

Table of Contents

Introduction 3

Background 4

Who is SteveB? 6
Me and my TI 6

How TICodEd originated 6

Historical Note 7

Goals for TICodEd 7

TICodEd Prerequisites 8

What is next for TICodEd 8

Why should you use TiCodEd? 9

Helping the developer help you 10

What you need to begin 11
The Classic99 Emulator 11
The TiCodEd Editor 11
The BASIC Compiler (JEWEL, formerly ISABELLA) 11
TI99dir and the Module Creator (optional) 11
AtariAge Account (optional) 12

“Hello New TI World” 13
Setting up Classic99 13
Copy and paste 19

First use of TiCodEd 21
SXB tab - Structured Extended BASIC 21
Project Tab 23
Why Line Numbers? 29

Our first real Structured Extended BASIC Program 32
The use of Labels 35
One more “Comment” 36

Demo Game “SteveB52” 38
The structure of the program 38
The Subroutines 39
Get the Compiler ready! 44
Creating a Module 48

Language Reference 52
Considerations for Compiling 52

Beginners Manual - Structured Extended BASIC & TiCodEd Page 1

Extended BASIC Reference 52
Additional Libraries 57

The Standard Library 57
The User Library 58
Packages 58

How to start on your own 65
Start from Scratch 65
Continue an existing project 65

Advanced Topics 68
The Character Definition Tab 68

CALL SUB or GOSUB? 71
Using BEGIN-END for code blocks 72
The CASE Statement 74
IN SET Condition 75
Binary data with BIN$ 76
The Variable Tab 76
A daunting look at TIFILES 79
Understanding the Log 82

Analyzing the SXB file 82
REPEAT-UNTIL, WHILE-WEND and line-numbers 83
Resolving Labels 83
Dumping the Extended BASIC file 84
Prepare to tokenize 84
Atomize into Tokens 85
Program Statistics 86
Variable Cross-Reference 87
Export Files 87
Errors and Warnings 87

Post Processing Command 87

Emulator integration and automation 88
Library reading sequence 90
The Mac Version 90
The Linux Version (x64) 91

Beginners Manual - Structured Extended BASIC & TiCodEd Page 2

Introduction
You are about to begin a new and exciting TI-99/4A programming

adventure! This manual was written to inform beginners and experienced TI
BASIC programmers alike. Here you will learn to take full advantage of some of
the best BASIC programming practices which have emerged since the early
days of home computing. The material we will cover includes:

- Installing Tursi’s Classic99 TI-99/4A emulator onto a modern PC.
Emulators significantly increase productivity by allowing us to move the
development workflow over to a modern PC. Basically leveraging forty years of
technology to our advantage.

- Installing and utilizing the modern TiCodEd program editor for well-
structured TI-99/4A BASIC programming. No more quirky TI keyboard layout to
type on while programming. No more ancient/awkward line-by-line editing
environment. Perhaps most importantly, moving the programming editor over
to a modern PC turns your development environment into a mobile platform.
Have you ever tried programming the actual TI-99/4A on a flight to Zurich?

- Compiling BASIC code to realize 20x to 50x speed efficiencies over TI's
historically slow Extended BASIC programming language. Harry Wilhelm’s
excellent BASIC compiler and XB256 Extended BASIC extensions have
really opened-up the TI-99/4A’s power to BASIC programmers. This manual will
guide you down the pathway toward producing code which runs far faster than
any BASIC you’ve experienced in the past.

- Installing two of Fred Kaal’s programs, TI99dir and Module Creator,
to create "ROM files," which run on emulators as modules and on the the real
hardware using the latest TI-99/4A SD-cartridge enhancers such as Ralph
Benzinger’s must-have FinalGROM. They’ll also run on traditional TI floppy
drives as well as Ralph’s older FlashROM99.

Even if you have never worked with a modern code-editor or a classic
computer emulator before, this manual will get you up to speed with some of
the very best productivity enhancing development practices. Soon you may find
yourself teaching others, perhaps family and friends, and enjoying the TI-99/4A
retro community online via Atariage.

Who helped me? This manual was inspired by a posting of Odd
“Oddemann” Kristensen on AtariAge. He supplied the great cover page and in a
two-hour video-call we discussed what was needed to get into TiCodEd and
SXB. James “Airshack” Shackles joined us and ironed out my german-english
grammar and added lots of useful pieces.

During the initial development Fred Kaal was extremely helpful.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 3

https://atariage.com/forums/topic/314536-introducing-structured-extended-basic-and-ticoded/?do=findComment&comment=4817196

FACTOID: The BASIC Compiler is a software tool which performs analysis on
your BASIC program, retrieves appropriate routines from a library, manages
storage allocation, and then creates an actual Assembly Language source
program out of your original BASIC program. This Assembly version of your
program is then “assembled” to yield a machine language file which will run
much faster than the BASIC or Extended BASIC version.

Background

Programming in BASIC became extremely popular in the early
nineteen-eighties, in-part because most home computers shipped with built-in
BASIC interpreters. From the mid-seventies and throughout the
nineteen-eighties, many new and innovative home computer systems were
released to the consumer marketplace. With each new system came a slew of
incompatible yet often exciting feature sets. It was a fast ride, like a binary
gold-rush, with high stakes, and a wild west market.

IBM hastily entered the market in 1981 with its own Personal Computer.
At first glance this graphically underwhelming model -5150 PC- appeared to be
just another overpriced underperformer. Yet...by the turn of the decade the
“PC’s” open architecture matured to the point where it eventually became the
industry de facto standard. The arrival of the IBM PC meant the pioneering
Home Computer Era was basically over. A digital death nail...mostly.

Alas! As with vintage cars, there has been a renaissance based on
nostalgia for the earliest of early home computers. Retro-gaming itself, as well,
has become so popular that it has its own exhibition hall at the annual
Gamescon fair in Cologne, Germany. Ever growing vintage computer gatherings
take place every year on all of the populated continents of the world.

Many imaginative hobbyists have created new hardware enhancements
for the most popular of the classic machines. Emulation of most classic
computers and gaming consoles can be found on modern Windows, Mac, Linux
computers. There’s even some web-based emulation. The 40+ year-old
TI-99/4A computer has seen new and improved versions of Extended BASIC
emerge as well. Example: Rich Extended BASIC (RXB). Also, numerous
compilers and interpreters for various programming languages are now
available for the classic computers.

Do you remember programming your TI-99/4A during the eighties?
Do you wish TI BASIC or Extended BASIC ran faster?
Do you simply wish to program with an improved keyboard feel?
Will you prefer using a full-screen editor with syntax highlighting?
Do you prefer a well-structured BASIC language with fast running code?

Fortunately for us the TI BASIC programming experience has improved
dramatically over forty years! You do not need to climb up into the attic to start
your TI-99/4A programming adventure. A Windows PC is sufficient, but we will

Beginners Manual - Structured Extended BASIC & TiCodEd Page 4

also cover working with real TI-99/4A metal, as nothing compares to seeing
your programs running on original hardware, if you have it, somewhere waiting
to be reactivated and reunited.

The TI-99/4A

Beginners Manual - Structured Extended BASIC & TiCodEd Page 5

Who is SteveB?
Let me briefly introduce myself. My real name is
Stefan Bauch, I reside in Germany and make a
living out of being a computer scientist. For which
the TI-99/4a is not completely innocent.

Me and my TI
I was 14 when I bought my TI, in September 1983,
with joysticks and a cassette-recorder interface. I

had a tiny “Minerva” recorder and no money for a PEB. In the spring of 1984, I
obtained an Extended BASIC Module, a speech synthesizer, and a German and
an English Extended BASIC book. That was my modest setup. While my friends
enjoyed a large number of commercial programs on their Commodore 64s and
Sinclair Spectrums, I had no TI Solid State Modules to play. This turned out to
be a blessing in disguise. While I joined my friends in playing commercial
games on their machines, I had to sit down to write my own games for the TI.
Some were nice but the more ambitious titles were never completed. TI
Extended BASIC was simply too slow for the games to be fun.

So my abandoned game creations slept in Cinderella’s Castle, in my
parent’s attic, for many years, until Harry Wilhelm wrote his exciting Extended
BASIC Compiler. This event motivated me to climb up into the attic, search for
my TI-99/4A and old tapes, then install Tape994a to see what was still alive.
Harry’s BASIC compiler was my dream come true!

How TICodEd originated
I have been playing around with classic computer emulators since the

early nineties. It has been amazing for me to re-discover my old TI projects
from earlier times. I noticed a few of my programs were abandoned due to
speed issues. With Harry’s BASIC compiler I felt I finally had the tool I needed
to make TI Extended BASIC programs run swiftly! And with the CoViD-19
pandemic’s stay-at-home quarantines, I had plenty of free time...

My enthusiasm for my TI reunion quickly faded when I began editing my
programs using TI-99/4A line-by-line editor. The TI-994/A’s command line user
interface has been set in stone for decades because the operating system
resides permanently in ROM. Of course all classic computers of the era predate
the concept of periodic operating system updates. Line-by-line editing + dealing
with a non-standard TI computer keyboard = not enjoyable. I was motivated to
find a way to apply my 30+ years of IT experience to the hobby of classic
computing. I wanted to make TI-99/4A programming more enjoyable.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 6

My initial approach to the challenge was to check out what others had
already done to improve the process. I developed a workflow for creating fast
running BASIC programs on the TI using existing tools. My system looked
something like this:

A. Extract a program to text-files via Fred Kaal’s TI99dir
B. Modify the program with an editor tool (such as Notepad) on my

PC
C. Cut and Paste code into the Classic99 TI-99/4A emulator
D. Test my program in emulation on the PC within Classic99
E. GOTO B.

In time I happily came upon a programming tool called TIdBiT, by Matthew
Hagerty. TIdBiT is a PHP code translation tool which frees the BASIC
programmer from using line-numbers. TIdBiT uses labels which allows program
subroutines to become portable and easily relocatable.

Unfortunately, my “new” BASIC programming workflow was quite
complex. This inspired me to build an one-in-all tool for TI development which
leverages the power of modern PCs. Thus, I created TICodEd.

Historical Note
The BASIC (Beginner’s All-purpose Symbolic Instruction Code)

programming language was presented free to the world on May 1,1964, at
Dartmouth University, by two Professors named John Kemeny and Thomas
Kurtz. By the mid-1980s BASIC became the most widely used computer
language in the world. By 1987 Kemeny and Kurtz had refined BASIC to include
a range of what was known as “structured constructs.” The result was called
True BASIC which is easier to write, easier to debug, and superior to the
traditional variants of BASIC in that program subroutines (modules) are easily
reusable, from project to project. True BASIC replaces line numbers with
labels and adds DO-LOOPs, etc. Of course TI’s BASIC and Extended BASIC
predate True BASIC, therefore they cannot take advantage of these soon to be
explained well-structured improvements.

Goals for TICodEd
TiCodEd is designed to support the whole creation workflow in BASIC --

especially games programming! With TICodEd you get:

● A comfy editor with syntax highlighting
● Additional structured language constructs not common in the eighties
● Full compatibility with the real iron and TI Extended BASIC
● Easy to use character and sprite editor
● Easy integration to Classic99 and Harry’s BASIC compiler

Beginners Manual - Structured Extended BASIC & TiCodEd Page 7

https://tidbit99.com/

TICodEd Prerequisites
● Having used TI BASIC and/or TI Extended BASIC
● Know how to download and install programs on your PC
● A general understanding of how to use a computer
● An affinity for retro-computing and a love for the TI-99/4a

What is next for TICodEd
Right now, the character and sprite editor appears to be a little limited,

so a re-work is planned. I look forward to the day where users of TICodEd will
regularly suggest enhancements for me to address. Perhaps AtariAge users
already have ideas for improvement?

TICodEd author Stefan Bauch’s email: TiCodEd@lizardware.de

Please feel free to ask me any questions you may have via email. Since
this is just a hobbyist endeavour for me it may take some time to answer your
questions. Thank you in advance for your patience.

You may find answers to your questions much faster via the TICodEd
thread on AtariAge:

https://atariage.com/forums/topic/314536-introducing-structured-extended-basic
-and-ticoded/

Beginners Manual - Structured Extended BASIC & TiCodEd Page 8

mailto:TiCodEd@lizardware.de
https://atariage.com/forums/topic/314536-introducing-structured-extended-basic-and-ticoded/
https://atariage.com/forums/topic/314536-introducing-structured-extended-basic-and-ticoded/

Why should you use TiCodEd?
It doesn't matter if this is your first look into the TI-99/4A, returning

after a hiatus of many 99/4A-less years, or a die-hard TI-99/4A fanboy. This
guide will take you from the creation of a simple BASIC program, to the
creation of your own “modules” to be used in an emulator. Additionally, you’ll
even learn to run your programs on your actual TI-99/4A console with the
addition of special writable hardware.

If you are an experienced TI programmer you already have your own
established preferences while working with the TI. You may be interested in
more details in order to decide whether you should spend the time to learn the
TiCodEd approach. The most compelling arguments are:

● Modern Structured Extended BASIC without line numbers - No more
bothering with renumbering to make space for new lines. Use easy to
remember labels instead. TiCodEd will create the line numbers for you in
the background.

● Translation to Standard Extended BASIC - You are not locked in some
proprietary tool no one else uses. Even if you abandon TiCodEd and the
Structured Extended BASIC, your code runs and is maintainable in the
standard environment.

● Indent your code to visualize the program - Use REPEAT-UNTIL and
WHILE-WEND loops to maintain a clear structure.

● Simply one EXE file to install - No run-time or anything else required.
Unzip and go, no Java, Python, PHP or any additional complications.

● Saving of files in tokenized format in FIAD1 (“Files In A Directory”).
Store the program for immediate use by the TI or Classic99 emulator.

● Fast turn-around times for development cycles - Build a Project in
TiCodEd by pressing Ctrl-B, and type OLD DSK4.xxx in Classic99 to have
your code loaded. No laborious file conversions necessary.

● Export your program in MERGE format used by the Extended BASIC
Compiler.

● Simplified use of the XB256 or T40XB libraries.

● Use long self-explaining variable names without wasting precious
memory on the TI.

● Use the additional subroutines of the SXB standard library.

● Build your own library of reusable subroutines.

● Supports the latest versions of Extended BASIC, i.e. XB 2.8 GEM and
RXB 2020.

1 Will be explained later … like all the other Tec-Talk in this list.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 9

● Use this excellent manual to master all that is possible today on the
TI-99/4a without leaving Extended BASIC.

Helping the developer help you
Can you think of anything missing from TiCodEd? Anything you expect

to find in a BASIC development tool such as this? Please tell me! I will see what
I can do to improve upon TiCodEd. Use the email above or ask in Atariage.

(A page for people that has used your tool and what they think about it.
Maybe ask Falcon and some others to give you feedback for the TiCodEd?) ⇐=
good idea!

“SteveB has made a tool that I did not know I needed. Now that I have
this tool, I can't imagine NOT using it!”

Odd Kristensen

“Das ist gut!”

Airshack

Beginners Manual - Structured Extended BASIC & TiCodEd Page 10

What you need to begin
To get things up and running we must first install several programs onto

a windows PC. Thanks to the efforts of many brilliant hobbyists we have many
wonderful programming tools at our disposal. You are encouraged to have a
look at all of the alternative options out there. Depending on the security
setting of your Windows installation you may need to confirm that these
hobby-programs are not digitally signed and click “Install anyway”. The
examples in this guide require:

The Classic99 Emulator
Download Tursi’s Emulator at http://harmlesslion.com/software/classic99

Once installed, you have a complete environment, including ROM and
some modules. You’ll find the Extended BASIC Module under Cartridge/Apps.
We will guide you step by step in the next chapter.

