Introduction to UCSD Pascal System

By Ron Williams

A complete introduction to using the P-Code card on the TI-99/4A

Topics include:
P-System Editor
File Management
FunnelWeb
Reviews
Pascal Programming
Printing

Presented with detailed examples and plain language discussions

Published by

The Boston Computer Society
TI-99/4A User Group

©1989 The Boston Computer Society

Table of Contents

Introduction to the P-SystemM......ciiiiiiisisiinseees cerererssnansasessasasrsanenee 1
Introduction to P-System CONtINUEd......cooueumerinimmusiunimsimsesssnms st 2
FAler CONBIUEA ..evevvererresereseosssssssersrsnsnssesesssssssssstasssssatsassssasssasssces st s st ta s b st sn et 4
Review of Persson Disk and Editor CONtNUEd.........uoueuemsuesscsrsimmiinnasamsnccssinsssssmnsssnssees 5
EQtOr COMBNUE ..cevevvevererreseseseecssessesssssasessesssstsssamssstastsssssassssssnsamsssasassatattsssasnsassssneaeee 7
Review of Coffey Disk and Editor CONHNUEd....cooeeuusiummimsmmmimsumssssmmscesmnsssnnssmsssmssssnmssecnnses 9
Execute and LibIary.....cimssemiisimssis st 11
P-System and FUNNEIWED ...c..ccviumiiiiissmiseincisisissss st 13
' Edit, COMPle, ANA EXECULE.ooerrvssrresssrerssssissssssssssesssssstssssscssssssssss s st 15
INtrOdUCHON 0 PASCAL...c..vverereeeiiieiiieeiireasiee st tesie s se s s s s st et s s s as s s s sttt s st 17
WIAting and LOOPING «..vuevseseusessusinsssssssisssas thsssessss st stss s st st s 19
P-System and Funnelweb Continued and Accessing Text FIleS coevuerreeriirmneninninnnesiiiciiniiinnnnees 21
Case ANA IF-TREM....cccerrrcrensissesssersacssessessnsasssasssssssssssssassasssssssasssssscesssssssstsnaasasssssassessesassen 23
USING StriNg Datd TYPeS...uceseceucusmmurisusisssssssississssesissiisssas st s 24
FOImMatted OULPULviviririririneisiesessscsssis bttt et 26
251131 TR SRR DRI LU R SRS 28

The Boston Computer Society’s TI-99/4A User Group maintains a software library of
over 100 disks. There are several UCSD Pascal disks available in this collection,

including those mentioned in this booklet. Send $1 to the address below for a
complete catalog.

If you wish to contact the author of this booklet, Ron Williams, please write care of

the the address below.

The Boston Computer Society
TI-99/4A User Group
One Center Plaza
Boston, MA 02108

This material originally appeared as part of a monthly series in The Boston

Computer Society’s TI-99/4A User Group Meeting Newsletter. Many thanks to Ron

for providing such an excellent column for so many months.

Editing and desktop publishing work to prepare for publication in booklet form by

J. Peter Hoddie.

-

Introduction to the P-System

The UCSD P-System is a full operating system that supports the Pascal programming language and
assembly language for the 99/4A. The UCSD P-Code card is required to operate this system as well as
the UCSD Editor-Filer disk and the Compiler disk, also useful is a diskette with utilities that allow
the user to do diskette initialization, device parameter modification as well as other useful functions.
If assembly programming is to be done one more disk is needed the assembler/linker disk that allows
the P-System programmer to assemble and link assembly programs to Pascal programs.

To start the system put the Editor-Filer disk in drive one and the compiler disk in drive two also if any
other P-System disks are around put those in drive three as the system looks for P-System disks in the
drives to boot properly. If the system is started without the disks in the drives do not panic as soon as
the command prompt is displayed put the disks in the drives and press the "I" key for initialize and
the system will boot again. At the command prompt many utilities are available like if the "F" key is
pressed the system executes the Filer this program lets you do disk management functions and other
system functions. If the "E" key is pressed this puts you in the editor used for creating assembly and
Pascal text files also for creating documents. Other keys that do other functions from the main command
prompt are as follows:

"A" for Assemble

"C" for Compile

"H" for Halt (Returns to TI title screen)

"L" for Link

"I* to Initialize system

“M" for Monitor (keeps track of keys pressed)

"R" for Run (executes the last program compiled)

"U" will restart last program executed

nx" will prompt user for file to execute

Next time we will go over each of these functions and also how to set the system date, also how to read
the P-Code disk directory.

Introduction to UCSD P-System - 1

Introduction to P-System Continued

Last month we begun to go over each of the functions of the main command menu, the commands are
listed above.

The first command is the (A)ssemble command and this command starts the file System.assembler to
execute, this will assemble the current work file if the system finds it on the disk in drive #1 or drive
#4: as the P-system calls it. If the system cannot find the file it will prompt the user for a file to
assemble. The file should be a text file created with the editor and it is a file that has 9900 assembly
code, This code is not quite the same as the Editor-assembler code files that most TI people are familiar
with because this is not the same assembler.

The next command is the (C)ompile command and this command also looks for the current workfile but
this file is a UCSD Pascal text file. The compiler will try to compile this file into P-code this is a file
the system can execute.

The (H)alt command is very simple as it is stated above it just returns you to the TI title screen.

The (L)ink command allows the programmer to link assembled code files and compiled UCSD Pascal
files together as one program to pass data to and from each other much as the CALL LINK and CALL
LOAD commands do in TI BASIC. The linker will also link two or more assembled code files together as
well.

The (D)nitialize command causes the system to start just like it does when you first turn on the computer
and the P-code card starts to take over the system. The system looks for the system files all over again
and will execute the system.startup file if it is on the disk in drive one.

The (M)onitor command will keep track of keys pressed and will put these in a monitor file; this will
let you automate a sequence of system commands to be used later. The file will be used by the system by
redirecting the system input to the file.

The (R)un command will execute the file system.wrk.code in drive one. This is the file that is usually
the work code file if this file is not found but a file called system.wrk.text is found the system will first
compile this file then will execute the file. The Run command will always execute the current work file
if onc is assigned.

There is no prompt for the (U)ser restart command it will execute the last file executed but will not
exccute the files that start the compiler or the assembler. It is very good for executing one file many
times as all files are held in memory until a new file overwrites them. This saves the system from
getting the file from disk then having to exccute it. The savings in specd make this a very useful
command. '

The last command is the "X" command, it will prompt the user for a file to execute. This command like
the restart command will not execute the compiler or the assembler but will execute UCSD Pascal code
file.

The last topic I would like to show you is how to set the system date. At the main command prompt
press the "F" key with the filer disk in one of the drives when the filer prompt comes up press the "D"
key and enter the date in the format shown on the screen.

Next time we will go into more detail about the filer as this is one of the most important programs in
the system.

Introduction to UCSD P-System - 2

Filer and Edit

Last month we went over some of the commands that are started from the main command prompt, well
there are two more that we have not discussed yet, they are the (F)iler command and the (E)dit
commands.

