The TI Fayuh 1989!
The Fourth Annual New England TI Fayuh will be held on
Saturday April 1 from 10AM to 6PM. The location is the
Ramanda Hotel in Woburn Massachusetts. It is located
directly off route 128 (1-95) at exit 35. Below is a map for
your convenience. The official address of the hotel is 15
Middlesex Canal Park Road in Woburn. Their number is
935-8760. I might add here that it is quite close to my home
town (Lexington) which is where previous shows have been
held. As a point of reference the Showcase cinemas are
located right next to the hotel, and the movie listing are
clearly visible from the highway (if you are coming from the
south it is a great marker, if you're coming from the north
and you see the sign, you went too far - sorry!).

In any case, be at the show. It should once again prove to be
an interesting and informative glimpse into the TI world.
We are expecting the usual compliment of speakers and
vendors. The official list is not yet available however. We
have several speakers lined up, but are still locking for more.
We also need some volunteers in the morning to set up. If
you can help out, be there around 8AM. We will also need a

few systems, or even pieces of systems if you can bring them.

There will be a sell/swap table so bring your unwanted or
unused hardware and legitimate software. Your junk may
just be someone elses treasure. We also need some
individuals to run the front door (i.e. admission) and a
person or five to help out running the various BCS tables.
Please let me (Peter) or Justin know what you can do soon 5o
we don't have a Jast minute panic.

There are still vendor and user group spaces available at the
show. If you are interested or know of someone who is
interested, give me a call to make the arrangements. There is
some official dealer/user group paper work for you to fill
out.

If you have questions about the Fayuh or whatever, as usual,
my number is (617) 375-6003. Don’t call early in the morning,
or after ahout 11 PM. And since I am often out, please be
kind to my roommates, none of whom are BCS members or
much care about TI computers. As usual the BCS office
number is 367-8080.

The April Meeting

The April Meeting of The Boston Computer Society’s T1-99/
4A User Group will be held on Wednesday April 19 (the real
Patriot’s day... [spoken like a true Lexington resident!]) at the
Massachusetts College of Art on Huntington Avenue in
Boston. We should be on the fifth floor somewhere - you can
always ask the friendly and helpful guard downstairs!

As always, the April meeting will be an opportunity to
discuss the successes and problems with the annual Fayuh.
As has been the case for the past few months, I hope to be
able to show Press, the much anticipated word processor
from Charles Earl. Unfortunately, recent signals from
Asgard (the distributor of Press) have pointed to further
delays. Paul Charlton has recently announced an extensive
development package for the 9640 including an assembler,
linker, librarian, and the long awaited technical manual on
MDOS. Paul hopes to have these completed in April, so at
least a preview of Paul’s amazing new devclopment system
should be possible. The assembler is several times faster
than the TI assembiler, as is the linker, and as such this
package should interest C programmers as well as assembly
language programmers.

This Newsletter

Because I had no time last month to prepare a meeting
newsletter, this month the newsletter is a bit larger than
normal. There are the monthly columns from Donald
Mahler and Ron Williams in addition to an extensive article
on printer graphics by Joe Rawlins. The BCS recently
recieved three more issues of Jim Peterson’s popular Tips
from the Tigercub, on disk. I have included the first new
issue this month. Others will appear in future issues, space
permitting. There is also this rather esoteric article that I
wrote somewhere back there. Let me know what you think....




¢ COLUMN
By Donald L.Mahler

This month we are again working with ¢99 for the 99/4A
rather than the 9640. Unfortunately the floating point
functions have not been worked out for the 9640 so Clint and
Tom Bentley have not been able to modify the floating point
routines written earlier to run on the 99/4A. To use these
programs, you need the floating point routines found in our
Library and the Math Functions written by Charles
Kirkwood for Micropendium. I have not yet placed these in
our Library; have to check with Peter and Walt regarding
copyrights. [we have permission to reprint selections from
MICROpendium in this newsletter, but 1 don't know how this
applies to the software library -jph]

/* EXPONENT TEST 1 wmet2 c */

$define LEN 8

#include dskz.floati
/*Bentley */

#include dsk2.mathfn
F*Kirkwood */

main{()

{float base[LEN],ex[LEN];

point numbers */

/*floating

float ans[LEN]; char buf[5];

char *c; char opl2];

char s[LEN]: /* string */
puts{™ Enter the basge: )

fpget {3,base); putchar(*\n");
puts (™ Enter the exponent:
fpget {a,ex); putchar{'\n’);
init():

*/

ax (base,ex,ans);

puts (*\n\n");

puts (“*The answer is “);

fpput (ans,s); }

e I

/*from mathfn

The Henderson-Hesselbach equation is used in chemistry
and biology to determine pH when you know the
roncentration of the acid and the salt; for example, the
concentration of carbonic acid and bicarbonate in biood.

/*H-H EQUATION */
#define LEN 8
#include dsk2.floati
#include dsk2.init
/* we are loading individual funct rather
than mathfn */
t#include dsk2.natleg
char *£a="0.4343";
main ()
{float
PH[LEN], pKa [LEN],acid [LEN],al [LEN], a2 [LEN] , a8 [LEN] ;
float salt{LEN]; char buf[5];
char *¢; char opl[2];
char s[LEN];float k[LEN];
puts (™ The H-H equation states:\n"):

/*to convert 1ln to lg */

Introduction fo the UCSD P-5ystem

This string has a max length of 10 characters and if you try to
characters on the end. The string type also has a default

done like this:

puts(® PH = pKa + log {([salt] /
[acid])\n\n");
puts (™ Enter the pKa: )

/* this is a constant for each acid and can
be found in tables */

/* for carbonic acid, it is 6.1 at body temp
*/

fpget (a,pKa); putchar(‘*\n’);

puts (™ Enter the salt concentration:
fpget (3,salt); putchar{‘*\n’);

puts (“Enter the acid concentration:
fpget (s,acid); putchar(*\n");
texp(salt,”/",acid,al); [*division */
stof(fa,k); /* string to fp */
init () ;

In{al,a2);
fexp(a2,”*",k,a3);
common log */
fexp(a3,”+”,pKa,pH}:
locate(19,7);
puts(“The pH is “};
fpput (pH, 5) ;
puts(*\n \n\n”);}

“);

")

/*converts nat log to

As a check, if the ratio of bicarbonate to carbonic acid is the
normal 20/1, the pH is the normal 7.40.

Maybe next month back to ¢99 for the 9640.

