Bayou 99 Users Group，P．O．Box 921，Lake Charles，La． 70602

MEETING NOTICE

The January meeting of the Bayou 99 Users＇Group will be at 7：00 P．M．on January loth at the Nelson Elementary School．Anyone interested in learning to use the capabilities of the 99／4A is invited．

CONTENTS

Articles

Pre－scan
Passing Variables
Arrays
Peeks and Loads

Features
Lagniappe
Election Ballot
For Sale
Tips from the Tigercub

MINUTES

The December meeting consisted of discussions of various software packages which have recently become available．Notice was made of reduced prices for TI software due to TI＇s efforts to avoid returns of unsold products．

Vice－President Richard Mitchell gave an impressive demonstration of the ra－ pid transfer of memory image screens．The setup used by Richard utilized the Cor－ Comp Disk Controller Card．

A few copies of Tom Nicosia＇s＂Death of a Computer＂as published originally in Texas Monthly and reprinted in Infoworld were available to members at the meet－ ing．Two command modules were awarded as door prizes．

DUES

Beginning January 1， 1985 all members whose dues expire will be requested to add $\$ 1.00$ per month additional for each month between their anniversary date and July l，1986．For members renewing in January，the requested $\$ 18.00$ will cover mem－ bership dues for 18 months．Those due in July will pay the usual $\$ 12.00$ and each succeeding month＇s dues will be one dollar less until December 1985 when the dues will be $\$ 6.00$ to cover the six months until July．After December 1985 all member－ ship dues will be payable in July each year．

This arrangement will simplify the present difficulties experienced by the Treasurer in collecting and crediting dues payments．

Your Newsletter Editor will also benefit greatly from this resolution adopted by the Officers of your Users Group.

According to our membership records, the following members' dues are payable January 1, 1985: William F. Campbell - Glenn Delahoussaye - Ken \& Colleen Jordan - Andrew McGowan - and - Melvin Schmidt.

These members are requested to remit their dues in the amount of $\$ 18.00$ for an 18 month membership until July $1,1986$.

The following members will be requested to remit $\$ 17.00$ for membership from February 1 to July 1, 1986: L. M. Lowery - Mark Hammon - Mark Wilson and - Bruce Wyman.

$$
\frac{\text { PRE-SCAN }}{\text { BB Staff }}
$$

An often neglected feature of extended BASIC is the ability of a programmer to decrease the length of the delay between the time RUN is entered and when the program starts. This delay is the time required by the CPU to pre-scan the program and allot space for arrays, data, and variables. The time required for this pre-scan of the program increases with the complexity and length of the program. If the delay time becomes bothersome, Extended BASIC programmers can utilize the pre-scan commands !@P- and !@p+ to turn the pre-scan step off and on.

When RUN is entered pre-scan is on and continues until the computer en-
 off until a !@+ is encountered. It is good practice to have the pre-scan "switch" isolated by itself on a program line. If a multiple statement line contains either of the "switch" commands !@p- or !@+, the swtich command must be the last statement on the line.

If the program is working successfully, enter the off switch, !@p-, after the OPTION BASE and DIM statements and when a new variable, CALL, DEF, SUB, or SUBEND statement occurs, precede the statement with a program line containing the "on" switch, !@+. By turning pre-scan on and off as required to include the first occurrence of a statement requiring memory allocation, the pre-scan time can be significantly reduced.

Remember, if the pre-scan were turned off when a space allocation in memory was needed, a syntax error will occur when your program reaches the statement which should have been included in pre-scan. The easiest. way to prevent this kind of error is by using a multiple statement line (or lines) to list all the variables, CALL, DIM and DEF statements on program lines by-passed by a GOTO instruction when the program executes. These lines should appear in the first part of the program. If DATA statements at the beginning of a program offend you, the pre-scan can be turned on again prior to DATA statements at the end of your program.