This month as promised we will go over the (Fliler program. Make sure the filer disk is in one of the
drives and press the (F) key when the main command prompt is shown this will put you in the filer
program. The filer is menu driven and just like the main command prompt each command is started by a
single key press. There are over 15 different commands and [will go over a few of the most important
this month.

Some of the commands are as follows:

"B" for Bad Blocks

"E" for Extended Directory
"L" for List Directory

"C" for Change

"K" for Krunch

The (B)ad Block command is used to scan the blocks on a disk to identify the blocks on the disk that are
bad and cannot hold files. The blocks may then be repaired or marked bad with the examine command,
but more on the examine command later.

The (E)xtended directory command lists the names of files on a disk as well as other disk information.
The command will prompt you for the disk to catalog, and remember the disks are #4:, #5:, #9: and this
catalog will default to the screen but may be directed to another device by putting a comma after the
disk

name like #4:,#6: will redirect the output to the printer.

The (L)ist command is just a simple version of the extended directory command it is a little quicker than
the extended directory command and may be used for a quick listing of files on a disk.

The (C)hange command is used to change the names of files or the disk volume name. The command will
prompt you for the name of a file to change and remember to include the disk number with the file name
or the change command will default to the disk in drive 1 or disk volume #4:. To change a file called
MYFILE.TEXT on the drive #9: type in #9:MYFILE.TEXT and if the file is found the change command
will then ask you for the new file name type in the new name like #9:CHANGE.TEXT and the file name
will be changed to this new name.

The (K)runch command will consolidate the files together on the disk it is needed because the P-system
has no way of fractioning files like the TI file system has. As files are changed on the P-system disks
they are moved around to different places on the disk and so a large file may not fit on the small unused
sections on the disk. This command will prompt you for the volume name to krunch then will ask you for
the number of blocks to krunch and this number should be 180 for a TI single sided single density disk.

Well that's it for this month next month we will continue to look at the filer and [will show the use of
wild cards.

Introduction to UCSD P-System - 3

Filer Continued

Last month we started to go over the commands of the filer program and this month we will continue, a
few more commands are as follows:

"P" for (P)refix
"S" for (S)ave
"W" for (W)hat
"G" for (Get

"M" for (M)ake
*T" for (T)ransfer
"R" for (R)emove

The (P)refix command lets you set the prefix to a volume so the disk can be referred to by a single colon
" The root volume or drive #4: is automatically set as the prefix when the system is booted so this
command can be used to change it to another disk. .

The (S)ave command lets you rename the files SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE to other
file names. These are the work files and this command lets you change these names to other names so
you may create new work files.

The (W)hat command displays information on the status of the work file it will state what the file is,
state that there is no work file, state the work file not saved or not named. This command may be used
any time the current status of the work file is in doubt.

The (G)et command will assign a new file or pair of files as the current work file or work files. This
command may be used any time a new file needs to be made the work file. It will assign two files
without needing to know the suffix for the files. Both the text file and the code file will be assigned.

The (M)ake command will create a file that contains a certain amount of
blocks. This command may be used to retrieve files that have been deleted or
to reserve disk space for future use.

One of the most important parts of the filer is the (T)ransfer command it will be one of the most used
commands in the filer. This command is used to make copies of files, display files on the screen or
printer, reposition files and make backups of volumes.

The (R)emove command deletes files from the directory of a volume and marks the blocks as unused.

The use of the (R)emove command and the (T)ransfer commands may be simplified with the usc of wild
cards they may be used to match a sequence of characters in a file name. There are two wild cards in the
system and they are the equals sign (=) and the question mark (2). The difference is the question mark
will ask for verification of the command after the wild card is used, but the equals sign will not. To use
a wild card to transfer a file like SYSTEM.WRK.TEXT to another disk volume type SYSTEM.WRK?
after invoking the transfer command and then type #5:NEWFILE? and a copy of the file
SYSTEM.WRK.TEXT will be on the volume in drive #5: as NEWFILE.TEXT also if there is a
SYSTEM.WRK.CODE file on the root volume a prompt will be made if you would want to transfer this
file too. If you transfer it, it will be called NEWFILE.CODE so the use of wild cards can save a lot of
typing. The change command as well as the remove and transfer commands may be used with wild cards
but it is advised the question mark wild card be used with the remove command.

Well that's it for this month, next month we will finish with the filer and start to look at the P-

System editor.
RL

Introduction to UCSD P-System - 4

Review of Persson Disk and Editor Continued

Before we start our lesson this month I would like to mention I have been reviewing the UCSD Pascal
disks from Anders Persson of Sweden. Well, I am impressed as first on the disks is a map of the P-system
memory addresses. Also included are a few units to be added to your system library or in a user library
as I did. The units include a screen utility that will allow ACCEPT-VALIDATE as in Extended BASIC.
Also routines that simulate CALL KEY and CALL GCHAR and as well as CALL VCHAR and CALL
HCHAR. But the most useful to me will be the routine that allows you to scroll parts of the screen.
Another unit that is included is one that allows you to create windows on the screen also a unit that

will give a better response if you accidentally press (D)ebug at the command level. The last unit on the
disks is one that allows you to use the mini-memory with the P-system to hold program data. On the
disks are demo programs to demo these routines and a few other programs one that will allow P-system
users to use four drives with the system but of course you must have a drive controller that supports this.
One program that will also be of use to users of the P-system is an up date of the disk formatting
program on the TI utilities disk with this program you may format double sided double density disks,
the version on the utilities disk did not support this. Other programs that will be useful is a
Disassembler, a Sector map program, and one that defines some key codes. These disks include doc's as
well as source files for all the programs and units on the disks. These disks are a must for any user of the
P-system.

This month we will finish up with our review of the filer and start with the P-System editor program.
The last few filer commands are as follows:

"X" for e(X)amine
"N" for (N)ew
"V" for (V)olumes
"Z" for (Z)ero
"D" for (D)ate
"Q" for (Q)uit

The e(X)amine command is used to recover bad blocks on a P-system volume. If the blocks cannot be fixed
with this command then you will be asked if you want to mark the blocks as bad, this way no files may
be put in the bad area on the volume. Use this command after using the bad blocks command to repair
the damage or mark the damaged areas bad.

The (N)ew command will delete the current work files and allow a new file to become the work file.
Use this command after you have finished with the work files and saved them on another volume and
would like to start a new work file.

The (V)olumes command gives you information on the volumes currently on line in the system. Italso
will show the root volume and the prefix volume. This command can be used to check volume's on line as
some times I've had a volume go off line. With this command the name of a unknown volume can also be
checked.

The (Z)ero command initializes a directory on a volume after a new disk is formatted this command
must be used before you can store files on the disk. For a single sided single density disk the number of
blocks on the disk should be 180 for the 99/4A, enter this number when zeroing a volume.

The (D)ate command sets the system date. The date is put on the root volume disk and is put on the disk

next to any files updated in this session. The date command should be the first command used after
booting the system.

Introduction to UCSD P-System - 5

The (Q)uit command is very simple, it just returns you to the main command prompt. Use this command
when you have finished with the filer program.

