
iiiismilmm
EDMONTON .

 99'er
COMPUTER

USERS'
 SOCIETY

99 'er Online
DECEMBER 1984

P.O.Box 11983
Edmonton, Alberta
Canada T5a 31-1

c):

•

L

99'er ON LINE is the news letter of the Edmonton 9 9'er
Computer User's Society published ten times a year. All material
contained in this news letter may be published in other news
letters provided that source and author are identified unless
otherwise stated. We welcome correspondence from all TI User
Groups and 401 extend source credit courtesy in 99'er ON LINE.

C2RREEPONDEICE: =.: letter editor: BOB PASS, 59 LABELLE CR,
GT. AL_:: , AL:- "a, 7-.-:A 	ISN- 	Al l ct`s-corres:: - lence:
EDMONTON 99'er LOMPUTER USER'S 	P/0 	11983, ...: - 3NTON,
ALGERIA, CANADA 	T5,1-3L1

OFFICERS: PRESIDENT—BILL CANNON, 	VICE PRES--PAUL RELWIS,
TREASURER—EVAN SMITH, SECRETARY—SUSAN LIVINGSTON

DISCLAIMER: All information published it this news letter
is, for the most part, the fruits of the labors of amateurs:
therefore, we cannot guarantee that the information presented is
always correct.

REGULAR MEETINGS: Regular meetings of the Edmonton User's
Group are held on the second Tuesday of each month on the S'th
floor of the General Services building of the University of
Alberta from 7:00 till 10:00 PM and are open to all memoers in
good standing. Non-members may attend their first meeting free
of charge. The ENecutive Committee aeets monthly. Members may
attend these meetings as observers or to address a particular
issue. Arranoe with one of the officers listed above. ii YOU wish
to attend. '

ADVERTISING: Commercial advertising space is eveilahle in
this news letter at the follocno rates: FULL FAGE—$20.)0,
HALF PAGE—V.5.00, 1i4 P43E-510.00. Discuss your commercial
needs with Paul Helwig at the next meeting or write to the PIO
Box above. Members may advertise their personal computer related
items for free. Sut are asked to limit their ads to about 20
words. Mail your ids to the EDITOR'S liLluft:0 or hand :t tc his
at the deneral leetina; lewsletter deedline 15'th of the month.

MEMBERSHIP FEES: - FAMILY-12 MONTHS, $20.0, 6 MONTHS,
$15.00, STUDENTS---12MONTHS,S15.00, 6 MONTHS, $10.00.

THE 	Ipmcm...17- 43m 	 =)mF-u -7- 1=z

(DCIET `le.

AmmEmoor
EMIONTCW

99'w 	 Date
COMPUTER

USERS'
socierr

New Membership Application

Renewal of Membership

Change of Address

NAME
last
	

first 	 initial

ADDRESS 	

CITY 	 PROVINCE or STATE 	

POSTAL or ZIP CODE 	 TELEPHONE 	

Single or Family membership

Student membership
(must have student I.D. number)

Out of Town (newsletter only)

$20 (. 12 months) c:3
$15 (6 months) [1]
$15 (12 months) ❑

$10 (6 months) ❑

$20 (12 months) ❑

$15 (6 months) CD

* Please note that all membership money should be in CANADIAN FUNDS.

* May we release your name, address and telephone number on a club
roster, to companies and other clubs?

YES ❑ 	NO CD

F=C3F74! OFFICE USE ONLY

Date Filed 	 Membership Number 	

Amount Tendered $ 	 Authorized Signature 	

nova-COPADUTERW4REE
52 AIRPORT PCAD

EDMONTON, ALBERTA T53 :W7

(403) 452-0:772

TI-99/4A

SOFTWARE & HARDWARE

THIRD PARTY PRODUCTS

Extended Basic $179.95
Widdet $7.95
Super Sketch $99,99
TI—Writer $179.95

Sanyo Elect,pnic Typewriter
AE —755 (TI —Compatibl=.) $599.9 -7

Parallax Inter-face 	$149.95

1 0% Discpunt

OPEN 1:00 — 5:00
TUESDAY — SATURDAY

99'ers ON LINE DEC/84

99'ers am L:4 :EC/G4

NEST SPEAKER

by: Bob Fess

At our November meeting, we had the pleasure of welcoming
Mr. Martin Kratz, a graduate law student who is presently
articling before the Alberta Bar. Martin's specialty in law is
focused on computer security, copyrights, and licensing of
software. At this time, I would like to thank Martin on behalf
of our group for taking the time on a nasty evening to speak to
us. juoging from the questions from the floor, it is obvious
that all present appreciated Martin's presentation. Martin
expressed intrest in speaking again to us next spring as he
could not adequately cover the entire agenda he had prepared
nor everyone's questions. We would certainly like to hear more
about this very interesting field. Again, thank you Martin for
an excellent evening.

During Martin's presentation, I jotted down some of the more
interesting points which I would like to pass along to those
who could not get to the meeting. The first part of his topic
was on License Agreements. These are usually found inside the
manuals that accompany your software that severly limit your
rights in the use of the product. There is often a
notification that if you opened the package, it is presumed
that you have read the License Agreement and agree to all terms
by the act of your opening the package. Quite often this is
INSIDE the sealed package, but that doesn't seem to matter!
Briefly, Martin explained (hat these agreements mean that you
have purchased only the right to use the material; you own
nothing, not even the disk or manuals! Some companies require
you to register the number of the machine you will be using the
product on. Just because you purchase one copy, you cannot
make copies to use on your other systems. Most companies allow
you to make a back-up copy for your own use while others insist -
that you purchase a back-up from them at a nominal fee. if you
make subsequent modifications to the software to do a
particular tasi, you are still bound by the agreement in all
ways. Should you decide that the product is really not the
best thing since sliced bread, you may in most cases (read your
agreement) sell the product to someone else provided that you
sell 	EVERYTHING including the original documentation and
diskettes plus all of your back-ups am modifications. 	Again,
according to the agreement, if you are not happy with the
product you probably cannot get recourse from the manufacturer
or 	seller 	unless 	you can prove that the product was
miss-represented. The manufacturer or dealer is not
responsible if your software causes you financial loss or legal
liability through your application of the product.

