. | r . _.___. -
SST EXPANDED
r? BASIC COMPILER
SYSTEM
Dy

SST SOFTWARE, INC.
Copyright © 1984

; 'T
5 !
:;= ;
|
!
;E.

r
E | SST Software, inc.

| P.0. Box 26

* Cedarburg, Wt 53012

(414) 771-B415

P TR - TS TR S I T A - _.,., I LA, L. -_'JL"

.'_I
L
.hl
il
.
[1
i
P] " n1
. . - L]
[' I 1 E
1..'
I"i. e - [7]
R '
7 1!) -L: :
e - 4 - '
;
[.
. R
r - . .
S A
- It
4
!
- T o
- -
o s
r
- i‘
‘_1.1_| 4"
T
I
I
i
J."'“-"f. _
' v, , -
L
e
g TT
] v

- - L. wnc

sk — e —

TABLE OF CONTENTS

o du e ON . e 1

Detailed Discussion of Programs, 3

Editor. ... J

B Or/ X . 3

ComMPIlBr 4

LoBder e 8

Fastload 7

User Defined Functions: CALL USERA _USERE 8

_Passing Parameters With the User Defined Routines 8
1CaIling Compiled Programs From TIBasic. 11
Summary of Available Operators, Functions and Commands 13

- - Table 1: Avallable Floating Point 13

Operators and Functions

Table 2: Available Integer Operators 13
and Functions

Table 3. Summary of Available Commands 1]
88T Basic Requirements 21
Detailed Description of Commands 22
Sampte Progra8ms ... 49
In Case of Prablems 58
Checking Procedures 58

INTRODUCTION

The SST Expanded Basic compller system is divided into five programs
EDITOR/EX, EDITOR, COMPILER, LOADER and FASTLOAD . for efficiency and to
maximize use of svailable mamory Through this technique. it is possible to
provide most of the commands available in Extended Basic ptus many more.

The SST Compiler includes as many commands as possible while stiif affording
you the opportunily to write fairly large program segments. Up to 470 line Basic
programs can be compiled at one time. A number of progtams of this length may
be in memory and linked logether as one large system. To allow lor programs of
this length all floating point arrays are stored in the T | console memory.

Machine language sallows you to write very efficiant computer programs.
However, it is more difficult and time consuming to code and debug in machine
language than in Basic.

The S8T EXPANDED BASIC COMPILER system converts a BASIC program
directly into a machine language program, completely bypassing the assembly
language stage. With the SST COMPILER, the power and speed of machine
language are available withoul actually having to write the program in machine
language.

With BASIC it s easy to write a program, but BAS/IC |s slow in execution. Thig ie
because eachtime a BAS/Ccommand is ancountered, the BASIC interpreter must
translate the command into machine language before sxecuting the command.
As a result the same statement may be transiated several thousand timas in the
same-program. With the 88T EXPANDED BASIC COMPILER, a statemant will be
transiated only once. Once the ST COMP!LER has finished transiating a BASIC
program, the machine language code will be stored on disk, and will never need to
be compiled again. The machine language code can be loaded into memory
whenever it is required.

The SST EXPANDED COMPILER system provides many of the advantages of both
BASIC and machine language. The 88T EDITOR s designed to allow you to write
and debug BASIC programs using the editing and debugging leatures of T}
BASIC Once the BAS/C program is found to be correct, the Editor program is run
and the BAS/IC program is stored on disk for compiling The SST BASIC
COMPILER then transiates the BAS/C coda into machine lanquage code and
slores it permanently on disk. Anytime the program is to be run the SSTLOADER
will load il into mamory. The SST FDITOR/EX palorms the same function as the
Editor using the Extended Basic module.

To increase speed and efticiency. we have incltudad the option to code in integer
arithmetic. The T/ BAS/IClanguage works only in 8 byte Hioating point arithmaetic.
While this provides great accuracy. it also causes slow execution. Therefore, to
increase the speed of your program. and to conserve memaory, we ancourage you
tc do as much computation as possible using integer arithmetic. The T/
processor has machine language integer addition. subtraction. muitiplication and
division commands. These instructions are extremsly fast In floating point, these
operations must be done by subroutines. and are thare!ore slow In addition. an

¥

- owh ol AR WGP T B T am o aee

Integer variable requirea only 2 bytes, while a floating point variablte requires 8
bytes of memory It should be noted that mathematical functions like SIN(X] are
extremely slow. These functions are provided in the T./. console and consist of
jarge subroutines written In the Graphics Programming Language. To increase
speed and efficiency we have also included the option to work in 6 byte or 4 byte
floating point arithmetic. Depending upon the program this can increase speed

anywhere from 6 to 50 percent

We haves also included Bit Mapping mode for high resclution graphics. This
allows you to access sach of the approximately 43000 pixels of the screen.

DETAILED DISCUSSION OF PROGRAMS

EDITOR:

The EDITOR allows the user to write a BAS/IC program using the editing and
debugging features of the console. This permits you to testrun the BAS/Cprogram
hefore it is compiled. The Mini-Memory or Editor/Assembler module must be in
ptace tor the Editor, Compiler and Loader programs.

How to use the EDITOR program:

1. Load the Editor, using old DSKT1.EDITOR

2. Enter tha BASIC program to be compiled, using line numbers {1 to
32000. You may use the editing features of T./ BAS!C Be sureto end the
BASIC program with a STOP statement

3. The program may be tested by using the command RUN, with the starting
line number. (Exampie RUN 11). Errors may be corrected in the ususl
fashion. (This may not be possible if you are using commands not
available in T.1. BASI().

4. When the program is correct, save it on disk for future reference (SAVE
DSK1.name) This saves the editor and the program to be compiled.

5. Beforerunning the EDITORA program, the ED/TOR must be resequenced.
using the command RES 1,7. Once this has baen completed, simply type:
RUN.

I.‘-.F-

6. The 88Ttitle screen will appear, and the program wiil gsk for an output
file name. The file namea wiltbe DSK!.name Asthe EDXITORs procesaing .
each line of BASIC cods, the following statement will appear on the
screen:

NOW PROCESSING LINE__(starting with 11)

When the EDITOR encounters p call stateament, the nama wiit be printed
under “NOW PROCESSING LINE"” This can help you keep track of the
locatlons in your program Whan tha FDITOR ancounters the STOP
statament it will terminate and tell you the number of hytes used by your
BASIC program This can give you a rough tdea of tha memory needed
for your compiled program. The resuling file will be used by the S8T
EXPANDED BASIC COMPILER

EDITOR/EX:

This program performs the same function as £DITOR axcept that It ia for the
Extended Basic module. You may use this editor for debugging your program.
EDITOR/EX containg most of tha call statements used by SST with the axception
of SUBIN and SUBCUT. Ahough not all wilt function in Extended Basic, they may
be called and no error statement will be given Inthe summary of commands list,
the commands which will cause no change a8 your program s being tested are

W L o -
- .

J-'—r-l—.'-'r-- ———

b 5

1
T

Indicated by an “NA" afler the command. All of the simulated subroutines ars
located at the end of EDITOR/EX. In some cases you may want to change the
simulated routing. Examples for doing this are the USERA. . USERE, the SCHARA,
and the CALL OPEN routine. The CALL OPEN rouline only opens a
DISPLAY/VARIABLE B0 FILE. You may want to change this to a different format,
Other commands lo chack are COINCAand DISTANCEA. There are several forms
ol these commands Chack the detailed description of these commands for
simuiating them properly.

COMPILER:

This program takes the code generated by the EDITOR program and translates it
into machine code.

To operate the COMPI/LER program:
1. Load the COMPILER program using OLD DSK1.COMPILER.CALL
FILES(1).NEW must have been performed since the last time the
computer was turned on.

2. Whan the cursor appears after the long pre-scan, immediately type RUN
It you LIST or try to EDIT the COMPILER. the program may not be
exacutable, and should be reloaded again. After RUN has been entared,
thara will be approximately a 70 second pre-scan before the title screen

appears.

3. The program will ask for “INPUT, OUTPUT" At this time enter for the
INPUT tile name the name which was used in the EDI/TOR. Then choose
an OUTPUT name tor the compiled code that wlll be generated. The input
file will be loaded from the input file Into MEMORY EXPANSION.

Thdére willt be a 30 second delay after the input file has been ioaded.

4, At this point, the compilaer will ask you to ENTER the starting location for
the machine code and the name of the program. Enter a decimal number
of an EVEN location in MINI-MEMQORY or MEMORY EXPANSION. The

following are the areas of memory that are avaliable.

MINI-MEMORY 28952 to 32700 (HEX. 7118 to HEX. 7FRC)
MEMORY EXPANSION -24064 to -JS(,‘ (HEX. A200 to HEX. FFEH
i . "-1 F"r ﬁ‘l"

The name that is entered must be 1 to B characters in length, and must
follow the characteristics of T.1. variables.

Example of input -8000.TEST (ENTER)

The loader will start the program at location -8000 in MEMORY
EXPANSION, and give it a name (TEST) to be used in [CALL
LINK{"TEST}) command.

5. The COMPILER will display the following as each linaisbh. , compiled.

COMPILING (line ¥) (Instruction location)
The COMPILER checks for several types of errors
VARIABLE NOT FOUND (Variable was not detined with a [ET statement)
PROGRAM TERMINATED AT LINE 2290 (instruction not allowed)

It any of these error messages appear, the COMPILER will stop and you
must check the source ftite for errors and rerun the EDITOR and

COMPILER.

IMPORTANT: Tha compiler does not check for all srrors!
Example:
11 LET C@=2
12 PRINT C
13 STOP

In this case. even though (C) is not defined, “VARIABLE NOT
FOUND" will not appeanr, and the program will finish compiting
However, the program will not run properly No error message
is given because this error should be detected by test runs
betore the program is compiled. In Tl Basic, "0 will be printed
for variabla C.In a similar manner, a8 compiled program does not
give error messages for the mathematical functions like
SOR(X}). where "X is a negative number These errors should
be detected by tast runs in T/ BASIC

. H there ares no errors the COMPILER will end when a STOP iy

encountered. The |ast statement the COMPILER will display is:

LAST ADDRESS USED (address) (starting address
of first executabla statement minus 8)

DONE Y/N (N it you are linking programs together
with same variable set

it you wish to compile another program using the samam list of variables,
you should ENTER "N'. This option is useful if you want to write
programs in blocks of up to 470 linas and have tham atl linked together
using the same variable list. You may do this as many timeas as you wish.
However, when you use the LOADER only saven Complled programs
can be called from T| Basic. Within any compilad program you may
hranch to another compiled saction by using the CALL LINKER routing. If
you wish to cail any section lrom 7./ BASIC, you may do this with the
CALL LINK command. The first program compiled must have slf the
vartables and constants delined in it Subsequent programs must not
have LET, DIM OR DISPLAY commands in them Each program must be
terminated with a STOP Thae first executableinstruction located after all
of the [£ T statemants, is found by adding 6 to the starting address given
by the COMPILER.

f it you wish to compile another program using a ditferant set of variables,
you should ENTER "'Y" and then RELOAD the Compiler from disk.

it is recommended that the yser make coples of all ED1 UR,
LOADER and UTILITY programs. The COMPILER program,
because of its structure. may not be copied or edited. Do not

Compiled object code is now in the OUTPUT file(s) you had specified. I * | |
take the write protection off of the disk.

; an error should occur in compiling, reload the COMPILER before

T

recompifing.

LOADER:

The LOADER uses the code saved in the lile generated by the COMPILER. In order
to use this program, follow the steps below.

1. ENTER the LOADER program,

2. The LOADER may be executed by typing RUN (press ENTER)
The title screen will appear. You must have the disk with §ST
utitities MOVE, DUMP and USERS in DSKT since they will be
loaded at this time.

You will be asked: "OBJECT FILE NAME?"[file name] Enter the
file name used as the OUTPUT fite in the Compiler program,

3. You will be asked T/ 99/4A Y/N" Iyou are using a T/ 99/4A
conaole enter Y il a T/ 99/4 conaole entar "N

4 While the LOADER Ia running it s putting the object code into
MINI-MEMORY or MEMORY EXPANSION, depending on the
address given inthe COMPIHL ER program. The name chosen in
the COMPILER is also being loaded Into MINI-MEMORY or
MEMORY EXPANSION.

—a—

FASTLOAD

FASTLOAD is a program that wiil take the contents of different areas of memory
and put them into the correct form for the Assambler. This program allows you to
bypass the 88T LOADER and onty use the CALL L OAD command Thisincresses
the loading speed of a complled program. itis also uselul when you wantto define
USERA.USERE COMMANDS.

HOW TO USE THE PROGRAM:

1. Use the SS8T LOADER to load your compiled programs into memory.
Load the program you wish to call from T1 Basic 1ast. You are allowed
only one name for every use of this program. Atthe tima of compiling you
should note the starting and ending locations of your programs,

2. Load the 88T FASTLOAD program into memory and enter "RUN".

3. Make cartain you have a nearly empty disk in the disk drive This program
may requira aimost a compiele disk. You witl be asked for a file name.
The name you choose will be the source file crested for the Assembler
(a.g. DSK1.TEST

-
4. You will be asked the nama of your program to be used in future CALL
LINK commands. This can be any one to six lefter name. The name given

!

}F 5. After the code and the name are loaded, the program will ask: rgl A?;;sslgﬂed the location of the program last loaded by the 88T
!.- .

' Y IKE A STARTED RUN: (Y/N

1 ' WOULD YOU LIKE A S (/ 8. You will be ssked the number of sections to be transferrad. Enter the
;’ H the response is "Y' the compiied program will be run number of different arsas of memory t0 be connected. (up to T

. Iv.

{ immediately 6. You wlil than be asked the beginning and ending addreas of each
.i If the program contains more than 3200 bytes of floating potint saction. Thase addresses must be aven numbers You should enter the
: arrays, the compiled program may not return to the LOADER addresses starting high in memory and going down. Thatis, if you have
I program. In that case. choose “N" and run the compiled these sections the starting address might be:

: rogram by the following:

; program Dy d STARTING ENDING

i CALL LINK('name'} [ENTER] 9fAB 15999

E Calculating the number of bytes used in the console is the "?;;%U '2;}00:

i user's reaponsibility. To determine the number of bytes used for) -700

! fioating point arrays, multiply the number of elements in the

: array by eight 7. You will then be asked if all the entriea are correct. i not. Enter "N™ You
i 6. It you ENTER “N" for the question "DONE Y/N" you will be will ther: return to the top of the address area. A “Y" wiii begin the
4 allowed to anter another compiled program into memory. Only conversion.