The TiCodEd Editor
Download SteveB’s specialized editor at http://www.lizardware.de/

This editor features syntax highlighting for BASIC, a functionality to save
programs in the TI internal format and a language extension, called “Structured
Extended BASIC”. This manual is based on Version 2.20 of TiCodEd.

The BASIC Compiler (JEWEL, formerly ISABELLA)
Senior_Falcon has written an Extended BASIC Compiler which is already

included in the Classic99 installation under Contributors/Harry_Wilhelm.

You may update this compiler to the latest release of JEWEL. It can be
found on AtariAge:

● TI-99/4A development resources - TI-99/4A Development - AtariAge Forums
● XB Game Developers Package

TI99dir and the Module Creator (optional)
We will also cover the creation of a module - at least the content of it, to

be used in an emulator or a writable cartridge like FlashROM 99 or FinalGROM.
You will need two tools from Fred Kaal:

https://www.ti99-geek.nl/Projects/ti99dir/ti99dir.html

https://www.ti99-geek.nl/Modules/modcreate/modcreate.html#module_creator

Beginners Manual - Structured Extended BASIC & TiCodEd Page 11

http://harmlesslion.com/software/classic99
http://www.lizardware.de/
https://atariage.com/forums/topic/153704-ti-994a-development-resources/?tab=comments#comment-1881598
https://atariage.com/forums/topic/224905-xb-game-developers-package/?do=findComment&comment=4853337
https://www.ti99-geek.nl/Projects/ti99dir/ti99dir.html
https://www.ti99-geek.nl/Modules/modcreate/modcreate.html#module_creator

AtariAge Account (optional)
The website AtariAge hosts two very popular forums for the TI-99/4a:

● https://atariage.com/forums/forum/119-ti-994a-development/
● https://atariage.com/forums/forum/164-ti-994a-computers/

The authors of the programs mentioned above frequently participate in
several AtariAge TI-99/4A forums. You may read as a guest, but a free
registration is required to post messages.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 12

https://atariage.com/forums/forum/119-ti-994a-development/
https://atariage.com/forums/forum/164-ti-994a-computers/

“Hello New TI World”

Setting up Classic99
We do not wish to duplicate Tursi’s fine Classic99 manual here. Only the

few specific details we need for our process are covered. To begin you must
install and then launch Classic99 using the following settings:

System: Select TI-99/4A

Cartridge: Select Apps/Extended BASIC

Options:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 13

Video:60hz selected for NTSC (US) emulation; 50hz for PAL (European)

Use “Change Size” to adjust the size of the window to your needs and
“Filter Mode” for a setting that appeals most to viewing habits.

“None” gives you a Pixel-Block view (like above), TV Mode emulates the
blurry picture of yesteryear. Everything in between tries to use the higher
resolution in a more comfortable way (like below).

Now we’re ready to start with the emulation. Launch Classic99 and click on
the Cartridge drop down menu, and then select Apps/Extended BASIC. Let
Classic99 reset. The emulator will now behave as if you had the Extended
BASIC cartridge inserted. Press any key to begin...

Beginners Manual - Structured Extended BASIC & TiCodEd Page 14

Press “2” to start TI Extended BASIC.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 15

We are ready to write a program now.

Type in the following commands:

10 PRINT “HELLO WORLD”

RUN

Note for Non-English Keyboard Users: The quotes and other special
characters may not be where you expect them to be because of the different
keyboard mappings on non-english PCs.

Example: On a German keyboard press Shift-Ä to produce the double-quotes.

This is the first reason for using TiCodEd: All keyboards work as expected
universally within the TICodEd editor environment.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 16

Congratulations! You just made a TI BASIC program run in emulation!

Before we dive into TiCodEd we need to set up a Classic99 emulated
floppy drive for storing programs. Both TICodEd and Classic99 will have access
to this shared storage resource. In this tutorial we use “DSK4” as the
identifying name for this shared drive. Please do not name the shared floppy
“DSK1” as we will use that drive name for a purpose described later.

Computer keyboards have improved significantly over the past 40 years.
Mass storage drives have improved even more. Classic99 offers two ways to
emulate floppy disk drives.

One is the Disk-Image method, which is a single “container file” on your
PC which contains a byte-by-byte image of a physical TI-99/4A diskette. You
need special programs like TI99dir to look inside Disk-Images, and to read or
add files within. The Windows file manager will not allow you to view or
manipulate these TI Disk-Images. Disk-Images are native to the ancient
TI-99/4A floppy disk system, not the modern Windows system.

The second way Classic99 emulates disk drives is the Windows compatible
format named “Files in a Directory”, or FIAD for short. FIAD allows the
emulator to treat a windows directory on your PC as a virtual TI-99/4A floppy
disk.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 17

Please create a directory for your TI programs (I have created
C:\Data\DSK4 for this) and use the following settings for DSK4:

Click the “Disk” drop-down menu at the top of Classic99. Under the “Disk”
menu you find “DSK4”, hover your mouse pointer over it, and you will get two
options, select “Set DSK4”. Then you will get this pop-up window where you
must first select “Files (FIAD)” from the Disk Type drop down menu.

The directory path will be empty. To establish a path you want to click on
the “three-dots” button just right of the Path drop-down dialog box. Another
pop-up window will appear. I choose to create DSK4 in my C:\Data folder, you
may choose differently, i.e. alongside the DSK1-3 in your Classic99 directory.
Please remember the location and use it instead of C:\Data\DSK4 in the
upcoming examples or stick with my suggestion.

Click on “New Folder” to create the folder.

Select the same check-box options as you see above in order to properly
configure your virtual floppy drive. If you have questions about any details
pertaining to these check-box options you will find the answers thoroughly
explained in Tursi’s excellent Classic99 manual. Beginners need not burden
themselves just yet with this information. Moving right along is encouraged!

Beginners Manual - Structured Extended BASIC & TiCodEd Page 18

Now save your little program by typing: SAVE DSK4.HELLOWORLD

This action will put the file named HELLOWORLD in the FIAD virtual floppy
drive folder.

This HELLOWORLD file is not stored as a text file nor any other Windows
file type. The saved file is coded for use with Extended BASIC and the TI-99/4A
system. It is actually stored in what is known as a “tokenized” format known as
TIFILES. We will take a look at what “tokenized” means in a later chapter. This
more advanced chapter is aptly named: A daunting look at TIFILES. Move
along!

Copy and paste
Tursi included a nice feature in the emulator to get around typing-in

endless listings. Most of us old guys typed in programs from magazines and
books back in the day. Today we can use the windows clipboard to copy
program text from any editor or even this online manual, and then conveniently
paste the clipped program text into the Classic99 emulator.

Let’s give this skill a try…

In Classic99 we type “NEW” to delete our program from memory.

Next let’s select/highlight the following lines from this document and press
Control-C to copy them.

100 FOR I=1 TO 10
110 PRINT I
120 NEXT I

Go to the emulator and select Edit / Paste XB (which stands for Paste
Extended BASIC) to paste the above lines into Classic99.

Convention: The gray boxes will always contain something you will need
to enter into the TI (usually by cut & paste, no need for typing). The output of
the TI or TiCodEd are in white boxes. The blue boxes are screenshot
graphics and can’t be selected as text to be pasted from the emulator.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 19

Even though the spaces after the line numbers are missing, somehow the
program is transferred correctly. Type “LIST” to check this and “RUN” to give it
a try. By listing see that spaces have been retained after the line numbers.

The handy Cut & Paste feature in Classic99 empowers us to use a
PC-based code editor to write our programs. No more dealing with changed
keyboard layouts or typing on TI’s compromised keyboard. You will also avoid
the anciently cumbersome line-by-line editor which is permanently inefficient.

No longer will you be bound to actual TI-99/4A hardware for development.
The thought of developing on “real iron” is rooted in nostalgia ... not efficiency.
Truth be told, you will be FAR MORE PRODUCTIVE developing on a modern
machine with an emulator and the TICodEd editor.

Another major benefit of TiCodEd is the ability to easily save your program
in the “tokenized” native TI format. Other editors save programs in formats
compatible with Windows computers. TICodEd automatically saves your
programs to the native TI format (TIFILES), placed conveniently inside an
emulated floppy drive compatible with the Classic99 emulator.

Pro Tip: Cutting and pasting code into Classic99 is indeed a powerful
workflow enhancement. That said, as your programs grow in size you will
discover that pasting them into Classic99 will become rather time consuming.
Cut & Paste is best used with small program segments from this manual for
example. The super-slow pasting of code into Classic99 was simply an
unavoidable speed-bump until the advent of TICodEd. When you edit your
programs with the TICodEd editor, and then save them to a Classic99 emulated
drive, the entire BASIC workflow becomes faster, more enjoyable, speedy,
pleasant, and fun. New programming tools for retro computers remove the
headaches we all suffered in the past. More enjoyable programming with less
tedious housekeeping is the TICodEd goal.

DEFINITION: Cross-Platform Development, programming your retro-
computer using modern computers with custom software tools. Increasing
efficiency, and ultimately simplifying the process of developing programs for
older machines by leveraging the power differential between your development

Beginners Manual - Structured Extended BASIC & TiCodEd Page 20

system and the target system. Working smart, not hard. The opposite of
sadistic. Lowering the barriers of entry.

First use of TiCodEd
Start TiCodEd and then have a look around. Go to the folder where you

installed TiCodEd and find the file named, “TICodEd” or “TICodEd.exe”,
double-click on it and the program starts up. You should see this screen:

SXB tab - Structured Extended BASIC
You have six tabs below the File/Edit/Export menus. We will start learning

the SXB-tab by recalling a previous program example. Once again copy the
following code from below and then paste it into TICodEd’s SXB-tab.

100 FOR I=1 TO 10
110 PRINT I
120 NEXT I

The SXB tab is the main programming tab where we’ll do all of our coding.
SXB stands for “Structured Extended BASIC”, an enhanced (modernized)

Beginners Manual - Structured Extended BASIC & TiCodEd Page 21

version of Extended BASIC. In our example we will use line-numbers and stick
with the traditional TI Extended BASIC commands.

NOTE: The advantages of no line numbers and powerful new Extended BASIC
extensions and commands will be covered later in the tutorial.

The first thing you may notice is something called Syntax Highlighting.
In the TI Code Editor window all keywords are black, identifiers like
variables, subroutines and labels are red and line numbers and literals are
colored blue.

Secondly, you notice a handy violet stripe on the left column, indicating
that these lines have not yet been saved. So let’s do this.

Select File / Save from the menu. Select the DSK4 directory you created in
the previous chapter and give this program a name, i.e.”forloop”. This not only
saves your program as an SXB file named forloop.sxb, but also creates a
second noteworthy file.

The second file is what we call a “Project File,” with the extension XBP
(forloop.xbp), short for “Extended BASIC Project.” It is filled with some
information we will explain in the next chapter.

The violet stripe should have changed to dark green to indicate the
program lines have been saved (to the DSK4 folder).

The editor has a code completion feature. Start typing a command, a
subroutine, a label or a variable and press Control-Space.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 22

Labels, subs and variables are based on the last build-run. Only variables
with at least 3 characters are included. Subs from included libraries are also
included.

For subroutines a CALL is added if not already present.

Project Tab
We select now the Project Tab to see:

Here there are several auto-filled settings. The filename you entered is
taken as the base-name for multiple files related to this project. The .sxb file is
our Structured Extended BASIC program. This .sxb file is closely tied to the
.xbp project file. Both the .sxb and .xbp entries are read-only.

TiCodEd automatically translates all Structured Extended BASIC (.sxb)
program files to TI Extended BASIC compatible text (.xb), for convenient cut &
pasting into Classic99. This auto-conversion feature completely eliminates the

Beginners Manual - Structured Extended BASIC & TiCodEd Page 23

need for third-party code-translator applications such as TIdBiT. In fact,
Matthew Hagerty’s TIdBiT inspired this code-translation feature.

Later in the manual we will discuss which enhancements are available to
the normal TI Extended BASIC command set. If no SXB extensions are used, as
in our first intentionally simple example, the resulting Extended BASIC program
(.xb) file will look exactly like the Structured Extended BASIC (.sxb) file, as
there’s no SXB specific code to convert to Extended BASIC.

Click on the SXB tab to see the contents of the .sxb file which features
syntax highlighting.

Remember that .xb files are just glorified text files. They are useful for
pasting into the Classic99 emulator and for sharing with friends online. The
same type of text files which can be examined by the Windows Notepad app.
The Classic99 emulator cannot load .xb files so...

The fourth file type created by TICodEd is the “tokenized” (real TI-99/4A
and Classic99 compatible) version of our BASIC program. This file type (also
called TIFILES) has no extension after the program name. Tokenized files can
be loaded directly and swiftly into Classic99 by typing: OLD DSK4.FORLOOP

DEFINITION: Tokenized, Tokenized BASIC is a method of storing
programs in the BASIC programming language by encoding the various
keywords of the language as "tokens" instead of as plain text. Such programs
take up less storage space in memory and in external storage such as disks or
tapes, which was a significant concern in an era when computers were much
more limited in memory and disk space than they are at present. Since
computers are much faster and have much more memory and disk space now,
tokenized languages are rarely used for source code storage.

There’s a ‘Write on Build’ checkbox for Extended BASIC Token files under
the Project Tab. This checkbox must be checked if you wish for TICodEd to
automatically generate this type of file when Control-B, or when Export/Build
Project is selected. You will want to leave this checkbox selected.

In the future you will eventually want to use the BASIC Compiler for speed
enhancements, which requires reading our fifth program file format called the
Merge format. You may manually generate a Merge file version of your

Beginners Manual - Structured Extended BASIC & TiCodEd Page 24

http://justsolve.archiveteam.org/wiki/BASIC

program by typing, “SAVE DSK4.FORLOOP-M,MERGE” on the TI-99/4A, or
similarly in Classic99.

Fortunately for us TICodEd users, the Merge (Compiler compatible)
format version of your program is created automatically by pressing Control-B,
or by selecting the drop down menu Export\Build Project. The Merge file will be
automatically generated if the Extended BASIC Merge “Write on Build” checkbox
is checked. This checkbox is also located under the Project Tab.

At this point in the tutorial we want both “Write on Build” checkboxes
selected/checked under the Project Tab.

You have the option to modify the program file locations under the Project
Tab. You may store these files anywhere you wish. You may also give, for
example, any file a shorter name, as you have to type it every time you want to
load it in Classic99. An abbreviated “OLD DSK4.FL” comes in handy.

Your character definitions are stored in the .cset file.

The final file type is the Variable X-Ref (“Variable Cross-Ref” .vxr) which
stores a record of which XB line a variable is used. X-Ref comes in handy during
debugging. Especially when you struggle to see why a variable value does not
match what you expected. The generated file is also used in the “Variables” tab
which is explained later in the manual.

Let’s also have a look at the Project Tab’s Parameter section. In SXB
you can code without line numbers. In place of line numbers is the use of
Labels and structured WHILE-WEND and REPEAT-UNTIL loops. This is how
modern commercial incarnations of the BASIC Programming Language work.

