of the popular GROM
only modules are, Editor/Assembler, TI-
Writer, Disk Manager I & 1[I, Multiplan
and PRK. A few of the ROM/GROM or ROM
only modules are TI Extended Basic, Mini
Memory, Atarit and most other third party
modules.

—--—--——--——---—--——-l----_-----_-_--ﬂ--_—

DISABLING THE MYARC RAM—-DISK POWER UP

by Mike Dodd

I£ you have the MYARC XBII
cartridqe, you have noticed that the
RAM-disk always wipes out your ROM bank
if you forget to enable the wxite
protection, The following patch will
disable the power up routine in the
RAM-disk, which prevents it from cleazing
out your ROM bank. Now you can leave the
write-protect off (e.g. to act as a
super-cart} and not worry about it being

zapped!

To make the change, enter the GRAM
Kracker Memory editor. Press FCTN 1 to

select GRAM, and FCTN 5 for search. Type

0000 for the start, and 0300 for the end,
Press FCTM 9 to enter the search window
and type 8780D0. Press FCTN S to back
the cursor onto the "0%" in DO, and press
ENTER. vhen it £finds the string (mine
was at gq0183), press FCTN 5 to leave the
search and PCTN 9 to esnter the memory
fleld. Write down the address it ls at.
Now disable write protect and type
25190A. Press FCTN 9 again, use PCTN 3
to back over to the memory address, and
type 1904, Press FCTN 9, ENTER to home

reset.

the cuzsor, and type BF 80 DO 11 00 BF 80
D2 40 04 O0S5. Now take the address you
wrzote down and add 3 to it {>0183 + >0003
= >0186). Type that address. Turn your
write protect back on, press CTRL = Lo

leave the editor, and re-save GROM 0 to
disk. To sSave GROM 0, press 4 for
Load/Save console, 3 for GROM ¢, and 2

for Save conscle. Type the filename and
press ENTER. Press space (the correct
GROMs are already enabled), let it Einish
saving, and press space again. That's

all there is to it!

If you wish to run MYARC XBII,
disable your write protection, change
switch 2 from GRAM 0 to Op Sys, and press
vith GRAM Q0 loaded, the patch is
not in effect, so the HYARC RAM-disk will
execute 1its normal power up routine.
When the title screen appears, you <can
re-enable GRAM 0 and proceed as normal to
load MYARC XBII.

Final note: if your RAM~disk 13 not

backed up by an external power supply,

you MUST run the power-up routine when
you first turn the computer on. After

that, Lf you reset the system you will
not need to run the power-up routine
again. ou have to run it the fizst time,
otherwise the CALL PART and CALL EMDK
commands will crash. To run 1t without
it crahing your RAM bank, disable GRAM O
{turn to Op Sys) when you turn on the
computer, mak ing sure that the
write-protect 1is on. hen the title
screen appears, enable GRAM 0 and don't
worry about it again.

“ﬁ---——‘----“---—-—ﬁ—--———ﬂ----—-------

CHECKING THE W/P SWITCH IN XBASIC
by Mike Dodd

As you may have noticed, 1f you
enter Bxtended Basic with the write
protection off, your computer will lock
up. If it doesn't immediatly, it will as
soon as you type a command. This patch
will make XB check the position of the
write protect avery time you enter XB.
If the VW/P is off, it will reset to the
title screen and refuse to let you enter
the cartridge.

To mike the

patch, lcad your GK

KRACKER FACTS -~ PAGE 19

Utility I version of BExtended Basic.
Type G6372 for the memory addzress, FCTH =
for hex mode, and FCYN 3 to enter the
memory window. Enable bank 1 and type 06
D8 FB (don't type the spaces, they're
just a quide). Press FCTN 9, back the
cursor up over the memory address, and
type D8FB. Press FCTN 3 and ENTER to
home the cursor, and type:

86 A3 70 86 8F FC FA BD 00 8F ED 04

86 9¥ FC ¥C DS 00 8F BD 00 39 13 0B

00

Now, restore write protect, press
CTRL = to leave the memory edlitor, and
resave yvour cartridge to disk.

aay aay il Y EE amm wak ol - e - iy =i sl N BN umy wipl RN B aay wnl inll il . W ule el alE S Sy el wEEN N

CHANGING THE XB "LIST™ WIDTH
by Craig Miller (MG)

With Extended Basic loaded into the
Gram KXracker you <can change the LIST
"dJevice” width for your output device.
This allows you to easily 1list your
programs to prlater in 28 columns, 132
columns or any width you choose. This
same change will also change the DIS/VAR
File width if you LIST to disk.

o make this change lcad Extended
Basic into the Gram Kracker and then use
the Gram Xracker's Edit Memory selection.
Next press PCTN = for Hex, FCTN 1 for
Gram Memory and PFCTN 5 to activate the
search function. The Start address 1is
9000 and the Pinish address is 9800. The
Hex string to search for is: 00 12 00 00
00

vhen this s Efound press PCTN 5 to
leave Search and FCTN 9 to put the cursor
in the Memory Window. Turn on Bank 1 to
disable Write Protection and move the
cursor to the third 00 after 12 and
change it to the width you would 1like (in

Hex). In our XB this was found at g3170
and the byte to change was at g3l74.
Examples:

00 12 00 00 00
00 12 00 0Q¢ 1C
00 12 00 00 84
00 12 00 00 FEB

default 80 column
28 column llistings
132 column listings
254 column listings

*he area you are changing is part of
the default PAB for an Rxtended Basic
LIST to a device. 38inces most of it is
zaroed out it allows the card's DSR (li.e.
RS232 or DSK) to set its own default fox
width. When you place a value here the
card will use it instead of the default
of 30 (>54}.

1f you want to LIST a 28 column

program to disk and then load 1t into
TI-Writer or the B/A Bditor you will need
to convert the file back Into DIS/VAR 80
format. To do this simply run it through
the following XB program, where TEST is a
DIS/VAR 28 file and TESTA will be the
DIS/VAR 80 flle to be loaded into an
editor.

100 OPEN #1:"DSK1.TEST®,VARI
ABLE 28

110 OPEN $#2:"DSK1l.TESTAF

120 LINPUT R1:AS$

130 PRINT $2:AS :: PRINT AS
190 IF BOP(1)THEN CALL CLSAL
L. BLSE 120

If the file is large you can easily
convert it from DIS/VAR 28 to DIS/VAR 80
with a sector editor such as Advanced
Diagnostics. To do this f£ind the File's
Header (File Descriptor Record) by dolng
a Pind Pile., The "Sector” polnter at the
top of AD's screen points to the PFile's
Header Jector. Bdit this sector and
change the 17th byte, in hex, from 1C to
¢ and then rewrite the sector. NOTE:
vhis will only work lf you are converting
files to a longer logical record length,
i.e. DIS/VAR 28 or DIS/VAR 40 Ilnto
DIS/VAR 80. It won't work for longer to
shorter, i.e. DIS/VAR 132 or DIS/VAR 254
intc DIS/VAR 80

NOTE: if you are using the G&X
Utility I version of Extended Basic, you
do not need to make this change, as
included Ln the GX Utility patches are a
method of setting the line width with the
LIST command.