, 7 nameas are allowed. lfyou load more than 7, only the first seven

% names are used

TR el Mk

o

On comph of the program you will have a source lile that contains the name ol
the program. a number of AORG slatements, a number of data statements, and a
branch instruction to the starting iocation. You may now take this source ftle and
assembie it using the EDITOR/ASSEMBLER module.

To load the program you enter:

CALL INIT
CALL LOAD(DSKI MOVE" "DSK1.DUMP "DSK1 UJSERS",
"DSK1.your program’)

The first three programs must afways be ioaded into memory with your program,
These programs contain utilities necessary for your program. These three
programs may be copied onto another disk by use of the DISK MANAGER
MODULE.

By using the FASTLOAD program on only your compiled program and using the
loading sequence above, your program may be loaded using Mini-Memory or
Editor/Assembler. However, | you wish to restrict yourself to only Mini-Memory
or £/A.you may usethe FASTLOAD program to convert the three Ulility packages
To do this you must! have loaded your program with the desired module in place
and have FASTL OAD in memory with this module in place. The advantage of this
is that you need anly one object file inthe CALL LOAD Howaever, you must always
use the module that was in place whan FASTLOAD was run.

i you wish 10 convert the utility packages the addresses of the firat two sections
are;

START END
9846 16001
-24578 -24065

The address -240685 may be changed if you add USER defined funclions. The next
sections may be your program locattons.

After the sdurce fite is assembled the loading procedure is:

CALL INIT
CALL LOAD("'DSK 1t .your program’)

CALL USERA.. . USERE

These are call statements raserved for your definition and your use. At present
they contain no code. You may deline them permanently be writing an assembly
language routine or by compiling a program and making it part ol the compiler by
using the FASTLOAD program.

How to define USERA. _USERE

You may first change the name to any J to 10 characier name you desire. This
name musi be changed in the EDITORor EDITOR/EX program atline 30150. The
name must take up 10 spaces fthe name is less than 10 characters, you must fill
the rest with blanks. The names must be unique.

EXAMPLE: MYPROGRAMISPACE)

You are provided with an assembly tangquage source lle called USFR This
program has been aasembled and ix loaded in the ST L OQADER program at line
30009, with an objact file name USERS When using the SST LOADER. the utility
program must be in DSK1.

The source flle contains a series of Iabeled branch statemeanta. tf you pianr to write
your own assembly language routine for a JSER call slatement. you may do so
just before the END directive. You must change a corresponding USER branch
instruction to branch to the beginning of your routine Make certain that when you
compile a program, you do not use the area occupied by your CALL {/SERroutine
You may now assembie USER into theobjactfite named USERS Anytimeyoudoa
call lo USER (etc), your program wili be executed.

Instead of writing an assembly program you may use a8 compiled program. You
must compile and load the program into memory and run the FASTLOAD program
on it. You may then transfer it to a source lile USER. That is, uae the INSFRT
command of the EDIT program in EDITOR/ASSEMBLER to put it into USER You
must then change one of the USER branchesto pointto an executable instruction,
remove the DEF name from your source file, take out an extra END and assemble
the USER program into the object file /SERS. Thae first executable instructionis 8
bytes below the starting instruction given by the Compiter,

PASSING PARAMETERS WITH THE USER DEFINED ROUTINES:

Passimy parameters with the USER deflned call ststement, when the
UJSERA..USERE are written in assembly language, Is performad with register 12.
R12 is used as a stack pointer and reserved along with R13 R14 R15 by the 887
EXPANDED BASIC COMPILER.

Whaen you call one of your USER functions, the compiter in descending order wifl
store tha location of the next line{or first parameter} on the stack, and the comeants
of R12 will be pointing to this location on the stack. Tha program then branches to
the appropriate branch instruction in source fite USER. It will then branch to the
location stated in the branch instruction. This must be the starting location of your
program.

You may now use R12 to find the location whare tha pointers to your parameters
are stored.

Thia is done by an instruction such as: MOV *R12 R4 R4 now comaing the
ifocation in your matn program where the pointer 1o the paramaters is stored. The
foliowing instruction can then be used .

MOV *Rd+ RS,

AR5 now contains the location in memory whare the first parameter ia stored. R4 s
incrementexd by 2 and is now pointing to the next instruction (or the naxt
parameter}

On complietion of your routine you must load RT with the number of parameters
that were passed muliplied by 2, and then branch to 2E9A,

EXAMPLE: -
LI R14 2 PARAMETERS PASSED

B @>2EQA

Your subroutine wlili then branch to the next executable instruction of your main
program.

For exampie, the way you would write the CA[LL PEEK instruction, if it were not
inctuded, |is:

1. Change one of the USERA. USERE names inthe EDITORor EDITOR/EX
to "PEEK "

2. In USER, the source file, it would appear as follows:

USERA B @PEEK
PEEK MOV *R12R4 LOCATION OF POINTERS
MOV *R4+R?2 LOCATION OF ADDRESS OF VARIABLE
MOV *R4 A1 LOCATION OF SECOND PARAMETER
CLR *Rt CLEAR SECOND VARIABLE
MOV *R2.R2 PUT ADDRESS IN R2
MOVB *R2.*R1 MOVE CONTENTS OF THAT ADDRESS
SWFPB *R1 INTO SECOND VARIABLE
L) R1.4 LEAVE SUBROUTINE
“ B @> 2E9A

in the 7./ BAS/IC the command would be CALL PEEK(A®@. B@).
See SUBIN and SUUBOUT for passing parameters with a compiled Basic Program.

10

CALLING COMPILED PROGRAMS FROM BASIC

You may call up to 7 compited programs from T/ BASIC However, there are
several restrictions.

1. Your compiled programa cannot use CALL SPRITEMODE or CALL
PLOTMQODE Unpredictable results may occur if you use these
commands.

2. 1f your compiled programs contain floating point arrays. you must make
sure your T./. BASIC program and the floating point arrays do not overiap.
That is, the Compilar stares ail floating point arrays in the main console
memory. To avoid any conflicts you can relocate where your T.7 BASIC
program wilt reside. This is done by firsi calcutating how many bytes your
floating point arrays will take {B times the number of elemants) Thenyou
musa! foliow the procedure outlined below.

A
B

D.
E.
F.
EXAMPLE:

You mustfirstdoa CALL FILES(1)lollowed by a NEW command.
Enter the command.
CALL LOAD(-31952 X Y. X.Y)

Where

X=59 - INT(bytes in arrays/256)

Y=227 - [Bytes In array -INT(Bytes in array/258)*258)
This creates a buffer in memory.

Put in any one fine of code.

Uae the SAVE command (SAVE DSK1.nama) This saves the
buffer you have |ust created (step B).

Turn the computer ot and on. Do n CALL FILES(1){ollowed by »
NEW and then reload the program you hava just saved (step B

You may now write your T./. BASIC calling program without tear
of overlapping with your floating point arrays in the compiled
programs. You may not resequence your programs after this
process.

It you have an array with BOD alements you would proceed as
lollows. Recall thal the §ST EXPANDED BASIC COMPILER
uses option base rero. Number of bytes in array =AxB00 =8400.

CALL FILES(1)
NEW

X=58-INT(68400/ 258)
=59-25
=34
Y=227-(B400-INT(6400/256}*258)
=227
CALL LOAD(-31952,34,227.34,227)

11

. Enter 100 STOP
. SAVE DSK1 . name

. Turn console oft and then on.

SUMMARY OF AVAILABLE OPERATORS,
FUNCTIONS AND COMMANDS

The available BASIC operators, tuncfrons and commands are summarized in

CALL FILES(T) | TABLES 1-3
NEW

OLD DSK1.name
TABLE 1: Available Hloating point aperators and functions in the SS7

. You may now write your T./. BASIC calling program. EXPANDED BASIC COMPILER

OPERATOR FUNCTION OF OPERATOR

+ Add
' Subliract
¢ Multiply
/ Divide
\ ABS Absotute Value
| ATN Arctangent
COS Cosine
EXP aX
Yy INT Returns the greatest integer
| contained in the value
LCG Natural log of a number
‘ SIN Sine
_ - SQR Square Root
- TAN Tangent

TABLE 2: Avallable intager operators and functions in the 8§87
EXPANDED BASIC COMPILER

OPERATOR FUNCTION OF OPERATOR

+ Add
- Subtract
* Multiply
/ Divide
ABS Absolute Value

TABLE 3 Summary of avamlable commands

‘ BASIC SUMMARY EXAMPLES
COMMAND OF COMMAND
LET All variable names must be 100 LET AS-“TEST"
' declared and defined at the begin- 110 LET A=5§
’ ning of the program_ An integer 120 LET A@ -1

variable must be followed by
an (symbol and a string
variable by a §

12 19

..

BASIC
COMMAND

INPUT

iF

GOTO
Gosus
RETURN

REM

PRINT

FOR-NEXT

STOP

DIm

DISPLAY

FLOAT({!toat-
ting variable,
integer
variable)

INTER{integer
variable, fioat-
ing variable)

SUMMARY
OF COMMAND

A number or string may be
entered from the keyboard.

A jump will be performed if
the variable is < =0, > =0 or =00

Unconditional jump
Jump 1o a subroutine

Needed to transfer control from
a subroutine to the location
following the GOSUB.

Allows REMARKS to be entered
into the program.

PRINT the value of the variable
on the screen

The FOR-NEXT statements are
used for looping The param-
eters must be integer variables.
Integer arrays ars npl allowed

A STOP statemant is used only
to signify the physical end of the
BASIC program.

Aliows the dimensioning of
eithar integer or NHoating point
variablies Onea or two subscripts
may be used. Ophon base 0 is
assumed.

Must be used in place of DIM
stalements for large arrays.

Converts an integer into a float-
ing porm value and stores that
value in a floating point variable.

Converts a ficating point value
into an integer value and slores
thal value n an integer vanable.

t4

EXAMPLES

100 INPUT A
110 INPUT B@
120 INPUT C$

100 IF A<=0 THEN 100
110 IF B(@ > =0 THEN 200
120 IF C@=00 THEN 300

100 GOTO 1000
100 GOSUB 1500
2000 RETURN

3

100 REM:-By SS7

100 PRINT A
110 PRINT B%

100 FOR I@~K@ TO N@
110 PRINT I@
120 NEXT I@

1000 STOP

100 DIM A{10)
110 DIM B@@(10.10)

100 DISPLAY A(1400)
110 DISPLAY B@{80C0)

100 CALL FLOAT(Y X@®@)

100 CALL INTER(X@.Y)

BASIC
COMMAND

COLOR
(Character-
sel, fore-
ground color,
background
colorn)

CHAR
(Character
code, pattern-
identifier)

VCHAR (Row
No . Cot No,
Character
code)

GCHAR (Row
No., Col No.,
Character
code)

KEY (Key unit
ASCH Code,
siatus)

CLEAR

PEEKV(VDP
address,
variabie)

PEEK(CPU
addreas,
variable)

LOAD{CPU
address,
value}

POKEV(VDP
address,
value)

QOPENI(Fila #,
file type.

racord length,

record ¥, lile
name).

SUMMARY
OF COMMAND

Allows screen character colors
to be specthed (See T Bawc)

Allows character dehnition
(See T Basic)

Allows placement of a character
anywhere on the screen
(See T1 Basic)

Returns the character code
located at the specified row and
column of screen

- Allows input from keyboard with-

out Interruphng program

Allows the screen 10 be cleared.

Returns the contents of a
VOP memory location.

Returnsg the contents of a
CPU memory location.

Stares a vatue into CPU
memory.

Stores a value into VDP
memory.

Opens a file to a device.

15

EXAMPLES

100 CALL COLORN® M@ K@)

100 CALL CHARI@AS

100 CALL VCHAR{I@J@ K@)

100 CALL GCHARI@ J@ K@)

100 CALL KEY{(I@.J@ K@

100 CALL CLEAR
CALL PEEKVIA@B@) NA

CALL PEEK(A@®.B@)

CALL LOADIA@.B@)

CALL POKEVIA@.B®) NA

CALL OPEN(A@ B@ C@.
D@ AS)

BASIC
COMMAND

PRINT{File ¥

record # string

variable)

INPUT{File ¥
record ¥, string
variable)

CLOSE(File W)

{INKER
{Address,
additional
parameters
(optional)}

SCRON(On-
off)

PRINTAT(row,
columny)

INPUTAT(row,
column)

RESETAT

INSTRINGA
(slement,
integer or
string var.
iable before
string array,
string)

OUTSTRINGA
(sfoement,
integer or
string var-
lable befora

string array,

string)

POS(Integer
position string,
string to find,
where to begin
looking)

SUMMARY
OF COMMAND

Prints a string to a file.

Input a string from a device.

Clogses a fite.

Links a main program to other
compiled subroutines. You may

pass parameters

Turns the screen scroll on

or ol (1 -on O=0o

Prints to a specified localion.

Accepts data from any iocation

of the screen

Heatores input and prints
position on screan.

Used to store string values

In an integer array (i.e.
creates a string array)
Also used to

subscript strings

Retrieves a string from a
inteqer array or
subscripted strings.

Returns the position of a
sub-string.

18

EXAMPLES

CALL PRINT(A@.B@.B$)

CALL INPUT{A(@.B(@.A%)

CALL CLOSE(A@)
CALL LINKER(A®.B@,A$.C)

CALL SCRONA@) NA
CALL PHINTAT:{A@,B@} NA
CALL INPUTAT(A@.B@) NA
CALL RESETAT NA

CALL INSTRINGA(A@ B@., NA
AS}
CALL INSTRINGA(A@.,BS$.A$)

CALL QUTSTRINGAA®, NA
B@.C$)
CALL OUTSTRINGAIAG.BS.CS)

CALL POS{X@.A$,BS.C@)

BASIC
COMMAND

SEG(New
string, string
to segment,
start in string. #

of characters)

VAL (Variable,
string)

LEN{Length,
string)

SOUND{(Dura-
tion, frequency,
volumae}

ADDSTRING
(Gtring 1,
string 2,
string 3}

STR(String,
variable)

CHRIASCH
code, string)

ASC(Hesult,
string., where
in string)

FLOATIN
(Floating
paint

variable)

FLOATOUT
(Floating
point
variable)

SUBIN
{l.ocation,

type,
variable)

sSUBOUT

(Type.
variable)

SUMMARY
OF COMMAND

Segments g string into A
substring

Converts a string into a
floating point numbar.

Returns the langth of a
given string

Produces a tone of the qiven

frequency.

Adds two strings together and

stores the rasult in
atring 1.

Converts a floating point

- number inlo a string.

Puts » character defined by
its ASCIit code at the end of

a string.

Returns the ASCH code from a

location in a string.

Brings a floating point numbar
from a T| BASIC program into a

compiled program.