The Start Line Number and the Increment options function just like TI
Extended BASIC’s original RESEQUENCE statement. The first line in the
resulting .xb program text file gets the Start Line Number. The following lines in
the .xb text file get the Increment added to form additional line numbers, as
TiCodEd assigns numbers to all program lines, while converting Structured
Extended BASIC programs to TI-99/4A readable (standard) Extended BASIC.

NOTE: TICoded allows you to program in the modern structured BASIC style.
The only reason TICodEd creates .xb files with line numbers is to satisfy the
1970s-legacy BASIC program format requirements inside TI-99/4A hardware.

Please be aware that mixing manual line numbers with the automatic line
numbering capability of TICodEd may be problematic. The manual number must
always be equal to or higher than the first Start Line Number automatic
number.

The Debug feature is a simple, yet effective way to enable or disable
debug statements in your program. If checked, the statements marked as
debug will be included, if unchecked they will be excluded. Similar to the use of
!-symbol as a remark, the #-symbol is used to mark a Debug line. Let’s try it.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 25

140 # PRINT "This is a Debug Line"

Finally we come to the Log-File Verbosity.

1. Error - Only Errors are shown
2. Warning - Errors and Warnings are shown
3. Information - Errors, Warnings and Information are shown
4. Verbose - Also included debug information
5. Very Verbose - More Debug information
6. Unbelievable Verbose - Debug down to the bits

Usually the default of level 3. “Information” is sufficient. We will also have
a look at the level 6 “Unbelievable Verbose” later in chapter Understanding the
Log. Understanding the log will help you debug your programs.

Describing the Project Tab sections titled Libraries and Post-Processing will
be discussed later. For now let’s return to our simple example.

We are all set for the first “Build” of our Project. Select Export / Build
Project from the menu or just press Ctrl-B.

The active tab automatically switches to the Log tab after you build a
project. [The first time you build a project you’ll actually see the “Save New
File” window.] Basically, the single most important part of the log tab is the last
two lines: Errors 0, Warnings 0.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 26

The build process consists of two steps:

1. The .sxb program file is saved and converted to a standard .xb text file.
2. The .xb file gets converted in the selected output formats (Extended

BASIC Token and/or Extended BASIC Merge) and the Variable X-Ref file
gets written.

* Building also generates a short program statistic in the log.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 27

Now lets click on the XB tab to view the auto-generated standard XB text:

As we were not using any SXB features in this example, the XB tab code
looks exactly like the SXB tab code, minus the syntax highlighting.

The “#” in line 140 got removed as we chose “include debug lines”.

Switch over to the Classic99 emulator to load and run our program. All of
the necessary auto-generated files are now in the DSK4 directory:

First clear the memory with NEW and then type “OLD DSK4.FORLOOP”.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 28

You may deselect “Debug” in the Project tab and build again to see that
line 140 will be omitted.

Why Line Numbers?
While programming in most Home Computer variants of BASIC we have

three traditional arguments for using line numbers:

1. Line numbers give your code lines a logical sequence. Line-numbers are
always executed in ascending order, except you have an explicit jump,
like a GOTO statement. When you want to add a line between two
existing lines you simply pick a number between these two line-numbers,
and Extended BASIC will insert your new line accordingly.

2. Using line numbers is to identify a line for editing. In TI BASIC you have
the EDIT nnn command, in Extended BASIC you type the line-number
and press Fctn-X and the line-editor comes up with the requested line.

3. You may need to refer to a line in your program with a GOTO, GOSUB,
RESTORE etc. Line numbers allow you to transfer control easily.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 29

While these first two points are essential while programming in BASIC on the
real TI-99/4A (as well as on all other Home Computers of the era), they both
become superfluous while using a full-screen PC-based editor. These two
arguments for line numbers essentially disappear when you escape the
outdated line-by-line editor environment. TICodEd is a full-screen editor.

The third argument for using line numbers remains somewhat valid. You will
still need to identify individual lines in your code for program flow control.

When would we ever need to refer to an individual program line?

There are four cases:

1. You want the program to jump to a specific line.
2. You need to loop-back in a loop.
3. You want to execute a subroutine with GOSUB.
4. You have some information stored there to RESTORE or PRINT USING.

Getting back to our program example, do we need line-numbers for any of
the cases listed above? The answer is … NO!

Lets just try deleting the line numbers for our code in the SXB tab. When
we build the project, notice how we still get the same XB translation with line
numbers. TICodEd inserts lines 100, next 110, and so on...to satisfy the format
expectations of both the real TI-99/4A and the Classic99 emulator.

Our short program segment has a loop. How does the program know
where to go back in the loop? The FOR statement in the original Extended
BASIC was already a structured loop command. NEXT does not need any
line-number to go back.

A FOR loop has a known number of repetitions. What about loops with
variable repetitions, ending when a condition is met, like a key pressed? There
Extended BASIC only offers IF THEN GOTO control option. Other languages like
Pascal, C or Java never had line numbers to make this work. They have two

Beginners Manual - Structured Extended BASIC & TiCodEd Page 30

other ways of defining a loop. They have REPEAT...UNTIL and WHILE loops,
which are now also introduced to Structured Extended BASIC, and are
explained in the next chapter.

What about the GOSUB? A call to a subroutine and returning to the calling
statement is a very structured approach. It is a direct implementation of what
is known as a Top-Down approach. One statement in the main program is
actually executed as many steps in the sub-program. If only a GOSUB could be
referred to by something more intuitive. Why don’t we give the subroutine a
well-sounding name? For example WaitForKeypressed or PrepareScreen?

Which is more intuitive?

● GOSUB 400
● GOSUB PrepareScreen

Trick-Question, yes. The second GOSUB example uses a Label instead of a
fixed line number.

Labels are explained in detail in the chapter The use of Labels. We define
those Labels at the beginning of a line by typing the name followed by a colon,
as in the following example:

PrepareScreen:
CALL CLEAR
CALL SCREEN(2)

RETURN

With the indention you can see what belongs to the subroutine. It is
optional to do indentations or keep the label on a line of its own.

You can have simply written:

PrepareScreen: CALL CLEAR
CALL SCREEN(2) :: RETURN

This will also work but it hurts my eyes. Let us at least try to write
beautiful looking code with clarity. It is much easier to understand code which
follows the guidelines of structured programming. If it’s easier to read, it will be
easier to debug -- simple.

When there is no need for line-numbers, is there a need to abandon them?

Yes, when you remove line numbers you remove complexity. Every line
number in a non-structured BASIC program is a target “entry-point” for a jump
via GOTO or GOSUB. Since numbers can be easily mistyped, a GOTO 100 and
GOTO 1000 are just one keystroke apart. Reducing the entry points to an
absolute minimum decreases the potential for errors.

Using loops without GOTOs, and using labels for all intended GOSUB
entry-points and reference points (USING, RESTORE) will significantly reduce
programming errors. Labels are more intuitive and readable than numbers.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 31

Labels are also “portable” as they allow you to re-use program code
segments from one project to the next without painstakingly renumbering
everything. Line numbers are “fixed,” in-place, and inflexible by design. This
practice of programming with line numbers is truly an undesirable relic.

Our first real Structured Extended BASIC Program
Let me demonstrate how Structured Extended BASIC loops are used. This

chapter demonstrates the basic concept of SXB with a simple demo, calculating
the square of a number until the user enters 0. Start a new SXB project by
selecting File / New in the menu and paste this code to the SXB tab.

REPEAT
INPUT "Number?":A
PRINT A;"square is";A*A

UNTIL A=0

Now select File / Save and save the file under “square”. As the defaults
on the project page are reasonable, you directly can type Ctrl-B to build. The
XB tab gives you the resulting standard XB file:

100 INPUT "Number?":A
110 PRINT A;"square is";A*A
120 IF NOT (A=0) THEN 100

The lines get the line numbers assigned as defined in the Start Line
Number and the Increment on the Project tab. The REPEAT-UNTIL gets
translated to an IF-THEN statement. The condition needs to be negated, as the
execution has to be repeated when the criteria is not met.

This can run on standard XB: Load it from the shared directory or cut and
paste it into the emulator to try.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 32

This looks good, except one little glitch ... we do not want to know the
square of zero, we enter zero to intentionally end the program. Let’s have a
look at an alternative loop.

Select File / New and paste this code to the SXB tab.

INPUT "Number?":A
WHILE A<>0
PRINT A;"square is";A*A
INPUT "Number?":A

ENDWHILE

Save this with File / Save under the name of “squarew” and build the
project with Ctrl-B. This gives the XB file:

100 INPUT "Number?":A
110 GOTO 140
120 PRINT A;"square is";A*A
130 INPUT "Number?":A
140 IF A<>0 THEN 120

The WHILE loop is head-controlled, meaning the loop is not executed if
the condition is immediately met (whereas the REPEAT loop is foot-controlled
with the condition at the end, therefore executed at least once).

Beginners Manual - Structured Extended BASIC & TiCodEd Page 33

In order to have only one IF statement there is a GOTO inserted to the IF
statement to bypass the loop body. It is clear that as long as A<>0 the loop is
executed.

LIMITATION: Please be aware that any use of REPEAT and UNTIL, or
WHILE and ENDWHILE, will need to have a line on their own and must
not be combined with other statements.

The “read ahead” is a common practice in file processing as you don’t
know what you read next or there is the end-of-file marker. It requires a read
(INPUT) before the loop and as the last line in the loop. Let’s check this in the
emulator:

The ENDWHILE can be replaced with the shorter WEND as used in some
BASIC dialects. The indentation of REPEAT and WHILE loop is optional but
enhances the readability of the program significantly. Both loops can be nested.
A nesting error will be raised when REPEAT/UNTIL or WHILE-ENDWHILE will not
match and the build-process aborted.

This is actually all there is about the “structured” in Structured Extended
BASIC. How powerful this new SXB capability can be is seen in the game titled
“SteveB52” which we will soon discuss. Together with the unchanged

Beginners Manual - Structured Extended BASIC & TiCodEd Page 34

FOR-TO-NEXT loop, which does not require line-numbers even in the old
standard XB, you are set to drop GOTO in your programs (almost) completely.

Why are GOSUB and GOTO statements problematic?

As a programmer you often need to make a few comparisons and then
redirect the program’s sequence of events to a subroutine. BASIC and Extended
BASIC both have the GOSUB statement for such a task. GOSUB is powerful in
that it remembers from where it was called, and conveniently returns control
back to the calling code sequence after encountering a RETURN statement.
GOSUB statements do unfortunately require fixed line numbers (in order to find
the called subroutines) in the same way GOTO statements require fixed line
numbers to jump to a different sequence of commands.

In a classic game-loop, where you have to start a segment of code over and
over again, going back to the top of the loop is commonly accomplished with
the GOTO statement. Until SXB we needed to rely on these two fixed line
dependent style control-flow statements which often become a challenge to
read and debug.

The use of Labels
Perhaps you used TIdBiT or xbas99 before? Both introduce Labels in place

of line numbers. TiCodEd is TIdBiT compatible and even has a port of TIdBiT
included in the Export menu. A label is simply an intuitive name for a code
segment. We must be careful to avoid name conflicts with statements, variables
and CALL subroutines. The syntax for a label is easy. It must be the first word
on a line and directly followed by a colon. The basic line may continue after the
colon but it is common practice to use labels on a line of its own.

GOSUB PrepareScreen
PRINT "Done!"
END

PrepareScreen:
CALL CLEAR

RETURN

Create a new project, paste the code to the SXB tab, save as “label” and
build the project by typing Control-B. The XB Tab now reads:

100 GOSUB 130
110 PRINT "Done!"
120 END
130 CALL CLEAR
140 RETURN

Beginners Manual - Structured Extended BASIC & TiCodEd Page 35

https://tidbit99.com/
https://endlos99.github.io/xdt99/#xbas99

In larger programs it is helpful to manipulate the line numbers to build
“blocks of code” in the resulting XB file, i.e. all GOSUB routines starting line
10000, all SUB routines starting 30000.

You can always increase the line number counter by interspersing line
numbers in your code, as seen in this example:

This will result in:

100 GOSUB 10000
110 PRINT "Done!"
120 END
10000 CALL CLEAR
10010 RETURN

One more “Comment”
Extended BASIC offers only two ways of including comments in your

program, the REM statement and the !. Both methods are memory wasters as
they store programmer comments in RAM along-side program code. A new third
commenting option is added with SXB which avoids wasting sparse memory
space inside the TI. Less wasted RAM means more room for program features!

TICodEd is all about cross-development on modern machines with large
LCDs. We encourage programming with code indentation for clearer and
more-intuitive full-screen editing. Of course adding penalty free comments is
always recommended. As seen in contemporary programming languages, SXB
introduces the “Double-Slash” comment identifier. Everything following the //
will be discarded until the end of the line in the conversion to XB.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 36

Double-Slash (//) comments will not be retained in the XB listing. Thus,
double-slash comments will not take up valuable space in RAM. The resulting
XB code will be less-readable without the double-space comments but that
doesn't matter since your editable source code is in the SXB tab.

100 ! This is a demo for labels
110 GOSUB 10000
120 PRINT "Done!"
130 END
10000 CALL CLEAR
10010 RETURN

Note how the traditional !-style comments remain intact as they are
transferred to the XB-tab code. If you use this style of commenting you will
waste valuable RAM.

It is time to put what we have learned about TICodEd to play as we
examine SteveB’s Structured Extended BASIC masterpiece...SteveB52!

Beginners Manual - Structured Extended BASIC & TiCodEd Page 37

Demo Game “SteveB52”
On AtariAge your TICodEd author goes by the nickname -- SteveB. While

thinking of the classic “Bomber” video game style, I was inspired by the classic
B52 bomber itself. It was a no-brainer to call my version of the bomber genre
SteveB52.

The idea of the game is very simple. Your bomber has to land, but there
are buildings where you want to land, so you have to clear the runway first.
With every flyby you lose some altitude. When dropping bombs in this game
there can always be only one bomb falling at a time.

We will develop this game together now. You need to know some Extended
BASIC, especially the graphics subroutines, to fully understand it. If you don’t
know much Extended BASIC you may still follow my explanations to get a
rough understanding. If you need a refresh of your Extended BASIC skills, have
a look at the Extended BASIC Reference.

The structure of the program
When we think of this game as described above, the fundamental

structure of the program begins to materialize. First, we need to do some
preparations like defining the shape of the sprites, setting-up the text and the
background color, and clearing the screen.

We want to be able to start the game over if we fail or land/win.

We need to prepare the screen with the buildings and let the bomber start.

While in the air we need to manage the user-input, the bomber and the
bombs.

When the game is over, either by landing or by hitting a building, we
should probably display a clever game over message. After that perhaps we’ll
ask the player if they wish to start all over or end the program.

GOSUB GameInit
REPEAT
GOSUB PaintScreen
GOSUB PlayGame
GOSUB GameOver

UNTIL Answer=78 OR Answer=110
CALL CLEAR
END

Done! Game ready! Except for some details of course. This is an example
of “structured” programming. Those eight lines define the structure of the
program -- top-down. If you want to change something, you immediately know
where to go.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 38

The Subroutines
Let’s define the first subroutine -- GameInit:

GameInit:
CALL CHAR(124,"00000080C0E070FFFF070F1C3800000000000000000000FEFFC0000000000000")
CALL CHAR(128,"28103838381000")
CALL CHAR(132,"FE929292FE929292FFFFFFFF")
CALL MAGNIFY(3) :: DIM A(26) :: RANDOMIZE

RETURN

All of the one-time initialization commands go into GameInit. This routine
runs only once at the beginning of the first game you play after loading, never
in between subsequent games as this is not necessary.