Using String Data Types
By Ron Williams

Many of the same functions you can use in Extended Basic
are available for use in Pascal and are just as convenient to
use as in Extended Basic. The string type is used a lot in
UCSD Pascal and can be defined in the type section or in the
variable section. When you declare a string you can define
the string like this:

VAR
word : string[10];

give the variable a longer length it will chop off the extra

length and that is 80 characters and a string can have a
length as short as 1 character and a max length of 255. The
procedure readin should be used to import strings in to a
program but it may be necessary to make a string another
way because using string types is much easier than using a
packed array of characters. One other way to make a string is
to convert a packed array of characters to a string and that is

word:=' v
for count:=1 to 10 do
word[count] :=multichar{count];




The variable word is of type string and the variable
multichar is a packed array of characters. You must give
word z length before assigning the variable one character at
a time or you will get an execution error that is why I put the
assignment statement before the loop. Another way to give
word a new length would be to use a compiler directive to
shut off range checking and then assign the new length
directly like this:

{*3R~*)

word[0] :=chr(10);

{*SR™*)

for count:=1 to 10 ddo
word[count] :=multichar[count};

This method may be used if you are not sure of the new
length of the string and how long to set the loop for. The chr
function can except a variable as well as the constant “10” for
input.

Some string procedures and functions included in UCSD
Pascal are explained below:

The function concat will put together a number of strings
and each string must be put in the function separated by
commas like this:

CONCAT (*helle’,’ how',’ are you'):
It will return:hello how are you

The function copy returns a string of characters starting with
a position and a size the function could be used like this:

COFY(*hello how are you’,7,3);
It will returnthow

The function pos returns a integer value it returns the
starting position of a string within a source string, It is used
like this:

POS5{(*hello how are you’,’are’);
It will return:11 This is the first place in the string that ‘are’

is found.

The function length will return a length of the string it
returns an integer value it is used like this:

LENGTH(‘hello how are you');
It will return 17 an integer

The procedure delete will remove characters from a string it
will remove the characters starting with position and ending
with a size. The procedure is used like this:

DELETE (*hellc how are you*,1,6);
It will remove ‘hello” from the string

line:="hello how are you’;
DELETE(line,1,6):
WRITE (line); {(* will return ‘how are you’

*)

The procedure insert does just the opposite as delete it will
insert a string into a source string it is used like this:

line:="hella how are you’:
INSERT (line, ' ,hello’, 6);
WRITE (line)} {(* will return
how are you’ *)

‘hello,hello

It will insert the string *hello” into the variable “line”.

The next string functions that I will show you are not found
as part of UCSD Pascal but have been added to the user
library of the TI 99/4A the additional functions are in the
library mise so put uses misc as a library at the beginning of
your program.

The function break will return the position of the first
character in the source string that matches a character in the
second string it will be used like this:

thepos:=BREAK (‘hello’, " 0');
The variable thepos will now have the value 5 the string ‘0’ is
the 5th character in ‘hello’

The function span will return the first position of a character
not found in the source sting it is used like this:

thepos:=SPAN(‘hello’,’'h’);
The value of 2 will be put into the variable thepos because ‘e’
is the first character not found.

The function uppercase will return uppercase letters in a
new string with the source string having lowercse letters.

line:="hellc how are you';
UPPER_CASE (line, line2) ;

WRITE(line2): (* will return ‘HOW ARE YOU’
*)

The function will convert the lower case letters in line to
upper case and put the string in line2 the source string is not
changed and s0 a new siring is created with upper case
letters. One more point [ would like to make, is make sure
you use READLN and not READ with strings the results
when using READ can be very bad, things like run time
errors and other problems can develop. Well thats it for this
month, thanks.

Displaying the IBM Graphic Elements
By Joe T. Rawlins

Several months ago I needed to make an attendance chart for
the Sunday School class that I co-teach with my wife. 1
proceeded to draw one on craft paper only to find that I had
skipped a few dates and misspelled a name. 1did this twice
and decided that there had to be a better way.

I use an IBM PS/2 model 50 at work, and have created




numerous charts and blank forms using the graphic elements
contained in the IBM Character Set 1, These characters are
located from character 176 thru character 223, and are
printable with an IBM compatible printer. These printers
usually have DIP switches to select either Standard (Epson)
or IBM emulation. When the Standard character set is
selected these characters represent ltalic characters, however
when the IBM mode is selected they represent the predefined
line graphics. Most printer manuat contain a table of the
various character sets available for that printer.

Printing the graphic elements was just a matter of using the
transliterate command on various characters below 127, since
Funnelweb only recognizes characters in the range of 0 to
127. 1tried to pick characters that I thought I would not use
in any text that may have to go on a chart. 1also tried to use
the paired keys ([1,0,(},<>) for the corner combinations.

There are 45 graphic elements in the range [ am covering,
however I have only used 19 of them.

This worked fine for printing, but looked a little strange on
the screen and you could not be sure how it would look until
you ran it thru the formatter. Why not convert the characters
that were transliterated to display what they would become?
T have changed a few characters in a CHARAL file with a
sector editor, which is OK for a few characters, but to change
19 or 50 seemed like a lot of work (I like to draw the
characters on graph paper and then figure the hex code for
each row). I subscribe to GENIAL TRAVelER (everyone
should) and in Volume 1 Number 5 there is a program by
Wayne Stith called KWIKFONT, which is an all-assembly
character definition program. With this program I was able
to redefine the characters that I selected, to display the
graphic elements desired. After redefining the characters,
the ones that have been changed may be saved to a DV-80
file.

Ornce this is done you have two choices, to use another
program by Wayne Stith called KF->CHARAL1, or use the
information in the file to modify an existing CHARAL file. |
have done both. Wayne's program creates a 9 sector
CHARAL1 file on DSK1, from the saved DV-80 file and
whatever CHARAL is in memory at that time. I have found
this file to be workable from Funnelweb even though it
originally came with a 5 sector one. It is possible to use a
sector editor to change this from a 9 to a 5 sector file,
however that is another article. If you already have a
CHARALI file that has modified characters that you want to
keep then the second option is what you want.

The November 1988 issue of MICROpendium contained an
article and source code for converting your favorite
CHARALI file into source code DATA statemnents for editing.
The article is by John Birdwell and the source code as
published was bug free. What you get is a Charaset file that
you may edit with the data obtained from the KWIKFONT
DV-80 file. Once the data statements have been modified,
this source code is then Assembled to get E/A 3 code. This
is then loaded into the Assembler along with the SAVE
utility. Execute the SAVE and save the file produced as

CHARAL. Isaved mine as CHARA2 since I would only be
using the graphic elements with the word wrap disabled and
in 80 columns (Funnelweb’s Program Editor).

