
VOLUME IV, NUMBER 4 $2.50

INSIDE:
CODING FOR ROM

79 FORTH ROM for Apple II Dr. C. H. Ting .. E
ROMable FORTH with Separate Headers Robert H. Hertel, Robert D. Villwock E

8080 fig-FORTH in ROM ... Ted Croal ... 1 E

FEATURES:
Quick Text Formatter - Part II Leo Brodie ... 21

DEPARTMENTS:
Letters Q

Standards Corner ... 31

A Techniques Tutorial .. 32

..

2716

CODING FOR ROM

from Curry Associates

FORTH PROGRAMMING AIDS is
a software package containing
high-level FORTH routines that
allow you to write more efficient
programs in less development
time. It is also useful for
maintaining existing FORTH
programs. The FPA package
includes four modules:

TRANSLATOR provides a DECOMPILER generates
one-to-one translation of
FORTH run-time code.

CALLFINDER finds calling SUBROUTINE DECOMPILER
words, i.e. calls to a specific
word.

structured FORTH source code
from RAM and inserts program
control words (e.g., IF, ELSE).

finds called words, i.e., words
called by a specific word, to all
nesting levels.

FORTH PROGRAMMING AIDS
enables you to:

Minimize memory require-
ments for target systems by
finding only those words used
in the target application.

w Tailor existing words (includ-
ing nucleus words) to specific
needs by decompiling the
word to disk, editing, and
recom pi I i ng .

rn Build on previous work by
extracting debugged FORTH
routines (including constants
and variables) from RAM to
disk.

w Patch changes into existing
compiled words in seconds.

FORTH PROGRAMMING AIDS
comes with complete source
code and a 50-page, indexed
manual.

The DECOMPILER alone is
worth a second look. This is a
true decompiler which converts
the FORTH words in RAM into
compilable, structured FORTH
source code, including program

control words such as IF, ELSE,
THEN. BEGIN. etc. If you ask
FPA to DECOMPILE the nucleus
word INTERPRET, you get the
following output displayed on
your terminal within 3 seconds:

(N F A O F F A : 4796 491 1)

: IEJTEFFRET
bEG I t J -F I IJLI

I F STATE 3
I F C F A .
ELSE [FA EAECUTE
THEI\I ' S l k C t

I F L C UPIF 1 LE J DL 1 T E K r i I
ELSE DhClF C COMF I L E J L I 1 ERAL
THEN ?'Sl UCt

EILSE HERE I'JL!MFEK D F L 3 I +

TI-iLPJ
H b A l N :

You can decompile one word,
or a range of words at one
time - even the whole FORTH
system! This decompiled output
may be sent by FPA options to
the console, printer, or disk.

DECOMPILE is useful for look-
ing up words, or for obtaining
variations of words by decom-
piling to disk, editing, and
recompiling.

System Requirements: FORTH nucleus based on the fig-FORTH model or 79-STANDARD, a minimum
of 3 K bytes and a recommended 13K bytes of free dictionary space

For more information, call Ren Curry 415/322-1463 or Tom Wempe 408/378-2811
_ - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ -
Yes, send me a copy of fomf PROGRAMMING AIDS, including all source code and the 50-page manual
0 fig-FORTH model
0 FORTH-79 STANDARD (specify system)
0 Manual alone (credit toward program purchase)
0 Send more information

$1 50
$1 50

$25

Calif residents add 6 5% tax
Foreign air shipments add $15

0 Master Charge 0 Visa Account Number ~ ~~ ~~ ~~~ Exp Date-

Name-- __ __ ~~~~

Company- ~~

Street ~ ~~

Ci ty / State/ Z i p

indicate disk format

0 8" ss/sd fig-FORTH screens
0 8" sslsd CPIM" 2 2 file
0 Apple 3 3
0 PCFORTH
0 Other ___ ___

~~ ~~~ ~

~~ ~

~ ~~~ ~ ~~

~ ~~ ~ ~~ ~~

Send to: Curry Associates, P. 0. Box 11324, Palo Alto, CA 94306 41 5/322-1463 or 408/378-2811

. S - T IV N O 4 FORTH Dimensions 2

Letters

PCONSTANT and/or DCONSTANT
Dear FIG,

Charles H. Moore recently explain-
ed to me the origin of SCONSTANT,
ZVARIABLE, 2DUP etc. In spite of my
earlier opinion, that we certainly do
not mean 2 constants with 2CONSTANT,
he really did mean 2 constants. The en-
tire family of words were originally
used to apply to two integers! The two
intergers were ratios to be used with
operations such as *I. For example:

Then to multiply a value by PI:

This all makes sense to me now. See
the footnote on page 122 of Starting
FORTH for a handy table of similar
ratios.

The implementation of these words
usually is the same as the implemen-
tation necessary for operations on dou-
ble precision integers. Thus it might be
argued that there is no reason for dif-
ferent names for the double number
word set.

However, Charles Moore also poin-
ted out to me that the implementations
are not always the same. I gather that
they are never the same in 32-bit CPUs.

We have a precedent for different
names with the same function - for
example: R @ and 1. Though the im-
plementation may be the same for
SCONSTANT, with two single integer
constants, and DCONSTANT, for a dou-
ble precision constant, the meaning is
different. As long as the implementa-
tion remains the same there is no con-
flict in using one as an alias for the
other. But beware!

Glen B. Haydon
La Honda, California

355 113 ZCONSTANT PI

1000 PI *I

Neater S- > D
Dear FIG,

In Vol. IV, No. 1 Robert Smith gave
us a definition of S-> D to convert 16
to 32 bit integer. We have used a much
neater one for a long time:

Think about it!
: S->D DUP O < MINUS ;

J.R. (Roger) Stapleton
University 0 bserva tory

St. Andrews, Fife.
Scotland

FORTH Dimensions

FORTH Machine Project
Dear FIG,

I would like to extend an invitation
to anyone interested to take part in a
volunteer project to build a FORTH
machine. Some support will be coming
from Advanced Micro Devices, in-
cluding one of their new 29116 16 bit
wide microprogrammable chips. Any-
one interested in this should contact
me at the address and phone number
below.

Martin Schaaf
1100 N. Plocentia, #E-38

Fullerton, California 92630
(714) 993-7128

Reflections
Dear FIG,

It is said that introspection is good
for the soul. Let’s slow down and
reflect for a few moments on the
marvelous invention wich we know as
FORTH and the industry which has
sprung up around it.

It has become clear that Charles
Moore’s efforts to increase his produc-
tivity as an applications programmer
has had and will continue to have a
substantial impact on the software in-
dustry. What has caused this remark-
able phenomenon?
- FORTH was designed and im-
plemented by an eminently capable
committee of 1.
- FORTH was hammered into its cur-
rent form on the hard anvil of actual
applications experience.
- FORTH was the by-product of
work done under a government grant,
rather than the object of the grant.
- A small group of applications pro-
grammers who had experienced the
awesome power of FORTH recog-
nized the critical lack of FORTH ven-
dors and selflessly conspired to
develop and place in the public do-
main FORTH implementations for all
of the major microprocessors. Thus
came the birth of FIG and a revolution
in the software industry.

These efforts have resulted in a
burgeoning FORTH community com-
plete with a deluge of vendors offering
a wide range of products, a broadly
based interest group, and a lengthy list

-
3

of successful projects in which
FORTH has played a major role. One
can almost feel the ground rumble as
IBM, HP, GE, and other industry
giants start to sit up and take notice.

Although this all sounds so wonder-
ful, I have some grave concerns over
the state of our young industry.

First, we have failed to publicly
recognize the individual contributions
of our teachers. Although we stand on
the shoulders of giants, we have
systematically failed to recognize them
for the tremendous contributions they
have made.

Who publicly acknowledges the debt
to Charles Moore? or Bill Ragsdale?
What recognition has Dean Sanderson
received? How strongly do vendors of
FIG model derivatives acknowledge
their debt to the implementors? What
mechanism exists to express our
gratitude to these people?

Perhaps, due to the effort required to
learn the internals of FORTH, we
overemphasize our own intellect at the
expense of our teachers. No other suc-
cessful philosophy or technique which
I am aware of has this ominous attri-
bute.

Letters continued on next page

FORTH Dimensions
Published by FORTH Interest Group

Volume IV, No. 4
NovembedDecember 1982

Editorial/Production
Leo Brodie
Publisher

Roy C. Martens

FORTH Dimensions solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. Unless noted
otherwise, material published by the
FORTH Interest Group is in the public
domain. Such material may be repro-
duced with credit given to the author
and the FORTH Interest Group.

Subscription to FORTH Dimensions
is free with membership in the FORTH
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address and/or to submit
material, the address is: FORTH
Interest Group, P.O. Box 1105, San
Carlos, CA 94070

Volume IV, No. 4

Letters . . . (cont.)

Second, we have become confused
over what FORTH is. We have attemp-
ted to force a comprehensive applica-
tions programming approach into the
confines of what has traditionally been
termed a programming language. We
are guilty of placing constraints on
what FORTH can be and endowing it
with features it was never meant to
have.

Standard FORTH programs current-
ly must limit themselves to string IIO
to the system console and block IIO to
the first 32 blocks available on mass
storage. Although it is possible to fetch
and store data within the 64K byte ad-
dressable range, it is unlikely that
hardware specific addresses or data
formats will be relevant, unless the
program is transported to an identical
configuration. Given a reasonable
amount of mass storage, Data Reduc-
tion, DataBase manipulation and self-
contained algorthms appear to be the
only likely candidates for transporta-
tion across standard systems.

The goal of standardization is to
allow the transportation of hardware
and configuration independent
algorthms across standard FORTH
systems. Few existing FORTH appli-
cations are either hardware or con-
figuration independent. In the past,
FORTH has been applied mostly to
solving applications which were
distinguished by their hardware and
configuration dependent nature.
Without the ability to extend and adapt
itself around such environments,
FORTH would not be where it is
today.

It has been my experience that por-
tions of applications which control
specific hardware are transportable at
two levels. Either as a generic
algorthm for supporting a specific
class of hardware (i.e., graphics) or as
a specific algorthm to support a
specific device in a new environment
(i.e., disc conroller). Both cases typical-
ly require some level of tailoring in the
new environment.

As a member of the standards team,
I am concerned with how to specify
a “standard” FORTH environment
which is flexible enough to handle
both cases and still provide the
transportability we all desire.

Third, although we have been ex-
tremely successful in providing a
tremendously powerful tool to a large
number of people, we have failed to
teach them how to effectively use it.
As a result, a lot of effort has been
spent on careful inspection and in-
fatuation with the tool rather than ex-
periencing the benefits of its use.

It is said that the first two applica-
tions that a new FORTH programmer
writes are a de-compiler and a screen
editor (order dependent on whether or
not source code for the system was
supplied). I would feel more comfor-
table if the majority of new FORTH
programmers were immediately able
to use the tool to solve an application
problem. The best complement we can
bestow upon our teachers is effective
use of what they taught us.

Finally, if the FORTH community is
to continue to grow, we must all
become more business-like. While
recognizing that availability of low
cost, public domain versions has been
instrumental in the proliferation of the
language, we are quickly approaching
the point when we will have reached
all those hardy souls willing to provide
enough of their own efforts to over-
come the limited documentation and
support implications of such low cost
versions. We are already seeing
FORTH rejected for perfectly feasable
applications due to unwillingness on
the part of the customer to shoulder
this burden.

As is typical of the software in-
dustry, we all underestimate the cost
and effort involved in developing and
supporting a software product. I claim
that the total net worth of all FORTH
vendors is under 3 million dollars, and
that the total yearly revenues resulting
directly from FORTH goods and ser-
vices is under 5 million dollars.

I know of few reasonably profitable
FORTH vendors and suspect that most
are just meeting expenses. Unfor-
tunately, I don’t see this picture chang-
ing substantially in the near future.

Although I can conceive of nothing
I enjoy more than providing tools and
solutions to technically challenging
applications, I am concerned that by
trading fun for cash, we do ourselves
and our industry a disservice. The

accumulation of capital would provide
the necessary management and sup-
port services (i.e., product specific
documentation) which I feel is so
desperately needed.

You may accuse me of presenting
views intended to feather my own bed
as a FORTH vendor. I would like to
believe that my interests are more
highly motivated by the concerns that
we more suitably honor our teachers.
A healthy industry can better repay
this debt.

Don Colburn
FORTH Programmer

Closer Approximations
Editor’s Note: Some of you may be in-
terested in this letter I recently received:
Dear Mr. Brodie,

I am reading and enjoying your
book, Starting FORTH. I found some
better approximations for your foot-
note on page 122. Here they are, along
with the ones from page 122:
Definition Approximation (Approx.-Def.)/Definition

e 28667 I10546 - 5.7 x 10’’
25946 I 9545 - 2.0 ”

410 22936 I 7253 5.7 ”

” 27379 I 8658 0.67 ”

1112116.384 485 I11464 91. ”

846 I19997 -12. ”

Robert T. Corry
Polytechnic University of New York

Brooklyn, New York

Virginia Figs?
Dear FIG,

Do you have any method of helping
members to locate other members?
The Potomac FORTH Interest Group
is currently the closest I know of, and
120 miles is a long way to go. I would
like to see a central Virginia FIG
organized, or organize one. Any
suggestions?

John C. Lundin, Jr.
Richmond, Virginia

John, let’s hope your letter stirs up some
interest in the Richmond area. See
“Start Your Own FIG Chapter” on page
5. -Editor

Letters continued on next page

Volume IV, No. 4 4 FORTH Dimensions

~ ~

Letters . . . (cont.)

Cleaner Stepper Driver -
&F.Z: FlG.

X X T H certainly is a splendid
2 ; t r g i s g e for controlling stepper
L-. -. >. and the method shown in the
5 . k -,::?.nt - - article by Martin Petri and
2-1 3rodie can be compacted still fur-
-:. 3)- reducing the outputs table to
2. 3ytes.

1:. my implementation, each motor
3 issigned a byte-variable (X-PHASE, Y-
CHASE). \\-hose value is restricted to 0-3
zL1 xhich is a pointer to the current
.:a:s:;on of the motor phase within the
.:-I? sequence 5,6,A,9. The word
STEPCODE expects on the stack a direc-
~--.. flag and the address of the
-PHASE ivord for the motor to be step-
.-& STEPCODE fetches the current
;e::xrer. increments or decrements it
-1 IrJrding to the direction flag, ANDs
i t result with 0003 to maintain the 0-3
r z g e of value, adds the result to the
-=x value for the table, and fetches
.--r output code. The ANDed result is
L - 3 stored back to -PHASE.

Tne outputs code table has values in
:::n nibbles, i.e., 55,66,AA,99. The
-. Lue left by STEPCODE is ANDed with
+::her O O O F or O O F O to leave only the
:2ae for the selected motor. If 16-bit
Forts are available, this scheme can be
readily expanded to control 4 motors.

I invented this method while work-
:-g on an 1802-based application;
s:nce then I have seen it described
riiree times in the literature, for con-
:rol applications ranging from wafer
scribers to radio telescopes, and it is
completely in the public domain.

;\nd last - regardless of the method
used to generate the code, the DO loop
:vhich steps the motor should include
a ivord which tests the limit switch in
the direction of travel for the motor be-
ing stepped, and if set then executes
LEAVE, and jumps immediately to LOOP,
lvithout stepping the motor.

MTFBWY,
Wendall C. Gates, PE

Advanced lnstrumentation
Santa Cruz, California

_.___-

-_._

. .- .

- - -

- - -

-.._

- - -

Thanks, Mr. Gates and MTFBWY, too.
- Editor C

BASIC?”
“I’m okay, you’re ready.”

-Ed Rotberg

Star t Your
Own FIG
Chapter
What is a FIG Chapter?

There are two kinds of FIG chapters:
local, and special-interest. Local
chapters are centered in a city or
region. special-interest chapters may
be non-geographical; they focus on an
interest area such as an application
(e.g., robotics, telecommunication), or
on FORTH for a particular computer.

All chapters must provide a contact
point, and some form of regular
public access (usually meetings). Non-
geographical chapters will normally
provide other forms of access, such as
a newsletter or telecommunications,
instead of meetings.

Why Have a FIG Chapter?
A chapter lets you share information
with other FORTH users in your
geographical or application area. In
addition, FIG provides several specific
benefits:

(A) FIG will list your chapter in
FORTH Dimensions, so that others can
find your group.

(B) FORTH Dimensions will give
priority to publishing chapter news,
which can help you make professional
contacts in the areas of your particular
interests.

(C) FIG will occasionally supply
material, such as meeting handouts or
tapes, which can serve as a discussion
topic at local meetings.

(D) FIG will supply its publications
at bulk rates; local chapters can sell
them to raise money, and to provide
immedite local access to the material.

(E) Chapters can apply to FIG for
one-time funding for activities.

How to Start a FIG Chapter
To be recognized as a chapter, a group
must have (1) a contact person, (2)
regular public access (usually by
meetings which are open to the
public), and (3) at least five members
of FIG. If you don’t know five
members in your area, FIG can help
you contact them. If you want to start
a chapter, send a request for a FIG
Chapter Kit to the Chapter coor-
dinator, FORTH Interest Group, P.O.
Box 1105, San Carlos, CA 94070.

Chapter News
New Jersey Chapter

The New Jersey FIG Chapter held its
fourth meeting October 28th at the
Computer Center of Rutgers Univer-
sity, in New Brunswick. Meetings are
purely informal discussions at this
stage, with between ten and twenty
members at our previous meetings;
cocktail-party style multiple conversa-
tions is the rule, as we have yet to
receive any offers for set piece presen-
tations. Some presentations are in
written handouts that may or may not
be discussed at the meeting.

Everyone is a fig-FORTH model user
at the moment, and several are in-
volved in implementations on new
machines including 8086, 68000, and
Perken Elmer mainframes. As the ’
number of participants grows a more
formal organization may be created,
but for the moment there is no mail-
ing list or dues; attendees at one
meeting set the time and place of the
next meeting.

We have been very fortunate to date
by having members volunteer facilities
at their academic institvtions for the
meetings. Meetings are bimonthly.
Call George Lyons at home at (201)
451-2905 to learn the place and time
of the next meeting.

Potomac Chapter
Joel Shprentz described and demon-

strated the cross compiler system crea-
ted by Nautilus Systems. Joel has used
it to prepare new versions of FORTH
for the TRS-80 and to create ROMable
code for control applications.

The demonstration traced the devel-
opment of an application from interac-
tive development to cross compilation
to ROM burning.

Dayton Chapter
The Dayton Chapter of FIG held its

second meeting at the Datalink Com-
puter Center on Sept. 14, 1982 with
fourteen members in attendance.

Mr. James Gaston told about his pro-
blems in learning FORTH when he
was first programming. He suggested
that a good club project would be to
build a FORTH model for the new
Motorola 68000 microprocessor. The
membership was in favor of the pro-
ject, so we will begin at our next meet-
ing, October 1 2 , 1982, with Jim offer-
ing suggestions in order to give each
person a chance to learn the process.

FORTH Dimensions 5 Volume IV, No. 4

79lFORTH ROM for Apple II

Dr. C. H. Ting

The Design Goals
The main purpose of this project

was to implement a FORTH system of
the lowest possible cost, and to carry
this exciting language to the large
population of Apple I1 users. To lower
the system cost, it is necessary to fully
utilize all the existing resources inside
the Apple I1 computer, without such
expensive peripherals as the floppy
disk drives. The design goals were
thus set as follows:

Use a stripped Apple I1 as the
host
Put the FORTH dictionary in
8K bytes of ROM
Implement the %Standard
with editor and assembler ex-
tensions
Build a pseudo disk in RAM
with cassette tape as the off-
line storage medium

The result will be a FORTH com-
puter in a small box, which can be
operated standing-alone and has the
capacity of expanding into many
educational and professional appli-
cations.
Development Tools

I did not have very sophisticated
tools to develop 6502 based microcom-
puter systems. The only tool was a HP
65000 Development System, which
had a 6502 cross assembler in it. The
only way to build a FORTH system
was to assemble the 6502 assembly
source program on this development
system, burn the object codes into a set
of PROMs, and insert the PROMs in-
to the Apple for testing and debugging.
Any uncovered bug would have to be
fixed at the source level. However, I

had both the Auto Start Monitor and
the Old Monitor in the Apple. The lat-
ter was very useful in the debugging
process because of its trace capability.
Approach

Because of the lack of good develop-
ment tools, it would be very difficult
trying to build a FORTH system from
scratch towards the design goals. The
best approach was to divide the pro-
ject into two phases:

Implement a fig-FORTH sys-
tem using the 6502 fig-FORTH
source listing; and
Modify the fig-FORTH to
meet the design goals.

