
• Newila ...IWO... sin f

I* T

I* a

774

•
zr

71-4 	.F1-7

tm

riPTIPPIPW4P117'

REQUIRES 32X EXTRA MEMORY, 	DRIVE AND EDITOR ASSEMBLER MODULE

/Wail TAN 	 '0 USERS

The Loci. tv..!urnes 	respona;bility
for air,' 	wt made or actions taken based

cz;Itaineci using these programs
and book. materials which are made available
solely ori-an "AS IS" basis.

TEX-SOFT does not warrant or represent
that the programs and book materials will be
free from error or wül meet the specific req-
uirements of the user.

PuBLIsHEn SlY

77EX-iOFT
P.O. BOX 33064

SRANAOA 	 3i344

01982,1984 TEX-SOFT

FORTH

TI FORTH INSTRUCTION YANUAL

TABLE OF CONTENTS

CHAPTER 1 - UTTRODUCTION (booting your FORTE system)

CHAPTER 2 - GETTING START=

CHAPTER 3 - T FORTH mina

CHAPTER 4 - MEMORY MAPS

CHAPTER 5 - sysTrm SYNONYMS and MISCELLANEOUS UTILITIES

CHAPTER 6 - INTRODUCTION TO GRAPHICS

MUTER. 7 - FLOATING POINT suppoR: PAC7AGE

canm 8 - ACCESS 70 FILE I/O

CHAPTER 9 - 7: FORTH 9900 Asss:mm.za

CHAPTER 10 - INTERRUPT szavIcz ROUTINES (ISR's)

cap= 11 - POTPOURRI

APPENDIX A - ASCII =ODES (sequential order)

aPENDIX 3 - ASCII KEYCODES (keyboard order

APPENDIX C - DIFFERENCES BET7EEN "Starting FORTH" and TI FORTH

APPENDIX 0 - TEE :I FORTE GLOSSARY

APPENDIX E - USER 72IABLES ml 71 FORTE

APPENDIX F - TI FORTH LOAD OPTION DIRECTORY

APPENDIX C - ASSEMBLY SOURCE FOR CODE: ',mans

ZTInR

CIL= 1

INTRODUCT:01.1

The FORTE language was invented in 1969 by Charles

Moore and has contiaually gained acceptance. The last

several years have shown a drmnatic increase in this

language's following due to the excellent compatability

between FORTE and mini— and microcomputers. FORTE is a

threaded interpretive language that occupies little memory,

yet, maintains as execution speed within a factor of two of

assembly Language for most applications. I: has been used

for such diverse applications as radio telescope control co

the creation of word processing systems. —h. Pi-a:c: Ir.:a:est

Group (TIC) is dedicated to the standardization and

proliferatioa of the 702:2 language. 7: .OR'_3 is an

extension of :he fig—FORTS dialect cf the laaguage. The

fig—FORTH language is in the public domain. ':early every

currently available mini— and microcomputer has a TORTE

system available an it, although some of these are not

similar to the TIC version of the language.

:he address for the 70RTE :aterest Group is:

FORT2 Interest Croup
P.O. BOX 1105
Sea Carlos, CA. 94070

F ORTH

This document will cover some of the fundamentals of

FORTH and then show hhw the language has been extended co

provide easy access to the diverse features of the TI-99/4 , A.

Computer. The novice FORTE programmer is advised to seek

additional information from such publications as:

Starting FORTE
by Leo Brodie
published by Prentice Hall

Using FORTE
by FORTH Inc..

Invitation to FORTE
by Katzan
published by Pecroce11 4 Books

In order to utilize all the capabilities of the

7T-99/4 it is necessary to understand its architecture. ::

is recommended that the user. who wants to use FORTS for

graphics, music, access to Disk Manager functions or files

have a working knowledge of this architecture. This

information is available in the manual accompanying the

Editor/Assembler Command Module. All the capabilities

addressed in that document are possible in 'FORTH and hos:

have been provided by easy to use FORTH words that are

documented in this manual.

FORTE is designed around a virtual machine with a stack

architecture. There are :ac stacks: the fir Ft is referred

to variously as the :ate 	Farznecer 	hr 3:ack.

The second is the Recur= Stack. The act of programing

FORTH is the act of defining ";;Jords" or 71- cceCures*.Th.th ara

PAG: 	 2772,0DCC7.7.01i

T i 	FORTE

defined in terms of other more basic words. The FORTE

programmer continues to do this until a single word becomes

the application desired. Since a FORTH word must exist

before it can be referenced, a bottom up programming

discipline is enforced. The language is structured and

contains no GOO statements. Successful FORTE programming

is best achieved by designing top down and programming

bottom up.

3ottom up programming is inconvenient in most languages

due to the difficulty in generating drivers to adequately

test each of the routines as they are created. This

difficulty is sc severe that boccam up programming is

usually abandoned. in FORTE each routine can be tested

interactively from the console and it will execute

identically to the environment of being called by another

routine. Words take their parameters from the stack and

place the results on the stack. To test a word, the

programmer can type numbers at the console. These are put

on the stack by the FORTE system. Typing the word to be

tasted causes it to be executed and when complete, the =tack

contents can be examined. By writing only relative 7 small

routines (words) all the boundary conditions of the routine

can easily be tasted. Cade the 'nor :..

can be used tor..fient.L7 	subsecuent

CMA2=
	

?AG 7. 	 -2.7.71,c:uc7:on

FORT Fl

The FORTH stack is 16 bits wide. ',4"men multi-precision

values are stored on the stack they are always stored with

the most significant part most accessable. The width of the

Return stack is implementation dependent as it must contain

addresses so that words can be nested to many levels. The

Return stack in TI FORTH is 16 bits wide.

STARTM1G FORTH

To operate the TI FORTH System, you must have the

following equipment:

99/4A CONSOLE
MONITOR
KEMOR EXPANSION
DISM CONTROLLER
1 (or more) DISK DRIVES
EDITORYASSMIBLER 'IODULT.
RS222 :=FAcz 	opcioaal)
??..1:113 .(c, Pcional)

See the manuals accompanying each item for proper

assembly of the 99/4A system.

To begin, power up the system. The TT Color-Bar screen

should appear on your monitor. (If it does not, power down

and recheck all conmections.) ? -Tess any 1,ey to ,.zoncimue. A

new screen will appear displaying a choice between I BASIC

and the EDITOR/ASSEMBLER. To use FORTH, select the

DITOR/ASSEISLER.

On the next screen, choose the LOAD AND RUN option.

The computer will ask for a FILE NAME. After placing your

TT FORTH System Disk in DSK1, type "DSY.1.F0RTH" and press

ENTER.

The TI FORTH welcome screen will display a list of Load

Options (or Elective Bloc"gs). Each osi-4 cn loads all

routines necessary to perform a particular group of tasks:

Load Option Loads Routines Necessary to:
	

Chapter

Perform VDP reads and writes. Random 	 5
number generators and the disk
formatting routine are also loaded.

Run the regular TI FORTH editor. 	 3
Copy FORTH screens and FORTH disks. 	 3

String store routines are also loaded.
Execute-DUMP and ?LIST. 	 3
Trace the execution of FORTH words. 	 3
Use floating point aritr=ecic.
Change display screen to any of the 6 	 6

available VD? =odes.
Change display screen to TEXT mode. 	 6
Change display screen to GRAPHICS mode. 	6
Change display screen to MULTI-COLOR node. 	6
Change display screen to GRAPHICS: (bit-map) 	6

mode.
Change display screen to either of the cwo 	6

SPLIT modes.
Utilize the file I/O capabilities of the 	8

99/4A.
Send output to an RS232 device. 	 3
Run the 64 colt= Ti FORTH editor. 	 3
Write assembly code in HEX. 	 9
Write routines in TI FORTH assenoler 	 9
Utilize the graphics capabilities of the 	5

99/4A.
Save dictionary overlays to diskette.
Access the FORTH equivalent:: 17! %DC:a,

STCR, SSC, SBZ, and 73,

-SYNONYMS

-EDITOR
-COPY

-DUMP
-TRACE
-FLOAT
-TOPMODES

-TENT
-GRAPH1
-MULTI
-GRAPH:

-SPLIT

-FILE

-PRINT
-64St7PORT
-CODE
-ASSIMLER
-GRAPH

-3SA1TE
-CU.1

Ca277R : 	PACE

To load a particular package, simply type its name

exactly as it appears im the list. For example, to load the

graphics package, type -GRAPH and press ENTER. You may load

more than one package at a tine.

The list of load options nay be displayed at any time

by typing the word MENU and pressing ENTER. See APPENDIX F

for a detailed list of that each option loads.

C.2.4=77. 	PAGE 	I=OCUCT.:0;

T: 	FORTH

CHAPTER 2

GETTING STARTED

This chapter will familiarize you with the most common

words (instructions) in the FORTE Interest Group version of

FORTH (fig-FORTE). The purpose is to permit those users

that have at least an elementary knowledge of some FORTH

Dialect to easily begin to use TI FORTE. Those with no

FORTE experience should begin by reading a book such as

"Starting FORTE" by Brodie. Appendix C is designed to be

used with this particular text and lists differences between

the FORTH language described in the book (poly-FORTH) and

71 FORM.

A word in FCRTE is any sequence of characters delimited

by blanks or a RETURN. The following con-renuion will be

used when referring to the stack in FORTE:

(a b 	c)

This diagram shows the stack contents before and after the execution

of a word. La this case the stack contains two values, a and b,

before execution of a word. The execution is denoted by ■■■•••■•• and the

stack contents after execution is c. The 'most accessible' stack

element is always on the right, e.g. b is 'more accessible' than a-

7here may be values In the stack that ar ., 	aczosl'hl*

Out these are =affected by the

20 addition toe following symbols are used as o:erands for :la:it:7:

CZA2= 2 	PAGZ

SYMBOLS USED IN THIS DOCMIE."71'
1••••■./0101■•■•■•■.• 	 .■■•111..1

a, al, ... 	 16-bit signed numbers
d, dl, 	 32-bit signed nbers
u 	 16-bit unsigned number
ud 	 32-bit unsizned number
addr, addrl 	addresses

8-bit byte (in right half of word)
7-bit character (in right end of word)

f 	 boolean flag (0=false, nos-0=true)

STACK MANIPULATION

The following are the most common stack manipulation

words:

DU? 	(a --- a n) 	 Duplicate top of stack
DROP 	(a) 	 Discard top of stack
SWA2 	(al a2 --- n2 al) 	Exchange top rwo stack items
OVER 	(al :2 --- a/ a2 al) 	Make copy of second item on top
ROT 	(n1 n2 a3 --- n2 n3 n1) Rotate third item to too
-DU? 	(a --- a (a)) 	 Duplicate °al .? it non-tern
>R 	() 	 Move cop to Return stack for storage
R> 	() 	 Retrieve i4:aa from Retura stack
R 	 () 	 Copy top of Return stack co stack

Note: >R and R> must be used with caution as they nay

interfere with the normal address stacking mechanism of

FORTH. Make sure that each >R is your program has an R.> to

match it is the same word definition.

ARITHMETIC AND LOGICAL OPERATIONS

The following are the most common arithaetic and

logical operations:

Pkar. 	 =7:NG STAR=

FORT

() n1 n2 --- sum Add
D+ (dl d2 	dsum ---) Add double precision numbers
- (diff al a2 ---) Subtract 	(nl-a2)
1+ (n -- m+1) Increment by 1
2.4.. (Increment by 2 n --- a+2)
1-
2-

(
(
n ---,n-1)

n 7771) n-2)
Decrement by 1
Decrement by 2

* (Multiply al n2 --- prod)
/ (Divide (a1/n2) al n2 --- quot)
MOD (al n2 --- rem) Modulo (remainder from al/n2)
/MOD (Divide giving remainder and quotient n1 n2 --- rem quot)
*/MOD (n1 m2 a3 --- rem quot) al*n2/n3 with 32-bit intermediate
*/ () Like */MOD but giving quot only al n2 n3 --- quot
U* (Unsigned * with double product ul u2 -,-- ud)
U! (Unsigned / with remainder ud ul --- urem uquot)
MAX (Maximum al n2 --..- max)
MIN (Minimum al a2 — sin)
ABS (Absolute value a --- absolute)
DA2S (d Absolute value of 32-bit number --- dabsolute)
MINUS (a --- -n) Leave two's complement
DMINUS (d -- -d) Leave two's complement of 32-bits
AND (al a2 --- and) 3itwise 	logical AND 	 .i.,..

CR (n1 n2 --- or) 3itwise logical CR
MCR (al aZ --- :tor) Bitwise logical exclusive-OR
SW73 (Swap the bytes of al producing a2 al — n2)
SRC (Shift al night circular a2 bits

giving a3
n1 a2 --- a3)

SRL (al a2 --- =2) Shift al right logical n2 bits
giving a3

SRA (al n2 — a3) Shift al right arithmetic n2 bits
giving a3

SLA (Shift al 	left aritnmet 4 c c2 bits
giving a3

al n2 	a3)

COMPARISON OPERATIONS

The following are the cost common comparisons.

< (ai, a2 -- f) :rue if al 	less 	than n2 	(signed)
a (al aZ f) True if top two nu. hers are equal —
> (al a2 f) True if al. greater 	then a2 —
0< (a ---- f) True if top number is negative

: — ,, ..: 7z-- : -L-:; 	:umber 	..i 	:.' 	, 	.,t.;. 	::C-7
7< '_:,1 ,12 igaed -nteler 	:=.7-rZaZ2 —

CFA. T=2 	PACT. 	 37..;_a77:

MEMORY ACCESS OPERA:IONS

The following operations are used to inspect and modify

memory locations anywhere in the computer.

1 (
! (
C@ (
C! (

(
+! (
CHOVE (
FILL (
ERASE (
BLANKS (

addr --- n) 	Replace word address by its contents
n addr ---) 	Store n at address (store a word)
addr --- b) 	Fetch the byte at addr
b addr —) 	Store b at address (store a byte)
add: ---) 	 Print the contents of address
a addr ---) 	Add n to contents of address
from to u ---) 	Block move u bytes. FROM & TO addr
addr u b ---) 	Fill u bytes with b beginning at addr
add: u ---) 	Fill u bytes beginning at add: with O's
add: u ---) 	Fill u bytes with blanks beginning at

addr.

CONTROL STRUCTURES

The following sets of words are used to implement

control structures in FOR:R. They are used to create all

looping and conditional structures. these structures may be 	 --

nested to any depth. If they are nested improperly as error

message will be generated at compile time and the word

definition will be aborted.

DO ... LOOP 	 00 sets up a loop with a loop counter.
do: 	(end+i start) 	The stack contains the first and final

values of the loop counter. The loop
is executed at least once. LOOP causes
a return to the word following 00
unless termination is reached.

Used between DO and LOOP. ?laces value
of loop counter on stack.

Used when DO LOOPs are nested. Places
value of next outer loop counter on
:ae

Causes Loc.; :o terminaza a: en: I: Cam'
or +LOOP.

C3A.27.7.71. 2
	

?ACE 	 =7.T:NG ST.=

LSO ... 	 DO as ecove. +LOC? adds :op stack
do: 	(end-H. start ---) 	value to loop counter (index)
Loon: 	(n)

IF ... EMIT
(f)

IF ... ELSE ... ENDIF
if: 	(f)

3EGIN 	AGAIN

3EGIN 	'WEI= ... REPEAT
while: (f)

IF tests the :op of stack and if
non-zero (true) , the words between
and F.NDLI" are executed. Ozhervi.se , they
are skipped and execution resumes after
ENDIF.

IF tests the top of stack and
non-zero (true), the words between IF
and ELSE are executed. II the top of
the stack is zero (false) , the words
between ELSE and ENDIF are executed.
Execution then continues after ENDIF.

May be used as a synonym for ENDIF.

Loop which executes the words between.
BEGIN and UNTIL until the to of stack
when tested by UNT 7L is non-zero (true).

END

May be used as a synonym for UNIII,

Creates an infinite loop continually
re-executing the words between SE=
and AGAIN. (Note: this loop may be
exited by executing R> DROP one Level'
below)

Executes words between 3EGIN and VRIIZ
leaving a flag which is tested by
If the flag is non-zero (true) execute
words between WHILE and R=AT, the-,
jump back to BEGIN. If flag is zero
(false) , continue execution after the
REPEAT.

=1
BEGIN ... UNTIL

until: (if)

INPUT AND OUTPUIT TO 	TEE zzamINAL

The most common type of terminal input is simply to

enter a'humber at the terminal. This number will be placed

:m the stack. 7:1-4 mmOer 	 converted

,,ccorz:n-17 :c 	 rase 	 also

used auring numeric output.

(n)
U. 	()
.R
	

(nl n2)

D. 	(d
D.R
	

(d)

CR
SPACE
SPACES

It

TYPE 	(addr n)
COUNT 	(addr 	addr+1 n)
7TEMINAL (f)
?REY 	(—)

1CY ()

EMIT 	(c)
EXPECT 	(addr a)

WORD
	

(c)

.14

-3

DECIMAL • ()
HEX 	(—)
RASE 	(add:.)

Sets the base to Decimal (Base 10)
Sets the base to Hexadecimal (Base 16)
System variable containing number base.

To set some base (e.g. Octal) use
the following sequence 8 BASE !

Print a signed number
Print an unsigned number
Print al right-justified in field of

width n2
Print double-precision number
Print double-precision number right-

justified in field of width n
Perform a Carriage Return/Lime Feed
Type 1 space
Type n spaces
Print a string terminated by "
Type n characters from addr to terminal
Move string length from add: to stack
Test if BREAK (CLEAR on 99 /4)
Read keyboard. If no key pressed n'0

else a is ASCII keycode.
Wait for a keystroke and put its AtCII.

value on the stack.
Type character from stack to terminal
Read a characters (or until Cl) from

terminal to addr
Read one word from input str eam dalinit

by c

NUMERIC FORMATTI:IO

Advanced numeric for 	control is 'possible with

the following words.

Numma (addr d Convert string at add: to d number)
<1 (Start output string conversion)
fr (dl Convert next digit of dl leaving d2 d2)
4S (d 0 0) Convert ail significant digits
SIGN (d n Insert sign of n into number d)
4) (d addr u) Terminate conversion, ready for TYPE
HOLD \) insert 	character into string

CH..4.2= 2
	

l'""?
	

=TING START=

DISM RELATSD WC DS

The following words assist

on disk as well as implementing

capability.

in maintaining source code

the FORTS virtual memory

LIST (n —) List screen a to terminal
LOAD (a) Compile or execute screen a ""m—
3LOCM (a --- addr) Read disk block to memory at addr
Bin? (— la) Constant giving disk block size in

bytes
BLK (addr) User variable containing current block

number
SCR (--- addr) User variable containing current screen

number
UPDATE () Mark last buffer accessed as updated
FLUSR (---) Write all updated buffers 	to disk
MIPTT-BUTFERS (---) Erase all buffers

•
DETININO 'WORS

The following are defining words. Th..v. are used noc

only to create r.ew FOR

<BUILDS 	... DOES) and

words but in the case of

;CODE to create new defining words.

: 	xxx) 3egin colon definition of :mot
() End colon definition

7A,RIA31.E ?ccx 	(a --) Create variable with initial value a
(ccc: add:) Returns address when executed

CONSTANT) Create constant with value a xxx 	(a ---
(Tam: 2) Returns a when executed

CODE acct 	() 3egin definition of assembly language
primitive named xmx

() Create new defininz word with a: ecutioa-
time code-routine

;CODE

<BUILDS 	... DOES)' Create aew defining word usj-1; nigh
does: (and=) level FOR:71.

CZAPM"- .. 2 PAC:

71 	FORT L1

MISCILLANEDUS WORDS

The following words are relatively common but don't fit

well in any of the above categories.

CONTE.TI (addr) Return address of pointer to context
vocabulary (searched first)

cuaRawr (addr) Return address of pointer to current
vocabulary (new def'ns placed there)

FORTH) Set context to main FORTH vocabulary
DETINITIONS () Set current to context
VOCABULARY xxx () Define new vocabulary

) Begin comment. Terminated by)
FORGET xxx) Forget all definitions back to and

including xxx
ABORT) Error termination

am= () Return address of xxx. 	If compiling
compile address (apostrophe)

addr

a-RE (addr) Returns addr of next unused byte in
the dictionary

PAD (add:) Returns address of scratch area
IN () User variable containing offset into

input buffer
addr

SP@ (add::) Returns address of cop stack item
ALLOT (a ---) Leave n byte gap in dictionary

() Compile a into the dictionary
(comma)

Several SCREENS on the FORTH System Disk serve special

purposes. SCREEN 0 nay not be modified because it is used

by the disk Device Service Routine to locate the object code

of the FORTH kermel. SCREEN 3 is the BOOT SCREEN (see 300T

in A2PENDIX 0), and scazzm 4 and 3 ccntain error messages

used by several FORTH words. Any disk placed in DSK1 =us:

contain a copy of Sc.= 4 and 5.

any additional words are avail able in 	70R72. The

%Lser shouid cdnsui: :he ra:ha:.=:.ne , :narters 	 hanua: a

we as :ha gi::ssar7 and AP PE= F f:r a zampLe:a

description. 	.ost of these .,;orris are disk resiOeh: and =us:

CZA2772 	?AGE
	

CZ77:NC ST.R7=

O. '"?
.flkar 7.:77:NG

I

1

rr

?CRT

be loaded by the user (via the Load Cpcions) oe:ore they

become available.

C3AP:r.. 2

FORTH

Ci-LLTER 3

HOW TO USE TT' FORTH 7 D 7-OR

WORDS INTRODUCED LN THIS CHAPTER

CLEAR
ED@
EDIT
FLUSH
TES'

toT E

In the FORTH language, programs are divided into

SCREENS. Each SCREEN is 16 lines of 64 characters and has a

number associated with it. A 71 99/4A disk holds 90 SCREENS

(numbered 0 - 89), however, SCREEN 0 is special and is

usually not used. A program may occupy as many SCREENS as

necessary.

NOT 	The word "SCIEIN'' in upper case :rill refer to

a OR SCIErj while "screen ? ' will refer to the monitor

screen.

Lou must read the chapter titled "SYS= i7."NON -7..S" and

correctly format your data disk before using the EDITOR.

Disks initialized by the Disk Manager are acceptable.

loading Foam from the System Disk, place _na System Disk in

OSIM and your FORTH disk in DSKI. it is necessary to copy

SCREENS 4 and 5 frOm the System Disk onto your :FORTH disk.

These SCREENS contain the error messages.

s7s -:-.2=1, see tae :.ascr-aet:oms :or SCCP7 aric .7..!OV7

,z1.1 ciow :3 :o :n1s.

7-1AP-77R 	?AO::

TI 	FORTH

If you have a one drive system, however, this procedure

is more complicated. The following diagram illustrates the

process used to copy parts of a FORTH disk or an entire

FORTE disk with a one drive system.

START: With original diskette in your drive and type

FLUSH

LOOP: 	Type these lines -

scr4 BLOCK DROP UPDATE \

\ 	up to 5 SCREENS because
/ 	the system has 5 disk
I 	buffers

scr# SLOCX DROP MATZ /

Switch to backup diskette and type

LUSE

Go. sack to 7-002 	you need to copy more SCREENS

Now you are ready to begin editing your FORTH disk.

CAUTION: DO NOT EDIT your system disk. It is a hybrid

disk containing both 99/4k files and FORTH SCREENS. Editing

the disk =ey destroy its integrity!

THE TWO TI FORTH EDITORS

There are two FOR= editors available on the TI FORTH

system disk. The 	which is Loaded by -ED'IT'OR,

operates in TM:T node. ::-. -,zL" be r..*Arr= ,4 :z as :h c,

4(}-co? ter. editor. Zadn SCREEN is displayed in :::o 'halves

(left and right) in normal sized characters.

PAG1T. 	:DTTCR

Ti 	FOR': H

The second, which is loaded by -6=6SUPPORT, operates in

bit-map mode. It allows you to view an entire FORTE SCREE2I

at once, however, the characters are very small. It will be

referred to as the 64-column editor.

Only one editor may be in memory at any time. Load

whichever you prefer. Editing instructions are identical

for each.

alirrING DIST3.1.1CrIONS

Initialization fills each SCREEN with non-printable

characters, These characters appear as solid white squares

on the terminal when you are using the 40-columa editor and

as unidentifiable characters in the 54-column editor. A

SCREEN must be filled with blanks before it can be used.

Typing a SCREEN number and CLLR will fill a SCREEN with

blanks.

1 CLEAR

will prepare SCREEN 1 for use by the EDITOR.

7ou may begin writing on SCREEN : or on any scaziN you

wish. To bring a SCREEN from the disk inno the EDI:CR, ty-pe

the SCREEN =umber followed by the wort: =TT.

The above instruction will bring the contents of SCREEN

1 into view. If you did not CLEAR the SCREE' before

entering the EDITOR, the SCREEN will appear to be a block of

undefined characters. You must exit the EDITOR temporarily

and clear the SCREEN on the disk before you can write to

it. To exit the EDITOR, press the BACK function key on your

keyboard. To clear the SCREEN, type the SCREEN number and

the word CLEAR.

To reenter the EDITOR, you do NOT have to type I EDIT

again. A special FORTH word,

will return you to the last SCREEN you were editing.

Upon entering the EDITOR, the cursor is located in

column I of line O. It is customary to use LINE 0 for a

comment describing the contents of that SCREEN. Type a

comment that says "PRACTICE SCREEN" cr something to that

effect. Do not forget that all comments must begin with a

"(" and end with a ")". Note: The left parenthesis MUST be

followed by at least. I space. ?ress ENTER to move to :he

next line.

Lf you are using the 40-column editor, you have

probably noticed that only 23 columns 	:he 64 available

columns) are visible on your terminal, To see the 7as:

the SC:1=N, cy-pe any characters on L:177. i unt.1 you reach

7te 	 - :: e 	amore ths71. - -i.

cap= 3 	PAGE

that the screen is now displaying columns 30 - 64. Press

ENTER to move to the beginning of the next line.

The function keys on your keyboard each perforn a

special editing function.

key
	

function

3E GIN

ERASE
REDO

- moves the cursor one position to the LEFT.
- moves the cursor one position to the RICE:.
- moves the cursor U? one position.
- moves the cursor DOWN one position.
- deletes the character on which the cursor is

placed.
- inserts a space to the left of the cursor

moving the rest of the line righ: one space.
Characters may be lost off the end of the line.

- erases from the cursor to the end of a Line and
saves the erased characters in PAD. They nay
be placed at the beginning of a new line by
pressing REDO. REDO inserts a line just above
where the cursor is and places the contents of
PAD there.

- 40-column editor:
moves the cursor 28 positions to the RIGUT
the cursor is on the LETT half of a SCREEN.
Otherwise, it moves the cursor 28 positions
to the left. This key can be used to toggle
between the LEFT and R:ca: half of a screen.
64-column editor:
places the cursor in the upper left corner

- are used in combination to "pick up" lines
and move them elsewhere on the screen. ERASE
"picks up" one line while erasing it from
view. REDO inserts this Line just above :he
Line on which - the cursor is ?laced. Soth
ERASE and REDO may be used repeatedly to
erase several Lines from view or to insert
'multiple copies of a line.

- will insert a blank line just above the line
the cursor .s on.

LEFT ARROW
RIGET ARROW
Cl? ARROW
DOWN ARROW
DELETE 	.

INSERT

c s control

CZAPTIR 3 	PAGE

FORTH

Experiment with these features until you feel you

understand each of their functions. Erase the line you

typed from the SCREEN and type a sample program for

practice.

The FORTE EDITOR allows you to move forward or backward

a SCREEN without leaving the editor. Pressing CLEAR will

read in the succeeding SCREEN. Pressing PROCEED will read

in the preceeding SCREEN.

If an error occurs during a LOAD command, typing the

word '07EERE will bring you back into the EDITOR and place the

cursor at the exact point the error occured.

The word FLUSH is used to force the disk buffers that

contain. data no longer consistent with the copy on disk to

be written to the disk. Use this word at the and of an

editing session to be certain your changes are written to

the disk.

** NOTE: The 40—column 7CRTE Editor may only be used

when the computer is ta TEXT mode (see chapter 6). For

example, if the 40—column editor is Loaded, don't type EDIT

while you are in SPLIT or SPLIT'_' node.

CEAPTER 3 	PAGE, 	EDT:0R

—

OS.

ca:.v....= 4.

X174 CRY

The following diagrams illustrate the memory allocation

in the 99/4A system. For more detailed information, see the

EDITOR/ASSZ•LZR manual.

The VDP memory can be configured in many ways by the

user. The TI FORTH system provides the ability to set up

this memory for each. of the VDP's 4 modes of operation

mrr, GRAPHICS, MULTI—COLOR and GRAPHICS:). The

allocation of memory for these nodes is shown on the 777?

YMIORY. MAP. The first three nodes are shown on the left

bal.! of this figure, the GRAPHICS: mode on :he right half.

The area at >03C0 is used by the transcendental functions in

all modes for a rollout area. :1 transcendentals are used

during GRAPHICS: (bit—map) mode, this portion of the color

table must be saved by the user before using :he

transcendental function and restored afterwarn. Noce that

the VD? R.A.0 is accessed from the 9900 only through a memory

mapped port and is not directly in the processor's address

space.

The only CPU RAM on a true 15—bit data bus is in the

console at >8300. Because this is the fastest RAM in the

system, :he FORTS Workspace and the most frequently e:xecuced

CRAPT.Ta
	

"D+^-7.'
	

r.":" • " 	 7

7I 	FORTH

The 32X byte memory expansion is divided into an 8K

piece at >2000 and a 24K piece at >A000. The mall piece

contains BIOS and utility support for TI FORTH as well as 5k

of disk buffers, the Return Stack, and the User Variable

area. The large piece of this RAM contains the dictionary,

the Parameter Stack, and the Terminal Input Buffer.