The following is the source code for the Charaset that I
created. I am including it for those who do not have
KWIKFONT and the November Issue of MICROpendium.
0001 DEF SLOAD, SFIRST, SLAST

0002 SLOAD

0003 SFIRST

0004 DATA >0020,>0000,>1824,>2418 * char=>00
0005 DATA >0020,>0008,>1808,>081C  * char=>01
0006 DATA >0020,>0018,>2408,>103C  * char~>02
0007 DATA >0020,>0018,>2408,>2418 * char=>03
0008 DATA >0020,>0014,>141C,>0404 * char=>04
0009 DATA >0020,>001C, >1018,>0418 * char=>05
0010 DATA >0020,>0008,>1038,>2418 * char=>06
0011 DATA >0020,>001C,>0408,>1010 * char=>07
0012 DATA »>0020,>0018,>2418,>2418 * char=>08
0013 DATA >0020,>0018,>241C,>0408 * char=>09
0014 DATA >2020,>3800,>1C10,>1C10 * char=>0A
0015 DATA >0040,>0020,>2038,>2438 % char=>0B
0016 DATA >0070,>5070,>4854,>1C14 % char=>0C
co17 DATA »0070,>4070,>001C,>1010 * char=>0D
o018 DATA >0020,>0018,>243C,>2018 * char=>0E
0019 DATA >0040,>0814,>101C,>1010  * char=>0F
0020 DATA >0040,>4040,>1824,>2418 * char=>10
0021 DATA >0020,>2020,>2808,>0808 * char=>11
0022 DATA >0040,>4058,>2408,>103C  * char=>12
0023 DATA >0040,>4058,>2408,>2418 * char=>13
0024 DATA >0040,>4054,>141C,>0404 * char=>14
0025 DATA >U040,>405C, >1018,>0418  * char=>15
0026 DATA >0040,>4048,>1038,>2418 * char=>1§
0027 DATA >0040, >405C, >0408,>1010  * char=>17
0028 DATA >0040, >4058,>2418,>2418  * chare>18
0029 DATA >0040, >4058,>241C,>0408 * char=>19
0030 DATA >0040,>4040,>1824,>3C24 * char=>1A
0031 DATA >0040,>4050,>101C,>141C  * char=>1B
0032 DATA >0040,>4040,>1C10,>101C  * char=>1C
0033 DATA >0040,>4444,>041C,>141C  * char=>1D
0034 DATA >0070,>7070,>7070,>7070 * char=>1E
0035 DATA >0040,>4C50,>101C,>1010  * char-»1F
D036 DATA >Q000,>0000,>0000,>0000 * char=>20
0037 DATA >0010,>1010,>1000,>1000 * char=»21 !
0038 DATA >0028,>2828,>0000,>0000 * char=»22 “
0039 DATA >0808,>08FF,»00FF,>0000 * char=>23 $
0040 DATA >0808,>0808, >FF00,>0000 * char=>24 §
0041 DATA >0044,>4C18,>3064,>4400 * char->25 %
0042 DATA >0020,>5020,>5448,3>3400 * char=>26 &
0043 DATA >0008,>1020,>0000,>0000 * char=>27 °
0044 DATA >0000,>0000,>0F0B,>0808 * char=»>28 (
0045 DATA >0000,>0000,>F808,>0808 * char«>29 )
0046 DATA >0044,>287C,>2844,>0000 * char=>zA *
0047 DRTA >0808,>0808,>FF08,>0808 * char=>?B +
0048 DATA >0000,>00C0,>0030,>1020 * char=>2C ,
0049 DATA >0000,>0000, >FF00,>0000 * char=>2D -
0050 DATA >0000,>0000,>0030,>3000 * char=>2E .
0051 DATA >1414,>1414,>F414,>1414 * char=>2F /
0052 DATA >003C,>4C54,>6444,>3800 * char=>30 0
0053 DATA >0010,>3010,>1010,>3800 * char=»31 1
0054 DATA >0038,>4408,>1020,>7C0C * char=>32 2
Q055 DATA >0038,>4418,>0444,>3800 * char=>33 3
0056 DATA >0008,>1828,>487C,>0800 * char=>34 4
0057 DATA >0078,>4078,>0444,>3800 * char=>35 5
0058 DATA >0038,>4078,>4444,>3800 * char=>36 6




0059
0060
0081
0082
0063
0064
0085
00eé
0067
00c8
0069
0070
0071
0072
0073
0074
0075
007¢€
0077
0078
0079
0080
0031
0082
0083
0084
0085
008s
0087
0088
0089
0090
0091
0092
0093
plel-F]
0095
0096
0097
0098
0099
0100
0101
o0loz
0103
0104
0105
0106
0107
0108
0108
0110
0111
0112
0113
0114
0115
0ll6
0117
0118
0119
0120
cl21
0122
0123

DATA >007C,>0408,>1020,>2000
DATA >0038,>4438,>4444, >3800
DATA >0038,>4444,>3C04,>7800
DATA >0000,>3030,>0030, >3000
DATA >0000,>3030,>0030,>1020
DATA >0808,>0808, »0F00,>0000
DATA >0000, >00FF, >00FF, >0000
DATA >0808,>0808,>F800,>0000
DATA >0000,>00FF, >DOFF, >0808
DATA >0038,>4454,>5840,>3C00
DATA >0038,>4444,>7C44,>4400
DATA >0078,>2438,>2424,>7800
DATA >0038,>4440,>4044,>3800
DATA >0078.>2424,>2424,>7800
DATA >007C, >4078,>4040, >7C00
DATA >D07C, >4078, »4040, >4000
DATA >0038,>4440, >4C44,>3800
DATA >0044,>447C, >4444, >4400
DATA >0038,>1010,>1010, >3800
DATA >0004,>0404,>0444,>3800
DATA >0044,>4850,>7048,>4400
DATA >0040,>4040,>4040,>7C00
DATA >0044,>6C54,>4444,>4400
DATA >0044,>6454,>544C,>4400
DATA >0038,>4444,>4444,>3800
DATA >0078,>4444,>7840,>4000
DATA >0038,>4444,>544C,>3C00
DATA >0078,>4444,>7848,>4400
DATS »0038,>4430,>0844,>3800
DATA >007C,>1010,>1010,>1000
DATA >0044,>4444,>4444,>3800
DATA >0044,>4444,>4428,>1000
DATA >0044,>4444,>5454,>2800 -
DATA »0044,>2810,>1028,>4400
DATA >0044,>4428,>1010,>1000
DATA »>007C,>0810,>2040,>7C00
DATA »1414,>1417,>101F,>0000
DATA >1414,>1414,>1714,>1414
DATA >1414,>14F4, >04FC,>0000
DATA >0010,>2844,>0000,>0000
DATA >0000,>0000,>0000,>7C00
DATA >0000,>0000, >FF08,>0808
DATA >0000,>0038,>4848.>3C00
DATA >0020,>2038,>2424,>3800
DATA >0000,>001C, >2020,>1C00
DATA >0004,>041C,>2424,>1C00
DATA >0000,>001C, >2830,>1C00
DATA >000C,>1038,>1010,>1000
DATA >0000,>001C,>241C,>0438
DATA >0020,>2038,>2424,>2400
DATA >0010,>0030,>1010,>3800
DATA >0008,>0008,>0808, >4830
DATA >0020,>2024,>3828,>2400
DATA »>0030,>1010,>1010,>3800
DATA >0000, >0078,>5454, >5400
DATA >0000,>0038,>2424,>2400
DATA >0000,>0018,>2424,>1800
DATA >0000,>0038,>2438,>2020
DATA >0000, >001C, >241C,>0404
DATA >000C,>0028,>3420, >2000
DATA >0000, >001C, »300C, >3300
DATA >0010,>1038,>1010,>0C00
DATA >0000,>0024,>2424,>1C00
DATA >D000, >0044,>2828,>1000
DATA >0000, >0044,>5454,>2B00