The (between) each-game preparation commands go into PaintScreen:

PaintScreen:
CALL ScrInit(16,2) :: DISPLAY AT(23,10):"SteveB52"
FOR I=1 to 26 :: A(I)=0 :: NEXT I
FOR I=1 to 50 :: J=INT(RND*26)+1 :: A(J)=A(J)+1 :: NEXT I
CALL HCHAR(21,1,133,32)
FOR I=1 to 26 :: CALL VCHAR(21-A(I),I+3,132,A(I)):: NEXT I
CALL SPRITE(#1,124,13,1,1,0,16)

RETURN

We first call ScrInit(16,2), which is not defined in the program, but in the
Standard Library of TiCodEd. We will talk about libraries later, but we need to
have the “Standard Library” checked on the Project tab, which is the default.

We display the game name at the bottom of the screen, initialize our array
before distributing 50 building elements among the 26 columns in use. We then
use HCHAR to draw the ground / runway and draw the buildings on top of it.
Finally, we create Sprite #1 in the top left corner and let it fly horizontally with
speed 16.

Now we can look at the actual game-play:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 39

PlayGame:
REPEAT
CALL POSITION(#1,Y1,X1) :: IF X1>240 THEN CALL LOCATE(#1,Y1+4,1)
CALL KEY(3,K,S) :: IF K=32 AND BOMB=0 THEN CALL SPRITE(#2,128,11,Y1,X1,24,0) :: BOMB=1
IF BOMB=0 THEN NoBomb
CALL POSITION(#2,Y2,X2) :: CALL GCHAR(Y2/8+1,X2/8+1,C2)
IF C2=132 OR Y2>155 THEN CALL DELSPRITE(#2):: BOMB=0
IF C2=132 THEN CALL HCHAR(Y2/8+1,X2/8+1,32,1) :: CALL SOUND(-250,-7,1)

NoBomb:
CALL GCHAR(INT((Y1-1)/8)+2,INT((X1-1)/8)+1,C1)

UNTIL (Y1>148 AND X1>200) OR C1<>32

RETURN

We execute the game-loop until either we land or hit an obstacle. We use
variable Y1 and X1 for the position of the bomber as sprite #1 and Y2 and X2
as position of the bomb as sprite #2. The variable BOMB indicates whether a
bomb is already falling(1) or can be dropped(0).

First we query the position of sprite #1, the bomber. If beyond column 240
it is re-inserted at column 1, but 4 pixels below.

Next we query the keyboard. When space (key=32) was pressed and no
bomb was already falling, we create a sprite #2 at the position of the bomber
and let it move vertically at speed 24.

We skip the next three lines when no bomb is falling. As Extended BASIC
knows no blocks of statements like C with { } or Pascal with BEGIN .. END, we
still must use a very local GOTO statement to skip those lines and continue at
label NoBomb:.

If there is a bomb falling we first query the position of sprite #2. As
sprites use pixel coordinates whereas characters use 32x24 character
screen-positions, we divide the sprite position by 8 and add 1 to query the
character with GCHAR at the position of the bomb in C2. If it hits a building
(character 132) or falls below the ground (Y2>155) the bomb gets deleted. If it
hits a building, the character gets replaced with a space (32) and an explosion
sound will be created.

Finally, we check if the bomber has hit a building with variable C1.

When we leave the loop for either reason, the game is over.

GameOver:
CALL MOTION(#1,0,0) :: CALL DELSPRITE(#2)
IF C1<>32 THEN DISPLAY AT(8,10):"Game Over" ELSE DISPLAY AT(8,10):"You landed"
DISPLAY AT(12,8):"Play again? (Y/N)"
REPEAT
CALL KEY(3,Answer,S)

UNTIL S<>0

RETURN

First we stop the bomber and delete the bomb (no need to check if it is
really there as CALL DELSPRITE gives no error on a non-existing sprite). By the
value of C1 we can decide whether we landed or hit a building. We ask if we
want to play again and loop until a key is pressed using the status of CALL KEY.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 40

Back in the main-program loop, we exit and clear the screen when the “N”
key is pressed. We check for the uppercase N with key 78 and the lowercase n
with key 110 for the demonstration of combined logical conditions, even though
CALL KEY(3…) will always return uppercase values.

That is it. Paste all elements in the order of appearance together into the
SXB tab after creating a new project and save the game under SteveB52. On
the project page we shorten the Token and Merge name to SB52:

Now we build the project by pressing Control-B.

The generated code will look like this:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 41

100 GOSUB 170
110 GOSUB 220
120 GOSUB 290
130 GOSUB 380
140 IF NOT (Answer=78 OR Answer=110) THEN 110
150 CALL CLEAR
160 END
170 CALL CHAR(124,"00000080C0E070FFFF070F1C3800000000000000000000FEFFC0000000000000")
180 CALL CHAR(128,"28103838381000")
190 CALL CHAR(132,"FE929292FE929292FFFFFFFF")
200 CALL MAGNIFY(3) :: DIM A(26) :: RANDOMIZE
210 RETURN
220 CALL ScrInit(16,2) :: DISPLAY AT(23,10):"SteveB52"
230 FOR I=1 to 26 :: A(I)=0 :: NEXT I
240 FOR I=1 to 50 :: J=INT(RND*26)+1 :: A(J)=A(J)+1 :: NEXT I
250 CALL HCHAR(21,1,133,32)
260 FOR I=1 to 26 :: CALL VCHAR(21-A(I),I+3,132,A(I)):: NEXT I
270 CALL SPRITE(#1,124,13,1,1,0,16) :: BOMB=0
280 RETURN
290 CALL POSITION(#1,Y1,X1) :: IF X1>240 THEN CALL LOCATE(#1,Y1+4,1)
300 CALL KEY(3,K,S) :: IF K=32 AND BOMB=0 THEN CALL SPRITE(#2,128,11,Y1,X1,24,0) :: BOMB=1
310 IF BOMB=0 THEN 350
320 CALL POSITION(#2,Y2,X2) :: CALL GCHAR(Y2/8+1,X2/8+1,C2)
330 IF C2=132 OR Y2>155 THEN CALL DELSPRITE(#2):: BOMB=0
340 IF C2=132 THEN CALL HCHAR(Y2/8+1,X2/8+1,32,1) :: CALL SOUND(-250,-7,1)
350 CALL GCHAR(INT((Y1-1)/8)+2,INT((X1-1)/8)+1,C1)
360 IF NOT ((Y1>148 AND X1>200) OR C1<>32) THEN 290
370 RETURN
380 CALL MOTION(#1,0,0)::CALL DELSPRITE(#2)
390 IF C1<>32 THEN DISPLAY AT(8,10):"Game Over" ELSE DISPLAY AT(8,10):"You landed"
400 DISPLAY AT(12,8):"Play again? (Y/N)"
410 CALL KEY(3,Answer,S)
420 IF NOT (S<>0) THEN 410
430 RETURN
440 SUB ScrInit(fg,bg)
450 CALL SCREEN(bg)
460 CALL DELSPRITE(ALL)
470 CALL CLEAR
480 FOR I=0 to 14 :: CALL COLOR(I,fg,1) :: NEXT I
490 SUBEND

Please note lines 440 to 490. The SUB ScrInit(fg,bg) was pulled from the
standard library and appended to the program (see chapter The Standard
Library).

When playing the game you may notice that some hits get overseen by
the program, i.e. a bomb falls through a one-story building or the upper story
of a higher building. That is because the TI remains as slow as it was 40 years
ago. One way to remedy this situation is by turning the emulation speed up.
Use Options / CPU Throttling and select CPU Overdrive. This is a weak solution
as you can not do this on the real machine.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 42

If only there were a better way?

This is where Harry Wilhelm (aka, Senior Falcon) steps in to save the day!

With Harry’s BASIC Language Compiler we are able to translate programs
written in BASIC, Extended BASIC, or Structured Extended BASIC, into what is
known as “Threaded” Assembly Language code.

The resulting “Threaded” Assembly Language code can then be
“Assembled,” which is basically translating the code again into Machine
Language. The beauty of the Compiler is you don’t have to know Assembly
Language to exploit some (upwards of 25X) speed advantages.

NOTE: Since the BASIC Compiler’s conversion process from BASIC to
“Threaded” Assembly Language yields code not as optimal as hand-written
Assembly Code, the speed advantages of the compiler, though incredibly
significant, are no match for pure hand-written Assembly.

That said, running your BASIC programs at up to 25-times as fast as
TI-99/4A normally runs BASIC programs is good! Actually, it’s awesome. Some
say it’s Insanely Great! Just not as good as an Assembly Language programmer
can do. With pure hand-written Assembly one can achieve performance
somewhere around 200-times faster than standard TI BASIC.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 43

Get the Compiler ready!
I asked you to not use DSK1 for your program FIAD directory because we

want to use DSK1 for the compiler. So please locate the
Contributers\Harry_Wilhelm\ISABELLA directory in your Classic99 installation.
You will also need the Asm994a.exe from this directory.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 44

When you now start Classic99 and select “2 FOR EXTENDED BASIC” you
get the following menu from the autostart file of DSK1 (or an older version of
ISABELLA)

We already wrote the SB52-M file as selected on the Project tab, so we
can use the arrow-keys to select COMPILER and hit Return.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 45

Overwrite the DSK-M with DSK4.SB52-M and press Return. Confirm the
Assembly File as DSK4.SB52.TXT with Return, Select Y for “Assembling with
Asm994a” and N to Put Runtime in low Memory.

Press Y to Proceed. To speed things up you may switch to CPU Overdrive
here as well.

The compiler gives some output about the passes and the lines processed
and if everything is fine will quit to the menu.

Here it skipped the Assembler as we chose to use Asm994a.exe from the
ISABELLA directory. Asm994a.exe is originally from the Win994a emulator
package from BurrSoft (Cory Burr) and included with the compiler by
permission. It is superior to the ASSEMBLER (4th option, old TI Assembler) in
this menu for many reasons including processing speed.

We have just completed compiling/converting XB code to threaded
Assembly code. The threaded Assembly code is saved as SB52.TXT in your
Classic99 DSK4. Next we must Assemble/convert the threaded Assembly code
into speedy Machine Language. How exciting, right?

Beginners Manual - Structured Extended BASIC & TiCodEd Page 46

Start the Asm994a.exe program by double-clicking on it and press “Add
Source File”. You should find SB52.TXT in your DSK4 FIAD Directory. Check the
“Def Regs (R0 - R15)” and “Produce HEX Obj File”, leave the others unchecked.

The HEX Object File should automatically be set to SB52.OBJ in your DSK4
directory. This is going to be the name of the Machine Language program file.

Finally, press “Run Assembler” at the bottom.

The Output Error Log should show “Assembly Complete - Errors:0,
Warnings 0”:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 47

Now you can return to Classic99 and select the Loader in the menu:

First confirm the DSK4.SB52.OBJ file with Return, then confirm the CALL
LINK statement as well and the proposed SAVE command. With this the menu
has auto-created a small XB program with embedded machine code from the
assembler.

Turn off CPU overdrive in the Options back to Normal to get the actual
speed.

Confirm RUN and enjoy your compiled game!

Creating a Module
If you want to play the game as a module in an emulator or on a cartridge

like FlashROM99 or FinalGROM you may use Fred Kaals Module Creator. Please
follow the install instructions very thoroughly. Especially make sure that there is
no space anywhere in the installation path, so “C:\Program Files” will not work.

Additionally, you will need to utilize Fred’s “TI99dir” to change the file
header from TIFILES to V9T9, or change the settings from DSK4 to “Write V9T9
Headers” before running the linker.

We will assume you have your files in TIFILES format. Start TI99dir and
point it to your DSK4 directory by selecting File / Select another Directory.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 48

Select the SB52-E file and go to Tools / Convert TIFILES to V9T9 file. The
attribute in the last column changes to V9T9.

Changes to:

The resulting files from the compiler are split in size at 8kB. Larger
programs have additional files ending -F and -G, i.e. SB52-F. A 16kB program
will have two files (-E and -F) of 8kB each. A 24kB program will have three
files: name-E, name-F, and name-G.

NOTE: The largest size program you can write for the TI-99/4A using this
workflow is 24kB in total size. You will find your SXB program may slightly
exceed 24kB in size as the resulting Machine Language (known also as “Object
Code”) version will typically be smaller than the SXB version. So compiling and
then assembling your SXB programs essentially shrinks them in the process of
speeding them up. Double Bonus!

If multiple “object” files are present, convert them the same way to V9T9.
You may select multiple files for conversion by pressing the Control-Key while
clicking on them.

Now start the Module Creator 2.0. First give a name to the Module, then
select “Add” in the Program 1 box. Enter the title of the module in the screen
after the initial power-up screen. Select the SB52-E file as Program File using
the “...” button.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 49

Subsequent -F and -G files are used automatically when present. Program
2 to Program 4 remain empty, both options unchecked. Now press “Create
Module” at the bottom.

Multiple windows in different colors will pop up, the last line always
indicating “No Errors found”.

Press any key to close this third and last window to return to the initial
menu. You may save your configuration if you want to repeat the module
creation for the same program.

You will find your module in the path mentioned above, in the directory of
the Module Creator, in a subdirectory with the name of the module. Re-read the
previous sentence three times and you’ll understand. The module in this case
will be in SteveB52 and will be named SteveB52.bin.

NOTE: A .bin file is what is known as a “binary” file, or a “ROM” file. It’s
machine code formatted in a way which is ready to be loaded into an SD device
such as FinalGROM99 or FlashROM99, or loaded into Classic99 as a cartridge.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 50

Try your module by selecting Cartridge / User / Open in Classic99.

You may also try https://js99er.net/#/ to play your module online.

Perhaps your game is good enough to bring to market? This cartridge .bin
file is what you will need to supply Greg at www.arcadeshopper.com if you wish
to market your game(s) in the traditional uber-retro TI Solid State Software
cartridges.

At this point you have learned to: use TICodEd to edit programs in SXB on
a modern PC, convert the SXB code to threaded Assembly Language using a
Compiler, and assemble the threaded assembly code to object code which is
native TI-99/4A machine language. Additionally, you now know how to easily
produce binary (.bin) files for emulation and online distribution. If making a
TI-99-4A game cartridge has been a life-long goal of yours, now you have the
tools to make that dream a reality.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 51

https://js99er.net/#/
http://www.arcadeshopper.com

Language Reference

Considerations for Compiling
Please read the documentation of Harry Wilhelm's BASIC Compiler

(Isabella resp. Jewel) at least once for details. Here are some quick reminders.

● The compiler only allows for 16bit integers (-32768 to 32767) for
numeric variables, no floating point arithmetic available

● RND has a special handling: Multiply with n gets a number from 0 to n-1
● Use INT() in XB to get the same results as when compiled
● Files need to have #1, #2 or #3 and are limited to DV1 to DV254
● INPUT requires a prompt when using multiple variables
● PRINT and DISPLAY have limited formatting capabilities (“USING”).
● SUB statement is restricted to only six significant characters and there is

a huge list of not allowed names in the manual. TiCodEd checks this and
gives warnings.

● Test your program in CPU Overdrive mode before compiling, as there are
a few runtime checks in the compiled program.

