
Multicolor
A Library for Extended BASIC

by Stefan “SteveB” Bauch

©2022-2023 by Stefan Bauch

Version 1.1

Multicolor Library Page 1



Introduction 4

Loading the library 4

General Introduction 4

Color Codes 5

Multicolor Commands 5

Starting and stopping Multicolor Mode 5

CALL MCON 5

CALL MCOLOR(BCOLOR [, MODE]) 5

CALL MCDONE 6

Screen and Buffer 6

CALL MCCLR(BCOLOR) 6

CALL MCSYNC 6

CALL VPORT(ROW1,COL1,ROW2,COL2) 6

CALL MCMODE(MODE) 7

Graphic primitives 8

CALL PUTPIX(ROW,COL, COLOR) 8

CALL GETPIX(ROW,COL, COLOR) 8

CALL HLINE(ROW,COL,COLOR,COUNT) 8

CALL VLINE(ROW,COL,COLOR,COUNT) 9

CALL LINE(ROW1,COL1,ROW2,COL2,COLOR) 9

CALL SQUARE(ROW1,COL1,ROW2,COL2,COLOR) 9

Shapes 10

CALL SHAPE(ID,ROWS,COLS,PATTERN$) 10

CALL SHAPE2(PATTERN$) 10

CALL BLIT(ID,ROW,COL) 10

Sprites 11

CALL MCMAG(MODE) 11

Using Multicolor with XB 12

Compiling 13

Multicolor Library Page 2



FIXAL to fix all differences 13

The Lowercase Trick 14

Compiling with assembler support 14

Bringing it together 15

Creating Shapes 16

BSD License 19

Appendix A: Examples 20

Lines 20

DirMode 21

Train to Bisbee 22

Quix 22

Multicolor Library Page 3



Introduction
This library enables the use of the “Multicolor Mode” of the TI-99/4a with Extended BASIC.
This mode offers 16 colors in an unbelievable resolution of 64 x 48 pixels.

It has been tested with Extended Basic 1.1, 2.9 G.E.M. and RXB 2022D, but should work
with any Extended Basic. Furthermore it requires the 32k Memory Extension. It has been
tested with Classic99, JS99er.net and TI994w.

Loading the library
After CALL INIT you can load the library using CALL LOAD(“DSKx.MCOLOR”), where x is
the drive number where the library is stored.

XB 2.9 is recommended as it loads the library very fast and the CALL INIT can be omitted.

General Introduction
The library provides a set of assembler routines, stored at the Low Memory of your 32k
Memory Extension. Beside the code, a screen buffer is also created in this area.

There are two modes available.

1. Writethrough: All write operations are performed directly on the screen.
2. Buffered: All write operations are only done in the buffer and only written to the

screen, when a CALL MCSYNC is issued.

Which mode to choose depends on what you want to do. If you have only minor updates,
Writethrough may give the best results. If you often change many parts of the screen, the
buffered approach will suit you best.

The library is optimized for the buffered mode. Assuming you want to write a game, your
game-loop will include

● Clearing the buffer
● Painting the new frame
● writing the frame to the screen
● start all over again

The use of sprites is supported, but differs slightly from the normal use with XB. Please be
aware that sprites are independent of the buffer/screen synchronization.

The library comes with a definition file to use the library with the TiCodEd XB development
environment and Structured Extended Basic. In SXB you may omit the CALL LINK and use
the routines as they were XB standard routines.

Multicolor Library Page 4



Be aware that there are very few checks of parameters for performance reasons. All
coordinates are checked against the viewport. Though you might specify coordinates outside
the screen, they will not overwrite any other memory-location.

Color Codes
Please note, that color-codes are one number lower than in Extended BASIC:

0 Transparent 8 Medium red

1 Black 9 Light red

2 Medium green 10 Dark yellow

3 Light green 11 Light yellow

4 Dark blue 12 Dark green

5 Light blue 13 Magenta

6 Dark red 14 Gray

7 Cyan 15 White

Multicolor Commands

Starting and stopping Multicolor Mode

CALL MCON
CALL LINK(“MCON”)

Starts the “Interrupt Monitor” for XB. The monitor prevents the VDP RAM from getting
corrupted by adjusting the stack to the changed VRAM layout. See Using Multicolor with XB.

CALL MCOLOR(BCOLOR [, MODE])
CALL LINK(“MCOLOR”,BCOLOR, MODE)

Initializes the library, switches to Multicolor mode and fills the screen and buffer with the
given background color.

The MODE is “Buffered” by default and can be set to “Writethrough” with the optional MODE
parameter.