The next program in the P-System I would like to look at is the editor. This is where you create your
work files and can be used as a text editor for other applications. In fact this text was created with the
P-System editor and then converted to a display variable 80 file to transfer. To start the editor press
the "E" key at the main command prompt. If there is no work file you will be prompted for a file to edit.
At this point enter a file name or press enter to start a new file. Before I go over the commands one point
I would like to mention that most commands can be finished with control "C" and aborted with control
period (.). The difference is that control "C" will keep the changes made with the command and control
period (.) will cancel them. The other point is that the editor has some commands that in themselves
have commands so I will go through each command and also follow up on each of their commands at the
same time.

Well that's it for this month, next month I will start with the commands of the P-System editor.

Introduction to UCSD P-System - 6

Editor Continued

This month we will start with the commands of the P-system editor. The editor that the P-system uses
is quite different from the other editor programs that the TI uses like TI-Writer. Each command is
begun with a single key press like most of the P-system commands. This is different from TI Writer as
when the cursor is displayed in TI-Writer you can add text and move the cursor around in the text. Well
to insert text in the P-system editor you would press the "I" key and then you are in insert mode you may
then start typing in the text. To go out of the insert mode you press control "C" then another command
may be used. When out of insert mode the cursor may be moved around in the text with no danger of
changing the text in the buffer you may press the space bar to go from one character to another or use the
arrow keys to move the cursor through lines of text. To add text you may use the insert mode or another
mode called the (X)change mode. This mode may be entered by pressing the "X" key and this mode will
let you change one character at a time in the text it is normally used for small changes to a line of text
but you can use the arrow keys in this mode to move the cursor around in the buffer if you need to.

Before I go on I would like to explain about the direction marker, the direction marker is the ">"
character that is right at the top of the screen on the left it has a great effect on the use of certain
commands like the page command if you press the "P" key when not in any editor mode the next "page”
of text in the buffer will be displayed. The return key, the space bar and tab key are all effected by the
direction marker. The direction marker is changed by pressing the ">" key or "<" key in edit mode or in
delete mode.

To delete text in the buffer press the "D" key in edit mode(This is the mode you are in when first
entering the editor) if you press the space bar one character at a time will be deleted in the direction of
the direction marker. If you press return then all the text from the cursor to the end of the line will be
deleted in the direction of the direction marker. Also arrow keys may be used in this mode, press control
"C" to go back to edit mode.

Adjust mode will move the text the cursor is on in any direction by using the arrow keys use this mode to
move a complete line of text left or right or to center the text. This mode is entered by pressing the "A"
key while in edit mode.

The replace command is used to replace characters of text not unlike the Replace-String command in TI-
Writer. This command is affected by the direction marker as the command will only look for the text
from the cursor to the end of the buffer or from the cursor to the beginning of the buffer depending on the
direction marker's direction. To use this command press the "R" key while in edit mode then put a
delimiter up like the "/" character then the string to replace after this another delimiter and then
another for the new string to replace the old string. To finish up put up one last delimiter and at this
point the command will look for the string. The command can replace all target strings in the text buffer
or just some of them by pressing the "/" key before the command is used or give it a number to replace.

The find command is very much like the replace command but it will only find a string in the text and
put the cursor after it. It is also affected by the direction marker and can find all strings in the text or
just the "n"th number. Enter this mode by pressing the "F" key while in edit mode. Both the find
command and the replace command will find the last used target string if you press the "S" key after
you go into the commands but with the replace command you still have to give it target string and a
replace string if you press the "S" key twice this will use the last target string and the last replace
string.

The quit command is the command used to exit the editor press the "Q" key while in edit mode and four
prompts will be given, First (U)pdate press this key and the contents of the buffer will be written to a
file called SYSTEM.WRK.TEXT on the root volume. Next is (E)xit it will return you to the main
command prompt everything in the text buffer will be lost. The (R)eturn command will put you back in

Introduction to UCSD P-System - 7

the editor at the same place you exited. The (W)rite command will put the contents of the buffer on any
drive and you may give it any file name, this command is good when you have done a lot of changes to
the text in the buffer and would like to write these changes out to a file and then continue using the
editor. After this command writes out a file it will ask you to return to the editor or to go out of the
editor program and back to main command mode.

The last command this month is the jump command pressing the "J" key will put you into this mode it
will let you move quickly from the end or the beginning of the buffer by pressing "B" or "E" when in this
mode it will also move from one marker in the text to another. A marker is an invisible character in the
buffer the jump command and another command called the copy command use. If a marker is put in the
text the jump command will put the cursor on the line the marker is on in the text. Markers are set with
the marker option of the set command in the environment mode. Environment mode will be examined
later as there is a lot to this mode.

Well that's it for this month, I think I have given you enough commands to at least play around with

the editor some and find your way out of it again. Next month we will continue with the P-system
editor.

Introduction to UCSD P-System - 8

Review of Coffey Disk and Editor Continued

Lately I have been reviewing a few disks put together by Jerry Coffey for the P-System. On the first
disk is a way to create 40 or 80 track P-System boot disks with the Myarc quad density (80 Track) disk
controller option. The disks are formatted DSDD in the 18 sector per track format. With this system
more blocks are created on P-System disks to hold text, P-code, or data files. If you have drives and this
disk controller, this disk maybe for you. The other disk that I have been looking at has a system that
allows you to easily transfer P-System files over a modem using xmodem or te2 protocols. The program
to do this is in three sections the first section takes P-System files (Text or Code) and converts them to
display/fixed 128 files that can be easily transferred by many terminal programs the TI supports, then
the programs can be converted back to regular P-System files and read, executed or printed from the P-
System. Also in this program is a section to convert the display/fixed 128 files to display/variable 80
files that can be read by TI writer or other text editor programs. The program also contains a section
that will partition a disk into two sections. One section is in regular TI format that most programs can
handle, the other section is a zeroed P-System volume and this section can be any size the user wants.
Also on this disk is a valid P-System volume as this disk was partitioned using the program on this
disk. This volume contains a few programs for the P-System and they include Andy Cooper's P-System
terminal emulator, a disk cloner for many different size P-System disks, a character set by Dave
Ramsey, a program that will bring display/variable 80 files into the P-System, a file printing
program, a program that will set the Myarc disk controller to multiple format, a program that will
automatically set the printer to PIO and RS232/1 at 1200 baud (This will be needed for Andy Cooper's
terminal program), a program that will automatically set the printer to PIO at 300 baud and lastly a
program that will read a memory range set by the user. Both these disks include documentation and
may be already well known by many P-System users but I thought I would pass this along anyway.

Now to continue with the P-System editor program, as we started with last month. The copy command
has two parts if you press "C" while in edit mode you are prompted to copy from the buffer or a file. If
you copy from the buffer all contents of the copy buffer will be moved to the screen and inserted in the
text. The copy bulffer is a buffer that holds text that has been most recently deleted or inserted and using
this command it is possible to duplicate text anywhere in the main text you are working with. This can
save a lot of typing. The file option of the copy command lets you take text from a file outside of the
editor program and insert this text into the text you are working with and if markers are set in this text
file you may copy from marker to marker in this file.

