
Texas Instruments 

USERS OF\DLIP 
TORONTO 

FOB THE Ti-,99/4f1 CC1IPLITE'0, 
NI CM "8,0  la hi 13 E FR 	 r-t 13 E Fit 1 '5' E3 

flillE T 11111E USERS GROUP 
55 CORDELLA AVE. 
TORONTO, ONTARIO 
M6N 2J7 

[1 y 

CAN/86Afl 
AV 
PAK  
	%Tr  J! 

4  32, 	rr 
`

1
.  

r 	1 

::::-.:1)L;Ln user's Srouu 
F 0 Do:, il9E7 
TDMONTnN ALT; TF,J 7L1 



EXECLJ -7-  I Via comm I -r -7- EE 

PRESIDENT 	 Lloyd Lindsay 	(743-3868) 
VICE—PRESIDENT 	David Huggett 	(438-4020) 
SECRETARY 	 Mike Mattos 	(763-3244) 
TREASURER 	 Gary Willert 	(276-1076) 
OFFICER AT LARGE 	Boyd Brown 	(793-3761) 

NI E WSL E -7-  T E FR E iax -r Cl FR 

David Huggett 

L. I lE1 FR Pt FR le Ccirirtx TTEE 

Vest. Papadimos 491-8602 

PlEr-toila Fe EI-1 I 1=• FEES 

FULL MEMBERSHIP 	$25.00/year 
ASSOCIATE MEMBERSHIP S12.50/year 

All memberships are household memberships. 	An associate membership is only for those who live 
beyond the commuting distance of Toronto but who wish to receive our newsletter and nave access 
to our library. You are welcome to visit one of our general meetings before joining the group. 
If you wish more information contact our secretary in writing at the club address on the front 
cover or call and leave a message with his answering machine. 

NEXT MEETING 

The eetings are held on the last Tuesday of each month. Since the last Tuesday 
of December falls on Christmas day this newsletter is a November/December issue 
and the December meeting is on the eleventh. The next meeting will be on Jan 29 
1985 at Shoreham Public School, 31 Shoreham Drive in Downsview. starting at 7:30 
PM. Shoreham Drive runs east/west from Jane street north of Finch. The entrance 
to the school is a few hundred yards east of Jane on the south side of Shoreham. 

COMMERCIAL ADVERTISING 

Any business wishing to reach our membership may advertise in our newsletter. 	The rates are as 

follows. (width by height); 
FULL PAGE (6" X 7.5") $40.00 
HALF PAGE (6" X 3.5") $20.UO 

QUARTER PAGE (3" X 3.5") $10.00 
Please have your ads camera ready and paid for in advance. 	You may contact the treasurer for 
more information. 

NEWSLETTER ARTICLES 

Members are encouraged to contribute to the newsletter in the form of articles, 	mini 	oroarams. 
helpful 	tips, 	jokes, cartoons or even questions. 	A short article may be submitted in any form 
but if you don t have TI-WRITER it may be better to type the longer ones into your computer 
using REM statements, and submit the cassette or disk, which will be returned. 	We welcome the 
reprinting of any article appearing in this newsletter providing credit is aiven to 	the 	author 
and to 919. 	If more information is required, call Gary Willert. 

D I SCLA IMER 

Opinions expressed in this newsletter are those of the writers and are not necessarily those of 
the 9T9 USERS' GROUP. 9T9 cannot assume liaoilitv for errors or omissions in articles, programs 
or advertisements. 



F.FREE.BInaNimst FREEF, DFRrn 

By Lloyd Lindsay, CA 

Our club is continuing to grow and most of our newer members have found out 
about us from Texas Instruments or from the Home Computer Magazine. 

Dave Huggett, our editor, has recently purchased a business system and will 
soon be leaving us as he devotes more of his time to his new equipment. 
Dave has done a terrific job putting together the newsletter as well as 
providing us with technical articles and advice. 	I hope that he will continue 
to provide us with his technical knowledge after he has left. 

With the increase in membership and Dave's departure we must have additional 
members on the Executive. It is your club and we need your participation if 
the Club is to continue. Please contact Boyd Brown if you are willing to join 
the executive. You will learn more about programming and equipment at one 
Executive meeting than most people learn in a whole year. 