An example of how the pre-scan switches could be used follows:

```
100 CALL CLEAR : : OPTION BASE 1 :: DIM AR\$(10,6)
110 GOTO 160 :: CALL KEY :: CALL HCHAR :: CALL VCHAR :: CALL COLOR
120 CALL SCREEN :: CALL SOUND :: CALL SUBP
130 ALPHA, A, B, R, J, K, X, Y, Z, NAME\$, ST\$, CT\$, ZIP\$, STATE\$, NO\$
140 DEF \(F(W)=X^{\wedge} 2+Y^{\wedge} 2\)
150 !@-
160 REM
. Program
```

```
1790 REM
```

1790 REM
1800 !@+
1800 !@+
l81O DATA NAME, STREET, CITY,STATE, ZIP, PHONE NO.
l81O DATA NAME, STREET, CITY,STATE, ZIP, PHONE NO.
1820 END
1820 END
Using these "switch" commands in a program will require careful planning the first few times they are used. The use does, however, become easier with practice and the rewards are worth the effort. The frustrations of sitting in front of a computer that is giving no indication it is doing anything increase rapidly in just a few seconds. You now can significantly shorten a delay that occurs with every program.

```

\section*{PASSING VARIABLES}

Passing variables from one part of the program to another presents no problem to the programmer of the TI-99/4A in any of the programming languages available; BASIC, Extended BASIC, FORTH, Pascal and Assembly Language reserve an address in memory for each variable defined in your program. The syntax varies depending on the program language, but each variable will have its own address and the vaiue stored in that address changes according to the values generated by the program. Most operating systems require variables to be initialized. An HP computer program must have an initial value for each variable. That is to say, if you intend to use a variable named \(Z\), then you need to have a statement, \(Z=\varnothing\) in the program. The \(99 / 4 \mathrm{~A}\) and the IBM-PC initialize all numeric variables to zero and all string variables to null before the program runs.

The TI-FORTH and TI Assembly Language, the variables are initialized at the start of the program. In FORTH you would enter \(\emptyset\) variable \(Z\); in Assembly Language you would use \(Z\) DATA 0 . Of course, the initial value could be non-zero and we would use 3 VARIABLE \(Z\) (FORTH), \(Z\) DATA 3 or \(Z\) TEXT " 3 " (Assembly) or VAR \(Z\) : INTEGER (PASCAL).

Extended BASIC permits passing of specified variables to a subprogram by use of CALL (subprogram name) and SUB PROGRAM NAME (var list) statements. If a subprogram has been named TEST, then CALL TEST will cause the program to branch to SUB TEST if the statement was SUB TEST \((Z, A)\), then the values of \(Z\) and \(A\) at the time the branching took place would be transferred to the subprogram. In either BASIC the program may be interrupted with FCTN 4(Break) or (Clear) and the value of any variable can be obtained by entering PRINT \(Z\) or any other program variable. The fact that all variables have an initial value can be shown by a PRINT command for a variable not used in the program. If you typed PRINT DECEMBER and DECEMBER had not been assigned a value or had not been mentioned before, the value \(\varnothing\) would be printed on the screen.

As stated above the value of a variable is always present in memory and if that variable is called by the program or a command, the value of the variable is retrieved from the variable's address. However, if a RUN, OLD or MERGE command is entered, all variable addresses are cleared of any values or characters they may have contained.

The first time this caused a problem for me was in writing an accounting program that used more memory than was available. The program was then broken down to separate the one large program into four smaller programs and in this way keep the memory requirements to sizes the 99/4A could handle. My disk now had a short LOAD program, a journal ENTRY program, a SORT program, and a POST program. The main menu was contained in the ENTRY program and selection of the sort and post option in the menu branched to RUN statements which loaded the required supporting program. These supporting programs were concluded with a RUN statement to reload the ENTRY program with its menu.

Since the ENTRY program contained security routines and instructions that did not need to be repeated each time a chained supporting program concluded, a way was needed to set a flag that would cause the program to bypass password and instruction steps and start with the main menu. All variables and there were many written to a file prior to any RUN statements. The supporting programs then opened the appropriate file and read the values to be used. The supporting programs then wrote the new values to a new file. For example, daily transactions were entered from the ENTRY program and written to a random access disk file. If a sort was requested, the SORT program read the entries from the first file, performed the required sort and wrote the results to a second file. This offered a way to set a flag in the main program. A file could be opened and a value read which an IF... THEN statement could use to bypass the program steps which preceded the display of the main menu. This could cause a lot. of problems since the file was permanent and DELETE cannot be used in a TI BASIC statement.

A solution was discovered by accident. While writing a program which used every character code available for a graphics character, I needed to run another program. After running the second program, I returned to the first and found that the values assigned to certain character codes were unchanged. Further checking confirmed a pattern identifier assigned to character codes 127-143 with a CALL CHAR statement remained unchanged until a new value was assigned or the computer was turned off.

Changes were then made to include a CALL CHAR statement in each supporting program which used one of the character codes (127-143) and a pattern identifier (a 16 place string can be used). When the supporting program loaded and ran the ENTRY program, the ENTRY program immediately checked for a particular string with a CALL CHARPAT statement. If the proper string was present, the program immediately jumped to the main menu solving the delay problem.

The utility of this CALL CHAR statement can be extended to pass variable values to a program that has been chained to another with the RUN statement.

A short demo program will illustrate the use of CALL CHAR and CALL CHARPAT to pass a value.