Pasaeas a floating point nuymber

to a Tt BASIC program

Obtains a parameter from

a CALL LINKER OR USERA E
COMMAND in a main program.

Passes a varmable back to
the main program.

17

EXAMPLES

CALL SEGI{BS. AS A@ B@)

CALL VAL{F FS)
CALL LEN(A@ . AY)

CALL SOUND(A®.B@.CE®)

CALL ADDSTRING(AS.BS.CS)

CALL STR(DS.C)

CALL CHR{A@ AS)

CALL ASC(A@.A$.8@)

CALL FLOATIN[A}

CALL FLOATOUT(B)

CALL SUBIN(D@A@ A)

CALL SUBOUTA@.AS)

NA

NA

NA

NA

BASIC
COMMAND

PLOTMODE

PLOTCHR
(ASCH code,
X COOt.y
coor_fore-
ground color,
background
color.on/off)

PLOT(X
position, Y
position, fore-
ground color,
background
color, on-off)

QPLOT(X
position, Y
position, flag)

USING
{(Number of
digits to right

of the decimal)}

UNUSE
\

SIG{Number of

byles).

JOYST(key

unit, X position,

Y position)
SPRITEMODE

SPRITEA

(Sprite number,

character
value, color,
row, column)

SUMMARY
OF COMMAND

Command to enter into bit-
map mode.

Puts a character anywhere
on the screen while in
BIT-MAP MODE.

Turns the point on or off at
a given position, with color
specifications.

Checks to see il a pixel at

location X, Y is on or oft (1=0on;

O=off).

Specifies format of variables
to be printed.

Raturns to norma! SST print
format.

Speclties the number of bytes
to work with in floating point,

Returns the position of Joystick

into X position and Y position

Command to get into Sprite
maode.

Creates a sprite at a given
position.

18

EXAMPLES

CALL PLOTMOQDE

CALL PLOTCHR(A®,
B@.C@.D@.E@@.F@)

CALL PLOT(IX@®.Y@® CF@.
CB@,S@)

CALL GPLOT(X@ Y ({.Z(®)

CALL USING({A@)

CALL UNUSE

CALL SIG(A@)

A{@=0 - 8 bytes
A@=1 > 6 bytes
A@=2 - 4 bytes

CALL JOYST(Z(@.X@.Y@)

CALL SPRITEMODE

CALL SPRITEA(S@.CH®,
C@ R@.CL@®)

NA

NA

NA

NA

NA

NA

NA

NA

BASIC
COMMAND

MOTIONA
(Sprite number,
row velocity,
column
velocity)

SCHARA
(Character

number, pattern

string 1, string
2..string n,
string of length
not 16).

PATTERNA
(Sprite #,
character #)

COLORA
{Sprite number,
toreground
color)

LOEKTEA
(Sprite &, row,
calumn)

POSITIONA
(Sprite #, row,
column)

MAGNIFYA
(magnification)

DELSPRITEA
(Sprite number)

DISTANCEA
(Type,
sprite #1,
sprite ¥2,
distance)}

DISTANCEA

(Type, sprite ¥,

row, column,
distance)

SUMMARY
OF COMMAND

Specifies the row and column
velocity of a sprite.

Changes only the character
pattern of a sprite.

Changes the character code
of a sprite.

Specilies foreground color lor
a sprite

Changes the location of a
sprite.

Returns the position of the
given sprite,

Specifies the size of the sprite.

Deletes sprites.

Returns the square of the
distance between 2 sprites
Type = 1

Returns the square of the
distance between a sprite and
a location Type = 2

19

EXAMPLES

CALL MOTIONAIS@®R.Y@ X(@)

CALL SCHARA(CH@®.AS.BS ..
FS N$)

CALL PATTERNA(A@.B@E)

CALL COLORA(S@.C@)

CALL LOCATEA(S@.R@.
C)

CALL POSITIONA(S@ R@.
C@)

CALL MAGNIFYA(A@®)

CALL DELSPRITEAA®)

CALL DISTANCEA{A®@.
ASem BS(@ X (@)

CALL DISTANCEAA®,
AS(H A@ C@ X @)

BASIC
COMMAND

COINCA{Type.
sprite #1, sprite
#2. tolerance,
hit or miss)

COINCA(Type,
sprite ¥, row,
column, toler-
once, hit or
miss)

COINCA(Type,
hit or migs)

SCREEN
{Color)

SCROLL(Type.
laft Or right,
amount}

SCROLL(Type.
row, column,
amount, {op of
bottom)

RANDOMIZE

|
RNO{interval,

random vari-
able)

SCREENON

USERA-
USERE
(parameters
optional)

SUMMARY

OF COMMAND EXAMPLES

Detects a coincidence between CALL COINCA{A@ AS(w,
two sprites. Type = 1 85@.T@.X@)

Detects a coincidence be- CALL COINCA(A@ AS@ A,
tween a sprite and a location. C@ T@ X@)
Type = 2

Detects a coincidence between CALL COINCA(A@ X(@)
any spriles. Type = 3

Changes the color of the CALL SCREEN(A®@)

screen

Scrolls screen to the left or CALL SCROLLA@.D@.L@) NA

right. Type =0

Allows scrolling of part of the CALL SCROLL{A(@ R{H.C@. NA
screen Type = 1 L {2 E ()

Set a naw seead for RND CALL RANDOMIZE

command.

A random number is returned CALL RND{A@.B@)
in the interva!l from 0 to the valus
of the first variable

minus 1.
Keeps screen active CALL SCREENON NA
User definable subprograms, CALL USERA{A@ B.CS) NA

NOTE: Most of the parameters in the call statements sbove are integer variables
uniess otherwise specified.
NA Not Available for simulating with EDITOR/EX.

20

SST BASIC REQUIREMENTS

The basic requirements neaded 10 use the SST COMPILER are

1 Al variablas are to be one or two tetters All one lettar variables
can use the ietters A through Z.

EXAMPLE ABCD. Z

In ail two letter variables. the first latter myust be one of the letters
A, B, or C, while the sacond letter can be any letter A through Z.

EXAMPLE: AAABAC AZ
CACBCC.CZ

Reserved words are: AJAJ@ AJS BLBLM BLS
These words may not be used for variable or array names,

Integer variables are to be {ollowed by an @ symbol String
variables are to be followed by a §

2. All variables and constanis used in the program must be
defined by a LET statement at the beginning of the programi{s).
Failure to do 30 will result in an error.

3. DIM statements must be used in a specific order. which is

~~" coordingted with the LE T statamants Please be suretoread the

sactions discussing LET stalements and DIM stalaments, to
ansure correct order of operation

4. There can be no more than one function operation per line.

EXAMPLE: Y=INT(X)
Z=SIN(W)

More than one arithmelic operation per lina canbe performed if
the operations are of the same order (all additions or all
muliplications etc} If the operations are not all of tha same
order they will be performad from ieft to righ!, regardiess of the
operations, Array elements may not be used if you have more
than one arilhmetic operation per line. The variable for the
result may only appear once and must be the first or second
variable to the right of the equals {=) sign

EXAMPLE: A=A+D+C
CR A=B+A+(C
NOT A-B+C+A

5. Ling numbars must be between 11 and 32000

21

DETAILED DESCRIPTION OF COMMANDS

The following pages deactibe each command in greater detail. Beacause the SS87
EXPANDED BAS!C COMPILER requires Memory Expansion, the SST EXPANDED
BASICis alarge subset of EXTENDED BASIC. Therefore, most of the Aloating point
operations and functions are included as well as integer arithmetic for speed and
efficiency Also included are graphics capabilities, Bit Map mode. sound, sprites
and the ability to work in only 6 or 4 byte foating point arithmetic.

LET STATEMENTS

All variabtes and constants must be defined ina LET statement at the beginning of
tha program For arithmetic statementsthe word LE Tis not allowed When the §ST
COMPILER seas LET. it reserves space, compules and slores the valuye of the
viwiable L ET stalements are not executable statements in the compiled version,
and it is not permissible to jump to these statements using GOTO, GOSUB or IF
statements. If g string variable is longer than 26 characters, it will be truncated.

EXAMPLE. LET A$-"SST EXPANDED BASICT
LET A=3212
LET C=C0S(314/4)
LET B(a*-2
The lollowing 18 not valid
LET A=321
LET B=A
Only constants or arithmetic expressions are allowed in LET statements

Note An integer variable must be followed by an (@ symboi, and a string variable
by a $ String variables must be declared lirst followed by floating point variables,

and finally integer variables. It i8 possible to create strings longer than 26
characters with some of the available string commands. However, you must
allocate the needed size with several LET statements.

EXAMPLE: LET B$=""
\ LET B$=""
LET B$="

The string variable B% will have space large enough to hold an B3 character string.
Each string variable is 26 bytesiong plus 2 bytes. One byteis used for thelength of
the siring.

DIM STATEMENTS

The DIM siatements must be located at the beginning of your program. You may
use the DIMENSION statement with either integer or fipating point variables.
Floating poin! DIM stalements must be located with floating point LE T statements.
Integer DIM statements must be located with integer LET statements. One or two
subscripts may be used. String variables may not be used in D/IM statements. (See
INSTRINGA and OUTSTRINGA)

EXAMPLE 100 LET A% 7
110 LET i=12
120 DIM V{3.3)
130 DIM K@(2.5)
140 LET M@=2

22

Floating point arrays are stored inside the T1 console Thus, manimum
number of elements is limited onty by the size of console memory Integer arrays
are stored in MINI-MEMQORY. or MEMORY EXPANSION Your program, plus
integer arrays, must be less than approximatety 3700 bytes tor Mint-Memory, and
less than 24000 bytes for Memory Expansinn.

There can be only one variable dimensioned per ling. Thearefore to dimansion an
integer variable and a floating point variable, you would write

100 DIM A(12.4)
110 DIM V@(10)

Floating point arrays take up a considerable amount of slorage spacein T.1 Basic

For example, the array B{(10.10) has 121 elements in it Each aitemant of B takes up

B bytes. so tha entire array B takes up 968 bytes Because of these storage

requirements floating point arrays are siored in the 71 consola Anylime an

opetation is performed on floating point variables or floating point array slements,

8 bytes must be manipulated. Therefore, use as few ficating point arrays a9 -
possible The overuse of these arrays will decrease the efNiciency of your

program. The integer array B(@{10,10) also has 121 elements, however sach
element takes up only 2 bytes, so the antire aray takes up only 242 bytes. For string
arrays see the INSTRINGA and OUTSTRINGA commands.

DISPLAY STATEMENT
This command is used onty to dimension arger arrays.
~ DISPLAY F@(8000)

It you attempt the command DIM F@ (8000} T.1 BASIC will glve an arror message
when you attampt to AUNthe EDITORprogram. This Commandis not simulated in
either ECITOR program.

INPUT STATEMENT

The INPUT statement may be used to input data into your program. The veriable
following the INPUT statemen! may be an inteqger, floating or string variable It
must, however, first ba declared in a LET atatement A siring may ba up to 268
characters long. The value of an intager variable must be hetween -327688 and
+32767. A floaling point variable has the same range as T/ RASIC Only one
variable may be read in per INPUT statement. The INPUT statement must have the

form:

100 INPUT A
200 INPUT A@
300 INPUT AS
400 INPUT B(AG)

NOTE: Dueto programming considerations, the input statemant scrolls the screen
after input rather than betore, asin TIBASIC Toremovethe"? on INPUTputa 128
al location 10334 with tha CALL LOAD statement

23

PRINT ST =MENT

The PRIN: statement allows you to print an integer, tloating point, or string
variable. There can only be one variable per PRINT satatement Due {0
programming considerations the 88T COMPILER'S print format is diferent from
Tl BASIC When a print floating point or sinng 18 performad, the resulting
characters have a starting location on the screen of row 24, column 3, and are
printed from left to right. An integer PRINT places the characters on the screen
from right to left starting at location row 24, column 9. {nless you are in SPRITE
MODE you may not print a string longer than 26 characters. This statement will
only acrell the screen one line. Tharefore you should use CALL PRINTAT to
positton your printing of longar strings high enough. ¥ you print beyond the
screen, you will cause a disruption. The PRINT statement must be of the following

form:
100 PRINT A

200 PRINT A@
300 PRINT A$S
400 PRINT BA@)

IF STATEMENT

i

The torm of the [F statement must be:

100 IF A< =0 THEN 200 100 IF A@ <=0 THEN 200

or 014
100 IF A> =0 THEN 200 100 IF A@@>=0 THEN 200
or or

100 IF A=00 THEN 200 100 IF A@=00 THEN 200

A jump wlill be performed if the variable is less than or equalio zero inthe first case.
grealer than or equaito zeroin the second case, or strictly equal to zero in the third
case. The variable may be either integer or floating point. Most other tests may be
performed by a proper combination of these three /F statements.

NOTE: Both reros are required for the test "iIF A =00

QGOTO STANEMENT

This statement provides an unconditional jump to another statement. The form is:
100 GOTO 300

GQOSUB STATEMENT

This statement allows you 1o jump to a subroutine. It will return to the statement
following GOSUB with the use of the RETURN statement.

NOTE: You cannot have more than 62 nested subroutines.

RETURN STATEMENT

This statement must be used at the end of a subroutine. !t telis the Compiler toreturn
to the focation following the GOSUB.

STOP STATEMENT

A STOP statement must be at the end of your BASIC program. A STOP statement
cannot be used in any other place in a BAS/C program

24

FOR-NEXT STATEMENTS
The FOR-NEXT statements work similar to the FOR-NEXT stataments in T/

BASIC. The form is;
FOR I@-N@ TO M@

NEXT l{@
in the above example if M@ is changed inside the loop, the ioop will be changed
accordingly. This is umgue to SST EXPANDED BASIC The variables in the FOR
staterment must be integer variables {array slements are not aliowed). f N@ is
larger than M(@, the loop wilt not be performed. Aithough the step statement is not
included in the FOR statement, it can be eastly accomphshed by using an
arithmetic statement.

T.1 BASIC SST COMPILER

100 FOR =3 TO 1000 STEP 2 100 LET I@=1
110 LET M@=1000

120 LET J@-2

260 NEXT | 130 LET K@= 1

270 STOP 140 FOR I@=J@ TO M@

250 1@ 1@+ K@
. . 260 NEXT I{a
b 270 5TOP

CALL FLOAT(FLOATING VARIADLE, INTEGER VARIADLE) STATEMENT

This statement allows you to convert an Integer variable X@ to a floating point
varigble Y. Both X(@@ and Y must be declared and given avaluein a LE T statemant.
Arrays are allowad in this statement. The form of the statement is:

100 LET ¥=0

110 LET X{@=5

120 CALL FLOAT(Y . X()

130 PRINT ¥

CALL INTER{INTEGER VARIABLE, FLOATING VARIABLE) STATEMENTY

This statemnent converts a floating point variable ¥ to an inteqer variable X{@ Both
Y and X(@® must appear in a LE T statement atthe haqginning o the program Arrays
are allowed in thig statement The form of the statement 1g

100 LET ¥Y-5

110 LET X@-0

120 CALL INTER{X@.Y)

130 PRINT X{a
This function will perform rounding For example, 8 5 will be convertadto 9 The
FLOAT and INTERfunctions will allow ons olthe variableato be an array element,
not both. The floating point number must be in the range nf -32768 10 12767
NOTE: The INT command returns an B byte floating point value while the CALL

INTER command returns a 2 byte integer.