% % % % % ® B N ¥ X ¥ N X M O B ¥ ¥ B B ¥ ¥ ¥ ¥ ¥ F X ¥ ¥ % F ¥

* X F F X 4 % & % % b F % F F N OFE B R E RN E RS E RSN

char=>37
char=>38
char=>39
char=>3A
char=>3B
charw=>3C
char—>3D
char=>3E
char=>3F
char=>40
char=>41
char=>42
char=>43
char=>44
chay=>45
char=>46
char=>47
char=>48
char=>49
char=>4A
char=>4E
char=>4C
chay=>4D
char=>4E
char=>4F
char=>50
char=>51
char=>52
char=>>53
char=>54
char=>55
char=>56
char=>57
char=>58
char=>59
char=>53
char=>5B
char=>5C
char=>5D
char=>5E
char=>5F
char=>60
char=>&1
char=>62
char=>§3
char=>64
char=>65
char=>66
char=>67
char=>68
char=>69
char=>6A
char=>6B
char=>6C
char=>ED

chare>&F
char=>70
char=>71
char=>72
chara>73
char=>74
char=>75
char=>76
char=>77

Y= A, RN SO UNIDRWOZEENRUHNEIQEPMOOODYP®EOV I AN » 0@

“

L4 tanOTWOoB3IWRUPrZPamoenn by

0124 DATA >0000,>0024,>1818,>2400
0125 DATA >0000,>0024,>241C,>0438
0126 DATA »>0000,>003C,>0810, >3C00
0127 DATA >0000,>001F,>1017,>1414
0l28 DATA >0808,>0808,>0808,>0808
0123 DATA >0000, >00FC, >04F4,>1414
0130 DATA >1414,>1414,>1414,1414

0131 SLAST END

My transliterate file looks like this:

0001 .CC IRM GRAPHIC ELEMENTS TRANSLITERATE
0002 .CO FIIE WILL PRINT GRAPHIC EILEMENTS
0003 .CO WHEN USED WITH AN IBM COMPATIBLE
0004 .CO PRINTER - any printer capable of
0005 .CO printing the IBM CHARACTER SET
0006 .CO ==IBM double horizontal line

0007 .TL 61:205

0008 .CO ~=]JBM double vertical line
0003 .TL 126:1886

06010 .CO {=IBM double upper left corner
0011 .7TL 123:201

0012 .CO )=IEM double upper right corner
0013 .TL 125:187

0014 .CO [=1RM double lower left corner
0015 .TL 91:200

0016 .CO }=IBM double lower right corner
0017 .TL §3:188

0018 .CO ?=IBM double line top

0019 .TL &€3:209

0020 .CO #=IBM double line bottom

0021 .TL 35:207 i

0022 .00 \=]BM double vertical line with rgt dash
0023 .TL 92:199

0024 .C0 /=IBM double vertical line with left dash
0025 .TL 47:182

0026 .CO -=IBM horizontal line

0027 .TL 45:1%96 .

0028 .CO |=IBM vertical lin

0029 .TL 124:179

0030 .CO {=IBM single upper left corner
0031 .TL 40:218

0032 .CO }=IBM single upper right corner
0033 .TL 41:191

0034 .CO <=IBM single lower left cormer
0035 .TL &0:192

0036 .00 >=IBM single lower right corner
0037 .TL 62:217

0038 .CO ‘a~IBM single line top

0039 .TL 96:194

0040 .CO $=IBM single line bottom

0041 .TL 36:193

0042 .CO +=IBM cross

0043 .TL 43:197

The transliterate file should be included in any file that you
wish to print. This may be by physically having the listing in
your file or by using the “.IF DSKx.filename” formatter
command. If you use the latter it should be included before
any reference is made to the transliterated characters

With my new CHARA? file I can display the graphic
elements I have converted by selecting the Programer’s
Editor from Funnelweb as my first Editor choice. If you

= # % * % ¥

char=>78 x
char=>79 y
char=>7A z
char=>7B {
char=>7C |
char=>7D }
char=>1g -~




select the Word Processing Editor first CHARA1 will be
used. If this happens and you need to switch to the
CHARAZ file, cxit the Editor and select the User List, then
<FCT> 9 back and select the Programer’s Editor. CHARA2
is now loaded and ready to use.

If there are any graphic elements that I haven't included and
you need it is now a simple matter to redefine one with a
sector editor on the CHARAJ1 file or in the Charaset DATA
statements. Don’t forget to add the transliterate to your
transliterate file. If you don’t send your printer embedded
control codes you may use a lot of the characters below 32,
and acecess them with the <CTL:- U function. Do not use
character 13 (carriage return) as a transliterate, since it is the
one character that is almost always used. Actually that is
probably a very good place to place your transliterates if you
are selective in what you change and wish to keep all of your
printable characters available.

For best printing results ] usually print my charts in NLQ
along with EMPHAIZED & DOUBLE-STRIKE. On my
Seikosha SP-1200A1, NLQ is initiated by sending the printer
“ESC,x,1” and MIXED MODE printing of EMPHAIZED &
DOUBLE-STRIKE with “ESC,!,character 24”, I embed these
codes in my file and they are sent to the printer at the time of
printing.

Happy screens

Tips from the Tigercub
Number 55
By Jim Peterson

Tigercub Software
156 Collingwood Ave.
Columbus OH 43213

1am still offering over 120 original and unique
entertainment, educational and utility programs at just $1.00
each, or on collection disks a $5.00 per disk.

The contents of the first 52 issues of this newsletter are
availabl as ready-to-run programs on 5 Tips Disks at $10
each

An my three Nuts & Bolts Disk, $15 each, each contain over
100 subprograms for you to merge into your own programs
to do all kinds of wonderful things.

My catalog is available for $1, deductable from your first
order (specify TIGERCUB catalog).

TI-PD LIBRARY

I'have selecte public domain programs, by category, to fill
over 200 disks, as full as possible if I had enough programs
of the category, with all the Basic-only programs converted
to XBasic, with an E/ loader provided for assembly
programs if possible, instructions added and any obvious
bugs corrected, and with an auto-loader by full program
name on each disk. These are available as a copying service
for just $1.50 post-paid in U.5. and Canada. No fairware will

be offered without the author’s permission. Send SASE for
list or $1, refundable for 9-page catalog listing all titles and
authors. Be sure to specify TI-PD catalog,.