--------““----------'_'-‘---—-_—----‘d‘---

KRACKER FACTS - PAGE 20

EXTENDED BASIC CALL INIT CORRECTION
by Craig Miller (M&)

Presently the CALL INIT loads »>600
starting at >2000 in Low Expansion

need to be

bytes
Memory but only >4F3 bytes

moved. Because of this, some routines
that were loaded into Low Expanslon
Memory get ovexwritten. The patch

corrects this situation.

with BXTENDEBD BASIC loaded in the
Gram Kracker, select 5 Memory Editor from
the Gram Kracker meni.

Press FCT™N = for HEX, FCIN 1 for
Gram Memory Window and then FCTN 5 for
SEARCH:

Type in C200- for the START address
and C300 for the PINISH address. Press
FCTN 2 to put the cursor in the Search
string Input field and type in 31 06 00.
Press PCTN S (left arrow) to place the
cursor on top of the last byte to search
for and press enter. -

Turn off Write Protection, press
PCTN 5 to leave SEARCH and press FCTN O

to put the curscr ln the Memory Vindow.

Now replace 31 06 00 with 31 04 F3.
Restore write protect, return to

Gram Kracker loader and resave module.

CALL INIT will now work ™a 1llttle"
quicker and it will not move unnecessary

--_--—--q—r-ﬂ——-—l-—---—----—n-—----------ll--—--—--—

bytes out to Low Memory Expansion.

NOTB: if vyou axe using the GK
Utility I version of Extended Basic, you
do not need to make this change, as it is

included in the GK Utility patches.

--—--—--—-—---—I------——I-l—-----l-----i-'ll-l----h—l--

CHANGING THE CURSOR SHAPE
by Mike Dodd

Po change the cursor shape, in
XBasic and Basic, search for 00 7C 7C 7C
7¢ 7C 7C 7C. With IBasic, search from

g6000-7800., With Basic, search from
g2000-3000 {remember Lo tuzn off Cthe
loader!). With the Editor/Assembler,

search ftor 00 7E 42 42 42 42 7E 00 from
g6000 to g7300, unless you've moved it
elsewhere. If you moved it to Gram 7,
search from gE0Q0-gF800. Once you find
it, change it to whatever shape Yyou
desire. It's the same format as in a
CALL - CHAR statement. Remember to turn
off write protect before you change it
and then turn it back on when you're
done.

---_-—-—_-—_ﬁ---—---—-&------H*—-_-ﬂ--_r-l-

GK UTILITY 1 ENHANCEMENTS AND MODIFICATIONS
by Tom Fresman, LA 99ers

RETAIN GRAMS 1 AND 2 POR YOUR OWN USE

Some users who have loaded Danny Michael's fine new combination Bxtended Basic
and Rditor/Assembler modules into their Gram Krackers may wish to preserve the use of

TI-Writer at the same time,
respectively,

and ASSM2 files for rapid loading, were no longey avallable.

I had previously loaded GRAMs 1 and 2 with E/A and TI-VW
and thus this new program, which uses these two GRAMs to hold the ASSM1

I had alreddy modifled

rhese modules to load the files from my RAMdisk. which is also quite rarid, so I did

not need Danny's rapld loader.

However, I did wish to use the combination and make

use of the other enhancements, such as cataloging from E/A and preserving file names.

The following modifications to

Essentially, I went to the area of Danny's code whexe the assembler was

your FINISHED fliles will accomplish the Ctask.

loaded from

GRAM into CPU, and changed it back to the original E/A code, with some address changes

because of the move to GRAM 7, and screen location changes.

All the other routlnes

KRACKER FACTS - PAGE 21

used by E/A to get the program from the disk were preserved.

To accomplish the changes, go to the GRAM KRACKER memory editor (press 5 on GK
title screen), then PCTN 1 to get to GRAM memory, FCTN = to gqet to HEX, enter, and
then type in E658. You should see in the memory window code beginning with the
following bytes: 06 F4 60. Press PCTN 9 to replace the first three lines of code with
the following (where you see ASCII text you can type in ASCII, which saves half the
typing - also remember to push the W/P switch to Bank 1 or 2 while you are typing):

gR658 08 8B Al 14 4C 6F 61 64 20 41 73 73 '*222L0ad Ass' 'ripArRRATERAL
gE664 65 6D 62 6C 65 72 28 59 2F 4E 29 3F ‘embler(Y/N)?' 'Frardmanaraus
qB670 20 FB 06 E7 9F D6 75 OF 60 5A D6 75 ' rrxayfijxy! !riiajyizsivs’
gR67C 4B 60 SA 06 BS B2 B6 28 06 ES-D4 BF 'N Z¥rxt{sxaxi [IRTRagararg’

Defaults for Assembler Source Code Flle

Danny's mods retain separate default areas in GRAM 2 for all the file or device
names you lnput - only those for LOAD and SAVE flle in the Editor are the same. I
personally wish to have the last file name I used for SAVE in the Editor appear as the
default Ffor the Source Code in the Assembler, since I normally assemble source code I
have just written and saved. This is easily done by positioning the cursor after the
g in the upper left corner, typing P347, then FCTN 3 to get in the memory window.
Replace the first byte 4C with 88 (W/P offl).

While you are making changes, you might consider the following:

1) if you are in fact loading the TI-¥ and B/A utility files from RAMdisk, then
you should change the device name/number at gES1E (I use DSK4.) The length should
still be 5 bytes.

2) I have also changed the name of the default program name for option 3 Run
Program Pile from UTIL1 to another name. You can do this at gB6ZD (see article on
changing drive defaults elswhere in Kracker Facts).

3) The format RAMdisk option from Danny's main E/A screen does not work if Yyou
have the RAMdisk with XBasic, because the CALL PART now requires three numbers rather
than 2. To make sure you do not choose this optlon by mistake, go to gEOF8 and change
the words "Format RAMdisk™ to "Non-valid Key " and change the bytes at gEO5A from 52
Bl to 40 SA. You will now stay on the menu screen if you hit 7.

BE SURE you have saved your original modified module BEFORE you make the changes.
You should now save your newly modifled module under a different name. GRAMs 1 and 2
will no longer be used for the ASSM files-and you can go back to keeplmng other modules
in this space, so long as the high bytes in GRAM 2 from 5ED4 to SFFF are not used
{Danny uses them to hold the default file names in B/A). Also note that because these
7 GRAMs in the GX are not used, Danny's mods are now also useful in the 56K version of
GRAM KRACKER. However the default file names for E/A mentioned above will no longer
work: you would always see garbage when you are prompted for a flle name. It is
easily eliminated with FCTN 3.

Using MSAVE
As there are still 2609 bytes of memory free at the top of the E/A in GRAM 7

(fzom D>FSCE on) you could still store a few short Basic programs if you use the

following {(slightly cumbersome)}-method:

~ 1) If you are using GRAM 2, save it using Option 4 Load/Save Console from the GK
main menu. The third switch must be in the GRAM 1-2 position. Also save the "module"
(Menu 2) since we will be clearing the module space. If you have a 56K GK without

GRAMS 1-2 see NOTE below.
2) Move the entire contents of GRAM 7 to GRAM 2 (Gram memory -~ FCTN 1 until a g

appears in the upper left corner 1f it lsn't already there, E000 for Staxt, FFFF for
Finish, g4000 for Dest, then FCIN 2 to move).