```

1]O!+% *
12O :* DEFO FFQGRAM *
1?0:* = =4+==: *
140 : WFASSING VAFIABLES*
1FO !* BETMEEN FFOGFAMS *
160 '* Ey *
1.0 ! * Foqer Hicrerson *
190!% Eavou %% U.G. *
190 ! * *

```

```

Z1O EALL LLEAF:
2O CALL CHAFSET
SO FFINT "ENTEF THE VALIIE TO GE FASSED USING A "D* FOF THE DEEMMAL FOMM
T."
24O FFINT "FLOATING FOINT EXFONENTS AFEENTEFED NOFMALLY FFECEDEO GY AN
*E" ""
ZGO FFINT "THE FINAL CHAFACTEF FUF ANY NUMEFTO MUGT BE AN "F" " YGE
SAFE FA
SSED ON IN THE FOFM DF A STRTHG UARTAELE."
2GO FFTNT "TT GTLL BE NECESSAFY FOF THESTFING TO BE CONVEFTED EY A VAL S
TATEMENT
BEFOFE USE IN ANY COMFUTATIONS."
27O INFUT S* !INFUT NUMEEF AS A STEING UAFIAGIEE
2BO IF FOS(S禺"F", 1)=0 THEN FRTMT "YOU MUST HAVE AN "F: AE THE FINAL CHA
FACTEF""
:" GOTO 27O ! TO MAEE GUFE YOU' READ THE DTREOTIONS

```

```

OO FUN THO ! CLEAFS ALL UAFTAELE MEMOFY LOCATGOHE

```

```

"% FE!|! ¢%

```

```

S4O EFPOS(GT, "E",)! LOCATE E FOE EXFOREMTTALS
OO F=FOS([奚,"F",I)! LOLSTE END OF GTFTNG
SO 1F D=0 THEN 42O
T, [**SEQ*,G\$,1,D-J)!SEFAFATE 1NTEGFF

```

```

ヲO F%=SEGक(Q* D+1,E-D-1) !SEFAFATES FFACTTON
4O Et=SEG* (Gt,E,F-E)!SEFAFATES EXFONENT
41口 EOTO 4\sigmaO
42O IF E=O THEN 4%O
4% (5-5EC* (E*,1,E-1)
440 F\#\#:""
450 Es=5EE%(G%,E,F-E)
40% פणा0 4%0
470 1%=5EG*(G%,1,F-1)
400 E%=""
4% 1F O-% THEN Fक="" ELSE F%\#"."
5OO FRTMT Iक\&Fक\&F%\&E%

```