The Tigercub has dipped a cautious paw into the cold dark
mysterious waters of asembly, while still keeping a firm grip
on trusty old Extended Basic. The result is an XBasic
program that writes an assembly program!

The following subprogram, when merged into any program
which has reidentified characters, and called after the
characters have been reidentified, will write a source code
which can be assembled into object code, loaded from
XBasic and linked to instantly access the character set.

The source code is based on 2FONTS/S by Barry Traver,
who gives credit to Mac McCormick, David Migicovsky and
Karl Schuneman.

19000 SUB CHARRSUB(HXS3())
19001 DISPLAY AT(12, 1)ERASE
ALL:"Source code filename?”:

“DSK"” :: ACCEPT AT({13,4)S5IZE
(12)BEEP:F$§ :: OPEN #1:”DSK”
&F5, OUTPUT

19002 DISPLAY AT (15,1} :"LINK

ABLE program name?” :: ACCEP

T AT{16,1)SIZE{6) :DE

19003 DISPLAY AT(18,1) :”"Rede
fine characters from ASCI

I to ASCII .
19004 ACCEIPT AT(19,7) VALIDAT
E(DIGIT)SIZE(3):F

19005 ACCEPT AT(19,21)VALIDA
TE({DIGIT)SIZE(3):T

19006 PRINT #1:TAB(8) ; “DEF";
TAB (13);P$ :: PRINT #1:”VMBW
EQU »>2024"™ :: PRINT #1:"
STATUS EQU >»>837C*

19007 NB=(T-F+1)}*8 :: CALL D
EC_HEX (NB,HS$) :: A=T7&R+F*8 ::
CALL DEC_HEX(A, A$)

19008 FOR CH=F TO T :: IF CH
<144 THEN CALL CHARPAT {CH,CH
$}ELSE CH$=HX$ {CH)

19009 IF FLAG=() THEN PRINT #
1:"FONT"”;:: FLAG=1

19010 FDR‘J-I TO 13 STEP 4 :
1 M§=MS&”>"ESEGS (CHS,J,4)&",
" :: NEXT J :: M$=SEGS (MS$,1,
23) &% XT"LCHRS (CH)

19011 PRINT #1:TAB(8):"DATA
“&M5 :: M$="* :: NEXT CH
19012 PRINT #1:P$;TAB(8);:“LI
R1,FONT” ;:: PRINT #1:TAB(
B) ;”LI RO,>"&AS :: PRINT #
1:TAB(8) ;LI R2,>"gH$

19013 PRINT #1:TABR(8);“BLWP

@VMBW”:TAB(8) ; "CLR @STATUS”
:TAB(8) :"RT”:TAB(8) ; "END” ::
CLOSE +#1

19014 SUBEND




19015 SUB DEC_HEX(D,HS)
19016 X$=~(123456789ABCDEF”
:: A=D+65536% (D>32767)

19017 H$=SEGS (X$, (INT (A/4096
JAND 15)+1,1)&SEGS (X5, (INT (R
/256)AND 15)+1, 1) 6SEGS (XS5, (I
NT(A/16)AND 15)+1,1)&SEGS (X$

, (A AND 15)+1,1):: SUBEND

Now to try it out. You probably know that CALL CHARSET
will restore reidentified characters below ASCII 96 to normal
form, but not those above, 50 Jet’s write a routine to restore
those. Clear the memory with NEW, merge in the above,
which you should have SAVED with - SAVE
DSK1.CHARSUB MERGEby MERGE DSK1.CHARSUB. Add
a line -100 CALL CHARSUB(HX$()) and RUN. Answer the
filename prompt with DSK1.OLDLOW/S, the next prompt
with OLDLOW and select ASCII 97 to 127.

When done, insert the Editor/ Assembler module and its disk
Part A. Select Assembler, Y to load assembler, give the
source code DSK1.0LDLOW/S, object code
DSK1.0LDLOW /O, just press Enter at next prompt, and R
for options. You should get 0000 ERRORS.

Now key in this routine to test your program.

100 CALL INIT ::
DSK1.0LDLOW/0") :: FOR CH=33
TO 126 :: CALL CHAR({CH, "FF81
818181B81B81FF”):: PRINT CHRS (
CHY;:: NEXT CH B
101 CALL KEY(0,K,8):: IF S=0
THEN 101 ELSE CALL CHARSET
102 CALL KEY(0,K,S8):: ;F 3=0
THEN 102 ELSE CALL LINK(“OL
DLOW”)
110 GOTO 110

CALL LOAD(™

Press any key to restore the upper case characters by CALL
CHARSET, any key again to use the CALL LINK.

You are now ready to use the routine to copy all kinds of
character sets from the programs in your library. You don’t
have any such programs? Not to worry. You don’t have to
reidentify characters one by one with one of thuse graphics
editor programs. You can just manipulate the existing hex
codes of the normal characters. I have created nearly 50
different character sets by that method!

The space occupied by a character on the screen is really an
8x8 square of 64 tiny dots. Various dots are turmed on
(colored) and off (transparent) to create a pattern - just the
opposite of light bulbs on a scoreboard.

And those on-and-off dots are really the binary numbers
which the computer uses. But fortunately the computer lets
us use hexadecimal numbers rather than binary. The
following will print out a reference chart of decimal to binary
to hexadecimal. You can easily convert it to dump to a
printer.

10 DISPLAY AT(6,1)ERASE ALL:
“DEC BIN HEX”

160 FOR J=0 TO 15 :: CALL DE

C_pIN(J,BS):: CALL DEC_HEX(J
(HS$):: DISPLAY AT(J+8,1):J;T
AB (5);B5; TAB(10) ; 3EGS (HS, 4,1
Y:: NEXT J
21020 SUB DEC_BIN(D@,B$):: D
=D@ :: IF D=0 'THEN BS="0000"
i1t SUBEXIT
21021 IF D=1 THEN 21022 :: X
=D/2 :: BES=STRS (ABS (X<>INT(
X)))&BES :: D=INT(X):: IF D>
1 THEN 21021
21022 B@S="1"&BRS :: BS=RPTS
(“0",4-LEN(B@S))&DBRS :: BEI-
w7 :: SUBEND
21039 SUB DEC_HEX(D,HS$)
21040 X8="0123456789ARCDEF"
11 A=D+65536*(D>32767)
21041 HS=SEGS (XS, {INT(A/4096
YAND 15)+1,1)&SEGS (XS, (INT(A
/256)AND 15)+1,1) &SEGS (X$, (I
NT(A/16) AND 15)+1, 1) &SEGS (XS
(A AND 15)+1,1):: SUBEND

And this routine will show you how each letter is formed, by
binary (s (off) and 1’s (on), for each key you press. I put it
in merge format so you can MERGE it into any program and
CALL it to examine the characters.