It was extremely important to build
a working fig-FORTH system, because
the object codes can be checked out by
comparing byte-by-byte with the
source. This greatly eased the task of
debugging. Once I had the fig-FORTH
running, further modifications could
be checked and debugged using the
FORTH interpreter, which was much
more convenient to use and test.
Implementation

I first keyed in the 6502 source
codes, identical to the 6502 fig-FORTH
Source Listing. Both the source codes

The result was four
2726 PROMs

sitting neatly on a
small PC board.

and the assembled object codes were
thoroughly checked out. After chang-
ing the terminal IIO routines and off-
seting the object codes to start at
6000H, the resulting object codes were
burnt into 2716’s and moved into the
Apple on the Apple ROM Card. Using
the Apple Monitor, I could move the

dictionary from the PROM’s into
RAM area, starting at 6000H. Debug-
ging in RAM was much easier than
doing it in ROM. The tracing aids pro-
vided by the fig-FORTH was helpful.
However, I found it was more conve-
nient to replace the JMP W-1 instruc-
tion by BRK, which returned the
system to the monitor. To continue
execution, I just keyed in OBOG in the
monitor, which jumped over to W-1
(address OBOH) and continued onto
the next word.

Only minor errors were detected
and fixed at this stage, because most
errors were flushed out by byte com-
parison of object codes. Since the en-
tire system was in RAM, errors were
corrected immediately and more tests
could be carried out before a new set
of PROMs were burnt.

After the fig-FORTH was thoroughly
bug free, I proceeded to the task of
modifications. The first thing to do
was to trim the fig tree, making room
for the editor and the assembler. I
deleted the name fields and the link
fields of all the run-time codes and
some system words which the users
are not expected to use. All the disk
words were also deleted because the
final system would not have a disk.
The pseudo disk was implemented by
a simple redefinition of BLOCK:
: BLOCK (n --- addr)

MAXBUF MOD BlBUF FIRST + ;
It returns a RAM address of the
desired block, from which data can be
referred.

The second task was to make the
FORTH system ROMmable. All varia-
bles were either eliminated or changed
to user variables. The only impure
words were the vocabulary words like
FORTH. To make FORTH, EDITOR, and
ASSEMBLER stay comfortably in ROM,
a new defining word ROM-VOCABULARY
ought to be used:

Continued on next page

I

Volume IV, No. 4
FORTH Dimensions 6

-RTH ROM for Apple II (continued from page 6)

: ROY-VOCABULARY (addr ---)
CREATE , DOES> @ CURRENT ! ;
a 1062 ROM-VOCABULARY FORTH

1068 ROM-VOCABULARY EDITOR
lO6E ROM-VOCABULARY ASSEMBLER

- - ze addresses specified above point
_ _ -.c R I M locations where the name
??-: addresses of the last words
xf.r.ed in the respective vocabularies
z e stored. These RAM locations are
1: ze initialized at boot-up to:
FDRTHUNK: 1060H: A081

EF3D
WTRLINK: 1066H: A081

E8DF
ASSEMLINK: 106CH: A081

EEO1

-- _ _ _

original VOCABULARY remained in

::eating new vocabularies in RAM by
'-7s user.

The editor was basically the fig-
FORTH editor. However, the com-
:and structure was modified to that
-5ed by Brodie in his Starting FORTH.
1 hoped to use Starting FORTH as an
.nstruction manual for this ROM
--ORTH system and a compatible
editor would not do any harm. The
only major departure from the Starting
FORTH editor was the handling of
null strings. Only one string buffer
IPAD) was used here, while Brodie used

--- .___ dictionary for the purpose of

-

two independent buffers for searching
and inserting.

Bill Ragsdale's 6502 Assembler was
included in this FORTH to let the user
experiment at the code level.

Finally, the whole system was up-
dated to the 79-Standard. Many words
needed to have their names changed.
A few new words were added, and a
few words needed to be redefined.
Bob Smith's '79-FORTH Conversion
was most helpful in this phase.
Result

The result was four 2716 PROMs sit-
ting neatly on a small PC board. When
it was inserted into Slot 0 in an Apple
11, it turned the Apple into a very
powerful FORTH computer. In an
Apple 11 with 48K bytes RAM, 24K are
used as a pseudo disk which holds lots
of programs. With some tricks like

one could even turn the 16K high
graphics memory into a second disk,
making the total disk memory 40K.
The programs can be dumped to cas-
sette tape for storage. By loading or
dumping large chunks of memory
from or to tape, the necessity of disk
can be avoided while still having all
the advantages of FORTH. The main
dictionary, securely stored in PROMs,
makes the system immune from fre-
quent crashes during program devel-

-32 OFFSET !

opment and testing. 3

FORTH Dementia Leo Brodie

ADA PROG RAMU E R AND FO RTtl PROGRAMMF~
OBSERVING CREATION

r FOR TRS-80 MODEL I OR 111
IBM PERSONAL COMPUTER

t MORESPEED
1020 clmw faster lhin Interpreted BASIC.

!!%R&Rp%%mPIW code plus VIRTUAL MEMORY
makes your RAM act larger. Varlabl. numbar of block
buflers. Jlcher..unlque wordnames use only 4 bytes In

(Ion m!
Far more complete than most Forths: slngle h double
preclslon. an. a, strlng.handllng, clock. graphlcs IIBM
low.res. nlves k end 16 color or 200 tlnl coloi dlsplay)

MOREEASE
Excellmt fuII.scroen Edllor. slructured h modular
proprammlng

THE NOTEPAD Iettsr writer
Optlmlzed for your TRSBO or IBM wlth ksybosrd repeats

word search utility

uppetiiowu csso display driver, IUII ASCII

MOREPOWER
Forth operstlnp system
Concurrent Intsrpreter AND Compiler
VIRTUAL IK) for vldw and prlnter. dlsk snd ISpe
(10Ms abyle hard dlsk svallablel
Full Bo%o or 8008 Assemblsr aboard
(ZO Assembler sIs0 avallsbla lor TRSBOI
Intsimlx 35 to 804rack dlsk drlves
IBM can Isad. wrlte and run M 3 Dlaks
M 3 can read, write and run M 1 diska

THE PROFESSIONAL FORTH SYSTEM
FOR TRS.0 I IBM PC

rrhoussnds of syslems In use)
MMSFORTH Dirk System (requires 1 disk drive 32K RAM)
V2 0 For Radlo Shsck TRSBO Model I or Ill
V2 1 For IBM Personal CompulerlBOcol scmenl

$120 95
$249 95

AND MMS GIVES IT PROFESSIONAL SUPPORT

SOufCe Code provided
MMSFORTH Newsleller
Many demo programs aboard
MMSFORTH User Groups
Inexpensive upgrades to latest version
Programming Slat1 can provide advice rnoaifications and
custom programs lo l i t YOUR needs

MMSFORTH UTILITIES DISKEllE Includes FLOATING POlNl
MATH (BASIC ROM IoYllnes plus Complex numbers Reclan
gular Polar cooramale conversions Degrees mode mom) i
powerlul CROSS REFERENCER lo list Forth words by blml
snd line plus fTRS8OI a lull Forlh style 280 assemble
requites MMSFORTH V2 0 1 drive h 32K RAM) $39 05'

FORTHCOM CommunlCatlonS package provides RS 23:
driver dumb lerm!nal mode lransler of FORTH blocks anc
host mode to opera10 a remote FORTHCOM syslems (requires
MMSFORTH V2 0 1 drive 6 32K RAM) $39 95'

THE DATAHANDLER a very fast database managemenl
system operable by non programmers liequires MMSFORTH
V2 0 1 drive 6 32K RAM1 $59 95'

FORTHWRITE fast p ~ w e r l u l Word Processor wleas)
kaystrokes Help Screens manual h demo files Full DrOwr
l+onaI wnabs ouldentmg Include olher blocks documents h
keyboard mpuls- deal lor tom Iellers (requires MMSFORTH
V2 0.2 drtves h 48K RAM) $175 00'

MMSFORTH GAMES DISKETE real time glaDhlc6 6 board
Dames wlsource code Includes BREAKFORTH CRASH
FORTH CRYPTOOUOTE FREEWAY (TRS80) OTHELLO &
TICTACFORTH (requires MMSFORTH V2 0 1 drive h 32K RAM)

$30 05'

0m.r MMSFORTH pmduste undnr dwmlopment

FORTH BOOKS AVAILABLE
MMSFORTH USERS MANUAL wlo Appendices $17 50.

STARTING FORTH best' $1595'

rHREADED INTERPRETIVE LANGUAGES advanced analysis
)f FORTH inlemals $18 05'
PROGRAM DESIGN h CONSTRUCTION inlro 10 strucfured
,rogrammmg good for Forth $18 00'
CORTH 19 STANDARD MANUAL officfal reference 10 7 9
STANDARD word set elc S13S5'

:ORTHSPECIALISSUE BYTE Magazlne(Aug 19801 A collec
$4 W' or I item lor Forth users and beginners

' ORDERING INFORMATION Software orices include

Send SASE lor free MMSFORTH mlorrnar!on
GOOO dealers souqnr

computet dealer or

MILLER MICROCOMPUTER
SERVICES (69)

61 Lake Shore Road, Nalick. MA 01760

Get MMSFORTH pIoduClS from your

(617)653.6136 ,
I

7 Volume IV, No. 4 FORTH Dimensions

THE FORTH SOURCE'"
MVP-FORTH - A Public Domain Product

MVP Forth is fig-FORTH modified by 100% of the FORTH-79 Standard
Required Word Set plus the vocabulary for the instructional book Starting
FORTH Editor assembler and utilities are included

Transportability of programs is assured since the kernal of MVP-FORTH
is the same for all computers to the machine dependent READlWRlTE
instructions

Modification and extension (up or down) is simplified by having the
source code and through the use of MVP-FORTH Programming Aids and
Cross Compilers

The CPlM" are supplied on 8 SSlSD IBM 3740 format disks The
include a track and sector calculation array for down loading to other
sizes and formats Other disks are machine specific

A / / About FORTH is an annotated glossary of MVP-FORTH words as well
as olher dialects It is in 8080 code other MVP-FORTH implementations
include docurnentation of the differences between it and other CPU s and
computers

MVP-FORTH PRODUCTS for CPlMO IBM-PC@ and Apple@
7 MVP-FORTH Programmer's Kit including disk with

documentation ALL ABOUT FORTH and STARTING
FORTH Assembly source listing versions 51 00

1 MVP-FORTH Disk with docurnentation Assembly source
listing version $75

r MVP-FORTH Cross Compiler with MVP-FORTH source in
FORTH 5300

callfinding and translating Specify computer 51 50
L1 MVP-FORTH Fast Floating Point for Apple 11/11 + on board

with 951 1 math chip Requires MVP-FORTH for Apple5400
I MVP-FORTH Assembly Source Printed listing 520

ALL ABOUT FORTH by Haydon MVP-FORTH reference

J MVP-FORTH Programming Aids for decompiling

plus fig-FORTH and FORTH-79 $20

* * * MVP-FORTH operates under a variety of CPU s computers
and operating systems Specify your computer and operating
system CP/M supplied on 8 SSlSD 3740 format **

FORTH DISKS
FORTH with editor assembler and
7 APPLE 11111 + by

MicroMotion 51 00
C APPLE II by Kuntze 590
: ATARF valFORTH 550
1 C P I M by MicroMotion $1 00
I CROMEMCO": by Inner

Access 51 00

manual
- PET" by FSS $90

Systems 590

Microsystems 51 00

Microsystems 51 00

L TRS-8011' by Nautilus

1 6800 by Talbot

I 6809 by Talbot

C HP-85 by Lange $90 L Z80 by Laboratory

1 IBM-PC" by Laboratory

- NOVA by CCI quad

Microsystems 550

Microsystems 51 00
Microsystems 51 00 L 8086188 by Laboratory

l l0DOV 5100 L VIC FORTH byHES VIC20
cartridge 560

Enhanced FORTH with F-Floating Point G-Graphics T-Tutorial
S-Stand Alone M-Math Chip Support MT-Multi-Tasking X-Other
Extras 79-FORTH-79
- APPLE 11111+ by Micro- - TRS-8011 or 111 by Miller

Motion F G & 79 $1 40 Microcomputer Services
ATARl by F X & 7 9 51 30
PNS F G & X 590 TUTORIAL by Laxen &
CPlM by MicroMotion

Apple II/H +, GraFORTH by
lnsoft stand alone

Harris CPiM with a copy of
F & 79 $140 Starting FORTH 595

- Extensions for Laboratory
Microsystems iBM Z80 and

graphics $75
H891Z89 by Haydon
T & S $250
H891Z89 by Haydon T 51 75

FORTH Inc
F G S M MT & X $300

IBM-PC, PolyFORTH by

- Multi-Taskina FORTH by

8086
- Software Floating
Point
8087 Support

(IBM-PC or 8086)
9511 Support

IZ80 or 8086)
- Coior Graphics

(IBM-PC)

51 00

$1 00

$1 00

$1 00
Shaw Labs CPlM
x & 79 5395 Management 5200

CROSS COMPILERS Allow extending modifying and compiling for
speed and memory savings can also produce ROMable code *Requires
FORTH disk

- Data Base

CPlM 5200 I IBM* $300
H89lZ89 5200 ,8086. 5300
TRS-80/1 5200 1280. $300

I Northstar' $200 I AppleII/II+ 5350
fig-FORTH Programming Aids for decompiling callfinding
and translating Specify CPlM IBM-PC 8086 LBO or
Apple 11/11 + 51 50

FORTH MANUALS, GUIDES & DOCUMENTS
I ALL ABOUT FORTH by [, AIM FORTH User's

[' APPLE User's Manual
Haydon An annotated Manual 51 2
glossary of common FORTH

$20 words MVP-FORTH MicroMotion
reference 520 I; TRS-80 User's Manual,

J And So FORTH by Huang A MMSFORTH 51 9
college level text

L FORTH Encyclopedia by
Derick & Baker A complete 530

525 J METAFORTH by Cassady
Meta compiler in 8080

programmer s manual to fig-
FORTH with FORTH-79
references Flow charted
2nd Ed $25

J Starting FORTH by Brodie
Best instructional manual
available (soft cover) $1 6

___.

Systems Guide to f i g
FORTH $25
Caltech FORTH Manual 51 2
Invitation to FORTH $20
PDP-11 FORTH User's
Manual 520

Starting FORTH (hard
cover) 520 MicroMotion 520

I 1980 FORML Proc. $25 C FORTH-79 Standard $1 5

2 Vol $40 Conversion 51 0

1982 FORML Proc. $25 L Tiny Pascal in
1981 Rochester FORTH fig-FORTH 51 0
Proc. $25 u NOVA fig-FORTH by CCI

Proc.
Using FORTH
A FORTH Primer
Threaded Interpretive

L! CP1M User's Manual,

J FORTH-79 Standard i 1981 FORML Proc.

with editor assembler and
51 5 utilities

C MVP-FORTH Source Listings

520

I 1982 Rochester FORTH

Languages $20

Installation Manual for figFORTH, contains FORTH
model glossary memory map and instructions 51 5

Source Listings of fig-FORTH, for specific CPU s and computers The
Each 515

NOVA L PDP-1llLSI-11

Ordering Information Check Money Order (payable to MOUNTAIN VIEW PRESS
INC) VISA Mastercard or COD s accepled No billing or unpaid PO s California
residents add sales lax Shipping costs in US included in price Foreign orders pay
n US funds on US bank include lor handllng and shipping by Air $5 for each item
under $25 $10 tor each item between $25 and $99 and $20 lor each item over
$1 00 Min mum order $1 0 All pr ces and products subject 10 change or withdrawal
without notice Single system andior single user license agreemeni required on
some products
DEALER & AUTHOR INQUIRIES INVITED

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (41 5) 961 -41 03

Volume IV, F 8 FORTH Dimensions

ROMable FORTH with Separate Headers

Robert H. Hertel
Robert D. Villwock
Microsys terns, Inc.

Traditional implementations of
FORTH assume a single computer en-
vironment in which the program is
compiled, tested and used. In this en-
vironment it is expected that:

Memory is all-RAM
Terminal and disk are available
System software (compiler,
editor, etc.) is needed

In a typical dedicated micropro-
cessor application such as a "smart"
product of some kind, there are two
distinct environments which we will
call the development and target envir-
onments. The development environ-
ment is usually the same as the
traditional FORTH environment, but
the target environment is different:

ROMlRAM memory organiza-
tion
No conventional terminal or disk
System software is not needed.

In our own work, the development
setup consists of a microprocessor
development system connected to a
prototype target system by means of
an in-circuit emulator. The memory
space can be mapped so that some
parts of the memory reside in the
development system and other parts in
the target hardware.

Until recently, the usual method of
developing FORTH software for
dedicated applications has been to
compile and test with a traditional
FORTH implementation. After testing
is completed in this mode, a "target
compiler" or cross compiler is used to
reprocess the source code to produce
the final target code. This produces
headerless target code without the
name fields and without unneeded
system software. ROM copies of this
code can be installed in the target
system.

The cross-compilation method of
producing ROMable code has several

drawbacks. Obviously it adds an extra
step to the software development pro-
cess. The cross compiler itself is com-
plex and much more difficult to use
than an ordinary compiler. With the
target names discarded, interactive
testing becomes difficult or impossible
at a critical point in the development
process.

When we selected FORTH as our
primary software development tool,
we decided to develop a new compiler
to recognize and fully support the dual
developmentltarget environments. In
the resulting implementation (called
proFORTH'") the ROMlRAM and
systemltarget separations are made as
the code is compiled. Target names
are retained in the system area of
memory in such a way that interactive
testing can continue until and even
after the target code is transferred to
ROM. When development is com-
pleted it is only necessary to program
ROMs for the appropriate memory
areas; system code is simply dis-
carded.

The remainder of this discussion
will describe those elements of the
proFORTH'" system related to com-
piling ROMable target code, and will
explain how the programmer uses the
system.
Memory Organization

The processor's memory space is
divided into three kinds of segments:

ROM -target code or read-only
memory
RAM - target variables or
readlwrite memory
DICTIONARY - system code,
names, etc. (also readlwrite)

Any number of segments of each
kind may be defined. ROM and RAM
segments are dictated by the needs of
the application and the design of
its hardware. For example, separate
ROM segments might be assigned for
an interrupt vector jump table, op-
tional code, and for all other target
code. RAM areas might be set up for
a CRT refresh memory and for all
other target RAM. Figure 1 shows a
memory map with these ROM and
RAM segments defined.

0000

lFEO

2000

4000

4800

6000

6400

7000

8000

FFFF

I
ROM 1 1

I
ROU 2 f

ROU 3 I
mmmmi
/ I / / / / / / / / / / / I
/ / / / / / / / / / / / / I

I
I
I

I
0 I

I
I
I
I
I

DICTIONARY I

FIGURE 1 - SAMPLE MEMORY MAP

Often a single dictionary area will
suffice, but proFORTH'" supports
multiple dictionaries and they can be
used in a variety of ways. For now we
will assume that only one dictionary
is needed.

Segments within each class are
numbered as indicated in Figure 1.
ROM and RAM numbers begin with
1; dictionaries are numbered from
zero. They are established using the
words ROM, RAM and DICTIONARY. Thus
the directives

8000 FFFF 0 DICTIONARY
6000 63FF 2 RAM
4000 47FF 3 ROM

assign the address space 8000 through
FFFF to dictionary 0, 6000 through
63FF to RAM segment 2 and 4000 to
47FF to ROM segment 3 (we will
assume throughout this article that
numbers are expressed in hex-
adecimal). More specifically, each
memory segment has a segment con-
trol block structure like the one for

Continued on next page

Volume IV, No. 4 FORTH Dimensions 9

ROMeble FORTH (continued from page 9)

RAM 2 shown in Figure 2. The control
block has three pointers referred to as
VBOT, VLOC and VTOP (V for variable
memory). VBOT and VTOP point to the
lower and upper address limits of the
RAM segment, and VLOC points to the
next available address within the seg-
ment. In the example above, execution
of the sequence 6000 63FF 2 RAM sets
the contents of VBOT and VLOC in RAM
control block 2 to 6000, and the con-
tents of VTOP to 63FF. As space in
RAM segment 2 is used, the contents
of VLOC will be incremented so that it
always points to the next available
byte.

The dictionary and ROM control
blocks have the same form as the RAM
control blocks, except that the pointers
are referred to as DBOT, etc., and CBOT,
etc. (C stands for code).
Definition Components

Although for some processors the
standard proFORTH’” implementa-
tion uses direct threaded code for
faster execution and byte savings, this

Continued on next page

I , i vLoc(2) I---I---
I l l I . .