CHAP= L. 	PAGE 	 MA2S

F 3 7 H

EEX
ADDR

>0000

>02F7
>0300
>037F

707 MEMORY MA2

EEX
ADDR
>0000 GRAPHICS

MULTI-COLOR 	J.—Zo

SCREEN IMAGE 	MODE
TABLE >300 	SCREEN

BIT MAP
SPRITE ATIR 	IMAGE
LIST 	>80 	TABLE

>0380 COLOR TABLE 	>300 COLOR
>039F >20 TABU
>03A0 UNUSBD >20
>038F >1800
>03C0 707 ROLLOUT AREA >20
>03DF
>03E0 STACK FOR VSPTR >80
>045F
>0460 ?ABS ETC >320
>0777
>0780 SPRITE MOTION TABLE >80
>07 FF
>0800 ?AM:3N DESC TABLE

SPRITE DESC TABLE
0 - 127 	>400

>03F?
>0000 128 - 255 	>400
>OFF?
>1000 FORTH'S DISK SUTTER
>13F7 (4 SECTORS) 	> 400
>1400 UNUSED

>21D8 >1777
3/T :tA2 >1800
SCREEN
IMAGE
TABLE
>300 >1AZ7
PA3S ETC. >CO >1300-.>13317
STACK FOR VSPTI1 >40 >13C0-713F7
FORTH'S DISK 3UFFIR >1C00
(4 	SECTORS) 	>=L00 >1777
317 `LAP PATTERN >2000
DESCRIPTOR
TASLE

>35D7 >1800 >3777
317-777=0 "012

7DR
,7)T:7 	77- S

• 	•—••

i AT >3800) 	>13A >3909

FCR 2 DISC F7L'ES
>3F'F7 >625 >3777

CHAPTER 	?AGE 10R7:

CPU MEMORY

>0000 	CONSOLE ROM

>IFFT 	
>2000 LOW MEMORY EXPANSION

LOADER, YOUR PROGRAM, REF/DEF TABLE
>3F77
)4000 PERIPHERAL ROMs FOR DSRs

>5E77 	
>6000 UNAVAILABLE- ROM IN COMMAND MODULES

>7777 	
>8000 MEMORY MAPPED DEVICES FOR VDP, GROW, SOUND,

SPEECH. 	CPU RAM A: >8300-8377.
>9= 	
>A000 HIGH MEMORY EXPANSION

YOUR PROGRAM

>F7F7

CHAPTER 4 	PAGE 	 _., a 2S

FORTH

C?U RAE PAD

HEX

	

ADDR 	

	

>8300 	FORTH'S WORKSPACE

	

>831F 	
* >832E 1 FORTH'S INNER INTERPRETER ETC.

	

>8347 	
* >834A I FAC (floating point accumulator)

	

>8351 	
* >8356 I SUBROUTINE POINTER FOR DSR's

	

>8357 	
* >835C i ARG (floating point argument register)

	

>8363 	
* >8370 I HIGHEST AVAILABLE ADDRESS OF VD? RAM

	

>8371 	
>8372 I LEAST SIGNIFICANT BYTE OF DATA STACK ?TR
>8373 1 LEAST SIGNIFICAT BYTE OF SUBR STACK ?TR
>8374 I KEYBOARD •MBER TO BE SCANNED
>8375 I ASCII =CODE DETECTED BY SCAN ROUTINE
>8376 I ;CYSTICK Y-iTATUS
>8377 I JOYSTICK X-STATUS

* >8379 1 VD? INTERRUPT TIMER
>837A I YUMBER :F SPRITES :HA: CAN 3F. LN AUTOMOTION
>8373 ► VD? BTAItS BYTE

I ** BIT 0 ON DURING VD? LNTERRUPT
317 1 ON WHEN 5 SPRITES ON A LINE

	

I 	BIT 2 aa WEEN SPRITE COINCIDENCE
BIT 3-7 NO. OF 5TH SPRITE ON A LINE

>837C I GPI. STATUS BYTE
BIT 0 aim 317
BIT 1 GREATER THAN 3IT
BIT 2 ON WHEN KEYSTROKE DE-Tr"-ZD (COND)
BIT 3 CARRY BIT
BIT 4 OVERFLOW 311

* >8380 I TEE DEFAULT SUBROUTINE STACK ADDRESS
* >83A0 I THE DEFAULT DATA STACK ADDRESS
* >83C0 I RANDOM NO. SEED (BEGIN INTERRUPT WORKSPACE)

	

>83C2 	I 	BIT 0 DISABLE ALL OF THE FOLLOWING

	

I 	BIT 1 DISABLE SPRITE MOTION
BIT 2 DISABLE AUTO SOUND
BIT 3 DISABLE rrs= RESET KEY (QUIT)

>83C4 i LINK TO TM HOOK
>8304 I CONTENTS OF VD? REGISTER 1

* >83E0 I BEGIN G2L C;01.1XSPACE

i'',L,R7H 3137
BE 757B 17 F,7177%
31: 0 	HIGH cRnEa 317

4 A,C

LOW l'E."`IORY. EXPA:TS:(1 N

>2000 	XML VECTORS

>200F
>2010 DISK BUFFERS

>3423
>3424 	99/4 SUPPORT FOR FORTH

>397F 	
>3980 USER VARIABLE AREA

>39FF 	
>3A00 ASSEMBLER SUPPORT

>3CD9 	
>3CDA 	 T

>377T RETURN STACK >0326

>0010

>1414

>055C

>0080

>020A

HIGH MEMORY EXPANSION

>A000 RESIDENT FORTH VOCABULARY
>1C30

>3C7F
>3C80 USER. DICTIONARY SPACE

> 4 3 2 0

>FF9F pARAHErra STACK
>FFAO TERMINAL INPUT SUFFER

>0052
>F771

CEA277.1
	 O RY (S

czAp-aa 5

SYSTEM SYNONYMS AND MISCELLANEOUS UTILITIES

WORDS INTRODUCED EN THIS CEAPTER

.S
: (alternate)
CLS
DISK-READ
DSRLNK
DTMST
DUMP
FORMAT-DISK
FORTE-COPY
GPLLNK
INDEX

MYSELF
RANDOMIZE
RND
RNDW
SCOPY
SEED
SMOVE
TRACE

TRIADS
TRU?
TON

UNTRACE
V AND
VF ILL
?LIST
fl43R

VM3W
VOR
VSBR
VSEW
VWTR
VXOR

SYSTEM SYNONYMS

Several utilities are available to give you simple

access to many resources of the 7: 99/4A 'EONS C-MPUTER.

Mese utilities allow you co change the display, access the

Device Service Routines for peripheral devices such as

RS222s and disk drives, Link your program to GPI, and

ASSEZSLER routines, and perform operations on TOP nemcry

locations.

Also included in this chapter are several disk

utilities, spei..ialtrace routines, :and= number generators,

and a special routine which allows recursion.

The first i-oun of 4.nstructinms ,lnab.7.es

c 	- ti p 	cr!

...z?-amencs :he ELL:Oai:

:Lame.

E:ABLER uzliL:y 	 sa=e

C7.44.2.= 3

VSBW - Writes a single byte to VD? RAM. It requires 2
parameters on the stack; a byte to be written and a
and a VDP address.

base 	byte vaddr instr

HEX 	A3 	380 VOW

places the value HEM A3 into VDP address HEX 380.

VHBW - Writes multiple bytes to VDP RAM. You must first
place on the stack a source address at which the bytes
to be written are located. This must be followed by a VDP
address, (or destination), and the number of bytes to
be written.

base addr vaddr cnt tascr

HEM 	PAD 	808 4 -VMBW

reads 4 bytes from PAD and writes them into VDP RAM
beginning at HEX 808.

VSBR - Reads a single byte from VDP RAM and places it on
the stack. A 70P address is the only parameter required.

base vaddr ins=

HEX 	781 VSBR

places the contents of VDP address HEX 781 on the stack.

VMER. - Reads multiple bytes from VDP and places them at a
specified address. You must specify the VDP source address,
a destination address and a byte count.

base vaddr addr ant instr

	

EEM 	300 ?AD 20 7MBR

reads 32 bytes beginning at HEM 300 and stores them into PAD.

	

czApm 5 	?A SYS:772.A SYNOZITII.S

Foa:H

The next group of instructions allows you to implement

the EDITOR/ ASSEMBLER instructions GPLLNK, XMLLNK, and

DSRLNK. To assist the user, the FORTE instructions have the

same names as the EDITOR/ASSEMBLER utilities. Consult the

EDITOR/ASSEMBLER manual for more details.

GPLLNK - Allows you to link your program to Graphics
Programming Language routines. You must place on the
stack the address of the GPI. routine to which you wish
to lick.

base 	addr 	inscr
	■•■•■•■•

HER 	16 GPLLNK

branches to the GPI. routine located at HEX 16 which loads
the standard character set into TO? RAM. It then returns
to your program.

ILL= - Allows you to link a FORTH program to a routine
is RCM or to branch to a routine located in the. 47%Olt7:
EXPANSION unit. The instruction expects to find a ECM
address on the stack.

base 	add: 	Les t:

SEX 	800 	M .(1.1—\1(

accesses the Floating Point multiplication routine,
located in RCM at HEX 800, and returns to your program.

DSRLNK - Links a FORTE program to any Device Service
Routine in ROM. Before this instruction is used, a
Peripheral Access Block must be set up in TOP RAM.
A FAB contains information about the file to he
accessed. See the EDITOR/ASSEMBLER manual and Chapter
9 of this manual for additional setup information.
DSRLNK needs no parameters.

=X= 5 	?AGE 3 	IYS7"7" ETNONTYc

The VD? contains 8 special write—only registers. In

the EDITOR/ASSEMBLER, a VW7R instruction is used co write

values into these registers. The FORTE word VWTR implements

this instruction. VTATR requires 2 parameters; a byte to be

written and a VDP register number.

base byte reg instr

HER 	F5 	7 VWTR

The above instruction writes a HEX F5 into VDP write

only register number 7. This particular register controls

the foreground and background colors in TEXT' MODE.

Executing the above instruction will change the foreground

color to white and the background color co 	blue.

The FORTE instructions VAND, 70R, and VICR greatly

simplify the task of performing a logical operation on a

single byte in VDP RAM. Normally, 3 programing steps would

be required: a read from VDP LAM, an operation, and a write

back into 7DP RAM. The above instructions get the job done

in a single step. Each of these words require 2 parameters;

a byte to be used as the second operand and the VDP address

at Which the operation is to be performed. The result of

the operation is placed back into this address.

base byte vaddr instr

.70 304 7AND
a FO 304 VCR

'77"n• 7n 304 770R

CHAPTER 5 ?A= 4 SYSTEM STYON'n'S

Each of the above instructions reads the byte stored at HEX

804 in VDP RAM, performs an AND, OR, or XOR on that byte and

HEX FO, and places the result back into VDP LAN at HEX 804.

If you wish to fill a group of consecutive VD? memory

locations with a particular byte, a VTILL instruction is

available. You must specify a beginning VD? address, a

count, and the byte you wish to write into each location.

base 	vaddr tnt byte ,, instr

EEX 	300 	20 	0 	FILL

fills 32 locations, starting at HEX 300, wi:h \d'ards.

DISK UTILITIES

Any disk that you wish to use with the F 71 systeR

must first be properly formatted. Place 	 4 sk in a disk

drive and place the number of that disk drive on the stack.

FORTE numbers disk drives beginning with 0, therefore, if

the new disk is in DSX1, put a 0 on the stack, ett. Next,

type FORMAT-DISK.

0 	FORMAT-DISK

will initialize t-he disk in os31, thus preparing it for use by

the FORM system. Disks initialized by the DISK MANAGER are

C2APTIR 5 	 F.:73771! 37NO=

The TI FOR System Disk, or any disk which contains a

copy of SCREENS 0 thru 19 of the System Disk, may be copied

with the Disk Manager. Any other disk may be copied with

the Disk Manager only after a special header has been

written on it by the TI FORM instruction DISK-HEAD.

Aay disk which can be copied by the Disk Manager can

also be accessed from TI BASIC. If you access a FORTH disk

which contains the FORTH kernel, record 0 of the file will

be located on line 4 of SCREEN 19. Records of length 128

bytes will proceed thru record 563 which is located on line

14 of SCREEN 89. Record 566 then wraps to line 4 of SCREEN

1. The file ends with record 523 located cn line 6 of

SCREEN 8.

A FORTH disk which does not contain the kernel nay also

be accessed by basic, but the location of the records will

be different. The file will begin on line 8 of scazzN 8 and

continue thru record 631 located on line 14 of SCREEN 89.

Record 652 begins on line 12 of SCREEN 0 and the file ends

with record 713 on line 6 of SCREEN 8.

To copy an entire FORTH disk without using the Disk

Manager, you must place the new disk in 0531 and the source

disk in, OS2. Typing FORM-COPY will copy the entire

contents of the disk in 0572 onto the disk in DS .I. NOTE:

You must reset the value of the user variable 01E7 LO to

:2r0 3E:ORE using 1=-'2--:377u 	 you :b coy

SC= 0. This is accam.plished by executing the following

CZAPTZ1 5 	PAGE 	5 	37 	F.,7.7C.1117: (.5

,r

instruction.

0 DISK LO

You can copy the contents of a single SCREEN from one

SCREEN location to another without destroying the original

copy by using the SCOPY instruction. A source SCREEN number

and a destination SCREEN number must be specified.

base 	source destin ins::
...m.0.1..m••■■•■■•■••••■••■■•••••••••=11•11■••••■

DECIMAL
	

5 	17 SCOPY

The above instructions will write the contents of

SCREEN 5 over the contents of scazz:1 17 without erasing

SCREEN 5. The old contents of SCREEN 17 will be destroyed.

The SHOVE instruction acts as a multiple SCCRY. Tt

allows you co copy a group of SCREENS with a sinzle

inscruction. You must designate a beginning source SCREEN,

a beginning destination SCREEN, and the number of SCREENS

you wish to copy. When using SMOTE, overlaping sc.=

ranges nay be used without user concern. The order of :he

copy is adjusted so that the entire group of SCREENS is

roved intact.

base 	source destin cnc instr

DECIMAL 	11 	36 	7 SMCVI:

CEAPTER 5
	

FACE
	

7

These instructions will copy SCREENS 11 - 17 over

Say:Ms 36 - 42 without erasing SCREENS 11 - 17.

Both the SCOPY and S•CVE instructions can be used to

copy SCREENS from one di sk drive to another. Assuming that

DISK-SIZE (a user variable which contains the number of

SCREENS per disk) is at its default value of 90, SCREENS

0 - 89 are contained on the disk in OSKI, scazzNs 90 - 179

are located on the disk in DSK2, etc. NOTE: To copy SCREENS

from one disk . drive to another, you must reset the user

variable DISK EI. If you are using two disk drives, its

value must be 180 (2x90). This is accomplished by executing

the following instruction:

180 DISKEI

Therefore, to copy SCREEN 	on DSX1 to SCMEE2T 20 on DSK2, you

would type :

base 	source destin instr
	..m.ommomws■••■ 	 •■■•••••••=m1s..1.1%•■

DECDIAL 	6 	110 SCOPY

The SHCV .47 instruction is handled in the sane manner.

Simply use an offset of DISK-SIZE to specify hich disk

drives you wish to copy to and from.

21 you have reason to suspect that a disk has a bad

sector or is in some way damaser: a non-desczuctive disk

test is available. The DT= instr-uctich actampc :o

read each SCIEIN from the disk in OSK1. A SCREEN number

CEAPT71 5

will be disnlayed on your monitor as each SCREEN is read.

If execution stops before SCREEN 89 is reached, the problem

lies in the Last SCREEN displayed. To correct the problem,

CLEAR that SCR= and write to it again. This correction

will work if the disk surface is intact and if the

formatting information has not been damaged.

LISTING UTILITIES

There are three words on the TI FORTH System Disk

(loaded by the -PRINT option) which make listing information

from a FORTH disk very simple. The first, called TRIAD,

requires a SC= number on the smack. When executed,

will print to an RS232 device the three SCREENS which

contain the specified SCREEN, beginning with a SCREEN number

evenly divisible by three. SCREENS which contain

non-printable information 	be skipped. if your RS232

printer is not on Port 1 and set at 9600 3aud, you must

modify the word swca on your System Disk.

The second instruction, called TRIADS, nay be :nought

of as a multiple T3240. it expects a beginning and an

ending SCREEN number an the stack. TRIADS performs as =any

TRIADS as necessary to cover the specified range of

SCREENS.

cy,AF7ER 3 	?A= 	 :17 3=

OR:H

The INDEX instruction allows you to lis: to your

terminal the comment line 0's of a specified range of

SCREENS. INDEX expects a beginning and and ending SCREEN

number on the stack. If you wish to temporarily stop the

flow of output in order to read it before it scrolls off the

screen, simply press any key. Press any key to start up

again. Press BREAK to exit execution prematurely.

The FORTH word VLIST lists to your terminal the names

of all words currently defined in the CONTEXT vocabulary.

This instruction requires no parameters and nay be halted

and started again as in INDEX above.

DE3UGGING

The DUMP instruction allows you to list portions of

memory to your terminal. DUMP requires two parameters: an

address and a byte, count- . For example,

base 	addr =It 	instr

EEX 	2.726 	100 	DUMP

will list 156 (>100) bytes of memory beginning at address

>2F26 to your terminal. Press any key to temporarily stop

execution in order to read the information before it scrolls

off the screen. Press any key to continue. 7o exit this

routine prematurely, press aRIE.K.

CHAPTER 3
	

?Aal 	 SYS:7% 	 R; •.

The FORTH word .5 allots you to view the parameter

stack contents. It may be placed inside a colon definition

or executed directly from the keyboard. The word SP! should

be typed before executing a routine that contains .S . This

will clear any "garbage" from the stack. The I symbol is

printed to represent the bottom of the stack. The number

appearing farthest from the I is the most accessible stack

element.

A special set of instructions allows you to trace the

execution of any colon definition. Executing the TRACI

instruction will cause all following colon definitions to be

ccotpiled 	such a way that they can be :raced. 7 h. oche*

words, the FORTH word : takes on a new meania . 7o stop

compiling under the 7RACZ option, type TNT: RAZE. qhen you

have finished debugging, recompile :he routine under the

(INTRA= option.

After instructions have been tompiled under the TRACE

option, you can trace their execution by ty -ping the word

TRON before using the instruction. IRON activates the

trace. If you wish to execute the same instruction without

the trace, type 7ROF7 before using :he instruction.

The actual trace will print the word being traced,

along with the stack contents, each tine the word is

;r1

unz :e_cra -7,na

used to represent the bottom of the stack. he ,umber

?AG:
	

E=71'..5

printed closest to the 1 is the least accessible while the

number farthest from the I is the mos: accessible number

on the stack. Here is a sample TRACE session:

DECIMAL

TRACE OK 	(COMPILE NEXT DEFINITION WITH TRACE OPTION)

: CUBE DU? DU? * * ; 	OK (ROUTINE TO BE TRACED)

UNTRACE OK (DON'T COMP:LE NEXT DEF. WITH TRACE OPTION)

: TEST CUBE ROT CUBE ROT CUBE ; 	OK

TRON OK (WANT TO EXECUTE vr73A TRACE)

5 6 7 TEST (PUT PARAMETERS ON STACK AND EXEC. TEST)

CUBE (TRACE BEGINS)

3 6 7 	(STACK CONTENTS UPON 5:77':'RANG CUBE)

CUBE

I 6 343 5 (STACK CONTENTS C7ON ENTERING CUBE)

CUBE

1 343 125 6 	cm

A more complex TRACE example involves a recursive

routine. Normally, a FORTH word can not call itself before

the definition bas been compiled through to a 	because

the MUDGE bit is set. To allow recursion, TT FORTE

includes the special word MYSELF. The HZSELF instruction

places the CFA of the word currently being compiled into its

on definition thus allowing a word to call itsel!. The

lowing ccampla uses a :acursi7e 	 ;:or

:1:ustracion:

Ca= 5
	

PACE

DECIMAL OK

TRACE OK 	(COMPILE FOLLOWING DEF. UNDER mAcz OPTION)

FACT CUP 1 > IF OUP 1 - HYSELZ 	END:: ; 	OK

UNTRACE OK

TRON OK 	(ACTIVATE TRACE)

5 FACT 	(?TT PARAMETER ON STACK AND EXECT:77 FACT)

FACT 	(TRACE 3EGINS)

15

FACT

I 5 	4

FACT

3 	4 3

FACT

5 4 3 2

FACT

5 4 3 2 1 	OK

.S 	 (CHECK FINAL STACK CONTENTS)

120 OK

Each time the traced FACT routine calls i:se11, a :race is

executed.

RANDOM NUMEERS

Two di!!erent random number functions are available in

-7crri

S.7" 	:37.7:, 0 77.7.1_S

FORTH

for RNDW.

base 	range instr

DECIMAL 	13 	RND

will place on the stack an integer greater than or equal to 0

and less than 13.

RND W

will place on the stack a number from 0 to HEX MT.

To gaurantee a different sequence of random numbers

each time a program is run, the RANDOMIZE instruction must

be used. RANDCMT77 places an unknown seed into the random

number generator,

To place a known seed into the random number generator,

the SEED instruction is used. You must specify the seed

value.

4 SEED

will place the value 4 into the random number generator seed

location.

MISCELLANEOUS osTiucTioms

To store a string at a specified address, the :"

instruction Li used. !" txpects 	__ad an address 7n zhe

stack and must be followed by a string terminated with

a " . The following instruction places the string "EOW ARE

CH4PTE3. 5 PAT.' 14 	s7s7721. SYNO=1.5,

F 	R

YOU?" a: address ?AD.

base 	addr 	ins:r 	string

',..SEX 	PAD 	!" HOW Aaz YOU?"

To clear the display screen, the word CIS is used.

This may be used inside a colon definition or directly from

the keyboard. CIS will not clear big-map displays or

SPRIT MS.

CHAPTER 3
	

?AG: .3 	S

Ti 	FORTH

CZEU.7::-.‘3. 6

AN INTRODUCTION TO GRAPHICS

WORDS INTRODUCED fl 	THIS CHAPTER:

OMOTION GCHAR SPOEAR
BM GRAPHICS SPLIT
CHAR GRA2HICS2 SPLIT2
CEARPAT ECEAR SPRCOL
COINC EONR SPRDIST
COINCALL JO?ST SPRDIST:
COINCX7 LINE SPRGET
COLOR MAGNIFT SPRITE
DELALL MCHAR STRPAT
°ELM MIT SPRPUT
DOT MOTION SSDT
DRAW MULTI TEXT
DTOG SCREEN UNDRAW

VCEAR

GRAPHICS MODES

The TI acmz COMPUTER posesses a broad range of graphics

capabilities. Four screen modes are available to the user

1) TEXT !tODE - Standard ascii characters are
available, and new characters may be defined. All
characters have the same foreground and background
color. The screen is 40 colons by 24 lines. TEXT
MODE is used by the FORTE 40-colt= screen editor.

2) GRAPHICS MODE - Standard ascii characters are
available, and new characters nay be defined. Each
character set may have its own foreground and
background color.

3) MULTICOLOR MODE - The screen is 64 columns by 48
rows. Each standard character position is mow 4
smaller boxes which can each have a different color.
ASCII characters are not available and new characters
Can act be defined.

	

B'OD'E CCIRal?:.CS -fl - his =Ida 	rva 4, able""
Qn :ne 	3I"7-A2 ?ferr 	 li7;111

	

- 	 :

cne 916A. :fte screen is 256 columns by
1,92 rou,s, 	TIA2F - f- c!:
editor.

CEAPTER 6 	PAGE 	 MAPS:CS

Ti 	FORTH

SPRITES (moving graphics) are available in all modes except

TEXT. The SPRITE AUTOMOTION feature is not available in

GRAPEICS2, SPLIT or SPLIT2 modes.

Two unique graphics modes have been created by using

GRAPSICS2 mode in a non-standard way. SPLIT and SPLIT2 mode

allow you to display text while creating bit-map graphics.

SPLIT node sets the top two thirds of the screen in

GRAPHICS2 mode and places text on the last third. SPLIT2

sets the top one sixth of . che screen as a tekt window and

the rest in GRAPHICS2 mode. These modes provide an

interactive bit map graphics setting. That is, you can type

bin map instructions and watch :hem execute without changing

nodes.

'you nay place the computer in the above nodes by

executing one of the following instructions: TEXT, GRAPHICS,

MULTI, GRAPHICS2, SPLIT, or SPLIT2.

FORTH GRAPHICS WORDS

Many FORTH words have been defined to :aka graphics

handling much easier for the user. As these words are

mentioned, an annotation will appear underneath them

denoting which of the modes they nay be used in

(M 3 	:nese tenote TEXT, ClAZETCS, IfULT=C3LOR arld

SI""-AITT (OLUETCS2, 32LIT, 37171) 7=, s'oe ,-zivA 1 7.

MU= ?AG': 0a P ICS

In several instruction examples, a base (HEX or

DECIMAL) is specified. This does not mean that you must be

in a particular base,in order to use the instruction. It

merely illustrates that same instructions are more easily

written in HER than in DECIMAL.

COLOR CZANGES

The simplest graphics operations involve altering the

color of the screen and of character sets. There are 32

character sets (0-31) each containing 3 characters. For

example, character set 0 consists of characters 0 - 7, set

one contains 8 - 15, etc. Sixteen colors are available on

the TI HOME co•prTza.

color
11 01.%

value color
hex

value

TRANSPARENT 0
••■■•••■••111,

HED. RED 8
MACK LT. RED 9
HED. GREEN 2 DK. YELLOW
Lr. GREEN 3 LT. YELLOW 3
DK. BLUE 4 DK. GREEN
LT. 3LUE 5 MACEY:A
OK. RED 6 GRA7
CYAN 7 WEI=

The FORTE word SCREEN following one of the above table

values will change the screen color to that value. The

following example changes the screen

azx 	3 SCREEN
DECIMAL 11 scazzN

cakTrza 6 	PAGE 3

(G)

The foreground- and background colors of a character set

may also be easily changed -

base 	fg bg charset instr

HEX 	4 	D 	1A 	COLOR or
DECIMAL 	4 13 	26 	COLOR

(G)

The above instructions will change character sec 26

(characters 208 - 215) to have a foreground color of dk.

blue and a background color of magenta.

PLACING CHARACTE:R..S ON THE SCREEN

:o print a character an-T.:here on the screen and

optionally repeat it horizoncally, the ECHAR 'instruction is

used. You must specify a starting column and row posizion

as well as the number of repititions and the ASCII code of

the character you wish to print.

** K77172 LEI HIND THAT 30TH IONS AND COLUMNS ARE NUMBERED

FROM ZERO !!!

For example,

base 	col row cat chard instr

REX 	A 11 	53
	

F.C2AR or
DECIMAL 10 17 91 42 	HCAR

(7 1

will print a scream of 91 	scar :ins, at column 10 and :::-.7 17,

that will wrap from rt.ghc to ie.:: on the screen.

Cak2772 t

To print a vertical stream of characters, the word

VCaAR is used is the same format as ECHAR. These characters

will wrap from the bottom of the screen to the :op.

The FORM word GCEAR will return on the stack the ASCII

code of the Character currently at any ?osition on the

screen. If the above ECEAR instruction were executed and

followed by

base 	col row instr.

ITEX 	F 	11 GCEAR or
DECIMAL 	15 17 GCHAR

(7 G)

a ik wr'' or 42 DECIYAL would be left on the stack..

DEFINING NEW C3ARA.C7a*RS

Each character in GRAPEICS MODE is 3 x 3 pixels in

size. Each row makes up one byte of the 8 byte character

definition. Each set bit (1) takes on the foreground color

while the others remain the background color.

In II= MODE, characters are defined in the same way,

but only the left 6 bits of each row are displayed on the

screen.

For example„

CEA.? 	6 	? ALT.

T I 	R T

I<-- DISPLAYED

1 	I<--
0 	1 	2 	3 	4' 	5 	6 	7 	•

•■•••■••••••

IN TETI

DISPLAYED
o GRAPHICS

0 1 	I 	I* 	1* 	I*1*1 	I 	I

II 1 	*1*ii 	* 	*

2 1 	* 	* 	1 	* 	* 	1 	1*1*1

3 I 	* 	I 	*. 	I 	* 	1 	I 	* 	I 	* 	I 	* 	I EACH "*"
REPRESENTS

4 1 * I * I*1 	I 	*I 	I*1 A SET BIT.

5 I 	* 	I 	* 	I 	I 	* 	I 	* 	1 	I 	* 	I 	* 	I

6

■••••01/!•0

1 	I 	* 	I 	* 	I 	I 	I 	* 	I 	* 	1 	I

7 1 	I 	l*I*I*1*1

this character is defined -

	

3C66 	DBE7 	E7D3 	663C
rows 	0-1 	2-3 	4-5 	6-7

The FORTH word CHAR is used to create new characters.

To assign the above pattern to character number 123, you

would type -

base 	wl 	w2 	w3 	w4 	char; Last:

SEX 	3C66 	DBE7 	E7DB 663C 	73 	CHAR or
DECIMAL 13462 56295 59355 26172 123 	CHAR

(T G)

As you can see, is is or natural co use this iastruction in HEX

than it is in DECIMAL.

To define another character to look like character 63

("A"), for example, you must first find ouc :chat the patzern

code for "A." 4...s. To accomplish :his, use the ca.1.22A:

instruction. -This instruction leaves the characcer

definition oa

the stack ia :he ;roper order for a CZAR

CP-A27.7F.i... 6
	

6 	GRA2HICS

instruction. Study this line of code -

a X 	&1 	Ca.422 	7E 	 or
DE CD:1AL 65 	CHAR.? AT 	126 C.7.-La

(T

The above instructions place on the stack the character pattern

for "A" and assign the pattern to character 126. Now both character

65 and 126 have the same shape.

SPRITES

SPRITES are moving graphics that can be displayed on

the screen independently and/or on top of ocher characters.

Thirty-cuo SPRIT MS are available.

4.0IGNITICATION

MITES say be defined in 4, different sizes or

magnifications.

C-2:-...4:17.712. 6
	

?AGE

T1 	FOR": H

magnification
factor

0 	Causes all SPRITES to be single size and
=magnified. Each SPRITE is defined only
by the character specified and occupies
one character position on the screen.

1 	Causes all SPRITES to be single size and
magnified. Each SPRITZ is defined only by
the character specified, but this character
expands to fill 4 screen positions.

2 	Causes all SPRITES to be double size and
=magnified. Each SPRITZ is defined by the
character specified along with the next 3
characters. The first character number must
be divisible by 4. This character becomes
the upper left quarter of the SPRITE, the next
characters are the lower left, upper right,
lower right, respectively. The SPRITE fills
4 screen positions.

3 	Causes all SPRITES to be double size and
magnified. Each SPRITZ is defined by 4
characters as above, but each character is
expanded to occupy 4 screen positions. The
The SPRITE fills 16 positions.

The default magnification is 0. To alter SPRITZ

magnification, use the FORTH worm XAGNI77.

mag instr

2 MAGN/77
(G H 3)

will change all SPRIT= to double size and =magnified.