17000 SUB CHARVIEW
17001 !programmed by Jim Fet
erson Fel 1989
17002 DISPLAY AT(1,1)ERASE A
LL:”CHARACTERS IN BINARY & H
EX”:;:"Press any key to see
the binary representation
of thescreen character and
its hexcode.”
17003 DISPLAY AT(8,1) :”"Press
Enter to see the char-acter
17004 CALL KEY(0,K,S):: IF K
=13 THEN 17005 ELSE IF S=0 O
R K<32 OR K>143 THEN 17004 E
LSE 17007
17005 CALL CHAR (48, “FF"&RPTS
(“81”,6) ERPTS (*FF",9))
17006 CALL KEY(0,K,38):: IF 5
<1 THEN 17006 ELSE CALL CHAR
(48,700384445444444380010301
010101038"™) :: GOTO 17004
17007 CALL CHARPAT (K,CHS)
17008 R=12 :: FOR J=1 TO 15
STEP 2
17009 H$=SEGS$ (CHS,J,1):: CAL
L HEX_BIN (H$, BS)
17010 DISPLAY AT(R,8):B$
17011 HS=5EGS(CHS,J+1,1):: C
ALL HEX_BIN (HS,BS)
17012 DISPLAY AT(R,12):BS ::
DISPLAY AT(R,18) :SEGS (CHS, J
(2} :: RmR+1l :: NEXT J :: DIS




PLAY AT(22,6€):CHS ::
004

17013 SUBEND

17014 SUB HEX BIN(HS$,BS$):: H

GOTO 17

X$="012345678%ABCDEF” :: BNS$
="0000X0001X0030X0011X0100X0
101X¥011040111X1000X1001X1010
X1011X1100X1101X1110%1111"™
17015 FOR J=LEN({HS$)TO 1 STEP
=1 :: XS=SEGS(HS,T,1)

17016 X=POS (HXS$,X5,1)-1 :: T
$=8EGS {BN$,X*5+1,4)&T$ :: NE
XT J :: BS=TS :: T$="" :: SU
BEND

And to reidentify a character, you just change the numbers
and letters in the 16-digit hex code which represents the
binary pattern. By writing little routines to switch those
digits around, all kinds of things can be done.

For instance, the normal characters always have the top row
of dots turned off, to provide spacing between lines of text
on the screen. If you want taller characters you will have to
double-space the lines, but you can create them by making
the numerals and upper case characters consist of the 2nd-
7th rows, the 7th row again, and the 8th row - it just happens
to work out.

18000 SUB HIGHCHAR :: FOR CH

=48 TO 90 :: CALL CHARPAT(CH.

¢(CHS$) : : CALL CHAR(CH, SEGS (CH

$,3,10)&RPTS (SEGS (CHS, 13,2),

2)Y&SEGS (CHS,15,2)):: NEXT CH
t: SUBEND

I'made that a subprogram so you can MERGE it in and use it
to modify other character sets.

If we take the hex code apart, 2 digits at a time, and
rcassemble it backward,

100 CALL CLEAR :: FOR CH=33
TO 80 :: CALL CHARPAT(CH,CHS$
Y:: FOR Jg=1 TQ 15 STEP 2 ::
CH2$=SEGS (CHS$,J,2)&CH2S :: N
EXT J :: CALL CHAR(CH,CH2S):
t CH2§="" :: NEXT CH

110 DISPLAY AT(12,1) :"?NWOD
EDISPU”:”VT EHT DENRUT OHW !
YEH” ::; GOTO 110

That one was in my first Tips newsletter, years ago, but it is
much more effective at assembly speed.

This one shades characters on their left edge by tum- on the
pixel to the left of the leftmost “on” pixel, if any. Also try it
in combination with HIGHCHAR.

18001 SUB NEWCHAR3 :: FOR CH
=48 TO 122 :: CALL CHARPAT(C
H,CHS):: FOR J=1 TO 15 STEP

2

18002 CHZS8=CHZ2S&SEGS (“0367CD
EF”,POS("01234567",SEGS (CHS,
J,1),1),1}&8EGS (CHS,J+1,1)::
NEXT J :: CALL CHAR(CH,CH2S
Y:: CH28="" :: NEXT CH :: 8U
BEND

This one uses HIGHCHAR to heighten the character and
then blanks out three rows. Try following it with
NEWCHAR3.

18030 SUB NEWCHARI1O :: AS="(
0" :: FOR CH=48 TO 90 :: CAL
L CHARPAT (CH,CHS$) :: CH$~SEGS
{CHS, 3, 10) &aRPTS (SEGS (CHS, 13,
2) ,2)&8EGS (CHS,15,2)

18031 CH$=SEGS(CHS$,1,4)&AS5eS
EGS (CHS$, 7,2) AJ4SEGY (CHS, 11,
2) &AS&SEGS (CHS,15,2) : : CALL

CHAR(CH,CHS) :: NEXT CH :: SU
REND :

The next one, which works only on ASCII 97-122, makes tall
characters ridiculously elongated above.

18050 SUB NEWCHAR20

H=97 TO 122 :: CALL CHARPAT({

CH,CHS) :: CALL CHAR [CH,SEGS(

CH3,7,2) &RPTS (SEGS (CHS, 9, 2),

4) &SEG${CHS$,11,6)) :: NEXT CH
:: SUBEND

:: FOR C

This one has the characters raised by one line, widened one
column at left and two columns at right to make a full 8x8
character which must be double-spaced horizontally and
vertically.

18090 SUB NEWCHAR27 ::
H=48 TQ 122 :: CALL CHARPAT(
CH,CHS) : : CHS$=SEGS (CHS%, 3, 10)
&RPTS (SEGS (CHS,13,2),2)4SEGS
{(CH$,15,2):: FOR J«1 TO 15 §
TEP 2

18091 CH25~CH2S&SEGS (“014589
CD”,POS("01234567”, SEGS (CHS,
J,1),1),1) &SEGS (*0129",POS (™
04BC",SEGS (CHS,J+1,1),1),1)

18092 NEXT J :: CALL CHAR(CH
fCH28) :: CH2S5="" :: NEXT CH
:: SUBEND

FOR C

Those who have my Nuts & Bolts disks will see how
valuable this assembly can be to make instantly available the
routines for double height and double width characters, etc.,
etc. And if you have Todd Kaplan’s amazing ALSAVE
routine from the Genial Traveler Vol. 1 No. 3, you can imbed
them in your XBasic program for fast loading.