The verify command displays a portion of the text buffer that is centered around the cursor and will let
you display a portion of the screen maybe in between pages of text. Use this command also if you have a
question of what the text buffer really contains.

The zap command lets you delete large portions of text. The text deleted will be the text from the cursor
to the text last inserted, found or replaced and this command will put the deleted text in the copy buffer
so it can be copied back out to another place. If the text is too large for the copy buffer you will be
prompted to this, so use this command carefully.

The command that is most complex in the editor is the environment option of the set command, this
command sets the editor to different modes much like the word wrap mode and fixed modes of TI writer.
All changes are set from one screen and also displayed is the number of used bytes and unused bytes, the
targets used by the find and replace commands, the current marker names and the date the file was
created and the most recent update. The following is a list of the commands and a brief description of
what they do:

Auto Indent : Controls where the cursor will be after return is pressed.

Filling : Controls the filling of words in a line to the right margin.
Right Margin : Sets the value of the right margin.

Introduction to UCSD P-System - 9

Para Margin : Sets the indentation for the first line of a paragraph.
Command Ch : Currently not used.
Token Def : Sets the default search mode for the find and replace commands.

The set command when it is first displayed will also allow you to set markers in your text. Position your
cursor where you want the marker, press the "S" key for set and go to marker mode enter the name you
want the marker to have and it will be put where the cursor is set. Press the space bar to return to edit
mode after changes are made with the set command.

The last command that is closely tied to the set command is the margin command. The margin command
lets you format a paragraph differently from other paragraphs in the text and will format the text
according to the margin settings in the set command (Environment option). The margin command can also
reformat a paragraph after a delete in text mode and reformat paragraphs that were inserted while
the editor was not in text mode.

Next month we will start with a series on execution options with the execute command and also on
adding units to the P-System library.

Introduction to UCSD P-System - 10

Execute and Library

This month we will do a section on execution options with the execute command. The execute command
is entered from the main command prompt. Normally you would just type the name of a volume or
volume number followed by a colon and the file name of the file to execute the computer will then look
on the drive for the file name and execute the file. This is good for normal use of most programs but
what if you wanted the program to look to a file for input data or if you wanted the program not to
place its output to the screen but say to the printer?. Well this is where the use of execution options
come in. With them you can redirect program output as well as system input. Most of the options are
used by placing the option after the filename of the program to execute. But a few may be used without
any file to be executed. One of these is the "P" option this option will change the default volume prefix
like the prefix command in the filer program will do. To use this option press the "X" key from the
main command prompt just like you where going to execute a file and instead of putting up a filename
put up on the screen "P="and the new volume name for a default prefix. The same can be done for the
library textfile press "X" again and this time put up "L="and the new library textfile. All programs
now executed that look for a library text file will look for this file to find their library. Normally
most programs look to the screen for input but this may be changed also by using the option "PI". If a
program is to be executed after you place the program with volume name up on the screen put "PI="and
a filename all input for the executed program will come from this file. To redirect the program output
just use "PO=" instead of "PI="all output from the program will go to this file. Like if you wanted
program output to go to the printer put up "PO=PRINTER:" after the file to execute. To redirect system
output two options are available "I" for system input and "O" for system output the system will
redirect its output to any files after this option. Using redirection can be a powerful tool as programs
that need to be tested may redirect their output to a file to be saved and looked at later. How many
times when debugging a program in Extended BASIC have you wished you could have saved the output
to study later, well this is no longer a problem with the P-system.

The next topic I would like to look at is adding units to a library file. The program LIBRARY.CODE on
the UCSD utilities disk is the program that lets you do this. Go to the main command prompt and press
"X" to execute the file, adding the file "LIBRARY" after the prompt "what file?". The first prompt
the program will give you is "output file?" this is the file that the units will be placed after you are
finished with the library program. Enter a file name and press enter. After this prompt "input file?"
appears type the name of a file to be used as the input file. This file may already have units in it if so
their names will be placed on the screen. The units in the input file must be placed in the output file
before any new units can be added so you can press the "E" key to copy every unit to the output file or
type a slot number and then press the space bar and another number of a slot in the output file and the
unit will be placed here, or another way to transfer them is to press the "S" key to select the units to
transfer to the output file you will then be prompted to transfer each unit. Enter "Y" or "N" to transfer
each unit. Most of the time you will use the "E" key to transfer all units to the output file but may be
you want to add an updated unit to the output file then you must transfer some of them but not all of the
units to add the updated unit. Not only units may be put in a library file but programs, segment routines
and assembled routines may be put here as well to interface with programs. To add a new unit enter
"N" and a filename of the new unit this unit will be put in slot 0 of the input file transfer this file to
the output file in one of the remaining slots and it is now in the new library file. Press the "Q" key to
exit the library program and save the library file. Other features of the library program are:

Press the "C" key to copy to the output file a compilation unit.

Press the "F" key to copy all segments referenced in the output file from the
input file.

Press "O" to display the remainder of the output file list.

Introduction to UCSD P-System - 11

Press "A" to abort the program without saving the library output file.

Press "I" to display the remainder of the input file list.

Press "R" to list the names of each entry in the segment references of all segments in the output file.
Press "T" to determine whether or not the interface sections of the units are copied to the output file.
The use of units can add a lot to your programs as some programs can use the same units as other
programs just by adding the "USES" statement in your programs. One example of this is a unit I created
that gets the system date from the system disk in drive #4 many programs I use create reports or need
the date to be printed out. This way I don't need to type in the date each time I run the programs. I add
the date to the system after booting and that is all. All these programs just call the unit to get the
system date each time they need it.

Well that's it for this month, next month I'm not sure what I'll cover, may be something on the Pascal
language we'll see.

Introduction to UCSD P-System - 12

P-System and FunnelWeb

This month I will cover a different subject pertaining to the P-system. First any one using the P-system
has noticed if they exit the P-system environment and run assembly programs many times after exiting
the program the P-system will boot again and this is not always wanted. Well if you use FunnelWebas |
do, there are ways around this rebooting. I try to keep within FunnelWeb as much as possible as long as
a program is running the P-system will not boot but it will boot if you exit to the title screen.

To exit FunnelWeband go back to the title screen without the P-system rebooting you will need to
assemble the following assembly code:

DEF PCODE

REF VMBW
NO EQU >4EA4F
DAT1 TEXT 'P-CODE HALT BOOT PROGRAM'
DAT2 TEXT '(C)1987 RON WILLIAMS !

PCODE LI R3,NO
MOV R3,@>38FA
LI RO,1
LI R1,DAT1
LI R2,24
BLWP QRVMBW
LI RO, 33
LI R1,DAT2
BLWP @VMBW
RT
END PCODE

This program will move the proper ASCII codes to the address the P-code card looks at to see if it
should boot or not. If it finds the word "NO" ASCII codes in hex >4E4F the system will not boot and will
exit to the title screen. The opposite is also true to make the P-system boot just put hex >0000 at this
address and the P-system will start instead of exiting to the title screen. You may have noticed that in
the assembly code it returns you to FunnelWeb and not direct to the title screen well this program has
another use some assembly programs run from FunnelWeb, if this program is run just before executing
them they will exit to the title screen after they are finished executing. This way you can keep working
with programs outside of the P-system with not going through a P-system reboot. This program will not
keep all programs from rebooting the P-system but after a while you will know the programs it will
work with and the programs it will not work with. I use this stop boot program just before exiting
FunnelWeb or executing another assembly program from funnelweb. When ready to exit FunnelWeb run
this program and press FCTN QUIT instead of pressing the exit key on the funnelweb menu screen if you
press the exit key the P-system will boot so that is why I press FCTN QUIT. I have put this program on
my user list in FunnelWeb and that way it is ready for use anytime I exit FunnclWeb, the program is
very small and doesn't take much room on a disk.