Multicolor Library Page 5



BCOLOR Initial background color 0 - 15

MODE Optional: Buffered = 0 (default), Writethrough = 1 0, 1

CALL MCDONE
CALL LINK(“MCDONE”)

Returns to standard Graphics Mode. At the end of the program the screen will be restored
automatically.

Screen and Buffer

CALL MCCLR(BCOLOR)
CALL LINK(“MCCLR”,BCOLOR)

Clears the buffer by setting all pixels to the background color.

BCOLOR Background color 0 - 15

Note: CALL MCCLR is the only draw command that does not honor the viewport for
performance reasons. If you want to clear only a square on the screen, use CALL SQUARE.

CALL MCSYNC
CALL LINK(“MCSYNC”)

Flushes the buffer to the screen (VDP RAM)

CALL VPORT(ROW1,COL1,ROW2,COL2)
CALL LINK(“VPORT”,ROW1,COL1,ROW2,COL2)

Sets the “Viewport” of all draw operations. By default, the whole screen can be used and the
viewport is set to 0,47,0,63, but can be changed to a part of the screen with this command.

ROW1 Upper row 0 - 47

COL1 Left column 0 - 63

ROW2 Lower row 0 - 47

COL1 right column 0 - 63

Multicolor Library Page 6



Think of (ROW1,COL1) as the upper left point and (ROW2,COL2) as the lower right point of
the viewport square. Therefore be sure that ROW1 < ROW2 and COL1 < COL2.

CALL MCCLR will clear the whole buffer and not respect the boundaries set with CALL
VPORT. Use CALL SQUARE to initialize a part of the screen.

CALL MCMODE(MODE)
CALL LINK(“MCMODE”,MODE)

Sets the Mode to write directly to the screen or only to the buffer (default).

MODE Buffered = 0 (default), Writethrough = 1 0, 1

Multicolor Library Page 7



Graphic primitives

CALL PUTPIX(ROW,COL, COLOR)
CALL LINK(“PUTPIX”,ROW, COL, COLOR)

Writes a single pixel to the buffer.

ROW Pixel row 0 - 47

COL Pixel column 0 - 63

COLOR Pixel color 0 - 15

CALL GETPIX(ROW,COL, COLOR)
CALL LINK(“GETPIX”,ROW, COL, COLOR)

Reads a single pixel from the buffer.

ROW Pixel row 0 - 47

COL Pixel column 0 - 63

COLOR Return Value: Pixel color 0 - 15

CALL HLINE(ROW,COL,COLOR,COUNT)
CALL LINK(“HLINE”,ROW, COL,COLOR,COUNT)

Draws a horizontal line.

ROW Pixel row 0 - 47

COL Left start pixel column 0 - 63

COLOR Line color 0 - 15

COUNT Number of pixels 1 - 63

Multicolor Library Page 8



CALL VLINE(ROW,COL,COLOR,COUNT)
CALL LINK(“VLINE”,ROW, COL,COLOR,COUNT)

Draws a vertical line.

ROW Upper start pixel row 0 - 47

COL Pixel column 0 - 63

COLOR Line color 0 - 15

COUNT Number of pixels 1 - 47

CALL LINE(ROW1,COL1,ROW2,COL2,COLOR)
CALL LINK(“LINE”,ROW1,COL1,ROW2,COL2,COLOR)

Draws a line from point (ROW1,COL1) to (ROW2,COL2). This universal routine is more
complex and therefore significantly slower than HLINE and VLINE.

ROW1 Start pixel row 0 - 47

COL1 Start pixel column 0 - 63

ROW2 End pixel row 0 - 47

COL2 End pixel column 0 - 63

COLOR Line color 0 - 15

CALL SQUARE(ROW1,COL1,ROW2,COL2,COLOR)
CALL LINK(“SQUARE”,ROW1,COL1,ROW2,COL2,COLOR)

Draws a filled square with point (ROW1,COL1) as upper left to (ROW2,COL2) as lower right.

ROW1 Start pixel row 0 - 47

COL1 Start pixel column 0 - 63

ROW2 End pixel row 0 - 47

COL2 End pixel column 0 - 63

COLOR Line color 0 - 15

Multicolor Library Page 9



Shapes
Shapes are in contrast to sprites, not hardware supported graphics elements, that are drawn
by software to the screen. You can draw shapes as often as you like on the screen.

CALL SHAPE(ID,ROWS,COLS,PATTERN$)
CALL LINK(“SHAPE”,ID,ROWS,COLS,PATTERN$)

Defines a pattern for a shape, with each Hex-Digit defining the color of a pixel, color 0 is
transparent, not overwriting the background. The string defines the colors column by column
and with an even number of rows. See chapter Creating Shapes for hints.