25

Theperam. sinthefollowing CALL STATEMENTS are integer variables unless
specified otherwise.

CALL KEY (KEY UNIT, ASCH CODE STATUS)

See T/ BASIClor e complete description. For the 39/ 4A tha key unitis changed to
5 sach time an input statement is encountered by the compiled program. Caution
is recommended when using key unit zero. No arrays can be used in this

command.
IMPORTANT: Because of the speed of machine Ianguage, you may need a delgy
loop between calls to CALL KEY.

EXAMPLE: 100 LET K@=5
110 LET X(=1
120 LET S@=13
130 LET L@~=500
140 LET 1@=0
150 LET J@=1
180 CALL KEY(K@.X@.S5@) a
170 PRINT X (@ S
180 PRINT 5@
190 FOR l@~J@ TO L@
200 NEXT @
210 GOTO 160
220 STOP

CALL COLOR (CHARACTER-SET.,FOREGROUND-COLOR,BACKGROUND-COLOR)

(See T/ BASIC Manua! for a more complete description).

Screen characher colors may be specified using this statement. The color of the dots
making up the character are catied the foreground color, while the color that makes
up the rest pf the character position is called background color. Arrays are

aliowed in this command.

EXAMPLE: 100 LET S(@-1
110 LET F@=2
120 LET B@=16
130 CALL COLOR{S@.F@.B@)

CALL CHAR (CHMARACTER-CODE, “"PATTERN-IDENTIFIER™)

This statement allows definition of graphic characters. The character-code specifies
the code of the character. Tha pattern-identifier MUST BE a 16 character string which
specifies the pattern of the character. (See T./. BASI/C for a complete description and
examples}. This command cannot be used to define sprites. Arrays are gliowed in
this command. In SPRITEMODE you can define all characters t-256.

EXAMPLE: 100 LET A $ ="FFFFFFFFFFFFFFFF"
110 LET C@+-83
120 CALL CHAR(C@.A$}

26

CALL VCHAR (ROW-NUMBER, COLUMN-NUMBER, CHARACTER)

A character may be placed anywhara on the screen using this staternent The row-
number and column-number specity tha position on the screen Note that repestitions
are not allowad in the VCHAR command. Arrays are allowed in this command

EXAMPLE: 100 LET R@=5
110 LET C@=10
120 LET CH@-62
130 CALL VCHAR(R@.C@®.CH@)

NOTE: This command can be used In place of HCHAR Repetitions can be
accomplished by using a FOR-NEXT loop.

CALL GCHAR (ROW-NUMBER, COLUMN-NUMBER, CHAR CODE)

The ASCI code of the character on the acresn_at the location given by row-
number, column-number, isreturned in CHAR CODE No array may be used in this

command.
EXAMPLE: 100 LET R@=5
110 LET C@=10
120 LET CH@-0
130 CALL GCHAR(R@.C@.CH@E")
140 PRINT CH®@®

CALL CLEAR

This statement allows you 10 clear the screen. This command must notbe used in
PLOTMODE (Bit Map mode).

IN THE FOLLOWING COMMANDS NO ARRAYS CAN BE USED

'~ CALL PEEKY(VDP ADDRESS, INTEGER VARIABLE)

Given an integer address in VOP memory as the first variable, the subroutine
returns the contents of that address in the second variable.

EXAMPLE: 100 LET A@=1
110 LET B@=65
120 LET C@-0
130 REM PUT "A° ON SCREEN AT ROW 1.
COLUMN 1
140 CALL VCHAR(A@ A@ B@)
150 REM PICKUP THE ASCH CODE FROM THE

SCREEN |e, Bm="A"+96-161
AND PUT T IN THE VARIABLE B@
1680 CALL PEEKV(C(2.B(a)

CALL PEEK(CPU ADDRESS,INTEGER YARIABLE)

Given an integar addreas in CPU memory as tha first variable. the subroutine
returns the contenis of that address in the second variabie

EXAMPLE: 100 LET A@+~-24576
110 LET B@+~0

120 CALL PEEK(A®,B@)
130 REM B@ NOW CONTAINS THE CONTENTS OF

LOCATION -245786
27

CALL LOAD(CPU ADDRESS, INTEGER VARIABDLE)

Given an integer address in CP{/ memory as the firat variable, this subroutine
piaces the contents of the second variable at that location.

EXAMPLE: 100 LET A@=-8000
110 LET B@=30
120 REM PUT THE VALUE 30 AT
LOCATION -8000
130 CALL LOAD(A®.B@)

CALL POKEV(VDP ADDRESS, INTEGER VARIABLE)

Qiven an integer address in VDP memory as tha first variabie, this subroutine
piaces the contants of the second varlabla at that location.

EXAMPLE: 100 LET A@=161
120 LET B@=0
130 REM PUT THE LETTER “A” ON THE SCREEN
AT ROW 1, COLUMN 1 :
140 CALL POKEV(B@ A®@)

CALL OPEN(FILE #, FILE TYPE, RECORD LENGTH, RECORD ¥, FILE NAME)

You may open files uaing file #'a from 1-3, 11-30. Fllas may go to disk drives,
RS232 or P10, which are defined in a string variable (FILE NAMES),

You MUST GIVE the file TYPE. This |s an integer number which may be avaluated
from the "FILE TYPES" lable,

You MUST GIVE an intager numbar for the length of each record in the (RECORD
LENGTH)variable, and this number MUST BE between 0-255 (0-254 {ftherecord
type is variable) You musat give a record number aven i you are not using relative
records. This has the sama range as In 7./ BASIC and MUST BE AN INTEGER
VARIABLE. For sequential files usa a "0 for the record number,

EXAMPLE: 100 LET A$="RS232 BA=9600"
120 LET 8$="DSK1 TEST"
130 LET D@=1
140 LET A@=2
145 LET E@=0
150 LET B@=16
155 LET F@=-1

160 LET C(@+80
165 REM THE TWO FILES ARE BOTH SEQUENTIAL

DISPLAY, UPDATE. VARIABLE 80, FILES
170 CALL OPEN(D@.B®@.C@,E@.BS)
180 CALL OPEN(A@.B@.C@.E@.AS)
190 CALL INPUT(D@,F®@.BS)
200 REM PRINTS B$ OUT TO THE RS232 PORT
210 CALL PRINT(A@.F@.B$)
220 CALL CLOSE(A@)
230 STOP

28

et TamCEm YR LS L i . - .

How (o calculate different file types.

1. Choose the paramaters you wish your file to have.
EXAMPLE. UPDATEINTERNAL SEQUENTIAL

2. Look in the following table tor the number mssociated with the
parameters. Take these numbars and add them to datarmine thatype .

FILE TYPE TABLE

1. FIXED=0 VARIABLE-18
2. DISPLAY=0 INTERNAL =8
3. UPDATE-0 APPEND=8

4 SEQUENTIAL=0 RELATIVE=?

Only one in each of the 4 categories may be choosen. Examples of different file
types #'s and CALL OPEN statements are as follows:

Ti BASIC: OPEN #A@: FS.UPDATE, INTERNAL FIXED 192.SEQUENTIAL
0 + a + 0 + O of)

SST BASIC: CALL OPEN(A@.B@.C@,D@.F$)
WHERE
B@=8... FILE TYPE
C@=192... AECORD LENGTH
D@=0...STARTING RECORD

:ﬂ'ﬁﬂSIC: OPEN RA@ FS UPDATEDISPLAY VARIABLE BO.SEQUENTIAL
0 + 0 + 16 + 0 =18

THIS IS THE SAME AS: OPEN #A@F$

SST BASIC: CALL OPEN(A@ B@.C@.D@.F$)
WHERE B@=16....FILE TYPE
C@=80.. RECORD LENGTH
D@=0.... STARTING RECORD

TI BASIC: OPEN #A@.F$ RELATIVE S50.UPDATE.FIXED BOINTERNAL
1 + 0 + 0 + A 9

SST BASIC: CALL OPEN(A®.B@®.C@,D@.F$)
WHERE B@-9... FILE TYPE

C@=80....RECORD LENGTH

D@=50IF THE FILE IS BEING CREATED
D@ SPECIFIES THE INITAL NUMBER
OF RECORDS IN THE FILE IF THE
FILE HAS ALREADY BEEN CREATED
IT STARTS AT RECORD # D@

NOTE: There are no defaults for the SST EXPANDED BASIC, all parameters must
be dafined.

CALL PR

You may use this command to print a string to a device that has been opened with
the “CALL OPEN" subroutine. The file number must be the same for both
commands. A record varigabie Is required (REC #) and myust have avalue of - 1" il
the file is not opened as a relative file. Otherwise, it follows the same rules as
specified in the Ti manual for relalive files.

EXAMPLE: SEE CALL OPEN EXAMPLE

Tt BASIC SST BASIC
PRINT §A@.REC B@ AS CALL PRINT(A@,B@.A$)

NOTE: All fioating point numbers must be converted to a string by the STR
command before they are printed to a file. All integer numbers must be
convarted to floating point numbers by the FLOAT command and thento a
string by the 5TA command before being printed to a tile.

CALL CLOSE(FILE M)

This command will close a fila that was previously opened In a CALL OPEN
statement. ,

FILE #.REC #, STRING VARIABLE)

EXAMPLE: SEE CALL OPEN

SST BASIC
CALL CLOSE(A®@)

T) BASIC
CLOSE #A@

CALL INPUT(FILEN RECH.STRING VARIABLE)

Aliows you to read a string from a device that has been opened with the given FILE
#. The record ¥ is required even if you have a sequential file, in which case the
REC# must be aqual to "-1".
For relative fllas you must give s starting record #. Then, if In subsequent record
#sa"-1" is used, the record # will be incremented automatically. If the fiie was
opened as & FIXED DISPLAY type, the entire record will be put into the string
variable, Influding any extra blanks which may pad it Therefore, you mustreserve
enough space to hold the incoming record. (Use LET Strings).
NOTE: Only strings may be read or written to a tile. Numbers must be inputed as
strings and then convarted.

EXAMPLE:. SEE CALL OPEN

TI BASIC SST BASIC
INPUT #A@.REC B@ AS CALL INPUT(A@.B@ AS)

CALL LINKER(ADDRESS|,OPTIONAL PARAMETERS))

You may use this command to link your main program(s} to other compiled
subroutinas. If you give an address of another program (which has a RETURN
statement), then when the CALL LINKERIis performed, control is transferred to that
subroutine. The subroutine returns to the statement foliowing the CALL LINKER
statement. The address must be in an integer variable in base 10

NOTE: The addresas of eachline thatis being compiled is given nextto the line

number.
EXAMPLE: COMPILING LINE 20 -B564

Using this command you are able to axtend your program beyond 470 lines of
code,

30

.

EXAMPLE: 11 REM FIRST PROGRAM STARTS AT -24000
12 LET A{@=-8000
13 REM THE FIRST EXECUTABLE INSTRUCTION
OF THE SECOND PROGRAM IS GIVEN BY THE
STARTING ADDRESS PLUS 6

467 INPUT AS

468 INPUT B$

469 CALL LINKER(A@)
470 STOP

11 REM Second Program starts at address - 8008
12 PRINT A%

13 PRINT BS

14 RETURN

15 STOP

in this example, both programs were compiled without reloading the compHer In
this way, all variables are common to both programs When the RETURN
statement is encountared, control is returned to the first program and the stop
instruction is executed.

The parameters after the address in CALL LINKER are optional. However, t0 pass
variables from one complied program to another, which ware compiled with a
different variable set. you miist put the varlables from the main program after the
address. Each parameter passed must be separated by a """ Sees CALL SUBIN
and CALL SUBOUT ftor informalion on how o accept variables in the second
compiled program and how to pass them back to the main program. At most 5
variables can be passed.

CALL SCRON{ON/OFF)

You may prevent the computer from scroiing by using this command. AN
INTEGER variable must be given_ If ON/QOFF is equal to “07 then the scroli after
every INPUT and PRINT is turned off. If ON/OFF i3 1" then the screan will scroll
after avery PRINT and INFPUT,

This feature Is useful in conjunclion with PRINTAT and INPUTAT commands
allows you 10 print or input more than one variabla on s line.

EXAMPLE: 100 LET A@=10
110 LET B@=20
120 LET C@=1
130 LET D@=0
140 LET E=24
150 LET F@=10
160 REM TURN OFF SCROLL
170 CALL SCRON(D®@)

31

180 PRINT A@®

190 REM PRINT NEXT VARIABLE OVER 10 PLACE

200 CALL PRINTAT(E@ F@)

210 PRINT B@

220 REM RESTORE TO ORIGINAL PRINT AND
INPUT FORMAT

230 CALL RESETAT

240 STOP

CALL PRINTAT(ROW,COLUMN)

This command will allow you to place the output on the screan at any row and
column,

EXAMPLE: SEE CALL SCRON

NOTE: See print command to understand how Integers and floating point
numbers are displayed on the screen. As with most of the commands,
parameters that exceed the allowable values will give unpredictable
resuits. |

CALL INPUTAT(ROW,COLUMN)

This command will allow you to input data from the location on the screen given by
row and column It should be noted thal any existing data on the screent!signored
when you use an input statement. Only what is typed is entered into tha variable.

EXAMPLE. 100 LET A$=""
110 LET X@=2
120 LET Y@=12
130 CALL INPUTAT(Y@.X@)
140 REM THE CURSOR AND ? WILL APPEAR
FOR INPUT IN THE MIDDLE OF THE
. SCREEN, TWO POSITIONS FROM THE LEFT,
150 INPUT AS

CALL RESETAT

You may resatore the INPUT and PRINT commandsa back to the default values by

use of this command.
NOTE: The PRINT position and INPUT position are both atfected and may not be

separated,
EXAMPLE: SEE CALL SCRAON

CALL INSTRINGA(ELEMENT.INTEGER OR STRING VARIABLE BEFORE
STRING ARRAY,STRING)

Although the 887 Compller does not have dimensioning of string arrays directly,
you may use this command to save a string of lengths 0-255 characters in an
integer array. The integer array must be dimensioned as follows.