Extended BASIC Reference
This List is based on the original Texas Instruments Extended BASIC Reference
Card supplied with the module. If you need more details, check out the Book
“TI Extended BASIC”. Commands are meant to be issued interactively and
therefore not relevant for TiCodEd and SXB. Functions and statements not
supported by the ISABELLA / JEWEL Compiler are marked red, yellow with
limited support. Refer to the compiler manual for details.

C : COMMAND F : FUNCTION S : STATEMENT
ABS (numeric expression)
returns the absolute value of
numeric-expression F

ACCEPT [[AT(row, column)] VALIDATE
(datatype, …)] [BEEP] [ERASE ALL] (
SIZE(numeric-expression)] :]variable
suspends program execution until data is
entered from the keyboard . Optionally , data is
entered at the position specified by row and
column , the data is validated , and / or
option(s) are executed . S , C
VALIDATE datatypes:

UALPHA permits all uppercase alphabetic char.
DIGIT permits O through 9.
NUMERIC permits O through 9, ".",”+", “-” &

“E”.
String-expression permits the characters
contained in string-expression.

BEEP: causes an audible tone
ERASE ALL : places the space character in all
screen positions before accepting input.
SIZE (numeric-expression) : allows only
numeric expression characters to be entered. If
numeric expression is positive , that many
positions are blanked . If it is negative , no
positions are blanked.

ASC(string-expression)
returns the ASCII code of the first character of

string-expression. F

ATN(numeric-expression)
returns the trigonometric arctangent of numeric
expression. F

BREAK [Line-number-list]
causes the program to halt when encountered
or optionally when lines in line-number-list are
encountered. C,S

BYE
closes open files and leaves TI Extended BASIC.
C

CALL subprogram [(parameter-list)]
calls the indicated subprogram. An optional
parameter-list can be passed . S

CALL CHAR(character-code, pattern-identifier [,
…])
defines the specified ASCll character code(s)
using a 0 through 64 character hexadecimal
coded string pattern-identifier. S,C

CALL CHARPAT(character-code ,
string-variable[,..])
returns in string-variable the hexadecimal code
that
specifies the pattern of character-code. S,C

CALL CHARSET

Beginners Manual - Structured Extended BASIC & TiCodEd Page 52

http://www.99er.net/files/TI%20Extended%20Basic%20-%20Linked.pdf
http://www.99er.net/files/TI%20Extended%20Basic%20-%20Linked.pdf

restores the standard character patterns and
colors for characters 32 through 95. S,C

CHR$(numeric-expression)
returns the string character corresponding to
the ASCll numeric-expression. F

CALL CLEAR
places the space character in all screen
positions. S,C

CLOSE #file-number [:DELETE]
stops the programs use of the file referenced by
file number and optionally deletes the file.
S,C

CALL COINC(#sprite-number,#sprite-number,
tolerance, numeric-variable)
CALL
COINC(#sprite-number,dot-row,dot-column,
tolerance,numeric-variable)
CALL COINC(ALL,numeric-variable)
returns in numeric-variable -1 if there is a
coincidence and 0 if there is no coincidence. If
ALL is present , a coincidence of any two sprites
is reported. If two sprites are identified by
number, their coincidence is reported. If a sprite
and a position are identified their coincidence is
reported. Except when ALL is specified , a
tolerance of from 0 to 255 is specified. The
distance between the given sprites or sprite and
position must be less than tolerance for a
coincidence to be reported . S,C

CALL COLOR(#sprite-number, foreground-color
[, …])

CALL COLOR(character-set, foreground-color,
background color [, …])
specifies either a color for # sprite-number or a
Foreground-color and background-color for
characters in character-set. S,C

CONTINUE

CON
resumes execution after a break . C

COS(radian-expression)
returns the trigonometric cosine of
radian-expression F

DATA data-list
stores numeric and string constant data in
program. S

DEF function-name [(parameter)] =
expression
associates user-defined numeric or string
expression with function-name S

DELETE device-filename
removes filename from device. C,S

CALL DELSPRITE(#sprite-number [,...])
CALL DELSPRITE (ALL)
removes the specified sprite (s) from the
screen. ALL removes all sprites from the screen.
S,C

DIM array-name(integer1 [,integer2] ..
[integer7])
dimensions the listed array (s) as specified.
S,C

DISPLAY [[AT(row,column)] [BEEP] [ERASE
ALL] [SIZE(numeric-expression)] :] variable-list
ransfers variable-list to the display screen.

Optionally, data is displayed at the position
specified
by row and column. S,C
Options:
BEEP : causes an audible tone.
ERASE ALL : places the space character in all
screen positions before displaying
SIZE(numeric expression):blanks
numeric-expression characters in the indicated
position

DISPLAY [option-list:] USING string-expression
[:variable-list]
DISPLAY [option-list:] USING line-number[:
variable-list
has the same options as DISPLAY with the
addition of the USING clause , which specifies
the format. If
string-expression is present , it defines the
format. If
line - number is present , it refers to the line
number of IMAGE statement. See IMAGE S,C

CALL DISTANCE(#sprite-number,
#sprite-number, numeric-variable)
CALL DISTANCE(#sprite-number, dot-row,
dot-column, numeric-variable)
returns in numeric-variable the square of the
distance between the sprites or the sprite and
the location. S,C

END
terminates program execution. S

EOF(file-number)
returns the end-of-file condition of file-number F
O : not end-of-file
1 : logical end-of-file
-1 : physical end-of-file

CALL ERR(error-code, error-type [,
error-severity , line number])
returns the error-code and error-type of the
most recent uncleared error . Optionally ,
returns the error-severity and line-number in
which the error occurred. S,C
Error-code : consult manual
Error-type : Negative number : execution error.
Positive number: number of file in which the
error occurred
Error-severity : 9, indicating that the error is
not recoverable.

EXP(numeric-expression)
returns exponential value (ex) of
numeric-expression
The value of e is 2.718281828. F

FOR control-variable = initial-value TO Limit
[STEP increment]
repeats execution of statements between FOR
and NEXT until the controL-variable exceeds the
limit. STEP increment default is one. S,C

CALL GCHAR(row, column, numeric-variable)
returns in numeric-variable the ASCII code of
the character located at row and column. S,C

GOSUB line-number
GO SUB line-number
transfers control to a subroutine at line-number
S

GOTO line-number
GO TO line-number

Beginners Manual - Structured Extended BASIC & TiCodEd Page 53

unconditionally transfers control to line-number.
S

CALL
HCHAR(row,column,character-code[,repetition]
)
places the ASCll pattern of character-code at
row and column and optionally repeats it
repetition times horizontally. S,C

IF relational-expression THEN line-number1
[ELSE line-number2]

IF relational-expression THEN statement1 [ELSE
statement2]

IF numeric-expression THEN line-number1
[ELSE line-number2]

IF numeric-expression THEN statement1 [ELSE
statement2]
transfers control to line-number1 or performs
statement1 if relational-expression is true or
numeric-expression is not equal to zero.
Otherwise control passes to the next statement,
or optionally to line-number2 or statement2. S

IMAGE format-string
specifies the format in which data is PRINTed or
DISPLAYed when the USING clause is present
Format-string may be any or all of the following:
Letters, numbers . characters not listed below
transferred directly
: replaced by the print-list values given in
PRINT or DISPLAY
^ : replaced by the E and power numbers. Must
be four or five of these S

CALL INIT
prepares the computer to load and run
assembly language subprograms S,C

INPUT [input-prompt:] variable-list
suspends program execution until data is
entered from the keyboard . The optional
input-prompt may indicate what data is
expected. S

INPUT #file-number[,REC record-number]
variable-list
assigns data from the indicated file to the
variables in variable-list. Records are read
sequentially unless the optional REC clause is
used. S

INT(numeric-expression)
returns the greatest integer less than or equal
to numeric-expression. F

CALL JOYST (key-unit, x-return, y-return)
accepts data into x-return and y-return based
on the position of the joystick labeled key-unit
Values are -4, 0 and 4. S,C

CALL KEY(key-unit, return-variable,
status-variable)
assigns the code of the key pressed on key-unit
(0 to 5) to return-variable Status information
is returned in status-variable. 1 means a new
key was pressed. -1 means the same key was
pressed.
0 means no key was pressed . S,C

LEN(string-expression)
returns the number of characters in
string-expression. F

[LET] numeric-variable [, numeric-variable, …]
= numeric-expression
[LET] string-variable [, string-variable , ...] =
string-expression
assigns the value of an expression to the
specified
variable(s). S,C

CALL LINK(subprogram-name [,
argument-list])
passes control to an assembly language
subprogram. S,C

LINPUT [[#file-number [, REC
record-number]:] string-variable
LINPUT [input-prompt:] string-variable
assigns data from the indicated file to
string-variable
or suspends program execution until data is
entered from the keyboard. If data is assigned
from a file
records are read sequentially unless the optional
REC clause is used . If data is entered from the
keyboard the optional input-prompt may
indicate what data is expected . S

LIST [“device-name”:] [line-number]
LIST [“device-name”:] [start-line-number] -
]end-line number]
sequentially displays program statements or
optionally a single line number or all lines
between specified line numbers. C

CALL LOAD(“access-name"[,address,byte1 [...
] ,file-field, …])
loads an assembly language subprogram. S,C

CALL
LOCATE(#sprite-number,dot-row,dot-column [,
....])
moves the given sprite (s) to the given
dot-row (s) and dot-column(s). S,C

LOG(numeric-expression) returns the natural
logarithm of numeric-expression F

CALL MAGNIFY(magnification – factor)
sets the size and magnification of all sprites.
S,C
Magnification – factors:
1 : single size unmagnified
2 : single size magnified
3 : double size unmagnified
4 : double size magnified

MAX(numeric-expression1,
numeric-expression2)
returns the larger of numeric-expressio1l and
numeric-expression2. F

MERGE [“] device-filename [“]
merges lines in filename from the given device
into the program lines already in the computer's
memory C

MIN(numeric-expression1,
numeric-expression2) returns the smaller of
numeric-expression1 and numeric-expression2
F

CALL MOTION(#sprite-number,row-velocity,
column-velocity […]) changes the motion of a
sprite(s) to the indicated row-velocity and
column-velocity. S,C

NEW clears the memory and screen and

Beginners Manual - Structured Extended BASIC & TiCodEd Page 54

prepares for a new program. C

NEXT control-variable See FOR statement S,C

NUMBER [initial-line] [, increment]
NUM [initial-line] [, increment]
generates sequenced line numbers starting at
100 in increments of 10. Optionally, you may
specify the initial-line and / or increment. C

OLD [“]device-program-name[“] loads
program-name from device into memory. C

ON BREAK STOP
ON BREAK NEXT
determines the action taken if a breakpoint is
encountered either in the program or by SHIFT
C (CLEAR). The default is STOP, which halts
execution of the program. The keyword NEXT
causes breakpoints to be ignored and execution
of the program to continue. S

ON ERROR STOP
ON ERROR line-number
determines the action taken if an error occurs.
The default is STOP, which halts execution of the
program. If line-number is given, control is
transferred to it when an error occurs. See
RETURN. S

ON numeric-expression GOSUB line-number [,
…]
ON numeric-expression GO SUB line-number [,
…]
transfers control to the subroutine with a
beginning line number in the position
corresponding to the value of
numeric-expression. S

ON numeric-expression GOTO line-number [, …]
ON numeric-expression GO TO line-number [,
…]
unconditionally transfers control to the line
number in the position corresponding to the
value of numeric expression. S

ON WARNING PRINT
ON WARNING STOP
ON WARNING NEXT
determines the action taken if a warning
condition occurs. The default is PRINT, which
prints a message and continues with the
program . The keyword STOP causes the
warning message to be printed and execution of
the program to stop . The keyword NEXT causes
no message to be printed and the program to
continue. S

OPEN #file-number:”device-filename"
[,file-organization] [,file-type] [,open-mode]
[,record-type]
enables the program to use the given filename.
S,C
File-number: 0-255
File-organization: RELATIVE or SEQUENTIAL
File-type: DISPLAY or INTERNAL
Open-mode: INPUT, OUTPUT, UPDATE, APPEND
Record-type: FIXED or VARIABLE

OPTION BASE 0
OPTION BASE 1
sets the lowest allowable subscript of arrays to
zero or one. The default is zero. S

CALL PATTERN(#sprite-number,character-value
[,...])

changes the pattern number of the specified
sprite(s) to the specified character-value(s). S,C

CALL PEEK(address, numeric-variable-list)
returns values in numeric-variable-list
corresponding to the values in address . S,C

PI returns the value of pi as 3.14159265359 F

POS(string1, string2, numeric-expression)
returns the position of the first occurrence of
string2 in string1. Search begins at the position
specified by numeric expression. Returns zero if
no match is found. F

CALL
POSITION(#sprite-number,dot-row,dot-column
[, …]) returns the positions in the given
dot-row(s) and dot-column(s) of the specified
sprite(s) . S,C

PRINT [#file-number [, REC
record-number]:][print-list]
transfers optional print-list to the display screen
or optionally to an external file . The REC clause
directs print-list to the specified record-number.
S,C

PRINT [#file-number [, REC record-number]]
USING string-expression:print-list
PRINT [#file-number [, REC record-number]]
USING line-number:print-list
acts the same as PRINT with the addition of the
USING clause, which specifies the format. If
string-expression is present, it defines the
format. If line-number is present, it refers to the
line number of an IMAGE statement. See
IMAGE. S,C

RANDOMIZE [numeric-expression]
resets the random number generator to an
unpredictable sequence. With optional
numeric-expression, the sequence is repeatable
. S,C

READ variable-list
assigns numeric and string constants from DATA
statements to variable list. S,C

REC(File-number)
returns the current record position in
file-number F

REM character-string
indicates internal program documentation with
no effect on program execution . S,C

RESEQUENCE [initial-line] [, increment]
RES [initial-line] [, increment]
automatically renumbers lines starting at 100 in
increments of 10. Optionally, you may specify
the initial-line and / or increment. C

RESTORE [line-number]
indicates that the next READ operation will take
data from the first DATA statement in the
program or optionally, from the first DATA
statement after line
number S,C

RESTORE #file-number [, REC record-number]
resets file pointer to the beginning of the file or
optionally, to record-number. S,C

RETURN
transfers program control from a subroutine to
the statement following the corresponding

Beginners Manual - Structured Extended BASIC & TiCodEd Page 55

GOSUB or ON … GOSUB statement S

RETURN [line-number]
RETURN [NEXT]
controls program action after an error has
occurred when an ON ERROR statement has
been executed . With nothing following it,
returns control to the statement which caused
the error and executes it again. Followed by a
line-number, it transfers control to the given
line. Followed by NEXT, it transfers control to
the statement after the one in which the error
occurred. S

RND
generates a pseudo-random number greater
than or
equal to zero and less than one. F

RPT$(string-expression, numeric-expression)
returns numeric-expression occurrences of
string-expression concatenated together. F

RUN [“device.program-name"]
RUN [line-number]
starts program execution at the lowest program
statement of the program currently in memory.
Optionally program-name is loaded from device
or execution starts at line-number. C,S

SAVE device.program-name [,PROTECTED]
SAVE device.program-name [,MERGE]
places a copy of the current program in device
as program-name PROTECTED makes it
impossible to change or list the program later.
MERGE enables later merging of the program
with another program. See MERGE. C

CALL SAY(word-string [, direct-string] [, …])
causes the speech synthesizer to speak the
given word-string or direct-string. S,C

CALL SCREEN(color-code)
changes the screen color to color-code. S,C

SEG$(string-expression, position, length)
returns a substring of string-expression
beginning at position and extending for length
characters. F

SGN(numeric-expression)
returns 1 if numeric-expression is positive, 0 if it
is zero, and -1if it is negative. F

SIN(radian-expression) returns the
trigonometric sine of radian-expression. F

SIZE
displays on the screen the number of unused
bytes of memory. C

CALL SOUND(duration, frequency1, volume1, [,
…, frequency4, volume4]) S,C
controls up to three tone and one noise
generators. Tone and noise parameters can
occur in any order. Negative duration causes
immediate sound update
Duration: 1 through 4250 ms, -4250 through -1
ms
Frequency : 110 through 44733 Hz for tone,

-1 through -8 for noise .
Volume : 0 (loudest) through 30 (softest).