Use CALL SHAPE2 to continue a shape’s pattern if your shape is bigger and you need to
split the definition. Please note a maximum pattern length of 128 characters per call.

ID The address of the pattern will be returned mem-addr

ROWS Number of rows 2 - 48

COLS Number of columns 1 - 64

PATTERN$ Hex-String with Pixel Color information Hex-String

Technical Note: You may PEEK the ID and get the rows first, then the columns, followed by
two pixel-values per byte.

CALL SHAPE2(PATTERN$)
CALL LINK(“SHAPE2”,PATTERN$)

Continues the previous shape with an additional pattern string.

PATTERN$ Hex-String with Pixel Color information Hex-String

CALL BLIT(ID,ROW,COL)
CALL LINK(“BLIT”,ID,ROW,COL)

Draws a shape to the buffer at position (ROW,COL)

ID A number to identify the shape 0 - 63

ROW Row of the left upper pixel 0 - 47

COL Column of the left upper pixel 0 - 63

Multicolor Library Page 10



Sprites
All sprite functions of Extended BASIC can be used with the Multicolor Library, except for
CALL MAGNIFY, which resets the screen to the default graphics mode.

Default is CALL MAGNIFY(4), but this may be changed with CALL MCMAG.

CALL MCMAG(MODE)
CALL LINK(“MCMAG”,ID,ROW,COL)

Changes the sprite magnification in Multicolor Mode.

MODE MAGNIFY value as in XB 1 - 4

Multicolor Library Page 11



Using Multicolor with XB
In order to use the Multicolor Library the memory layout of the VDP RAM needs to be
changed. Neither the console ROM nor XB is aware of this change, which might cause them
to overwrite parts of your Multicolor screen, like in the following screenshot:

When using interpreted XB make sure to activate the included Interrupt-Monitor, written by
Harry Wilhelm. It makes sure that your screen does not get overwritten by the Garbage
Collection or other routines. You need to CALL MCON first and then restart the program with
RUN <next-line-number>.

TiCodEd SXB Code Regular XB Code

CALL MCON 100 CALL LINK(“MCON”)

RUN PRGRESTART 110 RUN 120

PRGRESTART: 120 …

This is not needed when compiling and the “RUN” statement will fail. Remove or
comment those lines before compiling.

Multicolor Library Page 12



Compiling
Once your program is tested you may want to compile it. Starting with JEWEL Harry
Wilhelms BASIC Compiler allows the use of assembler subroutines to be used in compiled
programs.

There are some differences between compiled and interpreted code, the most significant is
that the interpreted code uses floating point variables, while the compiled code works with
integers only. Most assembler routines today also work with 16 bit integers, like The Missing
Link or T40XB. The same is true for this Multicolor library, which takes the BASIC floating
point variables and converts them to 16 bit signed integers. This is not needed and must be
changed when compiling. Jewel already offers tools to do so.

The second difference is the way the new routines are integrated in the compiled code. The
dynamic CALL LINK from XB needs to be converted to a static subroutine call and mixed
with the runtime and the provided library to be assembled together.

Let’s have a look at the steps to take. You may use the included demo BISBEE for your first
attempts.

FIXAL to fix all differences
First we prepare our library to be used with the compiler. This has already been done for you
with the Multicolor library. You will find the file MCOLORC in the package.

This chapter is only needed if you want to change the code and prepare a modified version
and for your better understanding of the mechanism.

First you need to remove or comment out the line “AORG >2600” and assemble the code to
MCOLOR.OBJ. When interpreted, AORG makes sure that the code is always loaded to the
same memory location. This is helpful for repeated loading of the library. Without AORG the
code will be appended and not overwritten. The following loader will not work with AORG
though.

When you assembled the changed MColor.txt to MCOLOR.OBJ you start fresh with Jewel in
Disk 1:

NEW
CALL INIT
CALL LOAD(“DSKn.MCOLOR.OBJ”)
CALL LOAD(“DSK1.FIXAL”)
CALL LINK(“X”)

This changes the integrated assembler support routines to be compatible with the compiler,
so you don’t have to change your parameter handling manually. Now save the new, fixed
library. The convention is to add a “C” for the compiler-enabled version:

SAVE DSKn.MCOLORC

Multicolor Library Page 13



This file now contains the runtime in low memory to be used by your compiled program. We
need to copy and modify it for each compiled program that uses the library.

The Lowercase Trick
In order to distinguish and identify the library assembly routines they are coded in lowercase.

CALL LINK(“MCOLOR”,13) now becomes CALL LINK(“mcolor”,13) in your program.