SPRITE L!ITIALIZATION

3efore you begin defining SPRITES, you must ecute the

FORTL word 3= which roughly translates 'sec SPRITZ

'Descriptor :sOie." 3efora e=acuting :his .;-7.1strucci;:h, the

computer must be set into the TOP mode you wish to use with

?AG: 	3 	GR2,2HIOS

SPRITES. Recall that SPRITES are no: available in TEXT

note.

You have a choice of overlapping your SPRITE character

definitions with the standard characters in the Pattern

Descriptor Table (see VDP Memory Hap in Ch. 4) or moving

the SPRITE Descriptor Table elsewhere in memory. This move

is highly _recommended to avoid confusion. HEX 2000 is

usually a good location, but any available 2 (>800)

boundary will do.

base 	add:: 	ins:r

	

2000 	SSDT 	or

	

DECInl 319: 	SSDT
(G H 3)

will move the spa= Descriptor Table to 2000 HEX. Use

the value HEX 800 with the SSDT instruction if you do not

want to move the Descriptor Table.

** NOTE: Whether or not you choose to move the table,

you MUST execute this instruction before you can use SPRITES

in your program!!!

USING SPRIT= 21 317-MA2 MODE

When using SPRITES in any of the 3IT-MA2 nodes

(GRAPHICS?, SPLIT, SPLIT2) , a Little extra -,:ork is

,7.7 ,t_2777. 5
	

17.2,2E:23

FORTH

HEX 3800 ' SATE

The base address of the SPRITE Descriptor Table must

also be changed using the SSDT iastruction. It will be

based at the same address as the SPRITE Attribute List

(>3800), but only a few character numbers will be available

for SPRITE patterns. SPCHAR may only be used to define

patterns 16-58. (See following section for information on

SPCEAR.)

>3800 I SPRITE ATTRIBUTE LIST

>0080

>3880 I SPRiTZ ?Alit,XNS 16-58
(based at >3800)

>39D9 I 	 >015A

CREATING SPRITES

The first task involved in creating MITES is to

define the characters you will use to make :hem. These

definitions will be stored in the SPRITE Descriptor :able

mentioned in the above section.

A word identical in format to Zlia is used to store

SPRIT: character patterns. If you are using a magnificacon

factor of 2 or 3, do not forget that you must define !,

consecutive charact'ers for EACH SPRITZ. In this case, the

character 4 of the first character must be a multiple of 4.

base 	71 	72 	•3 	•4 car tnsor

OFOF 	2424 	FOF0 	4242 	0 	SPCULF.. or

cmknza 6 	PAGE 10 	GRA2HICS

- 	F 	R 7 a

DECIMAL 3855 	925 7 	61680 8770 	0 	SPCZAR
(G H 3)

defines character 0 in the SPRITE Descriptor Table. Lf your

PATTERN and SPRITZ Descriptor Tables overlap, use character

numbers below 127 with caution.

To define a SPRITZ, you must specify the dot column and

dot row at which its upper left corner will be located, its

color, a character number and a SPRITE number: (0 - 31).

base 	dc 	dr col char spry instr

HEX 	6B 4C 	3 	10 	1 	SPRITZ 	or
DECIMAL 107 76 	3 	16 	1 	SPRITS

(G h 3)

def 4 nes SPRIT"-, 41 to be located at column 107 and row 76, to be

lt. blue and to begin with character 16. Its size will depend

on the magnification factor.

Gaze a SPRITE has been created, changing its pattern,

color or location is tri7ial.

base 	char) sprl instr

aEx 	14 	1 	SPRPAI 	or
DECIMAl. 20 	1 	SPRPAZ

(G H 3)

will change the pattern of spa= 41 to character number 20.

base 	col spri instr

ar.X 	' C 	2 	SPRCOL 	or
DEC114.AL 12 	2 	SP RCM.,

	

-1:a Lo1_3:7 	1 	7= 	4 	 y p

muTza 6 	?AGZ.

TI FORTH

HEX 	28 	4F 	1 	SPRPUT 	or
DECIMAL 40 	79 	1 	SPRPUT

(G M B)

will place SPRITE 41 at column 40 and row 79.

SPRITE AUTOMOTION

In GRAPHICS or MULTI-COLOR node, SPRITES nay be set in

AUTOMOTION. That is, having assigned them horizontal and

vertical velocities and set them in motion, they will

continue moving with no further instruction.. SPRITE

automoeion is only available. in GRAPHICS and MULTICOLOR

modes.

Velocities from HEX 0 to 77 are positive velocities

(down for vertical and right for horizontal) , and from FF to

30 are taken as two's complement negative velocities.

base 	xv .7v spr4 instr

HEX 	FC 	6 	1 	MOTION or
DEC/MAL -4 	6 	1 MOTION

(G M)

will assign. SPRITE 41 a horizontal velocity of -4 and a

vertical velocity of 6, but will not actually set then into

motion.

After you assign each SPRITE you want to use a

velocity, you must execute the word :MOTION to set the

SPRI'T'ES in notion. 4MOT70N , :mtects to find on the stack the

SP7 7-7 .11.-=er :'cu

ClqAPTER 6
	

?AGE L' 	GR,Imt.77CS

FORTH

no 	inscr
■■••••■••••■■•■■••

6 :MOTION
G)

will set SPRITES 40 - 45 in notion.

no 	instr

0 414.CTION

will stop all SPRITE AUTOMOTION, but notion will restore when

another :MOTION instruction is executed.

Once a SPRIT.' is in notion, you nay wish to find out

its horizontal and vertical position on the screen at a

riven tine.

spr4 inscr

572RGZ:
(G H 3)

will return on the stack the horizontal position of SPRITE 42

underneath the vertical position. he SPRITE does NOT have to

be in AUTOMOTION to use this instruction.

DISTANCI AND COINCIDENCES 3Z:VEIN S: RITES

It is possible to determine the distance between :WO

MI= or between a SPRITE and a point on :he screen. Inij.s

canabilit -7 osmes 1Ln ':land-7 %.than 	_ 	ne

t^711 ..,1""

(G Y. 3)

returns on the scack :he squA.RE of :he Ois:ahce -:ween

?AG: 13 	11A2H:OS

FORTE

SPRITE 42 and SPRITE 44.

base 	dc dr spr4 instr

DECIMAL 65 21 5 	SPRDISTXY
(G M B)

returns the SQUARE of the distance between SPRITE 45 and

the point (65,21).

A coincidence occurs when two SPRITES become positioned

directly on top of one another. That is, their upper left

corners reside at the same point. Because this condition

rarely occurs when SPRITES are in AUTOMOTION you can set a

tolerance limit for coincidence detection. For example, a

tolerance of 3 would report a coincidence whenever the two

sprites upper left corners came within 3 dot positions of

each ocher.

To find a coincidence between two SPRITES, the FORTH

wont COINC is used.

spr# spr4 tol ins=

	

7

9 	2 	COINC
(G M 3)

will detect a coincidence between SPRITES 7 and 49 if their

upper left corners passed within 2 dot positions of each other.

21 a coincidence is found, a :rue flag is Left on the stack.

not, a falze 	le±t.

:etac -Ing. a 7.-.:=1,:ienca .:?.. 1:7:29.= a 	 a 7cim: .s

TELA.27M 6 ?AG: 	 :17

T
	
FORTH

base 	dc dr sore tol

DECIAL 	63 29 	3 	3 COINCX7

	

(G 	3)

will detect a coincidence between SPRI7: #3 and the point

(63,29) with a tolerance of 3. A true or false flag will

again be left on the stack.

Both of the above instructions will det ect a

coincidence between nonvisible parts of the SPRIT'S. That

is, you may not be able to SEE the coincidence.

Another instruction is used cc detect only VISI3L2

coincidences. it, however, 	11 not detect coincidences

bec.-ween a select 7',;c7 SPR"7 5., 	 r=r”-= a =lie flag

when 4*y*v two SPRITIS collide. This instruction is CCINCALL,

and recuires no arguments.

DELETING SPRITES

As you might have noticed, SPRITMS do not go away when

7cu clear the rest of the screen with CLS. Special

instructions =us,: be used to remove SPRITIS from the

disc lay.

spr4 ins tr

-447 ' r-ove 	 frm :he screen 	alert= Lts

.Lescriptic _ :he STR::: 	 7:2

?A.072 	TR.:.P9TCS

Ti 	FORTH

Map in Ch. 4). It does not remove the velocity of SPRITE #2

from the SPRITE Motion Table, nor does it alter the number of

SPRITES the computer thinks it is dealing with. In other

words, if you were to redefine SPRITE #2, it would

immediately begin moving with whatever speed the old SPRITE

#2 had.

DELALL
(G M B)

on the other hand, will remove all SPRITZS from the screen,

and from memory. DELALL needs no parameters. Only the- SPRITE

Descriptor Table will remain intact after this instruction is

executed.

M.TICOLOR GRAPHICS

MULTICOLOR MODE allows you to display kaleidoscopic

graphics. Each character position on the screen consists of

4 smaller squares which can each be a different color. A

cluster of these characters produces a kaleidoscope when the

colors are changed rapidly.

After entering MULTICOLOR MODE, it is necessary to

initialize the screen. The MINI: instruction will

accomplish this. it needs no parametera.

','hen 	=COLOR `:ODE, :he columns are cumbered 0-63

and rows are r:umbered 0-47. .= 71- 1 : 4 znior character !. -.s

the size of a standard character; therefore more of them fit

across and down the screen.

CEA27ZR 6
	

?AGE :6 	GRAPHICS

FORTH

To define a multicolor character, you must specify a

color and a position (column, row), and then execute the

word nCHAR.

base 	color col row inst .:

ax 	3 I A 2C VC?R
ECl2TAL 	11 	26 	44 	MCR.-0.

The above instruction will place a lt. yellow square az

(26,44).

To change a character's color, simply define a

different color 	with the sam= bosit 4 on. In other

words, cover the existing character.

USING JOYST7C-43

The jOYST instruction allows you to use Joysticks in

your FORTH program. jOYS7 requires only one parameter; a

Keyboard number. The Keyboard number tails the computer

which Joystick or which side of the Keyboard 	scan for

input. r,rnen Keyboard 41 is specified, both Joystick AI and

the left side of the Keyboard are scanned. When Keyboard

is specified, Joystick 42 and the right side of the Keyboard

are scanned. A "'Key Pad" exists on each side of the

;hen Joystick :%1 is spec'r 4,=-"

7,11A277R 	PACZ ti

T1 	FORTH

Q
	

W'
fire
	

diag. up 	diag. 	Legal input keys on
the LEFT side of the

S 	D 	 Keyboard. Q is used
left right 	 as the FIRE button.

X
diag. down diag.

When Joystick 42 is specified:

0
fire 	diag. up 	diag. 	Legal input keys on

the RIGHT side of the
Keyboard. Y is used

left right 	 as the FIRE button.

diag. down diag.

TIne J07.5: instruction returns 3 numbers on the stack:

an ASCII coda (on the bottom of the stack), an X Joystick

status, and a T. Joystick status (on the top of the

stack). The Joystick positions are illustrated in the

following diagram.

C3A.2= 5 071,A2H:cs

T 1 	FORT

V

E,I
(0,4)

w,U
	

R,0
. t7C,4)
	

(4,4)

0,K
(FC,0)y■Wjl.yrmp■mrmolrmmr.mw■■ (0 0) 	 (4,0) x

("FC, 7C)
	

(4,FC)
C,,

(0,FC)
X,M

Ham 7C equals decimal 252.

The capital letters indicate which keys on the
left and right side of the keyboard return these
values.

****NOTE**** The ascii value of all. FIRE buttons
is 18.

I! mo Keyboard key is pressed, the returned values will

be an ascii code 255, and the current K and Y Joystick

positions. /I a Keyboard key was pressed, the ascii value

of that key will be returned along with its translated

directional meaning (see above diagram).

If an illegal Keyboard key is pressed, three O's will

be returned. I! the TZRZ button is pressed, an ascii 18

alon7 	 •-„

,
,.:aer-wlse use czle carae numoers l afL on the stack before

calling JOYS7 again. A stack over .flo%; 	rasuic 	do

COL .

Cakr=7... 6
	

PAGZ 19 	CR.A2ETCS

FORT

:07 GRAPHICS

High resolution (dot) graphics are available in

GRAPHICS2, SPLIT, and SPLIT2 nodes. In GRAPHICS2 node, is

is possible to independently define each of the 49132 pixels

ca the screen. SPLIT and SPLIT2 modes allow you to define

the upper two thirds or the lower five sixths of the

pixels.

Three dot drawing codes are available:

1) DRAW - plots dots in the 'on' 	state
2) UNDRAW - plots dots in the 'off' state
3) DTOG - toggles dots between the 'on' 	and

'off' 	state. 	I! the dot is 'on', DTOG will
turn it 'off' and vice-versa.

:he value of a variable called DMODE controls which

drawing node you are in. II DMODE..0, you are in DRAW mode.

:2 DMODE..1, you are in =DRAW node, and if OMODE=.2, you are

in DTOG node.

To actually plot a dot on the screen, the .00T

iastruction is used. You must specify the dot column and

dc: row lt the pixel you wish to plot.

base 	dc dr ins=

:707.11AL2 S

2,12

CE PT PAGE 20 	GRAPHICS

Ti 	FORTE

The default color for dots is white on transparent.

The screen color default is black. To alter the foreground

and background color of the dots you plot, you must modify

the value of the variable DCOLOR. The value of DCOLOR

should be two HEX digits where the first digit specifies the

foreground color and the second specifies a background

color. Why do you need a background color for a dot? There

is a simple explanation. Each dot represents one bit of a

byte in memory. Any bit in the byte that is turned 'on'

displays the foreground color while the others cake on the

background color. Usually, you would specify the background

color to be transparent.

The FORTE instruction LINTS allows you to easily plot a

line between ANY two points on the 3IT-MA2 portion of the

screen. You musc specify a dot column and a dot row for

each of the =o points.

base 	dcl dri dc2 dr2 instr
411.1M•71111.00116

DECII19L 	Z3 	12 	56 _■ 0 	73 	LINZ

The abc•re instruction will plot a line from left to

right between (23,12) and (56,78). The LINE instruction

calls OCT to plot each ociat f",.hert,icra -7n ALL

Cati2TER 6 	?AGIT. 	GR.APH7Cs

TI 	FORTH

SPECIAL SOUNDS

Two special sounds can be used to enhance your graphics

application. The first is called BEEP and produces a

pleasant high pitched sound. The other; called HONK,

produces a less pleasant low tone. To use these noises in

your program, simply type the name of the sound you want to

hear. No parameters are needed.

CONSTANTS AND VARIA3LIES USED :11 GRAPHICS ?RCORAMMING

he following constants and variables are defined in

the GRAPHICS routines. The value of COLTA3, ?DT, SATR,

SMTN, and SPDTAB must be changed if you are operating in

GRA2HICS2, SPLIT, or SPLIT'_ node.' See the VD? Meory

Chapter 4.

name type description default

COLTAE C 7DP address of Color Table HEX 380
DMODE 7 Dot graphics drawing mode a
?DT C VD? address of Pattern Desc. Table HEX 800
SATR C 7DP address of Sprite Actrib. Table HEX 300
afrN C 7DP address of Sprite Motion Table HEX 780
SPDTAS, 7DP address of Sprite Desc. Table HEX 800

I 	FORTH

CHAP-I-Ea 7

THE FLOATING POINT SUPPORT PACKAGE

WORDS INTRODUCED IN THIS CHAPTER

>ARG FO< FMUL
>F FO= FOVER
>FAC F< FSUB
?FLERR F= ?SWAP
ATN F> IN:
COS Fl LOG
EX? FAC->S PI
F! FAC> S->F
-* : FAC>ARG S->FAC
7+ ;ADD SETFL
F- FD IV SIN
7->S FDUP SQR
F. FF. TAN
.a TF.R 7AL

7/ FLERR

The floating point package is designed co cake it easy

to use the Radix 100 floating point package available in RCM

in the TI-99/4A console. Normal use of these rouziaes does

not require the user co understand the implementation. For

chose users desiring to improve the effeciency of these

operations by optimizing the code for this implementation

the details are given La the latter portion of this

chapter.

The floating point numbers in the 99/4A occupy 4 words

(S bytes) each. In order to simplily stack manipulations

zL. 71 	;cr -.::;

point numbers can be stored and fetched 	usi.t.,z the 7: and

Fe- words. The user must ensure that adequate sztrage

allocated for these au=te:a (e.g 	0 TAa:AaLZ an= t ALLOT.

C--4" 4 z -77.. 7

T
	
FORTE

could be used. VARIABLE allots 2 bytes.)

The following words put floating point numbers on the

stack so that the above operations can be used. A 16-bit

number can be converted to floating point by using the S->F

word. It functions by replacing the 16 -bit number on the

stack by a floating point number of equal value. Its

inverse is F->S which starts with a floating point number on

the stack and leaves a '16-bit integer. In addition the word

>F can be used from the console or in a colotrdefinicion to

convert a string of characters to a floating point number.

note that >F is independent of the current value of SASE.

The string is always terminated by a blank or carriage

return. The following are examples:

FLOA:ING POINT NUMBER ENTRY

>F 123
>F 122.436
>F -123.436789
>F 1.234E-6
>F 9876g88
>F 0

or 	123 S->F

or 	0 S->F

Floating point arithmetic can now be perforned on the

stack just as it is with integers. The four arithmetic

operators are: F# , F , F* and F/ . The word ?I is

available to place 3.141392653590 on the stack.

Cznpar_sons between 	 ;dint =bars and _es:_ :g

again s: 	172 7r7;V:a?.:: 	 71ley are

zsed 	 7.ne..r 	 e=da7d

:abets zeszed are fidar:Laz

7""' 	• -"-",•"" 	7r`

I 	FORT H

FLOATING POINT GOHPARISON WORDS

FO< True if fl on stack is negative
FO True if fl on stack is zero
F> (fl1 	f12 	f 	f is true if f11 > fl2 —)

(fll 	f12 	f 	f is true if fll f12)
F< (fll 	fl2 	f is true if fll < f12) 	f

The word F. is used to print the floating point number

on the cop to the stack to the terminal. The format used is

identical to that used by 3ASIC:

1) Integers representable .cactly are printed without
a trailing decimal,

2) Fixed point format is used for numbers in range and
3) Exponential (scientific) format is used for very

large or very small numbers.

If the floating point numbers are to be output in a

cable the word F.R can be used to right justify it in a

field of width 3 where R is a 16-bit word added to the top

of the stack for this purpose.

Two additional words are used for more specific

formati=2. they are 77. and 	77. requires two

integers on the stack above the floating point nt=ber. They

control the maxim= number of digits to convert and the

number of digits following the decimal point. 177.,a adds the

printing field width to this to make a total of three

-ax-digits cig-arter-. tieJ.c winch ---

CriA2=,.. 7
	

3 	7..,O.A.1. 7:27(.; PC :"..7.7

T I 	IF 0 R T 11

The following transcendental functions are also

available:

TRANSCENDENTAL FUNCTIONS

tar

SQR
E72
LOG
COS
SIN
TN
ATN

fll 	fl2
fll fl2 	f13
Ell --- f12
fll 	fl2
fll 	f12'
!II 	fl2
fll --- 112
Ell --- f12
fll 	fl2

Returns largest integer not larger then the input
F13 is fll raised to the f12 power
F12 is the square root of fll
F12 is e (2.718281828...) raised to the f11 power
F12 is the natural log of fll
F12 is the cosine of fll (in radians)
F12 is the sin of fll (in radians)
F12 is the tangent of fll (in radians)
F12 is the arctangent (in radians) of fll.

CAUTION! A conflict exists when using transcendence's

and floating point prints while in bit-map mode. The

contents of the VD? Rollout Area (>3C0 - >3DF) must be

saved before a transcendental or floating point print is

executed, and restored upon completion.

'I* NOTE: The transcendence's also use the area known as

the stack for VSPIR (See VDP Xemory tap in Ch. 4). This

area is pointed to by >836E.

The remainder of the chapter will address the interface

to the floating point routines in the console in greater

detail and is not necessary for most floating point use.

The floating point routines ase zwo memory locations in

the console C?U ram as floating point registers. They are

called FAC (for floating point accumulator) and ARC (for

argument register). 1ORT2 as c-uo constants with chase sane

mame :hat •:..am. ze sen =o ache:sz :hese

.ores >F _C and >Aac move ±loacing point datathe

C3A2771 7 	?AGE 	FLOA=NG ?CI=

T I 	E 0 R T

stack to these two locations. FAC> is used to move data

from FAC to the stack. Each of the binary floating point

operations require that two numbers be roved from the stack

to FAC and ARG. SE771 does this by calling >FAC and >ARC .

The words FADD , FSUB , FMTL and FDIV each use the values in

FAC and ARC and leave the result in FAC as they perform the

floating point arithmetic functions.

When conversion from 16-bit integer to floating point

is performed, it is done in the FAC . If the user desires

the result to remain there rather than to be brought back to

the stack the word S->FAC can be used.

Several miscellaneous words include FAC->S to convey:

the contents of FAC to a 16-bit integer on the stack.

FAC>ARC moves the contents of FAC to ARC . VAL is used to

convert a string at PAD to a floating point number. FLERR

is used to fetch the contents of the floating point error

register (see Editor/ Assembler manual) to the stack. If

there is a possibility of a floating point error condition

?FL'-.RR can be used to test for and flag such a condition.

CEATITIR 7 	?AGI 	 71,CA=G .707,17:

C:- '=3 3

ACCESS 70 FILE I/O USING 99/4A DEVICE SERVICE ROUT: ES

WORDS INTRODUCED al TEIS CHAPTER

APPND I/OMD REC-NO
CHAR-CNT! LfiPT R.LTV
CEAR-CNT@ RSTR

L
T
D scR:ca CEK-STAT

MR-STA: -LEN1 SET-PA3
CL SE OPN SQNTL
DLT OUTPT STAY
DOI/0 PA37ADDR SST
DSPLY PAB-SU7 SWCE
F-D" PAB-VBUF UNSW'C'2
FILE FIT-FLAG U7 137
17= RD VRBL
GET-FLAG REC-LEN WR:

This chapter will emrlain the means by which different

types c: data files native to the 99/4A are accessed with

TT-FOR:E. To further_illustrace the material, 	commented

examples have been iacluded on the last pages of this

chapter. The first demonstrates the use of a Relative disk

file, and the other a Sequential RS232 file.

A group of FORTE words has been included in :his

version of :I FORTH to permit a Foam program to reference

common data with BASIC or Assembly Language programs. These

words implement the file system described is :he 7: BASIC

and EDITOR/ASSEMBLER manuals 	Note that the diskette on

which you received your TI FORTE system is NOT a standard

FORTE scIrENs,

C-1 4.271-',. 3
	

?AGT: 	ACCZSS 7C 7:77

7 I TORTE

Before any file access can be achieved, a Peripheral

Access Block (PA3) must be set up which describes the device

and file to be accessed. Most of the words is this chapter

are designed to make manipulation of the PAB as easy as

possible.

A PAB consists of 10 bytes of VDP lAM plus as many

bytes as the device mane to be accessed. An area of VD? RAM

has been reserved for this purpose (consult the VDP Memory

Map in Chapter 4) The user variable ?ABS points to the

begining of this region. DO NOT use the first 2 bytes of

this area as they are used by FORTH in its FORT—style disk

access. Adequate space is provided or =any PA3s in this

area. The !allowing diagram illustrates the structure or a

?A.B.

Byte 0 	 i Byte 1
I/O Op—code 	 I 	Flag/ Status

Bytes 2 & 3
Data Buffer Address in VD?

Byte 4 	 I Byte 5
Logical Record Lengthi 	Character Count

Byte 6 & 7
Record Number

Byte 8
	

1 Byte 9
Screen Offset
	

1 	name Length

Byte 10+
Descriptcr

F-_2 177% 3 ACCZSS :0 772:: : 0

TI 	FORTE

All De/ice Service Routines (0SRs) on the 99/4A expect

to perform data transfers to/frcm the VD? RAM. Since FORTS

is using CPU RAM it means that the data will be moved r.-wide

in the proceis of reading or writing a file. Three

variables are defined in the FILE I/O words to keep track of

these memory areas.

VARLA3LES USED BY FILE I/O

P33-ADDR 	Points into VD? RAM to first byte of the PA.3

?A.3.-3UP

?33-V3U7

Points into CPU RAM to first byte in
FORT'S memory where allocation has been
made for this buffer

?oints into 70? RAM to first byte of a
region of adequate Length to store data
temporally while it is transfered between
the file and FORTE. The area of VD? which
is used for this purpose is fabled "1=SED"
on the VD? Memory Hap in Chapter 4. If
working in bit-ma? mode, be cautious as to
where PAB-V3U7 is placed.

The word FILE is a defining ::ord and permics you to

create a word which is the name by •hicn the file will be

known. A decision must be made as to the location of each

of the above buffers before the word FILE may be used. he

values to be used for the above variables are placed on :he

stack in the above order followed by FTLE and the file nAme

(not necessarily the device name). For Example;

CaAPTER 3 'J‘e"'":

TI 	FORTE

USING TEE DEFINING WORD 'FILE'

0 VARLABLE MY-BUF 78 ALLOT 	(Create 80 character buffer)
?ABS @ 10 	 (PAB starts 10 bytes into)

(region for ?ABS (PAB-ADDR I)
MY-BUr 	 (Location of PAB-3UF)
6000 	 (A free area for PAB-VBUT)
FILE JOE 	 (Whenever the word JOE is)

(executed, the FILE I/O variables
(will be set as defined here.)

JOE 	 (Use the word before using any)
(other FILE I/O words)

The word that creates the ?AB skeleton is SET-PAL It

creates a ?AB at the address shown in ?AB-ADDR and zeros it

encept for the buffer address slot. Into this it places the

contents of the variable ?AB-TSUI:.

an the 99/4A have various charactistics which are

indicated by keywords. The following table describes the

available options. ,:he example in the back of the chapter

will be helpful in that it shows at what tine in the

procedure these words are used. Use only the attributes

which apply to your file and ignore the others. Remember,

if you are using multiple files then the one referenced is

the one most recently eased.

•

:_LOESS :0 	0

T: 	FORTE

FILE ATTRIEUTE C;ORDS

Options

Attribute Type1 From BASIC Frym FORTH Description

File Type 	I SEQUENTIAL SONTL

RELATITF. 	R1',27/

* Records may only be accessed
in sequential order

Accessed in sequential or
randcm order. Records must
be of fined length

Record Type 	I FIXED
	

* All records in the file are
the same Length

VAILkBLE 	IIRBL
	

Records is the same file nay
have different lengths

Data Type 	I DISPLAY 	DSPLY 	* File contains printable or
displayable characters

arrE2NAL 	:NTRNL 	File contains data in
nachine format

:lode of 	I INPUT 	=PT 	File contents can be read
Operation 	 from but cot written to

I OUTPUT 	OUT7T 	File contents can be written
to but act read from-

MA= 	UPDT 	* File contents can be written
to and read from

I APPEND 	APPND 	Data may be added to end of
File but cannot be read

* Default if attribute is not specified

To specify the record length for a file, the desired

length should be on the stack when the word RZC-LZN

executed. The length will be placed in the ?A.B. lver7 lila

must have a mane to speci.t, the device and file to be

accessed. This is performed with the the F-D" word :.nick

enters tae

C2A2771a 3 ?AG: 	5 	ACC:SS TC F:1-

TI 	FORTH

F-D" RS232.BA=9600"
F-D" OSK2.FILE-ABC"

The actual I/O operations are performed by the

following words. The table gives the usual. BASIC keyword

associated with the corresponding FORTH word. Here, as in

the previous table, the FORTH words are spelled differently

than the BASIC words to avoid a conflict with one or more

existing FORTH words.

WORDS THAT PERFORM FILE I/O
From BASIC 	Frvm FORTH
	

DSR Opcode

OPEN 	 OPN 	 0
CLOSE. 	 CLSE 	 I
READ 	 RD 	 2
WRITE 	 WRT 	 3
RESTORE 	 RSTR 	 4
LOAD 	 LO 	 5
SAVE 	 By 	 5
DELETE 	 DLT 	 , /
SCRATCH 	 SCRTCH 	 3
STATUS 	 ST AT 	 9

OPIT opens the file specified by the currently selected

?AB. (LSE worts similarly for closing a file.

Before using the RD, WRT, and SCRTM instructions with

a Relative file, you must place the desired record =umber

into the 1PA3. To do this, place the record dumber on the

stack and execute the word REC-NO. Lf your file is

3equent -Lai, you :eed not Co th::s.

he RD 4...ms:ruction 	transfe- 	ccmc=n-s

record into your ?A3-3U7 and Leave a character count on the

stack. nRT takes a 	trum: from :he stack and moves

CHAP= 3 ?ACT:. 	S 	ACCZSS :0 F:IZ :/0

7' 7 FORTE

that number of characters from the PAB-BUT to the desired

file. RST1 takes a record number fram the stack and

restores a relative file to that record. LD and SV are used

to read and write program files respectively. They each

require a byte count on the stack. For SV this is the

number of bytes to save; for LD it is the maximum number of

bytes to read. Both of these commands expect or place the

data in the VD? RAM at the address specified in PAZ-V1UF.

OPN and CLSE need not be used with LD and SV . DLT is used

to delete a file. SCRTC2 is used to remove a relative

record. :: requires a record number on the szack. 5TH:

recurns the status of the specified device/file.

The words GET-FLAG , PUT-FLAG , CLR-STAT , CHK-STAT ,

I/OMD , CH.A7gT! , 	 , N-L.T.N1 and 00I/0 are

available for the advanced user and their utility will be

obvious to that user when the definitions on disk are

examined.

Examples of File I/O in use are available on the

=ENS that define the Alternate I/O capabilities for -

printing to the RS232.

ALTERNATZ INPUT AND OUTPUT

The .ports 	 ,,,;SWC-.1 make 	0:715i1 	 enb

ourmal7 out ups

to :Me monitor. 	Ii7pinq

C2A27:2 3 	?AG,: 	i 	.1,Cat'SS :0

T
	
FORTH

F-D" RS232.BA9600"
F-D" DSK2.FILE-A3C"

The actual I/O operations are performed by the

following words. The table gives the usual BASIC keyword

associated with the corresponding FORTH word. Here, as in

the previous table, the FORTS words are spelled differently

than the BASIC words to avoid a conflict with one or more

existing FORTE words.

WORDS THAT PERFORM FILZ
Fran BASIC 	 Frew FORTH
	

DSR Opcode

OPEN
	

OPN
	

0
CLOSE
	

LSE
READ
	

RD
'Warn:
	 Wes: 	 3

RESTORE
	 asTa 	 4

LOAD
	

5
SAVE
	

S7 	 6
DELETE
	

OLT 	 7
SOATCE
	

SCRTCZ 	 3
STATUS
	

STAT 	 9

OPN opens the file specified by the currently selected

?AB. CLSZ works similarly for closing a file.