CALL SPGET(word-string , return-string)
returns in return-string the speech bit pattern
that corresponds to word-string . S,C

CALL SPRITE(#sprite-number, character-value,
sprite-color, dot-row , dot-column[, row-velocity,
column-velocity][, …])
specifies the existence of sprite(s)
sprite-number with a pattern specified by
character-value , a color of sprite-color, a
screen position of dot-row and dot column, and
optionally a velocity of row-velocity and
column-velocity. S,C

SQR(numeric-expression)
returns the square root of numeric-expression.
F

STOP
terminates program execution. S,C

STR$(numeric-expression)
converts the value of numeric-expression to a
string. F

SUB subprogram-name [(parameter-list)]
indicates the beginning of subprogram-name
with optional parameter-list. S

SUBEND
indicates the end of a subprogram and transfers
program control from a subprogram to the
statement following the CALL statement. S

SUBEXIT
transfers program control from a subprogram to
the
statement following the CALL statement. S

TAB(numeric-expression)
controls column position of the output from a
PRINT or DISPLAY statement. F

TAN(radian-expression)
returns the trigonometric tangent of
radian-expression. F

TRACE C,S
lists line numbers of lines before each is
executed.

UNBREAK [line-list]
removes all breakpoints or optionally those in
line-list. C,S

UNTRACE
cancels the action of the TRACE command. C,S

VAL(string-expression) F
converts string-expression into a numeric
constant.

CALL VCHAR(row,column,character-code
[,repetition])
places the ASCII representation of
character-code at row and column and
optionally repeats it repetition times vertically.
C,S

CALL VERSION(numeric-variable)
returns a value indicating the version of BASIC
being used. TI Extended BASIC returns a value
of 110. C,S

Beginners Manual - Structured Extended BASIC & TiCodEd Page 56

Additional Libraries
With libraries you are able to reuse code and import additional features.

There are three different kinds of libraries.

The Standard Library
In the game SteveB52 we already used the CALL ScrInit(Fg,Bg) subroutine

which is neither part of Extended BASIC nor defined in our program. It is derived
from the “Standard Library”, which is enabled by default. The Standard Library is
still under development and currently contains the following subroutines:

CALL ScrInit(fg,bg) Clears the screen, deletes all sprites, sets a background
color bg and all chars in foreground color fg with a transparent background.

CALL RAND(SEED,UL,RES) Returns an integer 0 <= RES < UL and advances the
seed. Useful when you want a repeatable sequence, but be aware that
neighbor seeds will compute similar results, while the seed is updated with
distinct values.

CALL CreateQ(A$,L) Initializes a Queue with the length of L (max 84) and
stores it in the string a$. Each queue entry consists of three byte, the last
byte of the string is the current entry.

CALL enQ(a$,c,p1,p2,d) Adds a record to the first free entry of the queue d
steps ahead of the current position (use 1 for the next available) with the
command c and the parameters p1 and p2 (values 1-255 for command, 0-255
for parameters). If the queue is full a$ is set to 'full' and appropriate actions
should be taken.

CALL deQ(a$,c,p1,p2) Gets next entry from the queue, command 0 means
empty slot.

CALL trim(a$) Removes leading and trailing spaces and unprintable characters.

CALL upStr(a$) Converts a$ to uppercase characters.

CALL loStr(a$) Converts a$ to lowercase characters.

CALL Mod(n,d,m) Calculates the modulo n MOD d (Remainder n/d). Results
may differ when compiled if n or d are no integer values.

Subroutines in the Standard Library can be used without prior declaration.
The definition will be appended to your XB source code automatically as shown
in the SteveB52 example.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 57

The User Library
You can create your own set of procedures you frequently use. The user

Library is actually a text-file containing Extended BASIC. Only the parts between
SUB and SUBEND will be used, so you may use any XB program you have as a
User Library and use the included SUB routines in other programs.

Packages
Packages are declaring additional functionality. One purpose is to declare

additional routines that are in your version of Extended BASIC, but not in the
Standard Extended BASIC module. TiCodEd checks for used subroutines with
every CALL statement. If it is not an XB standard routine and can’t find the
routine as SUB in your program and not in the User or Standard Library it issues
an error message. When you use an enhanced version of Extended BASIC like
XB 2.7 or RXB those additional routines are built-in and only need to be added to
the list of internal subroutines.

For RXB2020 the following package is included in the LIB directory as RXB
2020.xbpkg:

// Declares additional CALL Routines of RXB as internal

INTERNAL: BEEP BIAS BYE CAT CHARSETALL CLSALL DIR EA EALR EXECUTE GMOTION HEX
INTERNAL: HGET HONK HPUT INVERSE IO ISROFF ISRON JOYLOCATE JOYMOTION MOVES NEW
INTERNAL: ONKEY PEEKG PEEKV PLOAD POKEG POKER POKEV PRAM PSAVE QUITOFF QUITON
INTERNAL: RMOTION SAMS SWAPCHAR SWAPCOLOR USER VDPSTACK VGET VPUT XB

All those additional routines can be used without error messages when
selecting this package.

When you have a not yet supported version of XB just copy this file and
change the list of subroutines after the INTERNAL: keyword. Keep the extension
xbpkg.

The second use of packages is the use of assembly routines like T40XB or
XB256. They provide CALL LINK routines like CALL LINK("COLOR2",81,12,1).
Wouldn’t it look better if we have CALL COLOR2(81,12,1) instead? This type of
package can do the trick.

Before we look into the details, let’s have a look at an easy example, which
could be the beginning of an Arcade game. Feel free to experiment.

First create a new project and copy the following program to the SXB tab.
Save it under the name lscroll.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 58

GOSUB GameInit
REPEAT
A=A+INT(RND*5)-2 :: IF A<2 THEN A=2 ELSE IF A>8 THEN A=8
B=B+INT(RND*5)-2 :: IF B<2 THEN B=2 ELSE IF B>8 THEN B=8
CALL SCRLLF
CALL VCHAR(1,32,1,A) :: CALL VCHAR(21-B,32,1,B)
CALL KEY(3,K,S)
D = 8 *((K=69)-(K=88))
CALL MOTION(#1,D,0)

UNTIL K=13
END

GameInit:
CALL SCRN2
CALL SCREEN2(2)
CALL COLOR2(81,12,1)
CALL CHAR(124,"0000C0F3FF3F3FFF3F3FFFF3C00000000000000000C0FCFFFCC")
CALL CHAR2(1,"FF818181818181FF")
CALL HCHAR(1,1,1,32)::CALL HCHAR(20,1,1,32)
CALL MAGNIFY(3) :: RANDOMIZE
CALL SPRITE(#1,124,10,100,16)
A,B = 3

RETURN

Go to the Project Tab and select LIB\XB256.xbpkg from the Extension
Package drop-down list:

Now let’s take a look at the program. XB256 offers some very nice graphic
features, especially a second screen with 256 additional characters and nice
scrolling routines. The GameInit routine first switches to the second screen with
CALL SCRN2. This gets translated to the CALL LINK("SCRN2") you will find in the
XB256 documentation. SCREEN2 is used for the background color of the second
screen and COLOR2 for the characters on screen 2. 81 is a synonym for “all
character sets”, just as described in the XB256 manual. CHAR2 defines character
1 of the second screen. No need to redefine the standard characters 32 to 127
anymore, there are plenty of characters left outside that range. CALL HCHAR
works on the current screen, which we set to the second screen in the first
statement of the routine.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 59

A and B are variables for the upper and lower “wall” of the tunnel we are
about to build. Now for the actual loop (not a game loop yet). First we change A
and B randomly but make sure they stay within the bounds of 2 to 8. We use
CALL SCRLLF for “Scroll Left” one column. Now we use CALL VCHAR to fill the
new column on the right side.

We then query the keyboard in mode 3, which gives us uppercase letters
independent of Alpha-Lock or Shift, and calculate the vertical motion of our
spaceship.

D = 8 *((K=69)-(K=88))

That’s a nifty shortcut only few people know and use. Boolean expressions
are evaluated to either 0 for false and -1 for true. So the first inner parentheses
calculates -1 if we press “E” (ASCII 69) and 0 if it is not. The second does the
same with “X” (ASCII 88), but is subtracted, resulting in +1 or 0. Now multiplied
with 8 you get:

K=69 → D=-8

K=88 → D=8

K other → D=0

Just what we need to control our sprite vertically in the CALL MOTION. You
may even omit the variable and enter the boolean term directly in the CALL
MOTION. This is standard XB and remains unchanged by TiCodEd.

Let’s have a look at the program in the emulator. We need to load the
XB256 routines first so make sure that the compiler is still in DSK1.

Confirm the XB256 selection with Return. You will get Extended BASIC with
a grey background as a reminder that XB256 has been loaded. Harry was so
kind to pre-fill the prompt line with “OLD DSK” for you to complete:

Make it OLD DSK4.LSCROLL to load our program, then type RUN.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 60

Better press “E” to pull up!

Press Enter to end the demo. You will notice that the program changes back
to the unchanged primary screen where you entered RUN.

Finally, we will have a look at the inner workings of this package. It simply
contains rules for transferring the simplified SXB name to the original XB CALL
LINK statement in a very easy and simple format. Whenever a subroutine has
parameters, they are universally referred to as 'P'. All parameters are passed
as-is to the LINK call.

When a subroutine has optional parameters it is required to have two
translation lines in the XBP Package file, first the line with parameters, followed
by the line without parameters, i.e. SCRLUP in XB256.

CALL SCRLUP(P) -> CALL LINK("SCRLUP",P)

CALL SCRLUP -> CALL LINK("SCRLUP")

Each line starts with the SXB simplified code, followed by ' -> ' and the
resulting LINK call. Be careful to avoid potential existing name conflicts, i.e.
CALL LINK("SCREEN",P) must not be referenced as CALL SCREEN, as this is
already taken by XB.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 61

Here are the first lines of the XB256.xbpkg to demonstrate this:

// Translates simplified XB256 Subroutines into CALL LINK Statements

// SELECTING THE SCREEN

CALL SCRN1 -> CALL LINK("SCRN1")
CALL SCRN2 -> CALL LINK("SCRN2")
CALL SCREEN2(P) -> CALL LINK("SCREEN",P)

// COLOR AND CHARACTER PATTERNS IN SCREEN 2

CALL COLOR2(P) -> CALL LINK("COLOR2",P)
CALL CHAR2(P) -> CALL LINK("CHAR2",P)
CALL CHPAT2(P) -> CALL LINK("CHPAT2",P)
CALL CHSET2 -> CALL LINK("CHSET2")
CALL CHSETL -> CALL LINK("CHSETL")
CALL CHSETD -> CALL LINK("CHSETD")
(...)

For XB256 all routines have been named as in the original CALL LINK,
except

● CALL LINK("SCREEN",P) is to be used as CALL SCREEN2(P) in SXB
● CALL LOAD(-1,N) may be used as CALL SYNC(N) to set the interval

With this knowledge and the existing XB256 documentation you will be able
to use this library in your programs.

XB256 is also special because it can be used by the ISABELLA compiler. The
compiled program includes the XB256 routines and does not require to load it
first.

Wanna try? Start the menu with RUN “DSK1.LOAD” and select the compiler.
As you entered the filename at the OLD DSK prompt the compiler should already
know what you want to compile, otherwise specify DSK4.LSCROLL-M manually.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 62

After the compiler has finished, fire up Asm994a.exe and add source file
LSCROLL.TXT. The settings should be unchanged from the last usage. Start
Assembly and check for Errors and Warnings in the Log.

Complete the Loader and try the compiled program after going back to
normal CPU speed:

Your spaceship is a little sluggish now, compared to horizontal speed, isn’t
it?

Beginners Manual - Structured Extended BASIC & TiCodEd Page 63

Here are some suggestions for you to experiment with:

● Increase the vertical speed from 8 to …?
● Remove the safe corridor in the middle, but still make sure that there is

always at least 4 characters of free way
● Check if you hit the wall.
● …

Yepp. It’s your turn now to play around.

Writing a fast action game for the TI-99/4A has never been easier!

Beginners Manual - Structured Extended BASIC & TiCodEd Page 64

How to start on your own

Start from Scratch
Always remember, SXB is just a small extension to Extended BASIC.

Continue to think in the CALL’s, DISPLAY AT, ACCEPT and PRINTs. Think new
when it comes to program flow. Top-Down thinking like in SteveB52 is a good
start. Give your program a fundamental structure and then fill the subroutines
with life. Remember to build some kind of loop when you want to come back. Try
to dump the use of GOTO, at least to jump back. We have seen the small jumps,
over some code-lines in an IF, which may be acceptable. Use indentation to
visualize the structure of your program. Index-variables and often used variables
may be short. All others should receive intuitive readable names, explaining
purposes such as “Score”, “Hiscore”, “Level”. When you are short on memory,
use the variable tab to assign memory-saving short names.

Continue an existing project
To continue an existing project you’ll need a text file containing your code.

All of my old projects from back in the 80s were stored on cassette tape. I used
TAPE994A version 3.1 to “extract” them, as it worked better for me than CS1er.

These two helpful Windows programs are able to read and record a digital
program from any TI cassette tape. They then convert and save the program
files first in WAV format and then again to a tokenized digital format for use in
an emulator. You will need to connect a cassette player to your soundcard line-in
port. Both of these wonderful tools come with manuals giving you the exact
handling and format to be used.

I recorded a full side of a tape (30/45 min) in the required 8bit WAV format
after trying different volume and tone settings with a single program first. Next
you need to convert the tokenized file to an editable text file. TI99Dir can
convert the file for you. Select your program in DI99Dir and press F3 or Files /
View File. From there you can save the program as text.

It depends on the grade of completion how you should proceed. If it is
merely a demo with some nice graphics you should consider starting new and
copy the elements over.

If you have an advanced project you just want to touch up and finish you
may want to use TiCodEd only as a convenient editor able to save tokenized
files. If you decide, like I did, to at least drop the line numbers the following
approach may work for you as well.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 65

http://99er.net/download2/index.php?act=view&id=133
http://www.99er.net/download2/index.php?act=view&id=48
https://www.ti99-geek.nl/Projects/ti99dir/ti99dir.html

You may use the File/Import function to convert your XB program to SXB.
The importer can’t bring any structure to your code, but it can find all line
numbers that are used in GOTO, GOSUB, RESTORE or other statements and
assign a label to them. These labels are initially LABEL00100 for line 100, but
can be renamed interactively in the Import-Assistant or manually later on.