When you use TiCodEd 2.5 or higher, you can simply activate “Lowercase LINK” in the
Project settings in the Libraries section:

The regular tokenized and the merge-file will be created with lowercase LINK calls. Be sure
to remove this setting when finished compiling and returning to interpreted mode.

If you are not using TiCodEd you can use the UC2LC utility included with Jewel:

OLD DSKn.YOURPRG
CALL LOAD(“DSK1.UC2LC”)
CALL LINK(“X”)

You may want to use another name for the converted program, i.e. add an L:

SAVE DSKn.YOURPRGL

Compiling with assembler support
You compile your program to object-file as always. When you come to the LOADER, things
are getting a little bit different. Answer Y when asked “Using Assembly Support?”.

Enter the object-file of your program when asked for the compiled file to load.

When asked “Assembly routines to load” give the library file DSKn.MCOLORC.

After a short while a cryptic:

appears. Press ENTER when the cursor starts blinking. The rest of the loader works as
known, first creating the EA5 file, then the XB loader.

Multicolor Library Page 14



Please note, that the library is not merged with your program, it is only dynamically linked.
You need both to make it work.

Bringing it together
Of course you can always load the MCOLORC program to load the library before running
your program, but it would be easier to link those two programs. The disadvantage is that
you need to decide which disk drive you will use for the files.

Load the library

OLD DSKx.MCOLORC

Edit line 10 to include a CALL INIT and to start the actual program with RUN:

10 CALL INIT::CALL LOAD(8192,255,172):: CALL LINK("X"):: RUN "DSKn.YOURPRG-X"

Then save it as DSKn.YOURPRG-C.

This is your chained program, combining the loading of the library in lower memory and then
your compiled program.

Multicolor Library Page 15



Creating Shapes
While it is possible to define shapes manually by listing the colors as hex values, column by
column, the easiest way to define neat shapes is using Raphael.

https://raphael.js99er.net/

This TI oriented graphics editor offers all you need to define a shape to be used in a
Multicolor game or application. Please be aware that you need an even number of rows, the
number of columns may be even or odd.

Once finished, export your shape to “Assembly data / By column 8 bpp”. The export looks
like this:

Multicolor Library Page 16

https://raphael.js99er.net/


byte >00,>00,>00,>00,>00,>00,>00,>00
byte >00,>00,>00,>00,>00,>00,>03,>03
byte >03,>00,>00,>00,>00,>01,>00,>00
byte >00,>00,>00,>00,>00,>02,>02,>00
byte >00,>00,>01,>0b,>0c,>0c,>0c,>0c
byte >0c,>0c,>0c,>0c,>0c,>0c,>0c,>0b
byte >00,>00,>00,>00,>0c,>03,>03,>03
byte >03,>03,>03,>0b,>00,>00,>03,>03
byte >0c,>00,>00,>00,>00,>00,>0b,>0b

There are two ways to get this into the desired format.

1. Use a Text-Editor and use the Replace function

From to

“ byte” “”

“>0” “”

“,” “”

This leaves:

00000000
00000033
30000100
00000220
001bcccc
cccccccb
0000c333
333b0033
c00000bb

Change lowercase letters to uppercase and combine the lines as needed, or

Multicolor Library Page 17



2. Use the TiCodEd integrated function “Hex to BIN$” in the Util menu:

Paste your Raphael-Export and the Cactus-Speedbutton will make all needed
replacements.

Select “Uppercase” and “Ignore CRLF” to get a shape-string with “Create BIN$” and
copied to the Clipboard when exiting with “Copy & Close”.

Multicolor Library Page 18



BSD License
Copyright (c) 2023, Stefan Bauch

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Multicolor Library Page 19



Appendix A: Examples

Lines
This is a very simple demo:

CALL INIT
CALL LOAD("DSK4.MCOLOR.OBJ")
CALL MCON
RUN PRGRESTART

PRGRESTART:
CALL SCREEN(2)
CALL MCOLOR(4,0)

FOR I=1 TO 20
CALL MCCLR(4)
CALL HLINE(24-i,32-i,11,i*2)
CALL VLINE(25-i,32-i,11,i*2)
CALL HLINE(24+i,33-i,11,i*2)
CALL VLINE(24-i,32+i,11,i*2)
CALL LINE(8,30-i,32,30+i,9)
CALL LINE(8,1,i,64-i,15)
CALL MCSYNC
NEXT I