I WOP(2) 1---1---I---
I 1 I I I
I I l l 1
I I I I I

?- - I l l
I I I I I

I I I I
I 1 I < - - I

I- I
I I ALLOTTED I I I

RAM I I SPACE I I I
SEGMENT - 1 I I I I

2 I I I <------ I

I I
I I

FIGURE 2 - SEGMENT CONTROL BLOCK
FOR RAM SEGMENT 2

==-=-=-
-=-=-=- 8080/280 FIG-FORTH for CP/M & CDOS systems -=-=-=-

-=-=-=-=-
$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and

debugging them. You receive TWO 8 inch diskettes (single sided, single density, soft sectored
only). The first disk is readable by Digital Research CP/M or Cromemco CDOS and contains 8080
source I keyed from the published listings of the FORTH INTEREST GROUP (FIG) plus a translated,
enhanced version in ZILOG 280 mnemonics. This disk also contains executable FORTH.COM files for 280
& 8080 processors.

The 2nd disk contains FORTH readable screens including a extensive FULL-SCREEN EDITOR plus many
items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data base handler, an
8080 ASSEMBLER and formatted memory dump and 1/0 port dump words. The disks are packaged in a ring
binder along with a complete listing of the FULL-SCREEN EDITOR and the FIG-FORTH INSTALLATION MANUAL
(the language model of FIG-FORTH, a complete glossary, memory map, installation instructions and the
FIG line editor listing and instructions).

This entire work is placed in the public domain in the manner and spirit of the work upon which

==_ =-=-

=-==-=_

it is based. Copies may be distributed when proper notices are included.

USA Foreign
-=-=-=-=-

AIR
+- +
I I Above described package $50 $60
+- +
+- +
I I Printed 280 Assembly listing w/ xref........$15 $18
+- t (Zilog mnemonics)
+- -t
+-+
I I Printed 8080 Assembly listing $15 $18

TOTAL $- -
-=-=-=-=-

Price includes postage. No purchase orders without check. Arizona residents add sales tax.
Make check or money order in US Funds on US bank, payable to:

Dennis Wilson c/o
Aristotelian Logicians
2631 East Pinchot Avenue
Phoenix, A2 85016

(602) 956-7678 - =-=-=- =-

Volume IV. NO. 4 FORTH Dimensions 10

discussion will consider only the more
familiar indirect threaded code. Figure
3(a) shows the proFORTH'" defini-
tion structure for a system constant -
that is, a constant which is not refer-
enced in high-level target code. Except
for the location of the LFA, it is essen-
tially identical to the traditional struc-
ture, in that the entire definition is
compiled into the active dictionary
(in this case, dictionary 0). The header
begins at the link field address or LFA,
and consists of the link and the defini-
tion's name. The body immediately
follows the header in memory and
consists in this case of a pointer to a
common support procedure named
(CONST) located at the CFA or code

field address, followed by the parame-
ter field at the parameter field address
of PFA. In the example the parameter
field contains the constant's value,
which the procedure (CONST) will put
on the stack when it executes. In pro-
FORTH'" the procedure (CONST)
resides in target ROM so that it is also
available for supporting target con-
stants.

Consider now the structure for a
target constant shown in Figure 3@).
Notice that the definition body is now
located in target ROM. In order to be
able to access the body, a pointer is
added to the header at the definition
field address DFA, and the CFA of the
definition is stored there.

Continued on next page

I I LENGTH
NFA I

I I I HEADER - 1
I
I
I _

I I I ACTIVE
I NAME I I - DICTIONARY

I I
I- DFA/CFA I I I

SUPPORT - 1 I I I- ACTIVE
PROCEDURE I I I I ROM SEGMENT

I I I I
I 1 - I I -

FIGURE 3(a) - proFORTH DICTIONARY STRUCTURE FOR SYSTEM CONSTANT

I - 1
I I

I
I

I - LFA I LINK

I I LENGTH ' I

I NFA ! 1 I
I

HEADER - 1
I

I ACTIVE
1 - DICTIONARY I

I I
I NAME I

I I I I
I I I I

DFA I I I
I

I
1 - 1 --- I I -

i
I I <-- - 1 I- CFA I

I I ---
I l l
I l l

I I

I BODY -I
I pFA VALUE
1 -

I I

I I- (CONST) I
I I I I

I ACTIVE
I 1 - ROU SEGMENT I <--

SUPPORT I I I
PROCEDURE - I I I

FIGURE 3(b) - proFORTH DICTIONARY STRUCTURE FOR TARGET CONSTANT

FORTH Dimensions 11

Look to
TIMIN

Engineering
for FORTH
software of
professional qua I i ty.

*ready to-run
FORTH development
systems

* application programs
in FORTH

*Consulting services,
including custom
program deve I opmen t

Our latest product:
DUAL TASKING
FORTH
Now you can run your
process control programs
in background while still
using your FORTH
system in the normal way.
Background and
foreground tasks may
each be written in high
level FORTH. They can
execute simu I taneousl y
and exchange data. The
foreground task can
control the background
task.
Available NOW:
8" diskette $285

Write for our FORTH
information booklet

Engineering Co.
6044 Erlanger St.

(714) 455-9008

Volume IV, No. 4

ROMeble FORTH (continued from page I I)

Another pair of examples is given in
Figures 4(a) and 4(b) to show the struc-
ture of definitions for system and
target variables. Again, the system
variable's definition is similar in form
to the traditional one. The CFA points
to the generic run-time procedure for
variables called (VAR). Since the two-
byte space for the variable is allocated
in line, the procedure (VAR) is usually
used only for system-based (dictionary)
variables and is itself therefore, stored
in system memory.

Figure 4(b) shows how pro-
FORTH'" separates the definition
components for a target variable. The
system component is the header -
essentially, the name. A DFA pointer
is added to it, and in it is stored the
CFA or body address. The body is
compiled in target ROM. However, in-
stead of the generic procedure (VAR),
the CFA of the ROM-based body is
pointed to (CONST). In addition, the
space allocated for the variable will be
in the target RAM area. The address of
the RAM space allotted is stored at the
PFA in ROM, i.e., it is the value of the
constant. When the variable's name is
typed, the (CONST) support procedure
executes, placing the variable's ad-
dress on the stack in the usual way.

Other definition structures follow
the same principles as those discussed.
For example, a code word is similar in
structure to the constant, except that
the CFA points to the PFA, and the
assembly language code begins at the
PFA. A colon definition's CFA points
to the colon support procedure (COL-
ON), and at the PFA is compiled the list
of addresses of pointers to executable
code which will be processed by the
address interpreter at run time. All
these structures can be compiled "in
line" or in target ROM (connected by
a DFA pointer).

Extensions involve more complex
structures than those illustrated, but to
avoid obscuring the principles in a
mass of details, we will concentrate on
the simpler definition forms.
Compilation Control

The first step in compiling pro-
FORTH'" code is to define the ROM,

1- LFA
I
I

I
I
I

I- DFA/CFA

HEADER - 1 NFA

I_

BODY - 1
h DATA I PFA

I _

1 - (VAR)
I

I

SUPPORT - 1
PROCEDURE I

I _

-
LINK I

I I
I
1

NAME 1
I
I I -------
I I

I
I I
I -
I
I
I

I LENGTH I

VALUE I

- 1 < ------

ACTIVE - DICTIONARY

I ACTIVE
I - DICTIONARY
I (USUALLY)
I
I -

FIGURE 4 (a) - proFORTH DICTIONARY STRUCTURE FOR SYSTEM VARIABLE

1 - LFA
I
I

I

I
I
I

1 -

I NFA

HEADER - I

I DFA

LINK I

I LENGTH I

-
I

I I
I
I

NAME I
I
I
I
I ---

I
-

-
I- CFA I I <--

BODY - I I I ---
I I ADDRESS I I
I _ I I * * . I - * . :

I :

I- (CONST)
I

I

SUPPORT _ I
PROCEDURE I

1 -

I- I

1 - I
DATA - 1 I VALUE

I :
I :
I : <- -

-

ACTIVE - DICTIONARY

ACTIVE - ROM SEGMENT

- 1 ACTIVE < " " "
I - RAM SEGMENT I -

FIGURE 4 (b) - proFORTH DICTIONARY STRUCTURE FOR TARGET VARIABLE

Volume IV, No. 4 12 FORTH Dimensions

RAM and dictionary segments as ex-
plained above. We will assume that the
basic proFORTH'" system has
already been supplied or compiled.
This sytem will have two main com-
ponents: the system code, and the
target code nucleus. The system code
(located in dictionary 0 in our exam-
ple) includes the text interpreter, com-
piler, disk interface, assembler and
editor, as well as the names of all
accessible system and target words.
The target nucleus (which would be
located in ROM segment 1 in our illus-
tration) includes the bodies of all
words which will be needed by the
target system, as well as the address in-
terpreter and support procedures like
(CONST) and (COLON). Stacks and
variables needed by the target are
allocated in target RAM - say RAM
segment 1.

During compilation, there will at all
times be an active dictionary, ROM
segment and RAM segment. These are
specified by the compiler directives
DSEG, CSEG and VSEG respectively. For
instance, the sequence

activates ROM and RAM segments 1
and dictionary 0. With these assign-
ments, the compiler will separate
definition components as in Figures
3(b) and 4(b):

0 DSEG 1 CSEG 1 VSEG

DICTIONARY 0-headers
ROM segment 1-bodies
RAM segment 1-variable space

allocations
Recall that there are no target

memory segments corresponding to
the zero ROM and RAM indices. In-
stead, these refer to the active dic-
tionary, and are used for compiling
system code. Thus 0 CSEG instructs the
compiler to compile definition bodies
into the active dictionary. In the same
way OVSEG causes the compiler to
make RAM allocations in the active
dictionary. The sequence

0 DSEG 0 CSEG OVSEG
then causes all definition components
to be compiled into dictionary 0 , and

0 DSEG 0 CSEG

8 CONSTANT SYS.CON

0 VSEG

VARIABLE SYS.VAR

: H .
BASE @ HEX SWAP .
BASE I ;

1 CSEG

1 VSEG

9 CONSTANT TARG.CON

VARIABLE.TARG.VAR

: 2' DUP + ;

compile headers & bodies in dict. 0)

define a system constant equal to 8)

allocate variable space in dict. 0)

define a system variable)

define a system procedure

compile bodies in ROM seg. 1)

allocate variable space in RAM seg. 1

define a target constant equal to 9)

define a target variable)

define a target procedure)

FIGURE 5 - EXAMPLES OF DIRECTIVES
FOR COMPILATION CONTROL

proFORTH'" functions exactly like
an ordinary FORTH compiler. This is
in fact the default mode of pro-
FORTH'". When CSEG 0 is active, the
DFA pointer is not needed (since the
CFA immediately follows the header)
and is omitted as shown in Figures 3(a)
and 4(a). One of the control bits in the
length byte is used to indicate when
the DFA pointer is omitted and the
code is in line.

As proFORTH'" code is compiled,
there are effectively three compiler
pointers replacing the usual dictionary
pointer DP. From the earlier discus-
sion, we see that these pointers are just
the DLOC, CLOC and VLOC for the active
segments. As space in a segment is
used, the appropriate pointer is ad-
vanced. At each step it is checked
against the segment's limits (e.g., CBOT
and CTOP) and the operator is warned
if the pointer exceeds its assigned
boundaries.

Figure 5 shows the compiler direc-
tives used to compile such typical
definitions as system and target con-
stants, system and target variables, and
system and target colon definitions. As
the examples illustrate, there is no

change at all in the source code for the
definitions themselves; all that is
necessary is to insert the appropriate
DSEG, CSEG and VSEG directives.
Absolute Compilation

There are some situations in which
it is necessary to specify the exact loca-
tion of a target code construct. For ex-
ample, an interrupt system might use
a jump table with the first jump located
at JBASE. To support absolute compila-
tion proFORTH'" uses one extra
ROM segment control block. The ab-
solute ROM segment limits are set to
0000 and FFFF. The words ACSEG (for
absolute code segment) and CSEG are
used to manipulate the absolute seg-
ment pointer (or CLOC). Their glossary
definitions are:

ACSEG (addr --- b)
Begin compiling in the ab-
solute CSEG at address addr.
Save index b of currently
active CSEG on stack.

Select ROM segment b to be
the recipient of future defini-
tions and constant data.

Returning now to our interrupt jump
table example, consider the definitions

Continued on next page

CSEG (b ---)

Volume IV, No. 4 13 FORTH Dimensions

ROMeble FORTH (continued from page 13)

in Figure 6. After assembling the code
for the interrupt service routines INT.0
through INT.7, an ACSEG directive is us-
ed to set the absolute compile pointer
to JBASE. The active ROM segment in-
dex is saved on the stack. Next the ac-
tual jump table is assembled, starting
at the address of JBASE. Finally, the
CSEG directive restores the previously
active ROM segment.
HERE, ALLOT, etc.

In traditional monolithic FORTH
implementations, the word HERE pro-
vides the next available dictionary ad-
dress (usually the contents of a variable
called DP). In proFORTH'", the word
HERE provides the next available ad-
dress in the active ROM segment. For
CSEG=O, this defaults to the active
dictionary segment. Similarly, the
word ALLOT allocates space in the
active ROM segment (or dictionary if
CSEG=o). In addition to HERE, pro-

FORTH'" provides the word VHERE to
obtain the next available address in the
active RAM segment. If VSEG=O,
VHERE provides the next available
address in the active dictionary just as
for HERE. Therefore, in its default mode
proFORTH'" remains completely
compatible with traditional FORTH,
but broadens in a consistently logical
way as segment control directives are
issued. This enables the user to have
complete control over where the com-
piler stores each component of every
definition.
Conclusion

It is not possible, in an article of this
size, to even introduce all of the com-
pilation control mechanisms available
in proFORTH'". For example, we
have not discussed the subjects of
multiple dictionaries, extensions,
selective uurging of names, split sys-

able code compilation is concerned,
the principles discussed above apply to
all of these areas even though imple-
mentation details are often complex.

proFORTH'" logically extends and
broadens the meaning of the tradi-
tional FORTH words such as HERE and
ALLOT, so that the programmer is given
complete control over compilation
memory assignments. This is accom-
plished without giving up the tra-
ditional behavior of a monolithic
dictionary system if the user wishes to
program in that environment.

%.

i

CODE 1m.0 ... RET, EkJD-CoDE

CODE Im.l ... RET, END-CoDE

CODE I"C.7 ... RET, CNbCom

JBAfE ACSEG
INT.o JMP, I 1m.1 J ~ P , ... 1m.7 JMP.

CSEG

tem definitions, etc. Insofar as ROM- FIGURE 6 - DUCIPLI: OF ABSOLUTE EQIPIIATIOW

SOFTWARE INTRODUCING P-FORTH PUTTING P-FORTH TO WORK:

1.

2.

3.

4.

The P-FORTH Card is the key
member in a family of control
systems cards offered by the
innovators a t Peopleware
Systems, Inc. P-FORTH has four
major advantages:

users interactively develop
applications through a combi-
nation of hardware and software.
These applications are automatic-
ally programmed into non-
volatile memory (EEROM). When
the applications are proven and
functioning, a single switch
transforms the system from the

An interactive high-level
language following the
fig-FORTH model
A monitor for system checkout
"FORTH-type" Screen editor for
d p ~ ~ ~ ~ ~ : g application

It is a versatile building block.
The simple addition of a A iiFoRTH-type" assembler for
power supply and terminal developmental mode into the
makes the P-FORTH card both a target system.
low cost development system
as well as a target system.

An integrated high-level
interactive language allows for
fast software develoDment.

Application programs are
stored automatically in non-
volatile memory. P~OPL~WRRE JYJTEMJ INC.

5190 west 76th St.
MplS., MN 55435 USA The STD BUS interface allows

the use of a variety of existing
peripheral cards. (612)831-0827 TWX 910-576-1735

writing assembly language
routines
High-level interrupt-linkage
High-level communications
protocol for down loading from
a host system.

HARDWARE

6801 microprocessor
6K EEROM
8~ FORTH firmware
2K RAM
STD BUS interface
RS232 serial I /O
16 TTL I/O lines
Programmable timer

Volume IV. No. 4 FORTH Dimensions 14

2=80@ and 8086 FORTH
PC/FORTH" for IBM@ Personal Computer available now!

FORTH Application Development Systems include interpreter/compiler with virtual memory
management, assembler, full screen editor, decompiler, demonstration programs, utilities, and 130
page manual. Standard random access disk files used for screen storage. Extensions provided for
access to all operating system functions.

2-80 FORTH for CP/M@ 2.2 or MP/M . $ 50.00
8086 FORTH for CP/M-86 . $100.00
PC/FORTH for IBM Personal Computer. $1 00.00

Extension Packages for FORTH systems

Software floating point . $1 00.00

Color graphics (PC/FORTH only) . $1 00.00
Data base management.. $200.00

Intel 8087 support (PC/FORTH, 8086 FORTH only). $1 00.00
AMD 951 1 support (2-80, 8086 FORTH only). $100.00

Nautilus Cross-Compiler allows you to expand or modify the FORTH nucleus, recompile on a host
computer for a different target computer, generate headerless code, and generate ROMable code with
initialized variables. Supports forward referencing to any word or label. Produces load map, list of
unresolved symbols, and executable image in RAM or disk file. No license fee for applications created
with the Cross-Compiler! Prerequisite: one of the application development systems above for your host
computer.
Hosts:
Targets: 2-80, 8080, 8086/88, ISM PC, 6502, LSI-11

2-80 (CP/M 2.2 or MP/M), 8086/88 (CP/M-86), IBM PC (PC/DOS or CP/M-86)

Cross-Compiler for one host and one target . $300.00
Each additional target, . $1 00.00

FORTH Programming Aids by Curry Associates. Includes Translator, Callfinder, Decompiler, and
Subroutine Decompiler. 40 page manual, Used with Cross-Compiler to generate minimum size target
applications.

Specify host system . $1 50.00

2-80 Machine Tests Memory, disk, console, and printer tests with all source code in standard Zilog
mnemonics . $ 50.00

All software distributed on eight inch single density soft sectored diskettes, except PC/FORTH on 5'/4 inch soft sectored single
sided double density diskettes. Micropolis and North Star disk formats available at $1 0.00 additional charge.

Prices include shipping by UPS or first class mail within USA and Canada. Overseas orders add US$lO.OO per package for air
mail. California residents add appropriate sales tax. Purchase orders accepted at our discretion. No credit card orders.

Laboratory Microsystems
41 47 Beethoven Street
Los Angeles, CA 90066

(21 3) 306-741 2

Z.80 is a registered trademark of Zilog Inc
CPIM IS a registered trademark of Digital Research, Inc
IBM IS a registered trademark of International Business Machines Corp

Volume IV. No 4 FORTH Dimensions 15

8080 fig-FORTH in ROM

Ted Croal
Brantford General Hospital

Ontario, Canada

Editor’s note: This article outlines the
author’s experiences in modifying the
8080 fig-FORTH assembly listing to run
in ROM. The easiest way to make such
a substantive change to a FORTH sys-
tem, of course, is to use a cross-compil-
er. This allows you to modify FORTH
in FORTH.

Like many others, I joined the FORTH
Interest Group after reading about
FORTH in the August 1980 issue of
Byte. I had become weary of program-
ming in hand assembled machine
language and it seemed to me that
FORTH would be a big improvement.
I have not been disappointed.

I was a bit dismayed, however, when
I received my copy of 8080 fig-FORTH
(1) to find that some modifications
would be required to place the code in
ROM. As my home-built S-100 system,
which is a mixture of kits, assembled
boards and wire-wrap, has no disk,
and I was not willing to wait for the
FORTH core to load from cassette
every time I wanted to use it, I began
at once to copy the listing in a form
suitable for ROM.

I had a 1 6 K EPROM board assigned
to the upper quarter of memory and I
was in the process of rewriting my
utilities to use my new 1 K memory
mapped video board. I therefore de-
cided to begin the ROM listing at the
lowest address on the EPROM board,
COOOH (START) instead of 0000H.
This meant transposing all the ad-
dresses up 48K, that is OlOOH became
ClOOH, 1000H became DOOOH, and so
on. This is a relatively simple but time
consuming task (especially without an
assembler). It soon became apparent
that more was required than simply
transposing the addresses. Certain
values change during the execution of
FORTH and must be in RAM. Before

proceeding very far with the project I
found it necessary to assign functions
to the various parts of my RAM. I have
16K of RAM in the first quarter of
memory. I decided to use the first 10K
for screens and the next 6 K for RAM
dictionary. The second quarter of the
memory is not implemented in my
system. The first kilobyte of the second
half of the memory is occupied by my
cassette interface. I then have 2K of
RAM before my video display which
begins at 8COOH. The rest of memory
to COOOH is not implemented.

I decided to use the 2K of RAM
below the video board for the main

FORTH stack, the terminal input buf-
fer, return stack, user variables, a
single 1K screen buffer and assorted
patches. The size function and labels
for these areas are well explained in
the fig-FORTH installation manual (2).
As there is plenty of room for these, I
used larger sections of memory than
suggested in the manual. Listing 1 is a
set of equates which I used to replace
those supplied on page 2 of the fig-
FORTH 8080 Assembly Source List-
ing. If space is a problem, US and RTS
could be restored to 64 and 160 respec-
tively, and STACK could be reduced
to 64.