Mr. Kratz next scol - =. on Canadian copyright law which came
into being in and has not been changed since.
Consequently, there is much confusion as to how this ancient
code is to be applied to computer software, especially since
our laws are different from the US code which we hear more of
due to the sensationalism of some of the trials and lawsuits
south of the border. Recent cases in Canada have resolved that
software is protected under our code. Moreover, Martin
explained that there is an agreement between Canada and the USA
to honor each other's copyrights. In Canada you do not have to
copyright your material to be protected. In fact, if your
producf contains trade secrets, you should NOT copyright as you
will be laying bare your secrets to anyone nosey enough to
look. You can cover your interests in Canada by establishing
the fact that you did it first. This can be done by providing
a copy of your work to a lawyer, notary, a software escrof
house (for a small fee), or some other professional who can
swear to the contents and sate you wrote the material. Should
yOU publish the material in the 'public domain' such as
newspapers, etc), you still retain your full rights. Should
you develop an improved or enhanced applicat:in based on
someone else's idea, your changes must se S'j :=ICANT before
you could gain full rights to the material. You would be most
advised to enter into an agreement with the original author and

cut him in for a fair share.

If you feel that the oroduct you purchased is not working
properly, establish rommunications iamediatly with the vendor
or manutacturer. Retain all sales slips and correspond as much
as Possible in writing so that dates and times are established.
It is in your interest to document everything possible or at
least haye creditable witnesses to verbal exchanges.

Lastly, 	Martin 	spoke 	at length on FIRACy and it's
consequences. He explained that there is an attlfede among
computer users that it is OK to swap programs, especially the
more costly ones as the manufacturers are obviously making a
fast buck and besides who will find out any how(Well that may
be so in some cases but there are an awfull lot of software
writers and companies that are bankrupt or soon will be because
pirates have effectively destroyed the market. This forces
successful' comoanies to charge top dollars initially because
they know that they will have aoout six months to recover their
investment before the market has walked the plank. So, on one
hand we have authors who can't afford to turn out innovative
products. On the other hand, sooner or later an author (or
company; will have had enough and will lash out at the first
pirate he can find. if that happens to be some poor schmuck
who picked up something neat from a friend's brother-in-law in
'ippers Flippers Newioundland, well that's too bad! This guy
has had it right-up-to-here and he wants to nail someone and
get enough publicity to discourage others. At the very least,
Fie could 6e had for copyright infringement. If the product is
worth more than i200, the hapless thief could be contemplating
his deeds from a cell: that cOuld be the result of a trial
scouring in Ontario right now. A chilling thought, isn't it?

(1)

99'ers ON LINE :E:/84 99'ers ON LINE :EC/84

NEXT "EETIN6 AND EXECUTIVE NOTES

The next regular meeting will be on Tuesday, December li'th
at 7:oo PM in room 349 in the U of A General Services building
on 116'th Street. The executive meeting will be on Tuesday,
December l8'th at the same time and place.

This month, we feature a cassette tape deck cleaning and
maintenance workshop presented by our own Bob Burley. Hi will
have several different units to demo and he will sell them at a
very reasonable cost.

Those of you who did not pick up their membership card at
the last meeting will recieve it in the mail along with this
news letter. Don't throw away that envelope! Look inside!

Executive members and assistants are asked to prepare a
resume of their duties and bring it along to the next exec
meeting. Identify areas where you need help.

CBNTEST We 	need 	a 	letterhead for official Society
correspondence. Printed stationery costs too much and besides,
why deprive our members of a chance at fame and noteriety? Your
letterhead must be capable of being printed on a dot matrix
printer. You may choose any of the TI languages and you can
use the top two inches of the page. Our president has promised
a prize for the most acceptable entry. He won't tell us what
it is but last time it was a sack of printer ribbon dust!

Our one and only member in Saskatoon, Francis Gaston, wrote
to say that he and 12 fellow Saskatoonies have initiated a Ti
user's group. He included a copy of their newsletter and it
looks like they are off to a tine start. Best of luck to you
end keep in touch.

We received a letter from Holt, Rinehart, and Winston of
Canada Ltd. They are looking for authors (programs or
microcomputer oriented pieces) who lie undiscovered in user
groups across Canada. If you have something that you believe
is worthy or an idea that could be developed if the price was
write (pun), send a query letter to:

Ian Chadwick,
Software Editor,
Professional and Trade Division,
Halt, Rinehart and Winston Ltd.,
55 Horner Ave.,
Toronto, Ont.,
M8?-4X6
(416) 255-4491

FOR SALE

SOURCERER WrESS $20 EACH.
29 ISINAL DOCIME.Y- - :Oil AND MEDIA.
CHLL i.:C7T AT 929-3974 AFTER 6 PM.

RETURN TO PIRATE'S ISLE $20
E.:7R 	GRAPHICS TABLET FOR TI $80

E0 TeES3 MODULE $40
CALL PAUL 432-0613 EVENINGS

(3)

'LITTLE RER

by: Tom Hall 1 Michal Jaegermann

Picture this: you've found a program on a bulletin board
that you've been looking for for a long time, and you've ;list
finished downloading It to your sys(:ea when you realize that
you STILL have to type the whole thihg into the machine before
it will run. You . think, 'Gee, I wish there was a way to just
convert this file into a program without having to type it all
in!"

Well, now there is! The following program comes from the
newsletter of the Lehigh 99'er Computer Group in Allentown,
Pennsylvania and, with an improvement added by Michel
Jaegermann, we present this little gem to you.

The beauty of this little program is its approach to the
problem: instead of worrying about tokenizing the file, it
simply writes each line to a display variable 163 file, and
inserts a '!" at the beginning of each line so that the rest of
that line is treated as a REMark. After you run the program,
you will have to merge in the newly-created file and manually
remove each 1 !" iwhich is a LOT easier than having to type in
the whole thing!), and the computer will do the work of
tokenizing it when you save it back to disk!