100 LET H@=1
120 DIM A@(100)

32

As you can see il takes two statements to define the string array You mustindicate
the integer array you wish to use as a string array by glving tha infeger variable jusi
hefore the integer array. The integer variable is used as an indicator and wili be

changed.

Fach element of the string uses 14 elemants of the intager array. If your string
contains morea than 27 characters, for example, if it contains 50 characters, you
must use two or more string stements to hoid the string. String arrays myst bes one

dimensional arrays.

EXAMPLE: 100 LET A$="AB. 2"

120 LET B$-"ABR..2"

130 LET CA$="TEST2. TEST"

140 LET CB$=""

150 LET CA$=""

160 LET CB$=""

185 REM THE ABOVE 3 LET'S

170 REM ALLOCATES AN 83 CHARACTER STRING

175 LET H@=1

180 DIM S@{140)

185 REM THE ABOVE 2 LINES ALLOCATE A 1D

187 REM ELEMENT STRING ARRAY

190 LET A@=1

200 LET B=2

210 LET C(@=4

: 220 LET D@-8
~*" 230 REM STORE FIAST STRING IN FIRST 14
ELEMENT OF ARRAY 5@

240 CALL INSTRINGAA@.H@,AS)

250 AEM CONCATENATES TWO STRINGS TOGETHER
AND STORES IN STRING CBS. STRING CB$
NOW CONTAINS 52 ELEMENTS

2680 CALL ADDSTRING({CRS.A$.8%)

270 AEM USED TWO ELEMENTS OF A STRING ARRAY
WHICH IS THE SAME AS 28 ELEMENTS
OF THE INTEGER ARRAY

280 CALL INSTRINGA(B@,H@®,CBY)

200 REM C$ 1S STORED IN THE NEXT FREE BLOCK
OF THE STRING INTEGER ARRAY

300 CALL INSTRINGA(C@ H@.C$)

310 AEM RETURN A STRING FROM AN INTEQGER ARRAY

320 CALL QUTSTRINGA(A@ . H®@.C$) .

130 PRINT C$

340 STOP

REFERENCE MATERIAL

Using slement numbars of 0.1,2,3.. wlill aliow strings o! 0-27 characters to be
stored consecutively. Using element numbers 0! 0,2.4.6.8... will allow strings of O-
55 characters to be storad consecutivaly. Using slement numbers of 0.189.12...
will allow strings of 0-83 characters to be stored consecutively, {etc)

33

NOTE: Make certain you have allocated enough room with your DIMcommand or
else a string may over-writa part of your program. QUTSTRINGA and INSTRINGA
can also be used to subscript axisting strings. This is done by using a string
variable name as the second parameter. Starting with that variahle iis subscripts
will be "0" and subsequent 26 character strings will have subscripts 1.2..n.

EXAMPLE: 100 LET A$="TEST"
110 LET B$="TEST2"
120 LET BS="TESTI"

130 LET C$="TEST4"
140 LET A@=2

200 CALL QOUTSTRINGAA®@ AS.C$)
230 PRINT C$
300 REM“TEST3" WILL BE PRINTED

This form of the command I8 not simulatable in EDITOR/EX.

CALL OUTSTRINGA(ELEMENT,INTEGER OR STRING VARIABLE BEFORE
STRING ARRAY,STRING)

This command is the opposite of the CALL INSTRINGA. You may retrieve a string
from an array by use of this command. You must make certain that the string in
which the array element is going is of sufficient length before transfer or else you
may write over part of your program.

EXAMPLE: SEE CALL INSTRINGA

CALL POS(INTEQER LOCATION,BTRING,STRING TO FIND,
WHERE TO BEGIN LOOKING)

This statement is similar 1o the POS command in T/ BAS!IC, with tha exception that
the result Is returned in the first parametar This command returns the location of a
substring in a main string. Tha command starts searching in the main string atthe
specifled iocation.

TI BASIC SST BASIC
X@=POS(A$,83.C@) CALL POS(X@.A%.B8.C@)

EXAMPLE: 100 LET AS="ABCDEF"
110 LET BS="C"
120 LET A@=1
130 LET C@=0
150 CALL POS(C@.A$.B$.A@)
180 REM C@ NOW =3

34

CALL SEG(NEW STRING,STRING TO SEGMENT ., START IN STRIN?
NUMBER OF CHARACTERS)

This command is similar 10 the TI BASIC function SEGS with the exception that
the segmented string is store in the first variable(NEW STRING)

TI BASIC SST BASIC
B$-SEGHAS A@ B CALL SEGIRS AS A B

EXAMPLE: 100 LET A$-"ARCD"
110 LET B%=""
120 LET A(-2
130 LET B@=2
140 CALL SEG(R$.AS$ A@.BGD)
150 REM B$ NOW CONTAINS "BC™

CALL VAL(FLOATING POINT VARIABLE,STRING VARIABLE)

You may converl a string that is a numaeric representation of a number into &
fioating point value. This command is similar to the VAL function of T BASIC, with
the exception that the Hoating point variable is inside the parenthesis

Tt BASIC SST BASIC
F=VAL(F$%) CALL VALIFF$}

EXAMPLE: 100 LET F$="1 56E10"
110 LET F=0
120 CALL VAL{F F$I
125 PRINT F
130 REM YOU WILL HAVE 1 56E+10 PRINTED

- ON YOUR SCREEN

140 STOP
CALL LEN(INTEGER VARIABLE,STRING VARIABLE)

You may find the number of charactara in a string with this cornmand [tis similarto
the LEN tunction in T/ BASIC, except that the size of the string is returned in an
integer variable inside the parenthesis

TI BASIC S$SY BASIC
A@-LEN(AS) CALL LEN(AG AS)

EXAMPLE 100 LET A$="ABC"
110 LET A@-0
120 CALL LEN(A@.A$)
130 REM PRINT 3 ON THE SCREEN
140 PRINT A@
150 STOP

CALL SOUND(DURATION FREQUENCY VOLUME)

This command produces a tone of the given duration, frequency and volume
A duration between 17 and 4250 gives the iength of the spund in thoysandths of a
second. A duralion between 1 and 16 gives a sound of indeterminate length. That
is, the sound will continue until another CALL SOUND is encountered Frequency
must be between 110 and 32767 and volume must be between (O and 30

35

NOTE: "0" is the loudest volume See the T|. manual for a complete description.
Only one sound generator is available.

EXAMPLE: 100 LET A@=4000
110 LET B@=110
120 LET C@=2
122 REM CALL SPRITEMODE 1S NEEDED FOR THE
SOUND COMMAND
125 CALL SPRITEMODE
130 CALL SOUNDIA@.B@.C@)
t40 GOTO 140
150 STOP

CALL ADDSTRING(STRING1,8TRING2,STRING))

This Instruction adds STRING2 and STRING3 together and stores the result in
STRING!T.

TI BASIC SST BASIC
AS$-B% & C$ CALL ADDSTRING{AS.BS.CS)

EXAMPLE: 100 LET A$="TEST"
110 LET BS$-"SST"
120 LET C$="SOFTWARE, INC"
130 CALL ADDSTRING(AS$.B$.C%)
140 PRINT A$
150 STOP

A$=B% Is aliowed if BS islass than 27 characters. However, you mustusethe CALL
ADDSTRING command for Strings ionger than 27 characters.

CALL STR(STRING ,VARIABLE)

d
This command converts a floating point number into a string. This is needed for
output to & disk or printer. Thisg is similar to the STARS$ command in T! BASIC.

Tt BASIC SST BASIC
B$=5TR$(A) CALL STR(BS$,A)

EXAMPLE 100 LET B$="TEST"
110 LET A=123
120 CALL STR(BS.A)
130 REM A IS NOW CONVERTED
140 REM TO STRING REPRESENTATION
150 REM AND STORED N BS
160 STOP

36

CALL CHR(ASCIt CODE,STRING)

This command is similar to the CHRS command in Tf BASIC. with the exception
that the character is added onto the end of the glven string Therefore, it you call
this command and the original string was "ARCD and the ASCH code in variable
A@ is 65, the new string produced would be "ABCDA"™

NOTE: That the character code for A is 65

EXAMPLE: 100 LET A$="ABCD"
110 LET A@=65
120 CALL CHR(AM AS)
130 REM AS NOW CONTAINS ABRCDA

CALL ASC(RESULTS,.STRING ,WHERE IN STRING)

CALL ASCis similar to the ASC function in TI BASIC, with the axcaption that you
give the location of the character in the string. The RESULT has the valus of the
ASCH code for that character.

EXAMPLE: 100 LET A$="TESTA"
110 LET A@=0
120 LET B@=5
130 CALL ASC(A@.AS$.B@)
140 REM A@ WILL NOW EQUAL 65

CALL FLOATIN(FLOATING POINT VARIABLE)

This command wil take the contents of the first floating point variable defined in a
T! BASIG program and puts it Into the variable indicated in the CALL FLOATIN.

~ The first vartable defined must be a floating point variable, not an array or string

variable. This command is useful for putting data into compiled programs.

Tt BASIC CALLING PROGRAM
EXAMPLE: 10 LET A=Q
20 DATA 12345
JOFORI=1 TO 5
40 READ A
50 CALL LINK("compiled program”)
60 REM THE VALUE OF "A” WiLtL RE PUT
70 REM INTO THE COMPILED PROGRAM
BO NEXT |
90 STOP

SST EXPANDED BASIC

100 LET A=0

110 LET D@~1

120 LET AG@=5

130 LET C@=0

140 LET E@=4

145 DIM B@{5)

150 A@=A@-0@

160 REM BRING N FLOATING POINT NUMBER

37

185 CALL FLOATIN{A}

170 REM FROM TI BASIC

180 C@-E@-A(@

190 REM CONVERT TO INTEGER
200 CALL INTER(B(({C{@).A)

210 REM CHECK IF END OF DATA
220 IF A@ >=0 THEN 1000

MAIN PROGHAM

990 REM RETURN TO BASIC
1000 STOP

After the fifth time the compiled program is called it will have loaded all the data
from T/ BASIC and witl begin to execute the main program. The data stored in the
compiled program will remain there until the computer is 1urned:nﬂ or the data is
changed by the program Because of thisyou may usethe FASTLOADprogramto
save your compited program with the data in place. After this you do not have 1o
use a T/ BASIC program 10 reload the dala.

NOTE: This command may not be used after CALL SPRITEMODE or CALL

PLOTMODE, because they may erase your T/ BASIC program.

CALL FLOATOUT(FLOATING POINT VARIABLE)

This command is simllar to CALL FLOATIN, except the floating point number from
the compiled program is passad to the first defined fHloating point variabte in T/
BASIC.

TI BASIC CALLING PROGRAM SST EXPANDED BASIC
10 LET A=0Q 200 LET B=10

20 CALL LINK("compiled program™) 210 CALL FLOATOUT(B)
30 PRINT A 220 STOP

100 REM WHEN A IS PRINTED IT WILL BE 10

SUBIN(LOCATION,TYPE,VARIABLE)

This command is used o accept parameters from the CALL LINKER or CALL
UUSERA..FE commands Theprogram or subprograms that SUBINand SUBOUT are
used in must have bean compiled with their own set of variables The subroutine
must have as many SUBIN COMMANDS as parameters passed by the CALL
LINKER or USERA COMMANDS. The first parameler in the CALL SUBIN must
contain the location of the parameter inthe CALL LINKER parameter list. This will
be a valus between 1 and 5. That is, you can pass up to 5 vaiues,

38

The type parameter indicales if the parameter is a string (TYPE= 1), a loating point
number (TYPE=2), or an inteqar (TYPE-3) The last parameter wilt, afler execution
contain the contents of the variable being FASSED trom the main program.

NOTE ' This command is no! simuiated in FDITOR/EX You must enter this
command after you are done testing the program with EDITOR/EX.

SUBOUT(TYPE.VARIABLE)

This command passes a variabie from a separately compiled subroutine to a main
program. Agin CALL SUBINyou mustindicate the type ol variable you are passing
(SEE SUBIN). As many parameters must be passed back as are in the CALL
LINKER or USER command. The parameters must also be in the same order.

EXAMPLE: 100 REM MAIN PROGRAM
110 LET AS="TEST"
120 LET B=10 3
130 LET C@ =5
140 LET D@ =-8000
150 REM -8000 IS THE STARTING ADDRESS PLUS 8
160 REM -8000 IS THE ADDRESS OF CALL SUBIN(D@. D@, ABS)

500 CALL LINKER(D@.A$.B8.C@)

900 STOP
SUBROUTINE 1S STORED STARTING AT ADDRESS -8050

100 LET AB%=""

110 LET BB=0

120 LET CB@=5

130 LET D(@ -1

140 LET E@=2

150 LET F@=13

155 REM ADDRESS -8006 IS THE STARTING
ADDRESS FOR THE COMPILER

160 CALL SUBIN{(D@. D@, ABS)

170 CALL SUBIN(E@®.E@.BB)

180 CALL SUBIN(F@.F@.CB@)

190 PRINT ABS

200 PRINT BR

210 PRINT CB@

215 REM PASS VALUES BACK

220 CALL SUBCGUT{D(® ABSY)

230 CALL SUBOUT(E®.RB)

240 CALL SUBOUT(F@.F@)

250 RETURN

260 STOP 9

CALL PLOTMODE

This command is neaded to enter Bit Map Mode. In Bit Map Mode you can access
all of the pixels on the screen individually. This command can be performed only
once in any program and not from SPRITEMODE Whilein PLOTMODE you are not
allowad the following functions and commands:

ATN, COS. EXP,INT, LOG, SIN, SOR. TAN, PRINT, INPUT
The foliowing CALL statements are not allowed in PLOTMODE:

SPRITEMODE, PLOTMODE. COLOR. CHAR, VCHAR, GCHAR, CLEAR. USING,
UNUSE, SPRITEA, MOTIONA, SCHARA, PATTERNA, COLORA, LOCATEA,
POSITIONA, MAGNIFYA, DELSPRITEA SCROLL, DISTANCEA, COINCA,
SOUND, PRINTAT, INPUTAT, SCRON and RESETAT

NOTE: You cannot enter SPRITEMODE from PLOTMODE. Also, only one disk lile
can heopenedin PLOTMODE Youmustdoa CALL FILES(1).NEW belfore
entering PLOTMODE

%

You cannot return to Tl Basic from PLOTMODE or SPRF}'EMODE.

CALL PLOTCHR(ASCH CODE.,X COOR..Y COOR..FOREGROUND
COLOR,BACKGROUND COLOR,ON/OFF)

This command will atlow you to put a character on or take a character off
anywhaere on tha screen. You mustbe in PLOTMQODE This command is the samae
as CALL PLOT with the exception of one added parameler at the beginning.
Instead of just putting a dot on the scraen, a character is put there. The character
will be put on (or taken off) the screen starting with its upper lett hand corner at the
given X and Y coordinate.