L I S T I N G 1

r k ~ i je i l heaors A l l o c a t i o n ; Euuates t o e s t a b l i s h s t a c K s i t e r m i n a l i n p u t

b u f f e r , u5er variables and a s i n s l e l h b u f f e r .

9 4 9 0 = KBBUF ERU 1014
00N4 = us CRU 180
30EO = R T S CRU 124
0000 = S T A C K ERU 96
3400 = BTM ERU 8400H
3460 = I N I T S O EQU P T M t S T A C K
3540 = I N I T R O EOU I N I T S O t R T S
35FJ = B U F l EQU I N I T R O t U S
35FS = B U F F ERU FUFl t2
az-3 = EM ERU B U F F t K B R U F t 2

OOOA = NUMS EQU 10
I300 = LEFlGTD ERU 1800H
0000 = S T A R T S ERU 0
280i3 = L E N G T S ERU NUMSIKBBUF
-1800 = S T A R T D ERU S T A R T S t L E N G T S
4 0 0 0 = ENIlD ERU S T A R T D t L E N G T D
3540 = U S R A S E ERU I N I T R O
9577 = RPF‘ ERU U S H A S E t 3 2 H
0 0 0 B = B Y T A S h EQU 11
280H = I N I T D F ERU S T A R T D t B Y T A S K
8C00 = S T A R T ’ J ERU BCOOH

S A O ~ = STARTF EQU E n t 8

I

I

I

1

I

I

1

I

i
i
i
i
I

I

i
i
I

I

9

I

I

I

d a t a b y t e s Per h u f f e r
user v a r i a b l e space
r e t u r n stack and T I B
s t a c k space
s t a r t i n s adr o f ?K memory blocK
t o r o f s tack
t o r o f r e t u r n s t a c k
index o f b u f f e r
f i r s t d a t a b r t e of buffer
u w e r l i m i t o f b u f f e r
s t a r t of RAM patch
number of screens i n system
l e n d t h of RAM d i c t i o n a r r r 6 K
s t a r t o f f i r s t screen
l e n g t h of screen memorrll0K
s t a r t of RAH d i c t i o n a r y
end o f d i c t i o n a r y a r e a
user v a r i a b l e base address
r e t u r n staclc P o i n t e r
number of b y t e s i n “ T A S K ”
i n i t i a l v a l u e of d i c t i o n a r r p o i n t e r
s t a r t adr o f v i d e o d i s p l a y

L I Z T I N G 2
: o i ~ i l r z Lu Lw i~mvrd t o RAlY on c o l d s t a r t . See p a g e s 46 and 54 o f Assemhlr
S U U I ce L i s L i n s .

c3c ; c5
COE7 46JF5254
C O t E i CG
COCC BZCF
COCK C C C A
coro EXF
cor:! a i
cor; A O
c o r 4 o m
C O f 6 0000

COF3 2 3
COF? UROO
COFB C ?

corc 7n
cOrn 11300
coFr c?

ORG COE6I-I
F A T C H DD O C S H i F O R T H

DB ’ F O R T ’
DB ’ H’ +SOH
~ I W WOCAD-13

T O R T I i DW DOIIOE
DW rlovoc
1111 8 1 H
DE: ’ ’ t 8 0 H
DW S T A R T U i s t a r t o f RAM d i c t i o n a r r
n w o i end of vocabularr l i s t

; used hr F@
I r W A T C N HOU MIE

IN 0
RET

; used hr F !
O U T P A T C H MOV A I L

OUT 0
R E T

Volume IV, No 4 FORTH Dimensions 16

I used the first page of my FORTH
ROM for machine code peculiar to my
system. The first 15 bytes are vectors.
(JMP COLD JMP INSTATUS JMP KEYBOARD
JMP VIDEODIS JMP PRINTOUT) After
these referenced machine code rou-
tines I have additional routines to
move a block of memory (MOVIT), blank
the front panel of my computer
(BLANK), clear the video screen (CLSCR),
and debug FORTH (DEBUG). DEBUG is
a rewrite of the Debug Support on page
5 of the Assembly Source Listing. I
moved it so there would be room for
initial values of additional user varia-
bles. I added a new variable BREAK-
POINT (857EH) to replace BIP in the
listing so that TNEXT LXI H, BIP on page
5 becomes DEBUG LXI H, BREAKPOINT.
Listing 2 consists of 3 patches to be
moved into RAM (above limit 89F8H)
on a cold start. These are required by
certain FORTH words whose diction-
ary entries change during execution.

This brings us to the start of the code
on page 3 of the fig-FORTH listing. In
addition to transposing the addresses,
the following changes are required.
Substitute STARTD for TASK-7. Since
the word FORTH will be in RAM after
start-up, beginning at STARTP, and
since there are 8 bytes in the word
before the label “FORTH,” substitute

(FORTH P a P!)

STARTP+16 for FORTH+8 to in-
itialize VOC-LINK. (In my system this is
8AOOH + 10H = 8A10H.) Listing 3 is
the list of additional user variables I
added to the system.

The FORTH address interpreter is
next. If you wish to use BREAKPOINT
and DEBUG, substitute JMP DEBUG for
the first three bytes of NEXT. I found
this routine quite useful. Now that my
fig-FORTH is operating, I suppose I
could improve the speed of the system
by removing this jump in an alternate
EPROM chip, but I have not yet
done so.

From this point on, if you have an
assembler, your task is relatively sim-
ple, but if your reason for wanting
your FORTH in ROM is your lack of
resources, you may have to hand
assemble the code as I did. You will
soon get used to recognizing the ad-
dresses which have to be transposed
and adding the extra ASCII characters
not shown in the listing if a word has
more than 6 characters. You have to
watch for ocurrences of RPP (return
stack pointer) and substitute your
RAM address for the address given in
the listing. (RPP = USBASE+32H)
RPP is found in (LOOP) (DO) I RP@ RP!
;S LEAVE >R R > and DOES>. Be sure
to transpose UP (pointer to user
variable base address) from 0126H by

Continued on next page

L I S T I N G 3
I n i t i a l value; o f a d d i t i o n a l user v a r i a b l e s added t o system, These a r e
loaded t o USBASE t 32H = KFF‘ on co ld s t a r t .

ci26 408;

c i x w a c
CI22 C03F
C12A 003C

c1:c 0100
CL?0 0000
ClZ? 0000
C134 0300
C136 0000
C133 0028
C12A 0000
c1zc 0000
C13E 0000
C140 0000
C141 00

UP DW I N I T R O 1

DW STARTUt3COH i
DW STARTV I

DW STARTU I

DW 1 i
nw 0 I

DW 0 I

DW 0 9

DW 0 I

D W STARTD f

nw 0 I

O W 0 ,
D W 0 ,
DW 0 i
DR 0 ,

i n i t r e t u r n s t ack P o i n t e r
i n i t UP (1)
i n i t UP1 (2)
i n i t V P 2
v ideo d i s r l a r f l a S set
p r i n t e r f l a 3 c l e a r
i n i t BREAKPOINT
i n i t XCUR (3)
i n i t YCUR (3)
i n i t H I
n o t i m r l e r e n t e d
n o t i a r l e s e n t e d
no t i s r l emen ted
not i s r l e a e n t e d
n G t imrlemented

(1 1 I n i t i a l va lue o f UP i video p o i n t e r 1 is s t a r t i n 9 a d d r e s s o f last
l i n e of video d i s r l a r .
(2) I n i t i a l va lue o f VF1 (a u x i l l a r r v ideo p o i n t e r) is s t a r t i n s a d d r e s s
of video disrlar. UP2 is s i m i l a r .
(3) Used hr E d i t o r ,

-m-

* Spectrum Model I1 Forth *
Stand alone Forth System for the TRS
Model I 1
Superset of Forth 79
Full CRT Support
Interrupt driven KR, line printer and 5erial

High leke l redirectable character 110
Variable number bloch buffers employing

Automatic disk format recognition.
Extenrions:

I/O drivers.

leav recently uwd wheme.

2-80 Asteirrbler
Strings
Array Words
Double Word Set

Single Screen Editor
Multi-Screen Editor
Cross Reference Program with word tearch
Disk Formater (8 different formats)

Smart Terminal program
Execution profile package

Utilities:

608 K capacity per drive

Word tracing with stack display
Single User System ,250.00
Manual . 25 .00

* The-Data-Base *
R u n time Module license\ abailable upon requev.

The-Data-Base is a menu driven, stand alone
data filing and retrieval system for the TRS-80
Model I I .

User formated input screen to facilitate data
entry.
Query/Update module contains full edit
features. including update, insert, delete and
replace modes. Repeating feature of last
record/field entered and default data key.
Search feature allows comparisons of field
constants, or field contents to another field
within the same record.
Disk spanning provides a maximum file
capacity of over 2 . 2 megabytes on a four
drive system.
Ten user-defined keys provided
Code file feature enables data to be entered
in condensed and expanded modes, which
then may be referenced globally by the
system. Data may be retrieved in either con-
densed or expanded format.
MergeKopy feature provides for the ap-
pending of one file to another. Only match-
ing fields of the files are copied, allowing
the user to add or delete fields in the new
file.
Screen oriented Report Writer employes a
virtual screen of 60 x 146 characters. Sorts
may be performed on all fields in ascend-
ing or descending order, or any combina-
tion of same. Break field feature provided.

Arithmetic module enables the display of
intermediate results.

Simple password .security provided for User,
Update and System levels.

Single User System . . .300.00
Manual . . 25 .00

‘Demo Disk and Manual50.00
*Full Credit applied to purchase of

2-80 is a tradernark of Zilog, inc.
TRS-80 i s a trademark of Tandy Corp.

. . . .

The-Data-Base.

SPECTRUM DATA SYSTEMS
5667 Phelps Luck Drive

Columbia, Maryland 21 045
(301) 992-5635

FORTH Dimensions 17 Volume IV. No. 4

8080 fig-FORTH in ROM (continued from page 17)

adding your offset (to C126H in my
system) in SP! and USER.

When you reach the higher level
FORTH words at page 2 1 in the
Assembly Source Listing, note that
labels which refer to other FORTH
words are addresses which must be
transposed to refer to ROM. A081 in
VOCABULARY is not a label however, (it
is a dummy header) so leave it as is.
Leave the 18 bytes for the word
FORTH blank as the word is part of
our patch. Change the link field of
DEFINITIONS from FORTH-8 (OFEA) to
STARTP (8A00) to refer to FORTH in
RAM. Similarly change the address for
FORTH in ABORT to STARTP+8
(8A08).

The code for a warm start can be
transposed to ROM in the usual man-
ner, but I had to rewrite CLD and COLD
to make the necessary changes for
ROM. See Listing 4. Instead of using
CMOVE, I used a short machine code
subroutine in the first page of ROM.
(MOVIT: MOVE A,B ORA C RZ MOV A,M
STAX D INX D INX D DCX B JMP MOVIT)

If you wish to have complete mes-
sages instead of message numbers you
will have to rewrite MESSAGE to print
out text from ROM. For instance, if
TABLE is the starting address of a table
of addresses of the messages listed in
order, then the sequence TWO STAR LIT
TABLE PLUS AT COUNT TYPE SPACE could
be inserted between DDUP and MESS2
(replacing ZBRAN . . . SPACE). As this
uses 4 bytes less you will have to ad-
just your branch offsets. I have not
tried this yet.

The code for P@ and P! must be
changed to use the patches in Listing
2. Replace LXI H, $ + 5 MOV M,E IN 0 in
P @ with LXI H, STARTP+14H CALL
STARTP+lZH. In P! replace LXI H, $+7
with LXI H, STARTP+18H and replace
MOV A,L OUT 0 with CALL STARTP+lGH.

This brings us to the CPlM Disk In-
terface on page 55 of the listing. I re-
placed this with a cassette interface. If
you have copied out the listing this far,
you should have little difficulty in con-
structing special FORTH words for
your system. For example, Listing 5 is
the word I added to turn my cassette
recorder off. This is done in my system
by sending 0 to port 4. Remember to

::x ~ 1 1 x 1 C L D

DO72 2112c1
D O 7 t 1 1 4 L G Z
0077 O 1 1 O O O
D 0 3 C CDG7CO

DOA? 117235
D O A 5 OlIDOO
DOki3 CD89CO
DOAL: 2 1 C 6 C O
DOAE 1 1 0 0 S A
0OBl O l l A O O
DOU4 CD87CO
Don7 -?A3LlC1
DOHA ED
DOUT! 217DDA
DOBC O l O N O O
DOC1 CD89CO
DOC4 CDA3CO

U O C A C 3 4 5 C 1
DOCD D6CO C L D l

D O D O 4 3 4 F 4 C
D O D 3 c 4

DOC? r 7

n o r r 2 i x c i

 DOC^ O I C D D O

Docr 04

nor14 3 x 1 0
DO116 l l C b COLD
D O D 3 70113
I lOKlA nEDO
I lO I lC 53110
DODC EODO I N I T h E Y D W . f t 2 i This is an a l t e r n a t e way
IIOCO DE07 I N 7 i t o add machine code
DOC:! C 3 4 5 C 1 ,JMF' N E X T i uords t o Your srstern.
'1) BLANDCL is a f r o n t r a n e l hlank and v ideo screen c l e a r Pecu l iar t o rnY
system. Write a s u i t a b l e subrout ine for Your u s e .

L J I L D C R I G ; l 2 H i i n i t s t a c k r o i n t e r
ST'I{L
L X I 1 1 , O F i I G 1 1 2 H i source) I n i t i a l i z e
L X I USE:ASEt6i d e s t i n a t i o n) iow user
L X I n r l o t i ; l ength
C A L L M O V I T i move)
L X I t i Y ur i source) Initialize
L X I D, RPF' ; d e s t i n a t i o n) h i g h user
L X I F, 1DtI ; IensLh) variahies
C A L L M O V I T i move)
L X I H t F A T C N i source) Move
L X I Dv S T A K T P i d e s t i n a t i o n) ra tch

C A L L M O V I T i move
L l l L D RF'Pt12H i d e s t i n a t i o n) Move T A S K
XCI IG ,) to s t a r t
L X I H Y T A S K - 7 ; source) of RAM
L X I R, B Y T A S K i l endth) d i c t i o n a r y
C A L L M O V I T i move)
C A L L B L A N D C L i blank f r o n t ranelr c l e a r screen (1)
L X I Bt C L I l l i load I P with r o i n t e r to C F A o f COLD
JtlP N E X T i h e s i n F O R T H
D W COLD
DE 84H i COLD
n1: ' COL '
DB 'n'i8OH
D W WARM-7
I I W DOCOL
U W MTDUF
D W I N I T K E Y i i n i t i a l i z e Keyboard
D W ABORT

v a r i a h l e s

i l e n s t h) t o RAM
)

L X I B, i A H

COi-T: A FOKTH word t o turn
S u b s t i t u t e the arprowris te

D2DC G 4 D H
0?D" 4 3 4 F 4 6 DR
K C O Cb n 1:
32C1 C A n 2 D W
D:E3 E 5 I C C O F F D W
DZC5 AF Xr iA A
D2rL D 3 0 4 CUT 4

L I S T I N G 5

o f f a c a s s e t t e recorder br sendind 0 t o p o r t 4 +
code f o r %our s r s t e r .

3 4 H
' C O F '
' F ' t G O H
O D 2 C A I i
B i 2

D213 C 3 4 5 C 1 .JHP N E X T

insert the name field address of the
preceding word at the link field of each
word. Some of the disk interface
words can be modified for use with a
cassette system. Listing 6 shows some
useful words. By this time the name
fields and link fields should be obvious
to you so I have listed only the labels,
code fields and parameter fields. The
label indicates the address of the code
field of the corresponding FORTH
word. EMPTY-BUFFERS can be used as
is (transposed), but if you change its
relative location be sure to change the
reference in WARM and COLD.

The CPlM console and printer inter-
face on page 63 of the listing can be

i C O F F

i N F A rrevo ius word

used with a few changes. First, IOS is
changed to LXI H, START DAD D PCHL
(21 00 Co 19 E9). PRINT must be in
RAM so change it to a user variable,
PF (Print Flag) at RPP + OAH (857c). I
modified PCR on page 64 to output on-
ly a CR instead of a CR and LF as I have
the machine code for the video display
written accordingly and the printer set
accordingly. (PCR: PUSH B MVI C,ODH
MOV L,C CALL CPOUT POP B JMP NEXT).

The rest of the listing is straightfor-
ward. For BYE, I use a jump to my utili-
ty directory instead of a jump to 0. If
you add additional words after TASK,
change the link field of TASK to the
name field address of the last word

Volume IV, NO. 4 18 FORTH Dimensions

I , C T T . l C
- i d t L I X " v

I ~ d l f i C ; 3 i A I i ~ t r r f a c r f o r use w i t h c a s s e t t e i n t e r f a c e . Each b lock
L U ~ rez iorags t o a f u l l s c r e e n) b u t 51nce hlock 0 is used t o i n d i c a t e te rmina l
d ~ e r a t i o n , ; luck 1 is f o r screen 0. (t h a t is , hlocK# = sc reen# t 1)

r L t 5 - n ; F'l-ces the blocK nuuiher c u r r e n t l y occupyln9 t h e b u f f e r on to the
s t a c l ~ , If t h e m s t 5 l s n l f i c a n t h i t is s e t i t means hlock has been updated.)
l'LCCI,N: DOCOL T I R S T AT SEMIS

UFDATC (Modified t o use BLh#)
UrKIAT: nOCOL ELOCKN L I T 8 O O O H ORR F I R S T STORE SEMIS

F u r I -- n ; A c o n s t a t u h i c h l e a v e s a d d r e s s of f i r s t d a t a b y t e o f buf fe r on
the ; tccK.)
BUT: DOCON Rum
H I (- - n ; User v a r i a b l e c o n t a i n i n s a d d r e s s o f end of s c reen a r e a .)
I I I G I I : DOUSC 44H

R / W (ad, n f --- ; adr r e f e r s t o b u f f e r , n is hlocK numberr f is
f l b z , O = w r i t e , l = r e a d , D i s l c r r i a i l t i v e r e u r i t t e n f o r simulation o f d i s k by
fierrtwii. See f i s - F O R T H i n s t a l l a t i o n manual. E r ro r $6 is "SCREEN RANGE ERROR".)
RSLW: rrOCOL TOR ONE SUBB BHUF STAR DUP HIGH AT GREAT L I T 6 QERR FROHR ZBRAN 4
SWAP 1:BUF CtlOVE SEMIS

CUTTER (n --- adr ; A s s i s n s b u f f e r t o hlock n . I f c o n t e n t s o f bufer a r e
aarlted a5 u rda ted r i t i s w r i t t e n t o niemory. Address l e f t on 5tacK I S f i r s t
d a t a b r t e of h u f f e r ,)
BUTFE: DOCOL IiLOCKN ZLESS ZURAN I O H BUF RLOCKN LIT 7FFH ANDD ZERO RSLW F I R S T
STORE CUF ZEMIS

BLrJCI< (- - - aijr ; n is a hlock numberr adr is t h e a d d r e s s o f t h e f i r s t d a t a
h s t e a-f the b u f f e r . I f t h e block i s n o t i n t h e h u f f e r a l r e a d y , i t is moved
t h e r e , If the block i n t h e h u f f e r i s d i f f e r e n t and is updated i t is f i r s t
moved t o sc reen menlorY. 1
IILOCK: DOCOL DUF' RLOCKN SUBB DUF' FLUS ZRRAN 10H DUP BUFFE SWAP ONE BSLW BRAN 4
DROY HUF SEMIS

FLUSH < Write huf fer t o memorv i f updated. j
FLUSH: DOCCL ZERO FUFFE KIROP SEMIS

LCCD (n --- ; R e s i n i n t e r p r e t a t i o n of s c r e e n n .)
L O A D : DOCOL ELK AT TOR I N N AT TOR ZERO I N N STORE ONEF' RLK STOKE I N T E R FROHR
I N N STORE FEOMR HLK STORE SEMIS

< L a b e l s n o t e x p l a i n e d ahove w i l l be found i n t h e A s s e n i h l r

added and the link field of the first
word added to the name field address
of .CPU (DA58) and link the added
words appropriately.

The revised listing is now ready for
burning into EPROMs. Without an
assembler, entering the program into
memory is a tedious task but effort
spent in checking at this stage will pay
off later in debugging time. It can take
quite a while to find that you have
reversed the digits in a byte some-
where or have switched the bytes in a
label. Check your I 0 routines in the
first page of ROM carefully, be sure
they work as intended and be sure
your code for COLD is written and
entered correctly.