Michel has added a couple of words of warning about minor
alterations of the file which you should keep in mind when
getting ready to use this program. The original program could
only handle a maximum of 20 bytes per line; Michal's
modification extends that capability to the full length of the
merge file record length of 163 bytes (minus 2 bytes for the
line number and 1 byte for the CHRI(131)), but:in order to get
the merged file formatted correctly, you must pay particular
attention to columns 72-80 of each line. 	If there's no text in
this area, ' - e you cam forget about that line. 	If a word in a
line ends EXACTLY at column . 79 or 80, but is not the last word
associated with that line number, then you should insert ,a
space at the very beginning of the following line. If the last
word of a line number ends in either column 79 or 80, then you
should insert a blank line as the very next line of the file.
This will ensure that the following line is not simply tacked
on to the end of the preceding one. The program will ignore
the blank line in outputting to the merge tile. The program
will also ignore a line which does not pegin with a valid
number and is not a continuation of the previous line, so if
'au want to, you can liberally sprinkle comment lines
throughout the file, and this program will skip them as it
processes the file. Unfortunately, if your program file has
very long lines, you will not be able to translate the complete
line, since the fact that the line :s treated as a REM means
that it is not tokenized; therfore each character that YOU can
see is a byte used, and a program line in a merge file can be
no more than 163 bytes, inducting line number.

1 DISPLAY AT(5,4)ERASE ALL: 1 1NPUT FILE": :TAB(10);"DSK1.':
:TAB(4);'OUTFUT FILE ": :TAB(10);"DSK1. 1

2 	ACCEPT 	AT(7,13)SIZE(-12):1$ ACCEPT
ATi11,17)SI2E(-12':03 	:: 	OPEN 	41:"DSK"I 	I 	:: 	OPEN
412:1SK"0$,YARI,ELE 163

3 LINPUT 41:L$:: IF LEN(L$))79 THEN LINPUT 11:M$ 	L:=LM

4 SePOS(L$,",1):: ON ERROR7 :: 	N=VAL(SES$(1..$,I,S)):: ON
ERROR 6 	A=INT(N/25 i.. N.-A6):: PR:NT : :Lt

5 PRINT 42:CHR3(A):Aa;CHR$(171):SEGS(Le,Sel,139-8);CHR$(0)::
HTO

6 PRINT 42:CHR$(2,55);CHR:(25.5):: CLOSE 42 	END

7 ON ERROR 0 :: RETURN

(4)

broadmoor staiionerntd.
• Business Machines

- Typewriters
- Calculators
- Cash Registers

• Photo Copy Service
• Rubber Stamps

SALES, SERVICE Et LEASING

broadmoor stotioneu
165Athaboscon Avenue Sherwood Pork

Mon. - Fri.; 9:00 — 5:30 pm_ Sat. 10:00 - 4 p.m.

SHARP
	

464-4343
	

SMITH-CORONA

• Office Supplies
• Office Furniture
*Typewriter Rentals
• Typewriter Repairs

99'ers ON LINE :EC/84 99'ers ON LINE :EC:84

EDITOR'S CORNER

lour not so trusty Editor; se) slipped in'a couple of errors
last month to see who was awake! Michel jaegermann obviously
was as he oicked dp the following:

In column 2 the 5th line in screen 3 of the FORTH program
reads in part, 	" 4 10 A,' whereas it should be ' 4 10 AT".",
exactly the'same format as the ' 	: AT .' in the line above.
I believe this would make some difference in how the prgram
runs!

Also, in the -Basic program listing in column 3, I missed a
"SOTO 130' at the end of line 130. Add it immediately after
Inc last two colons in that line. Many thanks Mike.

Last month I tried a new format to get 64 characters into
each column of the newsletter to format the FORTH listings as
they would appear on screen, This caused some of the right
margins to be clipped in reproduction so I've reverted back to
the previous format.

. 4.7 thanks to all of you who have been sending excellent
articles for this newsletter. Without you folks, this would be
pretty dull reading:

WAN

by: Francis Saston

PACK N is one of the new software cartridges available from
Atarisoit. Although the name may induce a consumer to purchase
this module, i would recommend a demo before plunking down the
green. In my opinion, I was not impressed with this product
and would rate It i out of 10.

Primarily, this module succeeds in simulating the Atari 2600
version of PACMAN in terms of speed and capabilities. In the
first 6 screens, it may be a little bit slow but what is
lacking in speed is compensated for by the cunning of the
goblins! The subsequent screens advance in intellioence and
speed. At no time, however, does the game approach the arcade
version.

Joysticks are required and beware that some non TI sticks
will not operate Atari games for some queer reason. (I can't
figure why not as the joystick port is conventional TTL logic).

The game has over 19 	screens 	with 	higher 	scoring
opportunities as you progress. It has the sane format as
Munchman with energisers, bonus nuggets, and the familliar
Slinky, Pinky, Inky, and Clyde. Levels of difficulty can be
set at the beginning of the game. A pause can be generated by
pressing the space or (far better than diving for the "R" as
in Munchman!) so you can raid the fridge, etc. High score is
retained throughout the session.

This module was obtained from the USA for ;73.00 CON (taxes,
duties, and exchange included); local retail is 559.95.
Although I would prefer a faster version. it still has merit in
that you can still obtain good quality software for our
systems.

C
'

99'ers CA LINE .EC/84 99'ers OM LINE DEC/84

MSC PROGRAMS

by: Bob Pass

This month's article covers graphics and haw to orogram them
in TI Basic. First of all, 1 will discuss how the computer
displays graphic characters on the screen of your monitor or TV
then F wiil describe how you can control this procedure through
programming. Finally, there will be a short program that
demonstrates the principals of the three articles I have
written to date.

Let's start with a description of the 'canvas' you have to
work with — namely the TV screen. The .computer, because of
memory constraints, dictates the dimensions of the urapic
screen available for your use. In the case of the 11-99/4, the
screen has a size of 24 rows by 32 columns or 24x32=768
separately controlable screen elements. The machine has the
capability (and you via programming) of controling each of
these elements. Each screen element may contain just one
character. 	However, each screen element can be further
subdivided into an eight by eight grid of 	individually
controlable points or 'pixels" (an acronym for PICture
ELement). Thus, you can control upto 768x64=49,152 oixela on
the screen. From here on, I will call each of the 788 screen
elements a "character° and each of the 64 picture elements that
comprise a character will be called a "pixel'.