NOTE: Only'lha pixels making up the character will be plotted, any other pixel in
the area wilt be left unchanged. Also, you may deline your own
characters with the CALL CHAR command, but only before calling
PLOTMODE.

EXAMPLE 11 REM ASCH CODE FOR "A"
12 LET A@ =65
20 LET B@=0
30 LET CF@=2
40 LET CB@=16
50 LET D@~
60 CALL PLOTMODE
65 REM GIVES A WHITE SCREEN
70 CALL SCREEN(CB@)
73 CALL PLOTCHR(A@,CB@.CB@.CF@.CB@.0@)
75 REM THE LETTER "A” WilLL APPEAR
80 REM AT THE UPPER LEFT OF THE SCREEN
90 GOTO 90

40

CALL PLOT(X POSITION, Y POSITION, FOREGROUN COLOR,
BACKGROUND COLOR, ON/OFF)

This instruction allows you to do high resolution graphics. By spacifing the X and
Y valtues you can place a dot anywhere on the screen The X-value is betwean 0
and 255 and the Y -value is between 0 and 191, The foreground and background
colors are as specified in T/ BASIC. The iast variable must be a 1" to place a dot
and a “0" to remove a dot. You must be in PLOTMODE o use this command.

EXAMPLE: 100 LET X@=20
110 LET Y(@-40
120 LET CA@=2
130 LET CB@=16
140 LET 2@~
145 CALL PLOTMODE
150 CALL PLOT(X@.Y@.CA@.CB@.2@)
160 REM PLACES A BLACK DOT AT
170 REM LOCATION X=20, Y =40
180 GOTO 180

CALL GPLOT(X POSITION, Y POSITION,ON/OFF)

This command checks tha scraen to see it tha pixel at position X, Y is on or off. See
command above for [imits on X and Y. ON/OFF returns with value 1 if the pixet is

" on, 0 if the pixel is off.

"~ EXAMPLE: CALL GPLOT(X®@.Y(@.Z@)
CALL USING(NO. OF DIGITS TO RIGHT OF DECIMAL)
s

~ This command aflows you to format your output. That is, you can specily the

number of digits to the right of the decimal point. Once you use this command, al!
floating point numbers will be printed to the screen under this format.

CALL UNUSE
This command turns ot the CALL USING instructions

EXAMPLE: 100 LET A=12.1234567890
120 LET B@-5
130 CALL USING(B@)
140 REM A=12.123457 IS PRINTED
150 PRINT A
160 CALL UNUSE
170 REM A=12.12345679 IS PRINTED
180 PRINT A
190 STOP

CALL SIG(NUMBER OF BYTES)

This command allows you to specity the number of bytes to be used in al!l loating
point computations. A "0 specifies 8 bytes (14 digits), a 1" specifias § bytes {10
digits) and a 2" spsecifies 4 byles (6 digits). This command can shorten the
computation time by 6 to 50 percen! for arithmetic statements

NOTE: This command saves time not space.

41

EXAMPLE: 100 LET A=1.333333332
110 LET B=2.333333333
120 LET A@=2
130 CALL SIGA@)
140 REM THE FOLLOWING COMPUTATION
150 REM WILL BE DONE USING ONLY 4
160 REM BYTE ARITHMETIC
170 A-A+B
1B0 REM A=3 8666 IS PRINTED
190 PRINT A
200 STOP

NOTE: This command will reduce the accuracy of the computation.

CALL JOYST(KEY UNIT, X-VARIABLE, Y-VARIABLE)

The JOYST command returns data into the X and Y variables basad on the
positions of the joystick. See the Tl manual for a more compiate description.

EXAMPLE: 100 LET A@=1
110 LET B@=1
120 LET C@=1
130 CALL JOYST(A@.B®.C@)
140 PRINT B@

150 PRINT C@
155 GOTO 130
160 STOP

NOTE: Due to the speed of machine language. you may need a delay loop
betweaen calls to JOYST.

CALL SPRITEMODE

This command is naeded to get the computar ready to handle sprites. It must be
used before SOUND or any SPRITE commands are specified. This command can
be performed only once in any program and may not be performed while in
PLOTMOQDE The sprite commands are used 1o create and control continuously
moving graphics in 32 different planes. This allows you to overlap graphics with
sprite #t being in front of the other sprites.

The following commands are aprite commands:

SPRITEA, MOTIONA, SCHARA, PATTERNA, COLORA, LOCATEA,
POSITIONA, MAGNIFYA, DELSPRITEA, DISTANCEA and COINCA,

While in SPRITEMODE you cannot use the following CALL statements:
SPRITEMODE, PLOTMODE, PLOTCHR, GPLOT and PLOT

NOTE: You cannot enter PLOTMODE from SPRITEMODE. You should not return
to T1 Basic from SPRITEMODE or PLOTMODE.

42

CALL SPRITEA({SPRITE #, CHARACTER #, COLOR, ROW, COLUMN)

This instruction creates a sprite at 8 given row and column The sprite numberis s
value from 1 to 32 and the character valus is any integer from 1 to 112, The
toreground color is any value from 1 to 16 (Seethe Timanual for a more complets
description). The pattern of a sprile is defined by the character and its pattern
description #, which can be changed by the SCHARA command only.

CALL MOTIONA(SPRITE NUMBER, ROW VELOCITY,
COLUMN VELOCITY)

The MOTIONA instruction is used to specify the row and column velocity of »
sprite. A positive row velocity moves the sprite down and a positive column

velocity moves the sprite right. Conversely a negalive row velocity moves the
sprite up and a negative column velocity moves the sprite left These values must

be between -128 and +127

CALL SCHARA(CHARACTER #, PATTERN STRING 1, PATTERN STRING 2...,
STRING N, STRING OF SIZE NOT EQUAL YO 18)

This subroutine aiows you to change only the character pattern of a sprite starting
with the apecified character number. If the character number is 4 then string 1
changes character 4, string 2 changes character 5, elc. untit a string is
i ancountered which Is not 16 characters iong. N must be less than or equal to 4.

NOTE: Each pattarn string must be 16 characters long. The character table for
sprites is compistely empty and does not contain the ASCIl character set. To
obtﬂihﬁma ASCIl sst you can use the foliowing example program to transfer the

- ASCI character set to the SPRITE character tabia.

100 LET I@=1

110 LET J@=2304

120 LET K@=2951

130 LET L@=1032

140 LET A@=1

150 LET X(@=1

1680 LEY B@=1

170 LET C@-33

180 LET D@ =2

190 LET E@=20

195 CALL SPRITEMODE

196 AREM PUTS CHAR 32-112 INTO THEIR PROPER PLACE
IN THE SPRITE DESCRIPER TABLE

200 FOR i@=J@m TO K@

210 X@-1@-L@

220 CALL PEEKV(I@ A@)

230 CALL POEKV(X@ A@)

240 NEXT K@

250 CALL SPRITEAB@.C@.D@.E@.E@)

260 QOTO 280

270 STQOP

43

CALL PA RNA(SPRITE #, CHARACTER #)

This command changes the character used by the given sprite to the value given
by the second variable. This command allows you to quickly change the definition
of a sprite. The definitions must first be set using CALL SCHARA.

CALL COLORA{SPRITE NUMBER, FOREGROQUND COLOR)
This Instruction allows you to speclify the foreground color of a sprite.

EXAMPLE: 100 LET AS="183C7E1818181800"
105 LET BA$=""
110 LET A@=1
120 LET B@=1
130 LET C@=2
140 LET D@=20
150 LET E@=20
160 LET F@=4
170 LET G@=4
175 LET H@=2 -,..
180 REM GO INTO SPRITEMODE |
190 CALL SPRITEMQDE)
192 REM CHANGE THE PATTERN OF THE SPRITE
184 CALL SCHARA(A®@.AS.BS)
195 REM CREATE SPRITE #1 AT ROW 20,

COLUMN 20
200 CALL SPRITEA(A@.B@.C@.D@.E@)
205 REM SPRITE MOVES WITH X VELOCITY
4, Y VELOCITY 4

210 CALL MOTIONAA@ F@.G@)
230 INPUT H@®@
240 CALL COLORAA® H@)

' 250 GOTO 230
260 STOP

CALL LOCATEA(SPRITE # ROW, COLUMN)

The LOCATEA subroutine changes the location of a sprite. ROW is an integer
variable with a value between (0 and 191. COLU/MN is an integer variable with a
valus between 0 and 255.

CALL POSITIONA(SPRITE NUMBER, ROW, COLUMN)

This subroutine returns the position of the given sprite in ROWand COLUMN . See
Extended Basic routine POSITION

CALL MAGNIFYA(MAGNIFICATION)

This command specifias the size of sprites. The value must be between 1 and 4. A
"1" Is normal size and a "2" causes the sprite to be doubled {four consecutive
characters are used to define the sprites). A “3" spacifies the sprite to be magnified
{one character !s used to define the sprite but the size is magnitied by “2"). And a
"4” causes tha aprite to be magnified and doubled (takes up 16 character
positions). See Extended Basic manual.

44

CALL DELSPRITEA(SPRITE NUMBER)

This subrouting deletes the sprite specified. (See DELSPRITE subprogram in T
EXTENDED BASIC). H the aprite number is graaler than 32 all aprites are deleted.
Otherwise the value should be between 1 through 32

CALL SCREEN(COLOR)

The SCREEN command is used to change the color of the screen.

EXAMPLE: 100 LET X@=2
110 CALL SCREEN(X@)

120 STOP
CALL SCROLL(TYPE LEFT/RIGHT,AMOUNT)

This command changes the scrolling of the screen so that it scrolls left 1o right or
right to left a specific amount.The scroll i3 performed on PRINT and INPUT
statemeants. TYPE must be a "’ If the second value is a 0 the scroll is to the left,
and it it is a 1, the acrol!l is to the right. The third value indicates the number of

columns to ba scrolled.

EXAMPLE: 120 LET A(@-0

130 LET D@ =1

140 LET L(@~=1

150 INPUT D@

160 INPUT L@

170 CALL SCROLL(A(@.D@,L@)
180 INPUT A(@

190 GOTO 180

200 STOP

CALL SCROLL(TYPE, ROW, COLUMN, AMOUNT, TOP/BOTTOM)

This command changes the scrolling of the screen so that only a section of the
ascreen acrolis up. TYPE must be 1. Row and cotumn indicate the position trom
which the scroll will start or end. The amountindicates the numbaer of columns that
will be scrolied to the right of the poasltion given by row and column. That is, onty
these columns will be scrolled it TOP/BOTTOM is 0" the bottom part of the
screen is scrolled up and if TOP/BOTTOM is "1 the top part of the screen is

scrolied up.

EXAMPLE: 100 LET A@=1

110 LET Ba=10

120 LET C@~=11

125 REM THIS COMMAND CHANGES THE SCROLL SO THAT
ONLY THE AREA OF THE SCREEN BETWEEN COLUMN
11, COLUMN 21

126 REM AND ABOVE ROW 10 IS SCROLLED UP ONE ROW
EACH TIME A PRINT OR INPUT COMMAND IS USED

130 CALL SCROLLA@ B, C@.B@. A(m)

140 INPUT A

150 GOTQ 140

160 STOP

45

CALL DIS1 ANCEA(TYPE, SPRITE # 1, SPRITE # 2, DISTANCE)

This command is used to find the distance between two sprites. TYPE must be a
"17, and DISTANCE is returned with the square of the distance between the

sprites.
CALL DISTANCEA(TYPE, SPRITE#1,ROW,.COLUMN,DISTANCE)

TYPE must be a "2" and DISTANCE is returned with the square of the distance
between the sprite and a location. See DISTANCE subroutine program of Ti
Extended Basic. To simulate this command in EDITOR/EX you must refer to this
as CALL DISTANCEB This command must be changed back to CALL
DISTANCEA betore compiling.

EXAMPLE: CALL DISTANCEBA@ B@.C@.D@.E@)

CALL COINCA(TYPE, SPRITE # 1, SPRITE # 2 TOLERANCE, COINCIDENCE)

This command detects a coincidence between 2 sprites. COINCIDENCE="-1" if

thers I8 a8 coincidence and equals "0” if there is no coincidence. TOLERANCE is
the number of dots allowed between the sprites. (See COINC subprogram in T
Extended Basic). TYPE must be 1.

CALL COINCA(TYPE, SPRITE #, ROW, COLUMN, TOLERANCE,
COINCIDENCE)

This detects a coincidence between a sprite and the location specifled by ROW

and COLUMN. TYPE mustbe a "2". To simuiate this command in EDITOR/EX you
must refer to this command as CALL COINCB. This command must be changed
back to CALL COINCA before compiling.

CALL COINCA(TYPE, COINCIDENCE)

This subprogram detects a coincldence between any sprites. TYPEmustbea 3"
and COINCIDENCE is returned with a value of “-1" or 0". To simulate this
command in EDITOR/E X you must refer to this command as CALL COINCC. This
command must be changed back to CALL COINCA before compliling. The
following program does nothing more than demonstrate the use of the sprite
commands.

EXAMPLE: 100 LET A$="FFFFFFFFFFFFFFFF"
110 LET N§=""
120 LET A@-=1
130 LET B@=2
140 LET C@=20
142 LET K@=1
145 LET H@=1
150 LET D@=4
155 LET I@=1
1680 LET E@=3
182 LET X@=20
185 REM SET UP SPRITE MODE

46

§170 CALL SPRITEMODE
175 REM SET UP SPRITES
180 CALL SPRITEA{A@ A@ B@.C@.C@)
190 CALL SPRITEAB@H B B@.CM.D@)
200 CALL MOTIONA(A@ D@.DM)
210 CALL MOTIONA(R@.D@.C@)
220 CALL SCHARA{A(@ AS ASNS)
225 REM LIKE COINC{ALL.K@)
230 CALL COINCA(E@ K(D)
240 PRINT K@
245 REM DIST. OF SPRITE TO LOCATION
250 CALL DISTANCEA(B@ A@.C@.D@.E@
260 PRINT E@®
265 REM COINGC. OF SPRITE TO A LOCATION
270 CALL COINCA{B@ A@.C@.D@ E@ X
280 PRINT X@
290 INPUT C@
300 INPUT D@
305 REM CHANGES THE LOCATION OF THE
SPRITE
310 CALL LOCATEA(A@.C@,D@)
313 AEM GIVES THE LOCATION OF THE
SPRITE
* 315 CALL POSITIONA(A@ H@ (@)
o— 320 PRINT H@
325 PRINT I@
326 REM DELETES A SPRITE
330 CALL DELSPRITEA(A®)
340 GOTO 340
350 STOP

CALL RANDOMIZE

This command sets a new random seed for the AND command.
CALL ARND{INTERVAL, RANDOM YARIABLE)

This command returns. in the second variable, a random number in the intervel
from 0 to the vatue of the tirst variable minus 1.