```

59O FF[NT N\$
GO M=YAL SN?: CDNVEFT STFRNG TO NUNEEF
G4O FFINT N*S+N/G !PEFFORM COPFUTATION FOF FROOF
WO ENO

```

A reader's challenge is to add to the program so that both positive and negative numbers and exponents can be handled.

ARRAYS
Arrays can be one of the most useful tools available to a programmer. One of the most used applications is to input data to a file and to read it back from a file. One dictionary definition states, quite simply, that an array is "a regular grouping or arrangement." TI's BASIC Users Reference Guide says "an array is a collection of variables arranged in a way that allows you to use them easily in a computer program." The reference guide goes on to say the most common way of grouping variables is a list which is called a one-dimensional array.

Arrays may be one-, two - three - or up to seven-dimensional when using the TI-99/4A and each is a collection of variables. Each value in an array is an element of the array or as some sources describe array elements, a subscripted variable. The subscript is in reality a pointer which is shown in parenthesis following the array name. Let's back up momentarily and find out what we need to know about array names. First, an array name must be consistent with and identify the types of variables in the array. Arrays of numbers must have numeric variable names; i.e., X, AA, A2, LIST, etc. Stirng arrays must likewise have string variable names; i.e'., X\$, AA\$, GROC_LIST\$, etc. and an array name must not duplicate a variable name used elsewhere in the same program. For example, the variable \(X\) and an array element \(X(1)\) cannot both be used in the same program. The use of the numeric variable \(X\) does not prevent the use of an array named \(X \$\) however.

How do we use an array? Again referring back to the BASIC Reference Guide, a one-dimensional array is simply a list, and so for a list, we would use a one-dimensional array. If the list will contain no more than 10 items, we can assign values to \(A(0), A(1), A(2) \ldots A(9)\) without any problems. If, however, the array will contain more than 10 elements, the array must be dimensioned.

To dimension an array a DIM statement followed by the array name and number of elements (items) to be included on the array. For example, if we want to list the items on our grocery list which we named LIST\$, the dimension statement would be DIM LIST \(\$(25\) ) which would provide a variable for 26 items on a grocery list. Did I say 26 ? Yes, since the subscript for the array variable start with zero. If you want the first element to be LIST(1) instead of LIST\$(0), you need only to include the statement OPTION BASE 1 in your program. Both OPTION BASE and DIM statements should appear early in the program with OPTION BASE ahead of DIM.

These one-dimensional arrays are easy to use and often so convenient that programmers sometimes use several one-dimensional arrays when a two-dimensional array would better serve our purpose. If a list of the members of your bowling team were needed and their handicaps were also needed, an array NAME\$(10) (we have some extras on the team) and an array HCAP(10) could be kept where NAME \(\$(5)\) was Charles Smith and Charles's handicap was in HCAP(5). Examples of programming with single and multi-dimensional arrays will be given in a later issue.

\section*{LAGNIAPPE}
* SCI Tech plans to market a 64K RAM disc card for the 99/4A expansion box. The card will be expandable up to 256 K in increments of 64 K . The card will be a disk emulator with an information transfer rate over 10 times faster than with conventional disk drives.
* In the "Smart Programmer" from Millers Graphics we have learned that Millers Graphics has a contract to work on the firmware for the RAM Disk Card. In the same article was the information that an external power supply option will be available. The date of release or price has not been released.
* In Tips from the Tigercup 非16, Jim Peterson offered a challenge. (1) "How can you store a hundred or more values of any size, positive or negative, inter or non-interger, even in exponential notation, without dimensioning an array or opening a file?" And, (2) "How can you link programs by a RUN statement, thereby losing all data, and recover those values?" Saving them on the screen is one way, but the challenge is to find a better way. How about working on these challenges! See the article "Passing Variables" in this issue.