If you read "8080 FIG-FORTH" on
your screen on a jump from START
(COOOH), you are indeed fortunate.
Your debugging procedure will de-

pend on your front panel and utilities.
If you can step your program to JMP
NEXT in CLD (DOCA) and change the
value of BREAKPOINT (at 857E) through
the front panel you can run the pro-
gram under control until it crashes and
thereby locate the problem.

After I removed the bug from the
system, I was ready to start writing
programs in FORTH. I found Starting
FORTH by Leo Brodie (3) very helpful.
As I began to learn, I soon realized that
I required an Editor. Fortunately, I
was in contact with John Cassady (who
implemented 8080 fig-FORTH) who
supplied me with a compact Editor
ideal for ROMing. I entered the
screens in RAM using my "typewri-
ter" utility and LOADed them. For a
while I saved the screens on tape for
use while I was placing the Editor in
ROM. After loading the Editor, I

Source L i s t i n g .)

printed out the RAM dictionary, iden-
tified the words by their ASCII
characters and the DOCOL and SEMIS
addresses and transposed the code to
ROM, with the link field changes
described above.

Implementing my fig-FORTH sys-
tem has been a long laborious process
but I have acquired a good understan-
ding of the language as I have pro-
gressed and I am looking forward to
increasing my programming skills.

References:
1. Fig-FORTH for 8080 Assembly Source
Listing. Release 1.1 September 1979. FORTH
Interest Group.
2. Fig-FORTH Installation Manual. Release 1
by W. F. Ragsdale. November 1980. FORTH
Interest Group.
3. Starting FORTH by Leo Brodie. Prentice-
Hall, Inc.

Volume IV, No. 4 19 FORTH Dimensions

Develop FORTH code for any target
8080/280 system on your current 8080/280
or Cromemco CDOS based system

8080/280 METAFORTH
CROSSCOMPILER
0 Produces code that may be downloaded to any 280 or

8080 processor
0 Includes 8080 and Z80 assemblers
0 Can produce code without headers and link words for up to

30% space savings
0 Can produce ROMable code
0 79 Standard FORTH
0 Price $450

No downloading - No trial PROM burning.
This port-addressed RAM on your S-lo0 host
is the ROM of your target system

WORD/BYTE
WIDE ROM SIMULATOR
0 Simulates 16K bytes of memory (8K bytes for 2708 and 2758)
0 Simulates 2708, 2758, 2516, 2716, 2532, 2732, 2564

0 The simulated memory may be either byte or 16-bit

0 No 5-100 memory is needed to hold ROM data
0 Driver program verifies simulated PROM contents
0 Price $495 each

and 2764 PROMS

word organized

CONSULTING SERVICES
Inner Access provides you with Custom Software Design. We have supplied many clients with
both Systems and Application Software tailored to their specific needs. Contact us for your
special programming requirements.

FORTH WORKSHOPS
ONE-WEEK WORKSHOPS - ENROLLMENT LIMITED TO 8 STUDENTS

FORTH
Fundamentals
0 Program Design

Program Documentation
0 FORTH Architecture
0 FORTH Arithmetic
0 Control Structures
0 Input/Output
0 The Vocabulary Mechanism
0 Meta-Defining Words

OCT. 4-8 NOV. 8-12
JAN. 3-7 FEB. 7-11

$395 Incl. Text

Advanced FORTH
Applications
0 FORTH Tools
0 Engineering Applications
0 Floating Point
0 Communications
0 Sorting & Searching
0 Project Accounting System
0 Process Control
0 Simulations

NOV. 15-19
FEB. 14-18

$495 Incl. Text

Advanced FORTH
Systems

FORTH lnternals
0 Assemblers and Editors

Other Compilers
0 Cross-Compilation Theory
0 Romability, Multitasking,

0 File Systems/
Timesharing

Database Systems

OCT. 11-1 5
JAN. 10-14

$495 Incl. Text

Instructors: LEO BRODIE, GARY FEIERBACH and PAUL THOMAS
(For fur ther information, please send for our complete FORTH Workshop Catalog.)

Inner Access Corporation
P.O. BOX 888 BELMONT, CALIFORNIA 94002 (415) 591-8295

t
Volume IV, No 4 FORTH Dimensions 20

Q T F
Quick Text Formatter - Part II

I Leo Brodie
Chatsworth, California

In the last issue of FORTH Dimen-
sions, I introduced my Quick Text For-
matter, a very simple 5ut powerful text
processor written in FORTH. That
issue included the code for the format-
ter section of the application. This ar-
ticle continues with the QTF Editor.

The QTF Editor allows you to edit
FORTH blocks which will serve as
source blocks for the formatter. The
Editor is designed with text manipula-
tion in mind, and offers cursor-
control, wrap-around, insert, delete,
replace and string-move functions.
110 Option

I’ve included two versions of display
formatting for you to choose from. In
the first approach, called Continuous
Refresh, if you insert text in the mid-
dle of a line, the remainder of the line
visibly shifts across the screen. At a
certain point, the word or words at the
end of the line drop down to the begin-
ning of the next line, and the re-
mainder of the block is adjusted as
needed. This approach is fine if you’re
a single user on a system and you have
fast video IIO.

You may need the alternate ap-
proach, which I call the Burst IIO, if
you’re working on a multi-tasked
system with other users or with a slow
baud rate. In the Burst 110 approach,
as soon as you begin to enter text, the
remainder of the screen past the cur-
sor is blanked, so that you can type in-
to the space without the remainder of
the text having to be continually
refreshed. A copy of the remaining
text appears near the bottom of the
screen, so you can see what will follow
the point of insertion.

When you press return, the remain-
ing text reappears, following the in-
serted text.

Another reason to use the second ap-

proach is if your system does not in-
clude the word <CMOVE and you’re
not up for writing it in code. I’m afraid
you really need a fast version of
< CMOVE for satisfactory results.

Similarly, there are two kinds of text
deletion. For Burst IIO, you position
the cursor at the beginning of the
string to be deleted, then type “X”s
over the full length of the string. (This
is in “Command Mode,” so the “X”s
are commands, not characters.) When
you press the return key, the X’ed-out
text is deleted. Again, this avoids con-
tinuallly refreshing the remainder of
the screen.

(A nice side-effect is that if you over-
shoot the number of “X”s, you can
backspace and the former characters
will reappear, since nothing is actual-
ly clobbered in memory until you
press “return.”)

If you’re using the Continuous
Refresh version of insertion, then you
can also delete text by being in Enter
Mode, positioning the cursor at the
end of the text to be deleted, then
pressing the backspace key until the
string has been gobbled up by the text
to the right of the cursor. You still have
the “X”-ing command available
though, if you prefer it.
Another Unusual Approach

One of the problems of using
someone else’s software is that you
have to put up with that person’s
quirky preferences, at least until you
understand the application well
enough to change it. In the case of the
QTF Editor’s cursor commands, I’ve
implemented a quirky preference of
my own, which I’ll explain right now
in case you don’t like it.

Most Editors of this type employ
control codes to indicate cursor posi-
tioning commands. You have to hold
down the control key while you press
various other keys to move the cursor
up, down, left, or right, in order to let
the Editor distinguish between com-
mands and characters.

My approach, though, was to use
“modes.” When you first enter the

Editor, you are in “Command Mode.”
Now various keys represent com-
mands, including both cursor move-
ment commands as well as commands
to enter other modes.

As for my choice of keys to control
the cursor with, I prefer to use the
position of the keys on the keyboard
rather than an association of actual let-
ters. Instead of “U” for “up,” etc., I
picked four keys that were adjacent
and nearest the first two fingers of my
right hand:

UP
1

left j k right
m

down
Even with my IBM Personal Com-
puter’s special set of cursor keys at the
right side of the board, I prefer the
mode approach because it takes less
hand movement. But, as I say, that
may just be my own quirk. You can
easily change the keys by modifying
the key function table in screens 32
and 33, which I’ll discuss later.

For rapid horizontal cursor moves
(four characters at a time), just
capitalize J and K.
Prerequisites

An early warning: to make this thing
work, your terminal must be able to
perform certain functions. In this
application they are named:

x y XY moves the cursor to
coordinates x and y,
where 0,o is the up-
per left.

CLR- > LN clears the line to the
right of the cursor.

CLR->SCR clears the screen to
the right of and be-
low the cursor.

PAGE clears the entire
screen; homes the
cursor.

You’ll have to write these routines if
they don’t already exist in your
system. Redefine your routines to bear
the names in Block 18, or simply patch
their addresses into the execution

Continued on next page

Volume IV, No. 4 FORTH Dimensions 21

QTF (continued from page 21)

variables. (I used execution variables
just to avoid confusing things).
Using the Commands

To enter the Editor, type the word
n write

where “n” is the number of the block
you want to edit. If there’s anything in
the block already, it will be typed out.
Since our formatter application re-
quires a continuous stream of text
within each block (no embedded car-
riage returns), the Editor decides
where to end each line on the display
- actually, the first occurrence of a
blank after the 55th character on each
line. (Remember, the Editor formats
the contents of the screen differently
than the formatter will display your
text.)

The cursor will appear just after the
last character displayed, or, if the
block is empty, at the home position.
The number of characters in the block
(the current “length”) will appear in
the lower right hand corner.

You can use the cursor movement
keys to position the cursor to any
character that actually exists in the
block. You can move it backwards or
up, but not forward or down (beyond
the “length”), until you enter more
text. If you move the cursor all the way
back to the beginning of a line, it will
then skip up to the end of the next line
above - not to the 79th column, but
to the blank space that follows the last
word on the line. And you can only
move the cursor forward as far as the
last character in each line (the space),
then it will drop to the beginning of
the next line.

While in command mode you can
also get into Enter Mode, Replace
Mode, or Delete Mode by pressing
“e,” “r,” and “d” respectively.

Table 1 shows all the commands that
are available as keystrokes in Com-
mand Mode.
Enter Mode

Press the “e” key while in Com-
mand Mode to begin entering text.
The words “ENTERING MODE” will
appear in the upper right-hand corner.
In this mode, all the alphanumeric
keys on your keyboard will be con-

sidered characters you want to enter,
not commands.

I’ve already discussed the Editor’s
two approaches to the IIO problem in
Enter mode. But with either approach
the Editor’s wrap-around strategy ap-
plies. This means you don’t press
“return” at the end of each line; you
just keep typing and the editor will
worry about line breaks. Press return
only when you want to get back to
Command Mode.

If you make a mistake while in Enter
Mode, press the backspace key. You
can even backspace past the beginning
of a displayed line and up to the end
of the previous line, just like with cur-
sor movements.

In either the Burst or Continuous
versions of Enter Mode, you can
backspace all the way back to the
beginning of the block, thereby
deleting all such text.

As you enter text, make sure the
length in the lower right hand corner
doesn’t exceed 1024, or you’ll lose the
end of your text. I recommend that
you only fill blocks about 2/3 full, to
leave room for later insertions.
Delete Mode

I’ve also covered Delete Mode in
the discussion on the 110 alternatives
earlier. For either version, just “X”
over the string to be deleted. Press-
ing the return key joins the parts
of the text on either side of the de-
letion.

While in Delete Mode, the only valid
keystrokes are “x,” upper case “X” for
fast deletions, backspace and return.
Any other key will emit a beep.

A quick way to clear everything

from the cursor to the end of the
screen is the “cntrl-c” key. Since this
is a dangerous command, it requires
holding down the “control” key and
the “c” simultaneously. You can clear
the entire contents of a screen with the
combination “a” “cntrl-c” (the “a” key
homes the cursor to the beginning of
the screen).
Replace Mode

Use this mode when you want to
correct text without moving any text
forward (as in insert) or backward (as
in delete). For example, to change the
word “most” to “many,” simply move
the cursor to the “0,” then enter
Replace Mode by typing “r.” Then
type “any.” Be sure to hit “return”
when you’re done replacing!
The “Take” Command

The ‘It” (for Take) key takes the
string you just “x”ed out, and inserts
it wherever the cursor is now. In com-
bination with “x,” you can use this
command to move any length of text
from one place to another, even from
one block to another. Use it to swap
phrases, sentences, paragraphs, etc.

You can also use “t” if you need
multiple copies of the same string,
without having to retype it each time.
Just “x” out the string, then press “t”
to take it back, then press “t” again to
take a second copy, and again as many
times as you need. This technique
works because “x” saves the text that
you delete in a buffer. The “t” com-
mand copies whatever is in that buf-
fer into your block.

If you need to transfer a LOT of text
from the end of one block to another
block, or even copy an entire block,

Table 2 Editor-related FORTH commands
re-enters the Editor, using the block most recently displayed
re-enters the Editor, using the next block
re-enters the Editor, using one block back
enters the Editor, displaying your document’s loadblock. When you press
return to exit, Ib returns to the block you were originally editing. You must
first identify your loadblock with the phrase n loadblock ! where “n” is the
number of your loadblock.

FORTH Dimensions 99 Volume IV, No. 4

you can use “t” in combination with
“cntrl-c.” “Cntrl-c” saves what it
deletes in the same buffer that “x”
does. For example, to transfer the se-
cond half of one screen to another
screen, first position the cursor at the
start of the text to be transferred, press
“cntrl-c,”, move to the other screen,
then press “t.”
Extensions

As we mentioned earlier, the word
write gets you into the Editor. There
are also a few variations on that word
for your convenience. These are sum-
marized in Table 2.

Another optional word, which I in-
clude, paren’ed out, in block 35, is call-
ed catch. Catch is only needed when
the Burst IIO version of Enter Mode
is used. Because in this version you
can’t see how much text lies below the
cursor, catch is your protection in case
you insert too much and lose some text
off the “bottom” of the block. If this
happens, you can “catch” everything
that existed to the right of the cursor
at the time you began “Enter Mode”
in another block. For instance,

copies all such text to block 55, and
enters the Editor.
Theory of Operation

One of the reasons I‘m publishing
this application is the need for good,
exemplary FORTH programs for
teaching and learning. I’ve done my
best to make this code elegant and
readable, and I think it reflects a good
design since, to be honest, it’s been
through quite a few design iterations
as I’ve expanded its capabilities over
the past six months.

With this in mind, I have an obliga-
tion to explain some of the design. Or
to put it more accurately (since every
decent programmer loves to brag
about his code), I now have an excuse
to explain some of the design. I’ll see
how much I can explain before this ar-
ticle gets too long.
Two Dimensional Execution Table

At the heart of the key interpreter
lies an execution table defined in
blocks 32 and 33, called FUNCTIONS.
When a key is struck, its value is com-

55 catch

pared against the ASCII values that ap-
pear in column one of the table. If a
match is found, then the appropriate
function from one of the other col-
umns is executed. For example, sup-
pose an “e” is pressed. If the Editor
is in Enter Mode, ICHAR will be ex-
ecuted. ICHAR inserts a character, in
this case the “e.” In Replace Mode,
RCHAR will be executed, to replace a
character. In Delete Mode, the “e” is
invalid, so a beep will sound. (I re-
named the usual BELL function as
--- for clarity in this table.) In Com-
mand Mode, however, an “e” will ex-
ecute ENTER (block 29), which sets the
Editor to Enter Mode.

If no match is found, then the ap-
propriate function from the last row
of the table is executed. For example,
a “q” will be inserted or replaced
while in Enter or Replace Modes, but
will cause a beep while in Delete or
Command Modes.

The word FUNCTION in block 34 is do-
ing the work. First it finds the address
in the FUNCTIONS table where the key
match occurred, then it offsets this ad-
dress by the contents of the variable
MODE (which contains a 2 , 4, 6, or 8).
It then fetches the address of the ap-
propriate function from the table and
EXECUTES it. The modes are defined as
CONSTANTS in Block 19, so the phrase

DELETING MODE !
for example, sets MODE to 6.

An alternative approach might have
been to design key-interpreters within
the key-interpreter. For instance,
pressing “e” in Command Mode
might have executed an inner loop
which also executed KEY and inserted
each character. This inner loop,
however, must also detect backspaces
and carriage returns. Similarly,
Replace Mode and Delete Modes
would have needed their own inner
key-interpreters as well. I think the
result would hae been much more
cumbersome.

From what I understand, this im-
plementation of a two-dimensional
vectored execution table runs along
the lines of classical State Machine
theory. Whatever, I found this ap-

proach remarkably easy to work with,
due to the direct correspondence be-
tween what I was trying to do and the
notation I used to describe it.

By the way, the design is such that
you can add a new key and row of
commands without having to change
any code elsewhere. This works
because the address of the end of the
table is given by the constant
FUNCTIONS>, defined as HERE im-
mediately after the table is compiled.

The functions associated with
Delete Mode, Replace Mode, and
Enter Mode are implemented in
Blocks 27, 28 and 29 respectively.
Data Structure

The design of this Editor is more
complicated than that of ordinarly
FORTH screen editors because of the
uneven line lengths. For instance,
moving the cursor up one line isn’t just
a matter of moving back exactly 64
characters; the exact number of char-
acters between two vertically adjacent
characters depends on the number of
characters displayed in the higher line.

As the user moves the cursor within
the horizontal and vertical frame, the
Editor must always keep track of its
analogous position within the 1024-
byte array (the conventional R#).

To correlate the two points of view,
I implemented a table called EDGES.
For each line of text on the display,
there are a pair of values in the table.
One represents the x-cursor position
of the last character displayed on the
line (actually the space); the other in-
dicates the value of R# for that same
character.

For example, if there are 57 charac-
ters displayed on the 0th line, the final
character is the 57th. The first two en-
tries of the table, then, are both 57. If
there are 60 characters on the next
line, then the final x-cursor position
for that line is 60, and the value of R#
for that final character is 118 (the first
character on that line is R# 58, so 58

Say there are only three lines, and
the final line contains 10 characters.
Thus the first table entry for that line
is 10, the other entry is 129. All entries

Continued on next page

+ 60 = 118.

- ^ - - Volume IV. No. 4 23 -_ - - 3Nnenslons

QTF (continued from page 23)

for subsequent lines will contain
zeros.

We can picture the table like this:
57 57
60 118
10 129
0 0
0 0

etc.
(As a debugging tool, the word SNAP

in block 36 displays the values of the
EDGES table, as well as several of the
other major variables. If you want to
use it, load block 36 from line 10 of
block 34, and leave the word SNAP in
the definition of (WRITE) on line 13.
Now you can execute the word
WISNAP to turn SNAP on, or WOISNAP
to turn it off.)

The phrase EDGE @ fetches the x-
cursor value for the current line from
the table. For example, if we’re cur-
rently in the middle line, EDGE @ will
return 60. The phrase EDGE 2 + @
fetches the associated R# value for the
current line, e.g., 118.

The variables XCUR and YCUR con-
tain the current coordinates of the cur-
sor, relative to the text display area
(YCUR is 0 for line zero of the text; this
is actually line 2 on your terminal).

Here is the algorithm for moving the
cursor from the middle of one line
down to the next line:
1 YCUR +!

(moves the cursor to the next line
down)

(computes the distance between
where the cursor is horizontally on
the new line, and the last character
of that line, as a positive number.)

(subtracts this value from the
R#-value of the last character on this
line.)

(having computed the value of R#
associated with the character the
cursor has just landed on, stores that
value into R#.)
The algorithm is complicated by the

EDGE @ XCUR -

EDGE 2+ @ SWAP -

R# !

fact that the space below the current
position might not be a valid character
position. For example, if the cursor
sits at the 60th character in the mid-
dle line, and the user tries to move it
down, the cursor should slide down
and left to the last character position
of the next line, the loth position.

Furthermore, it turns out that this
algorithm is the same for both moving
down and for moving up, the only
thing that changes being the value (1
or -1) that is plus-stored into YCUR.
That being the case, the complete
algorithm is factored as the word
UPIDOWN in block 22. Enough said.

I haven’t begun to discuss the com-
mands that format and display the
text, and keep the display looking right
during the editing process. A par-
ticularly interesting routine is the one
which minimizes the amount of
screen typing necessary after a short
insert or delete, by only typing as
many lines as are necessary to take up
the slack. But this article is already too
long, so I guess I’ll just bag it. I hope
I’ve given you enough hints to pursue
it further.
If You Type It In . . .

As with the Formatter, the Editor is
written according to 79-Standard, ala
Starting FORTH. If you’re running a
FIG system, then preload the follow-
ing definitions:
: VARIABLE 0 VARIABLE ;

: WORD WORD HERE ;
: > IN IN ;

: NOT O = ;
Make sure you set the value of the

constant RETURN to 13 or 0, depending
upon which number KEY returns when
you press carriage return. This con-
stant is in block 18.

A related problem will be your
definition of ’, (“tick-comma”) which
is used to create the FUNCTION table.
The purpose of this word is simply to
find the address of the next word in
the input stream, and comma into the

: CREATE VARIABLE -2 ALLOT ;

: ?DUP -DUP ;

dictionary whatever address (cfa or
pfa) is appropriate for your system’s
version of EXECUTE. Three versions -
FIG, 79-Standard, and Starting
FORTH are provided in Block 18.