CALL SCREENON

This command keeps the screen active gven it no key has been hitin 5 minutes.
The following commands also keep the screen active

SPRITEA, MOTIONA, LOCATEA, POSITIONA, COINCA_ DISTANCEA, SCHARA,
COLORA, MAGNIFYA DELSPRITEA JOYST KEY and INPUT.

47

ARITHMETIC STATEMENTS

Arithmetic statements may be either in integer or floating peoint arithmetic. They
cannot be mixed However, a call can be made 1o FLOAT or INTER before the
computation. The SST EXPANDED BASIC COMPILER will allow more than one
computation per iine. However all arithmetic computations are performed from leh
10 right.

NOTE: This differs trom T | Basic.

If you access one of the mathematical functions, only one computation may be

performad on the line.
EXAMPLE: A=SQR(B)

Notice also that only variables can be used in arithmetic computations: constants
are not allowed. For example, the statement:

A=B+2
must be written »
LET C=2 x

A=B8+C

”

That is, sl variables and constants must be declared in a LET statement at the
beginning of the program. Note, the word LET must not be used in an arithmetic

statement

47

SAMPLE PROGRAMS

The following examples indicate how programs should be written using the 887
EXPANDED BASIC COMPILER. The operating time for the T! Basic programs and
the machine !language programs are given for comparison

PROGRAM 1

The tirst program gives an exampie of a loop from 1 1o J0000. in steps of 1.

T.l BASIC

100 FOR i=1 TO 30000
200 NEXT 1
300 STOP

TIME: B4 Seconds

SST COMPILER

100 LET i@ =1
110 LET J@=30000

120 FOR I@-I@ TO J@
130 NEXT 1@

140 STOP

TIME: 1 40 seconds

PROGRAM 2

This program is similar to the previous one except that it uses an /F stalement in

place of the FOR loop.
7.1 BASIC

100 Jom0

110 L=L+1

120 A=L-29999

130 IF A< =0 THEN 110

140 STOP

TIME: 415 saconds

S8T COMPILER

100 LET A=1

T10 LET L=0

120 LET M=29999

130 LET 2=1

140 L=LL+2Z

150 A=[.-M

160 IF A<=0 THEN 180
170 STOP

TIME. 73 seconds in floating point:

3 seconds in integar arlthmetic
(To convert to inteqger arithmaetic,
putl an (M symbol aMter aach variable)

49

PROGRAM 3

If you would run Program 2 a second time, without reloading it into memory. it
would not run correctly. This is because the value stored in L would not be 0, but
would be the value of L at the end of the first run (i.e., L=30000). Therefore, if you
are going to run a program many times while itis stored in memory, you should be
certein the variables are initalized correctly. The second program should be
written as shown below;

100 LET A=t

110 LET L=0

120 LET M=29999

130 LET K=0

140 LET Z=1

150 L=K

160 L =L+2Z

170 A=L-M .
180 if A<=0 THEN 180 *
190 STOP .

In this form L will be set to reroinline 150, and the program can be run repeatedly.
The addition of line 150 is necessary because execution always begins at the first
line following the LET statements,

PROGRAM 4

The next program is similar 1o one which appeared in the March, 1980 BYTE
Magazine. It is a program designed to generate prime numbers, and is often used
as a benchmark. The program was originally run in Basic on the TRS-80
computer. It took 7 hours, 12 minutes to check the first 10.000 integers for prime
numbers. The program written here checks only the firat 1 000 integers

100 LET L@=6
110 LET E@="
120 LET M@=1000
130 LET 2@ =5
140 LET A@=1
150 LET N@+-10
160 LEY D@=1
170 LET B@=2
180 LET C(@=2
190 FOR A@=L@ TO M@
200 A@=A@+E@
210 D@=A@/C(a
220 FOR 2@=-B@ TO D@
230 2@~2(@+E®@
235 REM FOR T BASIC LINE 240 SHOULD BE
236 REM N@=INT(A@/2@)
) 240 N@=-A@/2@
= 250 N@=N@+*Z{@
260 N@=A@-N®@
270 IF N@ <=0 THEN 300
280 NEXT 2@
290 PRINT A@
300 NEXT A@
310 STOP

TIME, BASIC: 1535 saconds
TIME, 88T COMPILER 18 seconds

it line 120 is changed from M@= 1000 to M@ - 10000. the program will check the
first 10,000 integers. The SST EXPANDED COMPILER completas the program in
11 minutes, 20 seconds. In 7./ BASIC, it took 4 houra and 15 minutes ta check the
firat 5500 integers. The SST EXPANDED COMPILER took 4 minutes to check the
first 5500 integers.

3

This program illustrates some of the graphics capabilities of the compiler. The
program creates a man using graphics commands and moves the man across the

screen,

PROGRAM 5§

EXAMPLE: 100 LET B$="1899FF3CJ3C3C2221"

110 LET A$="995A3C3C3C3C4484"
120 LET A@=2

130 LET D(@=42

140 LET E@=3

150 LET F@=32

160 LET K@=1

170 LET J@=12

180 LET K{@=1

190 LET L@=1

200 LET M@=1000

205 LET T@=32 \
207 LET S@=0

210 LET N@=52

215 REM DEFINES THE MAN

220 CALL CHAR(D@.AS$)

230 CALL CHAR(N@.B$)

240 CALL CLEAR

250 INPUT M@

260 FOR I@=E@ TO F@

265 REM PRINT CHARACTER FOR MAN
270 CALL VCHAR(J@,@,D@)

275 REM DELAY LOOP

280 FOR K@=L@ TO M@

290 NEXT K@

295 REM PRINT CHARACTER FOR MAN.

300 CALL VCHAR(J@.I@N@)
305 DELAY LOOP.

310 FOR K@=L@ TO M@
320 NEXT K@

325 S@=1@-L@

326 REM ERASES THE OLD LOCATION OF MAN.

330 CALL VCHAR(J@.5@.T@)
335 CALL VCHAR(J@.!@.T@)
340 NEXT I@

350 STOP

PROGRAM ¢

This program Is an example of PLOT MODE. The program prints tha word TEST st
the bottom left hand corner and then allows you 1o draw designs on the screan.
NOTE: There are no restrictions 1o the inputs given by the JOYSTICKcommand It
you go off the screen you may destroy the screen image.

EXAMPLE: 100 LET AS="TEST"
110 LET A@=1
120 LET 8(=4
130 LET C@=1
140 LET l@m-1
150 LET J@=1
180 LET K@=1
170 LET CF@=2
180 LET CB(@-=1
100 LET X({@m-128
200 LET Y(@=96
210 LET AX(@=-1
220 LET AY(@=1
230 LET BX(@=48
240 LET BY(@-160
250 LET BN(@ =8
255 REM ENTERS PLOTMODE.

) 260 CALL PLOTMODE
== 285 REM GETS LENGTH OF STRING.

270 CALL LEN(K@.AS)
280 FOR l@=J@ TO K@@
285 REM GETS THE ASCIl CODE OF EACH CHARACTER
290 CALL ASC{C@ A% |(@)
300 BX@=BX@@+BN@
305 REM PRINTS LETTER.
310 CALL PLOTCHR(C@ BX@.BY@ CF@.CB@® A@)
320 NEXT I@
325 REM PLOTS THE NEW POINT.
320 CALL PLOT(X@.Y{@.CF@.CBMO A@)
335 REM CHANGES LOCATION OF THE POINT.
340 CALL JOYST(A@ AX@ AY ()
350 AX{@=AX{@/B@
360 AY@=AY@/B@
370 X@=X{@+AX{@
380 Y@=Y{@-AY(@
390 GOTQO 330
400 STOP

53

PROGRAM 7 | 340 LET Al@=0
345 REM E(@ 1S THE POINTER FOR THE STRING ARRAY

This program will print a lile created using the EDIT program of the 150 LET C@-0
EDITOR/ASSEMBLER module, to a device such as a printer. It is particularly ' 155 LET E@rﬂ
usetul if you need a large number of coples. it will ask you for a file name. This 360 DIM AR@(1)

should be a Disk Text File in a variabla display B0 format. Then you will be asked . 170 STOP
tor the Print Name. Possible answers are PIO EC or RS232. Next you will be asked
for the number of lines to be printed. Enter a number rom 1-200, Lastly you are
asked for the number of copies to be printed. Tha program will then foad the -
proper number of lines into a siring array and display a countar for each copy
printed. To stop the printing before the computer is done you may press any key.
This program illustrates several commands and techniques to allocate large

90 REM START AT ADDRESS -3000
100 CALL CLEAR

105 REM FORMAT INPUTS

110 CALL INPUTAT(CA@.CB@E)

120 CALL PRINTAT(CA® CI@)

integer arrays without having the compiler inltiatize it. The program is compitedin
parts. In the first part the variables and constants are defined. This section should
be compiled at a starting addreas of -20000. The second part must be compiled
without reloading the compiler. This section shouid ba compliled with a starting
address -3000. The space betwesn the two parts wili be used for a string array.
Although only two elements are dimensioned, the compiled program will not

130 CALL SCRON(CD®)
140 PRINT CAS

145 CALL SCRON(CC @)
150 INPUT A%

1680 CALL SCRON(CD®)
170 PRINT CRB$

180 CALL SCRON(CC®)

check if you go beyond thase. -
NOTE: You execute the second part with the CALL LINK command in T{ BASIC.

EXAMPLE: 90 REM START PROGRAM AT ADDRESS -20000
100 LET CBS$="PRINT NAME"

190 INPUT B%

200 CALL SCRON{CD(®)
210 PRINT CC$

220 CALL SCRON(CC®)

110 LET CA$="FILE NAME" 230 INPUT A@
120 LET A$="" . 240 CALL SCRON(CD®)
130 LET B$="" — 250 PRINT CD$

180 LET CC$="# OF LINES" - 260 CALL SCRON(CC®@)
170 LET CD$="# OF COPIES” 270 INPUT B@

180 LET CE$="PRESS ANY KEY TO ABORT" 275 CALL SCRON(CD@)
190 LEY CF$=" COPY COUNT" 280 CALL CLEAR

195 REM ALOCATE SPACE FOR B0 CHARACTER STRING 290 PRINT CE$

¢ 200 LET C$="" 300 CALL PRINTAT(CE®.CC@)

201 LET C$="" 310 PRINT CF$
202 LET C$="" 320 CALL PRINTAT(CE@.CF (@)
203 LET C$="" 325 REM OPEN A DISPLAY VARIABLE BO DISK FILE

210 LET CA@=22 330 CALL OPEN(CC@.CF@.CG@,CD@ AS)

215 LET Cl@=2 340 C@=CH®@

220 LET CB@=13 350 FOR I@=CC@ TO A@

230 LET CC@=1 360 CALL INPUT(ICC@.CD@,C$)

240 LET CD@=0 370 C@=C@--CH@®

250 LET A@=0 375 REM C@ COUNTS BY 3 FOR STRING ARAYS
260 LET B@=0 il 380 CALL INSTRINGA(C@.E @.C$)

270 LET CE@=12 390 CALL KEY(CD@ K@.S@)

280 LET CF@=18 400 IF S@=00 THEN 420

290 LET CG@=80 . 410 GOTO 570

300 LET CH@=-3 420 NEXT 1@

310 LET S@=0 430 CALL CLOSE{CC®)

320 LET K@=0 435 REM OPEN PRINTER FILE

330 LET i@=0 440 CALL OPEN(CC@.CF@.CG@ CD@.BS)

54 55

| e N TWEF W= W = ey mm = i mm o ..

As you can see [rom the results, the SST COMPILERIs a powerful tool, and should
be used whenever speed is important. Once the programis cumpilad. the resultis
a machine language program equivalent to the Basic program. To AUN the
program, it is only necessary to read in the machine language file. The program

450 FOR Al@=CC® TO B@
460 PRINT AK@

470 C@=CH@

480 FOR I@=CC@® TO A@

490 C@-C@ —CH@

500 CALL OUTSTRINGA(C@.E@.C$)
510 CALL PRINT(CC@®.CO@.C$)
520 CALL KEY{CD@.K@.S@)
5§30 IF S@=00 THEN 550

540 GOTO 570

550 NEXT I@

560 NEXT Al@

570 GALL CLOSE(CC@®)

580 STOP

does not need to be compited agamn.

This program is Compiled and can be found on the 88T EXPANDED BASIC
COMPILER system disk. To load and run the program follow {he steps below.

You will be given more information about this game program by the program

itaail.

PROGRAM 8

CALL INIT

CALL LOAD("DSKY MOVE"."DSK1.DUMP",
¢

"DSKY.GAME")
Leave Disk in Place
CALL LINK{("GAME™)

50

—r T . L e

PROGRAM 9

This i5s an example program to show how to use the speech synthesizer. The input
on line 220 consists of the decimal equivalent of the addresses given in the
EDITOR/ASSEMBLER manual pages 422-427 These addresses correspond to
tha words residing in the synthesizer.

100 LET A@-0
105 LET Z(@~0
110 LET AA@=0
120 LET B(@=0
130 LET C@-0
140 LET Do =0
150 LET E(@=0
160 LET F(=256
170 LET G(@m=16
180 LET H(® =64
190 LET I(@=-27648
200 LEY J(@=80
210 CALL SPRITEMODE
220 INPUT A(@
295 REM THIS CONVERTS THE DECIMAL ADDRESS TO THE
CORRECT FORM. See page 351 of the EDITOR/
. ASSEMBLER manual
- 230 AA@=A{@/F (@
240 C@=AA@*F@

242 A@=A{-C{
250 C(d=A@@/G@
260 B@=2(@-C@* G@+A@+H@
265 C@=C+H@
270 E@=-AA@/G@
280 D@=Z@-E@*G@+AA@+H(@
285 E@=E@+H{w
290 CALL LOADII@, B@)
300 CALL LOADI(I@,C(a)
A10 CALL LOAD{(!¢o.D{m)
320 CALL LOAD{{@ E{@)
330 CALL LOAD{{m H)
335 CALL LOAD{i@.J@)
340 GOTO 220

57

IN CASE

*ROBLEMS

The error statement “VARIABLE NOT FOUND ' usually indicates that a variable
was not defined in a LET statement at the beginning of the program. The error
statement "MEMORY FULL " is usually caused by not doing a "CALL FILES(1)"

tollowed by a “NEW"
CHECKING PROCEDURES

1.

10

11,

12.

13.