Sandro Lorenzen, a technical representative from Texas Instruments arrived at 
our November meeting as promised and did supply us with some useful information 
on TI 99/4A hardware. He will be attending as many future meetings as 
possible, and will keep us informed of happenings in the TI 99/4A hardware 
field. Remember that Sandro is not a software specialist, so please. no 
questions in this area. The swap meet went down very well, albeit a little 
less organised than last years. Nevertheless, most people got what they wanted 
and those of us who were selling had a profitable evening. This was an 
excellent opportunity for purchasing hardware, firmware and software at prices 
that were for the most part very reasonable. I beleive that at least two 
copies of Extended Basic were traded. At present it is almost impossible .to 
purchase this item in the Toronto area. Extended Basic availablilvis 
considered to be essential for the survival of this computer. Sandro has told 
me that there is a good supply of Extended Basic Modules available at; 

Triton Products 
P.O.Box 9127 

San Francisco, California 94128 

The price is US$ 99.95 and the company has a toll free number; l-800-2 7-6900 

LIEW<AF:Y 	 SF'DTLIGHT 

Multiplan 

by Lloyd Lindsay 

Our library has a new version of Multiplan which works much better than the 
original. The program diskette must be named TIMP before it will run. 
With this version your cursor will continue to move from cell to cell as long 
as you keep the function and arrow keys depressed. This speeds up the movement 
of the cursor and you now have a spreadsheet program as powerful as most of the 
ones used with other microcomputers. 
To speed up the entry of data you should turn off the automatic Recalculation. 
Otherwise. you will waste your time watching the program recalculate the 
spreadsheet each time you make an entry. 



EE FR EE " S HOW 

by GARY WILLERT 

BRANCH??? I DON'T SEE ANY TREES! 

There are a few areas that seem to be perennial favourites for questions. 
don't mean that the same people ask questions about these areas repetitiously 
(although some do), but rather that there always seems to be SOMEBODY that 
needs help in dealing with these areas. Three that come immediately to mind 
are branching, formatting and sorting. Therefore, in the upcoming months, this 
column will deal with these subject areas starting this month with branching 
techniques. 
Since the purpose of the "HERE'S HOW" column is to provide advice for beginning 
to intermediate programmers, all of the program examples that I use are in 
BASIC or Extended BASIC and most of the references used are also to those 
languages. 	However, it is important to remember that BASIC is not the only 
language in the computer world. Indeed, one of the most controversial topics 
today among educators is the choice of language to use in the classroom. 
One of the features of BASIC is the unstructured approach that is permitted. 
By this I mean that the language does not FORCE you to write your program in a 
certain way; in BASIC, as long as you don't make any technical errors in your 
use of each specific statement and follow a few simple rules such as closing 
your loops (even this is not always necessary), your program will RUN. The 
problem may be that it will not run very efficiently and may not even do the 
job you want if you have been lax in your organization. So, since the language 
does not force organization upon the programmer, he must exercise a degree of 
self-discipline to ensure that his programs run as well as possible. 
It is no secret that I, along with a great number of other programmers, favour 
TI Extended BASIC among BASIC languages. I am not going into a diatribe about 
the. features of the various BASIC languages - that is outside the scope of the 
coltmn - but it is worth noting in passing that the version of BASIC that we 
use is among the best. 	(Yes; I know it is slow, but I am talking about 
features.) 
One•of the features that makes Ext. BASIC so desireable is the availability of 
user-written SUBPROGRAMS. Let us, then, take a look at SUBPROGRAMS along with 
DEFINITIONS and SUBROUTINES. 

If you were paying attention at the beginning, you will have noted that I 
promised to deal with branching. Strictly speaking, this is not true. I am 
certain that anyone who has read his manual knows how to use GOTO and GOSUB. 
Therefore, I do not intend to give instruction on how to use these commands but 
rather to illustrate that there are choices to be made about when to use them. 
_GOTO! 
GOTO, although much used and readily understood, is really a controversial 
command. A number of programmers feel that the command should not even be 
included in any programming language. This seems a little extreme, and I must 
admit that I use GOTO in my own programs, but it is a command that should not 
be used indiscriminately. The problem, you see, is that excessive use of GOTO 
makes it hard to trace a program when you are trying to debug it and time is 
wasted making unnecessary branches. A large number of GOTO commands in a 
program usually indicates a lack of planning. Instead of allowing the program 
to flow naturally forward, some programmers write haphazardly, putting sections 
of program in wherever tey happen to be when they think of them and then 
correcting the flow by branching to and from that area of the program with 
GOTO. Each such diversion necessitates the use of at least 2 GOTO statements. 