3) Initialize the module space (Menu 3).

4) Load module {Menu 1) with MSAVE from the original GK utility disk.

KRACKER FACTS - PAGE 22

5) Go back to the Memory Bditor (Menu 5}, FCTN 1 to get to G memory, FCTN = for

HEX. Press enter, then type in B012. In the memory window you should see E2 B7 EZ
B7. Press PCTN 9 to get the cursor in there, then type PS5 TE PS5 CB (W/P offl}). PFCIN

9. again, move the cursor back over the memory address and change it to E1DD, PCTH §

and change this B2 B7 to PF5 CE also.
6) Move the 35 bytes at B2B7 to PSCE by entering E2B7 for Start, B2D?9 for Finish,

and gPSC® for Dest. Then PCTN 2 to move. Put Switch 4 back in W/P position.

This new MSAVR will save Basic programs starting at PSCB, rather than E2B7,
leaving enough room for the E/A module. 3Save it with a new name (such as M3AVE plus

your initials) with Menu 2

You may now go to Basic (GRAM 1-2 switch down and Loader OFF), enter your hasic
progzams, and save them by entering CALL MSAVE. When you are done, and quit Basic,
you should see them on the main conscle menu.

Now qo back to the GRAM XRACKER, and save module again (using yet another name,
just in case). You are now ready for your final modification of GRAM 7.

7) Go back to the GX Memory Bditor, PCTN 1, PCTN =, and examine the 2 bytes at
B012. This represents the first free address after your programs. Therefore you will

want to save all the bytes from FSCE to that address.

§) Making sure that g is in the upper left corner, and 3rd switch is in GRAMS 1-2
position type in PSCE for Start, the bytes you just found for Finish, and g55CE for
Dest, and press FCTN 2 to move.

3) The final change is at g40108. This is the address for the next application

header atter Bditor/Assembler and must coantain F5CE. Type it in.
10) Reload the module you saved in. Step 1). 11) Meve the entire modified
contents of GRAM 2 to GRAM T by typing 4000 for Start,5FFF for Pinish, gE0Q0 for Dest

and then press FCTN Z.
12) Save your new "module® with resident Basic programs under a new name.

Remember that to USE these Basic programs the loader must be OFF, and switch 2 must be
in TI Basic position.

NOTR: If you have a 56K GK, make the follwing changes in above steps:

1} You can't save GRAM 2

2) Move GRAM 7 to GRAM 3 by using g6000 for Dest. MNOW clear everything else by
a) Start 8000 Pinish FFPP, W/P to Bank 1, PCTN 3 (FILL). b) PCTN 1 twice to get to
CPU memory, Start 6000, Finish 7FFF, PCIN 3 c) switch W/P to bank 2 and hit FCIN 3 d)
Save "module” (Menu 2) - this should give vyou one file on disk e} W/P ON (mid
position}.

3) to 7} are the same

8) First reload the "module® you saved in Step 2d). Then move the bytes with
g75CRE as Dest

9) The change is at g6010. BEFORE golng to next step, a) Move GRAM 3 to GRAM 7
(Start 6000 Finlsh 7FFF Dest gB000, W/P to Bank 1, FCTN 2 b) Clear GRAM 3 {Start &
Finish the same, FCTN 3) c) W/P OM (mid position) d) Save module - this will give GRAM
T only.

10) is the sane

11) Load the "module® saved {n 9d)

12} is the sampe

All this is not as complicated as it sounds - I just detailed 311l the steps so
you won't make any mistakes.

‘-----------“‘_-----—-—-_-——-----—-—-ﬂ_-----—“_#ﬂ----------——ﬂ--__ﬂ-_-—------_-—_

KRACKER FACTS - PAGE 23

EXTENDED BASIC PROGRAM LOADER
program by Mike Dodd
+mchnical information by Tom Freeman
article by Mike Dodd and Tom Freeman

1 once asked Craig-Miller whether it was possible to run XBaslc programs directly
off the menu, as MSAVE does with Baslc programs. The answer was no, and essentially
that is true, at least as far as having them run dizectly from GRAM is concerned,
since the XML instruction needed exlsts only in Basic. But I kept on thinklng that if
XBasic can lead a program called LOAD automatlcally from drive #1, why can't it do
others 3s well! What follows is a program for doing this! The method Iinvolves GChe
following concept: when XBasic starts up, 1t does a certain amount 0of housekeeping,
and then inserts the string DSK1.LOAD lato the crunch buffer in VDP ram, preceded by
the length byte >0B and followed by byte >00, and then "pretends® that you typed it in
with RUN, and runs it. It kurns out that this area is never touched by the
housekeeping chores, and hence can be done right at the start. Thus my method
involves inserting the program name of your choice there instead, and setting up
proper code to make an additional item on the menu. If the program isn't there, you
get the same result as XBasic if LOAD isn't In drive 1 - just the “"ready® prompt.

When you run the program, it first checks to see if the WRTGRM subroutine s
loaded. If not, it attempts to locad an object file called DIK1.WRTGRM/QC (see article
on writing to GRAM from XB eslsewhere in Kracker Facts). After the routine is loaded,
or if it ls already loaded, the program presents a title screen and asks you to enter
the start hex address to store the loaders. You should consult your GK Utility I
manual for the locations of free space. A good place to store 1t is starting at hex
R601 and continuing to B7P¥, which is enough room for many loadezrs. If you are not
using the GK Utility I version of Extended Basic, you can use 7800-7FFF, 3800-9FFF, or
B300-BFFF, as these areas are free. Note that if you install the auto-lcad bypass
patch Into XB (see elsewhere in Kracker Facts), 7800-790A are used. After you enter
the address, it will instruct you to enable bank 1 and press FCTN. Do 30o. It will
then instruct you to restore the write protect switch and press FCTN. Again, do so.

Now it will ask you for the menu entries. The program will display the current
hex address. You should be sure that it does not go past the last free address in
your memory space. 1f it does, you should break the program and re-run it to avold
overwriting existing code in your cartridge. The computer will now ask you for the
name to be placed on the menu. The name may not be more than 18 characters long, and
It must be in all capital letters. It will then ask you for a filename (e.9.
DSK1.MENU, DSKR.FWR, RD.XXB}., Note that the filename cCan not be greater than 15
characters. After you enter the filename, the program will tell you If either of the
entries are too 1long. After a short pause, the program will prompt you for another
menu name and filename. When you are done entering all the loaders you wish Uo
install, enter **t (three SHIPT 8s) for the menu name. The computer will then prompt
you to enable bank 1 and press FCTN. Do so. The computer will now write-.the loadezs
sut to the BExtended Basic cartridge. After it is done it will prompt you to restore
the write protect and press FCTN. After you press FCTN, the progranm will end. You
may now type BYB, enter the GRAM Kracker Loader and save your modified cartzidge.

By the way, after the GKXBLOAD proqram is a short program that I (T.¥.) wrote
allowing you to set up all 'your favorite programs to run without typing in the names:
you merely Insert them in the DATA statement, and follow the last with a "". If you
save this proqgram on your-utility disk and create a menu entry for it with GKXBLOAD,
you will quickly get a menu of these programs when you press the "MISC. PROGRANS" Kkey
and be able to pick your program with one more key press. This way you can still have
the auto load of DSK1.LOAD for use with programs that need it. Por this program to
run properly you MUST type in line 170 first, exactly as written!