Another precaution: the word ASCII
is normally used inside colon defini-
tions to compile the next word in the
definition as a literal. I’m using it in
the creation of the FUNCTIONS table,
and this is not inside a colon defini-
tion. In this case, ASCII should simply
return the value of the character on the
stack. Make sure that you have a
definition of ASCII that does this, or
else just comma in the actual numbers
(no fun, I know].

And still another precaution: some
FORTH systems store a null into the
first cell of empty blocks. If you insert
text into such a screen with this
Editor, those nulls will ride along,
glued to the last character you type.
This may cause funny problems at for-
mat time. Probably the best solution is
to add a routine to the Editor which
scans the block for control characters
and changes any to blanks.

Finally, I’ve used the words T and F
to indicate true and false flags, respec-
tively. This is purely in the interest of
style, since it often helps to know
whether 1s and 0s are to be treated as
numbers or as flags. Their definitions
are, of course:

0 CONSTANT F
1 CONSTANT T

Notice: Permission to use this applica-
tion is granted for individual, personal
use in a non-commercial manner. All
commercial rights reserved. Vendors
interested in offering QTF as an ap-
plication package should contact the
author. 3
0 Copyright 1982 Leo Brodie

Leo Brodie is an author, lecturer and
consultant on FORTH programming.
He is currently working on his second
book, and is employed as a consultant
to IBM in San Jose.

I

Volume IV, No. 4 FORTH Dimensions 24

I

Cnmmssd-e.!nde
I n t h i s mode, the f o l l o w i n g k e y s p e r f o r m t h e s e f u n c t i o n s :

i
j
k
m
J
K
n
z
ctrl-c
n
b
e

r

X

X
t

r e t u r n

moves c u r s e r up
mcrvec, c u r s e r l e f t
moves c u r s o r r i g h t
moves c u r s o r down
moves c u r s o r l e f t f o u r c h a r a c t e r s
m o v e s c u r s o r r i g h t f o u r c h a r a c t e r s
sets c u r s o r t o f i r s t c h a r a c t e r i n b l o c k
sets c u r s o r t o l a s t c h a r a c t e r i n b l o c k
Ctits-off e v e r y t h i n g to t h e r i g h t of t h e c u r s o r .
d i s p l a y s N e x t b l o c k
d i s p l a y s o n e b l o c k B a c k
e n t e r s " E n t e r Mode", a l l o w i n g you t o e n t e r or i n s e r t

e n t e r s " R e p l a c e Mode", a l l o w i n g you t o o v e r w r i t e

d e l e t e s a c h a r a c t e r , and e n t e r s " D e l e t e Mode".
d e l e t e s f c u r c h a r a c t e r s a t a t i m e .
Takes t h e text t h a t w a s m o s t r e c e n t l y d e l e t e d w i t h

" x ' ' or "Cn t r l - c " , and i n s e r t s i t a t t h e c u r r e n t
c u r s o r pos i t i c rn .

t e x t .

t e x t .

r e t u r n s t c r FDHTH

07128182
Screen # 18 c r c ver 1 8364 Screen # 19 c rc ver = 31127

0 (h i c k Text Formatter By Leo Brodie 09/25/82 (VARIABLES k CONSTANTS
1 (System dependent words) 78 CONSTANT HIDE 55 CONSTANT NEAR-RIGHT
2 VARIABLE 'PAGE VARIABLE 'CLR-)LN
3 VARIABLE 'CLR-)SCR VARIABLE ' WY 2 CONSTANT ENTERING 4 CONSTANT REPLACING
4 : PAGE 'PAGE 3 EXECUTE ; 6 CONSTANT DELETING 8 CONSTINT CORRAND
s : CLR->LN 'CLR-XN a EXECUTE ; VARIABLE RODE t command, enter, rep lace or de lete)
6 : CLR-:>SCR 4 28 CONSTANT #NODES (number o f modes, i n bytes)
7 : W Y
8 VARIABLE XCUR VARIABLE YCUR
9 : BOTTOfl 0 20 X Y CLR-)LN ; VARIABLE TALLY (count of chars entered)

10 : .RODE b5 1 WY CLR-jLN ; 19 CONSTANT #LINES
11 13 CONSTANT RETURN i value KEY r e t u r n s when (re tu rn) pressed)
12 : ', [COflPILEl ' , ; I 79 Standard) I xcursor-pos, r#, f o r each l i ne .)

13 (: ', [CDNPILEI ' CFA , ; (f i g VERSION) --)

'CLR-XCR a EXECUTE ;
* X Y a EXECUTE ; 32767 CONSTANT ROOT (impossible # of s h i f t s t o accorodate)

CREATE EDGES 4 #LINES 1t t ALLDT t t a b l e of r i g h t edges:

1 4 ! : ' , ' ? ? - (S t a r t i n g FORTH)
15 --)

Copyright 1982 Leo Brodie 10/13/82

Volume IV, No 4 FORTH Dimensions 25

Screen I 20 crc ver = 3403 Screen I 21 crc ver = 34110
0 (VARIABLES & CONSTANTS 07/28/82) (Precursors 07/28/82)
1 CREATE xHOLDIN6 1026 ALLOT (delete buffer; cell 0 = count)
2 VARIABLE #KEY (latest key entered) : CHARACTER (-- adr: current pos. in buffer) BUFF R I 3 + ;

4 CREATE OLDPOS 6 ALLOT (ycurs xcurs r l) : .CHAR AT CHARXTER C3 EHIT ;

6 VARIABLE DONE (true = stop REWRITE)

8 VARIABLE LENGTH (I of rriteable chars.)

10 --> : COHHAND! .MODE .' Corrand MdC' COHHAND HODE ! AT ;
11
12 A T ClR->LN 1 YCUR +! 0 XCUR ! T R U I L I M ! ;
13 -->
14
15

: BUFF (-- adr: beg. of buffer) SCR 3 BLOCK ;

3 VARIABLE ?ESC I true for escape fror outer loop) : AT XCUR a YCUR a z+ X Y ;

5 VARIABLE REALIGN (true = need to realign i n replace rode) : ROON I -- n) 1024 RI a - ;
: !OLDPOS (save current cursor position)

7 VARIABLE SHIFTS (I to adjust table rts in SET-REST) XCUR 3 YCUR a OLDPOS 2! RI 3 o m o s 4 t ! ;
: OOLDPOS (restore previous cursor position)

9 VARIABLE RIGHT (current right rargin) OLDPOS DUP 23 YCUR ! ICUR ! 4 t a RI ! ;

: RE1 (drop to beg. of next line; let RCHAR know)

Screen I 22 c rc ver = 20164 Screen I 23 crc ver = 45597
0 Cursor roverents 07/30/82 1 (Haintrin table of right edges 07130l82 1
1 : EDGE (-- adr) YCUR 3 21 21 EDGES t ;
2 (These words conform to preset edge table:)
3 : FORYARD R I 3 LENGTH 3 { I F 1 ICUR t! R I 0 I- XCUR 3 1- DUP EDGE 3 - SHIFTS +!
4 XCUR 3 EDGE 3 > I F RE1 THEN 1 R t t! THEN ; SHIFTS 3 O= DONE ! EDGE 2! ;
S : BACKYARD R I 3 I F XCUR 3 0. IF -1 YCUR +! : F I T (go to next line, if necerrary)
6 EDGE 3 XCUR ! ELSE -1 XCUR t ! THEN RIGHT 3 XCUR a (IF SET RET THEN ;
7 -1 R I +! THEN ;
a : UPlDOWN (n) YCUR +! EDGE 23 (r l x) XCUR 1 - DUP WP AT EHIT 1 XCUR t! i RI t! EL = XCUR a HIDE = OR
9 O(I F DROP EDGE 3 XCUR ! ELSE - THEN R I ! ; I F F I T THEN ;

10 : UP YCUR 3 0 > I F - 1 UP/DOYN THEN ;
11 : DOYN EDGE 4 t 3 IF 1 UP/DOWN THEN ; YCUR il #LINES OVER DO I YCUR ! EDGE 3 IF EDGE 2+ 3
12 TALLY 3 - 1024 R I N EDGE 2 t ! THEN LOOP YCUR ! ;
13 --) --)
14
15

: SET (set both edge rrrkers for thii line in table; and
flag REWRITE to stop i f shifts have been accmodded)

: ECHO (c) (display e i break line on b l m k or end of line)

: ADJUST (adjust r I '5 i n edge-table after x's or t's)

Screen I 24 crc ver = 20218 Screen : 25 crc ver = 16193
0 (Haintain table of right edges 07/30/82) (REWRITE 07/30/82)
1 : NO-HORE (zero-out edge table fror next line on down)
2 YCUR a NINES OVER i t DO I YCUR ! !OLUPOS F DONE ! LEMGTH 3 DUP I F R# 3 - ?DUP I F
3 0 0 EDGE 2 ! LOOP YCUR ! ; 0 DO NEAR-RIGHT XCUR 3 - DUP 0) I F
4 : PATCH 1 f i x remainder of edge table, after actual REWRITE) LENGTH 3 R I 0 - H I N AT CHARACTER OVER TYPE

6 NO-HORE CLR-)SCR THEN ; ELSE DROP CHARACTER C3 ECHO 1 THEN DONE 3
7 : CHANGE (n) (pos. or neg. chanqe in I characters) IF LEAVE THEN +LOOP THEN
B DUP TALLY ! DUP SHIFTS ! NEGATE ELSE DROP ,CHAR THEN PATCH ;
9 LENGTH 3 t 1024 2DUP HIN LENGTH ! / HOOT 8 SHIFTS +! ; --?

i0
11 --)
12
13
14
is

: REWRITE (display rerainder of text)

5 DONE 3 I F ADJUST ELSE R I 3 XCUR 3 EDGE 2! DUP XCUR t ! DUP R I t!

(i f length exceeds 1024, shifts are 'root')

Copyright 1982 Leo Brodie 10113182

Volume IV, No. 4
FORTH Dimensions 26

Screen # 26 c rc ver = 20392 Screen # 27 crc ver = 11626
0 (Various nodes Setup 08/02/82 1 (Delete node 07/30/82 1
1 : REATTACH (source-buffer-adr) : XCHAR (de le te one char.)
2 DUP 3 I F .HODE AT DUP 2 t CHARACTER ROT 3 ROOH HIN CHOVE R# 3 LENGTH 3 (I F AT ASCII X EHIT FORWARD THEN ;
3 REWRITE OOLDPOS AT ELSE DROP THEN COHHAND! ; : X-ING (begin de le te rode) !OLDPOS R# 3 TALLY ! XCHAR
4 : HOHE 0 R# ! 0 XCUR ! 0 YCUR ! ; DELETING HODE ! .HODE ." DELETE [ODEn ;

6 : ESCAPE (leave outer loop) T ?ESC ! ; DUP xHOLDING 2+ TALLY 3 DUP xHOLD1NG ! CHOVE
7 --) I save deleted) ROOH CHOVE (c lose gap) ;
8 : BLANK-)END ROOH ODLDPOS CHARACTER + TALLY 3 EL FILL ;
9 : xSTOP (e x i t de le te rode)

10 R# 3 TALLY 3 - CHANGE CLOSE-UP BLANK-)END A T SPACE
11 REYRITE 30LDPOS COHHAND! ;
12 : x (I de le te rode backspace) TALLY 3 R# 3 - I F
13 BACKWARD .CHAR AT ELSE T DONE ! xSTOP BACKWARD THEN ;
14 --)

15

5 : --- 7 EHIT (b e l l) .CHAR ; : CLOSE-UP CHARACTER DUP TALLY a -

Screen I 20 c r c ver = 28142 Screen I 29 c rc ver = 2270

REPLACING HODE ! 0 TALLY !
0 (Replace node 08/02/82 1 (Enter rode CONTINUOUS 110 VERSION 09/30/82)

1 : REPLACE (go i n t o rep lace rode)
2 F REALIGN ! .HODE .' REPLACE' ; R# 3 1024 (I F ENTERING NODE ! .MODE .' ENTERING HODE"
3 I RCHAR (rep lace one char.) 0 TALLY ! THEN ;
4 R# 3 LENGTH 3 (I F #KEY 3 DUP CHARACTER C ! ECHO : PATIENT RIGHT 3 1+ 77 HIN RIGHT ! EDGE 3 75 =
S REALIGN 3 I F REYRITE 30LDPOS AT F REALIGN ! THEN THEN ; XCUR 3 NEAR-RIGHT 5 t a OR I F NEAR-RIGHT RIGHT ! THEN ;
6 : r((replace-rode backspace) BACKWARD .CHAR ; : ICHAR (i n s e r t one char.) RY 3 1024 (I F CHARACTER DUP 1+
7 : rSTOP (e x i t rep lace)
8 0 SHIFTS ! REWRITE 3OLDPOS COHHAND! ; -1 CHANGE ECHO R # 3 LENGTH 3 - I F PATIENT REWRITE OOLDPOS
9 THEN THEN ;

10 --> (paren out t h i s arrow t o load Burst 1/0 version) : eSTOP NEAR-RIGHT RIGHT ! 0 CHANGE REWRITE 3OLDPDS
11 COHHAND! ;
12 37 LOAD (Burst I / O vers ion) RIGHT 3 I - NEAR-RIGHT HAX
13 RIGHT ! R I 3 I F BACKYARD AT SPACE CHARACTER DUP 1+ SWAP
14 LENGTH 3 R# 3 - CHOVE 1 CHANGE REWRITE OOLDPOS THEN ;
15 --)

: ENTER (go i n t o Enter)

LENGTH 3 1023 HIN R I 3 - (CIIOVE #KEY 3 DUP CHARACTER C !

: e((backspace i n Enter rode)

Screen I 30 c rc ver = 29713 Screen I 31 crc ver = 29467
0 (Hisc. funct ions 07/30/82) (Mul t ip le-operat ion keys:
1 : TAKE (spread r r d r . of block; r e s t o r e xHOLDING1
2 CHARACTER (source) DUP xHOLDING 3 t (des t l : BACK HULTIPLE 0 DO BACKWARD
3 ROON xHOLDIN6 3 - (count) DUP 0) I F (CHOVE I spread) : FORWARDS MULTIPLE 0 DO FORWARD
4 ELSE ZDROP DROP THEN : XCHARS HULTIPLE 0 DO XCHAR
5 xHOLDING 3 NEGATE CHANGE xHOLDING REATTACH ; : NEXTSCR 1 SCR +! ESCAPE ;
6 : -HDHE (rove t o l a s t non-blank char.) : BACKSCR -1 SCR + ! ESCAPE ;
7 LENGTH 3 DUP R# ! #LINES 0 DO I YCUR ! DUP EDGE 2+ 3 = I F --)

8 LEAVE THEN LOOP DROP EDGE 3 XCUR ! ;
9 : CUTOFF (erase t o end)

10 CHARACTER xHOLDING 2+ LENGTH 3 R I 3 - DUP KHOLDING !
11 CHOVE CHARACTER ROOH EL FILL CLR-)SCR
12 COHHAND! R # 3 DUP LENGTH ! XCUR 3 EDGE 2 ! NO-MORE ;
13 -->
14
15

4 CONSTANT MULTIPLE
10/13/82 1

OOP ;
LOOP ;

OOP ;

Copyright 1982 Leo Brodie 10/13/82

Volume IV, No. 4 FORTH Dimensions 27

Screen I 32 c rc ver = 49176
0 I Function r a t r i x
1 CREATE FUNCTIONS
2 (E-rode R-rode
3 ASCII e , ’, ICHAR l 1 RCHAR
4 A S C I I x I ’, ICHAR RCHAR
5 ASCII i , ’, ICHAR ’, RCHAR

7 ASCII j l 1 ICHAR ’, RCHAR
8 A S C I I k , ’ I ICHAR ’, RCHAR
9 ASCII r , ’, ICHAR ’, RCHAR

lo 3 (“c) 1 1

11 8 (d e l) ’, e(r(
12 A S C I I a ’, ICHAR ’, RCHAR
13 A S C I I z , ’, ICHAR ’, RCHAR
14 --)
15

6 ASCII I , 1 , ICHAR 1 , RCHAR

1 --- ’ ---

Screen I 33 c rc ver = 8347
08/09/82 1 (Function r a t r i x cont ’d 08/09/82 1

Corrand 1
’, ENTER
’, X-ING
’, UP
l 1 DOWN

l I FORWARD
l 1 REPLACE
’, CUTOFF
’, BACKWARD
’, HOME
l 1 -HOME

BACKWARD

A S C I I J ’, ICHAR
ASCII K , ‘ I ICHAR
ASCII n , ICHAR
A S C I I b , l 1 ICHAR
A S C I I t l 1 ICHAR
A S C I I X I l 1 ICHAR
RETURN , l 1 eSTOP
(o ther) 0 ’, ICHAR
HERE CONSTANT FUNCTIONS)

--)

‘, RCHAR l 1 --- ’, BACKS
l 1 RCHAR --- l I FORWARDS

RCHAR l 1 --- l 1 NEXTSCR
’, RCHAR l 1 --- l 1 BACKSCR
’, RCHAR --- ’, TAKE
l 1 RCHAR ’, XCHARS ’, X-ING
’, rSTOP xSTOP ’, ESCAPE
l 1 RCHAR l I ---

I end o f FUNCTION tab le)
’ ---

Screen I 34 c r c ver = 60149 Screen I 35 c rc ver = 61269
0 (QTF E d i t o r 08/09/82) (QTF E d i t o r 08/09/82 1
1 MODES 2 t CONSTANT GROUP (bytes i n FUNCTIONS f o r each corrand)
2 FUNCTIONS) GROUP - CONSTANT ’NOMATCH

: w r i t e (sc r) (enter ed i to r1
BEGIN DUP (WRITE) SCR 3 - (n or b) WHILE

5 1
4
5
6
7 :
E
9 :

10 (
11 :
12
13

FUNCTION (key) ’NOIIATCH SWAP
FUNCTIONS) FUNCTIONS DO DUP I a = IF ZDROP I o LEAVE
(rep lace noratch adr I/ ra t ch) THEN GROUP +LOOP DROP
(adr i n t a b l e -- 1 MODE 3 t 3 EXECUTE ;

INIT MOOT SHIFTS ! BUFF 1024 -TRAILING LENGTH ! DROP

STAGE (sc r) PA6E DUP . SCR ! I N I T ;
36 LOAD (snapshot dcbuqqer)
(WRITE) (sc r) STAGE REWRITE NO-MORE F ?ESC !
BEGIN 75 19 X Y LEWGTH 3 4 .R AT KEY DUP #KEY !
FUNCTION (SNAP 1 ?ESC 3 UNTIL UPDATE BOTTOH CR ;

HOME NEAR-RIGHT RIGHT ! COMMAND! ;

SCR a REPEAT (,’ Saving on d i sk FLUSH (op t i ona l 1 ;
: w (reenter e d i t o r) SCR 3 w r i t e ;
: n
: b
: index INDEX ;
VARIABLE 1 oadbl oc k
: l b SCR 3 loadblock 3 (WRITE) w r i t e ;
17 LOAD (t e r r i n a l - s p e c i f i c corrands -- w r i t e your own)

(: catch (sc r 1 DUP SCR ! INIT CUTUFF HOLDING 2 t

SCR 3 1 t w r i t e ;
SCR 3 1- w r i t e ;

SWAP BLOCK HOLDING a CMOVE w ;)
14 -->
15

Screen I 36 c rc ver = 53315 Screen I 37 c rc ver = 31510
0 (snapshot debugger 10/02/82 1 (Enter rode BURST 110 VERSION 07/30/82 1
1 : SEE 3 SPACES DUP NFA ID. .I =* a 5 .R ; CREATE HOLDING 1026 ALLOT (i n s e r t buf fer ; c e l l 0 = count)
2 VARIABLE ’SNAP : ENTER (go i n t o Enter rode)
3 : ISNAP) 6 0 XY XCUR SEE VCUR SEE LENGTH SEE R# 3 1024 (I F ENTERING MODE ! CLR-XCR BOTTOM .I Insert:)’’
4 RIGHT SEE TALLY SEE 3 SPACES .I R I * RI ? CHARACTER DUP ROOM 60 M I N TYPE HOLDING 2 t ROOM CMOVE
5 YCUR a ILINES o DO I YCUR ! 71 I zt X Y ROOM HOLDING ! .MODE AT 0 TALLY ! THEN ;
b EDGE 3 4 .R EDGE 3 3 5 .R LOOP YCUR ! AT ; : ICHAR (i n s e r t one char.) RI 3 1024 (IF #KEY 3 DUP
7 (use [’ I ins tead of ‘ i n S t a r t i n g FORTH systers:) CHARACTER C ! ECHO -1 CHANGE THEN ;
8 : WISNAP ‘ (SNAP) ‘SNAP ! ; : eSTOP I end Enter rode)
9 : WOlSNAP ’ TASK ’SNAP I ; MOOT SHIFTS ! HOLDING REATTACH ;

10
11 (i nc lude CFA i n fiq7FORTH systems:) R I 3 IF BACKWARD AT SPME 1 CWGE THEN ;
12 : SNAP
13
14 WOlSNAP
15

: e((backspace i n Enter rode)

30 LOAD ’SNAP a (CFA) EXECUTE ; (continue loading remainder o f app l i ca t i on)

Copyriqht 1982 Lea Brodie 10/ 13/82

Volume IV, No. 4 28 FORTH Dimensions

Now Available On

HEWLETT PACKARD DESKTOP COMPUTERS

HARDWARE

The HP 9826A and 9836A are two of Hewlett-Packard's
newest and most powerful desktop computers. Each is based
on the Motorola MC68000 microprocessor. Both machines
have full graphics capability and up to 2 full megabytes of
user read/write memory. Both operate on 5%" flexible disc
drives (the 9836A has two) which feature 264K bytes of
mass storage. While the 9826A has an integral 7" (178mm)
CRT which makes it useful for computer-aided testing (CAT)
and control, the 9836A has a full 12.2" (310mm) CRT
which makes it ideal for computer-aided engineering (CAE)
applications. Each model features the following:

Seven levels of prioritized interrupt
Memory-mapped I/O
Built-in HP-IB interface
Standard ASCII keyboard with numeric keypad and

Ten (20 with shift) user-definable soft keys with soft labels
Rotary-control knob for cursor control, interrupt generation

System clock and three timers
Powerfail recovery option for protection against power lapses
Seven additional interface cards

international language options

and analog simulations

- DMA controller (up to 2.4 mb/sec)
- 8/16 bit bi-directional parallel
- Additional HPlB interface
- Serial RS232/449

- Color video(RGB) 3 planes 512 x 512 8 color
- BCD

SOFTWARE

HP 9826/36 Multi-FORTH
HP PRODUCT # 97030JA

Multi-FORTH was developed in 1979 by Creative Solutions,
Inc. The standard product has been substantially modified to
take full advantage of the 9826/36 hardware features.