Before using the RD, WM", and SCRTCa instructions with

a Ralat 4 ve file, you must ?lace the desired record =umber

into the PA3. To do this, place the record number on the

stack and execute the word IEC-NO. if your file is

leguenzial, ;Cu teed hot

71ne 	4 mstructi.:m 	transfer 7:he concents :f the

record into your PA3-3117 and leave a character count on the

stack. WRT takes a character .cunt from :he stack and _moves

CaAFTER 3
	

?AGE 	ACCESS TO :TIE :/0

FORTE

FILE I/O EILiPLZ 41: Relative Disk File

Instruction 	 Cornnen:

HEX 	 Change number base to Hexadecimal
0 VARIABLE BUFR 3E ALLOT Create space for a 64 byte buffer

which will be the PAB-BUT
?ABS 1 A 	 PA3 starts 10 bytes into ?ABS.

This will be the ?A.B-ADDR
BUFR 1700 	 ?lace the ?AB-BUF and ?A3-VBUT on

stack in preparation for FILE
FILE, TESTFIL 	 Associates the name TESTFIL with

these three parameters
TESTFIL 	 File name must be executed before

using any ocher File I/O words
SZT-PA2 	 Create ?AB skeleton
RLT7 	 :lake TEST7IL a Relative file
FXD 	 Records will be of Fixed length
DSPLY 	 Records will contain printable

information
40 REC-LEN 	 Record length is 64 (>40) bytes
F-0" MK:Z.:EST" 	 Will create a disk file called TEST
OEN 	 Open the file

• 	• 	• 	• 	• 	• 	• 	• 	• 	• 	•

To write more than one record to the file, it is necessary to
write a procedure. This routine nay be composed on a FORTH
SCREEN beforehand and loaded at this time.

FLT -WRT 7E37DX:A 	TESTDATA is AS5U= to be the
beginning memory address of the
information to be written to
the Vie

10 0 DO 	 Want to write 16 (>10) records
DC? 	 Duplicate address
BUR 40 COVE. 	'Aave 54 bytes of the information

into the ?A3-3U7

	

REC-NO 	 ?lace record number into ?A3
40 G41t.2

	

	 Write one 54 byte record to the
disk

40 + 	 Increment address for next record

	

LOOP DROP 	 Clear stack

	

C.- A -P717.1 3
	

TO 7n2 :/0

FORTE

Execute writing procedure
4 REc-NO RD 	 Choose a record number to read

(4 is chosen here) to
verify correct output. A byte
count 	be left on the stack
and the read information will be
in BITFP.

sum 40 DUMP 	 Print out the read information
to the monitor.

DUMP routines must be loaded)
CISE. 	 Close the file

3
	

?ALE r .
'3 TO

7ORTE

FILE I.

0 77.AnpTE 	Sequential RS232 File

Instruction
	

Comment
••••••■■■■,■•

REX 	 Change number base to Hexadecimal
0 VARIA3LE %Y-3UI-7 4E ALLOT Create a 80 character PA3-3U7
PA3S @ 30 + 	 Skip over previous PA3. This

will be the PA3-A3DR
XY-BU7 1900 	 ?lace the PAZ-BUT and ?A3-VBUT cn

stack in preparation for FILE
FILE PRNTR 	 Associates the name FRN711 with

these three parameters
PRNTR 	 File name must be executed before

using any other File L/0 words
SET-FAB
	

Create a ?A3 skeleton
DSPLT
	

PRNTR will contain prim table
infor=ation

PRNTR may be accesed only in
Sequential order

Viii., 	 Records =a7 have variable leng:ns
30 3EC- 7-EN
	

Maximum record length is 30 dna:.
F-0" 1S232.8,A=9800"
	

?FT:1 wi" be an ?52.32 f. 3aud
rata = 9600.

CPN 	 Open the file

A procedure is necessary to write more than one record to a
file. A file-write routine nay be composed on a FORTH SCREEN
beforehand and loaded at tn is time. The following is a stmplz
example.

?RN FILE-LN70

20 0 20
DL?
TZ-31.7.7 30 C!CVE

50 WR:
50 +

LOOP DROP

771-:-21770 	assumed to be to e_
beginning address in memor7 of
the information to be sent to :ne
printer

W 411 write 32 records
address

Move 30 characters f==
to HY-3117

Write one record to pri=ter
Increment address on stack
Clear stack

Execuze 	orocedure

ca2,27,77, 3 .77

T _ 	TORTE

MUTER 9

TEE TI FORTH 9900 ASSEM3LER

The assembler supplied with your TI FORTH system is

typical of assemblers supplied with fig-FORTH systems. It

provides the capability of using all of the opccdes of the

9900 as well as the ability to use structured assembly

instructions. It uses no labels. The complete FORTE

language is available to the user to assist in macro type

assembly, if desired. The assembler uses the standard FORTH

convention of Reverse Polish Notation for each instruction.

For example the instruction to add register 1 to register 2

1 2 A,

As can be seen in the above example, the 'add'

instruction mnemonic is followed by a comma. Every opcode

is this FORTE assembler is followed by a comma. The

significance is that when the opcode is reached during the

assembly process, the instruction is compiled into the

dictionary. The comma is a reminder of this compile

operation. It also serves to assist in differentiating

assembler words frcm the rest of the words in `he 77 TOW":

:=p.Let2 	 ,FcR7a

hnze=ca.:;:z 	3.ver.

CEAPT 9
	

?AG' 	TOR77 	17,

TI FORTH

9900 ASSEMBLY MNEMONICS

A, JEQ, 	 RSET,
AB, 	 JGT, 	 RTWP,
A3S, 	 IR, 	 .5,
AI, 	 JHE, 	 SB,
.ND I , 	 JL, 	 SBO,
B, JLE, 	 SBZ,
BL, 	 JLT, 	 SETO,
31.W13 , 	 JM13 , 	 SLA,
C, JNC, 	 SOC,
CB, 	 JNE 9 	 SOCK,
CI, 	 JNO, 	 SRA,
CROP, 	 JOC, 	 SRC,
CRON, 	 JOP, 	 SRI.,
CLR, 	 LDCR, 	 STCR,
COC, 	 LI, 	 STST,
CZC, 	 LIMI, 	 STP,
DEC, 	 LREX, 	 SPB,
DEC, 	 LWPI, 	 SZC,
D:V, 	 MOV, 	 SZCB,
IDLE, 	 MOVB, 	 TB,
INC, ,LcrY, 	 X,
INC:, 	 NEG, 	 :COP,
INV, 	 ORI, 	 XOR,

These words are all available when the assembler is

loaded. Only the word C, conflicts with the existing FORTE

vocabulary.

Most assembly code in FORTH will probably use FORTH's

workspace registers. The following table describes the

register allocation. The user may use registers 0 through 7

for any purpose. They are used as temporary registers only

within FORTH words which are themselves written in 9900

assembly code.

CHAT: 72. 9 	PAGE 	 FORTH ASSFIA.BLZR

FORT H

FORTE'S WORKSPACE REGISTERS

Reg Name 	Usage

0
1
2
3 	 \ These registers are available.
4 	 / They are used only within FORTE
5 	 I words written in CODE.
6
7
U? 	Points to base of USER VA2iA3T1.2 area
S? 	Parameter Stack Pointer
pH 	 Inner Interpreter current Word pointer
11 	LINKage for subroutines in CODE routines
12 	Used for cmr instructions
LP 	interpretive Pointer
1? 	Return stack Pointer
NEXT 	Points to NEXT instruction fetch routine

'When the assembler i5 Loaded, it is loaded into the

ASSZYMER vocabulary. To use the assembler, t•-pe ASSEISLE2

to make it the context vocabulary. Assembly definitions

begin «ith either the word CODE or ;CODE These are used in

the fallowing way:

ASSEMLER
CODE 	=AMPLE

This begins the definition of a code routine named

EXAMPLE. The above words «ould be followed by assembi7

mnemonics as desired. ;CODE is used as very much like the

word DOES>

CEA2771,

F 	la

ASSEM3LER
DEF-WRD

. an existing defining word must be included

. here to create the dictionary header.

;CODE
assembly mnemonics

Lacer .-hen the newly created defining word OEF-'filD is

executed in the following form, a new word is defined.

DEF-WRD EST

This will create the word '.ST which has as ics

execution procedure the code following ;CODE .

We will cow introduce chose words that permit this

assembler to perform the •artous addressing modes of which

the 9900 is capable. Each of the remaining .samples will

show both the FOR assembler code for various instructions

and the more conventional method of coding the same

tzstructions.

WORKSPACE REGIS= ADDRESSING

Forth 	 Conventional Assembler

CODE Eli
1 2 A,
3 INC,
3 777C AgDI,
NEX:,

0E7 EX:
=1 	A 	R1, R2

INC R3
ANDI R3,>F77C

*R13

17MbOL:c: addresst.nq

'Isad af..ter the address.

PAGE
	

FOR7a ASSIIIBLZR

Faa7 a

SYMBOLIC MEMORY ADDRESSING

" 	. :ortn Conventional Assembler

0 VARIABLE 7AR1
5 VARIA3LE VAR2
CODE EX2
VAR2 @() 1 HOV,
1 2 SRC,
1 VAR1 @() S,
7:R2 2() VARi 2() SOC,
MMT,

VAR1 	3SS 2
VAR2 DATA 5

DEF EX/
EX/ 	MDV @VAR2,RI

SRC R1,2
S 	R1,@VAR1
SOC @VAR2,@VARI
3 	*R15

Workspace Register Indirect addressing is done :with the

*1 word. It is used aster the register number to which it

pertains.

WORKSPACE REGISTER :2MIRECT ADDRESSING

Forth 	 Conventional Assembler

2000 CONSTANT YAM 	 MRAH EQU >2000
CODE EX.1 	 0E7 772

17-AM :.I, 	 EX3 	 11,2LRAM
1 *? 	H07, 	 HOV *R1,22

3 	*RI5

Workspace Register Indirect Autoincremenc addressing is

done with the *?-i- word. :t is also used after the register

:o which it pertains.

WORKSPACE REGISTER 21-p:azo-: AUTOINCRIMENT ADDRESSING

Forth. 	 Conventional Assembler

2000 CONSTAIIT XL AM
CODE EX4

MRAM EQU >2000
0E7 	Tx4

C7 1.277. 9 	PAC:. ASSZ-131.Z2

TI FORTE

The final addressing type is Indexed Memory

addressing. This is performed with the @(?) word used after

the Index and register as shown below:

INDEXED MEMORY ADDRESSING

Forth
	

Conventional Assembler
• ■•••■■■■■■■■■••■•■

2000 CONSTANT XRAM
CODE EX5
XRAM 1 @(?) 2 MOV,
XRAM 22 + 2 @(?)

XRAM 26 + 2 @(?) MOV,
NEXT,

XRAM EQU
DEF

EX5 	MOV
MOV

NEX°1' ,

>2000
EX5
@XRAM(R1),R2
XRAK+22@(2),XRAM+26@(2)

In order to make addressing modes easier for the W, RP,

.IP, SP, UP and NEXT registers, the following words are

available and eliminate the need to enter the register name

separately.

ADDRESSING MODE WORDS FOR SPECIAL REGISTERS
•

Register Addr 	Indirect 	Indexed 	Indirect Autoincrement

W

•••■•■■■=pli

*w @(W) *W+
RP *RP @(RP) *RP+
Lp *12) 41/2+
SP *SP @ *SP+
DP *Up @(UP) *UP+
NE= *NEXT @(NEXT) *NFX7+

This assembler also permits the user to write

MIZ 	 :lanner 74-11-7

constructs. The major difference is that rather than taking

a value from the stack and using it as a true/ false flag,

the processor's condition register is used to determine

C7AP=
	

PC2'. h 	FCRTR ASSTMSL!R

T I FORT

whether or not to j.1-mp. The following structured constructs

are implemented:

STRUCTURED ASSEMBLER CONSTRUCTS
.114MININIIM!■••••••■•■•••• 	 ••••■••••4M4••■■•■■■•■••••■■••■•41M

IF, 	ENDIF,
IF, 	... ELSE, 	... ENDIF,
BEGIN, ... UNTIL,
BEGIN, ... AGAIN,
BEGIN, 	... wHz.z, 	... REPEAT,

The three conditional words in the previous list (IF,

UNTIL, WEILL',) must each be preceeded by one of

following jump tokens:

the

ASSEHBLER jU2.12 :CKENS

Token 	Comment

EQ 	True if = 	 (uses jNE)
CT 	True i.r! signed > 	 (uses JGT SM.?)
GTE 	True if signed > or = 	(uses JL)
a 	True if unsigned > 	 (uses JLF.)

True if unsigned > or = 	(uses JL)
L 	True if aasigned < 	(uses JEI)
LE 	True it unsigned < or = 	(uses JE)
L: 	True if signed < 	 (uses jLT $-4-1 IMP)
LT.. 	True if signed < or = 	(uses JOT)
NC 	True if No Garry 	 (uses JOC)
NE 	True if equal bit not sec 	(uses JEQ)
NO 	True if No Overflow 	(uses JNO $+1 .2 422)
NS' 	True if Not odd Parity 	(uses JO?)
OC 	True it Carry bit is set 	(uses INC)
CO 	True if Overflow 	 (jNO)
OP 	True if'' Odd Parity 	(uses JO? S+1 JMP)

The following example is designed to show 'no ,..1

Ca:kr= 9 	?AG: 	FORTH ASSEMBLER

Tr 	FORTH

ASSEMBLY EXAMPLE FOR STRUCTURED CONSTRUCTS

Forth 	 Conventional Assembler

(GENERALIZED SFIFTER) 	* GENERALIZED SHIFTER
CODE SHIFT 	 DEF SHIFT
*SP-i- 0 MOV, 	 SHIFT MOV *S?+,R0
NE LF, 	 SEQ L3

*SP 1 MOV, 	 MOV *SP,R1
0 ABS, 	 ABS RO
GTE IF, 	 JLT LI

1 0 SLA, 	 SLA R1,0
ELSE, 	 .41'T L2

1 0 SRL 	 LI 	SRL RI,0
ENDIF,

1 *S? MOV, 	 L2 	MOV R1,*SP
ENDIF,

NEXT, 	 L3 	3 	*NEXT

One word of caution is in order. The structured

constructs shown above do not check to ensure that the jump

target is within range (+127, -123 words). This will be a

problem only with very Large assembly Language definitions

and will violate the FORTE philosophy of small, easily

understood words.

CHAPTER 9 	?AGE 3 	FORTH

CHAPTER 10

:NTERRUPT SERVICE ROUTINES 	:-.'s)

The TI-99/4A has a built-in ability to execute an

Lnterrupt routine every 1/60 second. This facility has been

axtended by che TT FORTH system so that the routine to be

executed a: each interrupt period may be writ:en in FORTH

rather than in assembly language. This is an advanced

programming concept and its use depends on the user's

,:nowledze of :he 7:-99/4A.

Th. User Variables :sa and TITTLNK are provided 'to

insist :he user in using ISR's. Ini!a" ,7, they each

contain :he address of the link to :he FORTH :SR handler.

sorrectly use User Variable =SR the following steps

shot;Ld to 40 11 o:ze. ,4 :

INSTALL:NG A FORTH LANGUAa D.17.2',RRI:77 SERVICE ROUT;=

1) Create and :est a FORTH routine co perform :he 	function.
1\ Oecermne che Code Field Address (CFA) 	of 	the routine in 	1
3) r;rite 	the CFA from 2 'nto :SR

grite 	:he contents of 	:NTLNK into (hex) 	83C. 	(decimal) 33732

:he :SR linkage nechanism is designed 5...) that your

interrupt ser7ice routine will be allowed co execute

'msde-'iately a 4zer each time the To= system axecutes a NZ=

:=Ra:73,7 	 2777=3

TI 	FORTH

Before installing an ISR you should have some idea of

how long it takes to execute, keeping in mind that for

normal behavior it should execute in less than 16

milliseconds. ISRs that take longer than that may cause

erratic sprite motion and sound because of missed

interrupts. In addition it is possible to bring the FORTH

system to a slow crawl by using about 99Z of the processor's

time for the ISR.

The ISR capability has obvious applications in game

software as well as for playing background music or for

spooling screens frcm disk to printer while ocher activities

are taking place. This final application will racuire that

disk buffers and user variables for the spool task he

separate from the main FOR 	cask, or a very undesirable

cross—fertilization of buffers =ay result. in addition it

should be mentioned that disk activity causes all interrupt

service activity to halt.

ISRs _,in FORTE can be written as either colon

definitions or as CODE definitions. The former permits very

easy routine creation, and the latter permits the same speed

capabilities as routines created by the Zditor/Assembler.

Both types can be used in a single routine to gain the

advantages of 'oath.

example of a simple ISR 	 This

example also illustrates some of :he problems associated

with ISRs and how they can be circumvenzed. The problems

CP-VP= 10 	PAGZ 	=7-IRRUPT saav:ca ROT.=

ORTH

are:

1) A contention for PAD between a normal FORTH
command and the ISR routine.

2) Long execution tine for the ISR routine.
(Even simple routines, especially
if they include output conversion routines
or other words that nest FORTE routines
very deeply, will not complete execution Ln
1/60 second.)

These problems are overcome by moving ?AD in the

interrupt routine to eliminate the interference between the

foreground and :he background task. The bui't-in =umber

formatting routines are quite general and hence pay a

performance penalty. This example performs this conversion

rather crudely, but fast enough that there is adequate time

remaining is each 1/60th second to do meaningful computing .

AN EXAMPLE OF AN INTERRD?T SERVICE ROUTINE

0 VARIABLE TIMER 	(TIXER WILL SOLD nu: CURa.ENT. COtsNT
: UP 100 ALLOT ; 	(HOVE HERE AND =US PAD UP 100 SYTIS
DOWN -100 ALLOT ; (REST ORE PAD TO ITS ORIGINAL LOCATION)

: DEMO UP 	 (HOVE PAD TO AVOID CONFLICT)
I TIMER -4-! TIMER 	(INC TI W3, LEAVE ON ST A=)
?AD DU? 5 + 	(READY TO LOOP FROM PAD-?-5 DOWN TO PAL+1)
CO

0 10 0/ 	(MAXI POSITIVE DOUBLE, GE: 1ST DIGIT)
SWAP 4.3 + (GENERATE ASCII DIGIT)
I C!_ 	(STORE TO PAD)

-1 +LOOP 	(DEC:RE:ENT LOOP COUN2IR)
PAD 1+ SCRN START 3 5 7MEW (WRITE To SCREEN)
DOWN ; 	(RESTORE PAD LOCATION)

;a

k 	 P.."1-L74 RCUTI:TES

FORT H

INSTALLING THE ISR

INTLNK @ 	(GET THE :SR 'HOOK' TO 7HE STACK)
' DEMO CFA 	(GET CFA OF 7HE WORD TO BE INSTALLED AS ISR)
ISR ! 	(PLACE IT DT USER VARIABLE :SR)
8304 ! 	(PUT ISR HOOK INTO CONSOLE INTERRUPT ROUTINE)

(NOTE: TEE CFA MUST BE IN USER VARIABLE ISR)
(BEFORE WRITING TO 8304)

To reverse the installation of the ISR one can either

write a 0 to 83C4 or place the CFA of NO? (a do nothing

instruction Yin User Variable ISR.

Some additional thoughts concerning the use of ISR's:

1) ISRs are uniaterruptable. Interrupts are disabled by
the code that branches to your :SR routine and they
are not enabled until just before branching back to
the foreground routine. Do not enable interrupts in
your interrupt routine.

2) Caution must be exercised when using PAD, changing user
variables, or using disk buifers in an ISR, as these
activities will likely interfere with the foreground
task unless duplicate copies are used is the Irwo
processes.

3) Aa ISR must never expect nor leave anything on the
stacks. It may however use them in the normal manner
during execution.

4) Disk activity stops interrupts as do most of the other
OSRs in the 99/4A. An ISR that is installed will not
execute during the time interval in which disk data
transfer is active. It will resume attar the disk
is finished. Noce that it is possible to LOAD from
disk while the ISR is active. it will wait for about
a second each time the disk is accessed. The
dictionary will grow with the resultant movement of
PAD without difficulty.

Cak2TMR 10 	PAGE 	:217Zall.UPT SERVICE RCUT:NZS

T 	FORT

CHAPTER 11

POTPOURRI

Your TI FORTH system has a number of additional

features that will be discussed in this chapter. ,"ese

include a facility to save and load binary images of the

dictionary so that applications need not be recompiled each

time they are used. Also available are a group of CRU

(Communications Register Unit) instructions and a version of

MESSAGE that does not require a disk to display the standard

error messages.

3LOAD and 3SAVZ

The word BSAVE is used to save binary images of the

dictionary. BSAVE requires two entries on the stack:

1) The lowest memory address in the dictionary
image to be saved to disk.

2) The SCREEN number to which the saved
image will be written.

MATZ will use as many SCREENS as necessary to save the

dictionary contents from the address given on the stack to

HERE. These are saved with 1000 bytes per SCREEN uatil the

entire image is saved. 3SA77. recur 	on the stack the -

01-72-)77 L. 	PA=7. 	 ?o7pcuaa:

F 0 R

format:

Each SCR=

Byte 4

saved image has the following

Contests

0 - 	1 Address a: -which the first image byte of
screen will be placed.

this

2 - 	3 DP for this memory image.
4 - 	5 Contents of =RENT.
6 - 	7 Contents of CURRENT 4 .
8 - 	9 Contents of CCNTE2T.

10 - 	11 Contents of CONTEXT @ .
• 12 - 	13 Contents of VOC-LINK.

14 The letter "t".
15 The letter "i".
16 - 	23 Not used.
24 - 1023 up to 1000 bytes of the memory image.

BLOAD is part of yo .or 	T0E7.2 kernel and does aot have

to be loaded before 7cu dam use it. .t reverses the BSAVE

pr=ass and makes i: possible to bring in an entize

application in ser-on ,2 s. ILCAL =pants a SCII= weber on

the stack. 3efore performi , the 3LOAD !unction the 14th

and 15th bytes are checked to see that they contain the

letters "ti". if they do, the load proceeds and BLOAD

returns a 0 on the stack signifying a successful load. If

the letters "ti" are mot found, than the BT.= is not

7ertorned ar.d a 1 4 s re ,---, ed. 	:aelic7 permit's a

conditional binary load to be performed and if it fails

(wrong disk etc.) ocher ac:j.orls can be performed.

3ecause 	31ZAL ar_c: 	 des.gtea to

star: the save (: 17m= 	at a use: 5. 2 ,7:n1Led

addzass, a cc=?Is:a 	 3:===1:72 can be inplamentdd.

The use: 7.-1at -a=i1=1 71 .77_a: 	:a:: 	 d.f.ctic ,aar7 Ls

FORT.:1

brought in, the remainder of the dictionary (older part

is identical to that which existed when the image was

saved.

To save an entire application to the disk starting with

screen 30, the user would enter the following into the Ti

FORTH system:

TASX 30 3SAVE

The number of the next available screen will be printed.

To reload this application you would place on Screen 3

(the auto boot screen):

30 3LOAD

CONDITIONAL. GOADS

The word CLOAD has been included in your system to

assist in easily managing the process of loading the proper

support routines for an application without compiling

duplicates of support routines into the dictionary.

CLOAD calls the words <CLOAD>, rAILITZRAL, and SLIT.

Their functions are described briefly as follows:

<CLOAD> performs the primary CLOAD function and is
executed or compiled by CLOAD depending on STATE,.

is a worn designed :o
during 	 =_!

ii;X:H :Instruction Pointer over 4 :.

VLITSRAL is used to c= pile 51:7 and :he desire
character -string into tne current diotionary
definition.

FORTa

To use CLOAD there must always be a SCREEN number on

the stack. The word CLOAD must be followed by the word

Whose conditional presence in the dictionary will determine

whether or not the SCREEN number on the stack is loaded.

27 CLOAD FOO

This instruction, for example, will load SCREEN 27 only if a

dictionary search, (FIND) , fails to find FOO . FOO should be

the last word loaded by the command 27 LOAD .

It is also possible to use CLOAD to abort the LOADing

of a screen. This is done by using the command:

0 CLOAD 7ESTWORD

.f this line of code was located on screen :7.0, and the

word TESTWORD was in the present dictionary, the load

would abort just as if a ;S had been encountered.

Caution must be exercised wnen. using 3ASE—iR and

R—>BASZ with CLOAD as these will cause the return stack to

be polluted it a LOAD is aborted and the RASZ—>a is not

balanced by a R—MASE at execution time.

!EXORY. RESIDENT MESSAGES

the user .Cesires, ie nay elect to use a version cf

-2,71 	 EC.7

his version is spelled with Lower case "message" .

purpose of this version is to avoid having to of ace the

CE.A=ER 	?AGE 	POTPOU1R2

FORT *-1*

messages on the diskette in 	. The code to install this =

version is supplied on the same SCRZENS with the routine.

Installing "message" will rmmove :he 5ch disk buffer from

the system and use that memory for storing the error

mesages. T: wi'l then place a oa , :h in the old version of

IIESSAGZ to cause it to branch to the new routine. Caution

must be exercised if COLD is executed with the new version

in place, as COLD will restore the 5th buffer but will not

unpacch the old version of :,=.'SSAG77 . After per=or-ing

COLD, you must either reinstall the new 'message" or unpatch

the old version of Y7 SSAGZ 7; _a_ to the system using the

vcr-1 m-7 '.1 =A(77 -- • Failure to do this will cause a CRASH. 7o

repacch :ESSACZ, the 	 the

must be rescorsd t. be 	CTA's o' ";:111727G and 1 .

(mu ',;cazs

Five words have been included to assist in performing

CRU related functions. 711.vallot: the FOR-H programmer to

perform the Lzca, s:cm, 73, S30 and S32 operations of the

9900 without using the assembler. 	functions of these

words will be apparent when someone familiar with these

instructions on the 9900 examines tn-7- definitions 4 r, the

70:70[27.:

FORTH

APPENDIX A

ASCII =CODES

(Mapping of keystrokes to ASCII sequential order)

character
ascii code

hex 	1 decimal
II
II

I
character 	i

ascii code
hex 	I 	decimal

NUL (c-,) I 00 0 If SP 20 32
SOH (c-A) f-7 I 01 1 II ! 21 33
STX (c-3) f-4 I 02 2 II " f-? 22 34
ETX 4c-C) f -1 I 03 3 II :1 23 35
EOT (c-D) f-2 1 . 	04 4 II $ 24 36
ENQ (c-E) f-. 05 5 II 7. 25 37
ACK (c-F) f-8 I 06 6 I 	I & 25 38
BEL (c-G) f-3 i 07 7 II ' f-O 27 I 39
BS 	(c-s) f-S 1 08 8 II (' 23 40
ET . (c-I) f-D f 09 9 11) 29 41
LZ 	(c-J) f-I I OA 10 H * k 42
VT 	(c-K) f-E I OB 11 23
FF 	(c-L)

(c-a)
f-i I

I
OC
OD

12
13

II
II

,
-

2C
2D 43

SO 	(c-N) f-3 f OE 14 II . 45
SI 	(c-0)
OLE (c-?)

f-9 I
i

OF
10

15
16

II
II

/
0 • c-0

1-7
30

47

OCI 	(c-) i 11 17 II I c-1 31
DC2 (c-R) 12 18 II 2 c-2 50
DC3 (c-S) . 13 19 II 3 c-3 33 51
DC4 (c-T) 14 20 II 4 c-4 34 32
akK (c- J) 15 21 I 	I 5 c- 5 35 33
SYN (c-V) 16 22 II 6 c-6 36 54
ET3 (c-W) 17 23 II 7 c-7 37 53
CAN (c-1) 18 2.4 II 8 38 56
EH 	(c-Y) 19 25 I 	I 9 f-Q f- . 39 57
SUB (c- Z) IA 25 il f-/ 3A 33
ESC (c-.) 13 27 II c- / 33 39
FS 	(c-;) 1C 28 II < 3C I 60
GS 	(c-=) ID 29 II = f-; 3D I 6L
BS 	(1Z 30 II > f - 3 3E 62
US 	(c-9) IF 31 II ? f-a 3F 63

■•■•••••■••■■•••■■■■

?rasz

continued on next taCie

APPENDIX A 	PAGE 	 ASCII Ta7CCDES

FORTH

ASCII =CODES (conciaued from previous page)

character
ascii code

hex 	1 	deci=a1
II
II character

ascii code
hex 	I 	deci=al

0 f-.1' 40 1 64 I I ' 60 96
A f-K 41 1 65 I1 a 61 97
3 f-L 42 I 66 I I b 62 98
C f-M 43 67 I 	I c 63 99
0 f-N 44 I 68 11 d 64 100

45 59 II e 65 101
F f-Y 46 70 II f 66 102
G 47 71 II g 67 103
E 48 72 I1 h 68 104
I 49 73 II i 69 105
.., 4A 74 II i 5A 106
K 43 75 II k 63 107
T.. 4C 75 II 1 6C I 108

4D 77 / , 1 m 6D I 109
N 43 78 I z 5E I 110
0 4F 79 I 	I 0 iF I I , ..
? 50 30 1 p 70 '11 1
C 51 31 11 q 71 113
a 52 32 I 	I r 7 , I 114
S 53 83 Ii s 73 115

54 34 I : 74 116
(I 55 35 II u 75 I 117
7 56 36 iI 7 76 113
V, 57 87 I1 w 77 1 119
X 58 88 II -s. 78 i 120
7 59 39 1 7 79 (121
2
r L

5A
53

90
91

I
II

:
(

7A
73

I
(

122
123

5C 92 1 i i , 7C 124
50 93 it t 7U 125

1 I 5E 94 II - 73 125
1 57 95 fI DEL 77 127

press funczlc,- n key
press c=r1rroi key

APPENDIX A PAGE 	 KT."(-2 12 7 .3

TI 	FORTH

ASCII =CODES
(Mapping of keystrokes to ASCII in keyboard order)

••■■■•■•■•■•■

control key 	I hex decimal II function key I

•111111.FIM

he decimal 	I

c-1 31 49 II f-1 03 3 	I
c-2 32 50 li 3-2 04 4

c-3 33 51 II 3-3 07 7
c-4 34 52 II 3-4 02 2
c-5 35 53 II 3-3 OE 1 	/

. 4

c-6 36 54 ,I 3-6 OC 12
c-7 37 55 II f-7 01 1
c-8 1E 30 II 3-8 06 6
c-9 17 31 II 3-9 OF 15 	I
c-0 30 48 II f-0 30 60 	I
c-.. ID /9 II f-= 05 5

i 	c-(1 11 17 11 =-Q 39 i 57
c-W
c-E

L7
05

22
5

,, ,,
i

f-
3_7

i 7E
03

i
I

1. 25
-;-11

c-R i 12 -_ 13 i 3-R i 53 1 91
c-T 14 20 'I

.. 	i•

.-. I 32 93
c-Y 19 25 I! 3-7 I 46 70

c.,—T

c-O
.,1

OF
9

13
i,
I

f
3-0 I

37
2 7 I

63
lc

c-?
c-/

10
33 i

16
::c. ,.