KRACKER PFACTS - PAGE 24

100 DEF A(B)=B-6553b6%{B<0)::
OBF A${B)2CHRS(INT(A(B}/2%56
))ECHRS(B AND 255):: OPTION
BASE 1
110 ON BRROR 120 :: CALL LIN
K("WRTGRM"):: ON ERROR STOP
:: GOTO 130
120 CALL INIT ::
DSK1.WRTGRM/0")
130 DISPLAY AT(1l,1)ERASE ALL
:*YBasic programs direct fro
m the main menu”: :“require
3 GRAM Kracker (tm)"
140 DISPLAY AT(S,1l):"Program
by Mike Dodd": :"Technical
information by Tom Freeman,
LA 39ers®
150 DISPLAY AT(10,1):"start
GROM address?" :: ACCEPT AT(
10,21):C$:: CALL HD{C3,BG)
160 CALL LINK("WRTGRM", 25554
,CHR3(149),25403,A3(BG+10)&A

CALL LOAD("®

${BG),BG,"1"&CHRS(0)&CHRS(11

J&CHRS (168} &" cQ"sCHRS$(S)&"c

100 DATA RD.PRO1,RD.PROZ,""
110 CALL CLEAR

120 X=X+l :: READ A$(X):: IF
AS(X)<>™" THEN 120

130 DISPLAY AT(1l,1)BEEP:"PRE
33 FOR" :: POR Y=1 TO X-1 ::

r") : ' -
170 DIM B$(15}:: E=0 :: CALL
KEY(3,F,G}:: H=BG+10
180 CALL DH(H,C$):: PRINT *{
new at ";CS;"1™ :: INPUT ™Me
nu nampe? {(**% tgp end} - -~ ":
C$:: IF Cg="rxx% THEN 230-B
LSE INPUT "Fllename? ":D§
190 B=LEN(CS):: C=LEN(DS)::
IF B>18 OR C>15 THEN PRINT °
ERROR - MAX -LENGTH FOR MENU
NAME IS 18, MAX FPOR FILENAME
IS 15" :: GDTO 180
200 E=B+1 :: BS(E}=AS{0)&AS(
H+7+B4+C)&CHRS(B) &C$&CHRS (C) &
DSECHRS(0)&"1"&CHRS(0)&CHRS (
C+2)ECHRS({168)&" “&AS(H+5+4B)
SCHRS(5)&"cr™
210 IF E>1 THEN B${E-1)=AS(H
}&SRGS (B§(B-1),3,2553)
220 H=H+LEN(BS$(E})::
THEN 180
230 CALL SOUND(200,1200,0)::
DISPLAY ERASE ALL

IP E<15

MENULQAD

DISPLAY AT(2tY+1,2):Y;" ";A
S{Y):: NBXT Y

140 CALL KEY(0,K,S)::
THEN 140 ELSE K=K-48
150 CALL [NIT :: B8=A3({X}::
L=LEN{BS):: CALL LOAD(-45,L+

[F 8=0

240 D=1 :: DIM B§(2):: E3(1l})
,E8(2)="" :: FOR B=1 TO E ::
1P LEN{(ES$(D))+LEN(BS(B})>25
5 THEN D=D+l1 :: B=B-1 BL3E ¥
S(D}=E$(D)&BS(B)

250 NEXT B :: IF D=1 THEN CA

LL LINK{"WRTGRM",BG+10,E3(1)
}:: BND

260 CALL LINK("WRTGRM",6BG+1{
,B$(1),BG+10+LEN(BS(1)) ,BS(4

-1):: BND-

270 SUB HD(AS,A):: A=0 :: FO
R X=3 T0 0 STEP -1 :: A=A+16
~“X*(POS("0123456789ABCDEF",S
BGS({AS,4-X,1),1)-1):: NEXT X
271 A=A+65536%(A>32787):: SU
BEND

280 SUB DH(B,AS$)::
t(B<O):: AS=""

290 Q=INT{(T/16}):: R=T-16*Q :
+ AS=SEGS$("0123456789ABCEF",
R+#1,1)&A% :: IF Q THEN T=Q :
+ GOTO 290

300 SUBENRD

T=8-65536

4):: CALL LOAD(-42,L)

160 FOR X=1 TO L :: CALL LOA
D{X-42,A8C{3BGS§(8BS%,X,1}))::
NEXT X :: CALL LOAD(X-42,0)
170 RUN "0123456789ABCDEF"

----ﬂ-ﬂ------_-.——-_--—--------_-------_----—-_----ﬂﬂ-_---_—_----ﬂ_-—_-----—-ﬂ-------#ﬁﬂ-

A ROUTINE TO WRITE TO GRAM FROM XB

by Mike Dodd

Although the GK Util I version of Extended Basic lncludes a POKEG routine, it 1is

not useful for

I have written an assembly

programs to modify Bxtended Basic because of the fact that i1f you
disable the write protection, XB will lock up.

subroutine

for Extended Basic that prompts the user to enable and disable the write protection.
To use the WRTGRM subroutine, use the format:
CALL LINXK({"WRTGTM"[,address,str-vaz...]))

In other words,

data to write.

AS=CHRS$ (0) &CHRS (1) &CHRS(2)

The address must be from -32768 to +32767.

1f the address 1is

you must specify a decimal address and a string containing the
If you wanted to write a hex 00 01 02, you conld use:

greater than or

equal to 32768

ADDR=ADDR-6553%).
You may pass multiple data sets to the WRTGRM routine. If you wanted to write

the data Ln AS to GROM >2000 (decimal 8192) and the data Ln B§ to GROM >A000 (decimal
40960 - 65536 = -24576), you would use:

you must subrtract 65536 from-bé- (IF ADDR>=32768 THEN

(hex >80900),

KRACKER PACTS - PAGE 25

CALL LINK{"WRTGRM",8132,A%,-24576,B8)

You can pass up to seven data sets in one CALL LINK this way.

You also have the optiom of not specifying any data - Jjust a simple CALL
LINK(*WRTGRM"™). *his will not do anything, other than let your program verify that
WRTGRM is present In memory. For instance:

100 ON ERROR 110 :: CALL LINK{"WRTGRM"}:: GOTO 120

110 CALL INIT :: CALL LOAD("DSK1l.WRTGRM/O")

120 program continues...

when WRTGRM is executed, it first checks to see 1f any parameters were passed to
it. If not, it returns to XB. If so, it displays on the screen (at row 13, column 3)
a message prompting you to enable bank 1 and press FCTN. After vou enable bank 1 (or
two, it really doesn't matter), press the FCTN key. when it is done writing all the
data passed to it (almost instantly), it will prompt the user to restore write protect
and press PCTN. Move switch 4 back the the center (write-protect) position and press
the FPCTN key.

For an example of the use of WRTGRM, examine the listing of my GKXBLOAD program
(article elsewhere in Kracker Facts).

Here is the source code to WRTGRHM:

3001 * WRITS TC GRAM FROM BXTENDED BASIC 0040 * PRINT "ENABLE BANK 1..."