To stop the P-system from booting while in Extended BASIC before typing BYE or pressing FCTN QUIT
you can type:

CALL INIT
CALL LOAD(14586,78,79)

The number 14586 is the address >38FA in decimal and 78 and 79 are the ASCII codes for "NO".

To make the P-system boot while in extended basic before typing BYE or pressing FCTN QUIT you can
type:

Introduction to UCSD P-System - 13

CALL INIT
CALL LOAD(14586,0,0)

To check the proper values are loaded you may type:
CALL PEEK(14586,A,B)

PRINT A

PRINT B

where A and B are the values checked.

Introduction to. UCSD P-System - 14

Edit, Compile, and Execute

This month I will cover the complete number of steps needed to edit, compile and execute a Pascal
program. First boot up the P-system by putting the P-system disks in each drive and turning on the
computer. The first thing that should be done after booting is to press the "F" key to go into the filer and
then press the "D" key to set the system date. This way all files and programs created will have the
correct date next to them when doing a directory of the disk. The other reason that you would want the
date changed is any updates to a file or program will have a new date, any program updates can be
checked by the date created. The way to get out of the filer program after setting the correct date is to
press the "Q" key and this will put you at the main command menu. To start the editor press the "E
key and you will see a prompt "no workfile present, file?" press enter at this point or if you want to load
a file into the editor enter its name by typing its drive number like this #4: followed by the file name
like this #4:myfile the .text suffix will automatically be appended to it. For this example we will
assume there is no file present so press enter and you will see "edit:" followed by a few commands the
cursor will be in the upper left hand side of the screen waiting for a command. To start entering text
press the "I" key to insert text. Enter the following text as an example:

Program count;

When you get to the semicolon press enter and the cursor will drop down to the next line if you make a
mistake press fctn arrow to go over the error then retype it. If you make a mistake and notice it after you
press enter press control-c and this will take you out of insert mode and at this point all arrow keys now
work, press fctn arrow to put the cursor over the mistake and at this point you may press the "X" key to
type over an incorrect character, or use the insert mode to insert text on this line after finished with
either mode press control-c to go back to command mode.

Type the rest of this text as follows:

Program count;
var
number : integer;
begin
page (output) ;
for number:=1 to 10 do
writeln (number) ;
page (output) ;
end.

This program will print out the numbers from 1 to 10 and is very simple but it will be good enough as an
example program. If you need to delete a line of text or just one letter put the cursor over it with fctn
arrow keys while in command mode then press the "D" key to delete one letter press the space bar or to
delete a line just press enter to go out of this mode press control-c. The adjust mode is entered by pressing
the "A" key all arrow keys now work. To move over a line of text put the cursor on it and use the arrow
left and arrow right keys to move it. After the program is entered press "Q" while in command mode.
The next screen you will see has the following prompts:

>QUIT:

U(pdate the workfile and leave

E(dit without updating

R(eturn to the editor without updating

W(rite to a file name and return

Press the "U" key to write out the file in the editor's buffer to drive #4: with a file name of
system.wrk.text this is the default name used when updating. Exit will return you to command mode

Introduction to UCSD P-System - 15

and all contents of the buffer will be lost. Return will just put you back in the editor use this key if you
pressed "Q" by mistake. Write will let you save the buffer to any file name or drive use this key when
you wish to save out a file and then return to the editor. The file will be written out to disk then you
will be given a chance to exit or return to the editor. ‘

After editing the program you must now compile it and execute it. To compile a program saved as
system.wrk.text press the "C" key at the main command menu or press the "R" key to compile and
execute the program all in one step. When compiling the screen will first go blank then at the top of the
screen you will see compiling... then the version number.

The compiling process looks like this:

Pascal compiler - release 99/4 IV.0 cla-4

<0 Pasuns
COUNT
<4 P R

8 lines compiled
count

If any errors are found you can directly go back to the editor or continue the compiling process. If the "R"
option was used the program will begin right after compiling if not you can execute the program from
the main command line by pressing "R" or pressing the "X" key and entering the file name of the
program which will be for this example system.wrk you don't need to add the .code suffix when

executing a program as it will be added automatically. If you did add it put a period after the "e" in
code this will make the computer find the correct file and not system.wrk.code.code.

Well that's it for this month I hope this was useful to you. I have had a few people ask me about this
in the past. So long until next month.

Introduction to UCSD P-System - 16

Introduction to Pascal

This month I will begin to cover some Pascal programming. Pascal is a language that like "C" is
compiled, you must first type in the program with a text editor and then compile the text file to create
an executable code file. The UCSD Pascal that the TI supports is the same UCSD Pascal that you could
get for an Apple, IBM or other microcomputer the basic difference is memory, the TI just does not have
as much but with some special programming you could get a lot of the Pascal programs written in UCSD
Pascal on other machines to run on the TI. I have taken code that was created on other computers and
with a few changes compiled and ran them on the TI. This code was brought in as text files and not code
files, you still have to compile the files on the TI, as code files on other machines is compiled in that
machine's assembly code.

The very first statement in every Pascal program is the program statement and it is at the beginning of
every Pascal program.

It looks like this:

program Hello;

This statement must be included at the beginning of every Pascal program and it is changed for every
program written, it should have a name of what the program is going to do. The declaration statements
are next and there are three of them Constant, Type, and Variable and they are used in the order given
but not all of them are used at any one time. The Constant declaration is used to declare program
constants, these are identifiers that are never changed thru the execution of the program.

A example of a constant declaration is as follows:

Const
pie = 3.14;

The next declaration statement is the type declaration and it is used to make a user defined type, that
is you may create a record, or another type that is used by the program to mean something.

An example of the type declaration is as follows:

Type
Tens = (10,20,30,40,50,60,70,80,90);

This means that the identifier tens can have the value of the numbers that follow it and no others, it is
a type defined by the programmer. The last declaration statement is the variable statement. It is used
to declare program variables, these identifiers can be changed by the program and all identifiers must
be declared before using them unlike BASIC which you can make a new variable any time you need it.
This means it is very easy to know what variables are being used by the program and you could also put
comments next to them to tell anyone reading the program what they are.

An example of the variable statement is as follows:

Var
Number : integer;

When you declare an identifier you may use some data types that are already defined for you within
the Pascal language and a few of them are:

Integer This type is for numbers that are to be defined as integer

Introduction to UCSD P-System - 17

types(numbers without decimal points).
Real This type is for real numbers(Numbers followed by a decimal point).
String This type is used for characters of data.
Char This type for one byte characters. _
Boolean This type accepts only a value of true or false.