* The Exceltech Extended BASIC modules can be purchased for \(\$ 79.95\) in quantities of five or more. If you need this module (everyone does) and you don't have one yet, let one of the officers or the Library Committee members know. A few members have already said they will buy and we need a couple more orders to get the full discount.
* The Bayou Byte now has a TI Bulletin Board (TIBBS(tm)) program. Roger Hickerson purchased the program which is now set up and operating at his house. The telephone number is 474-6144 and the normal operating hurs are 8:30 P.M. io \(10: 30 \mathrm{~F} . \mathrm{m}\). Roger would like someone to take it over so that it can be available several more hours per day and all day on weekends. A double disk drive, Hayes 300 (or 300/1200) Smart Modem and 32 K (or 128) memory expansion is required equipment. If you have the time and equipment, give Roger a call at 477-3687
* We have a copy of Tigercub Software's Catalog \#5 in the Library. Take some time at the next meeting to look this catalog over. There are entertainment and educational programs for all ages. The listening, learning and writing music programs range from excellent to exceptional. The price is only \(\$ 3.00\) each for cassette or disk, plus a few cents postage. These titles will never be available in the B99UG Library, but the Library will send your order in if you ask them.
* Thanks to Mike Kelley, 4013 Honeycutt Street, San Diego, CA 92109, TIBBS phone \#F619/276-3173, we have a tip for Terminal Emulator II users. If you are tired of the TE II screen colors, the next time you are ready to go on-line, enter all the default values and have your modem on, then type CTRL., SHIFT G, FCTN V, CTRL., Shift 9, Shift = and then choose a foreground and a background color with:
\begin{tabular}{|c|c|c|}
\hline Black & Cyan & \$ Dk. Green \\
\hline Med. Green & Med. Red & - Magenta \\
\hline \# Lt. Green & Lt. Red & Grey \\
\hline \$ Dk. Blue & * Dk. Yellow & / White \\
\hline \% Dk. Red & + Lt. Yellow & \\
\hline
\end{tabular}

Finally, type CTRL. and Shift 10.
The screen changes color after the second (background) color is entered, but you must complete the entry to gain control of the keyboard to print to the screen.

When the commands are complete, the color change occurs on both the originators and receivers screens.

\section*{FOR SALE}

New 300/l200 Baud Hayes Modem - Vernon Hill
Call 478-3817 After 7:00 P.M.

PEEKS and LOADS

> \begin{tabular}{c}  "The Original" \\ Atlanta 非 TIBES \\ \hline \end{tabular}
**CALL LOAD \((-31806,16) . . D I S A B L E S ~ F C T N ~ Q U I T ~ K E Y ~\)
**CALL LOAD (-31806,64)..KILLS SPRITES
**CALL LOAD \((-31806,32)\)..DISABLES AUTO SOUND PROCESSING
**CALL LOAD \((-31806,128)\). DISABLES FCTN QUIT, SOUND AND SPRITES
**CALL LOAD \((-31806,0) \ldots\)...RESTORE ANY OR ALL OF THE AEOVE
**CALL PEEK \((-31974, A, B)\). in the command mode. Then..PRINT A*256+B-1776. This is roughly the equivalent to the SIZE command in XB. The 1776 figure is the app:ox. overhead in TI BASIC. Xe hias slightly mo:e. If you have ever had a very, very long program and are unable to run it with your disk drives, this is for you. It is much easier with MINI-MEM, and that explanation follows.
**CALL LOAD (-31888,63,255)::NEW..frees memory/disables disks.
**CALL LOAD ( \(-31888,55,215\) )..then, RUN, NEW or EDIT to restore.
This is equivalent to CALL FILES(O) in XB (which of course you can't do) and has the effect of completely disabling the disk drives, and freeing up the memory allocated to the disks. Any calls to the drives, once the LOAD has been involked, will FREEZE THE COMPUTER, and you will have to turn it off to restore. Involking this command prior to loading your long program via cassette, will negate your having to turn your PES on and off again.

MINI-MEM. . . .
With the mini-mem installed, it's even neater, and you can save your very long programs on disk and use them again, WITHOUT having to turn your PES on and off. here's how.
1. Use the call load command above.
2. Load your long program via cassette. Then save EXPMEM2.
3. Restore your disk by typing CALL FILES(l).....NEW....then OLD EXPMEM2.
4. Save to DSK1. under whatever name you desire.
5. When you wish to use the long program, merely CALL FILES(1), OLD DSKl. PROGRAM, SAVE EXPMEM2, CALL LOAD \((-31888,63,255)\), NEW, OLD EXPMEM2.
6. Run your program.
7. If you still get a MEMORY FULL message at that point....sorry, I can't offer any more than that. To restore the DRIVES without turning the PES off and on, CALL LOAD (-31888,55,215)::NEW or RUN or EDIT.