Multi-FORTH features
79 standard programming environment
Multitasking
Full screen editor
In-line structured assembler
I/O and graphics extensions
Loadable H.P. floating point (IEEE format)
Extensive user manuals and documentation

Optional Features:
Meta compiler
Multi user
Data access methods library

This product is part of HP PLUS - a program for locating user software. It has been
developed by an independent software supplier to run on HPcomputer systems. It IS
eligible for HP PLUS as determined by references from satisfied end users. Support
services are available only through the software supplier. Hewlett-Packard's
responsibilities are described in the Responsibilities Statement below.

Responsibilities Statement
HP PLUS software was developed by an independent software supplier for operation
on HP computer systems. The supplier is solely responsible for its software and
support services. HPis not themanufactureror developer ofsuch software orsupport.
HPdisclaims any andall liabilities forandmakes no warranties. expressedor implied,
with respect to this software. Distribution of this product or information concerning
this product does not constitute endorsement of the product, the supplier, or support
services. The customer is msponsible for selection of the software it purchases.

For more information, please write

3404 East Harmony Road, Ft. Collins, CO. 80525
Marvel Ross, Hewlett Packard Company

Volume IV, No 4 29 FORTH Dimensions

defined in the BASIC language.
Ability to use the speaker and timer to produce tones

Debugging Capabilities

Debugging Aid
HEX Dump
Decompiler

Text Conversion
Screen to Text Document Conversion
Load from Text Format

Requirements
IBM Personal Computer
PC/DOS

FORTH Standards Corner

Representation for Logical True

Robert L. Smith

One of the proposals for the next
FORTH Standard is that the system
default value for “true” is all 16 bits
set to “1.” The system default for
“false” would be unchanged, namely
the value returned on the stack has the
16 bits set to “0.” FORTH-79 returns
a default “true” value with only the
low order bit set to “1” and the re-
maining bits set to “0.” Since logical
operators in FORTH usually mani-
pulate 16 bit quantities rather than 1
bit quantities, it makes somewhat bet-
ter sense for the default truth values

to return either all bits cleared or all
bits set. It should be noted that in
many cases the implementation of all
ones as a default true is somewhat
more efficient than 15 “0”s and a “1.”
Frequently there is also some improve-
ment in the high level FORTH code.

For a trivial example, consider the
function discussed in a previous issue,
S- > D. This is used to “sign-extend’’
a single precision signed number to a
double precision format. Using the
suggested logical default, the function
may be written:

Using the older default for true re-
quires an additional term, NEGATE, to
be placed after the 0 < .

An often used trick in FORTH is for
a function to either return a zero value

: S->D DUP O < ;

or a value, such as an address, based
on a logical result. If the new default
is used, the logical AND operator may
be applied to the specified value to
give the desired result. To apply the
same idea to the older default, we must
either perform an arithmetic multipli-
cation, or first negate the logical result
before applying the AND function.

Probably the main argument against
the proposal is that it is not “compati-
ble” with some currently written code.
It will be interesting to see the results
of the voting on this issue. 0

Editor’s Note:
Just before this issue went to press, the
Standards Team voted to adopt this
proposal.

1 proFORTH COMPILER
8080/8085,280 VERSIONS

SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS
INTERACTIVELY TEST HEADERLESS CODE

MULTIPLE, PURGABLE DICTIONARIES
IN-PLACE COMPILATION OF ROMABLE TARGET CODE

FORTH-79 SUPERSET
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $2250

2 MICROPROCESSOR-BASED PRODUCT DESIGN
SOFTWARE ENGINEERING

ELECTRONICS AND PRINTED CIRCUIT DESIGN
PROTOTYPE FABRICATION AND TEST
REAL-TIME ASSEMBLY LANGUAGE/proFORTH
MULTITASKING
DIVERSIFIED STAFF

DESIGN STUDIES - COST ANALYSIS

ow you can program using the entire IBM@PC
Nmemory . The FORTH-32 SEGMENT SENSING language
makes segment boundaries transparent to the pro-
grammer.

The FORTH-32'" DEVELOPMENT SYSTEM features inter-
mixed 16 and 32 bit addressing modes with fig - FORTH
compatibility, DOS interface, full screen editor, assembler,
disassembler, graphics and debug. The powerful QUEST
CASE statement with single, multiple and range labeling
is also included.

In addition to FORTH-32T" you will receive the QUEST
PACKAGE BUILDER UTILITY which transforms user de-
veloped programs into marketable software packages
by building on disk a condensed executable image with
only those FORTH words needed.

User oriented self-teaching documentation! All software is
fully backed and updated for one year.

$100 FORTH-32 (SPECIFY PC-DOS, OR CP/M-86m)
$50 FLOATING POINT LIBRARY (SOFTWARE OR 8087)

FORTH-32 AND QUEST ARE TRADEMARKS OF QUEST RESEARCH INC.
IBM IS A REGISTERED TRADEMARK OF IBM CORPORATION.
CPIM-86 IS A TRADEMARK OF DIGITAL RESEARCH INC.

C.O.D.

TM

QUEST RESEARCH, INC.
P.O. BOX 2553

Call Toll Free:

In Alabama Call
(800) 558-8088

HUNTSVILLE, AL 35804 (205) 533-9405

Volume IV. No. 4 FORTH Dimensions 32

I

Henry Laxen

This time I would like to rant and rave
about one of the most difficult aspects
of programming in FORTH, that of
choosing good names for your defini-
tions. Besides a rational design, this is
the single most important part of pro-
gramming in FORTH.

That’s a strong statement, but it is
absolutely true. The names you give
your definitions can make the dif-
ference between understandable,
modifiable code, and complete gar-
bage. I will illustrate this by some
examples and some guidelines of how
to choose good names.

First a word on programming tools.
There has been a great deal of time
and effort devoted to the topic of pro-
gramming tools in recent years, and
FORTH is well equipped with some of
the most sophisticated tools in the soft-
ware world. You can find code for
countless debuggers, decompilers,
cross reference utilities, glossary
generators, and online helpers of one
form or another. These are all wonder-
ful, but rarely is the most important
FORTH development tool mentioned,
yet it is widely available and costs only
about $20.00. I am of course talking
about a good dictionary and thesaurus.
When it comes to choosing a good
name for a FORTH word, these can be
invaluable, and should be part of every
FORTH programmer’s tool kit.

Now then, rule number one in
choosing good names is: Name the
what, not the how. Let’s take a look
at some examples of what this means.
Every FORTH programmer, myself
included, is guilty of violating this
rule, and the primary violation is in
the area of returning booleans or
truth values. Every piece of code I
have ever seen has phrases such as the
following:

This is horrible! Furthermore there is
IF DO-SOMETHING 1 ELSE DROP 0 THEN

a proposal in the 83 Standard to
change the value of a true boolean
from 1 to -1. If that happens, many
many programs will need to be heavi-
ly modified. What we have in essence
done in the above example is violate
our rule on naming clarib. Lye have
named the words TRUE and F-USE
with the how. nameiy 1 and 0. ms~ead
of the what. namely TRUE and FALSL
A much better solution. and it is a b
solutely trivial to implement is to
revise the code as follows:

1 CONSTANT TRUE
0 CONSTANT FALSE
IF DO-SOMETHING TRUE ELSE

DROP FALSE THEN
This is great! First it is absolutely clear
that we are returning a boolean value,
and secondly if this was done through-
out, changing the value of TRUE would
be little more than redefining the con-
stant TRUE. The result is clearer, more
understandable, and more modifiable
code than before. [Editor’s note: Or
consider using T and F as abbrevia-
tions. See the code for my QTF article
on page 21 of this issue.]

Let’s look at another example of
naming the what and not the how. It
is often desirable to define some words
which will set a variable to 1 or 0, TRUE
or FALSE. Which of the following
pieces of code have you written, and
which do you now think is better:

: O! (addr --) 0 SWAP ! ;
: l! (addr --) 1 SWAP ! ;
: SET (addr --) TRUE SWAP ! ;
: RESET (addr --) FALSE SWAP ! ;

Suppose we had a variable called
ENABLE. Which of the following
phrases do you think makes more
sense:

ENABLE O! or ENABLE RESET
If you ask yourself how am I going to
disable something, you will come up
with the O! name. If you ask yourself
what am I going to do , the answer will
be to RESET the ENABLE flag, and you
will come up with the much superior
name of RESET instead of 01.

Always remember to ask yourself
what you are doing, not how you are

doing it. If you answer the what ques-
tion, you will most likely come up with
a good name.

Sow let’s proceed to rule number
two in how to choose a good x m e

Given the cho:ce .ke?~*wz g x c 3:-

Rule 2 is. IJ p s s i 5 ; ~ . 2t::k

h a y . p w ~ EZE,IC.T Z*Z F:?:
. .

WophiStlGilIed cozlpcP= Lar-3
-Erwini

Let’s take a look at an exampk d
this rule. What name would
to the word that takes a row and COP
umn position off the stack and moves
the cursor of your terminal to that
position? Think about it for a minute
before you read the next paragraph.

If you chose a word like GOTOXY or
XYPOS may you burn in the fires of
PASCAL forever! These are total com-
puterese gibberish, and should be
avoided like the plague. A terrific
word for this function would be AT,
since you are positioning the cursor AT
the values that are on the stack. (This
name was stolen by me from Kim Har-
ris who credits Chuck Moore.) Com-
pare how much more nicely the code
fragment:

5 20 AT .” Hello” reads compared to
5 20 GOTOXY .” Hello’’
Let’s take another example, which

might be sacrosanct to many of you.
Suppose you wanted to define a word
which will list all of the words in a par-
ticular vocabulary on your terminal.
What would be a good name for such
a beast? If you said VLIST try again.
VLIST is another example of com-
puterese gibberish. If you would like
to know what the EDITOR WORDS are
doesn’t it make more sense to type
EDITOR WORDS than EDITOR VLIST?
WORDS is the perfect name for such a
function. It names the what, namely

Continued on page 35

Volume IV, No. 4
FORTH Dimensions 33

JOIN THE APPLICATION

PUT FORTH ON OTHER COMPUTERS.
PRODUCE EXECUTABLE IMAGE IN RAM OR ON DISK.
PRODUCE ADDRESS MAP OF APPLICATION.

fig-FORTH CROSS-COMPILERS by NAUTILUS SYSTEMS
Apple, Atari, TRS 80 Model I , Zenith, and Northstar

fig-FORTH CROSS-COMPILER by LABORATORY MICROSYSTEMS

79-Standard Systems by MOUNTAIN VIEW PRESS
CP/M 80

$300.00 + tax and $5.00 shipping and handling

CP M 80, CP/M 86, IBM PC , and 68000 (requires LAB FORTH at addittonal cost)

Apple IS a trademark of Apple Computer Inc Atari IS a trademark of Atari Cornpuler TRS-80 IS a trademark of
Tandy Corp Zenith IS a trademark of Zenath Radio Corporatlon Northstar Isa trademark of Northstar Computers
IBM IS a trademark of International Business Machines Inc

Nautilus Systems I
PO Box 1098 SANTA CRUZ, CA 95061

CCI MegaFORTH for Data General Computers
* FORTH-79 superset and various utilities
* Multitasking, Multiuser
* Cross compiler - can produce ROMable code
* Cross reference generator
* Screen and line editors
* Floating point support
* Works on NOVA and ECLIPSE computers

including microNOVA and microECLIPSE
* Uses ECLIPSE instruction set on ECLIPSES
* Runs under DG operating systems
* Extensive user manual and documentation

t The CCI version of fig-FORTH for the NOVA is available at $90.00

CAPSTONE COMPUTING, INC.
5640 Southwyck Blvd., Suite 2E

Toledo, Ohio 43614

Volume IV, No. 4 FORTH Dimensions 34

Choosing Names (continued from page 33)

tell me what the WORDS are, not the
how of Vocabulary LISTing.

Now let’s take a look at the third and
final rule in choosing a good name.
Rule number 3 is: All things being
equal between two names, choose the
shorter one. Let’s try our rules on the
following problems. Think of a name
for a word that will clear the screen
of a video terminal. Some names that
immediately spring to mind are:
ERASE, BLANK and CLEAR. Unfortunate-
ly ERASE and BLANK are already taken,
and CLEAR seems like a good choice,
but maybe we can do better. CLEAR
could apply to other things besides a
video terminal, so think about words
that would only apply to visual things.
Consider the word DARK. This is ideal
for this function. All things being
equal between CLEAR and DARK we
would choose DARK based on rule 3.
Let’s look at one more example. What
name should I give the word that
decompiles other FORTH words. The
syntax I want is

where ??? will decompile the FORTH
word NAME. Think of what we are do-
ing and come up with some names.
Rule 2 excludes garbage such as
DECOMP and DIS. What is it we are do-
ing? We are exposing the definition of
NAME. Think of words that mean ex-
pose. How about the following: EXPOSE
DISCLOSE REVEAL SEE. They are all good
English words that describe what is
going on.

For a long time I used REVEAL for this
function, but then later I finally came
up with SEE, and chose it based on rule
number 3. I don’t see any intrinsic
value of SEE over REVEAL other than it
is shorter, and hence easier to type.
Both SEE QUIT and REVEAL QUIT appeal
to me.

As a final example, and perhaps a
piece of useful code that you can use
in your applications, let’s take a look
at Fig. 1. This example was motivated
by a frequent occurrence in many of
my programs, namely that of return-
ing a TRUE or FALSE result during
some kind of searching procedure.
Furthermore, this returned result must
be capable of nesting properly.

For example, suppose we wanted to
search a string for an occurrence of a
control character. If you are passed

??? NAME

the address and length of the string,
you might wind up with a piece of
code as shown in Fig. 2.

It first shoves a 0 behind the address

how they are actually implemented. If
I had named the how instead of the
what, I would have wound up with
names like > BOOL and BOOL>. Not

and length on the stack. It then runs
through the string character by
character and if it finds a control
character, it throws away the current
address and the 0, replaces them with
two Is, and leaves the loop. After the
loop, the address is thrown away, leav-
ing only the boolean result. I think this
is not only hard to follow, but tricky,
and should be avoided.

Now compare it with the piece of
code in Fig. 3. It starts out by saying
that the result to be returned is initial-
ly false. Next it also runs through the
string character by character, and if it
finds a control character it simply in-
dicates that the search was successful
and leaves. After the loop the address
is thrown away and the result is
returned. What could be simpler and
more readable?

Now let’s examine Fig. 1 in more
detail. The word INITIALLY is nothing
more than a push onto a stack pointed
to by the word BOOLEANS. Similarly
RESULT is nothing more than a pop
from the same stack. Notice how com-
pletely different the names are from

only would this violate rule number 1,
but it would be complete computer
gibberish as well. How many of you
have implemented stacks with names
such as >GARBAGE and GARBAGE>?

Just because something is a stack
doesn’t mean it has to have little
arrows associated with it. Stacks are
very useful data structures, and when
you use them to implement a function,
be sure to name them according to
what the function does, not how it
does it. I have found that using the
code in Fig. 1 has improved the
readability of my programming im-
mensely, at almost zero cost.

In conclusion, I would like to leave
you with the immortal words of the
poet John Keats, from his poem
ENDYMION. He said something like:
“A good name is a joy forever.” Till
next time, may the FORTH be with
you. 0
@Henry Laxen 1982

Henry Laxen is an independent
FORTH consultant based in Berkeley,
California.

Scr W 1
llSEP82HHL c) \ Fig 1. Boolean Results

1 CREATE BOOLEANS 0 , 20 ALLOT (Space for the stack)

2 : INITIALLY (n --)

3 BOOLEANS 2 OVER + I (increment index)

4 DUP .S + ‘ (and store n) ;
5 : RESULT (n - -)
6 BOOLEANS DUP DUP .J + a (get top of stack)

7 -2 ROT + I (and decrement index) ;
8 : FAIL (--)

9 RESULT DROP FALSE INITIALLY i
(--) 1 0 : SUCCEED

1 1 RESULT DROP TRUE INITIALLY ;
12
13
14
15

Scr 1) 2
0 \ Fig. 2. Poor way t o Search a Str ing
1 : CONTROL? (addr len -- f)

2 0 ROT ROT 0 DO DUP Ca EL
3 i IF ZDROP 1 1 LEAVE THEN
4 LOOP DROP ;
5
6
‘7 \ Fig. 3. Neat way t o Search a Str ing
8 : CONTROL? (addr l e n -- f)

9 FALSE INITIALLY 0 DO DUP C3 EL
1 0 <: IF SUCCEED LEAVE THEN
1 1 LOOP DROP RESULT : .^
l i

14
15

1iSEPElZHHL

Volume IV, NO. 4 35 FORTH Dimensions

TAKE
FORTH

TO WORK

NOW YOU CAN RUN
FORTH ON THE OFFICE

IBM MAINFRAME. GIVE

YOURSELF THE FORTH
ADVANTAGE ON THE

JOB!

FORTH/370
for large IBM and

equivalent computers

IBM 370, 4341, 3033, etc.

Based on fig FORTH

Program compatible with

Editor and Assembler

Runs under VM/CMS or

32 bit word, 64 bit double

Files compatible with.host

micro FORTH systems

MVS/TSO

word

operating system

ASK YOUR EMPLOYER

TO BUY FORTH/370 AND

START USING FORTH 8

HOURS PER DAY.

Introductory Price $1350.
5% Sales Tax in Maryland

WARD SYSTEMS GROUP
8013 Meadowview Drive

Frederick, Maryland 21701
(301) 695-8750

FORTH Dimensions

1983 ROCHESTER FORTH
APP 1 I CAT I 0 N S CO N FE R E N CE

With a Focus on Robotics

June 7 through June 11, 1983

University of Rochester
Rochester, New York

0 The third annual Rochester Forth Conference will be
hosted by the University of Rochester’s Laboratory for
Laser Energetics and sponsored by the Institute for
Applied Forth Research, Inc. This year’s conference has
a format similar to that of previous Rochester con-
ferences with an emphasis on Forth applications focused
on a special topic. This year’s topic is robotics, which
embraces many areas including, but not limited to:
mechanical and electrical engineering, vision, artificial
intelligence, computer networking and automated
manufacturing. We believe that the nature of Forth and
its application to robotics provides a unique opportunity
to study both disciplines.

There is a call for papers on the following topics:

1. Robotics and Forth.

2. Forth applications, including, but not limited
to: real time, business, medical, space-based,
laboratory and personal systems; and Forth
microchip applications.