II 3-?
f-/

I
i 3A

22 _- 34,
58

c-A
c-S

01
13

I
I

1
19

;i
II

f-A
f-S 03

70 , 124
3

c-D 04 11 2-2 09 9
c-r

c-C
36
07 QI

6
II

f-F
f-C

73
72

, 1'2
125

c.-ii 08 3 11 f-I-1 37 63
,...." OA 10 11 11-T 40 . -6

c-K 03 11 11 f-K .:1 5,5
c-r. OC 12 i f-L 42 66
c-;
c-Z

IC
IA

23
25 1

f-;
f-Z SC

32 --,
i

61
92

c-m 18 24 11 f-°. OA I 10
c-C 03 3 II 3-C 50 I 96
c-V 16 22 11 f-V ir 127

--,.

C— 13

f- Mass 3uncciron key
c- press concrcl

PAGE

PPENDIX C

DIFFERNCE'S BE7'WEIN 7HE FORTH IN "STARTING FORTE" AND 7: FORTH

WORD CHANCES REQUIRED

10 BACKSPACE Function-5 produces a BACKSPACE on the TI 99/4A.

10 OK TI FORTH automatically prints a space before OK.

16 The 7: FORTH dictionary .can store names up to 31
characters 	in length.

18 Not a special character in Ti FORTH.

18 Will execute inside or outside a colon definition
is TI FORTH.

42 /MOD Uses signed numbers in 7: FORTH. 	Remainder has sign of
dividend.

142 ".CD Uses signed numbers in Ti FORTH. 	Remainder has si?n . of

50 This word is available on the TI FORTH d 4-s'... The TT FORTH
version prints a vertical bar ()1 to1owed by the stack
contents. The stack contents will be printed as •,z'nsigned -
numbers. To use the definition shown you must make the
following change hedause of vocabulary ,' 4 " ,=rences: in
place of 'S use SPO. 2- .

32 	2SNA? 	This word is not in TT FORTH but can he created with the
following definition:

:SWAP 	ROT >R ROT R> ;

2DU7 	This word is not in 7: FORTH but can be created with :he
following definition:

2.DUP 	OVER OVA.

5: 	23 ER

52 	2DROP

This word is not in 7: FORTH but can be cmaated with the
following definition:
: zorm 	s .F.3 6 .4- 2 37(4 6 .-

This wocd is not in Ti FORTE but can be created with the

77(.7

: a 	will issue a message sa7ing 	isn' uaioue'.
mesage sayihg 	tsa

would app.ear.

7.4n .71r-cry
	

::07'1'.3 ON "Ziarting Fca:a"

TI 	FORTH

60

63- 82

TI FORTH supports 90 screens per disk. 	(numbered 0-89)

The TI FORTH Editor is different (much better) 	than the
editor described 	in this section. 	Read 	the section of your
TI FORTH manual describing the Editor.

83 DEPTH See comments for page 50.

84 COPY TI FORTH has a disk based word SCOPY (screen copy) which
is exactly like COPY ; e.g.
: COPY 	SCOPY ;

84-85 Ignore Editor words.

89ff TaN THEN is in. the TI FORTH vocabulary and is a synonym for the
word ENDIT . 	Many people find ENDIF less confusing than
MEN •

91 0> This word is not in TI FORTH 'wit can be created with the
following definition:
: 	0> 	0 	> 	;

91 NOT This word is not in TI FORTH, but can be created wi:h the
following definition:
: 	NOT 	Olm 	;

101 ?DC? This word is identical to -CC? in 71 FORTE. 	Cse the
following definition if necessary:

?DU? 	-OUP 	; 	.

1012! AD117" As with the FOX7R-79 Standard, TI FORTH provides ABORT
instead of ABORT" 	.

102 ?STACK In :I FORTE this word automatically calls ABORT and prints
the appropriate error message.

107 2* This word is not in TI FORTH, but can be created with the
following definition:
: 	2* 	DU? +

107 2./ This word is not in TI FORTH, but can be created with the
following definition:

21 	1 SRA ;

108 YECATZ This word is not in Ti ml-a, but can be created with the
following definition:

YZ0A7: 	:112.7.12

110

1 1 0

This word aev,±sc 	T7..n77 but also acs a duoliza:a
fini:ion, 	a. 	: 	aza 	identical 	f:=ction,

This 	 T- 7OR7H, 	can 	crea:ed wi:n :ne
following definition: 	(NOT': 	R is 	synonym for T)

I' 	R> R> R SWA2 >R F;TA2 >R ;

APPEND= C 	PAG: 	:TOTES CN "Star:- =g FORT7"

TI FORTE

112 If 	you will notice, 	there 	is 	a 	. (print) 	missing 	in 	the
QUADRATIC definition. 	You must add a 	. 	after the last
to make QUADRATIC work correctly.

112 Ignore the last two paragraphs. 	They do not apply.

131 Just a reminder 	! 	You must define 2DU? and 2CROP before
the COMPOUND example nay be used.

132 There is a mistake in the second definition of TABU:.
It should look like 	this:
: TABLE 	CR 11 	1 CO

11 	1 DO I J * 	5 U.R 	LOOP CR LOOP

134 When you execute the DOUBLING example, an extra number
will be printed after 16384. 	This is because +LOOP
behaves a little differently in 17 FORTH.

136 In the definition of COM20=1, 	the CR should preceed
SWAP instead of LOOP.

137 XX When an error is detected in 7' FORTH, 	he stack i_4, deal
but then the contents of 3LX and IN are saved on the stax
to assist in locating 	the error. 	The stack nay be
completely cleared with the «ord SP! 	.

142 PAGE This word is not in TI FORTH, but can be created with the_
following definition:
: PAGE 	CLS 0 0 GOTON7 	;

161 U/MOD This word is not in 71 FORT, but can be created with the
following definition:
U/MOD 	U/ 	;

161 /LOOP This word is not La 77 PORT.

162 OCTAL OCTAL does not exist in 71 FORTH. 	See ff on pg. 	163 for
definition.

164-163 	 Numbers in 77 FORTH may only be punctuated «ith periods.
Commas, slashes, and ocher marks are not permitted. Any
=umber containing a period () is considered double—
length. In later examples usi^c O. and UM., replace
all punctuation in the inputs with decimal points, It
ts r".ch=mended 7:n a: .7c11 no: nLace note than o ne
place tra each 71=ther 	''cu 	 cuc7uco

D— 	:14.:N1. S 	;

APPT..70::

FOR: H

173 ONEGATE This word is not in TI FORTH, but can be created with the
following definition:
: DNECATE 	DMINUS

173 DMAX This word is not in TI FORTH, buc can be created with the
following definition:
DMAX 	20VER 20VER D- SWAP DROP 0<

IF 	2SWAP 	ENDIF
2DROP 	;

173 DM IN This word is not in TI FORTH, but can be created with the
following definition:
: DMIN 	20VER 20VER 2SWAP D- SWAP DROP 0<

IF 	2SWAP 	ENDIF
2DROP 	;

173 D= This word is not in TI FORTH, but can be created with the
following definition:
: D= 	D- 0= SWAP OA. AND 	;

173 DO= This word is not in TI FORTH, but can be created with the
following definition:
: DO= 	O. D= 	;

173 D< This ward is not in TI FORTH, but can be created with the_
following definition:
: D< 	D- SWAP DROP 0< ;

173 DU< This word is not in TI FORTH, but can be created with the
following definition:
: DU< ROT SWAP OVER OVER

U<
IF (DETERMI= LESS USING HIGH ORDER H.LLVES)

DROP DROP DROP DROP 1
ELSE (TEST IF HIGH HALVES EQUAL)

7

IF (EQUAL SO JUST TEST LOW HALVES)
U<

ELSE (TEST FAILS)
DROP DROP 0

ENDIF
ENDIF ;

174 	n+ 	 This word is not in TI FORTH, but can be created with the
following definition:

0 	;

ward 	 i:. 7: 7CR-7
:011c ,zilag

uJ 	MJ 7.;;AP 0P.013 ;

x2ps1TD:a c PAGZ 	= 	:TOTES ON 	 FORTH"

L

■••

T

174

133ff

FORTH

2.1*/ Not available in 71 FORTE because no triple 	precision
arithmetic has been included. 	This could be created using
either a relatively complicated colon definition or by
using the Assembler included with TI FORTH.

Variables in TI FORTE are required to be initialized rt
creation, 	thus the word variable takes 	the top item on the
stack and places it into the variable as its initial value
e.g. 	12 VARIABLE DATE both creates the variable DATE and
initializes it to 12 . I desired, the advanced user can
use the words <BUILDS and DOES> to create a new defining
word, VARIABLE which has exactly the behavior of VAR/ABLE
as used in this section. The code to do this
: VARIABLE <BUILDS 0 , DOES> 	;

193 2VARIABLE This word is not in TI FORTE, but can be created with the
following definition:
: 	2VARIABLZ <BUILDS 0. 	, 	DOES> 	;
This definition does NOT require a number to be on the
stank when it is executed.

193 This word is no: in TI =1, but can be created with
following definition:

2! 	>R R 1 	R> 1+ 	1

193 22 This word is not in 71 FORTH, but can be created with the
following defiaition:

:1 	>R a 24 2 1> 2 	;

193 2CONSTANT This word is aoc in 71 FORTE, but can be created wi:h r°
following definition:

2CONSTANT <BUILDS 	, 	DOES> 22 ;
This definition does NOT require a number on the stack.

199 Tau must place a 0 on the stack before executing
VARIABLE COUNTS 10 ALLOT. 	This, however, initializes only
the first element of the array COUNTS to O. 	You must
execute either the FILL or ERASE instruction at the
bottom of the page to properly initialize the array.

204 DMA? 71 PORTa already has a dump instruction which must be
loaded from the disk. 	DUMPS are always printed in SIX.
See APPENDIX 0 for location of DUMP.

207 CREATE The CREATE word of :7 FORTE behaves somewhat differently.
Hackers should consul: fi ,---7=7 doc=mentazion,

11.1=7. 	3ecause this woct coera:e.3 a

exaap,.e snou— ci.
C7k

APPEND:: C 	?_G-
	

1:07ES ON 	 FOR:7"

T T 	FORTH

217 	 The example illustrating indirect execution must be
modified to work in TI FORTH:
' GREET CPA KIN= ! 	?OINTER =CUTE

/18 	['l In TI FORTH this word is unnecessary as the weird ' will
take the following word of a definition when used in a
definition.

219 	NUMBER 	In TI FORTH NUMBER is always able to convert double
precision numbers.

219 	'NUMZER 	TI FORTH does not use 'NUMBER to locate the NUMBER
routine.

220 	 In TI FORTH the name field is variable length and contains
up to 31 characters. Also, the link field precedes the
name field in TI FORTH.

225 	EXIT 	This word is ;S in TI FORTE. ;S is the word com iled by ;
so to create EMT we might use:
: EXIT COMPIT.ZI ;S ;

In TI FORT-z, the 'mt=r1r:=.7 to 4 dter" is called 1!?,
not I.

232
	

See Chapter : in the TI FORTH manual for inscructions
for loadimg eLective blocks.

1'4-1 3a-LoAD This imszruction is not available in 7: FORTH.

233 R This word is 0? (dictionary pointer) 	in 77. FORTH.

235 In TI FORTH, ST2 is used instead of ' S.

240 See APPENDIX I in the 7: FORTH manual for a complete list
of user variables.

240 >IN This word is IN in TI FORTH.

245 LOCATE TI FORTH does hoc support LocAr:

256 =Fr In; 71 FORTH, 	this word is SCOT!.. 	SCOrf is disk
resident. 	See APPENDIX 0 for location.

259 Change 	the 	['] 	to ' 	in the bottom example. 	In 7: FORTH,
' 	tompile 	duress 	of 	 -.c7.7b
befinition.

''''' TT FOR—H.

FORTH

263 3;,;13 TI FORTE has 	coW 	disk resident random number generators:
RND and RNDW. 	See APPENDLX D for locations and
descriptions. 	See also definitions 	for SEED and
RANDonIzz.

266 HOVE In TI FORTH, MOVE moves u words in memory, 	not u bytes.
MOVE can be redefined to conform to "Starting FORTH":

MOVE 2/ MOVE;

266 <CMOVH Not present in TI FORTH. 	Must be created with the
assembler if required. This word is used only when the
source and destination regions of a move overlap and the
destination is higher than the source.

1- r c./.1 WORD In II FORTE., 	the word WORD does not leave an address on
the stack.

270 TEXT This word is not available in TI FORTH, but can be define
as follows:
TENT 	PAD 72 BLANKS 	PAD HERE - 1-

DU? ALLOT MINUS SWAP 	WORD ALLOT ;
Lf you want the count to also be stored at pad, 	remove
the 	1- from the definition.

277 >3INARY This is named (NUMBER) 'in TI FORTH.

277 Because WORD does not leave an address on the stack, 	it
is necessary to redefine PLUS as follows:
: PLUS 	32 WORD DROP 	NUM= 1 ." = " . 	;

279 NUMBER This definition of YUMBER is not compatible with Ti. FORM

281 -TEXT Not 	in TI FORTH. 	Use 	the definition on page 283.

292 71 FORTH uses the ward pair <BUILDS 	... DOES> to define a
new defining word. 	<BUILDS calls CREATE —44 par: of 	Its
function.

297 To create a byte ARRAY in Ti FORTH1
ARRAY <BUILDS OVEE. , * ALLOT

DOES> CU? I 	ROT * 	2-6 	;

298 Just a reminder 	! 	Don't 	forget 	to define I* before
trying the example at the bottom of 	the page. 	Also,
replace the word =ATM with <BUILDS 	.

3'31

30i :0

Th's 	is 	the 	run-i== 	n=h=v 4_ , r 	n: 	20 	41.1c7.
not 	used,

The given definition of :0 is not compatible with Ti
:oaTa. 	 -- 	• -- -- ra
because of combile tine error checking.

_nz TOR:7"

Toa: R

303 	(LITERAL) 	The Ti FORTE name for this word is Li: •

306 	 TI FORTH remains in compilation node until a ; is typed.

=we

ttormwr, 7 "crAr.Teny

TT 	FORTE:

APPENDIX 0

TEE TI FORTH GLOSSARY

EXPLANATION OF ABBREVIATIONS

ABBR 	 MEANING
•■■■•=1100

addr, addrl, 	memory address
b 	 byte

column position.
cc:4 	 string representation
cfa 	 code field address
ca 	 ascii character coda
ant 	 count (length)
d, dl, d2, 	 double' precision number
dc, dcl, dc2, 	dot colt= position

drl, dr2, 	dot row position
dsk 	 refers to OSK1, DS K2, or OS K3

boolean flag
ff 	 boolean false flag
fl, fll, f12, 	floating point number
ita 	 Link field address
mod 	 modulo
a, al, m2, ... 	single precision signed number
nta 	 name field address
=Inn 	 string representation
pta 	 parameter field address
r 	 row posicopn
rem 	 renaiadar
scr4 	 screen number
spr4 	 sprite number
tt 	 boolean cr-le flag
tol 	 tolerance Limit
u 	 unsigned single precision n=ber
ud
vaddr 	 7D? address

.2v77,7717 "..• 	-7.7r 	 '.7 	1.

7
$04..:,,■ •

J,

I 	FORTH

n add:. --- 	 RESIDENT

Store 16 bits of n at address. Pronounced "STORE".

addr 	 SCR 39 	..-COPY

A string terminated with a " must follow this word. This
string will be stored at the specified address, however, the
character count is not scored.

ICS? 	 RESIDENT

Save the stack position in CS?. Used as part of the
compiler security.

dl 	d2 	 RESIDENT

Generate from a double number dl, the next ASCII character
which is placed in an output string. Result d2 is the
quotient after division by BASE, and is maintained for
further processing. Used between <0 and #>. See LAS.

#>
	

d 	addr cnc 	 RESIDENT

Terminates numeric output conversion by droping d, leaving
the text address and character count suitable for TYPE.

#MOTION
	

a. 	 SC2 59 	-G2A2E.

Sets SPRITES number 0 co a-1 in ACTOMOTION.

dl 	d2 	 RESIDENT

Generates ASCII text in the text output buffer, by the use
of #, until a zero double number d2 results. Used between
<0 and #>.

7 0 a :

pfa 	 RESIDENT

Used in the form:

nnnn

Leaves the parameter field address of dictionary word nrinn.
As a compiler directive, executes in a colon definition to
compile the address of a literal. If the word is not found
after a search of CONTEXT and CURRENT, an appropriate error
message is given. Pronounced "T:CX".

RESIDENT

Used in the form:

(=cc)

Ignore a comment that will be delimited by a right
parenthesis on the same screen. :lay occur during execution
or in a colon—definition. A blank after the leading
parenthesis is required.

••■■••■• RESIDENT

The run—time procedure, compiled by ." which transmits the
following in—Line text to the selected output device. See

tf

(;CODE) 	 RESIDENT

The run—time procedure, compiled by ;OCDE, that rewrites the
code field of the most recently defined word to point to the
following machine code sequence. See ;CODE.

(+100?) 	 a 	 RESIDE=

The run—time 'procedure campiled by 7. ,lOOP, which increments
the loop index by a and tests for loop conpiec.:.ch. See
+LOOP.

normally executes A3ORT, 	ray be al:erac 	bare; to a

TI FORT

(DO) 	 RESIDENT .

The run-time procedure compiled by DO which moves the loop
control parameters to the return stack. See DO.

(DOES>) 	 RESIDENT

The run time procedure compiled by DOES>.

(FIB) 	addrl addr2 	pfa b tf (ok) 	RESIDENT
addrl addr2 	ff 	(bad)

Searches the dictionary starting at the name field address
addr2, matching to the text at addrl. Returns parameter
field address, length byte of name field, and boolean true
for a good match. If no match is found, only a boolean
false is left.

(LINE) 	 n sort/ 	addr cnt 	RESIDENT

Convert the line number n and the screen sort to the disk
buffer address containing the data. A count of 64 indicates
the full line text length:

(LOOP) 	 RESIDENT

The run-time procedure compiled by LOOP which increments the
loop index and tests for loop completion. See LOOP.

•
(NUMEE&) 	 dl addrl 	d2 addr2 	RESIDENT

Convert the ASCII text beginning at addrl+1 with regard to
BASE. The new value is accumulated into double number dl,
being left as dZ. Addr2 is the address of the first
unconvertable digit. Used by =SEM.

(OF) 	 RESIDENT

The run time procedure compiled by OF.

1=7:177

Leave the signed pr ;duct of nm signed numbers .

T 7 	FORTE

*/ 	 ni n2 n3 -- n4 	 RESIDENT

Leave the ratio n4=nl*n2/n3 where all are signed numbers.
Retention of an intermediate 31 bit product permits greater
accuracy than would be available with the sequence :

al n2 * a3 /

*IMOD
	

n1 n2 a3 --- n4 n3 	RESIDENT

Leave the quotient n3 and remainder n4 of the operation
a1*n2/n3 . A 31 bit intermediate product is used as for
*/.

al n2 --- 113 	 RESIDENT

Leave the sum of al + a2.

n addr 	 RESIDENT

Add n co the value at the address. Pronounced "PIUS
STORE".

ni n2
	

:-.3 	 RESIDENT

Apply the sign of n2 to al, which is left as n3.

addr1 	addr2 f 	RESIDENT

Advance the disk buffer address addr1 co the address of the •
next buffer addr2. Soolean f is false when addr2 is the
buffer presently pointed to by variable ?REV.

■ '':."-V71-■ T -7 7 	 ■ ^77

FORTH

+LOOP
	

al 	(run)
	

RESIDENT

	

add: n2 	(cc-mpile)

Used in a colon-definition in the form:

DO 	nl +LOOP

At run tine, +LOOP selectively controls branching back to
the corresponding DO based on al, the loop index and the
loop limit. The signed increment al is added to the index
and the total compared to the limit. The branch back to DO
occurs until the new index is equal to or greater than the
limit (n1>0), or until the new index is equal to or less
than the limit (nl<O). Upon exiting the loop, ch
parameters are discarded and execution continues ahead.

At compile time, +LOOP compiles the run-time word (+LOCP)
and the. branch offset computed from HERE to the address left
on the stack by DO. n2 is used for compile tine error
checking.

—

	

3.17..SIDENT

Store a into the next available dictionary memory cell,
advancing the dictionary pointer. (comma)

n2 — m3
	

RESIDENT

Leave the difference of al - a2.

RESIDENT

Continue interpretation with the next disk screen.
Pronounced "NEXT SCREEN"

-DU?
	

al 	al
	

(if zero) 	RESIDENT
al --- ni ci
	

(non-zero)

Reproduce n1 only if it is non-zero. This is usually used
to copy a value just before :F, to eliminate the need for an
ELSE part to drop Lt.

k2PENDIX D 	?AG: 	GLOFSA271

FORTH

-FIND
	

pfa cm: f 	(found) 	RESIDENT
ff 	 (not found)

Accepts the next text word (deli=iced by blanks) in the
input stream to EERE, and searches the CONTEXT and then
CURRENT vocabularies for a matching entry, If found, the
dictionary entry's parameter field address, its length byte,
and a boolean true are left. Otherwise, only a boolean
false is left.

-TRAILING
	

addr n1 --- addr n2 	RESIDENT

Adjusts the character count al of a text string beginning at
addr to suppress the output of trailing blanks. i.e. the
characters at addr+nl to addr+n2 are blanks.

a --- 	 RESIDENT

Print a number from a signed 16 bit two's complement value,
converted according to the numeric EASE. A trailing blank
follows. Pronounced "DOT".

1=1.100■5

Used in the form:

RESIDENT

. " co da"

Compiles an in-line string coon (delimited by the trailing
") with an execution procedure to transmit the text to the
selected output device. II executed outside a definition,
." will :_amediately print the text until the final ". See
(.").

.LINE 	 a scr,) 	 RESIDENT

Pint on the terminal device, a lime of -,ax*_ from the disk
by its line (a) and screen number. :railing blanks are
supressed.

:14n:

nza.a.

D 	PAC ::

? ORTH

.S 	 SCR 43 	-DUMP

Prints the entire contents of the parameter stack as
unsigned numbers in the current BASE.

al n2 --- n3 	 RESIDENT

Leave the signed quotient of nl/n2.

/ MOD
	

n1 n2 	rem n3 	RESIDENT

Leave the remainder and signed quotient of nl/n2. The
remainder has the sign of the dividend.

0 1 23
	

n RESIDENT

These small numbers are used so often that it is attractive
to define them by name in the dictionary as constants.

0< 	 RESIDENT

Leave a true flag if the number is less than zero
(negative), ocherwise leave a false flag.

a 	f 	 RESIDENT

Leave a true flag if the number is equal to zero, otherwise
leave a false flag.

OBRANCH
	

f •■•••110..•
	 RESIDENT

The run-time procedure to conditionally branch. I f is
false (zero), the following in-line parameter is added to
the interpretive pointer to branch ahead or back. Compiled
by aT, UNTIL, and wa:Lz.

n1 --- aZ 	 RESIDENT

Increment nl by 1.

al 	n2 	 IES:73ENT

Oecrerlent al by 1.

AlzPENnI7 n 	 3 	(17.LIST:r7

TI 	FORTH

nl 	a2 	 RESIDENT

Leave n1 incremented by 2.

2- 	 ---- n2
	

RESIDENT

Leave al decrenented by 2.

RESIDENT
SCR 44 	-TRACE

Used in the form called a colon-definition:

: cccc 	10.0

Creates a dictionary entry defining cccc as equivalent to
the following sequence of FORTE word definitions '...' until
the next ';' or ';CODE'. The compiling process is done by
the text interpreter as long as STATE is non-zero. Other
details are that the =TEXT vocabulary is sec to the
CURRENT vocabulary and that words with the precedence bit
set (P) are executed rather than being compiled.

When colon definitions are compiled under the TRACE option,
: takes on an alternate definition which allows the colon
definition to be traced.

aeasfasin RESIDENT

Terminates a colon-definition and stops further
compilation. Compiles the r^.:.^-tine ;S.

A??ENDE,

T I 	F 0 R 7. -

;CODE
	

SCR 74 	-CODE

Used in the form:

cccc 	 ;CODE
assembly mnemonics

Stop compilation and terminate a new defining word cccc by
compiling (;CODE). Set the CO NT XT vocabulary co ASSEMBLER,
assembling to machine code the following mnemonics.

When cccc later executes in the form:

cccc annn

the word mann will be created with its execution procedure
given by the machine code following cccc. That is, when
aaan is Executed, it does so by jumping . co the code after
nnan. An existing defining word must exist in cccc prior to
;CODE.

;S .1■1•11i. RESIDENT

Stop interpretation of a screen. ;S is also the run-time
word compiled at the end of a colon-definition which returns
execution to the calling procedure.

al n2 --- f 	 RESIDENT

Leave a true flag if n1 is less than n2; otherwise leave a
false flag.

< 17 ••■■•••■ RESIDENT

Setup for pictured numeric output for:acting using the
words:

<J I 4S SION 4>

The conversion is done an a double cumber producing text at
FAD.

2P 7NDIX D 	PAGI 10 	DIOSSA2:.:

<BUILDS 	 RESIDENT

Used within a colon-definition:

tact <BUILDS
DOES>

Each tine cccc is executed, <BUILDS defines a new word with
a high level execution procedure. Executing cccc in the
form:

cccc 	nnnn

uses <BUILD to create a dictionary entry for mnnn. When
a= is lacer executed, it has the address of its parameter
area on the stack and executes the words after DOES> in
cccc. <BUILDS and DOES> allow run-time procedures to be
written in high-level rather than in assembler code (as
required by ;CODE).

:CIOAD>
	

SCR 11 	300T SCR

The run-time procedure compiled by CLOAD.

al n2 ••■■•• RESIDE:1°

Leave a true flag if n1=m2; otherwise leave a false flag.

=CELLS 	 add:: 	n2 	 RESIDENT

This instruction expects an address or an offset to be on
the stack. If this member is odd, it is incremented by 1 to
put it on the next even word boundary. Otherwise, it
remains unchanged.

al n2 --- f 	 RESIDENT

Leave a true flag if al is greater than n/; otherwise leave
a false flag.

n

T T
	

7 ()RTE.

>F
	 fi 	 SCR 48 	-FLOAT

This instruction expects to be followed by a string
representing a legitimate floating point number terminated
by a space. This string is converted into floating point
and placed on the stack. This instruction can be used in
colon definitions or directly from the keyboard.

>FAC
	

fl 	 SCR 43 	-FLOAT

Moves a floating point number from the stack into the FAC
register.

>R
	

a 	 RESIDENT

Remove a number from the computation stack and place as the
most accessable on the return stack. Use should be balanced
with R> in the same definition.

I
	

addr 	 RESIDENT

Print the value contained at the address in free format
according to the current BASE. This word must proceed the
address.

?COMP 	 RESIDENT

Issue error message 	not compiling.

7C3? 	 RESIDENT

Issue error message 	stack Position differs from value
saved in CS?.

.7 OR
	

RESIDENT

Issue an error message number a, if the boolean flag is
true.

7E=EC 	 •••••■=11 	 RESIDENT

Issue an_ error message 	noc executing.

:riERR
	

SCR 49 	-FLOAT

Determines if the previous floating point operation resulted
in an error. An appropriate error message is printed.

?KZ?
	

ch 	 RESIDENT

Scans the keyboard for input. If no key is pressed, a 0 is
left on the stack. Else, the ascii code of the key pressed
is left on the stack.

?K.z.-78
	

a 	 RESIDENT

Scans the keyboard for input. If no key is pressed, a 0 is
left on the stack. Else, the 8-bit code of the key pressed
is left on the stack.

?LOADING 	 RESIDENT

Issue an error message if not loading.

?? AIRS
	

al n2 --- 	 RESIDENT

Issue an error message if al does not equal aZ. The message
indicates that compiled conditionals do not match.

?STACK 	 •••■•••.. 	 RESIDENT

Issue an error message if the stack is out of bounds.

?TERMINAL
	

f 	 RESIDENT

Perform a cast of the terminal keyboard for actuation of the
break key. A true flag indicates actuation. On the TT.
99/4A, the CLEAR key is used as the BREAK key.

addr
	

lESTDENT

-save tae ,o 	contents or aloof:.

This word is compiled into the FOR= •oczbular7 and marks
the and of the ASSZISLER 7oczbular7. 	is used by CLCAZ.

k:? 7NDIK 0
	

77-L'SSA.R'7

: 7 	FORTH

ABORT 	 _RESIDENT

Clear the stacks and enter the execution state. Return
control to the operators terminal, printing an appropriate
message.

ABS
	

n1 --- a2 	 RESIDENT

Leave the absolute value of al as a2.

AGAIN 	 addr n
	

(compiling) 	RESIDENT

Used in, a colon-definition in the form:

BEGIN 	AGAIN

At run-time, AGAIN forces execution to return to
corresponding BEGIN. There is no effect on the stack.
Execution cannot leave this loop (unless R> DROP is executed
one level below).

At compile time, AGAIN compiles BRANCH with an offset from
HERE to addr. n is used for compile-time error checkiag.

ALLOT
	

a 	 RESIDENT

Add the signed number to the dictionary pointer DP. May be
used to reserve dictionary space or•re-origin memory.

ALTIN
	

addr
	

RESIDENT

A user variable whose value is 0 if input is coming from the
keyboard else its value is a pointer to the VDP address
where the PA3 for the alternate input device is located.

LLTOUT 	 addr
	

RESIDENT

A user variable whose value is 0 if output is going to the
monitor else its value is a pointer to the IMP address where
the PA3 for the alternate output device is located.

711

n± 	 a

A?? :1DLI : 	PAGE 14 	GLOSSARY

A2F73 	 SCR 69 	-: II.

Assigns the APPEND attribute to the file whose ?AB is
pointed to by PA3-ADDR.

••=2•••■■• addr 	 SCR 45 	-FLOAT

A constant which contains the address of the ARG register.

fll 	f12 	 SCR 50 	-FICA',"

Performs the arctangent function leaving a floating point
result on the stack.