TIPS FROM THE TIGERCUB

\section*{\#17}

Copyriant 1984
tIGencus sof TMARE
156 Collingwrod Ave., Colunbus OH 45213

Distriouted by Tigercub Software to \(11-9,9 / 4 \mathrm{~A}\) Users Groups for proaotional purposes and in exchange for their nemsletters. May be ieprinted oy non-arofit Users' broups, with credit to Iigercub Sottware.

Hy nem catalog ts is now availatle for 51.00 , which is deductable fron your farst order. It contans over 130 progras in Basic ano Extended Easic at only \(\$ 3.00\) each Colus 51.50 oer order for casette, packing and postaqe, or \(\$ 3.00\) for t1skette, Pfan).

The entire contents of Tips from the Tiaercub Nos. 1 through 14, with pore aoded, are now avallable as a full disk of 50 prograts, routines and files tor only \(\$ 15.00\) postpasd.

Wuts folts is a diskfull of 100 (that's right, 100!) XEasic Jtality subprograns in MEFGE fornat, ready for you to aerge into your own arograss. Contents include is type tonts. 14 text display routines, 12 sorts and shuffles, 9 data saving and reading routines, i wipes, a pauses, s Buste, 2 arotection, etc., etc., all for just \(\$ 19.95\) postpald!

And if you send an order before 31 Lecenoer 1584 and sention your user qroup, you Bay take a 10\% 015 count.

My 28-Colum Converter, publasned in tios 115, has a bug which causes a line to disappear it the wrao-around causes it to begin with a period and you are using the fornatter option. Here is the fix -

Change line 300 to read: 300 Fof \(W=1\) TO \(5: 4\) MERD CHs.Rs

Lhange lane 280 to read:
280 LATA E. \(\{, 8,3, \hat{A} \because, 8,1, \ldots 1\) in other words. your DATA itens will be the "at" slan above the 2 , the left
brace on the front of the \(F\) key, the anpersand on. the 7 key, the right brace on the front of the 6 , the carat sign above the b; the tilde on the tront of the \(k\), the asterisk aoove the 8 , the whatsit? on the front of the \(R\), the perioc, and the backslash on the front of the 2 .

A couple of other chanqes wall autonatically turn off the autonatic thll and ad just, and turn it back on. At the end of line 180, add :: Pfint 42: ". AF' and chanae lane 270 to Next J: PRINT 2:',FI:AU;"
:: CLOSE 12:: CLOSE 11:: End
Now, as long as the text strings in your proaran don't contan those stooball characters, all snould be well. homever, the proara nas one sore bug which 15 conion to all 28-cotumn converter proarans, ano for unich ! can fand no really good fix. If a oroaran line 15 exactly 80 characters lona, the next oroaran line will follow ionedately atter it instead of starting on the next line. So, load the file in the Editor node and scan it before you print it. If any of you whiz kids lor whiz grandpas) can figure out a may to progran around that prodef, please let ie know!

A challenge in Tips ig has to write a 1 -line XBaste proqral whach mould take only 70 seconds to scranale the numbers frod 1 to 255 into a conpletely randon seouence mithout duplication. kichard hitchell, the edisor of Effer 94 Fanthy, cane up with an algorithe which is shorter than iune and runs about 10 seconds faster - but it sure does chem up a lot of aenory!

1 DIM A (255), C(254):: RANUOA
12E:: CALL FEEK (-31808, E)::
IF \(B=0\) OR \(A(B)=B\) THEN \(\mid\) ELS
\(E C(D)=E:: A(E)=E:: D=D+1\)
:: 1F D=255 THEN ERD ELSE 1
Ann if you're rec: seyscribing to Super \(\overline{\text { Fi Monthly, you Snould be! It's }}\) only \(\$ 12\) a year, and full of very useful prograns, routines and tips. The adoress is Eyteraster Conputer Services, 171 Hustang Strept, Sulphup La 70663.

Also be sure to get the National

Mane:y-Kiner from the 99ers User: Group A5sociation 13535 So. \(H\) St. BJ. Bakersfield CA 93J04), also only 112 a vear. Their roster of writers is bequnning to look like the Who's who of the II world.

Danny michaed has written an assecoly lanquaqe progran whach wall ousp a qraphics screen to a dot natrix pranter (Epson or Geaini, and probaly others) in les5 than 50 seconos - and he's giving it away. Just send hie an anitialized aisk in d diskette aaler with an address label back to you and enough return postage. His adoress is houte 9, Fox 460, Florence al 35630.

Please, can ANYOME tall at were can buy diskette asilers at a decent price? The cheapest I have found are \(\mathbf{5 0 . 6 5}\) each for an \(11^{\prime} \times 9^{\circ}\) prece of cardboard!

Sanebody sald they liked ay Alohabet Song in the last Tias, and sonebody else wanted souf aore routines for the speech 5ynthesizer, so 1 put it all together ano here's what I case uo mith. If you can trop the atpinget without a mistake, you qet an encore.