IN GENERAL, any section of a program that is only accessed from one statement 
should be written as part of the main program. 
GOSUBI 
GOSUB is the most common branching command. The advantage over GOTO lies in 
the RETURN statement that ends the subroutine. It is faster to RETURN to a 
stored branch point than to GOTO a line number. This same feature makes the 
subroutine able to be accessed from a number of different points in the program 
and to RETURN faultlessly every time. 



IN GENERAL. any section of a program that is accessed from more than one 
statement can be written as a subroutine. In some cases, usually following a 

- 11°. test, it is also advantageous to use a subroutine even though the subroutine is 
only accessed from one statement. 
Subroutines are treated as part of the main program; any variables used are 
consistent with their use elsewhere. 
_SUBPROGRAM: 
Subprograms are one of the most poorly understood concepts among learning 
programmers. They are literally set apart from the rest of the program. In 
reality, what distinguishes subprograms is that very fact: they are NOT part of 
the main program. 
Subprograms come in a variety of forms: built into TI BASIC is access to a 
number of assembly-language subprograms, or users can write and use subprograms 
either in Extended BASIC or in assembly language. The features of subprograms 
are perhaps illustrated by looking at one that is built in. Let's use KEY. 
KEY illustrates most of the features that characterize subprograms: 
1) It is accessed by "CALL ...". This characteristic is self-explanatory. 
2) It has parameters that can be passed both in and out. 	The parameters in 
this case are _key-unitl, _return-variablel and status-variable:. The 
key-unit is passed into the subprogram and can therefore be either a constant 
or a variable. Since the return-variable and status-variable are both being 
passed out, variables must be used to accept the passed values. It is possible 
to use a variable that will pass information both in and out of a subprogram; 
this will be illustrated below. 
3) It can be accessed from any point in the program, using whatever variables 
are convenient or necessary. This point is related to the one above, but I put 
it separately because it represents, from the programmer's point of view, the 
most significant difference between subprograms and subroutines. 
4) It resides outside the main program. This seems self-evident when it is 
applied to a feature that is built into the language, but the point actually 
applies to all subprograms: assembly-language subprograms are, of course, 
stored in the memory expansion and Ext. BASIC programs are found at the end of 
the main program. 	Although this does not give quite the convenience of 
building a library on disk and loading those segments required, it is almost as 
good: you can write a library of subprograms and store it on disk with the 
MERGE option. Then, when you require a subprogram in your work, merely merge 
the required entry at the end of your program. Subprograms may be placed in 
any order (since they are accessed by name) as long as they all come after the 
main program. REMARK statements may follow subprograms. 
DEFINITIONS: 
Definitions are easy to ignore. They arenever referenced by name in the manual 
and sometimes it is difficult to see how the DEF command has any application. 
Definitions are used when it is necessary to perform exactly the same action on 
a variable in more than one place in the program. Since only one statement is 
involved, it impossible to perform tests on the results. 	If tests are 
,- equired, then you should be using a subprogram. 

I N11 la F.: EG -rI NI G TFi I V I Pt 

by Boyd Brown 

BOOKS for the TI p0 /4A 

Many of our new 99/4a console owners out there will have read the Beginners 
Basic book supplied with their sets, at least I hope they have, as this book is 
a well set out and informative document. At the back of this book, on page 
142., there is some information on a book by Herbert D.F'eckham on Basic 
Programming. The cost of this book is quoted as being $10.95 U.S. If this 



item is purchased from a Canadian boor store it could cost as much as $2o.95. 
While it is a very well written and thought out book it has a lot of 
inaccuracies in the programme examples which can prove to be very frustrating 
to the computer tyro. 
Other books are available and are on the shelves of most of the book stores in 
Toronto. 
USING AND PROGRAMMING THE TI-994A by Frederick. Holtz, Tab Books Inc. #1620 
$14.50 
This book not only has chapters covering Basic Programming. but it also extends 
to the history of computing, the architecture of the TI-994a, TI-994A Graphics. 
other programming languages. There is an overview of 71-994A hardware and 
software and a chapter on the conversion of other computer basic to TI basic. 
All in all a very useful and relatively inexpensive book. 
I have also located two other books on the shelves of our book stores, both of 
these contain ready to run programmes which are accurately transcribed and 
should run after being keyed in. 
THE TEXAS INSTRUMENTS HOME COMPUTER IDEA BOOK by David Ahl, Creative Computinc 
Press at $11.00 Cdn. 
Only one small chapter in this book is set aside for games, the rest of the 
book is dedicated to useful programmes in the field of science. probabilities, 
geometry, problem solving, compounding etc. A very useful book for the grade B 
and up student who has no programming skills. 
36 TEXAS INTRUMENTS PROGRAMMES FOR HOME SCHOOL AND OFFICE by Len Turner, 
ARCsoft Publishers at approx $12.00 Cdn. 
This book contains a number of ready to run progammes which are so simple that 
most of us should have been able to write them after digesting the information 
supplied with the basic console. However, for those of us who just want to 
read and type, they include programmes for the home, classroom and buisness. 
For example, there are programmes on, Salesmans Commissions, Hourly Wages. 
etc.. etc. Add it to your collection of usefull trivia. 
FinAlly, for information on just about anything to do with the T1-914A I 
strongly suggest a subscription to the new Home Computer Magazine. 