0002 * COPYRIGHT 1987 BY MIKE DODD 0041 LI RO,>184

0003 £ 116 RICHARDS DRIVE 0042 LI R1,BANK1

0004 * OLIVER SPRINGS, TN 37840 USA 0043 LI R2,24

0005 * 615/435-1667 0044 BLWP @PBASIC

0006 DEF WRTGRNM 0045 CLR R1l2

0007 IDT 'MIKEDODD! 0046 * WAIT FOR FUNCTION KEY TO BE PRESSED
0008 VWA BQU >8CD2 0047 FCTH1 TB 7

0009 VWD EQU >8C00 0048 JEQ PCTNI

0010 GWA BQU >9C02 0049 CLR RS

0011 GRA EQU >9802 0050 A CLR RO NOT AN ARRAY
0612 GWD EQU >9C0¢Q 0051 [NC RS

0013 NUMREF EBQU >200C 0052 MOV RB,R1 PARAM. NUMBER
0014 STRREF BQU >2014 0053 BLWP GNUMREF GET NUMBER
0015 FAC EQU >834A 0054 LWPI >83E0 GPLWS

0016 HFF BYTE >FPF 0055 BL @a>12R8 FLOATING->INT
0017 BANK1 TEXT 'Enable bank lapress FCTH' 0056 LWPI MYWS MAIN W3

0013 BANKO TEXT? 'Restore W/P & press FCTN' 0057 MOV QFAC,RY GET ADDR

0019 -EVEN - 0058 CLR RO NOT AN ARRAY
0020 * PRINT WITH BASIC OFF3SET. IN: RO=VDP 0059 INC RS STRING

0021 * ADDR,R1=CPU ADDR OF TEXT,R2=LENGTH 0060 MOV RS,R1

0022 PBASIC DATA SUBWS1,PBAS] 0061 LI R2,BYTESL SPOT FOR DATA
0023 PBAS1 MOVB *R13,RO 0062 - MOVB QHFF, *R2 255 CHARS
0024 MOVE QAl1(R13),8VWA 0063 BLWP @STRREF GET IT

0025 ORl RG,>4000 0064 * 3AVE CURRENT GROM/GRAM ADDRESS

0026 MOVB RO, RVWA 0065 MOVB QGRA,R7

0027 MOV @2(R13},RO 0066 SWP8 R7

00238 MOV @4(R13),.RI1 0067 MOVB AGRA,R7

0029 PBAS2 MOVE 2*R0+,R2 0668 SWPB R7

0030 Al R2,>6000 0069 DEC R7 CORRECT

0031 MOVEB R2,QVWA 0070 * SET GRAM ADDRESS

0032 DEC RI1 0071 MOVE RS, RGWA

0033 JNE PBAS2- ~ 08072 SWPB RS9

0034 RTWP - 0073 MOVEB R9,QAGVWA

0035 WRTGRM LWPI MYWS 0074 MOVE QBYTRBSL,R9 GET LENGTH
0038 * GET | PARAMETERS. IF 0, RETURN 0075 SRL R9,8 TC L3BY

0037 MOVB @>8312,R6 0076 LI RO,BYTES START OF DATA
00338 JEQ RETURN 0077 B MOVE *R0O+,8GWD WRITE TO GRAM
0039 SRL R6,9 TO LSBY & /2 G078 DEC RS9 DONE?

KRACKER FACTS - PAGE 26

0079 JNE B NO 0092 LI R2,24

0080 * RESTORE OLD GROM/GRAM ADDRESS 0093 BLWP @PBASIC
0081 MOVB R7,QGWA 0094 * WAIT FOR PCTN TO BE PRESSED
0082 SWPB R7 0035 FCTN2 TB 7
0083 MOVB R7,RGWA 0096 JEQ FCTN3
0084 DEC Ré6 ALL OF 'EM? 0097 * RETURN TO XB
0085 JNE A NO, MORE 0098 RETURN LWPI >83E0 GPLWS
0086 * WAIT TILL USER LETS GO CF FCTM 0099 B d>6A GPL
0087 FCTN2 TB 7 0100 SUBWS1 BSS >20 WS FOR PBASIC
0083 JNE- FCTN2 STILL PRESSING 0101 MYws BSS >20 MAIN WS
0089 * PRINT "RESTORE W/P..." ‘ 0102 BYTESL BYTE 0 LENGTH
0030 LI R0,>1084 0103 BYTES BSS 255 PLACE FOR DATA
0091 LI R1,BANKO 0104 - END
E/A-GRAMDSK INFORMATION . g803F. The ‘text that - appears’ - oen- The
by Craig Miller (MG) Command Line, when you press FCTN 3, is

located at g8614 through g8757. Have

If you are using the E/AGRAMDSK Fun! |
version for your Editor/Assembler module
in the Gram Kracker you can enhance the
cursor reaction time with the following
changes., First 1load your E/AGRAMDSK ----==------=o-ws—occocomsssconossososs
version of the BE/A into the Gram Kracker
and then use the Bdlt Memory selection to

change the following two items, in hex: CHANGING THE CURSOR OF THE

E/A-GRAMDSK UTILITY

1. Bdit q7AA6, it currently contains 06 by Tom Frememan, LA 99ers

FF change it to 03 FF. This is part

of the delay befoxre a key goes into
auto repeat. If you have used the E/AGRMDISK

2. Bdit g7888, it currently contains 0A utility that came with the GK and
00 change it to 06 01. This is a installed the CHARAl file, you may have
delay loop between keys. noticed that instead of a true cursor on
the editor and assemblexr optlon screens

¥ith these two changes in place you you get a little 1f. This is because the

will notice that the cursoxr now moves a E/A uses character »>1F for {ts cursor
little faster around the screen and that here, and CHARAL hasn't defined it as a
it gqoes into auto repeat a little faster. block. As TI-WRITER never actually uses
The cursor blink speed ls determined by it as far as I can tell, you can redefine
the byte value at g7AA%. It is currently it to whatever shape you wish. I put in
03, changing it to 01 blinks faster and a sollid block cursor, although the E/A
OF blinks real slow. module uses a hollow block. The eight
bytes in question are located as the last

These items were found by using two of the first sector of CHARAl and the
DISXASSEMBLER to disassemble the EDIT1 first six of the 2nd sector (if you have
£ile, once the file is disassembled you already created the E/A GRAM disk flles,
can find items in the E/AGRAMDSK version these wind up being on the 25th and 26th
"loaded into the Gram Kracker by adding sectors of the fourth file created, You
>5804 to the address shown in the right should see (00 40) (4C 50 10 1C 10 10) in
hand column of DISkKkASSEMBLER's output. these two sectors. Change these all to

This will then be the gxxxx address for 78 for a medium size block, or 3C for a

editing. narrow block, or (00 7TE) (42 42 42 42 7E
00} for a hollow block.

If you want to change the default while you're at 1it, 1f you don’'t

Tabs for the E/A Editor they are located like the arrow Instead of a circumflex
at g78BD6 and they are offset by minus (caret}, then go to the next sector and
one. The BOF marker that appears on the look at the 10th to 3rd bytes from the
editor screen is located at g8018 through end. If these are 10 28 44 10 10 10 10

KRACKER FACTS - PAGE 27

00, you can change the 10 's to 00 's and
get a reqular caret back.