When you click on a label in the right table the label will be selected in your
code. You may keep the default name or assign a meaningful name in the “New
Label” Column. By pressing the Tab key you can move to the next label and get
it highlighted. When done, press “Apply Changes” and the labels will be updated
in your code and move to the left and might be changed again. Press okay when
done and close the Import-Assistant. The line numbers will be removed and your
program is shown on the SXB tab with initial indentions applied.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 66

If you prefer the manual conversion you may start with the first line and
watch for any reference to a line-number. Check the destination and think of a
descriptive name for this jump-destination. Enter it as a label (with a trailing
colon) in an extra line above, but leave the line number intact for now, as there
might be more references to this line in your code. Replace the line number in
the reference with the label and proceed with the next reference just the same.
Only when you have reached the last line, and your references no longer rely on
line-numbers, should the line numbers be removed. Do so safely as the use of
labels has removed the line number’s last remaining purpose in your code.

Next you can check for loops done by GOTO-Back’s, and see if they can be
replaced with REPEAT or WHILE loops. Once you have refactored your program,
test it. If you plan to compile it, check for floating point operations. You may
have used IF RND<0.1 THEN … Change it to IF RND*10=1. Also check if
variables like scores may exceed 32767. Adjust the program accordingly.

I suggest completing this conversion first before extending the program.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 67

Advanced Topics

The Character Definition Tab
One of the most distinctive features of the TI-99/4a is the capability to

redefine characters from BASIC without “poking” in the internals of the
computer. With Extended BASIC you are also able to define sprites as we have
seen in some of our examples. At this point we used hex-strings to define the
shapes of characters without further explaining. Each hexadecimal digit
represents four bits, or in a graphic way, four pixels.

A character has 8x8 pixels, two digits per pixel-line, gives 16 hex-digits per
character. You may use squared paper or a computer tool such as Magellan or
the online tool Raphael to draw your graphics. The much easier to master tool
named Char Tab is built right into TICodEd! How great is that? You can toggle
single squares with the left mouse button, or draw multiple squares with the
right mouse button. The Hex Definition is updated automatically.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 68

https://github.com/Rasmus-M/magellan
https://raphael.js99er.net/

The color options are just included for a better evaluation of your images.
Colors do not become part of the character (shape-only) definition. You may
copy the Hex String out of the definition field to use in your program, but this
also works the other way around. Take the following line from our last example:

CALL CHAR(124,"0000C0F3FF3F3FFF3F3FFFF3C00000000000000000C0FCFFFCC")

Click on the radio button for 16 x 16 pixel, select the hex string in quotes in
the line above, copy it with Ctrl-C and paste it to the Hex Definition.

The Erase-Button resets the visible field to blank and the arrows to shift the
pattern one pixel.

On the right side of the screen you see a charset table with three tabs:

Page Name Characters Reference

1 Extended Basic (or XB on Mac) 32 to 159 #CHAR1xxx

2 XB256 0 to 255 #CHAR2xxx

3 Auxiliary 0 to 255 #CHAR3xxx

The first column is the character number and the printable character when
available, the second is the preview and the third is the Hex-Definition. You may
edit or enter valid hex codes directly in this table.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 69

The “Size & Grouping” setting allows you to group chars as needed.
Groups can be selected by clicking on any char within the group. The first line of
the group is marked in red, the remaining lines in yellow. Inactive groups are
indicated with a bold character number and the first line of a group has a gray
background. Regrouping is always possible and does not change any pattern.

By selecting “Background Image” you may load a graphic in the transparent
background as a pattern to copy.

The charset editor is linked to your SXB program in two ways:

CALL AUTOCHAR – Use this subroutine in your program to dynamically
create a subroutine defining all chars (re-)defined in the “Extended Basic” and
“XB256” tab, the first by using CALL CHAR, the second by using CALL
LINK(“CHAR2”,..) when building your project.

You can refer to any char in the three tabs with the literal #CHARnxxx or
#CHARnxxx:z , for example as CALL CHAR(132,#CHAR3012:4) which will refer
to chars 12 to 15 from the third tab “Auxiliary”.

This should explain the use of the three charsets. The first is used to
redefine your Extended Basic characters, the second the additional characters
from XB256 and the last one for any dynamic assignment in your program, when
characters are redefined for movements for example.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 70

For sizes 1xN or 2x2N an additional section for animations appears:

You can play the animation while editing to see the result immediately.

CALL SUB or GOSUB?
Extended BASIC knows two ways to invoke a sub-routine, CALL and

GOSUB. But what is the difference? Which is better? When should I use which
one?

GOSUB is supported by nearly all BASIC Variants. You jump to a line and
the RETURN statement brings you back to the next statement after the GOSUB.
This way you can use this routine from different parts of your code and the
computer knows where to continue the execution. With SXB you can use a label
instead of a line-number, making it even more intuitive and portable. The
appropriately named subroutine may be moved around in your program listing
free from the shackles of sequential line numbering.

Extended BASIC also offers a very modern feature for its time, the ability to
define your own CALL routines with the keyword SUB. The main difference to
GOSUB is that you can pass parameters to the sub-routine, just like with
traditional Extended BASIC, when you do a CALL HCHAR(12,1,88,32):

Beginners Manual - Structured Extended BASIC & TiCodEd Page 71

SUB MYADD(Param1, Param2, Param3)
Param3 = Param1 + Param2

ENDSUB

The very special and modern concept is that the parameters are local to the
routine. Within the routine you have no access to the variables outside the
routine (global variables), which makes sure you do not change a value
accidently. The variables get their values from the CALL statement and return
them if changed back to the calling program.

CALL MYADD(3,4,SUM)

The call is executed by assigning PARAM1=3, PARAM2=4 and
PARAM3=SUM. When the line “Param3 = Param1 + Param2” is executed the
Param3 is changed to 7 (=3+4). When ENDSUB is reached the variables are
assigned back to the caller, so SUM will be set to the 7.

Please note that TI wants you to place all SUB commands at the end of a
program. For more details please check the Extended BASIC documentation.
TiCodEd will use the line-number you configure on the Project Tab for the first
SUB statement, default is 30000.

Which form of subroutine calling is better? It depends. If you have a
function which is independent of global variables and has a limited set of
parameters, the CALL SUB is much more elegant. It is also perfect for the
TiCodEd libraries, as they do not use any variables from your own programs.
GOSUB is a good choice if you act on many global variables or just want to
structure your program into smaller manageable blocks as the experts do.

Using BEGIN-END for code blocks
One annoying limit in the standard Extended BASIC is the maximal length

of a codeline, especially in IF-THEN-ELSE. If you can’t fit your statements in one
line you need to use a subroutine or jump around a code-block. In SXB you may
group statements in a “Block”, starting with BEGIN, ending with END and
spreading across multiple source lines. Please note, that END is already a
statement in XB and without a leading BEGIN will end the program.

With Structured Extended BASIC there is a way around this limit, but it
comes at a price. Let’s have a look at the SteveB52 example:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 72

<...>
IF BOMB=0 THEN NoBomb
CALL POSITION(#2,Y2,X2) :: CALL GCHAR(Y2/8+1,X2/8+1,C2)
IF C2=132 OR Y2>155 THEN CALL DELSPRITE(#2):: BOMB=0
IF C2=132 THEN CALL HCHAR(Y2/8+1,X2/8+1,32,1) :: CALL SOUND(-250,-7,1)

NoBomb: CALL GCHAR(INT((Y1-1)/8)+2,INT((X1-1)/8)+1,C1)
<...>

We used the label NoBomb to skip the processing of the bomb when there
is currently no bomb falling.

We may use a BEGIN-END block instead:

<...>
IF BOMB>0 THEN BEGIN
CALL POSITION(#2,Y2,X2) :: CALL GCHAR(Y2/8+1,X2/8+1,C2)
IF C2=132 OR Y2>155 THEN CALL DELSPRITE(#2):: BOMB=0
IF C2=132 THEN CALL HCHAR(Y2/8+1,X2/8+1,32,1) :: CALL SOUND(-250,-7,1)

END
CALL GCHAR(INT((Y1-1)/8)+2,INT((X1-1)/8)+1,C1)
<...>

This will get translated to

500 <...>
510 IF BOMB>0 THEN GOSUB 20000
520 CALL GCHAR(INT((Y1-1)/8)+2,INT((X1-1)/8)+1,C1)
530 <...>
620 END
20000 CALL POSITION(#2,Y2,X2) :: CALL GCHAR(Y2/8+1,X2/8+1,C2)
20010 IF C2=132 OR Y2>155 THEN CALL DELSPRITE(#2):: BOMB=0
20020 IF C2=132 THEN CALL HCHAR(Y2/8+1,X2/8+1,32,1) :: CALL SOUND(-250,-7,1)
20030 RETURN

Now you see the price to pay

● Runtime increases with the additional GOSUB / RETURN
● Your SXB and your XB program will differ in structure with this

Out-of-Sequence-Translation

The start line-number for the generated subroutines can be configured on the
Project Tab and defaults to 20000. You may use BEGIN-END after THEN, ELSE
and in the CASE-Statement introduced in the next chapter.

BEGIN-END Blocks may be nested, allowing complex logic, like in this following
example.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 73

input x
IF x=1 then begin

y=1
z=1

end else begin
if y=1 then begin
print "inner block"

end
y=2
z=2
print "outer block"

end
Print y

The CASE Statement
When talking about complex logic with multiple IF-THEN lines, sometimes a

CASE statement can simplify the program when you test one variable on
different values, like the key pressed in a CALL KEY.

Take a look at the following example:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 74

Print "Press H for Help"
repeat
repeat
call key(3,k,s)

until s<>0
CASE k OF
88 : Print "Down"
69 : Print "Up"
83 : Print "Left"
68 : Print "Right"
72 : BEGIN

Print "Help:"
Print "Press S,D,E or X"
Print "Press Enter to quit"

END
13 : Print "Exiting..."
ELSE BEGIN
Print "Wrong Key"
Print "Try again"

END
ENDCASE

UNTIL K=13
END

The CASE statement line defines which variable is used. It might be
numeric or string. Each following line defines one branch of the CASE. Multiple
values are separated by comma. If one line is too short for the branch you may
use BEGIN-END blocks (see previous chapter). The ELSE branch is optional and
is activated when none of the other conditions apply.

The CASE statement is closed with the ENDCASE Statement.

IN SET Condition
Sometimes you don’t want to do different things on different values like in

the CASE statement, but the same thing on a set of values, you want to test if
your variable is in a set of values. Here comes the IN[..] function handy:

IF V$ IN[“A”,”E”,”I”,”O”,”U”] THEN PRINT “Vowel”

You may use string or numeric values, separated by comma, enclosed in
square-brackets. This function can be used anywhere where a condition is used,
like in IF, REPEAT or WHILE statements.

Above example will be translated to

Beginners Manual - Structured Extended BASIC & TiCodEd Page 75

100 IF V$=”A” OR V$=”E” OR V$=”I” OR V$=”O” OR V$=”U” THEN PRINT “Vowel”

You may also use “V$ NOT IN[...]” but be aware that there must be exactly one
space between NOT and IN.

Binary data with BIN$
When you need some unprintable characters in a string you can use the

BIN$ feature of TiCodEd. It is not a function, but is executed on writing the
tokenized file to disk. It converts the provided hex.string to the binary string.

A$ = BIN$(“2A4021”)

In this example all the characters are printable, so when loading this line on
the TI it would read

100 A$=”*@!”

As it is converted while tokenizing, the hex-string needs to be a constant in
quotes, variables are not allowed.

The Variable Tab
The Variable Tab serves two purposes. For one it gives you a

cross-reference of the variables, listing all line-numbers in the XB tab, where a
variable is used. If you find your program doing something wrong because a
variable contains a wrong value, you may locate the error by checking these
lines. You can also check if a variable name is already in use before introducing a
new variable. You can sort the list by clicking the header column.

The second purpose is the definition of variable short-names. When
memory is valuable we tend to use short names for variables as every byte
counts. But this makes programs hard to read. Now you can have both,
meaningful variable names and still save memory on the TI, as variable names
get exchanged for their short version on exporting to the tokenized file.

Have a look at the SteveB52 Variables tab:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 76

You see all used variables in the program and the lines they are used in one
or more times. The variable “K” is only used in line 10080, but multiple times.
The variable “ANSWER” will be exported as “AN” to the TI, all others will remain
unchanged.

There are two checks performed when entering a short-name.

1. Is the variable already in use (long or short)?

2. Is there a Number/String mismatch (both or none with $ sign)

Make sure that you do not introduce a new variable in your program that has
already been used as a short-name.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 77

The list on this tab will be updated every time a build process is started. A newly
introduced variable is available for the assignment of a short-name after the
next build. The variable table is stored in the VXR-File specified on the Project
tab and read when the Variable tab is displayed or you start a build process.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 78

A daunting look at TIFILES
One of the most powerful and truly unique advantages of TiCodEd is the

ability to effortlessly write program files in the internal, tokenized format, ready
to be used by an emulator or the real TI-99/4A computer itself.

Not surprisingly, the TI file system works a little differently from today's PC
systems. The TI had no internal clock, so file-date and time are unknown. But
the TI stored file-type information of files, where Windows only recognizes flat
“byte-stream” files. The TI-99/4A files system has fixed (DF = “Display/Fixed”),
and variable record length files (DV = “Display/Variable”), or program files
(“Internal”). This additional information is stored in specific areas of the file
known as file headers. Two kinds of headers are popular in different emulators:
TIFILES and V9T9 file header. Classic99 knows and handles both natively.

Do you remember the first “Hello World” program we did in the emulator
and saved it to DSK4? It is time to have a closer look at the file.

When you use Notepad to look at this file you may notice that what the
emulator saved to disk is not at all what you typed in:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 79

Using a hex-editor like XVI32 you will see some more details:

This editor shows the file in a split view of 16 bytes per line, left is the
hexadecimal view of the data, right is the ASCII view. Hexadecimal means that
each byte (value between 0 and 255) is shown as two characters from 0 to F,
where A is 10, B is 11, C is 12, D is 13, E is 14 and F is 15. We talked about it
when we looked at graphic patterns for CALL CHAR..

This is also the reason why the second “line-number” in the green square is
“10”: This is hexadecimal for 16. The reason why hexadecimal is so popular with
computers is that 4 bits (0 or 1) can be written as one hexadecimal number, so
two hex numbers are 8 bit equals one byte.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 80

http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

You can calculate the byte value by multiplying the first character by 16 and
add the second, so >A2 is 10*16+2 = 162. We use the > sign to indicate a hex
value to distinguish hex 80 as >80 (=128 dec) from decimal 80.

Back to our file...you see that the first 128 bytes (Lines >00 to >70 in the
blue square) are started with “?TIFILES” as an identifier and then contain some
internal values, followed by many >00. This part is due to the emulator and the
settings to use the TIFILES header. At line >80 the actual program starts. You
can see your text Hello World, but no quotes and no print statement. Why?
There is just some gibberish before the Hello World.

The TI stores programs not as text, but as so-called tokens.

NOTE: Remember that Tokens are used in old computers to save precious
memory. The practice of saving programs in a compressed tokenized format
disappeared with affordable mass storage and cheap memory chips.

A TI BASIC/Extended BASIC token is a byte larger than >80 (128 decimal)
which helps the (old-school slow as molasses) BASIC interpreter decide what to
do. The first bytes are address information for loading the program.

In this example we start with line number >000A (=10 decimal, red), the
memory address >C937 (reverse order, blue).

the length of code line >0F (15 dec, green), the token for the PRINT
statement >9C (pink),

<C7 (blue) stands for a quoted string, >0B (11 dec, red) is the length of
this string, >48 is H, >45 is E until all of “HELLO WORLD” is done (yellow, 11
characters), terminated by a >00 (green).