14,

Do not mix integer and floating point variables. Use CALLSto FLOAT
or INTER first

i more than one arithmetic operation is performed per ling,
computation will be performed from tefl to right.

Integer variables must be usad in FOR loops, and as subscripts for
array alements.

Onty three forms of the /F statement are allowed.

IF A< =0 THEN 150 IF A@ < =0 THEN 150
IFA>=0THEN 150 or IF A@>=0 THEN 150
IF A=00 THEN 150 IF A@=00 THEN 150

Only one element i3 allowed in PRINT and INPUT statements.

A program cannot be run without reloading, unless the variables are
initialized at the beginning of the program. See examplesin Programs
2 and 3.

Do not use a COMPILER program that has been listed, edited,
duplicated or changed In any way Tha program may not run
correctly The COMFILER program is written in such an efficient way
that any change may cause an error.

CALL FILES{1) must have heen performed before the COMPILER is
psed_

The editor must have been resequenced using RES 1.1 before
running

Some statemeants are not executable in T/ BASIC and cannot be

included in test runs (e.g FLOAT, INTER).

Most of the parameters in the Call statements use integer vanables
unless specified otharwise.

It the screen and characters become disrupled, check to see thatyou
are not doing a8 PRINT or INPUT 10 a position below tha screen,

H the computer tocks up or behaves strangely check that anarrayora
string altocation has not been exceeded.

If you obtain the same string on inputs from a disk drive, you may have
iried to read beyond the end of tha lile or you may not have changed
the record # il you use a fixed display type file the string will be filled
with spaces. Make sure it is of the speciliad fixed length.

15 Cheack that alt statements are exactly as in the manvuat.

58

THANK YOU!

Although SS8T SOFTWARE, INC has made every effort {10 snsure that
the S$ST EXPANDED BASIC COMPILER is correcl, we cannol
guarantee that the program will be completely free from alt error. The
consumer assumes all responsibility for any and all decisions made
or actions taken, based on this program. This program is subtect to

change without notice.

-

-

NOTE YOM) MAY NOT WRITE A ML STRINA T A DFVICF THAT 1S, A STRINO THAT
HAS A tFNOTH OF 2FRO CANNGE RE WRITITN TD FITHER THFE RS92732 CARD

on Nisk DRIV

CHANNES TO MMM S

CHANNE [N MANDAL ~SRT EXPANDED BASIC COMPILFER SYSTEM © PADE 4

LINFE

MEMORY EXPANSINN -28084 T0 -1 (HEX. A200 TO FFFF)
TO "MEMORY EXPANSION -24044 TO -2%4 (HEX., A200 TO FFOO)

CHANDE TN HANLIAL ~SST EXPANSION PACKNOE" PADE 3
LINES

“CALL MADNIFY(FACTOR)®
YO “CALL MAONIFYP(FACTOR)*

*200 CALL MADNITY(MR)T
10 "200 CALL MAONIFYP(HE} ™

210 PRINTATIAS, X8, 18, CE, 00} "
T0O =210 CALL PRINTATING, XE, xe, ce. 0"

ADDS TR IND 34 ITNSTRINOA 2 RANDMMI TE

AR a7 INTER 73 RFH

CHAR 24 JOvgT 42 RFESETAT

CHR 37 LA 20 24 :::llﬂﬂ
27 LEN iCre

EL_EI';! 30 LET 22 SCHARA

COINCA 44 L. INKER 30 SCRFEN

COLOR ' 26 LOCATEA 44 SCREFNON

COLORA a4 LOoAD Fis SCROLL

ELBPRITEM 83 MAONEF YA AN SCRON

DIM 21 MOT 10OMA 43 SFQ

D1 9PLAY 23 FEN 8 810

DISTANCEA & MIT]RTR INOA 34 RN N

1. OAY ™ AT TENMNG 44 RUMHARY

FILOATIN a7 PLFK 27 arrRi1TER

rLOaTOUT " PFEFKV 77 Arn i TFHODE

FOR-NEXY % ™nr At nTOP

O HAR 27 Pt O THONF 40 RIR

noTo 24 ™ OTCHR 40 GRAIN

s rL rONFV 10 RUBROUT

oM_ov L | P gL {MLISE

IF rg PO TIONA 44 tIERN | E

TePIY 27 rRINT 78 S TN

INPUTITILF) 0N CPRINTIFIIF) N VAl

INFTAY a2 PRINTAT 12 VCHAR

——— . —— ——— ——

3%
13-20
43

a2

L

4

0

39

At

a

a1

7S

27

) AHE NDMENT &

YO HAWE JUST RECEIVED VERSION (OSTXY 0F THE COMPIIER SYSTEM
THIB VERSION HAS THE ABILITY TO DFTFECT MORE THAN ONF UNRINALE THATY
HAS MDT BEFN DFEFINED WITH A “LET" STATEMENT IN YONIR PROGRAM L
MDBY CASES WHEN THE VARINBLE IS NOT DETECTFD A BMMND WILL BE HEARD

AMD THE VARIABLF WILL BE PRINTED ON THFE SCRFEN WITH 173 LINFE
NUFBER THE COMPILER WILL CONTINUE WHEN YOU FRESS ANY KEY.

YOU WILL FIND WITH THIS NFW VERSION THAT A VARIARMLE NOT BFIND
FOUND IS MOT ALWAYS FATAL TO THE COMPILED FPRODRAM THAT 9, IF THE
VARIABLE THAT WAT MOT DEFINED 19 NOT ESSENTIAL 70 THE EXECUTION OF
YOUR COMPILED PROODRNI THE PROORAM MAY STILL RUN PROPERLY.

TERE ARt SEVFRAL CASES IN WHICH THE COMPILER WILL NOT
DETECY "VARIABLE NOT FOUND". THEY ARE:

t- IF THERFE ARE ND “LET" STATEMFNTS AT THE BEOINNING OF YOUR
PROORAN AND AN A, AR OR As™ 19 USFD 1IN YOUR PROORNHA THESFE
THREE VARIABLES WILL NOT BF DFTFCTED, BT OTHERS MWILL BF.

2: THE VARIABLE IN A "NFXT" STATEMENT WIILL MOT BF DFTETCTED THIS
ERROR BHOUA D BE DFTECTED BY THE ENDITORS OR WHEN THE VNRIABLE
19 NOT FOUND IN THE “FOR" STATEMENT

3 IF BY ACCIDENT YOU MIX VARIOABLE TYPES IN MITHETLIC STATEMENTS
1T MAY CAIJSE THE VARIABLE TO BE IMPROPERLY FPRINJED TO THE
SCREFN AND/OR DISRUPT THE SCAFEN BUT THE LOCATION 0OF THE

ERROR WILL PF DETECTED UNDEFINED UIMFNSIONED VARIABLES MAY
CAUSE THE BAME EFFECT.

THE ST EXPANSION PACKADE 1S INCLUDED ON YOUR SST EXPANDED

BASIC SYSTEM DISK. FOR THIS REASON PLEASE INONORE PARADRAPH & ON
PAOE (1).

MNE HAVE FOUIND THAT [N BOME RFCENT VERSINNG F THE T1 9974h
COMPUTERS OUR 88T EXPANDED BASIC LOADER RILL NOT FINCTION PROPERLY
WITH THE EDITOR/7ASSFHMBI ER MODULE IN PLACE.

IF YOUR COMPUTER I8 THI® VFRSION THE LONDER WILL OIVE YOU AN
ERROR AT LINE NIMBER 30700 (NMUMPER TOO RIGY TO MWE YOUR LOANER

HORK WITH THE EDTTOR/ASSEMPLER MODULE YOU MUST MAKE THE FOLILOWING
CHANDES Ty THE LOADER.

1. MEMOVE LINES 20014, 30017, 20018
2 ADD LINF: 30014 CALL LOADUILDM10, 16}

BAVE THIA NEW LtOADER ON ANOTHER DISK OND UISF 1T ANY TIMFE YT

HAE THE ED/7AS MDA E TN P ACE USE THE ORIDINAL LONDER IF YOUI
ARE UBING THE MINI MFMORY

THE FASTLOAD PROORAM MIIST A SO BF CHANGED REMOVF LINE 210
FOR THIS RECENT VERSION

AT = —— e ——tm —————T—TT—W —Er == T =t nem et —

- FRE/SST FREFROCESSOR FROGRAM -

1. = FURFOSE AND LIMITATIONS -
The purpose of this program is to aid home computer Uusers 1n
converting an existing TI-29 Extended BASIC or BASIC computer
program into a moditied version which complies with the structuwre
and format reguirements of the 55T EXFANDED BASIO COMFILER. What
the program does 1s:

0. Changes all variables into two-character variable names;

o Changes all string and numeric constants into variables;

o Inserts "LET" statements at the beginning of the program for
all variables and constants;

o hHequences the "LETY" and "DIMistatements — strings first,
faollowed by reals, followed by integers;

c Flags all lines which contain string arrays;

0 Breaks all multiple statement lines (:3) into separate
lines;

c Deletes in-line (!) remarks, or optionally converts them
1nto separate—~line REM statements. |

The praogram is only amn aid, and does not completely prepare the
progiram for the 58T COMRILEH. After running the preprocessor
program, the user still will have to: -

0 Eliminate any string arrays. replacing them with integer
arrays and utilization of the INSTRING and OQUTSTRING
subroutines (remember that the preprocessor helps vouw do
this by flagging all lines which contain any string arrays):

0 Replace the intrinsic BExtended BASID library functions, such
as OFEN, CLOSE. SELGS., LEN, etc.. with their cmrraapmnding
58T COMPILER Eubrﬂutlnagq

G Retormat IF statements per the S8T COMFILER restrictions
(taking special note to the IF statements 1n linss which
were formerly all omn the same line ~ FRE/SS5T helps here by
tlagging suech lines as "Fractionmated IF" ococurences) ;

o Identity string variables and constants which are longer
than 26 characters, and add additiomnal LET statements
accecordingl vs

0D Convert DIM ta DISFLAY +or any large arrays:

Eliminate all mixed mode arithmetic statements, using the

Call. FLOAT and CALL INTER subroutines.

&

The SST COMFILER will help vou effect these residual
moadifications, bDecause 1t will supply error messages +or any of
the above items not completed. N

2 - USER INSTRUCTIONG -
T prem#mceaﬁ a program use Extended Basic and pertorm the following:
A. use the DLD command to load the program to De preprocesseds;

b. make sure all OFTION BASE and DIM statements precede any

exectutable code - move them up to the +ront of the program = you
can use the REDD LINE function (FCTMN 8) to create a copy whose
statement number vouw can change ~ then go back and delete the

line. which was out of place: do not put your OFTION BASE and DIM
statements in & multiple statement (st:) line;

¢. execute RESEGQUENCE 400 (NOTE: i+ yowr program has within 1t
lines containing many statements separated by double colons -~ 1@
- then yvouw should allow & line increment greater than 10, because
FRE/SET inserts new line numbers for the multiple statements, as
well as adding REMARKS flagging string arrays, etc. Thus, if
vour program has as many as, say, 12 statements in one single
line, then yvou shouwld execute RESEGUENCE 400,20:. Store the
program back to disk, with a new name, e.g. TARGET, in the MERGE
format - l.e.., execute SAVE DSELl.TARGET, MERDLE:

d. now load the preprocessor program — i.e., execute OLD
DSEL1.FRE/SST, and RUN (or in one step, RUN Y"DEEI.FRE/S8T") or
wse the loader provided:

&. when prompted for the "INFUT FILE NAME", enter DSK1.TARGET -
oFr whatever name vouw have given the program saved in the MERLGE
tormat;

f. next you are prompted "VARIABLES: O-FROMFT, 1-FIXED,2-FLLOAT" -
if yvou know that all of the variables 1in your proagram are

integers ("fixed point", the advantage of using integers 1s a
reduction in the run—~time of the compiler version), then reply
with & 13 i+ vyvou know that all variables must be real ("floating

point"), then reply with a 23 if you want to decide individually
for sach variable, enter Q@ (NOTE: FRE/S5S5T will retain as an
integer any variable which ends with the "#2" symbol, consistent
with the 88T Compiler convention - 1+ your program follows this
convention, then respond to this prompt with a 2y and all
variables will be real except those which end with "&")j

g. Next yvou are prompted "IN-LINE (!') REMARES: O~-DELETE,
1-CONVERT T REM, 2Z2-LEAVE A5-15": based on how vyvou respond, your
same—~line REMAREs will be deleted, changed to a REM statement on
the following line, or left unchanged - remember, the 55T
COMFILER will not accept in—-line REMARKs: .

h. Next you are requested to SFECIFY FRINTER - respond with your
printer"s characteristics - PIO, FIO.LF, etc for parallel
printer, or REIZZ.BA=1200.LF, etc., for a serial printer.

"

[

1ow it yvyou have entered a O in step +, then, for each variahle
name 1in the program to be processed (TARGET in the example), a
prompt will appear - "INTEGER (1) OR KEAL (2", followed by the
varilable name - respond accordinglys

J. when processing 1s complete, the program will ask you "ANY
MORE FILES (YN Y - 14 yvou respond "Y"., then the whole process
repeats, starting with step e. Each related program to be
pirocessed must use the same variable set; it any new variables
are defined in the new program(s) then they will appear in
LET/DIM statements in that program -~ however, the 857 COMFILER

will not permit any mnew LET/DIM statements 1n the secondary
proagrams: therefore 1t is necessary to move all the variable

definition statements (LET/DIM) to the first-processed program,
even i+ some of these variables are not referenced until the
stbsequent programsg

ke when completed, this preprocessing results in the processed
proagrams on disk with the """ character appended to thelr nameg -
= TARGET™ -~ now you must complete the reformating process as
described in paragraph 1 above. FPay particular attention to the
"FRACTIONATED IF" statements — IF statements which are within a
multiple statement line. Extended BASIC provides for IF
statements which, 1f false, result in none of the following
same~—line statements being executed. However, when the FRE/SST
Frogram breaks up yvour multiple line statements., any IF
statements included are potentially not gQoing to perform as
planned. Special attention must be given these lines. Finally,
MERGE the program (e.g.. TARGET™) into the 85T EDITOR/EX., and
proceed from there to produce the compiled version of your TARDBET
(YOG am. |

One +inal suggestion: you may wish to pertorm some manual
editing of vour program into the 55T Compiler format before
using the FRE/BST program. For example, vouw can replace the
intrinsic bExtended BASIC functions with thelr corresponding 557
Compiler subroutine CALL statements before applying the FPRE/S5T
Fraogram, while vou can still use imbedded numeric constants. On
the other hand, you may not want to manually revise yvour IF |
statements prior Lo applying PRE/SST, because FRE/SST will
renlace the zeros in the IF statements with variables.