And you can merge CHARSUB into any character editor or
sprite defining program and, with a bit of modification, use




it to convert your creations into fast-loading assembily.
These assembly loads are compatible with my BXB, so you
can also load character sets into sets 15 and 16, ASCII 144-
159. However, the CHARPAT statement cannot access
ASCII above 143, so in this case you must dimension an
array in the program you are copying from, as DIM
11X$(159), and place the hex codes in the array using the
ASCII as the sub-script number, such as CALL
CHAR(CH+64,CH$) :: HX$(CH+64)=CHS, so that they will
be passed to the subprogram. And don’t CALL INIT after
you have called BXB!

So, now you try creating your own screen fonts!

Memory full,

Jim Peterson

More on PostScript
©1989 ]. Peter Hoddie

In the last newsletter (the January Newsletter to be pracise)
the last page was a picture a small portion of text describing
how I managed to print a TI-Artist picture on a PostScript
laser printer. This is a very straight forward procedure, but
itis rather involved. The results are rather impressive, so I
thought it might be useful to publish the approach. The
overall result is that it is possible to get extremely high
quality output of TI-Artist pictures - provided you have
access to a PostScript laser printer, a device which costs
about $3500, on the low end. _

PostScript is a language, similar in many respects to Forth,
which is present in many laser printers. A popular example
of such a printer is the Apple LaserWriters. These are often
found hooked up to Macintosh computers (as the are in the
BCS main office) and so this is what I used in my approach.
1t is possible to actually hook a TI directly up to a PostSeript
printer using a serial cable. In this case, the procedure
described here would have to be modified somewhat, but the
basic ideas still apply.

Printing on a PostScript printer is rather different from
printing on most printers. Since PostSeript is a language, the
printer contains an entire computer with lots and lots of
memory (like at least one megabyte!). To print, you send a
program {o the printer which draws contains a series of
commands to draw the page in the printers memory, The
printer then copies this image to the paper. Thus rather than
just sending data to the printer, as we do on the TI, one must
send both data and instructions on how to format that data.
The first part of the process is to convert the TI-Artist picture
to a format that can be included in a PostScript program. We
can then simply insert this data into a program which is the
same for every Tl-Artist picture we wish to print.

PostScript was designed to be read by humans. It is
interpreted rather than compiled. This does not make it
particularly fast, but is makes things easy for our purposes.
The data in the TI-Artist picture file (_P extension) is simply
converted to ASCII characters. This is essentially what the

Extended BASIC CALL CHARPAT does. But since we have
to do it over and over and over and over again to the

characters in a TI-Artist file ] wrote an assembly program to
handle the details.

The assembly program is really primitive, but it is functional.
I'wrote it In about 15 minutes, mostly by ripping apart
MacFlix. It has no input routine, so you have to change the
filenames and reassemble to change the input and output
filenames. Sorry but the input routine I usually use is about
200 lines long and would over shadow this article if I printed
it too! All the assembly program does is load the TI-Artist
picture file and output it to a DIS/FDX 128 file which is just
the ASCII equivalent of the numbers contained in the
picture. The output file will be twice the size of the input
file, since each byte is converted to a two byte ASCII
representation. If there is not enough disk space you will be
dumped back to the title screen. In any case, below is the
program.

DEF START
REF DSRLNK
REF KSCAN
REF VDPWA, VDPWD
REF VSEW,VMBW
REF V3ZBER, VMER

*

PAB EQU >AC0

PABBUF EQU >AS80

PICBUF EQU  >1000

*

WS EQU >8300

L]

HEX TEXT “0123456789ABCDEF’

&

TIAPAE DATA >0500,PICBUF,0,>2000,10
TEXT ‘DSKZ.TIR B
EVER

PSTPAB DATA >0002, PABBUF,>8080,0, 9
TEXT ‘DSK2.POST
EVEN

WRITE BYTE 3

CLOSE BYTE 1

START LWPI WS

LIMI © the just in case...,
=

BL AVMBWD

DATA PAB, TIAFAB, >40

BL. @DSR get the file...

JMP  ERROR

LI RO,PICBUF
LI R1,>C000

LI R2,6144

EBIWF QVMER copy picture into cpu
memory. . .
* .

BL.  ROUTOPN create an output
file....




CILR R6

to 23)

*

NXT10 CLR R7

n

*

NXT1: CLR RS

{0 to 31)

*
MOV RE,RS
SLA RS,8

o .
AT  R5,>C000

charanter row
A R7,R5

NXT20 MOVB *RS,R1
SLA R1,4
SEL R1,12
MOVB QHEX (R1),RO
SWPBE RO
MOVEB *RS,R1
SRL R1,12
MOVE QHEX {R1),R0O
AT R5,8

definition. «d.
BL ROUTWRD

INC RS
CI Rs,31
JLE NAT20

NG R7
CI R7,7
row?
NXT1S

wolumn
CI RE,23
JLE MXT10
BL 8QUTCLS

ERROR BIMP &0

* ¥ F X * *

OUTOPN CLR Q0UTLOC
to start...
CLR &PSTPAR+6

MOVE gOUTLOC, @PSTPAD

*

OUIDSR MOV R11, QOUTDRT
*
BL  &VMBWD
DATA PAB, PSTPARE, 40
output pab...
*

BL  @DSR
JMP  OUTOPE

CB  GPSTEAB, @WRITE

character row counter (0
bit column counter (0 to

character colunm counter

*256 bytes per character
point to the appropriate
get bit column offset
get next byte

kill high nibble

get low nikble as ascii

reget he byte

get high nybble as ascii
point to next character

output this word....

count a column...

done with this bit row?
nope. ..

inerement a bit column

done with this character’

nope... do next bit

next character row....

done with picture?
nope. keep going...
close the file...

and get cut...

RO=) or not as well...

graphics DSR routines mostly

pop buffer pointer back

recerd number to zero
wpoode Lo open. .

save return address
copy the

error.....

are we writing?

JNE OUTDRX nope
INC W@PSTPAB+6 yes, so skip to next
racord.
*
OUTDRX B Q0
OUTDRT EQU §~2
&
OUTOPE B ASAVERR flash the screen and
return to picture...
*
* r0 is the word to send out . ., .output buffer
flushed when 64 words
* are loaded...
+*
* yses 0 to r3
*
OUTBOF BSS 128 output buffer
OUTLOC DATA O current offset into
cutput buffer
*
OOTWRD MOV R11,R10
* .
MOV QOUTLOC,R1 fetch current output
location
MOV RO, @OUTBUF (R1} install output word
INCT R1 next output address
CI R1,128 do we nead to flush
buffer?
JEQ OQUTHR1 ves
MOV R1, QOUTLOC save new output location
RT and return
&+
OUTWRL CIR @GUTLOC new buffer . .
*
MOVB @WRITE,APSTPAB change to write mode
BL AVMEBWD copy data into vdp
DATA PABBUF, OUTRUF, 128
*
MOV R10,.R11
JMP OUTDSR
*
QUICLS MOV R11,80UTCIR
MV @OUTION, R1 is output buffer empty?
JEQ OUTCL1 ves, so no need to
flush...
LT R10, OUTCL1 make sure we return
JME  OUTWR1 no, so flush the output
buffer
*
ODTCILI MOVR GCT0SE, APSTPAR
LT Ri1,0
OUTCIR EQU  $-2
JMP OUTDSR
*
L
* dsr subroutine,..returns $+2 if no error
*.
*
DSR LI RO,PAB+%
DSRDAT EQU §-2
MOV RO, @-8356
BINWP @DSRLNMK .
DATA 8
JEQ DSRNCP error...
INCT R11 no error...