3/31 .1■111Mil RESIDEN:

This constant leaves the number of bytes per disk buffer,
the byte count read from disk by 3I.00K.

3/3U7$ 	 addr 	 RESIDENT

A L.Ise: variable wr.ch contains the number of bytes per
buffer.

3/SCR
	

a 	 RES=77:

This constant leaves the number of blocks per editing
screen. 3-7 convention, an editing screen is 1024 bytes
organized as 16 Lines of 64 characters each.

3/SCRS 	 addr 	 RESIDENT

A user variable which contains the number of blocks per
SCREEN.

3ACX
	

addr 	 RESIDENT

-7T7
c=mila

addr

A_RG

ATN

A user variable containing the -current number base used for
input and output conversion.

T I 	FORTE

3ASE ->R 	 RESIDENT

Place the currant base on the re:urn stack. See R->BASE.

SCR 60 	-CRA:2H

Produces the sound associated with correct input or
prompting.

BEGIN
	

addr n 	(compiling) 	RESIDENT

Occurs in a colon-definition in the form:

BEGIN
BEGIN
BEGIN

• •
• • •

• • •

UNTIL
AGAIN
WHILE • • • REPEAT

At run-time, BEGIN marks the start of a sequence chat nay be

repetitively executed. It serves as a return point from the
corresponding Tl'I:?L, AGAIN, or REPEAT. 'When executing
UNTIL, a return to BEGIN uill occur if the cop of the
is false; far AGAIN and REPEAT a return to BEGIN always
occurs.

At compile ti e, BEGIN leaves its return address and n for
compiler error checking.

'17 	 ch 	 RESIDENT

A constant that Leaves the ascii value for "blank".

ad ,ir cnt 	 RESITS:T

Fill an area of memory beginning at addr with cnc blanks.

3LK
	

addr 	 RESITENT

A user variable containing the block number being
interpreted. Lf zero, input is being taken from :he
terminal input buffer.

Tbads :he binar7 image a: sc:. 	 crea:et by BSA77.
'lag 	:he _bat --;as j,77

ann a false flag (C) 	:he LbaCn 	suczessf:L.1.

APF 7 :72:: :

T 	FORTH

BLCCF: 	 - add::
	

RESIDNT

Leave the memory address of the block buffer containing
block n. If the block is not already in memory, it is
transferred from disk to whichever buffer was least recently
written. .f the block occupying that buffer has been marked
as updated, it is rewritten to disk before block n is read
into the buffer. See also BUT.FER, R/W, UPDATE, and FLUSH.

30CT 	 RESIDENT

Examines the SCREEN designated as the booting SCREEN (SCR
3). if it contains only displayable characters (32-127) it
performs a LOAD on that SCREEN.

BRANCH 	 RESIDENT

The run-time procedure to unconditionally branch. An
in-line offset is added to the interpretive pointer I? to
branch ahead or back. BRANCH is compiled by ELSE, AGAIN,
and REPEAT.

BSATE
	

addr scrl 	scrTi 	SCR 83 	-BSA 7E

?Laces in a binary i:nage (starting at scr!fr and going as far -
as necessary) all dictionary contents between add: and
azaz. The next available SCREEN number is returned on the
stack. See SLOAD.

3 LTFTEa
	

a - 	add,: 	 RESIDENT

Obtain the next memory buffer, assigning it to block n. :f
the contents of the buffer is marked as updated, it is
writtea to the disk. The block is not read :rcn the disk.
The address left is the first call within the buffer for
data storage.

b addr 	 liSIDEN7

at = ,":7, 	Sy:_as 	 - la 1:7.7 247Lar

7r

?At= 	 SS CI.CAIZ

C, 	 b 	 RESIDENT

Store 8 bits of b into the next available dictionary byte,
advancing the dictionary pointer. This instruction should
be used with caution on byte addresr,ing, word oriented
computers such as the Ti 9900.

C11., ..2•1■1111. RESIDENT

Returns on the stack the number of characters per line.

ClLS
	 addr
	

RESIDENT

A user variable whose value is the number of characters per
line.

addr 	b 	 RESIDENT

Leave the 8 bit contents of the memory address on the
stack.

CASE

C7A

C7.11,11.

RESIDENT

Initiates the construct:

CASE...0F...ENDOF...ENDCASE

pia 	cfa 	 RESIDENT

Convert the parameter field address of a definition to its
code field address.

al aZ a3 	ch 	 SCR 37 	-GRA2H

Defines character 4 ch ,to have the pattern sper- 4 : 4,4 by the
words on the Stack. The definition for character 	by

default resides at HEX 800. Each character definition is 8
bytes long.

:ca

be cransmicted.

APPNDIX D 	PAO. 18 	GLOSSARY

F0 R 	11

CLAR-CNT@. 	 n 	 SCR 89 	-FILE

Used in file 110 to retrieve the character count of a record
that has been read.

CITkRPAT 	 ch 	al n2 n3 n4 	SCR 57 	-GRAPE

Places the 4 word pattern of a specified character (ch) on
the stack. Sy default, the definition for character 40
resides a: REX 800.

CEK -STAT 	 SCR 68

Checks for errors following an I/O operation. If an error
has occurred, an appropriate message is printed.

CLEAR 	 scrI

Fills the designated screen with blanks .

addr cat a 	 S 	86 	-64SUPPORT

Prints one line of tiny characters. CLINE expects on the
stack the address of the line to be written in memory, the
number of characters in that line, and the line number on
which .: is to be writpen on the oucouc screen. CLINE calls
SLASH to do the actual work. See :.- _ASH and CLIST.

CLIST 	 scrl 	 sca 66 	-64SUPORT

lists the specified SCREEN in Tiny CEARaccrs to the
monitor. CLIST executes a multiple call to CLINE. See
CLINE and TC:7IAR.

CIOAD 	 scr1
	

3CR 2 , 	3COT SCR

Used in the form:

7 	,
screen number of 0 will suppress loaciaz cf the current
screen I: :ne spec - 	 war: 	a_reacy :een campl_ec.

z. Tc.272 7.7 7.CSSAR-:

T i 	FORTH

CLR-STAT
	

SCR 68 	-FILE

Zeroes the status field of the PAB pointed to by PAB-ADDR.

SCR 33 	-SYNONYMS

Clears display screen by filling the screen image table with
blanks. The screen image table runs from SCRN START to
SCRN END.

CLSE 	 SCR 71 	-FILE

Closes the file whose FAB is pointed to by PAB-ADDR.

COVE
	

addrl addr2 cnt 	 RESIDENT

Move the specified quantity of bytes beginning at addrl to
addr2. The contents of addrl is moved first proceeding
toward high memory.

CODE 	 SCR 74 	-CODE

A defining word initializing the definition of a code
(assembly) word.

COINC
	

sprit spr4 tol
	

SCR 61 	-GRAPH

Detects a coincidence between two given SPRITES within a
specified tolerance limit. A true flag indicates a
coincidence.

CO INCALL
	

f 	 SCR 61 	-GRAPH

Detects a coincidence between the visible portions of any
two SPRITES on the screen. A true flag indicates a
coincidence.

CCINCXY 	 dc dr siDr# tol 	 SCR Al 	- (7, RAP

a .5 ..-Loci 	acc a“7ea

CLS 14.■ ••••

F 	R TH

COLD 	 RBSIDENT

The COLD start procedure to adjust the dictionary pointer to
the mininum standard and restart via ABORT. May be called
fram the terminal to remove application programs and
restart. COLD calls 300T prior to calling ABORT.

COLOR
	

n1 n2 a3 	 SCR 58 	-GRAPE

Causes a specified character set (n3) to have the given
foreground (al) and background (a2) colors.

COLTAB
	 vaddr 	 SCR 57 	-GRAPH

A constant whose value is the beginning VDP address of the
color table. The default value is HEX 380.

COMP:LI 	 IF-SIDE:7r

When the word containing COMPILE executes, the emecution
address of the word following COMPILE is copied (compiled)
into the dictionary. This allows specific compilation
situations to be handled in addition to simply cr.Impiling an
amecution address (which the interpreter already does).

CONSTANT
	

a 	 RESIDENT

A defining word used in the form:

a CONSTANT dada

to create word =cc, with its parameter field containing a.
When cccc is later executed, it will push the value of a to
the stack.

--- add: 	 IESTENT

k user variable containing a pointer to the vocabulary
t:ichin which dictionary searches will first begin.

:ne st2ck.

?A=

TI 	FORTE

COUNT
	

addrl 	addr2 n 	RESIDENT

Leave the byte address (addr2) and byte count (n) of a
message text beginning at addrl. It is presumed that the
first byte at addrl contains the text byte count and the
actual text starts with with the second byte. Typically,
COUNT is followed by TYPE.

CR 	 RESIDENT

Transmit a carriage return and a line feed to the selected
output device.

CREATE
	

RESIDENT

A defining word used'in the form:

CREATE cccc

by such words as CODE and CONSTANT to create a dictionary
header for a FORTH definition. The code field contains the
address of the word's parameter . field. The new word is
created in the CURRENT vocabulary.

CS?
	 --- add:. 	 RESIDENT

A user variable temporarily storing the stack pointer
position, for compilation error checking.

C.URPOS
	

addr 	 RESIDENT

A user variable that stores the current VDP cursor
' position.

CURRENT
	

addr 	 RESIDENT

A user variable, pointing to the vocabulary into which new
definitions will be campiled.

D+
	

dl d2 	d3 	 RESIDENT

Leave the double number sum of two double numbers.

A??7NDIX D
	

,MOSSA.RY

„41 z 	C2 	 RESIDENT

Apply the sign of n to the double number di, leaving it as
Cl.

a. 	 d
	

RESIDENT

Print a signed double number from a 32 bit two's complement
value. The high-order 16 bits are most accessable on the
stack. Conversion is performed according to the current
3ASE. A blank follows. Pronounced "D DOT”.

D.R
	

d a 	 RESIDENT

Print a signed double number d right aligned in a field n
characters wide.

DA3S 	 di --- 	 RESIDENT

Leave the absolute value of a double aumber.

DOOLOR 	 addr
	

SCR 63

A variable which contains the dot color information used by
207. Its value may be a rwodigit EEC number which defines
:he foreground and background color, or it nay be -1 which
means no color information is changed in the 7DP.

DDT::
	

dc dr 	vaddr 	 SC1 63 	-k1RAPH

The assembly code routine called by DOT. It exacts a dot
column and a dot row on the stack and returns a 7D?
address.

RESIDENT

Set the numeric conversion SAS' for decimal input/output.

pAJ2 	 ;:ossA1-17

7 T
	

0 3. 7 H

DEFINTTIONS 	 RESIDENT

Used in the form:

eccc DEFINITIONS

Set the CUR ENT vocabulary to the CONTEXT vocabulary. In
the example, executing vocabulary name cccc made it the
CONTEXT vocabulary and executing DEFINITIONS made both
specify vocabulary cent.

DELALL 	 SCR 61 	-GRA2H

Delete all SPRITES.

DELSPR
	

spr4 	 SCR 61 	-GRAPH

Delete the specified SPRITE.

DIGIT
	

ch n1 --- n2 :f (ok) 	RESIDENT
ca al --- ff 	(bad)

Convert the ascii character ch (using BASE al) to its binary
equivalent n2, actampanied by a true flag. If the
conversion is invalid, leave only a false flag.

add: 	 RESIDENT

A user variable that points :o the first byte in TOP R,!.'1 of
the a disk buffer.

DISK-HAD 	 SCR LLO 	-COP7

Writes a disk-head on SC7=IN 0 that makes the disk
campatable with. the 7: 99/=, A DISK 'AANACER and with 77.
3ASIC.

DISK.2.1 	 --- add:
	

RESIDENT

user vaziable 	zcnzairs :ba 3C=N :umber LmmeCiatai!
above the SC7. --7-727 :nn g- 	2.07 777N 	ar-=

A:Fr'N'7.:(2 	7AGE

7 	 0 3 T.

DISC LO
	 add: 	 RESIDENT'

A user variable which contains the first SCREEN number of
the range wherein disk writes are permitted.

DIE:: SIZE 	 •••••■•• 	 RESIDENT

A user variable whose value is the number of SCREENS
logically assigned to a diskette.

nLITrRAL
	

d 	(executing) 	RESIDENT
(compiling)

If =piling, compile 'a stack double number into a literal.
Later execution of the definition containing the literal
will push it to the stack. If executing, the number will
:mein on the stack.

SCR 71 	-FILE

The FILE. I/O routine which deletes the file whose ?A3 is
pointed to by PA2-ADDR.

711.TNU S dl 	d2 	 RESIDENT

Convert dl to its double number two's complement.

DZA0DE
	 addr 	 SCR 63 	-GRA2E

A variable which determines which dot node is currently
effect. A THODE value of 0 indicates DRAW mode, a value of
1 indicates =DRAW mode, and a value of 2 indicates DOT
TOGGLE mode. This variable is set by the DRAW, UNDRAW, and
DTCG instructions.

D 	?AGE

DLT .0.••••■■01.0

DO
	

nl a2 -- (execute) 	RESIDENT
addl. n 	(ccmpile)

Occurs in a colon-definition in the form:

DO
DO • • •

LOOP
+LOOP

At run tine, DO begins a sequence with repetitive execution
controlled by a loop limit al and an index with initial
value a2. DO removes these from the stack. Upon reaching
LOOP, the index is incremented by one. Until the new index
equals or exceeds the limit, execution loops back to just
after .DO; otherwise the loop parameters are discarded and
execution continues ahead. Both al and n2 are determined at
run-tine and may be the result of other operations. Within
a loop, I will copy the current value of the index to the
stack. See I, LOOP, +LOOP and LEAVE.

When compiling within the colon-definition, DC compiles
(DO), leaving the following address (addr) and n for later
error checking.

DOES> 	 RESIDENT

A. word which defines the run-tine action within a high-Level
defining word. DOES> alters the code field and first
parameter of the new word to execute the sequence of
compiled word addresses following DOES>. It is always used
in combination with <BUILDS. When the DOES> part executes
it begins with the address of the first parameter of the new
word on the stack. This allows interpretation using this
area or its contents. Typical uses include the FORTH
assembler, multi-dimensional arrays, and compiler
generation. o-

DOT 	 do dr 	 SCR 63 	-CRAPS

Plots a dot at (dc,dr) in whatever mode is selected by
DMODE and in wtiatever color is selected by DCOLOR.

DP
	 add: 	 RESIDE=

A user variable, the ca::: 4 onar7 6oin-=r,
address of the next frae memor7 above
77a.lile =a7 	_tad :7 	 --.L.:_zalad :7

	

.-12PENDIX D 	PAGE '26

add: 	 RESIDENT

A user variable containing the number of digits to the right
of the decimal on double integer input. It nay also be used
to hold output column location of a decimal point, in user
generated for=ating. The default value on single number
input is -I.

DRO
	

RESIDENT
Dal
DR2

Command to select disk drives by presetting OFFSET. The
contents of On= is added to the block :Lumber in BLOCK to
allow for this selection. OFFSET is supressed for error
text so that it may always originate from drive 0.

DRAW
	

SCR 63

Sets DMODE equal to 0. This teas that dots are plotted in
the 'on' state.

DRITE 	 a ••■■alle 	 RESIDENT

Adjusts =SET so that the drive au=ber on the stack becomes
the first drive in the system.

DROP ■•■••■3113 RESIDENT

Drop the top number from the stack.

OSPLY 	 .01=O5 	 SCR 69 	-FILE,

Assigns the attribute DISPLAY to the file pointed to by
PAB-ADDR.

DSRLITK
	

SCR 33 	-5YNONTMS

Links a FORTR program to any Device Service Routine in ROM.
70nr ,-- 	.=tr..1=7. -, r. -- 7 	1 , ad, 	7-". 7
77-2

APPENDIX :

ORTE,

DTEST 	 SCR 39 	-COPY

Performs a non-destructive test of the disk in DS31 by
attempting to read each SCREEN.

DTCG 	 SCR 63 	-GRAPH

Sets DMCDE equal to 2. This means that each dot plotted
takes on the opposite state as the doc currently at that
location.

addr n 	 SCR 43 	-DUMP

Print the contents of n memory locations beginning at addr.
Both addresses and contents are shown in hexadecimal. See
PAUSE.

DUP
	

n n 	 RESIDENT

Duplicate the value on the stack.

or! 	dcl dri dc2 dr2 	al n2 	SCR 59 	-GRAPH

Places the square of the x distance (al) and the square of'
the y distance (n2) between the points (dcl,drI) and
(dc2,dr2) on the stack.

ECOUNT
	

addr
	

RESIDENT

. user variable which contains an error count. This is used
co prevent error recursion.

•■•■■••/.0. SCR 38 	-EDITOR
SCR 29 	-64SUPPORT

Brings you back into the EDITOR on the last SCREEN you
edited. This SCREEN is pointed to by SCR.

ED::
	 sca 23 	-E2 7-0:1

SCR 29 	-64SZPPORT

37. 1:12s 7:P 	 zne 	:n 	37" - '=-^

2P 7N-Din D 	?AGE 23

77; • • •

7 0 	7

ELSE 	 addrl hi 	adar2 h2
Coampilin)

Occurs within a Colon-definition in the for

ELSE: 	 ENDIF

A: run-tine, ELSE executes after the true part following
L. ELSE forces execution to skip over the following false
part and resume execution after ENDI7. It has no stack
effect.

A: camoile-time, ELSE emplaces BRANCa reserving a branch
offset and leaves the address addr2 and a2 for error
testing. ELSE also resolves the pending forward branch from
17 by calculating the offset from addrl to RERF. and storing
it at addrl.

eh - 	 RESIDENT

Transmit ascii character ch to the selected output device.
OUT is incremented for each character output.

CFI ••■•••■13 RESIDENT

Transmit an 3-bit character to the selected output device.
OUT is incremented for each character output.

7'. 1 77-BC 777°.:1S 	 RESIDENT

dark alI block-buffers as empty, not necessarily affecting
the contents. Updated blocks are not written to the disk.
This is also an initialization procedure before first use of
the disk.

ENCLOSE 	addrl on 	addrL
	,1 	RES 77 ;°N7

The text !,canaing primitive used by q0RD. From the text
address addrl and' an ascii delimiting character ch, is
determined the byte offset to the first non-delimiter
character nl, the offset to the delimiter alter the text a2,
and the offset to the firs: character cc: 4_mcluded. 	his

act 7racess oast an azcli 	, tree:1:12 1:
as an !.ina=aiticuai caLL=iter.

t....77,

TI 	FORTH

END
	 f 	 RESIDENT

This is an 'alias' or duplicate definition for UNTIL.

ENDCASE 	 RESIDENT

Terminates the CASE construct.

ENDIF 	 addr n --- 	(compile) 	RESIDENT

Occurs in a colon-definition in the form:

IF 	ENDIF
IF 	ELSE ••• ENDIF

At run-time, ENDIF serves only as the destination of a
forward branch from 17 or ELSE. It narks the conclusion of
the conditional structure. THEN is another name for ENDIF.
Both names are supported in fig-FORTH. See also IF and
ELSE.

At compile-time, ENDIF computes the forward branch offset
from add: to HEM and stores it at add:. n is used for
error casts.

ENIOF 	 RESIDENT

Terminates the OF construct within the CASE construct.

ERASE
	

addr n --- 	 RESIDENT

Clear a region of memory to zero from addr over a bytes.

ERROR 	 al --- a2 a3 	 RESIDENT

Ezecure error notification and restart of system. ;;ARNING
is first wcamined. If 1, the text of Line al, relative
screen 4 of drive 0 is printed. This line =umber nay be
positive or negative, and beyond just screen 4. If
WARNINGO, ml is just printed as a message number (non-disk
installation). L WARNING is -1, the definition (ABORT) is
executed, which executes :na syste= .SORT. The user nay
cautiously nodify this execueion by a:Leering (. 2:CIT).

:saves
assist :1= 	 1.,-;cacca 	 errcr.
action is execution of QUIT.

APPEND -7 D 	PAGE 3C 	G-LossAay.

EIEC7.7E

Execute :he defiLlitich whose code field address is on the
stack. The code 	=address is also :.11 1 e
ompilacion addres s, .

SC1 30 	-FL.CAT

Raises e to the power specified by the floating point humher
on the stack and lesves the result on the stack.

addr ant RESY.DENT

Transfer characters from the terminal to addr, until a
'Lli772' or tl:e count of characters has been received— One
or acre mulls are added at the end of the text,

fl addl.
	

ScI 43

Stores a acacias point number, :t1, idto the a words
beginalhg 	the specified address.

=1 7 • • • • M. • • • • Lid SCR "46

ttl.J.tiplies the tap tl.ro float mg point aumbers an :he ste p ._
and leaves the result on the stack.

flI sca

Adds the cop 7W41 floating point hu=bers an the stack and
places the result on the stack.

11 f 7 2 	fl3
	

SC2 '46 	FLOA7

Subtracts f12 fru= fl_ and places the result an the stack.

7—>5
	

FLCAT

TI 	FORTH

F. 	 fl 	 SCR 48 	-FLOAT

Prints a floating point number in BASIC format to the output
device.

F.R
	

fl n 	 SCR 48 	-FLOAT

Prints the floating point number in BASIC format right
justified in a field of width n.

F l
	

fll fl2 	f13 	 SCR 46 	-FLOAT

Divides fll by f12 and'leaves the floating point quotient on
the stack.

FO<
	

fl 	f 	 SCR 49 	-FLOAT

.Comparea the floating point number on the stack to 0. If it
is less than 0, a true flag is left on the stack, else a
false flag is left.

F0a
	

fl 	f 	 SCR 49 	-FLOAT

Compares the floating point number on the stack to O. If it
is equal to 0, a true flag is left on the stack, else a
false flag is left.

F<
	

fll f12 	f 	 SCR 49 	-FLOAT

Leaves a true flag if fll < f12. Else leaves a false flag.

Fa

	

	
fll fl2 	f 	 SCR 49 	-FLOAT

Leaves a true flag if fll a f12. Else leaves a false flag.

F>

	

	
fll f12 	f 	 SCR 49 	-FLOAT

Leaves a true flag if fll > f12. Else leaves a false flag.

F@
	

addr 	fl 	 SCR 45 	-FLOG:

Retrieves the floating point contents of the given address
(4 words) and places it on the stack.

APPENDIX D 	PAGE 32 	GLOSSARY

FAC 	 add: 	 SCR 45 	-FLOAT

A constant which contains :he address of the FAC register.

FAC -7S 	 a 	 SCR 46 	-FLOAT

Converts a floating point =umber in FAC to a single
precision number and places i: on the para=ecer stack.

fl 	 SCR 45 	-FLOAT

Brings a floating point number fro= FAC co the stack.

FAC>ARG 	 sca 46 	-FLOAT

Moves a floating point number from FAC into ARC.

?ADD 	 sca 43 	-FLOA:

Adds the floating point.numoer in ?AC :o the floating point
number in ARC and leaves the result in FAC.

.112..71M1. SC1 , f,1 FLOAT

Divides the floating point number in FAC by the floating
point number in ARC leaving the quotient in FAC.

DROP 	 :71 	 SCR 43 	-FLOAT

Drops the cop floating point number from the stack.

FIN? 	 fl
	

SCR 43 	-FLOAT

Duplicates the Lop floating poin: auntie: on the stack.

add: 	 IESIDENT

FAO> "Manion&

ORGZT 	 72.5c LL:a:

T.I 	FORTH

•
	 fl n1 r„2 	 SCR 48 	-FLOAT

Prints the floating point number with n2 digits following
the decimal point and a maximum of n1 digits.

FT.R
	

fl n1 n2 n3 	 SCR 48 	-FLOAT

Prints the floating point number, with n2 digits following
the decimal point, right justified in a field of width n3
with a maximum of n1 digits,

F-D" 	 SCR 70 	-FILE

Expects.a file descriptor ending with a " to follow. This
instruction places the file descriptor in the PAB pointed to
by PAB-ADDR.

FILE
	

addrl addr2 vaddr 	SCR 68 	-FILE

A defining word which permits you to create a word by which
a file will be known. You must place on the stack the
PAB-ADDR, ?AB-BUT, and PAB-TBUF addresses you wish to be
associated with the file.

Used in the form:

addrl addr2 vaddr FILE cccc

When cccc executes, PAB-ADDR, FAB-BUT, and PAZ-TSUI: are set to
addrl, addr2, and vaddr, respectively.

FILL
	

addr cnt b 	 RESIDENT

Fill memory beginning at addr with the specified number
(cat) of bytes b.

TZIST 	 addr 	 RESIDENT

A constant that leaves the address of the first (lowest)
block buffer.

21375 RZSIDZN:

buffer area.

2PENDIX i 	PAGZ 	.GLOSSA=

F o R

SLiD 	 acHr 	 REST17-7 :7:

A user variable for control of number output field width.
Presently unused in fig-FOR:H and 7 .7_ FOR-H.

FLF.RIR
	

SCR 49 	-FLOAT

Returns on the stack the contents of the floating point
status register.

FLUSH 	 aNMN.MM 	 RESIDENT

Rewrites to the disk all disk buffers that have been
updated.

414...M.1111 SCR 45 	-FLOAT

Multiplies the floating point number in FAC with the
floating. point number in ARC leaving the product in FAO.

FORGET 	 RESIDENT

Executed in the form:,

FORGET

Deletes definition n=med tocc from the dictionary with al'
entries physically following

FORMAT-DISX
	

dsk 	 SCR 33 - -S7NON72.1S

Initializes the disk in ORO, DR1, or DR2 for use with the
Forth system. CAUTION: all data on the disk (if any) will
be destroyed. Also, disks initialized by the DISC MANAGER
nay be used without any changes. DSR number must be 0, i or
2.

FORTE 	 RESIDENT

711a :z-ze 	:ha::t=zir7
:he .7.:NTZ:: -70cabuiat7, := 4 1

:.zar 	 77,
aa

or a colcm—de.fi=iz:Lon 7= se:Le::: 	7ocabui.ar7 at c=m7i::e

D

ORT

FORTH-COPY 	 SCR 39 	-COPY

Copies the entire disk in DSX2 onto the disk in DSK1.

FORTH-LINK
	 addr 	 RESIDENT

A user variable used for vocabulary linkage.

FOVER
	

fll f12 	f11 .f12 fl1 	SCR 45 	-FLOAT

Copies the second floating point number on the stack to the
top of the stack.

FRND 	 fl 	 SCR 46 	-FLOAT

Generates a floating point number greater than or equal to 0
and lass than 1.

FSUB 	 SCR 45 	-FLOAT

Subtracts the floating point number in ARC from the number
in FAC and leaves the. result in FAC.

FS I4A2
	

fIl f12 --- f12 fit 	SCR 45 	-FLOAT

Swaps the top co floating point numbers on the stack.

FXD 	 SC 68
	-FILE

Assigns the attribute FIX= to the file whose PAZ is pointed
to by PAB-ADDR.

CHAR
	

c r 	ch 	 SCR 58 	-CRAPH

Returns on the stack the ascii code of the character

	

currently at (c, r). NOM': Rows and colt 	 are numbered
from 0.

b 	 SCR 68 	-FILE

Retrieves the flag byte from the current ?AB and places is
on the stack.

APPENDIX D 'D • '"7.° 36 	GLOSSARY

GOTOXY. 	 c r 	 RESIDENT

Places the cursor at the designated column and row
position. NO': Ro ,..-s and collmns are numbered from 0.

GPLLNY. 	 addr 	 Sc. 33 	-SYN01.7.MS

Links a FORM program to the Graphics Prog-amming Language
routine located at the given address.

GRAPHICS 	 SCR 52 	-GRA2H1

Converts from present screen mode into standard GRAPHICS
mode configuration.

GRA2HICS2
	

SCR 54 	--G,74.APH2

Converts from present screen mode into standard, GRAPHICS2
mode configuration.

c r cat cn 	 SCR 37 	-GRAPH

Prints a horizontal stream of a specified character
beginning at (c,r) and having a length cnt. NOTE: Rof.;s and
columns are numbered from 0.

MU, 	 addr 	 1ESIDEN:

Leave the address of the ne= available dictionary
location.

HEX 	 RESIDENT

Set the numeric conversion base to sixteen (hexadecizal).

"Zw.1) 	 sm... adds
	

RESIDENT

A user variable that holds the address of the latest
:naractar 	 =era: 	:put ..=orerz - n.

-ed 	 and 4 > :c ..nae:: an asd.. =a:ad:a: i..amc a
pictured cumeric ouctut striag. e .g 	2 	CLL 	._ace a
Cecina:J. po1.7.t.

API.,"'"NDT7. 2 	?AGE 27

TI 	TORTE

RONK 	 SCR 60 	—GRAPH

Produces the sound associated with incorrect input.

I
	 a 	 RESIDENT

Used within a DO—LOOP to copy the loop index to the stack.
Other use is implementation dependent. See R .

ID. 	 afa --- 	 RESIDENT

Print a definition's name from its name field address.

IF
	

(run—time) 	RESIDENT
addr a 	(compile)

Occurs in a colon—definition in the form:

IF (tp) 	ENDIF
ZF (tp) 	... 	ELSE (fp) • • • ENDIF

At run—time, Lr selects execution based on a boolean flag.
If f is true (non—zero), execution continues ahead thru the
true part. If f is false (zero) , execution skips to just
after ELSE to execute the false part. After. either part,
execution resumes after ENDIF. ELSE and its false part are
optional; if missing, false execution skips to just altar
ENDIZ.

At compile time, IF compiles OBRANCU and reserves space for
an offset at addr. addr and a are used Later for resolution
of the offset and error testing.

I:IMEDIATE 	 ?c*SIDENT

Mark the most recently made definition so th,-,t when
encountered at compile time, it will be executed rather than
being compiled. i.e. the precedence bit in its header is
set. This method allows definitions to handle unusual
compiling situations, rather than build them into the
f.:andameatal 	 7,71a ..:mar may f:r:2 	 an
i=ediace definition by 7Teceedi=g

APPENDIX : 	PAGE 38 	GLOSSARY

-

addr 	 RESIDENT

A user variable containing the byte offset within the
current input text buffer (terminal or disk) from which the
next text will be accepted. WORD uses and moves the value
of N.

IN 	 n1 a2 	 SCR 73 	-PRINT

Prints to the terminal a list of the line 40 comments from
SCREEN al thru SCREEN n2. See PAUSE.

INP:
	

SCR 69 	-FILE

Assigns the atribuce INPUT to the file whose ?AB is pointed
to by ?a-ADDR.

fll 	fl2 	 SCR 50 	-FLOAT

Leaves the integer portion of a floating point number on the
stack.