Next month we will look at a few statements that the Pascal language uses to print out data and read
data and also at the begin and end statements.

Introduction to UCSD P-System - 18

Writing and Looping
Last month I begun to cover Pascal programming this month we will look at the write statement, the

read statement, begin and end statements, and also at loops. The write statement allows you to print
data to the screen, the printer, or a Pascal text file. It will print character data or numeric data.

An example is as follows:

WRITE ('hello') ;

This statement will print out hello and will cause any other data printed out to be on the same line as
hello.

The statement
WRITELN ('hello"') ;

Will let any other data printed to be on the next line the writeln statement will make a carriage return
after it. Now to get the data to be printed on other columns you could write the statement like this:

WRITELN('hello':10);

This will make the data to be printed on column 10 right justified. Real numbers may also be printed,
formatting them also to print out the number of decimal places to the right of the decimal point.

Like this:

NUMBER:=3.14;
WRITELN (NUMBER:5:2) ;

The second number after the five is the number of decimal places to be printed.
The read statement will let you input data from the screen or a Pascal text file and is like this:
READLN (INDATA) ;

With INDATA being any variable previously defined. The read statement will cause any data printed
out to be on the same line as the read input data so use readln if you want the next data read or printed
to be on a different line. The read statement will read characters of data, a character, or real or integer
numbers.

The begin and end statements are very important as they define groups of statements to be used by the
program. To begin a program the main body must have a begin and end statement and the last end
statement should have a period after it. A lot of statements in Pascal also need the begin and end
statements to tell where they begin and where they end. A good example of this is the for loop, this
loop is very much the same loop used in BASIC.

An example is as follows:

FOR X:=1 TO 10 DO
BEGIN
WRITE ('NUMBER') ;
WRITELN (X) ;
END;

Introduction to UCSD P-System - 19

This example uses the write statement, and begin and end statements tell the beginning and the end of
the loop. The for loop does not really need the begin and end statements all the time if there is only one
statement after it the semicolon after the statement will be the end of the loop.

Like this:

FOR X:=1 TO 10 DO
WRITELN ('"NUMBER', X) ;

The next loop to show you is the repeat loop it is like this:

REPEAT
<PROGRAM STATEMENTS>

UNTIL CONDITION;

This loop uses a condition defined after the until to exit the loop, This is a boolean condition telling the
loop to end.

The while loop is like the repeat loop but the condition is checked before entering the loop.
Like this:

WHILE CONDITION DO
BEGIN
<PROGRAM STATEMENTS>

END;

The begin and end statements are required for this loop and it is good loop for checking data before
entering a loop.

One more thing [wanted to mention is the use of semicolons you may have noticed these after some of
my program statements. These are required in the Pascal language after a lot of Pascal statements like
the write and read statements and after the end statement in a group of statements.

So long until next month.

Introduction to UCSD P-System - 20

P-System and Funnelweb Continued and Accessing Text Files

A few months ago I had a article about how to stop the P-System from booting when exiting Funnelweb
well I have made some changes to the source code and came up with the following program.

The complete source code is as follows:

A AAA KA AKAKA KA KA K KKK AR AR KRR KRR KRRk Ak Ak kkkkkkkkkkkkkhkkk

* THIS PROGRAM WILL LET THE FUNNELWEB USER BOOT %

* THE P-CODE CARD OR WILL LET THE USER STOP THE &

* AUTO-BOOT AND RETURN BACK TO THE TITLE SCREEN *

* THIS PROGRAM MAY BE ADDED TO ANY FUNNELWEB MENU *

Jo sk sk ok ok o ok ok ok ko ok ok ok ok ks sk ok sk ok Ak ke k k sk sk ok kR Rk kK Kk ok k sk ok ok ok ko kK kK
DEF BOOT

REF VMBW, VSBW, KSCAN
NOBOOT EQU >4E4F
YEBOOT EQU >0000
RETURN BSS 2
WR BSS >20 .
LINE1 TEXT 'l. STOP BOOT'
LINE2 TEXT '2. BOOT P-CODE'

BOOT MOV R11, @RETURN MOVE RETURN ADDRESS TO HOLDING AREA
LWPI WR LOAD WORK SPACE
CLR RO CLEAR REGISTER
LI R1,>2000 LOAD SPACE CHAR TO REGISTER 1
CLSR BLWP @QVSBW EXECUTE FUNCTION
INC RO INCREMENT REGISTER
CI RO, 768 COMPARE
JLT CLSR JUMP IF LESS THAN
LI RO, 362 LOAD SCREEN POSITION
LI R1,LINE1 LOAD DATA
LI R2,12 LOAD LENGTH
BLWP @VMBW EXECUTE FUNCTION
LI RO, 426 LOAD SCREEN POSITION
LI R1,LINE2 LOAD DATA
LI R2,14 LOAD LENGTH
BLWP @VMBW EXECUTE FUNCTION
LOOP LI R2,>2000 LOAD SPACE CHAR TO REGISTER 2

EXECUTE READ KEY BOARD
MOVE STATUS TO REGISTER 1

BLWP @KSCAN
MOVB @>837C,R1

COoC R2,R1 COMPARE

JNE LOOP JUMP IF NOT EQUAL

MOV @>8374,R1 MOVE KEY PRESSED TO REGISTER 1

SWPB R1 SWAP BYTES IN REGISTER 1

CI R1,>3100 COMPARE TO ASCII KEY "1"

JEQ SBOOT JUMP IF EQUAL

CI R1,>3200 COMPARE TO ASCII KEY "2"

JEQ YBOOT JUMP IF EQUAL

JMP LOOP KEEP IN LOOP UNTIL KEY IS PRESSED
SBOOT LI R3,NOBOOT MOVE NO BOOT CODE TO REGISTER 3

MOV R3,@>38FA MOVE VALUE TO MEMORY LOCATION

JMP ENDPRO JUMP TO END PROGRAM
YBOOT LI R3,YEBOOT MOVE BOOT CODE TO REGISTER 3

MOV R3,@>38FA MOVE VALUE TO MEMORY LOCATION
ENDPRO CLR @>837C CLEAR STATUS

MOV @RETURN,R11
BLWP @0

MOVE RETURN
BRANCH TO TITLE SCREEN

Introduction to UCSD P-System - 21

END

The original program may still have some uses like I stated in the previous article some programs may
be run after executing the original program and the P-system may not boot, this program just gives you
two choices to boot the system or to return to the title screen and no boot. I currently use this program
when I am in Funnelweb and want to return to the menu of my ramdisk but it will take you to the main

- title screen if you do not have a ramdisk or the ramdisk is not set for auto-start.

[will now continue with more Pascal programming using what we have covered so far we should be able
to write some very simple programs. So adding a few new statements I will show you how to read Pascal
text files. I will set up the program first with comments to explain what is going on.