The character is of course defined by the 64 pixels
contained within it's boundaries. Further more, each character
will have a foreground and background. If a pixel is turned
on, it becomes the foreground of the character, a pixel that's
turned off will be in the character's background. you can
assign any one of 16 colors to both the foreground and
background pixels of a character and you can control which
pixels are on or off.. Additionally, the entire screen can be
assigned one of the sixteen colors. All of this is done with
just three Basic commands: CALL SCREEN, CALL COLOR, and CALL
CHAR.

At this point, you should read pages 11-73, 11-75, 1 11-76
of the User's reference manual.

To summarise the above, you have 768 character positions on
the screen arranoed in 24 rows of 32 characters with each
character further divided into an 8 by 8 matrix of pixels.
Thus, you have a screen comprised of 256x192=48,052 separately
controlable dots or pixels. How does your 99/4(A) administer
all of this screen image yet still be able to run your programs
as fast as it does? Wefl, the secret is that your machine
actually has two processors in it Most of you are aware that
there is a IMS9900 processor chip inside your cosole that runs
all proorams. Also there is a THS991SA Video Display Processor
(VDF) chip in there which is responsible for the screen imaoe
among other things. when something is to be displayed on the
screen, the CPU (the 9900 chip) writes the data into a memory
area called VDP RAM in tables called the Screen Image Table and
the Character Description Table. The VDP chip scans through
these tables continuously and uses the information to modulate
the signal to the monitor or TV thus producing the image on the
screen. The following paragraphs discribe the Screen table and
the Character Description Table and how you can control them.

The Screen Image Table starts at hex >0000 and contains 768
bytes of 8 bits each. Each byte corresponds to a screen
position and contains the ASCII code number of the character to
be displayed at that position. Addresses '?0000 to 001F
contain the character codes for the first row, addresses >0020
to >003F contain the codes for the second row, etc. Since each
byte consists of 3 bits and lust contain a complete ASCII code,
there are only 256 unique characters possible (see last month's
article on strings), i2 ASCII codes 0 thru 255. From this, you
can resolve thaf the only way to get something onto the screen
is to give it a character number and then place that into the
Screen Table in the place that corresponds to where it is to

appear on the screen. This is done with the basic commaands
CALL HHAR or CALL VCHAR. Note that these commands specify all
the parameters identified above; a row, a column, and a
character number. The CPU chip can mathematically convert the
row and column numbers into the VDF RAM address that will
recieve the character code specified. Additionally, there is a
fourth parameter in these commands that provide the programmer
a short cut; you can specify how many characters are to be
displayed starting from the position specified. Now, look at
the command CALL GUAR and see if you can figure out how the
computer can retrieve the character code displayed at a screen
position. It should be apparent that again the raw and column
numbers are used to generate the RAM address and then the
character code at that address is read instead of written.

Simply having the character code numbers in the screen table
is not enough it we are to have full graphics capabilities; we
must also be able to control each of the 64 pixels that make up
the character. This can be done using the CALL CHAR command
which changes the pixel pattern of printztle characters. This
command works in the following way. In RAM there is a
second table called the Character Description Table. It starts
at address >0800. Since once again there are 3 bits to each
byte in RAM, and each character's description consists of 3
rows of S pixels, we will need 8 bytes of ram to describe each
of the 256 characters. 	Thus this table is 2048 bytes long.
The first 	bytes describe character 0, the next 8 describe
character 1, et:. When the VDF scans the screen table, it gets
the character lumber to be displayed. This number is then used
to index the character description table to get the actual
pixels to be displayed. The CALL CHAR command simply updates
this table to your specifications. Caen you first turn on
your system, the CPU auto •atically loads this table with the
'Standard Character Set" which is located in a ROM chip).
Before the VDP writes this pattern to the screen however, it
must determine which colors to use. Once again, the character
number read from the screen table is used to index into another
VIP RAM table which contains the color code numbers for the
foreground and background of that character. This table is
customised via the CALL COLOR command. The VDP can now use the
color information from this table to color the 'on' (1)
(foreground) and the 'off' (0) (background) bits from the
character description table to be displayed at the position
being read from the screen image table! Simple isn't it?

I am not going to go into any detail about any of the
commands that control grapnics as the descriptions in your
User's Reference Suioe are fairly explicit. The CALL CHAR
command will likely give the most trouble but 1 suggest that
the best way to learn how to do it is to DO IT! Before long,
you will find that it will be second nature to you. By the
way, the long string of data you put into the CALL CHAR command
is the actual hex code that is written into the character
description table in VIP RAM which is about as close as you
will get to aasembly language programming in 11 BASIC. Many
other micro's require near) ALL graphic routines to be written
in assembly so next time You are grumbling about all those
CHAR, HCHAR, & VCHAR commands, just be thankfull you didn't buy
an APPLE!

Now I'll pass along a program that demonstrates many of the
items discussed in these articles to date. Before you run it,
see if you can figure out what will happen. If you can, you
will find that you will have a dandy sub—routine that you can .
use in some of your programs; the heart of it is in the SOSUB.
As an example of neat programing, this is not the best. I have
tried to illustrate as :much of the past three articles as
possible and what nay seem clumsy was put there for a reason.
For instance, in line 510 the concatenation operator is
illustrated to not only show how it is used but also to center
the text that will be displayed. Try taking lines 510 & 530
out to see what I mean. When you run this program, keep the
names to less than 23 characters else it will 'bomb"; try names
of different lengths to see how the orogram handles the
inforaation. NENt month, if time permits, I'll" talk about how
to develop SOME good programming habits that will make things
easier for you when your creation won't run.