WANTED DEAD OR ALIVE 
A 100 Micro-Farads reward has been offered for the capture of Hopalong Capacity 
and his side-kick Eddy Current (possibly armed with electron guns), who escaped 
from their Weston Primary cell, where they had been clapped in ions. These men 
have not been seen faraday or so. They were charged with stealing Joules from 
a Volt and also with the induction of an le-year old coil called Milli Henry 
who was found half-choked. They were last seen riding Megacycles over the 
Wheatstone Bridge. These Megacycles were of low frequency, so they robbed a 
man of an A.C. motor and returned ohm by a short-circuit. The man offered no 
resistance. 
STOP PRESS...They eventually fell foul of the cunning Constable Mill-Amp of the 
Electromotive Force who brought them down to earth. 

One complete 99/4A system including, Console, Panasonic tape recorder 

Perhipheral Expansion Box, Tl Printer, Extended basic, Multiplan. T1 Writer 

Memory Card, RS-232, One Disk Drive, all in like new condition 

Make an offer on all or part, call 820-6762 



EASY TO ASSEMBLE 

by David Huggett 

In the last article we introduced the beginning beginner to assembly language. 
We showed how to print our name to the screen and then how to print it to all 
of the screen locations, making it appear to move. I suggested to try and move 
your name from the top down and the bottom up simultaneously. The significance 
of this is to remember where the last screen location was as we switch from top 
to bottom. As is usually the case in Assembly, there are many ways to do this. 
Since we are learning to work with registers we will use them to store this 
information. Also, the computer stores and retrieves information +aster from 
these registers than anywhere else in the memory. Looking at the sample 
program below, after the label START, you will see that we load these "memory" 
registers with the appropriate starting locations. We can also call them 
"buffer" registers, or anything you wish, they are just locations in memory 
that store information. But we have three buffer registers and only two 
starting locations, and the first register's value is twenty. I used that 
number so that when the names met in the centre of the screen they 
would meet on one line instead of between two lines. When we print from the top 
down we must erase the first character of the word on the screen, increment one 
space, then print the word again, in this case our name. This keeps the screen 
clear except for our name. When we print from the bottom up we must erase the 
last letter of our name, space to the left the number of letters in our name, 
then print it. That's why we need two memory registers for the bottom location. 
The rest of the program is self explanatory and when it is fully understood you 
may wish to try the counting program that follows this one. When you are 
comfortable with that one you will have initiated yourself into Assembly and 
should have less trouble continuing on from here. Good luck. 

uEF START 	 name of program 
REF VMBW.VSBW.KSCAN utilities used 

START LI 	R4,20 	top starting location 
LI 	R5.768 	the end of the bottom starting location 
LI 	R6,7 	 the bet:wining of the bottom starting location. 

LOOP 	MOV R4.RU 	 move R4 into RU. 	(text prints trom lett to right) 
LI 	R1,32 	 load R1 with the space character 
BLWP (iIVSEW 	 write a space to the screen 
INC RO 
LI 	RI.NAME 
LI 	R2.7 
BLWP @VMBW 
LI 	R3.0 

DELAY INC R3 
CI 	R7,700 
JLT DELAY 
MOV RO.R4 
MOV R5.Ro 
DEC R5 
LI 	R1,2 
BLWP @VSBW 
S 	Rh,RO 
LI 	Rl.NAME 
LI 	R2.7 
BLWP @VMBW 
C Ro.R4 
JGT LOOP 

SCAN 	BLWP @KSCAN 
MOVB (i31".7C RO 
JEO SCAN 
JMP START 

NAME 

	