----‘-------ﬂ—----.-.d-—----q------------_--—-

CHANGING THE DEFAULT DRIVE
by Tom Freeman, LA F9ers=

Many of you Kracker Hackers may
still be working with a TI disk
controller, but have a MNYARC or New
Horizons RAMdisk. Up until now you have
had to put the EDIT1, RDITAl, EDITAZ,
ASSM1, AS3SM2, FORMAl, FORMA2 in Drive 1
because the B/A and TI-WRITER modules
insisted on it. Therefore, if you wanted
fast loading from the RAMDISK, it had to
be- Drive 1, thus disabling your true
floppy drive 1., The following sections
will show you how to change these modules
to make the defaults for drives 2-9, and
allow you to keep using all your disk
drives as usual.

Yo keap repetitions to a minimum, I
will review the process of using the GX
BEditor here. First save your module to
disk (if you haven't already) using
option 2 on the GKX main screen. Then
remove the module and reload the file off
the disk using option 1. Now choose 35,
the Editor. The cursor will be in the
upper left hand corner, over a small C
(indicating CPU memory). PCTN 1 will
switch you to a small g (for GRAM).
Press
appropriate addresses that will Dbe
described. PFCTN 9 wlll put the cursor on
the memory window, and you can now mnake

changes (be sure that the W/P switch is
up, to Bank 1, or changes will not be
accepted). After the change 15 made,

exit the Bditor with CTRL =, exit the GX
with PCTN = or FCTN 9 and test your
changes. If they are OK, go back to the
GK and re-save the module.

I am not sure Lf there are different
versions of these modules out there,
which might make the addresses slightly
different. If so you can use the Seazch
feature of the GK. After getting the
GRAM window with FCTN 1, press enter
twice to get to Start address, enter
6000, then A000 for the Finish address,
press FCTM 5 to activate the Search,
press FCTN = 1f you need to change from

enter and you can now type the

ASCII to hex or vice versa, press FCIN 3

to get the cursor into the search entry
field, then type the string you want,

MOVE THE CURSOR BACX TO THE LAST TYPED
ENTRY, and press enter. The GK will find
the first occurence for you and put the
address in the upper left corner. To
edit what you have found press FTCN 35
again, then FCTN 9 and you will have the
cursor in the memory field.

EDITOR/ASSEMBLER
The default disk drive £for loading

the Bditor, Assembler, and UTILl files is
at geé62l. {search for EDITI if this
isn't exactly right and you don't see it
on the screen] The default name UTIL1l is
at g662D. The name length of these files
(all the same) is at q661lD (in hex of
course), and equals OA {(i.e. DSK1.EDITI]
etc.) If you wish to have a different
program name as your default for the
Utility option it must still have 5
characters.

I£ you have installed the EDIT1 and
ASSM1-2 programs in high GRAM using the
B/ACRMDISK utility that came with the GX,
then these names are not needed and you
can change even the length of the Utlility
program, provided you change the length
byte at g681D (be sure to add the 5 for
DSK1.) Alternatively you can change the
NAMES of the EDIT! and ASSM1-2 files with
a Disk Manager to make them correspond in
length to the name of the UTIL1 type
program. Then just type in the nevw names
in GRAM, as well as the new length byte.
There is no room for names longer than 5,
but they can be shorter. They must BEGIN
at the same location - the unused
characters will be ignored. If you have
chained a UTILYL type program together
with the module for automatic loading on
powerup (uses FCTN X when -saving the
module, see your GK manual for
instructions) then use a 4 character name
for the module - this makes the
additional files 5 characters. E.q. if
the module name is UTIL then the utillity
programs can remain UTIL1 (and 2 If
used}. If you installed the Editor and
Assembler programs in high GRAM then the
numbers would have to be higher than 1-2.
I named the module P, and used the high
GRAM option, so my utility program had to
be named F4 and F5, and I therefore used
F4 for the default at g66lD as above.

As you can see there are myriad
possibilities - do it the way YOU llke.

When you have done all this you are

KRACKER FACTS - PAGE 28

ready to go. Flrst save the newv module
of course!! Now set up your RAMDISK ¢to
whatever drive you have chosen as your
default. Use some copy program to copy
the module files plus the utility
programs (and the BEDIT1 etc if they are

not in high GRAM) to the RAMDISK. Now
when you enter the Editor or Assembler,
yoit'll get them in a flash! Disk Manager
1000 Vv3.5 and the MYARC Disk Manger
Supreme both support more than three

drives., If you are using Disk Manager
II, see @my article oan changing that
cartridge to allow more than three
drives.

TI-WRITER

This one is a bit easier, because

the default utility program name 13 not
picked out of GRAM as such, but is put up
on the screen. Hence there is no need to
worry about the length byte, as the
program measures it once you press enter.

Pirst, the default drive number |is
at g6763 (actually DSK1l. is at g6760).
If this address is not corzsct you can
search for DSK1l. but there seenms to De
one at §5A7 as well. [am not suze of
what the function of thils one is, but not
changing Lt seemed to make no difference.

The name of the Utility program 1is
at qg6B27 in Englisa. Change it to
whatever you wish {probably the same as
the one in the Bditor/Assembler, if you
have them on the same disk}. The othexr 7
lanquages (!) are located at 6CDO, G6EBA,
70A1, 725B, 7469, 763B, and 6EBA. You
can changqe them If you wish - [dldn't
bother since I don't use them. As a
matter of fact, elsewhere 1in Kracker
Facts are instructions by Mike Dodd on
how to get rid of these altogether, which
will be useful in the future, because
I've heard a rumor that eventually we
will be able to get TI-WRITER and E/A in
one GRAM! : -

-----_----——l—---—------ﬂ-ﬂﬂ——--—-ﬂl—---ﬁ-—--ﬂ-

CHANGING DM2 TO ACCEPT NINE DRIVES
by Tom Freeman, LA Fers

Wwhen TI origlnally wrote Disk
Manager II, the only disk controller
avallable was 7TI's, whlch would not

accept more than three drives. So, TI

KRACKER PFACTS

didn't allow DM2 to accept a drive number
of three or higher. But today, with

MYARC's disk controller and RAM-disks,
many people have systems with drives

numbered higher than 3. This patch will
allow you to change DM2 to allow 4, 5, or
even 3 drives!

One would think that there 1is a
single routine that checks for this. I
worked through this one with Explorer and
found a routine and changed it., But when
I went back to the module, the higher
numbers were only accepted in some
places. 1 wound up doing a little bit of
educated gquessing. I am pretty sure that
what !s 1listed below will make it all
work without messing up any routines.

First the changes to the routines,
A hex 33 is picked out of GRAM each time;
you can see this as an ASCII 3 as well.
I found the following locations necessary

to change {(all in GRAM): 724D, 72C0,
G3F4, 6426, 650C, 675D, 685D. All but
the 2nd and 4th also have a small r

before the 3, s0 you can use tr3 for the
search, If the addresses aren't right.
Change all of these to 4, 5 or whatever
number you wish.