INTERPRET 	 RESIDENT

The outer text interpreter which, sequentially executes or
canpiles text from the input stream (terminal or disk)
depending on STATE. If the word name cannot be found after
a search of CONS= and then CURREN: I: is converted into a
number according to the current, base. That also !ailing, an
error message echoing the name with a "7" will be given.
Text input will be taken accordi-a to the convention for
WORD. If a decimal point is found as part of a number, a
double number value will be left. 7he decimal point has no
ocher purpose than to force :ais action. See NUMBER.

addr 	 RES:DENT

A user variable which is a pointer to the Interrupt Service
14 mkage.

"73C17...

pointed to 	PAB- ALOR.

2

T 	FORTH

ISR
	

addr 	 RESIDENT

A user variable that initially contains the address of the
interrupt service linkage code to install an Interrupt
Service Routine. The user must modify 'SR to contain the
CFA of the routine to be executed each 1/60 second. Next,
the contents of HEX 83C4 must be modified to point to this
address. Note, the interrupt service linkage code address
is also available in INTLNK.

n 	 RESIDENT

Copies the loop index of the second innermost loop to the
stack.

JOYST al 	ch n2 n3 	 SCR 60 	—GRA2H

Allows you to accept input from JOYSTICK #1 or i2 (nl) or
from the left and right sides of the keyboard,
respectively. Values returned are the ascii value of the
key pressed (ch), the x status (n2) and the y status (n3).

KnP ch 	 RESIDENT

Leave the ascii value of the next terminal key struck.

KET8
	

RESIDENT

Leave the 8—bit value of the next terminal key struck.

Lisca. •••■••••=0 RESIDENT

Returns on the stack. the number of lines per SCREEN.

afa
	

REZIMENT

Leave the name field address of the topmost word in the
CURRENT vocabulary.

ai I

7.2 	:10 prbce:ss :o ..bad a ?rbzram 	fr.= a
VDP RAM. The parameter n specifies the maximum number of
Oytes co .Je loaded .

.4,7=1127
	

?Aa2 LLQ 	 (17_nS5AR7

O R

n1 a2 add:- 	 SCR 88

Performs a 9900' LDCR instruction. The CRL base (addr) will
be shifted left one bit by the LDCR instruction. nl is the
value to be transferred to the CRU and n2 is the field width
of nl (in bits).

LEAVE vaimIMNEN RESIDENT

Force termination of a DO-LOOP at the next opportunity by
setting the loop limit equal to the current value of the
index. The index itself remains unchanged, and execution
proceeds normally until LOOP or +LOOP is encoumtered.

LFA
	

pfa 	ifa 	 RESIDENT

Convert the parameter field address of a i ionary
definition to its link field address.

LIMIT 	 — add:- 	 RESIDENT

A constant which leaves the address just above he highest
memory available for a disk buffer.

addr 	 RESIDENT

A user variable which contains the address just above the
r—
	

highest memory available for a disk buffer.

L.,jE 	 dcl dri dc2 dal 	 SCR 64b 	-GPAH

The high resolution graphics routine which plots a Line from
(dcl,dr1) to (dc2,dr2). DCOLOR and DMODE must be sec before
this instruction is used.

LIST
	

scrzi

Lists cne specified SC=IN to the output device. See
PAUSE.

',: 4 th4 n 	t&on--:efinitinn
before each 16 bit Literal number encountered in input
text. later execution of 1.:7 causes the contents of the
next dictionary address to te nushed to the stack.

kF21-711-01::
	

AL; 72. 	 :7..;ssAa':

F ORTH

LITERAL
	

n 	(compiling)
	

RESIDENT

If compiling, then compile the stack value n as a 16 bit
Literal. This will execute during a colon-definition. The
intended use is:

: xxx (calculate) LITERAL ;

Compilation is suspended for the compile-time calculation of
a value. Compilation is resumed and LITERAL compiles this
value.

LOAD
	

RESIDENT
J

3egin interpretation of SCREEN n. Loading will terminate at
the end of .the SCREEN or at ;S. See ;S and -->.

fl
	

SCR 50 	-FLOA:

The floating point operation which returns the LOG of the
floating point number on the stack.

LOOP 	 addr a --- (compiling) RESIDEN7
	

rt

Occurs in a colon-definition in the form:

DO 	LOOP

At run-tine, LOOP selectively controls branching back to the
corresponding DO based on the loop index and Unit. The
loop index is incremented by one and compared to the limit.
The branch back to DO occurs until the index equals or
exceeds the Limit; at that time, the parameters are
discarded and execution continues ahead.

At compile-time, LOOP compiles (LOOP) and uses add: to
calculate an offset to DO. n is used for error testing.

n1 n2 	d 	 RESIDENT

A mixed magnitude matt opera:ion which leaves the doubie
att=br signed produc: 	:WO 3i2ned ==tiers .

:12PENOIX D 	PAGE 4, 2 	CTLOSSARY

I 0 R

d al --- 	 RESIDENT

A mixed magnitude. math operator which leaves the signed
remainder a2 and signed quotient n3, from a double number
dividend and divisor, al. The remainder takes its sign from
the dividend.

MJNOD 	 udl u2 	u3 ud4 	RESIDENT.

An unsigned mixed magnitude math operation which leaves a
double quotient ud4 and remainder u3, from a double dividend
udl and a single divisor u2.

!IAGNITY
	

al --- 	 SCR 60 	-GRA2E

Alters the SPRITE magnification factor to be al. The value
of al must be 0 , I , 2 , or 3.

MAX nl n2 --- n3 	 RESIDENT

Leave the greater of the two numbers.

a c r 	 SC"(62 	-GRA:2H

Places a square of color n ac (c,r). Used in MULTICOLOR
node

SCR 20 	3007 5CR

Displays the available Load Options.

MESSAGE
	

R.ES 'Ds:Tr

?rim:, on the selected output device the text of line a
relative to screen 4 of drive 0. a may be —pasitive or
negative. MESSAGE nay be used to print Incidental text such
as report headeri. I! WARNING is zero, the message will
simply be printed as a number (disk—un-available).

M7N 	 al n2 	n3 	 RZSIDEN7

7 AG:

TT- 	FORT

MINIT 	 SCR 62 	-GRAPH

Initializes the SCREEN for use with MC AR.

MINUS
	

n1 --- n2 	 RESIDENT

Leave the two's complement of a number.

MOD
	

n1 n2 --- mod 	 RESIDENT

Leave the remainder of nl/a2, with the same sign as nl.

MO N
	

SCR 33 	-syNcrn.f.s

Exit to the TI 99/4A color bar screen. 	 U

MOTION 	 n1 n2 sprJ 	 SCR 59 	-GRAPH

Assigns a horizontal (n1) and vertical (n2) velocity to a
specified SPRITE.

HOVE
	

add:1 addr2 a 	 RES:DENT

;Ave the contents of n memory - cells (16 bit contents)
beginning at addrl into n cells beginning at addr2. The
contents of addrl is moved first. .1 .

SCR 53 	-GRA21.1

Converts from present screen node into standard MULTICOLOR
mode configuration.

MYSZLZ 	 RESIDENT

Used in a colon definition. ?laces the CZA of a routine
into itself. This permits recursion.

g7A 	 pfa 	nfa 	 RES:DENT

Convert the parameter field address of a definition to its
=me !ield address.

APPENDIX 0 	PACT. 	 G.LOSSAR7

n -^"77

REST D 7 NT

OF

A do nothing inscruccion• NO? is useful for pa:thing as in
assembly code.

addr 	d 	 RESIDENT

Convert a character string left at addr with a proceeding
count, to a signed double number, using the currant numeric
base. If a decimal point is encountered in the text, its
position will be given in OPL, but no other effect occurs.
If numeric conversion is not possible, an error message will
be given.

a 	 RESIDENT

Initiates the OF ... ENDOF construct inside of the CASE
construct. n is compared to the value which was on top of
the stack when CASE was executed. If the numbers are
identical, the words between Of and ENDOF will be akecuted.

OFFSET ..1111111•VID add: 	 RESIDENT

A user variable which may contain a block offset. to disk
drives. The contents of OFFSET is added to the stack number
by SLOCM. Messages issued by MESSAGE are independent of
OFFSET. See BLOCK, ORO, l'IESSAGE.

OPT 	 SCR 71

Opens the file whose ?,13 is pointed to by PAZ—AZOR.

OR
	

al c2 --- n3 	 RESIDENT

Leave the bit—wise logical OR of two 16 bit values.

CUT
	 --- add: 	 RESIDEN7

A user defined variable that contains a value incremented by
EXIT and EXITS. The user may alter and examine OUT to
-2on-rn 1 -"sn 7 -= ,7 firmacnT,

- 5 	cm3s=.2,a7.

FORT H

OUTPT 	 SCR 69

Assigns the attribute OUTPUT to the file whose ?AL is
pointed to by ?AL-AD:DR.

OVER
	

al a2 --- al n2 nl 	RESIDENT

Copy the second stack value, placing it as the new cop.

PA3-ADDR 	 addr 	 SCR 68 	-FILE

A variable containing the VDP address of the first byte of
the current PAL.

PA13-BUF
	

addr 	 SCR 68 	-FILE

A variable which holds the address of the'area in CPU RAM
used as the source or destination of the data to be
transferred. This is a file I/O word.

PAB-VBUF
	

add: 	 SCR 68 	-FILE

A variable pointing to a 702 RAM buffer which serves as a
temporary buffer when- transferring data.

P A.BS
	

addr 	 RESIDENT

A user variable which points to a region in VDP RAM which
has been set aside for creating PABs.

?AD
	

addr
	

RESIDENT

Leave the address of the ca= output buffer, which is a
fixed offset above EERE.

PA'.1SE
	

RESIDENT

The words LIST, INDEX, DUMP and VLIST all call the word
PAUSE. Pause allows the user to temporarily hale the output
by pressfm2 	 anctl-..er
continuation. To exit one of :hese routines oremature 7 7,
press 3R K.

APPEND::: 0. -7r rzossAa'y

L 	FOR: F.

?DT
	

vaddr 	 SCR 57 	-GRAPE

A constant which contains the VD? address of the Pattern
Descriptor Table. Default value is >800.

?FA
	

aia 	pfa 	 RESIDENT

Convert the name field address of a compiled definition to
its parameter field address.

SCR 50 	-7 OAT

A floating point approximation of PI to 1a decimal places.
(3.141592653590)

r-, 	?REV 	 addr 	 , RESIDENT

A variable containing the address of the disk buffer most
recently referenced.. The UPDATE command narks this buffer
to be later written to disk.

?UT-FLAG 	 b
	

SCR 68 	-FILE

Writes the flag byte into the appropriate ?AS referenced by
?AB-ADM.

QUERY 	 RESIDEN7

Iaput 80 characters of text (or until a "enter") from the
operator's terminal. Text is positioned at the address
contained in TT3 with DI set to zero.

■••=■•■1111 IESIDENT

Clear the return stack, stop compilation, and return control
to the operator's terminal. To message is

a 	 ?.ZSIDET.:

AF'TND 77.7_ 7

a sibmINNIMID

I 	FORTP

R1,1 	 addr 	 RESIDENT

A user variable which may contain the location of an editing
cursor, or other file related function.

R->BASE 	 RESIDENT

Restore the current base from the return stack. See
BASE->R.

addr al •••••=.110 RESIDENT

The fig-FORTH standard disk read-write linkage. addr
specifies the source or destination block buffer, n1 is the
sequential number of the referenced block; and f is a flag
for f=0 write and f=1 read. R/W determines the location on
mass storage, performs the read-write and performs error
checking.

R> ••••••■•••• RESIDENT

Remove the top value from the return stack and leave it on
the parameter. stack. See >R and R.

RO
	

addr 	 RESIDENT

A user variable containing the initial location of the
return stack. Pronounced "R zero". See RP!

RANDOMIZE 	 SCR 33 	-S7NONTMS

Creates an unpredictable seed for the random number
generator.

RD
	

• CMC
	

SCR 71 	-FILL

The file. I/O instruction that reads from the current PA2.
This instruction uses PA.3-3U7 and PA3- 17:31.7.

RDISK
	 add: a2

The ,7,ri=att.ve rcuciae :r,ac ::erdorms 	 acar Is ,:he
address where the block is to be written La CT,: 9k1.1. al is
the block number, a2 is the number of bytes per block, and
a3 is the returned error tode.

FOR: H

REC-L,EN
	

SCR 69 	..." 1°T7

Stores the length of the record for the upcoming write into
the appropriate byte in the current PA.3.

REC-NO 	 a --- 	 sa 69 	-FILE

Writes a record number a into the appropriate location in
the current PA3.

REPEAT 	 addr n --- 	(compiling) 	RESIDENT

Used within a colon-definition in the form:

BEGIN • • * WHILE 	REPEAT

At run-time, REPEAT forces an unconditional branch back to
just after the corresponding BEGIN.

At compile-ttme, REPEAT compiles BRANCH and the offset from
Azaz to addr. n is used for error testing.

sa 69

Assigns the attribute RELATIVE to the file whose ?AB is
pointed to by ?AB-CDR.

RND — 	 SCR 33 	-SMTOtrnfs

Generates a positive random integer (712) greater than or
equal to 0 and less than nl.

SCR 33 	-S7NON7MS

Generates a random word. The value of the word may be
positive or negative depending on .nether the sign bit is
sec.

ROT
	

al :12 a3 --- n2 n3 n1 	RESIDENT

:he :cc 	7 , lues

-...21FEND=

FORTH

RP! 	 RESIDENT

A procedure to initialize the return stack pointer from user
variable_RO.

RSTR
	

SCR 71 	-FILE

Restores the file whose PAB is pointed to by the current PAB
to the specified record number, n.

S->D 	 RESIDENT

Sign extend a single number to form a double number.

S-->F
	

±1 	 SCR 46 	-FLOAT

Converts a single precision number on the stack to a
floating point number.

S->FAC
	

a --- 	 SCR 46 	-FLOAT

Takes a single precision number from the stack, converts it
to floating point, and leaves it in 7AC.

S O
	

addr 	 RESIDENT

Pronounced "S zero". See SP!.

SAM
	

vaddr 	 SCR 57 	-C;R:',2F.

A constant whose value is the VD? address of the SPRITZ
Attribute List. Default value is >300.

330 	 addr 	 SCR 88 	-CRIT

This word expects to find on the stack the mu address
(addr) of the bit to be set to 1. Note that the SBC
instruction will itself shift the address before using 11 1 .

23 	 Iddr 	 iCR ;3 	-7'2

This word expects to find on the stack the CRT: address
acdr) of the-zit to .ze set to O. Note that :he SEZ
instruction 'Jill itself shift the address before using R12.

A2PF.11711.:
	

f0 	CLOSSAX:

TI FORTH

SCOPY 	 scr#1 scr#2 --- 	 SCR 39 	-COPY

Copies the source SCREEN (scril) to the destination SCREEN
(scr#2). Does not destroy the source SCREEN.

SCR 	 addr 	 RESIDENT

A user variable containing the screen number most recently
referenced by LIST or EDIT.

SCREEN 	 n 	 SCR 58 	-GRAPH

Changes the screen color to the color specified (n).

SCRN _END 	 addr 	 RESIDENT

A user variable containing the address of the byte
immediately following the last byte of the screen image
table to be used as the logical screen.

SCRN _START 	 addr 	 RESIDENT

A user variable containing the address of the first byte of
the screen image table to be used as the logical screen.

SCRN_WIDTH
	 addr 	 RESIDENT

A user variable which contains the number of characters
which will fit accross the screen. (32 or 40) Used by the
screen scroller.

SCRTCH 	 n 	 SCR 71 	-FILE

Rembves the specified record from the RELATIVE file whose
PAB is pointed to by PAB-ADDR.

SEED 	 n 	 SCR 33 	-SYNONYMS

Places a new seed n into the random number generator.

APPENDIX D 	PAGE 51 	GLOSSARY

I FORTH

SET-PAB
	

SCR 68 	-FILE

This instruction assumes that PAB-ADDR is set. It then
zeroes out the PAB pointed to by PAB-ADDR and places the
contents of PAB-VBUF into the appropriate word of the PAB.
This initializes the PAB.

SETFL 	 fll fl2 --- 	 SCR 45 	-FLOAT

Performs a >FAC on f12 and a >ARG on fll.

SIGN 	 n d --- d 	 RESIDENT

Stores an ascii "-" sign at the current location in a
converted numeric output string in the text output buffer
when n is negative. n is discarded, but double number d is
maintained. Must be used between <# and #>.

SIN 	 fll --- fl2 	 SCR 50 	-FLOAT

Finds the SIN of the floating point number on the stack and
leaves the result on the stack.

SLA 	 nl cnt --- n2 	 RESIDENT

Arithmetically shifts the number on the stack cnt bits to
the left, leaving the result on the stack.

SLIT 	 addr 	 SCR 20 	BOOT SCR

SLIT is similar to LIT but acts on strings instead of
numbers. SLIT places the address of the string following it
on the stack. It modifies the top of the return stack to
point to just after the string.

SMASH 	addr cnt n 	addr vaddr cnt 	SCR 65 	-64SUPPORT

The assembly code routine which formats a line of tiny
characters. It expects the address of the line in memory,
the number of characters per line, and the line number to
which it is to be written. It returns on the stack the line
buffer address, a VDP adddress, and a character count. See
CLIST and CLINE.

APPENDIX D 	PAGE 52 	GLOSSARY

SMTN

F 0 R

RIOVE
	

scr#1 scrj2 cnt 	 SCR 39
	

-COPY

Copies cnt SCREENS beginning with the source SCREEN (scr01)
to the destination SCREEN (scr02). Overlapping SCREEN
ranges may be specified without detrimental effects.

SMUDGE 	 •■•■■■•••■•■ 	 RESIDENT

Used during word definition to toggle the "smudge bit" in a
definition's name field. This prevents an uncompleted
definition from being found during dictionary searches,
until compiling is completed without error.

vaddr 	 SCR 57 	-GRAPH

A constant whose value is the VDP address of the SPRITE
MOTION TABLE. Default value is >780.

•••••.•10 RESIDENT

A procedure to 	 the stack pointer from SO.

	

addr 	 RESIDENT

A procedure to return the address of the stack position to
the cop of the stack, as it as before SP@ was axecuted.
(e.g. 1 2 SP@ @ . . . would type 2 2 1)

SPACE 	 RESIDENT

Transmit an ascii blank to the output device.

SPACES
	

a •••■••• 	 FLESIENT

Transmit n ascii blanks to the output device.

ST CHAR
	 al n, n3 n4 oh --- 	SCR 58 	-GRAPH

	

= tharac:= ,- Y_n) 	:n- 	 7=O= :^

?AC= :3 	GIOSSAR':

7 I 	FOR 7 1-1

SPDTAL 	 vaddr 	 scm 57 	-GP .2E

A constant whose value is the GDP address of the SPRITZ
Descriptor Table. Default value is >800. Notice that this
coincides with the Pattern Descriptor Table.

SPLIT 	 SCR 55 	-SPLIT

Converts from present screen mode into standard SPLIT mode
configuration.

SPLIT2 	 SCR 55 	-SPLIT

Converts from present screen mode into standard SPLIT2 mode
configuration .

SPRCCL
	

a spry 	 SCR 58 	-G12A21-1

Changes the given SPRITZ to the color (n) specified.

SPRZIST 	 spr)1 sprFA2 	a 	SCR 60 	-C2A2R

Returns on the stack - the square of the distance (n) between
two specified STRITZS. Distance is measured in pixels and
the maximum distance that can be detected accurately is 131
pixels.

SPRDISTM:
	

do dr sprY 	 SCR 60 	-G1.11211

Places on the stack the square of the distance between the
point (dc,dr) and a given SPRITE. Distance is neasured in
pixels and the maximum distance that. can be detected
accurately is 181 pixels.

SPR.GET
	

spry --- do dr 	 SC1

Returns the do; column and dot row position of a SPRIT'S.

SP RITZ
	

do dr 	ch spry 	 SCR 59 	-GRA2H

Defines SPRITZ number sprY to have the spe ,-. 4 ': 4 d. location
(dc,dr), 	(a), and character bactern (ch). 7he
:he 47fR7 7Z 	:::3=2Cd 	:n-

A,.2PE17021 3 PAGZ 5=,

FORT

SPRAT 	 ch spr.
	

SCR 59

Changes the character pattern of a given SPRITE to ch.

S?RPUT 	 dc dr spr4
	

SCR 39 	-GRAPH

Places a given SPRITE at location (dc,dr).

SQN71. •■•••NII.• SCR 69 	-FILE

Assigns the attribute SEQUENTIAL to the file whose ?AB is
pointed to by PA3-ADDR.

SQR
	

fl 	f12
	

SCR 50 	-FLOAT

Finds the square root of a floating point number and leaves
the result on the stack.

r 	SL
	

nl c=c - 	 a2
	

RESIDENT
L.

Arithmetically shifts al =lc bits to the right and Leaves
the result on the stack. cat will be modulo 16, except when
ont=0, when 16 bits will be shifted. To create a word which
permits shifts when cnt could be zero , use the following
definition: : SRAO -OUP I SIA =IF

SRC
	

al oat --- n2
	

RESIDENT

Performs a circular right shift of cnt bits on al leaving
the result on the stack.

SRI. 	 hl ant --- a2 	 RESIDENT

Performs a logical right shift of cht bits and leaves the
result on the stack. cut will be modulo 16, except when
cht0, when 16 bits will be shifted. To create a word which

----permits shifts when cnt could be zero, use the following
definition: : STIO -OUP LT SLR =TOTE ;

7:71-

,--

given must be an even 2R bounds:7. This instruction s•ELIST be
eeduzecl ;.;eLore

APPENDIX 0 	?AG: 33 	GLOSSARY.

F 0 R

STAT
	

b 	 SCR 71 	-FILE

Reads the stacus.of the current ?A3 and returns the status
byte to the stack. See the EDITOR/ASSEDMIR manual. for the
meaning of each bit of the status byte.

STATE
	

addr 	 RESIDENT

A user variable containing the compilation state. A
non-zero value indicates compilation. The value itself may
be implementation dependent.

STCR
	

al addr --- n2 . 	 SCR 88

Performs the 9900 STCR instruction. n1 is the field width,
addr is the CRU base address, and a2 is the returned value.
CRU base will be shifted left by the STCR instruction.

STR
	

SCR 47 	-FLOAT

Converts the number in FAC to a string which is placed in
PAD. The string is in BASIC format.

STR. 	 al n2 n2 ---
	 sca 47 	-FLOAT

See the STR function in the EDITOR/ASSEn3LER manual. n1
corresponds to the byte at FAC12, a2 corresponds to the
byte at FAC+, 12, and n3 corresponds to the byte at FAC4-11.

S *7
	

cat 	 SCR 71 	-FILE.

Performs the file I/O save operation. on: equals ehe number
of bytes to be saved.

SNAP 	 al n2 --- n2 at 	 RESIDENT

Exchange the cop 7..wc values on the stack.

,T;CH 	 SCR 72 	-PRINT

A s?ec:lai ;:lur7ose or wn:Lch 	3:211: to output
:'an 	5c7apr,

Sae :j7.1SWCE.

APPEND= D 	 fo ^".-"C'" ■ 7V

71-P3

S'TS

TAN

...tparesz, addr TA AR

n1 --- n2 	 RESIDENT

Reverses the order of t _ two bytes in n1 and leaves the new
number as a2.

addr 	 RESIDENT

A user variable that contains the address of the system
support entry point.

a 	 RESIDENT

Calls the system synonyms. You must specify an offset n
into a jump table for the routine you wish to call. n must
be one of the predefined even numbers.

fll 	fl2 	 'SCR 50 	-FLOAT

Finds the TANgent of l the floating point number on the stack
and leaves the result.

TASK 	 RESIDENT

A no-operation word which can mark the boundary between
applications. 3y forgetting TASK and :a-compiling, an
application can be discarded in its entirecv.

73 	 addr
	

SCR 88 	-C RU

The address addr is, tested by this instruction. The value
(1 or 0) is retu9ned to the stack. Note that the TB
instruction will itself shift the address before using R

SCR 87 	-848T 7PCR

The array chat holds the Tiny CX-LARacter definitions. See
CLIST.

TEXT 	 aMAMIMID 	 SCR 51 	-7=

Converts :_on present screen node Ln:c standard TEXT node
configuracaoa.

A.??E:TD= o 	?AGE 	7 F.

THEN 	 RESIDENT

An alias for ENDIF.

addr
	

RESIDENT

A user variable containing the address of the terminal input
buffer.

TOGGLE
	

addr b 	 RESIDENT

Complement the contents of the byte at addr by the bit
pattern b.

TRACE 	 •••■■ 	 SCR 44 	-714CZ

Forces the following colon definitions to be compiled in
such a way that they can be traced. See IRON, TROTS, and
UNTRACE.

TRAVERSE
	

addrl n 	addr2 	RESIDENT

Move accross the name field of a fig-FORTH variable length
name field. addrl is the address of either the length byte.
or the Last letter. If ni.1, the motion is toward high
memory; if 	the motion is toward low memory. The addl.'',

 resulting is the address of the other end of the name.

TRIAD 	 scr# 	 SCR 72 -PRINT

Display on the RS232 the three SCREENS which include that
"umber scat, beginning with a SCREEN evenly divisible by
three. Output is suitable for source tax: records, and
includes a reference line at the bottom taken fron line 15
of screen 4.

TRIADS 	 scr# scr1 	 SC? 73 	-?RINT

May be thought of as a multiple TRIAD. You must specify a
SCREEN range. TRIADS will perform as many TRIAD's as
necessary to cover :hat range.

A22ENDL: 2 '58 	(71052-R"

- L 	F C R

7ROFF 	 SCR ./.=4 	-TRACI

Once a routine has been compiled with the TRACE option, it
may be executed with or without a crate. To implement a
trace, type MON: before execution. To execute without a
trace, ty7e TRCFP.

TRON 	 SCR 44 	-TRACE

See 7ROFT.

add: ant
	

RESIDENT
_ -

Transmit count characters fro= adds to the selected output
device.

01•M011eCi, tt 	 RESIDENT

?laces the contents of register U on the stack. Register U
contains the base address of the user variable area.

ul u2 --- ud 	 RESIDENT

Leave the unsigned double nunber product of two unsigned
numbers.

U.

u /

RESIDENT

Prints an unsigned tu=ber to the output device.

u a - 	 RESIDENT

Prints an unsigned au=ber right justified in a field of
width a.

ud 	 u2 u3 	 RESIDE,,T

Leave the unsigned remainder u2 and unsigned Tuotient u3
th- 	 iduhlp 44-7i 4 ,end 	an:4

ul.

Aw?E=IX
	

f 9 	GLCSSARY

TI FORTE

UO 	 addr 	 RESIDENT

X user variable that points to the junction between the user
variable area and the return stack.

U < 	 ul u2 	f 	 RESIDENT

Leaves a true flag if ul is less than u2, else leaves a
false flag.

UCONSS 	 addr
	

RESIDENT

A user variable which contains the base address of the user
variable default area which is used to initialize the user
variables at COLD.

UD. 	 uci 	 RESIDENT

Prints an unsigned double number to the output device.

UD.1
	 ud n 	 RESIDENT

Prints. an unsigned double number right justified in a field
of length n.

UNDRAW 	 SCR 63 	-GRAPH

Sets DMODE to 1. This =eats that dots are plotted in the
'off' mode.

UNFORGETABLE
	

addr 	 RESIDENT

Decides whether or not a word can be forgotten. A true flag
is returned if the address is not located between :FENCE and
EERE.

UNSWCE 	 SCR 72 	-PRINT

Causes the sslap-ucer co send su:sur ts the sc.:sem Lhs:ead sf
an 82232 device . See SWCH.

UNTIL (run-tine)
addr a 	(oomoile)

LES:2ENT

Occurs within a colon-definition in the form:

BEGIN 	11,114. 	 UNTII

At run-time, UNTIL controls the conditional branch back to
the corresponding BEGIN. If f is false, execution returns
to just after BEGIN; if true, execution continues ahead.

At compile-time, UN7IL compiles (OBRANCH) and an offset from
HERE to 	n is used for error tests.

UNTRACE 	 SCR 44 	-TRACE

Colon definitions that have been compiled under the TRACE
option must be recompiled under the UNTRACE option to remove .
the tracing capability. TRACE and UNTRACZ can be used
alternately to select words to be traced.

Ul'IDA 	 RES:DEN:

Harks the most recently referenced block (pointed to by
?REV) as altered. The block will subsequently be
transferred automatically to disk should its buffer be
required for storage of a different block.

U-PD:
	

SCR 59

Assigns the attribute UPDA:E to the file whose ?3 is
pointed to by ?AB-A=3-

USE 	 --- add:: 	 RESIDENT

A variable containing the address of the block buffer to use
next, as :he least recently written.

A.??ENDI.7. 	P•JI:

USER
	

RESIDENT

A defining word used in the form:

n USER cccc

which creates a user variable cccc. The parameter field of
cccc contains n as a fixed offset relative to the user
pointer register UP for this user variable. When cccc is
later executed, it places the sum of its offset and the user
area base address on the stack as the storage address of
that particular variable.

VAL 	 SCR 47 	-FLOAT

Causes the string at PAD to be converted into a floating
point number and put into FAC.

VAND
	

b vaddr 	 SCR 33 	-SYNONT.!-IS

Performs a logical AND on the contents of the specified VDP
location and the given byte. The result is scored back into
the VDP address.

VARLABLZ a — RESIDENT

A defining word used in the form:

n VARIABLE code

When VARIABLE is executed, it creates the definition cccc
with its parameter field initialized to n. When cccc is
later executed, the address of its parameter field
(containing n) is left on the stack, so that a fetch or
store may access this location.

7C1...1A11. 	 c 	cnt ch
	

SCR 57

Prints a vertical stream of length cnt of the specified
character. The first character of the stream is located at
(c,r). NOTE: Rows and columns are numbered from 0.

7add: 	 sr-a "2 1 	- -.37707=

locat:.cns 	 ac
the specified byte.

TY: Jac:ass

-LPFENOL2r. D 	Pt.GE T,2

PORI

,:ST
	

SCR 43 	-DLL'

Prints the ra - zes of all words defined in the CONTEXT
vocabulary. See PAUSE.

VHER 	 vaddr addr cnt Me WOMEN/ SCR 33 	-SYNONY:r.S

Reads cat bytes beginning at the given VDP address and
places them at addr.

VMEW 	 addr vaddr cnt 	 SCR 33 	-SYNONY'S

writes cnt bytes from addr into VDP beginning at the given
VDP address.