The program is as follows:
program readtext;
(* This program reads a %)

(* Pascal text file the *)
(* file name is input *)

(* by the user *)
var
(* define input string *)
line : string;

(* define file type *)
textin : text;
(* define string for file input *)

fname : string;
begin
page (output) ; (* clear screen *)
write('enter file name=>');
readln (fname) ; (* read file name *)
reset (textin, fname) ; (* open file *)
while not (eof (textin)) do (* stop input at *)
begin (* end of file *)
readln(textin,line); (* read in one line *)
writeln (line); (* write out line to *)
end; (* screen *)
close (textin, lock) ; (* close file *)
end.

The program uses a few of the statements that we have gone over before but it also shows other
commands. To clear the screen, this command is just about the same as the CALL CLEAR command in TI
Basic, the Reset command is very close to the OPEN file command in Basic except that the file type has
already been defined and also there is no file number assigned. The drive to get the file is added to the
file name when you input it. To get a file from drive number 5 which is DSK2 input the file like this
#5THEFILE.TEXT. Remember that this program reads text files (Any file with the .TEXT Suffix) if
you try to read a file that is not a text file all it will do is really mess up your screen display. The

while loop will just read the file until end of file (eof) and write it out to the screen. After this the file
is closed and locked this statement can also delete the file by putting PURGE in place of LOCK and
other options are available. The program is now ended with the final statement END. the period at
the end tells the compiler that this is the end of the program and not just the end of another procedure
or function within the program.

Introduction to UCSD P-System - 22

Case and If-Then

This Month I will show you a few new statements of the Pascal programming language. The first
statement is the Case statement, it is very close to the On-Goto or On-Gosub statement in Basic.

The Case statement is shown below:

CASE number of

: write('one');

: write('two');

: write('three');

: write('four');

: write('five'):;

: write('six');

: write('seven');

: write('eight');

: write('nine');
10 : write('ten');

end;

WwooJoud WK

The identifier number is declared as as an integer type number. If the value of the identifier is any
number 1-10 the Case statement will cause the statement following the Colon : to be executed for
example if the value of number was 3 the program will print out the string "three”. In UCSD Pascal
this statement is ok to be used in a program but in standard Pascal and possibly other Pascal languages
this statement may not work if the value of the number is another value and not 1-10 but in UCSD
Pascal if the value is not found the statement will simply not print out anything and there will be no
errors. This could become a problem if you are trying to convert this statement to be used with another
Pascal language.

The If statement is close to the same statement in Basic but it is much simpler
to use.

An example is as follows:

If number = 1
then
write('one')
else
write ('number not equal to one');

This example shows that the IF statement can also include an else clause if needed also the statement
may use begin and end statements if a condition is met and there are a lot of things to be done. The If
statement can also call a Procedure or a Function within a program but I will go into more detail about
Procedures and Functions later. The If statement can also be a lot more complex than this simple
example, other boolean operators may be used like OR, AND, NOT to make this statement one of the
most useful in Pascal the statement may look like this:

If (number = 1) or (number = 3)
then
writeln(‘'stop')

The If statement will be used a lot but keep in mind that in some cases the CASE statement may work a
lot better like in the first example I showed you if you were to write this using If statements it would be
very long and drawn out so use the statement that will work with the least effort. Well so long until
next month.

Introduction to UCSD P-System - 23

Using String Data Types

Many of the same functions you can use in Extended BASIC are available for use in Pascal and are just as
convenient to use as in Extended BASIC. The string type is used a lot in UCSD Pascal and can be defined
in the type section or in the variable section. When you declare a string you can define the string like
this:

VAR
word : string([10];

This string has a max length of 10 characters and if you try to give the variable a longer length it will
chop off the extra characters on the end. The string type also has a default length and that is 80
characters and a string can have a length as short as 1 character and a max length of 255. The procedure
readln should be used to import strings in to a program but it may be necessary to make a string another
way because using string types is much easier than using a packed array of characters. One other way to
make a string is to convert a packed array of characters to a string and that is done like this:

word:=" 'y

for count:=1 to 10 do
word[count] :=multichar[count];

The variable word is of type string and the variable multichar is a packed array of characters. You
must give word a length before assigning the variable one character at a time or you will get an
execution error that is why I put the assignment statement before the loop. Another way to give word a
new length would be to use a compiler directive to shut off range checking and then assign the new
length directly like this:

(*SR-%)

word[0] :=chr(10) ;

(*SR™*)

for count:=1 to 10 do
word[count] :=multichar[count];

This method may be used if you are not sure of the new length of the string and how long to set the loop
for. The chr function can except a variable as well as the constant "10" for input.

Some string procedures and functions included in UCSD Pascal are explained below:

The function concat will put together a number of strings and each string must be put in the function
separated by commas like this:

CONCAT ('hello', "' how',' are you');
It will return: hello how are you

The function copy returns a string of characters starting with a position and a size the function could be
used like this:

COPY('hello how are you',7,3);
It will return: how

The function pos returns a integer value it returns the starting position of a string within a source string.
It is used like this:

POS('are', 'hello how are you');
It will return: 11. This is the first place in the string that 'are’ is found.

The function length will return a length of the string it returns an integer value it is used like this:

Introduction to UCSD P-System - 24

LENGTH ('hello how are you');
It will return 17 , an integer.

The procedure delete will remove characters from a string it will remove the characters starting with
position and ending with a size. The procedure is used like this:

line:="hello how are you';

DELETE (line, 1, 6);

WRITE (1line) ; (* will return ‘how are you' ¥*)

It will remove 'hello’ from the string.

The procedure insert does just the opposite as delete it will insert a string into a source string it is used
like this:

line:='hello how are you';

INSERT (line, ',hello',6);

WRITE (line) (* will return 'hello,hello how are you' ¥*)
It will insert the string ' hello’ into the variable "line".

The next string functions that I will show you are not found as part of UCSD Pascal but have been added
to the user library of the TI 99/4A the additional functions are in the library misc so put uses misc as a
library at the beginning of your program.

The function break will return the position of the first character in the source string that matches a
character in the second string it will be used like this:

thepos:=BREAK('hello',"'0");
The variable thepos will now have the value 5 the string ‘0’ is the 5th character in 'hello’.

The function span will return the first position of a character not found in the source sting it is used like
this:

thepos :=SPAN ('hello', 'h');
The value of 2 will be put into the variable thepos because 'e' is the first character not found.

The function upper-case will return upper-case letters in a new string with the source string having
lower-case letters.

line:="hello how are you';

UPPER_CASE (line,line2);

WRITE (line2); (* will return 'HOW ARE YOQU' *)
The function will convert the lower case letters in line to upper case and put the string in line2 the source

string is not changed and so a new string is created with upper case letters.
One more point I would like to make, is make sure you use READLN and not READ with strings the

results when using READ can be very bad, things like run time errors and other problems can develop.
Well that's it for this month, thanks.

Introduction to UCSD P-System - 25

Formatted Output

This month I will cover the writeln procedure in more detail. This procedure is one of the most used
procedures in Pascal as most of the writing to the screen and other devices will use this procedure. The
writeln procedure writes text files and can not write records like the procedure PUT can. One of the
great things about writeln is that it can also format output to the screen, printer or other device when
writing out the data.