100 call cleak
110 PRINT - alphaget 5 ONG \({ }^{\circ}\)
120 FOR J=1 TO 20
130 Pkint
140 nexf \(J\)
150 PFint - or Ji
- Feterson": :"halt, please"
;
160 OPEN \#1:"SFEECH", OUTPUT
170 DIA T \(3(26,2)\)
180 DATA \(12,12,4,4,1,1,4,7,7\)
, 8, 8, 10, 10, 10, 10, 12, 4, 4, 7.8,
\(6,10,4,8,8,10\)
170 FOR \(\mathrm{J}=11026\)
200 KEAD X

8SThs(x/10132)
220 Ts(J. 2) \(=\) CHFs \((\mathrm{J}+64)\)
230 Next J
240 Ts (23, 2) ="UOUELE"と"! "\&"!
"\&"U"
250 CALL CLEAR
260 frint "heady - type the
alphabet \({ }^{\circ}\)
270 T=1
280 K2=64
1) CALL KE! ! 3. K. ST)

J IF (5) \(111+(k(05)+(k) 90) T\)
HEN 240
310 IF Ki K \(2+1\) THEN 330
320 1=1+1
3j0 FFINT \#1:Isik-64, 1):Ts(k
-64.21
340 Call hlihar (12, 17, K)
\(350 \times 2=\mathrm{K}\)
360 IF Kive0 ThEN 240
370 IF \(\mathrm{F}=26\) THEN 340
380 60TO 270
390 FUR \(K=651090\)
400 CALL HCHAK \(12,17, \mathrm{~K})\)
410 Pk:INT \(1: 1 \leqslant(k-04,1): T \$(k\)
\(-64.21\)
420 NEXT K
430 FFINT I:T \(\$ 11,11\) : \(^{\text {NNON IV }}\)

:'A E":TSB. \(11:\) "SEEL"
440 FEINT 1:I (8, 1):"MONT Y QU":Ts(1U.1):"CDEE AND":Ts/1
2,1):"FLAY WIIH":IS(1, 1):"ME
-
4506050270
Terry hitkinsonts routine to redefine the cursor has aroused sone interest. \(=01\) fousted arounc and Eane up with thes version to change the cursor autoaatically to whatever enaracter, normal or resefined, that you indut.
 eterson

CALL CHAFFAT(A, H \(\$\) ): : FLR \(\mathrm{J}=1\)

J,2):: LaLL mex OEC(HS,U): T=T+1 : : H(J)=0 : NEXI J : : 120 CALL INIT: : CHLL LOADI日 196.63, 248)

130 CALL LUnJ (16076.67,95,82 , \(85.79,82,43.81\)
140 CALL LOAD \(122585 . \mathrm{H}(1), \mathrm{H}(2\)
),H(3),H(4),H(5),H(6),H(7),H
(8))

150 CALL LOAD \(112296,2,(1,3.24\)
\(0,2,1,48,0,2,2,0,4,4,32,32,3\)
6.4.911

CALL LIMK("Cursor")! Thàn
... TO TEfiky athinjun
170 SUB HEX. DEC(HS, D):: \(\mathrm{N}=1\) \(:\) DEC=0

180 FOR \(J=1\) TO LEM(H) : : As:
3EE (H:LEN(H) \(1-\mathrm{J}+1\), 1): : IF
ASC(AS) \() 58\) THEN \(H T=A S C(A)-5\)
5 ELSE HT=VAL(AS)
190 DEC=DEC+NIHT:: N=NH16: : NEXT J
200 IF DEC()32768 THEN D=DEC
ELSE \(0=-(65536-D E C)\)
210 SUEEND

> And of course you can almays color the cursor with CALL COLOR10,5,11) or whatever colors you like.

Host folks don't seen to knom, and sase folks refuse to believe, that the henory Expansion can't store strings. If you are one of the daspelievers, plug in your mesory Expansion and try this -

100 FOR \(\mathrm{J}=1\) 10 255 : : HS=hst
CHE\$(J):: NEXT J
110 DIH As \(11001:\) : \(x=x+1:\) : A

10
Now fun that. On ay console, 1 qet MEMUKy FULL when \(x=4 j\) althdugh the slie comano shows I have 24379 bytes of orogran space free fin the Expansion) - but only 204 bytes of fite stack in the consoie). Without the Menory Expansion I can get X up to 51, and in Basic to 53.

This can be a serious handicad if vou are running a progran which reads in a large number of strings from DATA statenents, or generates strinọs while running.

Of course, when the Menory Expansion is attached, the prooran and the nuaeric variables are stored in the Expansion, leaving al! the console nenory available for strings - but if you do not generate strings, the console eemory renains unused, because nueric data cannot overflow into 1t!

If your progran generates oore numeric variables than the fenory Expansion can hold, you can however store thes in the console by converting the to strinas, using jiks, and convert the back to nuspers with VAL. This wall allow you store an aocitiona! 700 to 900 or sore numbers. Try this -

100 D.M A (JU40), As (IU00): : F OF \(x=1\) TO JOOU: : \(A(x)=\) 识: : MKINT \(x\) : : NEXT \(X\)
\(110 y=Y+1:\) : As (Y) \(=5\) Fhs 199 )
:: fRINT Y:: aUTD 110

When vou get remofy full. tipe SIIE.

Dave kenkenderger gent ae a next latteroutine, and \(l\) glayed arcund mitn it a bit. for you mo are no: tootball tans. I'd better exarain that the wave 15 performed at football stadiums when the cheerlezders qet the fans to stano ano cheer, one seatina section at a time. across the stadiut - ans trose Jrunks on the root are usually cut of spouence.

90 ! Phe muke oy Layid reaken aeroer/acditied oy Jin retar SCn
IU0 ball Cleah : : Call sigee N(4)
110 fs="isthe waverif

2):4s

130 Ej="oress any key to sto 0.

140 D15-LAY Al(2.14-LENIEs) 121:63


170 FLK CH=71 TU \(118:\) : ChLL
 1:: NEXY Cy :; FUf \(\mathrm{F}=\mathrm{B}\) TO 12
 XI:
1/5 FOG T=1 TO 26 SIEF 5: :
 1: : mexf T
180 fuk lhe91 \(10: 23:\) : Call



- sT: XO lien olup
lyo AEX, LH: : befu led
```