Next use the search feature to 1look

for (1-3). There are 2 locations for
each lanquage. Change these to the
number you chose above. This doesn't

affect the running of the module but

looks neater.

el wE SNy NS EEN EEE amly el sl ol wih BN S e o i ml ool oanll Wb SR nEE WAL SR AN W A u el el el ik ol uell w SEE s

EARLY LOGO LEARNING FUN FI1X
by Craig Miller (MG)

The problem with the Early Logo
Learning Fun cartridge is that it won't
work with the CorComp dlsk controller
card. The exact probleama 1is that this
module has an APPLICATION PROGRAM name
length of 00. When the Corcomp DSR goes
thru the modules looking for Application
names for the menu it starts moving them
out and then it decrements the nane
length counter. >00 decremented 1is >FF
or 255 bytes., This |3 what causes the
mess on the title screen,

To correct this simply SAVE the

module out ¢to dlsk using a TI or MYARC
disk controller and then LOAD it back

- PAGE 29

into the Gram Kracker. Then select the
Gram Kracker's MEMORY EDITOR and change
the byte at g6047 to 01 and resave the
module.

It will not appear on the Corcomp
menu but you can press 3 to start the
module or you can press the space Dar
twice and it will appear on the TI Menu.

' §e tried putting a standard header
in it for the Corcomp menu but it messed
up the TI and MYARC menus, so 1t wasn't a
good universal fix.

pespeegsa ¥ R ¥ F ¥ B L B L L R sl el i N N W Ay e S A N v el ol -

VIDED CHESS FILENAME ENTRY
by Mike Dodd, LA 99ers

The Video Chess cartridge'’s lack of
ability to save to disk can often be
frustrating. The following modification
will allow you to specify any filename;
disk, RAM-disk, cassette, and probably
even hard disk.

Load the Videoc Chess module into the
GK. Now enter the memory editor. Select
GRAM/GROM with PFCTN 1 and hex mode with
FCTN =. Enter search mode with FCTN 5.
Search between 6000 and 7800 for 31 00 OF
AB RS 60 60. VWwhen you find it, exit the
search with FCTN 5, get into the memory
window with PCTN 9, and type 06 78 00 05
72 65 (be sure to enable hank l). Now
press FCTN 5 to search. Leave the
addresses alone, and search for the same
atring, by putting the cursor on the last
"0* {n the last "60", and pressing ENTER.
Press PCTN 5 to leave the search, FCTN 39
and ENTER to home the cursor (Ln the
memory window, and type 06 78 00 05 72
FC. Press FCTN 9 and change the address
field (upper left corner) to 7800. Pzess
FCTN 9 and ENTER. Now type the following
data (don't type the addresses - they're
just a gquide).

31 00 OF AB E8 60 60 08 FC 20 FE 00
FF 02 08 46 49 4C 45 4E 41 4D 45 3F
A0 FF 02 SF 20 FB BF 00 00 22 BE B0
00 4A 03 58 22 D6 75 OD 78 3B D& 75
07 78 00 A2 75 20 BC BO 00 75 31 0O
58 22 BD 02 00 A7 02 00 22 78 00 34
02 AB P2 A0 22 BC AB F1 03 BF 00 0B

F2 A6 BO 00 20 91 00 93 02 58 55 00

Now enable the write proteckt, press
CTRL = to leave the memory editor, and
save vyour modified Video Chess cartridge
to disk.

Now, whenever you tell Video Chess

to save or load a file, 1t will ask for a

filename. Press PCTN 3 to erase the
filename if you make a mistake. MNone of
the other FPCTN keys (i.e. FCTN 8, D, 2,
1) will work.

---—-_----._—----------—---—ﬂl——---—_———---—-

TIW-MOVER FIX
by Craig Miller (MGB)

IF you use the TIW-MOVER utility to
move TI-Writer to another Gram chip you
will need to patch the FORMAL disk flle.
This file currently contains a simple
module check that won't allow [t to run
with the "5 RUM PROGRAM" option of E/A or
ANY OTHER module loaded into Gram 3
(>6000->7FFF) that contains Basic
Subprograms (CALLs), such as Extended
Basic. To correct this you need to use a
sector editor such as Advanced
Diagnostics,

Once Advanced Diags is loaded place
your TI-Writer disk in drive 1 with the
write protect tabh removed. Execute the
AD command "FF FORMAL®™ to get the file
information and the Start Sector. Once
you have the Start Sector ¥ (ssd) execute
the AD command "BS ss#". At the 34th and
35th byte in the flrst data sector (start
sector) of the flle you will Eind the Hex
value of 1000, change this to 1011. The
1000 is a3 NOP (no operation) the 10611 Is
a JUMP to >2040 which bypasses the module
check and wipe out routine. After you
have patched this word press FCTN ¢ and
then execute "WS 33#" to rewrlte the
sector. We hope this clears up any
problems you may have encountered with
the new utilities.

T L L r y rr ¥r. r E E_X K N B B B B e i e e

KRACKER FACTS - PAGE 30

~EMOVING FOREIGN LANBUAGE OPTIONS FROM

TI-WRITER & DMZ
by Mika Dodd

To remove the extra languages from
the T1-Writer cartridge, 1load TI-¥riter
into the GRAM Kracker and select 5 Edit
Memory. Type G6006 to select GRAM
address >6006, and FCTN = to select hex
mode., Press PCTN 3 to enter the memory
window, enable bank 1 and type 60CB.
Enable write protect, press CTRL = to
leave the memory aditor, and re-save your

Pl -Writer cartridge back to disk. That's
all there is to 1it!

To eliminate the three extra
lanquages from TI Disk Manager II, enter

the nmemory edltor. Type G8007 PCTN =
FCTN 9. Enable bank 1 and type 5B.
Bnable write protect, prass CTRL = to
leave the memory editor, and re-save your
DM2 cartridge back to disk. That's all
there is to itl

GRAM PACKER HINTS
by Tam Freeman, LA 9%9%ers

Several modifications have to be
made to your operating system in GRAM 0
ln order to make full use of the GRAM
PACKER (written by J. Peter Hoddie,
available from Genial Computerware}. IYou
will be using your Gram Kracker Editor to
accomplish -these (option K5 from the GK
main menu). Rather than describe all the
keystrokes each time, I will remind you
of the general method here. First of
all, when you get to the editor screen,
press PFCTN 1 once to get to GRAM memory.
Now when you are instructred to seazch
for a string, press PCTN 5 for search.
The cursor will be on the ‘“start"
address. Accept the default of 0000 if
it is there, or type it 1ia, then press
enter to get to "fin*sh® and type 2000,
Now press FCTN 3 and type in your search
string, remembering FCTN = to get to hex
if that is what you are searching for (in
gqeneral it will be). Back up the cursor
one space to get it over the last
character in the search string then press
enter. 1f the string is not {found, Che
edit field will not change - If it 1is

found, the address in the upper left hand
corner will 1zreflect the location of the
first byte of the string found. Now
press PFCTN 5 again to get out of 3EARCH,

then PCTN 9 to edit, and type 1in the
appropriate changes. You will need WP
off in order to type 1in the changes -
remember to turn it back on when you are

finished typing.