	TEXT 'MY NAME 
END 

Increment RU 
load R1 with text at the label NAME 
the length of NAME 
write NAME to the screen 
load R3 with zero to start delay loop 

increment R3 by one 
\ delay compare R3 with 700 

if less. Jump to DELAY 
if not, store RO in R4, (to retain last top position) 
put contents of R5 in RO (now do the bottom position) 
now decrement R5 (bottom moves to the left) 
put space character in R1 
write space to the screen (erase last letter of NAME) 
subtract 7 (R6) from RU (length of name) 
load R1 with the text 
and R2 with length of text 
and write it to the screen 
see it the names have met 
if not, start again and move both names another space 
key scan routine 
has a key been pressed? 
1+ not keep on looping 
if ves, start again at the beainning 
the text at the label NAME 



COUNTING PROGRAM BY DAVID HUGGETT 
* 

DEF COUNT 	put COUNT (the program name) in the definition table. 
REF VSBW,VMBW,KSCAN put these utilities in the reference table. 

COUNT LI 	R4,>3000 ---tens 	 (together called the REF/DEF tab 20  
LI 	R5,>3000 ---hundreds \ buffer registers where we store the vale 
LI 	R6,>3000 ---thousands / of what is in these three columns. 

ONES 	LI 	RO,>172 	location of ones column on the screen. 
LI 	R1,>3000 	zero character. VSBW only sees MSB, >30 = 48 (ASCII 0) 

LOOP 	BLWP @VSBW 	write to the screen. 	(MSB = most significant byte) 
AI 	R1,>0100 	add one, only MSB (the left two numbers) are affected. 
CI 	R1,•3A00 	have we gone past nine? >3A = 58 which follows nine. 
JEQ TENS 	if yes, go to TENS. 
JMP LOOP 	if not then jump to LOOP and repeat the process. 

TENS 	AI 	R4,)0100 	add one to the tens register. 
CI 	R4,>3A00 	compare R4 to the number following nine, ASCII 58. 
JEQ HUND 	if the comparison is equal then jump to the HUND label. 
LI 	R0,>171 	if not then load RO with the screen location, and 
MOV R4,R1 	load RI with'the number in the tens register and 
BLWP @VSBW 	"bullwhip" it to the screen. 
JMP ONES 	go do the ones again. 

HUND 	LI 	R0,>171 	tens column location on the screen 
LI 	R4,>3000 	reset the tens buffer. 
LI 	R1,>3000 	load the zero character. 
BLWP @VSBW 	put zero in the tens column on the screen. 
AI 	R5,>0100 	add one to the hundreds register. 
CI 	R5,>3A00 	compare it to the colon (greater than nine). 
JEQ THOUS 	if equal go to the THOUS label. 
LI 	R0,>170 	screen location for hundreds column. 
MOV R5,R1 	load register one with register five. 
BLWP @VSBW 	write the single byte to the screen. 
JMP ONES 	now do the ones again. 

THOUS LI 	R0,>170 
LI 	R5,>3000 	* we could just use >30 but that is poor programming 
LI 	R1,>3000 	* practice as we will see at later levels. 
BLWP @VSBW 	*\ 
AI 	R6,>0100 	* \ 
CI 	R6,>3A00 	* \ same as above but in the thousands column. 
JEQ STOP 	* / 
LI 	R0,>16F 	* / 
MOV R6,R1 	*/ 
BLWP @VSBW 
JMP ONES 

STOP 	LI 	R0,>16E 	area where (after 9999 is reached) 
LI 	R1,NUM 	10000 is put on the screen. 
LI 	R2,5 	R2 is for the number of bytes to be written as 
BLWP @VMBW 	this is a multiple byte write command. 
LI 	R0,>205 	screen address where PROMPT begins. 
LI 	R1,PROMPT 	load into register one, PROMPT. 
LI 	R2,23 	number of bytes of PROMPT. 
BLWP @VMBW 	display to screen. 

SCAN BLWP @KSCAN 
MOVB @>837C,R0 	* similar to CALL KEY in basic. 
JEQ SCAN 
LI 	80,>16E 	screen address to start CLEAR from. 
LI 	R1,>2000 	equals ASCII 32 (the space character). 

CLEAR BLWP @VSBW 	put one space character on the screen. 
INC RO 	 goto next screen position. 
CI 	R0,>21D 	is it equal to the position of the "T" in REPEAT. 
JNE CLEAR 	if not keep putting space characters to the screen. 
BL 	@COUNT 	screen is cleared, start over again. 

NUM 	TEXT '10000' 
PROMPT TEXT 'PRESS ANY KEY TO REPEAT' 

END 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