memuity rull

```
Kappy nackin'

The Official Ballot for the Election of Bayou 99 Users' Group Officers is printed below. Please mark your choice of the Nominating Committee's Candidates or write-in names of another candidate of your choice. The reverse side of this ballot has been prepared with the address of the 899UG and has a postage stamp affixed for your convenience. Remove this entire page and fold the ballot as indicated by the dashed lines with the ballot inside and the address out, then secure with scotch tape or a staple.

Please mark XXXX and mail your ballot immediately. We expect \(100 \%\) return of these ballots. The final date for mailing is January 7 th to assure that your vote will be counted.



\section*{OFF ICIAL IBALLOT}

The Nominating Committee presents the following slate of candidates for Officers of the Bayou 99 Users' Group for 1985. Members are requested to indicate their choice of one candidate for each office. , Choices should be indicated by an \(X\) to the left of the Nominating Committee's candidate or a write-in candidate of your choice.

PRESIDENT


TREASURER
Robert Nordan

\(\qquad\) (Write-in)
VICE-PRESIDENT

please fold, ballot in - address out - and secure with tape OR STAPLE, THEN MAIL.


BAYOU 99 USERS* GROUP
POST OFFICE BOX 921
LAKE CHARLES, LA 70602

\section*{"NOTICE"}

\section*{BAYOU 99 USERS GROUP}
P.O. BOX 921

LAKE CHARLES, LA. 70602

MEETING 2nd. THURSDAY EACH MONTH AT 7:00 P.M. A. A._NELSON ELEMENTARY, 1001 COUNTRY CLUB ROAD, WEST OF LAKE STREET ABOUT 2 BLOCKS ON SOUTH SIDE OF COUNTRY CLUB ROAD.

Learn More About Yóur Texas Instrument Computer Join A Users Group Now

1985 MEETING DATES
\begin{tabular}{|c|c|c|c|}
\hline JAN & FEB & MAR & APRIL \\
10 & 14 & 14 & 11 \\
\hline MAY & JUNE & JULY & AUG \\
\(9 \cdots\) & 13 & 11 & 8 \\
\hline SEPT & OCT & NOV & DEC \\
12 & 10 & 14 & 12 \\
\hline
\end{tabular}


BA YOU 99 USERS' GROUT POST OFFICE BOX 921
LAKE CHARLES, LA 70603


EDVGNTGN USER: \(\Phi\) GROUF
F.O. BOX 11988

EDMONTON-ALEEFTA, CANADA TSy-GI```