The following set of changes need to

be made only if you will wind up with
more than 9 items on your main menu.
There would be - two problems 1if the

changes were not made: 1) you wouldn't
see any after 93 because of the double
spacing! and 2) even if you could the key
presses would be : ; (= > etc. some of
which would actually be two keys (SHIFT
and key). We will therefore enable
singls spacing on the main =menu (thanks
to Craig Miller in The Smart Programmer
for - this information) and change the
sequence of key presses from numbers
beginning with 1 to letters beqinning
with A.

First, to change to double spacing:
dearch for (hex) A3 52 00 3A, In many
consoles this will be at 02E0. <Change
the 3A to lA. HNext comes a problem of
another routine using temporary storaqge
where we will need it (not actually
invelved with the double spacing, but
needed if there ARE more than 9 items for
the menu). Leaving the start and finish
addresses the same, get back to SEARCH by
pressing PCTN 5, FCTN 2 and type in 00 02

28 60 for the search string. You should
£ind it at about 0380, FCIN 5 to get
. back to the memory window. The top 1line

should read:
G0 02 28 60 QG D6 28 AA 43 95 D2 29
. change the 3rd, 7th, and 12th bytes:
00 02 40 60 00 D6 40 AA 43 95 D2 41

You should also insert the small
capltal character set lIntoc the TITLE
SCREEN Characters using <the HNEWCHARS

program on the original GK utillty disk,
otherwise tne characters will touch each
other top %o bottom and be almost
impossible %to read. Note that you can
only have 16 items on the menu because
the start address for the flrst item is
destroyed by the 17th item.

Now to change the Kkey presses ¢to
letters - this is simpler. ¥1¥st change
your start address back to 0000, then

KRACKER FACTS - PAGE 31

sesarch for BE 58 30, You should find |¢

at about 0275. Change the 30 to 40.
Next search for A6 75 31 (should be at

02FC) and change the 31 to 41. You will
now see letters instead of numbers on the

main menu.

I found another problem with many
programs: they do not bothexr to change
the keyboard unit to be scanned, assuming
it to be 5, since that is where the E/A
module is when option 5 is chosen. The
problem is that the operating system is
using keyboard unit 3 at the time the
menu is set up (for this reason you can
use lower case letters for the key press
on the menu ~ they will be converted to
upper case). Here is a siaple Eix: 12
bytes past the 41 you just typed in you
should see 06 03 Cx A4, where the x s
probably a B. Change the first three to
05 19 00. Now PFCTN 9 to get out of
memory window, move the cursor to the
address after the g in the upper left
hand corner, and type in 1900. Now FCTN
-9 agqain, press enter to “home®™ the
cursor, and type in the following: 06 03
Cx BE 80 C§ 02 05 03 Oy where x 13 the

same as you just €found above, and y is 3
higher (in hex) than the address where
you £found the 06 03 (1f that was 030A as
it was in my console, then y would be D).
This changes the kayboard unit to 3.

Por those of you using SBUGS, as I
do often, and who wish to use it from the
main menu, you may have found that the
small character set is not loaded, which
is a PAIN! It's OK if you have loaded it
from E/A 5, Here is a fix: it
incorporates MG's GPLLNK {nserted
directly into memory and then a simple
BLWP GGPLLNK DATA >004A and then return
to the beginning of the actual program.
You will need a sector editor for this.
file

BEA. GSecond find the first actual data

sector of the file. Change byte 3 fzom
92 to EA and bytes 24-25(>18-19}) from 62

B4 to 7D D2. Finally go to the LAST
sector of the file (there arxe 30 data
sectors) and starting at byte 146(>9%2)
carefully type 1in the fcllowing over
whatever {3 there:
7D 18 7D 9E 7D C2 17 6C 00 50 00 00
00 00 00 00 00 00 C8 1B 83 E8 C8 B
83 BC C3 20 20 0B C8 09 20 OE 02 EC
83 B0 96 94 C9 20 7D 92 83 02 05 EO
83 73 04 60 00 60 C1 20 16 6C 06 94
02 BO 7D 7E C8 0C 20 0B 03 80 92 0¢C
OB 00 €9 00 83 4A 04 20 7D 8C 00 4A
04 60 62 84

-----—--_—--_------_--_---------l-----—-—p-ﬂ.

GRAM PACKER AID
by Mike Dodd, LA 99%9ers

One of the problems with GRAM Packer
was that 1t has to know whether or not it
the program uses TI Save format. Now you
can use an XB program I wrote to analyze
a file and tell you what format it uses,
whereas before, the only way to tell was
trial and error. Since my program must
read sectors off the disk, you must load
Barry Traver's RAW program before running
the XB program. RAW - was on Genial
TRAVelER V134, and is present in all
versions of the TRAVelER's XXB program.

¥hen the program runs, it will ask
for a filename. It will then analyze the
file and tell you if it wuses TI Save,
doesn't use TI Save, or if it isn't an
BAS £lle. It may take a while, depending
on the number of files on the disk, since
it is written in XB.

First find the FDR of the

sactor).

109

iiiiiii

(catalog

Change byte 16(>10) from 92 to

-— e L y A

PRESS FCTN 4 AND LOAD I7T%

110 !*GRAM Packer utlllty® 210 G=256 :: INPUT "FILENAME
120 t*Determines if flle® ? DSK"™:A$:: A=VAL(SEGS(A$,1
130 t*ls TI-Save type or*X L1)):: A$=SEGS(AS,3,10):: AS
140 !*non - TI-Save type* =AS&RPTS(" “,10-LEN(AS))

150 !*By Mike Dodd. Uses?® 220 CALL LINK("READ®,A,l1,BS,
160 !*Barry Traver's RAW? C$):: B$=BSESBGS(CS,1,127)::
170 {*program. * FOR B=0 TC 126 :: F=ASC(SEG
150 !ttti*t*itttt!itt*tttt $(B$;E*2+1;1])IG.}ASC(SEG$ { Bs
190 GOTO 200 :: A$,B%,C$,D$3, ,B%2+2,1))

E$:: A,B,C,D,B,F,G :: CALL 230 CALL LINK({"REBAD",A,F,CS,
LINK :: 1@P- D$):: IF SEG$(Cs,1,10)=A8 TH
200 DISPLAY ERASE ALL:"MAKE EN 250

SURE BARRY TRAVER'S RAW P 240 NEXT E :: PRINT "ERROR -
ROGRAM IS LOADED. IF NOT, NOT FPOUND® :: END

KRACKER FACTS - PAGE 32

250 D=(15 AND ASC(SEGS(C$, 30
,1))) *#G+ASC(SEGS(CS,29,1))::
CALL LINK("READ",A,D,DS,ES$)
260 B=A3C(SEG$(D$,1,1))2*G+AS
C(SBGS(D$,2,1)}:: IF B<>6553
5 AND E<>0 JND E<>887 THEN P
RINT "ERROR ~ NOT E/A 5 TYPE
FILE" :: END

270 B=GX*ASC{SEGS$(D5,3,1))+AS
C(SEGS(D$,4,1))

280 E=ASC(SBGS(CS,17,1)):: F
=ASC(SEGS$(CS,16,1)):: IF B=0
THEN C=F*G ELSE C=F¥*G+E-G
29C IF B=C THEN PRINT "TI 35A
VE® ELSE PRINT "NON TI SAVE"