(7)

99'ers ON LINE DEC/84 99'ers ON LihE DEC/84

100 REM ttttlattttxttttItttlIttIttlt
110 REM t PROGRAM TO DEMONSTRATE 	t
120 REM t GRAPHICS, STRINGS, AND
130 REM t USE OF NUMERIC VARIABLES. t
14; REM 1101nuttIltattttiititlItti
150 CALL CLEAR
160 PR:NT "PUSH DOWN ALPHA LOCK"::
170 REM
180 REM UPPER LEFT
190 :"LL CHAR(96,'FFBOBFA4AFASABAA')
200 :Em
210 REM UPPER HORIZONTAL
220 CALL CHAR(37,"FFOOFF04FF00FF00")
230 'E -
240 REn UPPER RIGHT

CHAR(96,"1-701FCO5F515C555°)
260
270 RE/ RIGHT VERTICAL
280 :ALL CHAR(99,"55555555555555.75")
290 :E!
300 'EY 	LOWER LEFT
310 	CHAR(100,'AAABABAFA0BF8OFF")
320 REn
330 REM LOWER HORIZONTAL
340 CALL CHAR(101,"00FF00FF00FF00FF")
350 REM
360 	LOWER RIGHT
370 :=LL CHAR(102,"55C515F505FC01FF")
:BO 'E'
390 REM LEFT VERTICLE
400 :=LL CHAR(103,"AAAAAAAAAAAAAAAA")
410 REM
420 CALL :21.2 91 9,11,21
430 CALL EI: EEq(16) .
440 FOR X=1 TO 8
450 :ALL COLOR(X,13,1)
460 NE :.7 X
470 REM
480 rEm 	START OF MAIN PROGRAM
490 :Em
500 INPUT YOUR FIRST NAME PLEASE ":NAME1$
510 SANEIW INAMEle
520 INPUT YOUR FECr_ND NAME aiNAME2,
530 NAME2$="&NAME2$
540 SIZEI=LEN(NAME1$)
550 SIZE2=LEN(NAME2$)
560 IF SIZEI>SIZE2 THEN 570
570 SIZE=SIZE2+2
580 SOTO 600
590 2::E=SIZE1+2
600 UJL=16-INT(SIZE12)
610 7:',.=9
620 RE/ FANCY CLEAR SCREEN
630 CAL L VCHAR(1,1,32.768)
640 :E' DISPLAY
650 CALL HCHAR(ROW,COL,96.1)
660 CALL HCHAR(ROW.COL+1,97,SIZE)
670 CALL 	LZ.-1,COL,103,5)
680 CALL VCr:: :2.-6,COL,100,11
690 COL=COL+EIZE
700 CALL HCHAR(ROW.COL,98,1)
710 CALL VCL 1.: '2N-1,COL,99,5)
720 CALL VCHAF F:b-6,COL,102,1)
730 =:.=ROW+6
740 IAL_ HCHAR(ROW,COL-SIZE+1,101,SIZE-1)
750 DISP$=NAME1$
760 LONG=SIZE1
770 ROW=i1
750 SOSUB 900
790 DI7p$=NAME2$
aoo
810 Puw=17

7-7. : 9on
E:-= "F____ ENTER TO STOP"

850 ROw=24
340 GOSH 900

(9)

870 CALL KEY(0,K,S)
380 IF KC/17 THEN 370
890 STO
300 REM SUBROUTINE

COL=16-INT(LONG/2)
:OP X=1 TO LONG

930 FIG=ASC(!SEG8(DISPS,X.1)1
940 CALL HCHAR(ROW,COL,FIG,I)
950 COI=COL+1
960 NE .7 X
970 RETURN

SORTING CUT THE SCOTT ADAMS ADVENTURE HINT FilOV

by: Tom Hall

If you finally got frustrated with trying to solve the Scott
Adams Adventure series, and in desperation purchased a copy of
his Official Hint Book, you might find the following extended
basic program helpful. 	It greatly simplifies the process of
locating clues in the format used in the hint book. 	All you
have to do to this prooram is to add the data statements.
These consist of the dictionary for each adventure as printed
in the Scott Adams Hint Book. The first two data statement:
should be the adventure number and title, and then simply type
in each word in the dictionary, in the same order as it appears
in the book. After the last word in the list, add one final
data statement, the "V' symbol. This tells the program that
its reached the end of the list.

What I did was to type the data statements as a separate
file, beginning with line number 500. I then saved the data
statements in merge format, so all you have to do is to load
this program, then merge the data statements, and run the
program. Then simply type in the number sequence for each
clue, and when finished, just hit the :ENTER'; key, and the clue
will be printed on Your screen. To terminate the program,
simply hit the (ENTER> key without typing in a number. This
way you can use the program with any of the adventures covered
in the Scott Adams bOok!

100 !ADVENTURE HELP PROGRAM
110 BY TOM HALL
170 !EDMONTON 99'ER USERS GROUP
130 !
140 !A PROGRAM TO USE WITH THE SCOTT ADAMS HINT BOOK
150 !
160 CALL CLEAR
170 DIM A$(25),D$(300)
ISO 	C$, T$
190 LEFLAYAT(2,3):"CLUES FOR ADVENTURE
1 ;Ct:TAB(14-INT.(LEN(T$)12));Tt
200 I=1
210 READ D$(1):: IF DS:1)= 1'r THEN 22 ELSE I=I+1 	GOTO 210
220 CX$=" :: FOR 1=1 TO 25
230 ACCEPT AT(8,1)BEEP:A$(1):: IF (AS(I)=")“I=1)THEN CALL
CLEAR :: END ELSE IF A$(I)=" THEN 260
240 CX$=CX$0$(1)&" "
250 DISPLAY AT(12,1) 	 CX$• • • 	NEXT
260 DISPLAY AT(8,I):"
270 X$=" 	FOR N=1 TO 1-1
230 X$=X$&D$(VAL(A$(N)))&" ' 290 DISPLAY AT(12,11:X$
: 300 NEXT N
310 GOTO 220

(10)