DSREX RT

return to either

DSRNOP LI  RO,PAB+1

BIWP EVSER get error

SRL. R1,13

JNE DSREX not arror zero sc return
correctly

LI R1, >0007 error 7 if it was errocr
0

JMP DSREX
*

* vmbwd is useful and self explanatory...
*

VMBWD MOV

*R11+,R0O
MOV *R11+,P1
MOV *R11+,R2
BLWP AVMBW

RT

END

*

After you have run this program, you have an output file
that contains the entire picture as one really long hex string.
Imagine it as being the worlds Jongest CALL CHAR string! [
then transferred the file to a Macintosh using an XModem
transfer. The file may then be directly opened by any
popular Macintosh word processor. I used Microsoft Word
Version 3.02, which is probably the most popular and
powerful Mac word processor widely available,

When in Word, type in the PostSeript program listed below.
When you encounter the line the reads “INSERT DATA
HERE” include the data file from the TI and then continue
with the final line.

.page.

/concatprocs

{ /proc2 exch cvlit def
/procl exch cvlit def

/newproe proel length proc2 length add
array def
newproc 0 procl putinterval

newproc procl length procZ putinterval
newproc cvx

} def

finch { 72 mul |} def
/picstr 3 string def

/imagetia
{ 256 192 1 [ 256 0 0 ~192 @ 192 ]
{ currentfile picstr readhexstring pop }
image
} def

gsave
3 inch 4 inch translate
2 inch dup scale

{1 exch sub } currenttransfer concatprocs

settranafer
imagetia
*%%k TNSERT DATA HERE **x**%*

grestore

This program was taken from page 149 of PostScript

Language Tutorial and Cookbook from Adobe Systems
Incorporated. Published by Addison-Wesley.

The program is straight PostScript except for the use of the
".page.” command as the first line which is only necessary
when printing from Microsoft Word. If using Word this
document must be formatted in the “PostSeript” style, Once
the program is typed in, select the entire document and
select “Styles” from the “Format” menu. You want the
“PostScript” style, so type that in for the style name. This
tells Word to print the document as PostScript program. For
details on sending PostScript using Word see pages 279-284
of the “Reference to Microsoft Word” which is shipped as
part of the Microsoft Word package. If you don’t use the
PostScript style sheet, you will just get a print out of the
PostScript program rather than the picture.

By messing around with the numbers in the lines

3 inch 4 inch translate

2 inch dup scale
you can charige the size of the picture. For a details
explanation of how to stretch, rotate, enlarge, and otherwise
the picture, see the appropriate reference manuals from
Adobe. They are a bit more clear than the T1 Editor/
Assembler manual, although not by all that much!

If you are print from something other than Word, you will
probably need to include a “showpage” as the final line in
the program. Microsoft warns against doing this in the
Word reference, so it is not included above.

While this procedure seems somewhat long and confusing, it
is really quite straightforward. If you have access to a
PostScript printer and have some patience, I hope you'll give
ita try. Itis certainly a rather involved procedure. It would
be possible to write a more complete program on the 99/4A
which would produce a file that includes both the PostScript
program and the data, but alas I didn’t do that here. If
someone does this, please let me know. I would be interested
to see the results.

Well. T had intended to end the article at this point, but it
seems that there is about a half a page more of space to fill. I
don’t have any particularly unique ideas on my mind (is is
now about 3AM) so I'll just explain a few details of the
assembly program. The program actually illustrates a few
useful programming techniques.

The first, is the use of two of my favorite subroutines. The
first is the cver popular VMBWD which is simply a VMBW
that takes its values from the three data words following the




calling instruction. This is really useful for writing certain
kinds of code, in particular those that deal with DSR’s. 1 find
code written with the VMBWD to be a bit easier to read.
Also I have found that there are so many many places in
some programs where you just do a LI R0,xxx and so on to
prepare for a VMBW that this approach saves a few bytes in
larger programs. In some cases I have also written VMBRD
routines as well. Enough said on that one.

The DSR subroutine is used to call the DSRLNK for all
peripheral access. This has the advantage of putting all the
code to load >8356 and do error checking in one place. Error
checking is a real hassle, and it should be done after every
DSR call to be safe. This routine uses a simple approach. It
returns to the next address if there was an error. This
address contains a JMP instruction to an error handler. If
there is no error, the return address is incremented by 2 and
the JMP instruction is skipped, so the program continues on
normally. This approach works fine for smaller programs.
For a larger program, it would probably be better to have a
DATA statement following the DSR call. The data would be
the address of an error handler. The DSR subroutine would
then branch to this address in case of an error. This has the
advantage of allowing for error handlers anywhere in
memory, not just within 256 bytes of the subroutine call.
Each approach uses about the same amount of memory.

If you study thje program listing you'll note the section titled
“graphics DER routines mostly”. These routines handle the

output of the DIS/FIX 128 file. Ilifted them directly from
MacHlix (publishing commerical software source code, see
what a BCS membership gets you!!!) with no changes. These
routines are very helpful in situations where you need to
output bytes to a file composed of fixed length records. The
call to the close routine (OUTCLS) makes sure that all data
has been output before closing the file.

As a final note (and one in search of a law suit I'm sure) I
would just like to mention that I do not expect that Tex_
Comp will be selling this article or its contents in any form. 1
mean they wouldn’t econsider releasing a disk called
“PostScript - More” or “More ScriptPost” or event “More
PostHlicks” or something equally creative. Idon’t think it
would sell all that well. It certainly wouldn't justify taking
out a full page in MICROpendium. But then what do I know
about marketing, or originality? Certainly no one could puta
price on my lack of knowledge. Or strange writing habits at
odd hours.

Just for the record (related to the above paragraph is some
strange meta—physical way, but not the rest of the article) my
MacFlix program was named by the wife of Scott Darling.
She suggested MacFlicks or MacFlicker. In a fit of
overwhelming cleverness I changed the “cks” to an “x” thus
arriving at the now infamous MacFlix. I do admire the
incredible perception of those who managed to reverse my
thought processes.