3. Forth technology, including finite state
machines, control structures, and defining
words.

Papers will be handled in either oral or poster
sessions, although oral papers will be refereed in
accordance with conference direction and paper
suitability. Please submit a 200 word abstract by April
15, 1983. Papers for the oral session must be received
by May 1 5 and for poster sessions by June 1, 1983.
Papers are limited to a maximum of 10 printed pages
including code and figures. I f this restriction causes a
problem, please contact us.

0 For more information, please contact the conference
chairman:

Lawrence P. Forsley
Laboratory for Laser Energetics
250 East River Road
Rochester, New York 14623

36 Volume IV, No. 4

Fig Chapters
us.

ARIZONA
Phoenix Chapter
Peter Bates at 602/996-8398

CALIFORNIA
Los Angeles Chapter
Monthly, 4th Sat., 11 a.m., Allstate
Savings, 8800 So. Sepulveda Blvd.,
L.A. Philip Wasson 213/649-1428
Northern California Chapter
Monthly, 4th Sat., 1 p.m., FORML
Workshop at 10 a.m. Palo Alto area.
Contact FIG Hotline 415/962-8653
Orange County Chapter
Monthly, 3rd Sat., 12 noon, Fullerton
Savings, 18020 Brockhorst, Fountain
Valley. 7141896-2016
San Diego Chapter
Weekly, Thurs., 1 2 noon. Call Guy
Kelly, 714/268-3100 x4784

MASSACHUSETTS
Boston Chapter
Monthly, 1st Wed., 7 p.m. Mitre
Corp. Cafeteria, Bedford, MA. Bob
Demrow, 617/688-5661 after 5 p.m.

MICHIGAN
Detroit Chapter
Call Dean Vieau, 313/493-5105

MINNESOTA
MNFIG Chapter
Monthly, 1st Mon. Call Mark Abbot
(days) 6121854-8776 or Fred Olson,
612/588-9532, or write to: MNFIG,
1156 Lincoln Ave., St. Paul, MN
55105

NEW JERSEY
New Jersey Chapter
Call George Lyons, 201/451-2905 eves.

NEW YORK
New York Chapter
Call Tom Jung, 212/746-4062

OKLAHOMA
Tulsa Chapter
Monthly, 3rd Tues., 7:30 p.m., The
Computer Store, 4343 So. Peoria,
Tulsa, OK. Call Bob Giles,
9181599-9304 or Art Gorski,
918/743-0113

OHIO
Dayton Chapter
Monthly, 2nd Tues., Datalink
Computer Center, 4920 Airway Road,
Dayton, OH 45431. Call Gary Ganger,
(513) 849-1483.

OREGON
Portland Chapter
Call Timothy Huang, 9529 Northeast
Gertz Circle, Portland, OR 97211,
5031289-9135

PENNSYLVANIA
Philadelphia Chapter
Call Barry Greebel, Continental Data
Systems, 1 Bala Plaza, Suite 212, Bala
Cynwid, PA 19004

TEXAS
Austin Chapter
Call John Hastings, 512/327-5864
Dallas/Ft. Worth Chapter
Monthly, 4th Thurs. 7 p.m., Software
Automation, 1005 Business Parkway,
Richardson, TX. Call Marvin Elder,
214/231-9142 or Bill Drissel,
214/264-9680

UTAH
Salt Lake City Chapter
Call Bill Haygood, 8011942-8000

VERMONT
ACE Fig Chapter
Monthly, 4th Thur., 7:30 p.m., The
Isley Library, 3rd Floor Meeting Rm.,
Main St., Middlebury, VT 05753.
Contact Hal Clark, RD #1 Box 810,
Starksboro, VT 05487, 8021877-2911
days; 8021453-4442 eves.

VIRGINIA
Potornac Chapter
Monthly, 1st Tues. 7p.m., Lee Center,
Lee Highway at Lexington Street,
Arlington,’Virginia. Call Joel
Shprentz, 7031437-9218 eves.

WASHINGTON
Seattle Chapter
Call Chuck Pliske or Dwight
Vandenburg, 206/542-7611

Nevada

Call Gerald Hasty, 702/737-5670
Las Vegas Chapter

FOREIGN
AUSTRALIA

Australia Chapter
Contact Lance Collins, 65 Martin Rd.,
Glen Iris, Victoria 3146, or phone
(03) 292600

CANADA
Southern Ontario Chapter
Contact Dr. N. Solnseff, Unit for
Computer Science, McMaster
University, Hamilton, Ontario L8S
4K1, 4161525-9140 ~ 2 0 6 5

Quebec Chapter
Call Gilles Paillard, 4181871-1960 or
643-2 56 1

ENGLAND
English Chapter
Write to FORTH Interest Group, 38
Worsley Rd., Frimley, Camberley,
Surrey, GU16 5AU, England

JAPAN
Japanese Chapter
Contact Masa Tasaki, Baba-Bldg. 8F,
3-23-8 Nishi-Shimbashi, Minato-ku,
Tokyo, 105 Japan

NETHERLANDS
HCC-FORTH Interest
Group Chapter
Contact F.J. Meijer, Digicos, Aart
V.D. Neerweg 31, Ouderkerk A.D.
Amstel, The Netherlands

WEST GERMANY
West German Chapter
Contact Wolf Gervert, Roter Hahn 29,
D-2 Hamburg 72, West Germany,
(040) 644-3985

SPECIAL GROUPS
Apple Corps FORTH
Users Chapter
Twice monthly, 1st & 3rd Tues., 7:30
p.m., 1515 Sloat Blvd., #2, San
Francisco, CA. Call Robert Dudley
Ackerman. 415/626-6295

Nova Group Chapter
Contact Mr. Francis Saint, 2218 Luh ,
Witchita, KS 67211, 316/261-6280
(days)

MMSFORTH Users Chapter
Monthly, 3rd Wed., 7 p.m.,
Cochituate, MA. Dick Miller,
617/653-6136

Volume IV, No. 4 37 FORTH Dimensions

List of FORTH System Vendors
(e.g., A1 signifies A 6 Computers, etc.)

Processors
1802 C1, C2, F3, F6, L3
6502 (AIM, KIM, SYM) ... R1, R2, S1
6800 F3, F5, K1, L3, M6, T1
6809 F3, F5, L3, M6, T1
68000 C4, E l
8080/85 A5, C1, C2, F4, 15, L1, L3, M3,

M6, R1
za~leq A3, A5, C2, F4, 13, KI, LI1 M2,

MI ,M5 ,N
28000 I3
8086/88 F2, F3, L1, L3, M6
9900 E2, L3

Operating Systems
CPIM A3, C2, F3, 13, L3, M1, M2, M6

Computers
Alpha Micro P3, S3
Apple A4, F4, 12, 14, Jl, L4, M2, M6,

0 2 , 0 3

Atari M6, P2, Q1
Cromemco A5, M2, M6

Heath-89 M2, M6
Hewlett-Packard 85
IBM PC C2, F3, L1, M5, M6
IBM Other L3
Micropoh A2, M2, S2
North Star 15, M2, PI, S7
Q\\Q SG\~~~\~~c~..~.......... R6, 01, ‘3, 02 , S6, T2

Osborne
Pet SWTPC Al , A6, B1, C3, 01, s6, T2, T5
TRS-80 I, 11, 111 15, M5, M6, S4, S5
TRSSO Color A3, F5, M4, T1

DEC PDPILSI-11 C2, F3, K I , L2, S3

Other Products/Services
Boards, Machine F3, M3, R2
Consultation C2, C4, N1
Cross Compilers C2, F3, 13, M6, N1
Products, Various C2, F3, 15, S8
Training F3, I3

Ver. 2 For your APPLE II/II+
The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

OURS OTHERS FEATURES

79-Standard system gives source portability. YES
professionally writ ten tutorial & user manual 200 PG.
Screen editor wi th userdefinable controls. YES
Macroassembler wi th local labels YES
Virtual memory. YES
Both 13 & 16-sector format. YES
Multiple disk drives. YES
Double-number Standard & String extensions. YES

LO-Res graphics. YES
80 column display capability YES
2-80 CP/M Ver. 2.x & Northstar also available YES

Low cost enhancement option

Upper/lower case keyooard input. YES

Affordable! $99 95

Hi-Res turtle-graphics. YES
Floating-point mat hematics YES

Powerful package wi th own manual,
50 functions in a l l ,
AM951 1 compatible.

FORTH-79 V.2 (requires 48K & 1 disk drive)
ENHANCEMENT PACKAGE FOR V 2

COMB INATION PACKAGE
(CA res. add 6% tax COD accepted)

Floating point & Hi-Res turtle-graphics

$ 9 9 9 5

$ 4 9 9 5
$139.95

MicroMotion
12077 Wilshire Blvd # 506
L A , CA 90025 (21 3) 821 -4340
Specify APPLE CP/M or Northstar

Version 2 For 2-80, CP/M (1.4 & 2x1,
& Northstar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERS

79-Standard system gives source portability. YES -
Professionally writ ten tutorial & user manual. 200 PG. -
Screen editor wi th userdefinable controls. YES -
Macro-assembler wi th local labels. YES -
Virtual memory. YES -
BDOS, BlOS & console control functions (CP/M). YES -
FORTH screen files use standard resident

file format. YES -
Double-number Standard & String extensions. YES -
Upper/lower case keyboard input. YES -
APPLE l l / l l + version also available. YES -
Low cost enhancement options.

Tutorial reference manual
50 functions (AM951 1 compatible format)

Affordable! $99.95 -
Floating-point mathematics YES -

Hi-Res turtle-graphics (NoStar Adv. on ly) YES -
ENHANCEMENT PACKAGE FOR V.2:

COMBINATION PACKAGE (Base & Floating point)

FORTH-79 V.2 (requires CP/M Ver. 2.x). $99.95

Floating point $ 49.95
$139.95

(advantage users add $49.95 for Hi-Res)
(CA. res. add 6% tax, COD & dealer inquiries welcome)

MicroMotion
12077 Wilshire Blvd. # 506
L.A., CA 90025 (213) 821 -4340
Specify APPLE, CP/M or Northstar

r

Volume IV. No. 4 FORTH Dimensions 38

FORTH Vendors
The fol lowing vendors offer FORTH systems, appl icat ions, or consul ta t ion, FIG makes no judgemen t on a n y p roduc t , and takes no respon-

sibility for the a c c u r a c y of th i s l ist , W e e n c o u r a g e r eade r s t o keep us in fo rmed on availabil i ty of the p roduc t s and services l isted. Vendors
m a y send add i t ions and co r rec t ions t o t h e Edi tor , and must inc lude a c o p y of sales literature or advert is ing.

FORTH Systems
A

1. AB Com uters
252 Bethrehem Pike
Colmar, PA 18915
2151822-7727

17453 Via Valencia
San Lorenzo, CA 94580
4151276-6050

P.O. Box 726
Clinton, TN 37716

4. Applied Anal tics Inc
8910 Brookridige Drive, #300
Upper Marlhoro, MD 20870

5. Aristotelian Logicians
2631 East Pinchot Avenue
Phoenix, AZ 85016

6. Aurora Software Associates
P.O. Box 99553
Cleveland, OH 44199

2. Acropolis

3. Advanced Technology Corp.

1. Blue Sk Products
729 E. &illow
Signal Hill, CA 90806

C

1. CMOSOFT
P.O. Box 44037
Sylmar, CA 91342

2 . COMSOL, Ltd.
Treway House
Hanworth Lane
Chertse Surrey KT16 9LA
EnglanJ'

3. Consumer Computers
8907 La Mesa Boulevard
La Mesa, CA 92041
7141698-8088

4. Creative Solutions, Inc.
4801 Randolph Road
Rockville, MD 20852

1. Datentec Kukulies
Heiorichsallee 35
Aachen, 5100
West Germany

E

1. Emperical Research Group
P.O. Box 1176
Milton, WA 98354
2061631-4855

2. Engineering Logic
1252 13th Avenue
Sacramento, CA 95822

F

1. Fantasia Systems, Inc.
1059 Alameda De Las Pulgas
Belmont, CA 94002
4151593-5700

5227 Highland Road
Minnetonka, M N 55343

2 . Fillmore Systems

3. FORTH, Inc.
2309 Pacific Coast Highway
Hermosa Beach. CA 90254
21313724493

4. FORTHWare
639 Crossridge Terrace
Orinda, CA 94563

130 Midtown Plaza
Syracuse, NY 13210
3151474-7856

5. Frank Hogg Laboratory, Inc.

6. FSS
P.O. Box 8403
Austin. TX 78712
5121477-2207

I

1. IDPC Comoanv
P.O. Box li59.i
Philadelphia, PA 19116
2151676-3235

2. IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
4151525-9452

3. Inner Access
517K Marine View
Belmont, CA 94002
4151591-8295

4. Insoft
10175 S.W. Barbur Blvd., #202B
Portland. OR 97219
5031244-4181

5. Interactive Comuuter
Systems, Inc. .
6403 Di Marco Road
Tampa, FL 33614

J

1. JPS Microsystems, Inc.
361 Steelcase Road, West, Unit 1
Markham, Ontario,
Canada L3R 3V8
4161475-2383

L

1. Lahorator Microsystems
4147 Beetioven Street
Los Angeles, CA 90066
2131306-7412

Systems, Inc.
3634 Mandeville Canyon Road
Los Angeles, CA 90049
2131472-6995

3301 Ocean Park, #301
Santa Monica, CA 90405
2131450-2466

4. Lyons, George
280 Henderson Street
Jersey City, NJ 07302
2011451-2905

2 . Laboratory Software

3. Lynx

M

1. M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

12077 Wilshire Boulevard, #506
Los Angeles, CA 90025
2131821-4340

2. MicroMotion

3. Microsystems, Inc.
2500 E. Foothill Boulevard, # lo2
Pasadena. CA 91107
2131577-1417

4. Micro Works, The
P.O. Box 1110
Del Mar, CA 92014
7141942-2400

5. Miller Microcomputer Services
61 Lake Shore Road
Natick, MA 01760
6171653-6136

6. Mountain View Press
P.O. Box 4656
Mountain View, CA 94040
415/961-4103

N

1. Nautilus Svstems
P.O. Box 1098
Santa Cruz, CA 95061
4081475-7461

0

1. OSI Software & Hardware
3336 Avondale Court
Windsor, Ontario
Canada N9E 1x6
519/969-2500

2 . Offete Enterprises
1306 S "B" Street
San Mateo, CA 94402

3. On-Going Ideas
RD #1, Box 810
Starkshoro, VT 05487
802/453-4442

P
1. Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

2. Pink Noise Studios
P.O. Box 785
Crockett, CA 94525
4151787-1534

3. Professional Management -
Services

724 Arastradero Road, # lo9
Palo Alto. CA 94306
4081252-2218

Q

1. Quality Software
6660 Reseda Boulevard, # lo5
Reseda, CA 91335

R

1. Rehnke, Eric C.
540 S. Ranch View Circle, #61
Anaheim Hills, CA 92087

Microelectronics Devices
2. Rockwell International

P.O. Box 3669
Anaheim, CA 92803
7141632-2662

e
I. Saturn Software, Ltd.

P.O. Box 397
New Westminister, BC
V3L 4Y7 Canada

2. Shaw Labs, Ltd.
P.O. Box 3471
Hayward, CA 94540
4151276-6050

3. Sierra Computer Co.
617 Mark NE
Albuquerque, NM 87123

4. Sirius Systems
7528 Oak Ridge Highway
Knoxville, TN 37921

5. Software Farm, The
P.O. Box 2304
Reston. VA 22090

6. Software Federation
44 University Drive
Arlington Heights, IL 60004
3121259-1355

7. Software Works, The
1032 Elwell Court, #210
Palo Alto, CA 94303
4151960-1800

8. Supersoft Associates
P.O. Box 1628
Champaign, IL 61820
2171359-21 1 2

615/693-6583

T

1. Talhot Microsystems
1927 Curtis Avenue
Redondo Beach, CA 90278

2 . Technical Products Co.
P.O. Box 12983
Gainsville, FL 32604
9041372-8439

3. Timin Engineering Co.
6044 Erlanger Street
San Diego, CA 92122
714/455-9008

P.O. Box 1049
Hightstown, NJ 08520

4. Transportable Software, Inc.

609/448-417 5
z
1. Zimmer, Tom

292 Falcato Drive
Milpitas, CA 95035

Boards 6 Machines Only
see System Vendor Chart for others
Controlex Corp.
16005 Sherman Way
Van Nuys, CA 91406
2131780-8877
Datricon
7911 NE 33rd Drive, #ZOO
Portland, OR 97211

Golden River Corp.
7315 Reddfield Court
Falls Church, CA 22043
Peopleware Systems Inc.
5190 West 76th Street
Minneapolis, MN 55435
6121831-0872

5031284-6277

Zendex Corp.
6398 Dougherty Road
Dublin, CA 94566

Application Packages Only
see System Vendor Chart for others
R. E. Curry & Associates
P . 0 . h x 11324
palo Alto. CA 94306
InnoSys
2150 Shattuck Avenue
Berkeley, CA 94704
4151843-8114

Consultation 6 Training Only
see System Vendor Chart for others
Boulton, Dave
581 Oakridge Drive
Redwood City, CA 94062
Brodie, Leo
9720 Baden Avenue
Chatsworth, CA 91311
213/998-8302
Girton, George
1753 Franklin
Santa Monica, CA 90404

Go FORTH
504 Lakemead Way
Redwood City, CA 94062
4151366-6124
Harris, Kim R.
Forthright Enterprises
P.O. Box 50911
Palo Alto, CA 94303
4151858.0933
Laxen, Henry H.
1259 Cornell Avenue
Berkeley, CA 94706
415/525-8582

2131829-1074

Petri, Martin B.
15508 Lull Street
Van Nuvs. CA 91406
2 13/908b160
Redding Co.
P.O. Box 498
Georeetown. CT 06829
2031!%8-9381
Schleisiek, Klaus
c/o J. Buettuer
Eppeudorfer Landstr. 16
D 2 Hamburg 20
W. Germany
Schrenk, Dr. Walter
Postfach 904
7500 Krlsruhe-41
W. Germany
Software Engineering
317 W. 39th Terrace
Kansas City, MO 64111

Technology Management, Inc
1520 S. Lyon
Santa Ana, CA 92705

816/531-5950

Volume IV, No. 4 39 FORTH Dimensions

FORTH INTEREST GROUP MAIL ORDER

0 Membership i n FORTH INTEREST GROUP and Volume I V of

0 Volume III of FORTH DIMENSIONS (6 issues)

0 Volume I1 of FORTH DIMENSIONS (6 issues)

0 Volume I of FORTH DIMENSIONS (6 issues)

0 fig-FORTH Installation Manual? containing the language model of

0 Assembly Language Source Listing of fig-FORTH for specific CW's

FORTH DIMENSIONS (6 issues)

fig-FORTH, a complete glossary, memory map and installation instructions

and machines. The above manual i s required for installation.
Check appropriate boxes. Price per each.
0 1802 0 6502 0 6800 0 6809
17 8080 fl 8086/8088 0 9900 0 APPLE 11
0 PACE 0 NOVA 0 PDP-11 0 ALPHA MICRO

0 "Starting FORTH' by Brodie. BEST book on FORTH. (Paperback)
0 "Starting FORTH' by Brodie. (Hard Cover)

0 PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference

0 PROCEEDINGS 1981 FORTH University of Rochester Conference

0 PROCEEDINGS 1981 FORML Conference, Both Volumes

0 Volume I, Language Structure
0 Volume II, Systems and Applications

0 FORTH-79 Standard, a publication of the FORTH Standards Team

0 Kitt Peak Primer, by Stevens. An indepth self-study primer

0 BYTE Magazine Reprints of FORTH articles, 8/80 to 4/81
0 FIG T-shirts: 0 Small 0 Medium 0 Large 0 X-Large
0 Poster, Aug. 1980 BYTE cover, 16 x 22"
0 FORTH Programmer Reference Card. I f ordered separately, send a

stamped, addressed envelope.
TOTAL

FOREIGN
USA AIR
$15 $27

15 18

15 18

15 18

15 18

!5 18

16 20
20 25

2s 35

25 35

40 55

25 35
25 3s

15 18
25 35

5 10
10 12
3 5

FREE

I

NAME MAIL STOP/APT
ORGANIZATION (if company address)
ADDRESS
CITY STATE ZIP COUNTRY
VISA # MASTERCARD C
EXPIRATION DATE

Make check or money order in U S Funds on U S bank, payable to:
postage. No purchase orders without check. California residents add sales tax.

(Minimum of $10.00 on charge cards)

FIG All prices include i
i
t

ORDER PHONE NUMBER: (415) 962-8653 j
1 FORTH INTEREST GROUP W BOX 1105 SAN CARLOS, CA 94070

FO EREST GROUP
?O. Box 1105
San Carla,s, CA 94070

BULK RATE
U.S. POSTAGE

PAID
Permit No. 261

Mi. View, CA

Address Correction Requested