99'ers ON L:NE :EC/94

99'ers ON LINE DEC/84

each of the three banks, for example DSKX.LETTER, DSKX.STORY,
DSKX.MYFILE. Each of these files could be worked on during the
course of a word processing session and later dumped to disk
for permanent storage. 	The idea here is to use the greater
access speed of Ram vs. 	Disk. 	Some application programs
suggest that for ease of operation, two or more disk drives
should be used. In this instance, the FOUNDATION card can
easily substitute for a second drive and one package that
illustrates this is TI-EDITOR/ASSEMBLER. Using the RAM disk,
it is possible to store the source code, object code and
listing in each of the three banks. An examole of this might
be to store the source t - de in DSKX.SOURCE, assemble and stare
the obiect code in EEnn.OBJECT and print a listing to
DSKX.LnT; the only disk access needed is for the Editor and
Assembler programs. When you have finished writing and
debugging your assembly language program you can transfer the
source and assembled codes to disk for permanent storage.
Unfortunately not all software works as well with the RAM disk
as EDITOR-ASSEMBLER and TI-WRITER. MULTIPLAN and the TI DISK
MANAGER module both have one major drawback: you can only
specify DSK1, 2 or 3; you can not specify DSKX, therefore,
using these modules, you can print to the RAM disk but not
store files or programs directly to it.

An interesting discovery was made concerning the transfer of
DIS-FIX SO type files from disk to RAM disk; you can use the
PRINT option of the EDITOR/ASSEMBLER module to do it. When you
get the FILE NAME prompt you can type DSKI.filename, and then
on the DEVICE prompt you can type DSKX.(filename). This method
:an be used to transfer assemoly language programs to the RAM
disk and have them always on hand, thus eliminating the need to
load them from disk every time you want to use them.

The FOUNDATION card is said to work with all Ti and most
third party hardware and software, but two exceptions have been
found. The first is TI's TEXT-TO-SPEECH program which comes on
diskette and the second is - the new CORCOMP Disk ontroller Card.
The latest word from CORCOMP is that a fix is on the way.
Access ti,Me for the RAM disk seems to be on average two to four
times faster than from a disk drive. This means that a program
which takes 12 seconds to load from a disk will only take bout
3 to 6 seconds to load from he RAM disk.

I have tried to give a comprehensive look at the FOUNDATION
12SK Memory Card, to help the reader decide if this piece of
hardware is a worthwhile investment. Some people might claim
that because they have not even begun to use up all the
available memory they have, why should they invest in more? in
my view, if you run any large application programs or do any
serious programming, it is not how much memory you Use but how
,ou can use vour available memory that counts. There are most
likely many more programs that could make excellent use of the
RAM disk and BCH third party companies eve already begun to
design their hardware and software to use this extra memory.

If you were to order the FOUNDATION card it would cost you
about 	(duty, tax, etc. included). 	This is about the
same price as a disk drive, which would give you greater
permanent storage but would not be as flexible for program
development. I should point out that the RAM disk is not meant
to replace a disk drive but can substitute for one in many
applications. 	If you are seriously thinking of upgrading your
TI; the addition of the FOUNDATION 129K card is an excellent
choice. 	Together with the 16K of memory in the console, your
TI will have a total of 144K of memory, putting it on oar with
some of the best home computers n the market today!

FOUNDATION 1231(CARD REVIEW

by: Danny Ochitwa

For those people who are thinking of adding more than 32K of
memory to your TI-99/4A you're in luck! A company called
FOUNDATION makes a card that fits into the TI Peripheral
Expansion box and gives the user 129K bytes of random access
memory to use. In order to better understand the function of
the 123K card, a little knowledge of the TI architecture is
required. The TMS9900 microprocessor (the processor that your
TI uses) like other microprocessors can only directly access
64K bytes of memory. In the TI-99/4A the lower 32K (from 0 to
32,000) is used by the system. There are only 256 bytes of CPU
usable RAM there; the rest is taken up by ROMS, DSR'S etc. The
upper 32K (from 32,000 to 64,000) is your _I memory expansion
card which of course you can use. (NOTE: the 16K of memory
inside the computer is in the Video Display Processor memory
soace and is not directly addressable by the TIS:=A). The

NDATION card cones with four banks (chunks) of 32K bytes of
RAM and a Device Service Rzn'ine in ROM. The first m2K bank
behaves exactly like your TI 	memory expansion card, the
other three ,:2K banks (aprox. 96K) are inactive and are not
seen by the computer. 	A. :2s.1 assembly language routine
contained in the TI MINI-MEM:" MODULE could switch in and use
any one of the four 32K banks thus using a total of 129K bytes
of RAM. This process is known as bank switching and therefore
the total amount of memory space that the microprocessor sees
at any given moment is never more than 64K. For those of you
who are jumping up and down in your seats and yelling "What
good is this card to me, I don't know assembly anguage!!!',
NEVER FEAR the Device Service Routine is HERE!. The FOURDATIOW
card comes with a DSR in ROM, which contains two assembly
language programs, the first of which is a Disk Emulat:r
Program (DEP for short). This program allows TI BASIC,
BASIC, and-just about any other applications program to use tne
extra memory, by alloting the first 32K bank as your normal 32K
of memory, and the remaining 3 banks as 32K, 32K, and 24K
respectively as a psuedo RAM disk; the last bank is only 24K
:373(152 the DER uses 21(for house-keeping leaving a total of

of RAM to work with. The second program contained in the
DSR is a small Memory Manager Module program (MMM for short) to
rsge the files and programs contained in the RAM disk. The

:E= has various ways in which it stores programs and files.
(au can specify each of the 3 banks as MEM96A, MEM968 or EM96C
(remember MEM96C is only 24K bytes) or you can specify the
entire 88K by MEM96, or you can specify each of the three banks
individually by DSKX.“ilename). As you can see you can only
store three programs or files in the RAM disk, one program or
fils per bank, or you can store a program or one large file in
ri•:: using all SOK bytes. Here are some command examples that
you could use in EXTENDED BASIC; let's say that you have a
Program or data in memory called TEST, you can:

SAVE MEM96, SAVE MEM96A (or B or C), SAVE DSKX.TEST, SAVE
DSKLTEST,IERGE, OLD MEM96, OLD MEM96A (or B or C), OLD
DSKX.TEST MERGE DSKX.TEST, RUN *DSKX.TEST", OPEN 11:°MEM96A"
for B or C), etc.