If you are interested in the eight magic bytes before the line number, they
are described under “Header” in a more comprehensive description of the file
format on Ninerpedia, there is also a list of all tokens.

I have convinced you that you really do not want to bother with this,
right?

Good news, I spent some evenings with that so that you don’t have to.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 81

https://www.ninerpedia.org/wiki/BASIC_file_formats
https://www.ninerpedia.org/wiki/BASIC_tokens

Only keep in mind that a text-file with an Extended BASIC program on your
PC can’t be read by the TI or the emulator, it needs to be translated so that the
TI can understand it, or as we call it - Tokenized.

Understanding the Log
The default for the log-level is 3 “Information”. This is a reasonable setting

if everything works as expected, as all information usually nicely fits on the
screen. There 6 levels available:

1. Error - Only Errors are shown
2. Warning - Errors and Warnings are shown
3. Information - Errors, Warnings and Information are shown
4. Verbose - Also included debug information
5. Very Verbose - More Debug information
6. Unbelievable Verbose - Debug down to the bits

With level six the log file is about eight times as big as the SXB file. As
there are several steps in building the project there are also multiple sections in
the log file. The following examples are excerpts from the level 6 Log of
SteveB52.

Analyzing the SXB file
In the first step the SXB file is read and line by line gets analyzed and

classified.

Line-nr: 10000
Statement:
Label: PAINTSCREEN
Statement:
Statement: CALL ScrInit(16,2) :: DISPLAY AT(23,10):"SteveB52"
Found CALL SCRINIT
Found User Subroutine SCRINIT
Statement: FOR I=1 to 26 :: A(I)=0 :: NEXT I

Here you see that a line number of 10000 has been found, an empty line, a
label called “PAINTSCREEN”, a Call to “SCRINIT” which is not a standard XB
subroutine, but somehow a user subroutine, either in the program or in a library.
TiCodEd will look for it later in the process.

When the input has been read a list of found Non-XB subroutines is shown:

Beginners Manual - Structured Extended BASIC & TiCodEd Page 82

List of SUB-Routines:
SCRINIT

Looking in Library for:
SCRINIT

Read Standard-libfile S:\classic99\Delphi\TICodEd\lib\StdLib.xblib
Found Sub-Routine SCRINIT

The SCRINIT routine could be found in the standard library, so everything is
fine. After this the SCRINIT routine gets read and analyzed as well.

REPEAT-UNTIL, WHILE-WEND and line-numbers
In the next phase the new loop types get resolved and line-numbers

assigned.

REPEAT: REPEAT001:
UNTIL [Answer=78 OR Answer=110]
IF NOT (Answer=78 OR Answer=110) THEN REPEAT001
REPEAT: REPEAT002:
UNTIL [(Y1>148 AND X1>200) OR C1<>32]
IF NOT ((Y1>148 AND X1>200) OR C1<>32) THEN REPEAT002
REPEAT: REPEAT003:
UNTIL [S<>0]
IF NOT (S<>0) THEN REPEAT003
Overwriting Line-Number 220 with 10000

The REPEAT Statement becomes a REPEATnnn Label first, as at the end of
the loop you might want to return here UNTIL your condition is met. So the next
thing is isolating this condition (shown in []) and constructing the IF statement
by negating it with a NOT operator.

When a line-number is found in the SXB file it is checked that the current,
automatic number is less or equal before overwriting the value.

Resolving Labels
Whenever a label is encountered it is noted with the assigned line-number.

This table will first be dumped, then the labels will be replaced with the assigned
line-numbers. A line may appear several times if it uses more than one label, i.e.
in independent GOSUBs, in IF-THEN-ELSE or ON A GOSUB.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 83

Line Number Table
PAINTSCREEN -> 10000
REPEAT001 -> 110
REPEAT002 -> 10070
REPEAT003 -> 10190
GAMEINIT -> 170
PLAYGAME -> 10070
GAMEOVER -> 10160
NOBOMB -> 10130

Label replace
GOSUB GameInit

-> GOSUB 170
Label replace

GOSUB PaintScreen
-> GOSUB 10000

Label replace
GOSUB PlayGame

-> GOSUB 10070

Dumping the Extended BASIC file
Now the SXB has been converted to standard Extended BASIC.

Standard Extended BASIC:

100 GOSUB 170
110 GOSUB 10000
120 GOSUB 10070
130 GOSUB 10160

Prepare to tokenize
Next, the real magic happens… In Step #2 of the Build Phase the freshly

created XB file is read into memory. The log shows you where the two token files
should be written to and which XB file to tokenize.

It also reads the Variable X-REF file for assigned short-names.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 84

Step 2: Save Standard Extended BASIC in TI internal format.

Save C:\Data\DSK4\SteveB52.xb and tokenize to ...
Token File: C:\Data\DSK4\SB52.
Merge File: C:\Data\DSK4\SB52-M.

Read file C:\Data\DSK4\SteveB52.xb into memory
40 lines read.

Read variable X-Ref file C:\Data\DSK4\SteveB52.vxr for shortnames.
ANSWER -> AN

1 variable shortnames read.

We see that one variable “ANSWER” has a short-name “AN” assigned.

Atomize into Tokens
Next the XB lines get “atomized”, split into the very basic elements, the

tokens.

Please note that the lines get both long and column-wrapped without a
carriage return. The line-numbers are marked in bold for easier viewing.

130 GOSUB 10160 -> GOSUB|10160| -> 87[GOSUB] C9[Linenumber] 27 B0[THEN] (??'?)
140 IF NOT (Answer=78 OR Answer=110) THEN 110 ->
IF|NOT|(|Answer|=|78|OR|Answer|=|110|)|THEN|110| -> 84[IF] BD[NOT] B7[(] 41 4E
BE[=] C8[Unquotedstring] 02 37 38 BA[OR] 41 4E BE[=] C8[Unquotedstring] 03 31 31 30
B6[)] B0[THEN] C9[Linenumber] 00 6E (???AN???78?AN???110????n)
150 CALL CLEAR -> CALL|CLEAR| -> 9D[CALL] C8[Unquotedstring] 05 43 4C 45 41 52
(???CLEAR)
160 END -> END| -> 8B[END] (?)

Each line consists of three parts, separated by “ -> “ arrows.

1. The original XB line
2. The identified elements on the line, separated by |
3. The token-converted line in hex with hints and raw in parenthesis.

So the number three portion is the really important and interesting (nerdy)
stuff. TiCodEd checks each element to see if it can be substituted by a token.
This token has a direct impact on how the next element is interpreted.

I don’t expect you will ever need this! You may skip the rest of this chapter.
Read on if you want to learn about the exciting internals of a tokenized Extended
BASIC file.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 85

In the hex-output the token meaning is added in [] like in the first line
87[GOSUB]. This function should just spare you the chore of referencing the
token table. The program does not know whether this hex value at this position
really stands for that token, or if it is perhaps part of a line number. This is
already the case on the first line. “27 B0” stands for the line to GOSUB, but B0 is
also the token for THEN (2*16^3 + 7*16^2 + 11*16 + 0 = 8192 + 1792 + 176
= 10160). So be careful of this token-hint. In parenthesis you will see the actual
bytes, all non-printable characters replaced by question marks.

So let us practice a little.

Line 130 consists of two elements: “GOSUB” and “10160”. Line numbers
are always marked with the token C9, then the line number follows in two bytes.
10160 is >27B0.

Line 140 is quite complex, but piece-by-piece you get it tokenized. There
are tokens for IF (>84), NOT (>BD), Left-Parenthesis (>B7). The >41 4E stands
for AN. Remember that we asked the Tokenizer to replace ANSWER by AN when
doing the export? Here you see that at work. Funny that Texas Instruments
decided to not wrap this variable name up like the number after the equal sign
(>BE), which is a so-called “unquoted string” (>C8), followed by a length byte of
two and then the >37 and >38 (“78”) .

Continuing with the OR (>BA) and the comparison of AN= (>414E BE) with
the three character unquoted string 110 (>C8 03 31 31 30). THEN is >B0 as
seen before, then >C9 followed by the two bytes of a line-number >006E
(6*16+14 = 110).

Line 150 is easy. CALL is >9D and the name of the subroutine is an
unquoted string >C8 with the length of >05. CLEAR is >43 4C 45 41 52.

Line 160 is even easier. END is >8B.

You may wish to check the full list of tokens and the BASIC file format on
Ninerpedia.

Program Statistics
Once tokenized the size of the program can be calculated.

Program Statistics in Bytes
Code-Size: 1201
Line-Nr Table: 160 for 40 lines.
Length&Stop Byte: 80
Total Size: 1441

The actual code-size is the sum of all tokenized line sizes. These lines are
prefixed with a length byte and a >00 stop byte, so 80 additional bytes for 20
lines. Additionally a line-number table is created, with two bytes for the
line-number and two bytes for the memory address of the line.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 86

https://www.ninerpedia.org/wiki/BASIC_tokens
https://www.ninerpedia.org/wiki/BASIC_file_formats

Variable Cross-Reference
The cross reference is created and dumped here, identical to the VXR file

and the Variables tab.

Variable Cross-Reference
ANSWER AN 140, 10190
A 200, 10010, 10020, 10040
I 10010, 10020, 10040, 10260
J 10020
BOMB 10050, 10080, 10090, 10110

Export Files
If the export works without a problem then the following three lines are

outputted. If errors or warnings occur they are added after the filename.

Writing MERGE-File C:\Data\DSK4\SB52-M
Writing PROGRAM-File C:\Data\DSK4\SB52
Writing variable X-Ref file C:\Data\DSK4\SteveB52.vxr

Errors and Warnings
If there are errors or warnings a popup-window will indicate so.

Errors: 0
Warnings: 0

Post Processing Command
If you have another environment than the one suggested here, you may

want to trigger a program after you build your project. Perhaps your favorite
emulator does not support FIAD and you need to put your program into a disk
image. Or you want to commit your code to GIT or or or.

You may enter a command in the Post-Processing box on the Project tab.

You may activate and deactivate the post processing with the checkmark
“Active”.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 87

You may use the following variables in your command which will be
substituted before the command is handed to the operating system.

● %SXB% - Filename of the SXB file
● %XBT% - Filename of the Extended BASIC Text file
● %XB% - Filename of the Extended BASIC Token file
● %XBM% - Filename of the Extended BASIC Merge file
● %XBP% - Filename of the Project file
● %TIME% - Current time
● %DATE% - Current date

Emulator integration and automation
TiCodED can be configured to send key-stroke messages to an emulator,

especially to Classic99. This can be used to load, run or compile the program
automatically in the emulator. In the Preferences in the menu Edit you find:

Select Classic99 and the Device you use in the emulator for loading the
FIAD programs you create with TiCodEd. The Delay in milliseconds is the delay
between keys sent to the emulator, the typing speed. 20 should work in most
environments. Other programs might be identified by Windows Class Name or by
exact window title.

If anything but “None” is selected, an additional section appears on the
project tab:

If the edit fields are empty they can be populated with a default by
double-clicking in the edit box. When you select one of the Auto-Checkboxes,
this action gets executed after a successful build (no errors) automatically.

There is a fine, but important difference between sending characters or
emulating keyboard entries. There is for example no dedicated key for the

Beginners Manual - Structured Extended BASIC & TiCodEd Page 88

quote-character. For typing a quote you have to press the Shift-Key, press the
key in the middle between Return and L (Labeled differently in each country
setting), and release the Shift-Key. This can be constructed as:

:S+:OEM7.:S-

:S+ is pressing Shift, OEM7 is the internal Microsoft name of the mentioned
key and :S- releases Shift.

When a build is successful, which means without errors, three buttons
appear below the log. You can press Load, Run or Compile or hit the keys L,R or
C to send the specified key-sequence to the emulator. The compile script will end
after compilation, leaving the Assembler and Linker as manual tasks, because
these keyboard messages are sent “blind”, without any feedback. So TiCodEd
does not know if the emulator is ready in the beginning or the compiler has
finished.

You may edit the integration commands to your needs. For “Compile” the
default expects the compiler in DSK1, but this can be changed. The command
sequence can have up to 10 lines. You may restore the default by deleting all
characters (including spaces!) and then double-click the edit field.

Please visit the Microsoft page for virtual key codes. Many of these keys can
be used in the TiCodEd Keyboard Emulation.

● Standard Characters A-Z and 0-9
● :RET. Return Key
● :TAB. Tabulator
● :ESC. Escape
● :F1. to :F24. Function Keys (i.e. :F3. for “erase”)
● + - , .
● :S+ :S- Shift on / Shift off
● :C+ :C- Control on / Control off
● :A+ :A- Alt on / Alt off
● :OEM1. to :OEM8., :OEM102. See Microsoft virtual key codes for details

A special command is :WAITx. waits for x seconds before continuing (1-9).

You may use up to ten lines. Note that for each line in the script:

• The focus is set to the specified program (Classic99)

• Before the first character 20 times the delay-rate will be waited

Increase the Delay in the Preferences if characters are missing.

Class Names for emulators are

• Classic99: TIWndClass

• Ti994w : Ti994w

• Win994a: n/a (use Window Title ‘Win994a Simulator - v3.010 (x64)’)

Beginners Manual - Structured Extended BASIC & TiCodEd Page 89

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

Library reading sequence
In case you wondered what would happen if there are multiple routines

with the same name in different libraries, you are really into the advanced stuff.
While reading the SXB program TiCodEd builds a list of CALL routines not
internal to Extended BASIC and not declared in a package as internal.

1. If the SXB program itself contains a matching SUB, this one is taken.
2. Secondly, the User-Library is searched
3. Then the Package-File is read. Yes, packages may contain specific

additional SUB Routines. See XB256 for an example.
4. At last the Standard-Library is searched.

As soon as a matching SUB routine is found it is added to the program and
deleted from the list. This prevents double insertions and ensures the above
priorities.

A warning is issued if the list of SUBroutines is not empty.

The Mac Version
TiCodEd is developed with Lazarus in Pascal. Lazarus is available for

multiple platforms, not only Windows. Some (few) functions are using Windows
functions and are not portable.

See the Difference to the Windows version:

● The Keyboard-Emulation can’t be activated in the Preferences, as it uses
the Windows Messaging functions.

● The HTML-Export is broken for Mac in Lazarus, therefore the menu entry
has been removed.

● The tabs-widget on the Char Tab differs from the native Windows
implementation, leaving an empty row and compact labels, but is fully
operational.

● The INI file is not stored beside the executable as in windows, but within
the Package-File TiCodEd.app under Contents/Resources.

A major difference is the lack of a Mac emulator supporting FIAD. You may use
the Post-Processing command to add the tokenized files to a disk-image and
start an emulator.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 90

The Linux Version (x64)
Just like with the Mac version not all features are available in Linux. The

binary distribution is compiled using Lazarus 2.2.2 on Linux Mint 20.3. If this
does not work for you sources should compile on any Linux (or FreeBSD) version
where Lazarus is available, i.e. Raspberry Pi.

The Keyboard-Emulation can’t be activated in the Preferences, as it uses the
Windows Messaging functions.

A major difference is also the lack of a Linux emulator supporting FIAD. You may
use the Post-Processing command to add the tokenized files to a disk-image and
start an emulator. MAME unfortunately loads the disk content on start-up, so
changes to a disk-image require MAME to be closed and started again.

Beginners Manual - Structured Extended BASIC & TiCodEd Page 91