The following program is a demo of formatting with the writeln statement as you can see I have gave
you the option of directing the output to the screen or to the printer. If you output to the printer you can
study the output in much greater detail.

program testwrite (input, output) ;
const

pi = 3.14159;
var

pfile : text;

choice : char;

count,count2 : integer;

(* This program will demo the *)
(* use of writeln in Pascal *)
(* The program uses loops to *)
(* show output formatting *)

begin

page (output) ;

gotoxy(1,1);

write('(l)screen (2)printer=>');

read (choice) ;

case choice of
'l' : rewrite(pfile, 'console:');
'2' : rewrite(pfile, 'printer:');

end;

gotoxy(1,4);

for count:=1 to 6 do
writeln(pfile,pi:8:count);

writeln(pfile);

for count:=1 to 8 do
writeln(pfile,pi:count:1);

writeln(pfile) ;

for count:=1 to 8 do
for count2:=1 to 6 do

writeln(pfile, pi:count:count?2);
close(pfile, lock) ;
page (output) ;
end.

This program will first show in the first loop how to print a real number with a different number of
spaces after the decimal point. The first value after the colon : is the number of spaces to print over from
the left edge of the paper or screen and the second number is the number of decimals to print after the
decimal point notice as the values in the loops change the output also changes. If the valve given is not
really possible like printing one space over after wanting two spaces after the decimal point the
program will print the number in scientific notation so make sure the values work.

A sample of the output from the first loop is shown below:

Introduction to UCSD P-System - 26

3.1
3.14
3.142
3.1416
3.14159
+3.1415900000000e+000

A sample of the output from the second loop is shown below:

+3.1415900000000e+000
+3.1415900000000e+000
+3.1415900000000e+000
3.1
3.1
3.1
3.1
3.1

So far I have shown output with real numbers well writeln can also output strings, integers, and packed
array of characters. The only real difference is that you would not use two colons like with real
numbers. The number after the colon would only be for the number of spaces to print over from the left
edge of the paper or from the last write on the same line. The value of the number after the colon if not
possible will try to print the number or string as well as possible and if to small will chop off any
characters on the end. One more point I would like to make is that write and writeln is right justified
unlike print in BASIC I know this will sometimes be a problem for beginning Pascal programmers but
soon you will grow to get used to it and may even find it much easier to format the printout of numbers I
know I did. Just keep in mind that the number will be printed from the left over X amount of characters.
Well that's it for this month, Thanks.

Introduction to UCSD P-System - 27

Printing

This month I will try to do something a little different I will go into setting your printer for different
type print using UCSD Pascal I think you will find it to be quite easy. I will also give you a small
printer setting program or procedure that you could use as a program all by itself or as a procedure you
could add to a program. I use a very similar procedure in a few programs I currently use to set my printer.
I have found that many times programmers in the P-system do not put in printer setting procedures in
their programs this could be because there are so many different printers being used well I will show
you how all the commands work so if my program will not work with your printer you could change the
program to make it work with your printer.

The program is as follows:

Program print;
USES SUPPORT;

var
pfile :text;
answer : char;
code : integer;

procedure codes;
begin
gotoxy(1,21);
write ('Enter codes one number at a time');
repeat
gotoxy(1,22);
write ('Enter 500 when finished=>"');
readln (code) ;
gotoxy(26,22);
write("' ¥
if code <> 500
then
write (pfile,chr (code)) ;
until code = 500;
writeln(pfile,chr(7));
gotoxy(1l,21);
writeln ("' ')
writeln (' ")
end;

begin
rewrite (pfile, '"PRINTER: ") ;
page (output) ;
set_screen(0);
set_scr_color(1,8);
set_screen(l);
gotoxy(1,1);
writeln('printer set up'):
gotoxy(1,3);
writeln('(1l)condensed pica');
gotoxy(1,5);
writeln('(2)condensed elite');
gotoxy(1,7);
writeln('(3)skip perforation');
gotoxy(1,9);

Introduction to UCSD P-System - 28

writeln('(4)double strike');
gotoxy(1l,11);
writeln('(5)letter quality"');
gotoxy(1l,13);
writeln (' (6)expanded print');
gotoxy(1,15);
writeln('(7)cancel paper out');
gotoxy(1,17);
writeln('(8)reset printer');
gotoxy(1,19);
writeln('(9)enter your codes');
repeat
repeat
gotoxy(1,21);
write('enter choice=>"');
gotoxy(15,21) ;
readln (answer) ;
case answer of
'1' : writeln(pfile,chr(15),chr(27),chr(71),chr(7));
120 writeln(pfile,chr(27),chr(77),chr(lS),chr(27),chr(7l),
chr(7));
'3' : writeln(pfile,chr(27),chr(78),chr(6),chr(7));
'4' : writeln(pfile,chr(27),chr(71),chr(7));
'S' : writeln(pfile,chr(27),chr(120),chr(49),chr(7));

'6' : writeln(pfile,chr(27),chr(87),chr(l),chr(7)):;
'7' : writeln(pfile,chr(27),chr(56),chr(7));
'8' : writeln(pfile,chr(27),chr(64),chr(7)):;
'9' : codes;
end;
until- answer in ['1'..'9'];
gotoxy(1l,21);

write ('continue set up Y/N=>');
readln (answer) ;
gotoxy(1l,21);
write (' £
until (answer = 'N') or (answer = 'n');
close (pfile, lock) ;
page (output) ;
end. (*print*)

This program should work with most Epson compatible printers I think the worst that could happen
that the one touch key presses would not work the enter your own codes section should work with just
about any printer. This program shows you just how easy it is to change your printer settings in UCSD
Pascal. The program starts with a uses statement this is to get a function out of the library this function
will let me set the screen color you can change it to anything you want the first number in the function
set_scr_color is the color of the text and the second number sets the screen around the text. The program
currently sets the text to black and the screen to medium red. After this the program will display the
nine choices some you can set the printer with one key press but the ninth choice will let you enter you
own codes this is because there are many printer setting codes and I could not put all of them in the menu
of choices with out the menu being very large. The ones I did choose are the codes I use most of the time.
Try going to the enter your own code section and setting the printer to condensed elite print with
subscripts some very small text is possible. My codes are 27,83,1 for subscripts and then press condensed
elite after typing in "500" to exit this procedure the text printed out on the printer will be very small
you could also change the line spacing to make the print more spaced evenly. I sometimes like to print
disk directories like this for disk jackets and now you can do this in the P-system by printing out a
volume directory in the Filer program after sctting the printer. Remember that the printer will be set
this way even after you exit the P-system shutting off the printer or printer reset is the only way to set

Introduction to UCSD P-System - 29

your printer back the way it was. The program uses the chr function quite a bit this is very close to the
chr$ function in Extended BASIC. The chr function will let you set the printer codes, by putting in the
proper codes from your printer manual you can set your printer for anything it is capable of doing. Also
you can put in your own codes as needed if some of these codes do not work with your printer. Try entering
in the codes first using the enter your codes section of this program to make sure they work correctly.
This program also uses the case statement which is somewhat like the on goto function in BASIC. This
function lets each statement to set your printer work separately. Well I hope this program will be
useful to you thanks.

Introduction to UCSD P-System - 30