The Memory Manager Module (MMM) program allows you to
delete, rename or clear any or all programs or files from the
RAM disk; in addition it gives the file type and length. There
is one other point that I should mention: when you first turn
the computer or you qust initialize the RAM disk by issueing
the command DELE7 ":.'NIT°. The word DELETE is not used in
the same way as IE_ETE 'DSKI.<filename>°. The word DELETE is
simply used to call in the DSR ROM; you are not deleting
anything. To use tLs Memory Manager Module you would issue the
command DELETE "'"', then press FCTN BACK to return to the
calling program.

In addition to TI BASIC and EXTENDED BASIC, the FOUNDATION
card can be used with a variety of application software, guch
as TI-WRITER, EDITOR/ASSEMBLER, MULTIPLAN, TERMINAL EMULATOR II
etc. 	Using tne card with TI-WRITER, you could store a file in

(12)

99 7 ers Ok LINE DECiO4

CJSTOMIZE fCUR TI FOURTH EISEN

by: Tom Hall & Michal Jaegeraann

As you become more comfortable with FORTH, the time will
come when you are ready to do some customizing to your system
dist:. Aga:h. it can't be emoh..adet too often: ALWAYS KEEP AT
LEAST

ONE 2.: PREFERABLY TWO., 	SYSTEM DISKS, so that it

sometning goes wrong and a major part of the syitem is lost,
you'll still be able to go back and recover at least part of
your work.

Depending an the type of work you do with FORTH, you'll find
there are certain routines that you use far more frequently
than others. In most instances you'll be using at least one of
the editors, and if you happen to prefer the bit-map editor
(the one that uses tiny characters and lets you see the entire
screen on your monitor without having to window left and
right), you'll eventually get tired of the long wait while the
system loads the editor from the source screens on your disk.

There is a routine on your FORTH disk that will allow you to
save parts of your system in a format that will load in a
fraction of the time normally required to compile it from the
source listings on your system disk. This routine is located
on screen 483 of your system disk, and is called BSAVE. What
BSAVE does is to write a binary imaoe of the current contents
of memory to the disk plus some information required by FORTH
to allow it to restore a number of system variables that enable
it to be called, loaded and properly linked by the word BLOAD.
This is a great time-saver, since the system won't have to
compile the routines again, because it is saved in a
machine-readable form and is ready to be executed as soon as it
is loaded from disk. What basically happens when you BSAVE
something is this: the entire contents of the area of memory
that you specify with the-BSAVE command are saved, lust as they
are, onto a FORTH screen also specified with the BSAVE command.
Later, when you BLOAD that same information your memory is
restored to the same condition as it was when the data was
originally BSAVEd. This is an important point to remember,
because whatever you have in memory at the moment you BLOAD a
previously BSAVEd screen will be replaced by the BLOADed
information.

Another advantage of HAVE is the amount of disk space .asi.
Since binary format is much more efficient than readable
text, the 9SAVEd version of your application will require much
less disk space than the original source listing.

Perhaps an example of using !HAVE will make this clearer.
Let's say that you have loaded the 40-column editor (the one
that requires windowing left-to-right), and you would like to
put this on your disk in such a way that it is automatically
loaded every time you boot your FORTH disk. We'll assume that
you have Oust loaded FORTH and you now have the menu and the
words TI FORTH on your screen. At this point you should issue
the command -EDITOR. This will load and compile screens 34-38
from your system disk, along with screen 433 (-SYNONYMS). As
soon as the "ok" pr:-:: appears, you're ready to call up BSAVE.
You can now type -E.EA ..E and this will load screen 483 for you.
Before you actually BSAVE anything, there are a few points you
should keep in mind. The main thing to remember is that there
should be no 'holes' in memory created by BLOADing anything, so
the best bet, at least for your initial attempt, is to save
everything currently in memory. If you load -DUMP you have a
command called VEST, which di , :lays a list of every word
currently compiled in your :::Th system vocabulary. The
listing begins with the last (most recent) definition loaded,
and proceeds downward until vou reach the FORTH kernel itself.
You will see a ward called TASK. This definition is actually a
dummy, since it contains no executable instructions, but merely
marks the boundary line between the FORTH .:rnel (the basic
operating system contained in the file P:PTHSAVE), and the
'extras' which are loaded from screens.

(13)

ifers 	L1AE

When you use the BSAVE commana, the first piece 	of
information required is a starting . paint, usually the address
of a word in your VEST. The word 1ASK is a convenient word to
use, because it marks the end of the kernel. BSAVE will save
everything from the memory location you specify right up to
HERE, which is a word that returns the address of the next
available space in the dictionary for a new definition. (In
other words, if you were to define a new word at this moment,
it would be located at the ,.:fess pointed to by the current
value put on the stack by

Okay, so we've loaded our EDITOR, and are now ready to save
it with BSAVE. We know that the editor was originally stored
in screens 34-35 on the system disk, so we may as well use
screen 434 as the starting point of the BSAVEd editor. We've
also decided to use the word TASK as the cutoff point. So: how
do we find the address of TASK? We use the symbol "'
(pronounced 'tick'), followed by the word TASK. This will
place the address of the parameter field of the word TASK on
the stack, and this is the first part of the information BSAVE
needs to have in order to do its thing. The next piece of
information is where to store the information, and that, as
we've already decided, will be screen 434. So the command to
do all of this becomes:

' TASK DECIMAL 34 BSAVE Kanter)

When the BSAVE command is complete, there is a number left
on the stack; this number is the number of the next available
screen immediately following the last screen used by the BSAVEd
data.

The best way to discover how to sake BSAVE work for you is
to experiment. Make an extra copy of your system disk, and try
various combinations using BSAVE. Make sure that you don't
overwrite anything on your system disk that you might need
later on.

Now that we've BSAVEd the editor, we want to have this
BSAVEd routine automatically loaded when FORTH is booted. To
do this, put the command '34 BLOAD" into screen.43. As soon as
the FORTH kernel is loaded, it automatically loads and executes
any instructions in screen 43, so if you place the BLOAD
command there, each time you load FORTH, your BSAVEd routines
will also be automatically loaded!