CALL WAITKEY
END

100 CALL INIT
110 CALL LOAD("DSK4.MCOLOR.OBJ")
120 CALL LINK("MCON")
130 RUN 140
140 CALL SCREEN(2)
150 CALL LINK("MCOLOR",4,0)
160 FOR I=1 TO 20
170 CALL LINK("MCCLR",4)
180 CALL LINK("HLINE",24-i,32-i,11,i*2)
190 CALL LINK("VLINE",25-i,32-i,11,i*2)
200 CALL LINK("HLINE",24+i,33-i,11,i*2)
210 CALL LINK("VLINE",24-i,32+i,11,i*2)
220 CALL LINK("LINE",8,30-i,32,30+i,9)
230 CALL LINK("LINE",8,1,i,64-i,15)
240 CALL LINK("MCSYNC")
250 NEXT I
260 CALL WAITKEY
270 END
280 SUB WAITKEY
290 CALL KEY(3,K,S)
300 IF NOT (S=1) THEN 280
310 SUBEND

● Load the library
● Start the Monitor to avoid overwriting of the screen by XB
● Restart with the following line-number
● Initialize the screen
● Loop of line drawings

○ clear the screen buffer
○ draw lines
○ synch buffer to the screen

● wait for a key to be pressed

The files provided:

Lines.sxb SXB source (left column)

Lines.xb XB source as text (right column)

Lines FIAD format XB File

Multicolor Library Page 20



DirMode
This example uses the “direct draw mode”, instead of writing to the buffer first and then do a
MCSYNC. This mode is enabled with the second and optional parameter CALL
MCOLOR(4,1). It may be also be activated/deactivated with CALL MCMODE(x).

This demo lets you paint on the screen with the joystick or ESDX, switching color with the
fire-button or Q and exit with B.

CALL INIT
CALL LOAD("DSK4.MCOLOR.OBJ")
CALL MCON
RUN PRGRESTART

PRGRESTART:
CALL SCREEN(2)
CALL MCOLOR(4,1)

x=31 :: Y=23 :: C=11

repeat
call joyst(1,jx,jy)
call key(1,k,s)
x=x+(jx/4)+(k=2)-(k=3)
y=y-(jy/4)+(k=5)-(k=0)
c=c-(k=18)
if k=16 then k=5
call putpix(y,x,c)
until k=16
end

100 CALL INIT
110 CALL LOAD("DSK4.MCOLOR.OBJ")
120 CALL LINK("MCON")
130 RUN 140
140 CALL SCREEN(2)
150 CALL LINK("MCOLOR",4,1)
160 x=31 :: Y=23 :: C=11
170 call joyst(1,jx,jy)
180 call key(1,k,s)
190 x=x+(jx/4)+(k=2)-(k=3)
200 y=y-(jy/4)+(k=5)-(k=0)
210 c=c-(k=18)
220 if c=16 then k=5
230 CALL LINK("PUTPIX",y,x,c)
240 IF NOT (k=16) THEN 170
250 end

The files provided:

DirMode.sxb SXB source (left column)

DirMode.xb XB source as text (right column)

DirMode FIAD format XB File

Compiled Directory with the compiled files and adjusted sources

DirMode-M Generated MERGE file with lowercase CALL LINK

DIRMODE.TXT Assembler Source generated from the compiler

DirMode.obj Assembled object-code

DirMode-X Compiled and linked program

DirMode-C Copied and adjusted MCOLORC to load the Multicolor
Library and start the DirMode-X program

Multicolor Library Page 21



Train to Bisbee
A more complex demo, using CALL SHAPE and CALL BLIT to draw saguaros of different
sizes, the sun, two clouds and the valley/hill element on the horizon. The screen is initialized
in yellow, a square is used to paint the sky and then all shapes are drawn and their position
updated. The X-position is tenfold and therefore divided by 10 when drawing the shape in
order to allow one decimal in the position and increment and still use integers with the
compiler.

The files provided:

Bisbee.sxb SXB source

Bisbee.xb XB source as text

Bisbee FIAD format XB File

Compiled Directory with the compiled files and adjusted sources

Bisbee-M Generated MERGE file with lowercase CALL LINK

BISBEE.TXT Assembler Source generated from the compiler

Bisbee.obj Assembled object-code

Bisbee-X Compiled and linked program

Bisbee-C Copied and adjusted MCOLORC to load the Multicolor
Library and start the DirMode-X program

Bisbee.xbp TiCodEd Project-Definition

Bisbee.vxr TiCodEd variable cross-reference

Graphics Graphics used in the demo

*.rap Raphael graphics files

*.a99 exported assembler code of the graphics

Quix
Simple line-draw demo in writethrough-mode. Files similar to “Train to Bisbee''.

MultiColor Speedy
A nicer version of my Speedy game included as a demo for TiCodEd.
Files similar to “Train to Bisbee''.

Multicolor Library Page 22