MUM**

You can skip the following information at first read?-;, but
you should read it after you've gotten the hang of ESP.Silg and
BLOADing.

IMMU I

The procedure described above provides a 'fool-proof' method
leading to a binary file with 'no holes' in memory. Actually,
if you were converting a disk for distribution then it would Pe
possible to start BEAVEing from ' MENU LFA instead of ' TASK
and the results would be exactly the same. This is because the
link field address of the word MENU is the first address w'ioh
was not loaded directly from disk but was compiled by -7 ,-H
from source screens. But the difference between ' MENU and '
TASK is a mere two bytes, so probably isn't worth the bother.
On the other hand, you could also start your procedure with,
say. ihex) >A000 on stack and you would get a file which after
BLOADing would have exactly the same effect on memory as the
previous one, only much bioger. If you would like to k -. how
many screens you need Cor a binary format file 9.E: - 'S its
creation type the following, replacing (.starting address). with
its value: HERE ;starting address> 1000 ,..enter> and
what will appear is the number of screens you need for your
file. (Yes Virginia, this is DECIMAL 1000, 7E9 in HEX.1

Please bear in mind that when you were performing BEAVE.
lets say, of the 40 column EDITOR, vou converted into binary
format all -- "tents_ of memory at that moment. This teens that
not only EDF": words but also every word Itcompiledll from

(14)

435-4636

MERRY

from

;Vers uN L:NE ACI84

screens 3 (welcome screen), 20 and 21 (CONDITIONAL LOAD), 33
(SYNONYMS) an: at least 33 (BSAVE by itself) all became a part
of the BE:..i• file. As a result, the source listings for all
of these detinitions now may be removed. If they are compiled
before you BLOAD your file back they will be clobbered anyway
by the contents of your file and they are only delaying
loading. If they are compiled after - then you are defeal . : mi
the purpose of BSAVE and you will get a lot of 'ISN'T UNI:_i'
messages.

These considerations do not apply to actions which are
exec ute on screens you are replacing. They are not in memory,
so :ms, will be not reflected in your binary file. if you
still want them to be executed you have to leave them in their
proper places. Of course at this point you will have to remove
all references to those screens which now no longer exist,
otherwise very strange things are likely to happen.

If you choose to BSAVE the 64 column EDITOR then together
with it you will also load, at least, the same routines as
before, i.e., MENU, CLOAD, and the information in screen 33
(without the other editor), -CODE, -TEXT, -GRAPH, -GRAPH2 and
-SPLIT -- in other words, a lot of screens. On the other hand,
most of these routines are quite useful by themselves and they
do not have to be bundled with the 64-column EDITOR. But you
do not need to keep them all in one binary file. Of course you
may save everything from ' TASK but what a waste of disk space
and loading time. The better way is to create a chain of
binary files, each one picking up the job at the point where it
was left by the previous one. Tee editor loadino ward
-64SUPPORT may be redefined into something along this pattern:

: -64SUPPORT 20 BLOAD 40 BLOAD 37 BLOAD 22 BLOAD ;

Everything will be ak as long as the last BLOADed file is
the last one which was BSAVEd for that particular application
(the order will have to be the same here as it was when you did
the BSAVE if you have many words to load your application
beck). The simplest and universal way to tind the starting
address for the next BSAVE is to load everything (and nothing
else) which has to. be loaded before vou load the application.
Now execute the word HERE• which will leave on stack your
starting address. If you are not going to perform any fancy
footwork on the stack before you BSAVE then you even do not
have to print it out. But if you will feel more comfortable -
display it on your screen, load your application and BSAVE from
that address. HAVE always will finish with HERE (a new one!).
Do not forget that you can always FORGET (pun ir'omded) part of
the contents of your memory before you execute HEFE to find the
starting address. For example, you can execute FORGET MENU,
which is pretty extreme but can be used for our purposes
instead of ' TASK. This opens possibilities of creation of
'overlay structures' (translation from computerese - loading a
big application in pieces which reuse the same part of memory
to perform different tasks, like "TI-WRITER"), replacing one
editor with another without creating conflicts and so on.

Finally let us note that at least one of our binary files
contains an image of BSAVE itself which cannot be used for
anything else except BSAVEing. Since BSAVE's usefulness is
limited to one particular function, why have it included in
your BSAVEd application? There is a very simple method for
saving everything you want except BSAVE. This will save you
memory (around 200 bytes), but also, which is maybe even of
greater importance, can make a difference of a whole screen (4
sectors) of disk space depending on the overall size of your
memory image. One fly in the ointment. You have to modify
Screen 483 and the definition of BSAVE itself. Do this as
follows: Squeeze the layout of screen 483 to get an extra two
lines. In line 1 change DECIMAL into HEX and push the colon
definition down in order to have space in lines 2 and 3. In
those lines type the followino: HERE 3000 ! CURRENT i , :002 !
LATEST 3004 ' CONTEXT i 3006 ! CONTEXT 3008 ! VOC-LINK
300A !. Next in the colon definition replace ever/ (this is
important! every!) occurrence of HERE with 3D00 ;, every
::::rfence of CURRENT 	with 3002 3 and so on. (It means that

: 	; is replaced with 3003 ;). Change 29801 into 746?

99'ers ON LINE DECI84

!this is "ti") and 1000 into 3E3. You may also add after
in the last line .' Next screen is 4 1 . 	 (the last dot is F1F_77
dot - not period). FLUSH it and you are done.

How to use it? Let us assume that you're starting with the
application which will be HAVEd, but which is not yet compiled
into memory. Execute HERE and load the whole application.
Only after that load screen 4 103 with HAVE and execute HAVE
immediately (starting address is very kindly waiting on stack).
If you are Nino in thisvery moment to create the next binary
file then FORGET - HAVE, prepare memory and perform the whole
procedure once again. This version of the utility has to be
ALWAYS the last thing loaded. But your binary files will never
be aware of the existence of BSAVE.

Now happy BSAVEing! And remember: 'When everything else
fails read the instructions'. TI FORTH documentation in some
places is surprisingly good (after fourth reading).

6872-63rd 97ENDE, EDMONTON, ILBEET1 TSE

(15)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