VOC-LINK
	

addr
	

RESIDENT

A user variable containing the address of a field in the
definition of the most recently created vocabulary. All
vocabulary names are linked by these fields to allow control
for FORGETting thru multiple vocabularies.

VOCABULARY 	 RESIDENT

A defining word used in the form:

VOCABULARY coo.:

to create a vocabulary definition ccdc. Subsequent use of
cote will make it the CONTEXT vocabulary which is searched
first by DITERPRET. The sequence "coon DEPINITIONS" will
also make cocc the CURRENT vocabulary into which new
definitions are placed.

cote will be so chained as to include all definitions of the
vocabulary in which ccdc is itself defined. All
vocabularies ultimately chain to FORTH. 3y convention,
vocabulary names are to be declared IYMEDTATS. See
VOC-LINK.

VOR 	 b vaddr 	 SCR 33 	-SYNONTIS

e:27:17ms a 	 :a 2:1 	 speciied 773P

	

address and :he given byte. The 	 score(i
:he 771,

Appz-Nr,Tx D 	?ACT 63 	GLOSSARY

TR3L 	 SCR 68

Assigns the attribute VARIA3LE to the file whose ?A3 is
pointed to by P:B-ADDR.

VSER 	 vaddr 	 SCR 33 	- SYNC:711S

Reads a single byte from the given VD? address and places it
on the stack.

'1 S 3W
	

b vaddr 	 SCR 33 	-SYlICNYY_S

Writes a single byte into the given VDP address.

VtR 	 b ri MI•■•■■• SCR 33 	-SYNONYItS

Writes the given byte into the specified vnp write-only
register (a).

7XOR
	

b vaddr 	 SCR 33 	-57.10171 4.3

Performs a logical XOR on the contents of the specified V?
address and the given byte. The result is stored back into
the VDP address.

WARNING 	 — add: 	 RESIDENT

A user variable containing a value controlling messages. If
.11 disk is present, and screen 4 of drive 0 is the base
location for messages. If .0, no disk is present and
messages will be presented by number. If .-1, execute
(A3OR17) far a user specified procedure. See MESSAGE,
ERROR.

WDISK
	

addr al n2 --- n3 	RESIDENT

The primative routine which performs a disk write. add:: is
the CPU RAM location of the block to be written. ni is the
block number, n2 is the number of bytes per block, and a3 is
the returned error code.

',71-TERE

When an error occurs on a L.:AL 	 WciERE
will bring you into the ED:TOR and place the cursor at the
exact location of :he error.

A2PENDIX D
	

PAGZ 	 :Loss.:2„a%.

7 	F 0 	T

WHILE
	

f 	(run-time) 	 RES:DENT
addrl n1 --- addrl n1 addr2 n2 (compile)

Occurs in a color, definition in the form:

BEGIN • • • WHILE(cp) 	REPEAT

At run-tine, WHILE selects conditional execution based oa
boolean flag f. If f is true (non-zero), WHILE continues
execution of the true part thru to REPEAT, which then
branches back to BEGIN. If f is false (zero) , execution
skips to just after REPEAT, exiting the structure.

At compile time, WHILE emplaces (OBRANCH) and leaves addr2
of the reserved offset. The stack values will be resolved
by REPEAT.

C.4-IDTH
	

addr 	 RESIDENT

A user variable containing the maximum number of letters
saved in the compilation of a definition's name. it =use be
1 thru 31, with a default value of 31. The name character
count and its natural characters are saved, up to the value
in WIDTH. The values may be changed at any time within the
above limits.

WLITERAL SCR 20 	BOOT SCR

Used in the form: 	vtima_AL cccc

A compiling word which compiles SLIT and the string which
follows WLITIRAL into the dictionary.

WORD
	

ch - 	 RESIDENT

Read the text characters from the input scream being
interpreted, until a delimiter ch is found, storing the
packed character., string beginning at the dictionary buffer
EERE. WORD leaves the character count in the first byte,
the characters, and ends with two or more blanks. Leading
occurances of ch are ignered. if _ILK is zero, tax: is taken
from the terminal input: ow:far, otherwise from :he disk

APPENDIX D 	PAGE 63 	(77LOSSY

T 	F 0 R 7 H

TWRT 	 cnt 	 SCR 71 	-FILZ

Performs the file I/O write operation. You =us: specify the
number of bytes to be written.

rLLNK
	

addr ..1•••■ 	 SCR 33 	-SYNONYILS

Links a FORTH program to a routine in RCM or to a routine
located in the memory expansion. A Ron address or ;XI.
vector must be specified as in the Editor/Assembler.

I OR
	

al n2 --- n3 	 lESIDENT

Leave the bitwise logical EXCLUSIVE OR of two values.

. RESIDENT

Used in a colon-definition in the form:

wt 	[words] more

Suspend compilation. The words after [are executed, not
compiled. This allows calculation or compilation exceptions
before resuming compilation with 1. See LITERAL, 1.

C,CKPILZ

Used in a colon definition in the forn:

:=vrt [ITLE

[COMPILE] will force the compilation of an immediate
definition, that would otherwise execute during
compilation. The above example will select the FORTH
vocabulary when m= executes, rather than at compile tine..

1.7.51-""NT

Resume compilation, to the completion of a
colon-definition. See C.

Returns on 7:ne scan'_ :11 -,_sec 	7.'ne fl:
:e 	 =2:2

C

message 	 SCR 84

A replacement for f7ESSAGE which contains the error messages
in memory instead of on :he disk. When screen 484 is
loaded, the error messages are complied into che space
formerly occupied by the fifth disk buffer. :Tt.SSAGE is
patched so chat it now poincs :o message.

,"

R

APPENDIX E

USER VARIAELES :N 71 FORT:I

The purpose of this appendix is to detail the User

Variables in 71 FORTH to assist in their use and to :rovide

the necessary information co change or add to this list as

necessary. A more complete description of each of these

variables is provided in Appendix O. The table is located

on the following page.

The user may use even numbers >68 through)7E to create

his cum user variables. See the definition of USER in

Appendix O.

0 a 1"

FOR 7H US :a VAa2A3LZS

Y;ane
	

0±fse._. 	7..n:Izial Value 	Description

UCoNSS >6 Ease of User Va: initial value 	table
SC >3 Ease of Stack
RC Base of Return Stack
U0 >c Base of User Variables
723 >71" Terminal Inpuc Buffer addr
g2DTE >10 31 Name length in dictionary

>12 Dictionary ?oince:
SYSS >14 Addr of SysceM Support
:UaPOS >16 Cursor location in VD? RAM

>13 Pointer to Interrupt 	Service linkage
WARNT:TG >1A 1 Message Control
C; LS >1C 64 Characters per Line
FIRSTS >1= Beginning of Disk Buffers
1224. - TS >20 End of Disk Buffers
B/BUFS >22 1024 Bytes per Buffer
3/3CRS >24 1 Blocks per Screen
D2S3.1_1.0 >26 1 Low end Disk Fence
DLSK27.: >23 90 fig 	end Disk Fence

>2A 90 Logical Disk Size in Screens
DIS1-7._3UP >2C >1000 VD? location of 	1K Buffer
PA3S >:1 >460 70? location for ?A3s
SCRN_:;2=7.4. >30 Screen r”lidth 	in Characters

>3 1 Screen :maga Start 	VT?
>3 4 960 Screen Image End in VD?

:3R >36 7:terrupt 	Se:-vice -Pointe:
>33 Alternate Input ?ointer

Z..1= >3A 0 rites :ace Cutput Pointer
>3C Dictionary Fence

217, >37 Block being inter7reted
>40 Byte offset 	in 	text buffer
>42 Incremented 	by 	•ITT

SCa >4. Last Screen referenced
0 -.FSED >46 Block offset 	to disks
CONTEXT Pointer to Context Vocabulary
7,72.1:77 Pointer to Current Vocabulary
STA:7 >4C Compilation State

>431 Number Base for Conversions
:?: >50 Decimal ?oin: Location
TID >52 Field 	',7id:h 	6.1nused)
:3? >54 Stack Pointer 	for error checking
a • >56 Editing Cursor location

>53 Holds addr during numeric conversion
2S 7 Block Buffer 	to Use

.lost.
37; 	CSC

E.CCUNT > 4 Error controL

• ":

Ti 	FO1.2 :71

APP 7 DIX F

TT FOR-7. LOAD (=TON DIFFC7ORY

The Load Options are displayed on the Ti FORTH welcome

screen and may subsequently be displayed by typing 147'NU.

The load options allow you to load only the FORTH extensions

you ,..rish to use.

You will notice, for example, that the -BOITOR option

also Loads -SYNONYMS. The words Loaded bV -SYNON_"`S are

Prerequisites for the words Loaded by .-3O:70R. If, by

chance, the -SYNONY:tS words were already in the" dictionary

at the time you type -EMITOR, they would not be loaded

again. This is called a Conditional Load.

-s7.-1Tcrnts

Starting Screen: 33
Loads:

VSBT; 	 1MBW 	 VSBR
ri;Ta. VMBR 	 CPLLY,

:OXLLM 	OSPLYK 	CMS
FORMAI-DISK 	VF ILL 	 7AND

'AON TOR 	 77,0R
RNDW 	 RND 	 SEED
RANDOM=

OPTION: -E:TTCR

Starting Screen: 34
Loads: -SYNONY:IS and

7A:= 	1O,D :77:0N J77=7=7

T 	F 0 R T

OFT:ON: -COPY

Scartng Screen: 29
Loads:

SHOVE
DTEST 	 SCOPY
FORTH-COPY 	DISK-HEAD

OPTION: -CUP

Starting Screen: 42
Loads:

.5 	 VLIST

OPTION -TRACE

Starting Screen: 44
Loads -Dt.r..(.? and

TRACE 	 =RACE 	IRON
(alternate)

OPTION: -FLOAT

Starting 	Screen: 	45
-STNONn.5. and

FDU7 mac? FCVER
FSWAP :•! F;:f
>FAC SETT1 FADD
FMUL F+
F* 1/ S->FAC
FAO->S FAC>ARG F->S
S->F 7RND ST2
STR. VAL FS
>F F.R F.
FF.R. FF. FO<

F< FLI-RR ?7L 7 112.
tNT SQR
777 LOG COS
SI:1
z-r
. -

TAN A7.'1

aas :

APPEND::: F

OPT - ON: -GR2.1-11

Starting Screen: 32
Loads: -SYNO=S and 	GRA2HTC3

OPTTON:

Starting Screen: 53
Loads : -SYNONY.1.1S and

OPTION: -GRA21-12

Starting Screen: 34
Loads: -SYNONYMS and 	GRA2HICS2

OPTION: -SPLIT

Starting Screen: 33
Loads: -SYNONYMS, -GP.2H2 and

SPLIT 	 SPLIT"'

OPTION: -VDPMOIDES

Starting Screen: 51
Loads: -SYNONYMS, -TEXT, -GRAPH1, -MLITT, -GRAPH 1 and -SF IT

OPTION: -GRA2H

Starting Screen: 	37
Loads: -S7NON7M5, -CODE and

CZAR CHARPAT vcaa
HCHAR COLOR SCREEN
GCAR SSDT spc-a.:,a
SP? COL SPRPAT S2R2U7
SPRT-7 MTION ::!CTICZ:
SPRGET 0= SPRDIST
SPRDIST77 Y.AGNI17 jOYST
COINC COINCX7 COINCALL
2 7TS7R 0717 1. =77

..DTCr.; DOT r ryz

OPTION: -F:L

Starting Screen:
Loads: -SYNON-r'‹ and

FILE 	 GET-FLAG 	PC7-FT:G
SET-P13 	CLR-STAT 	a-a-STA:
F.= 	 7R35 	 DSPLY
INTRNL 	I/C:T 	:Yr."
OUTPT 	UPDT 	 AP SS
SONIL 	RLT7 	 REC-LEN
CEAR-CNT! 	CHAR-CNT 	RE:-NC
N-LE! 	F-D" 	 DOI/C
OPN 	 CLSZ 	 ap
WRT 	 RSTR 	 L2
SV 	 DL 	 SCRTCH
STAT

OPTION: -PRINT

Scarting Screen: 72
Loads: -STNONYNS, -FIII and

TWCH 	 UNSWCH 	'7ASCIT.
TRIAD 	TRIADS 	:17:23

CPT:ON: -COLE

Scarr.:Lng Screen:
Loads:

CODE 	 ;COLE

OPT:C.1N:

Sca:c7'_ng Screen: 75
Loads: -CODE and Ei:.re Asse=bler Vocabulary. See Charcer 9.

OPT:ON: -64SUPPORT (6 ,1 Colt=zsi==f)

Start::ng Screen: 22
Loads: -SYNOYnS, -4GRA2H, -TES, -GRAPH2, -522:7 and

EDLT
CL 7S7

Scarr.'_nz Screen: :37;
Loada: 3SAVE

APPEND= F 	 L.:A2

r
r

71 7 . • 	FORTE

OPTION: -cau

Starting Screen:
Loads: -CODE and

SEO 	 SBZ
LOGE 	 STCR

73

T 	FOR7H

ASSE1SLY SOURCE FOR CODED ',4'ORLS

Several words on the FORTH System Disk. 'nave been

written in 9900 code co increase their execution speeds

and/or decrease their size. They include the words:

SBO 	- a CRU inscruction
- a CRU ins:ruction

73 	- a CRU instruction
LDCR - a CRU instruction
STCR - a CRU instruction
DDOT - used by the doc plocting roccine
SMASH - used by CL27. and CL:S7-
TCHAR 	definicions for the tiny characters
MON 	- returns co 99/=A color ba: =cragn

These words have been coded in HEXadecimal on your

System Disk, thus they do not require chat the 77 FOR7H

Assembler be in memor7 before they can be Loaded. Their

asseInely souzee code (wric:en in FORTH assa=bie:

Ls==d en the following pages.

G AG:

SCR
0

440
(SOURCE FOR CRU WORDS) EASE-)R 	HEX

1 CODE S3O
2

4

*SP 	OC
0

CODE SED
SEC,

OC CC
:EHT,

A,

5 *SP 	CC '2:0V, uC uC A,
6 0 SEZ, NEXT,
7 CODE T3
8 *SP 	OC MOV, CC CC 	A,
9 *SP CLR, 0 	TB,
10 EQ IF,
11 *Sp INC,
12 END:F,
13 NEXT ,
14
15 R->3ASE -->

SCR 441
0 (SOURCE FOR CRU WORDS) BASE->R HEX
1 CC CONSTANT CRU
2 CODE LDCR
3 	*SP+ CRU MOV, CRU CRU ., *EP+ I MCV,
4 	 *S7+ 0 MOV, 	31 OF AND:,

NE IF,
01 08 C:,
LTE IF,

C 	 0 S' ?3,
END:F,

10 	END:Y,
11 	31 06 SLA, 	Cl 3000 OR:, 	CI X. ,
1 , ,

R->BASE -->

SCR 44Z
0 (SOURCE FOR CRU WORDS) 3A5z->a IX
1 CODE STCR

*SP+ cm; mov, CRU CRU A, *S? 01 10V,
0 CLR, OI COOF AND:, 01 CZ 1 4.0 71,
01 06 SLA, 01 3400 OR:, n1 7„

3 	 CZ MV,

:TE :7 ,
7 	 02 C3 CI,

Lam_ T -7 7

9 	 SVP 3 ,

Lc 	 E1,70:7,
END:7,

3 *SP MCV,

1: 131:: C

SCR 1.i43
0 (SOIJRCZ FOR DDOT)
1 3 AST. - > R IX 0 V A.R. LA3LE D .A.3

3 CODE :COT
*5? 3 MDV, 	1 2 `. (.0V ,

5 	 3 4
	

1 7 AND 1. , 	3 7 AND:,
5 	 2 F8 AND I, 	4 F8 LVO , 	2 5 Si...A.,
7 	 2 1 A, 	 4 1 A, 	 1 2000 A.:
8 	 4 CLR
	

DTA3 3 @(?) 4 Zi0V3 ,
9 	 4
	

4 *SP M0 7,7 , 	S? DEOT,
10
11

13

13 R-> BASF.

S
0 (SOURCE' FOR SUASH) BASE +> R :712' X
1 TC:4-AR 7C - CONSTANT TC
2 CODE SZIASPi (ADDR 4CILLR LI7T:111 - L3 V.A.:UDR C7:

	

3 	*SP+1 CV, 	S ? -4° 2 LCV,
4 I'S? MOV , 8? 	DEC": ,
1 "S? :4.07 , 	2 1 	MDV, 1

	

6
	

1 2 SI.A , 	I S? MOV ,
3 2 	A, 3EOIN , 2 3 C ,

	

3
	

3 *?+ 5 MCV3, 3

	

9
	

3F-CIN , TC 5 1(?) 0 Y.OV ,

	

10 	0 4 Z, BEGIN , 0 3 'ACV, 3

	

11 	3 7 SOC , 7 4 ?+ MOVE, 0

	

12 	3 L2T , 	 .5. tN, 	3 C

	

13 	3AS

*5? 3 14.0V , 	4
1. 	6?3 , 	1 2000 	,
INC, I 717. AND, 3?

G 	VE-I ILE , 5 CLR , S
*?+ S Y.0113 , 	3 6 SRI.., 	S S 	,

TCS (?) 1. HOV , 	1 4 SRC,
F000 ANDI , 1 7 MDV, 7 FCC

C SRC , 	I C SRC , C DEC, EQ UNTIL, ,
C 2 .A.2710 , 	EQ 	, 	RE ? 	,

7 :: 3

SCR
0
1

,i=L5
(DEFIN:TI0NS FOR TIN".' CHARAcTERS
OEEZ vARIABlz TCHAR EZZZ ,

) 3ASE->R

2 0000 	, 0000 () 0444 	, 4404 	, (!) OAAO 	, C000 	, (")
3 08AZ 	, AZA2 	, (4) O4EC 	, 46E4 	, (s) 0A24 , 	448A , 	(
4 06Ac 	, 4A86 	, (&) 0430 	, C000 	, (") 0248 	, 8842 	, (
5 0842 	, 2248 	, ("0) 04EE 	, 4000 	, (*) 0044 	, E440 , 	(4.)
6 0000 	, 0048 	, ,) 0000 	, E000 (-) 0000 	, 0004 	, (
7 0224 	, 4488 	, (/) 04AA , AAA4 , (0) 04C4 	, 4444 , 	(1)
8 04A2 	, 488E 	, (2) 0C22 	, C22C 	, (3) 02AA , 	AZ22 	, (4)
9 0E3C 	, 222C , 	(5) 0688 	, CAA4 	, (6) 0E22 	, 4488 , 	(7)

10 04AA , 	4AA4 	, (8) 04AA , 622C 	, (9) 0004 	, 0040 	, (:)
11 0004 	, 0048 	, (;) 0024 	, 8420 	, (<) 000E 	, 0E00 , 	(=)
12 0084 	, 2430 	, (>) 04A2 	, 4404 	, (?) 04A_° , ALA4 , 	(12)
13 04AA , LAAA , 	(A) CCAA , CAAc 	, (3) 0688 , 	8836 , 	(c)
14 OCAA , 	A:LAC , 	(D) 0E88 	, C3SE 	, (E) 0E83 	, 0383 	, (F)
15 —>

SCR 446
0 (CLARAC:ERS coNTINLED)
1 04A8 , 8AA6 , 	(G) OAAA , EAAA , (0E44 	, 444Z , 	(1)
2 022 2 , 	22A4 (3) OAAC 	, :AAA , (K) 0888 	, 888E (E)
OA= , AAAA , 	(M) OAAz 	, EZAA , (N) OEAA , AAA/. , 	(0)

4 CCAA , 	C388 , 	(?) OEAA , AAEC (Q) OCAA , 	C.A.AA , 	(R)
5 0688 , 	4220 , 	(S) 0E44 	, 4444 	, (OAAA , AAAE , 	(U)
6 , 	(v) OAAA , AzEA , ('4) OAA4 	, 44AA (K)

0AAA , 	z444 ?) 0E2A 	, 488Z 	, (7.) 0644 	, (

3 0884 , 	4422 , 	(\) 0C44 	, 444C 	, (1) 044A , 	ACOO 	, (')
9 0000 , 	000F , 	(0420 	, 0000 	, (s) 0004 	, AzAA , 	(a)

IC 000C , ACAC , 	(b) 0006 	, 8886 	, (c) 0000 , AAAC , 	(d)
11 OCOE , 	808E , 	(e) 000E 	, 8C38 	, (f) 0004 	, A8A6 (3)
12 000A , ALLA , 	('71) 000E 	, 4448 	, (i) 0002 	, 2ZA,=. 	, j)
I2-200A , CCAA , 	(0008 	, 888E 	, (1) 000A , ELLA , 	(
14 000A , EEEA , 	(n) 000E 	, AAAE , (0) 000C , 	A038 	,
13 -->

SC?. 	:fr4;
0 (raz..4..R.A.C=2S CONCLUDED)

000E , 	, 	(a.) 	000C 	ACAA (0006 , 	342C , 	(s)
2 000! , 	4444) 000A 	, , (u.) 000A AA44 , 	(
3 000? , 	AZE.-k , 	(r.,;) 000A 	, A4AA , (000A , 	A.E4 4 , 	(7)

COG.. , 	248E , 	() 0644 	, 3443 	, (0444 , 	0444 , 	K
3 0C44 , 	244 C , 	(}) 0=3 	, 0000 	, (3:11: . 	EIZZ. , E
6

3

r
r

Er

U

cr
t

rr

ir

T 	TORT 51

SCR 448
0 (SOURCE F01 11.011) SASZ-)E F7 K

2 CODE 10N
3 Iv 0 4E4T w.61 1 2000 LI,
4 	BEGIN,
S 	 0 1 *7-0 110v,
6 	 1 4000 CI,
7 	EQ UNTIL,

0 Q()
9
10
11
12
13
14
13 R-.)SASE

A29=1:x ;.; 	?AGZ 	5 	.;:zsznaz.z sculcz

FOR T

APPEND:X H
•

7.. FORTH Luca Y.Z.SSAGE EX2LA.NAT:ONS

error:: 	message 	 probable causes

empty stack 	 Procedure being executed attempts
to 'pop' a number off the
parameter stack when there is no
number on the parameter stack.
The error may have occurred long
before it is detected as FORTH
checks for this condition only
when control returns to the outer
interpreter.

dictionary full 	The user dictionary space is full.
Too many definitions have been
compiled.

has incorrect 	 Not used sv TI FORTH. Same
address node 	 fig-FORT: assemblers use this

message.

-MA Isn't unique This message is core a warning
than an error. It informs the
user that a wort with the same
manse as the one just compiled is
already in the CUR.= or CON=
vocabulary.

disk error 	 This has several passible causes:
No disk in disk drive,
Disk not initialized,
Disk drive or controller not
connected ?roper17,
Disk drive or controller not
plugged in. The diskette hay be
damaged with some sector having a
hard error.

stack
	

The proceedure 'pe:..p.94 executed is
1 =a7 4 nc .=xpra 	 n.u=bers pn

para=ete:
a attic. <.

file iio error 	 Any file 1io operation which
results in an error will re:urn
this message. The GET-FLA0
instruction will fetch :he status
byte. ?r error code of 0
indicates no error only if the
COND bit (bit 2) of the STATUS

.

	

	byte located at >837C is NOT
set.

code 	meaning

00 	Bad device name
01 	Device is write protected
02 	Bad open attribute
03 	Illegal operation
04 	Out of table or buffer

space on the device
05 	Attempt to read past ECF
06 	Device error
07 	File error. Non-existing

file opened, etc.

ID 	floating point
error

This error message will be issued
only when ?PURR is executed and
a true flag is returned. FL R?
nay be executed to fetch the
floating point status byte.

code 	meaning

01 	Overflow
02 	Syntax
03 	Integer overflow on

conversion
04 	Square root of negative
05 	Negative number to non-

integer power
06 	Logarithm of a non-positive

number
07 	Invalid argument in a

trignamecric function

disk fence 	 An attempt has been made to write

violation 	 to a SCREEN outside the Cis?, fehte
area. The values of DISR_LO and
and DISY.21I must be changed to
include this SCREEN before 	=ay
be written :o.

A2P7NDIX i 	?AGE "r7.7na "7:2',77C
•

R H

can't 	load 	from
screen 0

Self explanatory. 	Loading from
SCREEN 0 is FOR:F.'s indication
for 	loading 	from the keyboard.

17 compilation only,
use in definition

Occurs when conditional constructs
such as DO 	... 	LOOP or LF 	... TEEN
are Executed outside a colon
definition.

IS execution only Occurs when you actempc to compile
a compiling word into a colon
definition.

19 conditionalls not
paired

A DO has been left without a LOOP,
an :7 has no corresponding TEEN,
etc.

20 definition not
finished

A ; was encountered and the
parameter snack was not at the
same height as when the preceediag
iaze enew.r.:2.medexample, -->

13 off current editing
screen

No: used in T: FORTE.

24 declare vocabulary Not used in 7: FORTE due to the
the way 77 70117E's FOR= is
configured.

bad jump to
	

Improper use af jump tokens or
conditionals in the 77. FORTE
assembler.

• Tv -r••••-••■ •r -r

corzrrs OF 	"" '"-- '-------

0.0:77:77.73 :7 7=

SCR *2
0
	

TI 	FORTH

THIS VERSION OF THE FORTH LANGUAGE
- 	3
	

IS BASED ON THE fig-FORTH MODEL

THE ADDRESS OF THE FORTH INTEREST GROUP IS:
6

FORTH INTEREST GROUP
P.O. BOX 1105

	

9 	 SAN CARLOS, CA 94070
10

	

AI 	 TEXAS INSTRUMENTS PERSONNEL WITH SIGNIFICANT

	

12 	 INPUT TO THIS VERSION INCLUDE:

	

13 	 LEON T/ET:

	

t4 	 LESLIE O'HAGAN

	

15 	 EDWARD E. FERGUSON

7: FORT.. --- 3 !

SCR 43
0 ('ATELCOME 	SCREEN) 	0 	0 	GOTOX? 	. 1 	3007:NG..." CR
1 BASE->R 	HEX 	10 	e:c: 	c , 	OU:T 	OFF' 	'
2 DECIMAL 	(84 LOAD) 	:0 	LOAD 	lb 	S7STEM 	MENU
3 HEX 	iza 	USER 	ti:PM.DE 	1 	,.;:PMDE 	' 	DECIMAL
4 : 	-S7NONYMS 	33 	LOAD 	; 	: 	-EDITOR 	34 	LOAD 	; 	: -CO?? 39 LOAD 	;
3 : 	-DUMP 	4: 	LOAD 	; 	• 	-TRACE 	44 	LOAD 	; 	: -FLOAT 45 LOAD
o : 	-TEXT 	51 	LOAD 	; 	-GRAH1 	32 	LOAD 	; 	: -MULTI 57 LOAD 	;
7 % 	-GRAPH2 	34 	LOAD 	; 	-SPLIT 	55 	LOAD 	; 	: -GRAPH 57 LOAD 	;
8 • -FILE 	08 	LOAD 	; 	: 	-PRINT 	72 	LOAD 	; 	• -CODE 74 LOAD 	;
9 : 	-ASSEMBLER 75 	LOAD 	; 	• 	-a4SUPPORT 	22 	LOAD 	;

10 : 	-VDPMODES 	-TEXT -GRAPH1 	-MULTI 	-GRAPH: 	-SPLIT ;
it -BSAVE 	8: LOAD 	; 	: 	-CRU 	ea 	LOAD
12
13
14
13 R->BASE

SCR 44
O (ERROR MESSAGES)
1 empty stack
2 dictionary dull

has incorrect address mode
4 isn't unique.

• disk error
7 dull stack
8
9 dila i/o error
1_0 floating point error
11 disk dence violation
12 can't load from screen :aro
13
4 4

TI FORTH --- a dig-FORTH extension

SCR 43
0 (ERROR MESSAGES)
1 compilation only, use in definition
2 execution only
3 conditionals not paired
4 definition not finished
5 in protected dictionary
• use only when loading
7 oft current editing screen

declare vocabulary
9 bad jump token

10
4 4

TI FORTH --- a dig-FORTH extension

'TR #20
(CONDITIONAL LOAD)

_ 	MENU CR 272 :65 DO I MESSA ,3E CR 	'= OR CR OR
SLIT (Apra OF STRING LITERAL

R.) DU? CO .+ =CELLS ovTa 	;

WLITERAL (WLITSRAL word)
EL STATE e
IF COMPILE SLIT WORD HERE CO 1 , =CELLS AL--.
ELSE WORD HERE ENDIF ; IMMEDIATE -->

, 	-SYNONYMS 	-EDITOR 	-COPY
I -DUMP 	-TRACE 	-FLOAT
1. -TEXT 	-GRAPH1 	-MULTI
t2-GRAPH: 	-SPLIT 	-VID2MODES

-C.'-GEAPH 	-FILE 	-PRINT
i -CODE 	-ASSEMELER -4SUPPCET
15. -BSAVE 	-CRU

FOR:'.. - 	= ';.;-FORT'A

SCR 421
0 (CONDITIONAL LOAD)

: <CLOAD) (SCREEN STRING_ADDR
CONTEXT 3 @ (FIND)

3 	IF DROP DROP 0=
IF ELK @

IF R) DROP R) DROP
ENDIF

7 	 ENDIF
a 	ELSE -Du?

9 	 IF LOAD
10 	 ENDIF
it 	ENDIF ;
12 	CLOAD (scr -no CLOAD name)
13 	CCOMPILE3 WLITERAL STATE 1
14 	IF COMPILE <CLOAD> ELSE <CLOAD> ENDIF
15 ; IMMEDIATE

SCR *22
0 (64 COLUMN EDITOR) 0 CLOAD EDI
1 BASE-)R DECIMAL 57 R-)EASE CLOAD LINE EASE-)R DECIMAL 51 R.)3ASE
2 CLOAD TEXT SASE-)R DECIMAL 54 R->SASE CLOAD"GRAPHICS: EASE-)R
3 DECIMAL 53 3-)BASE CLOAD SPLIT
4 3ASE-)R DECIMAL h3 R->BASE CLOAD CLIST
5 SASE->R HEX 	3800 ' SATE!
b VOCA3ULA!? ED/TORO IMMEDIATE SD:70R: DEFINITIONS
7 	0 VARIA3LE CUR
S 	• 'CUR 0 MAX 3/SCR 3/3UF + 	MIN CUR '
9 	: +CUR CUR I + !CUR ;

10 	: +LIN CUR $ C/L / + C/L + 'CUR ; 	 DECIMAL
11 : LINE. DC I SCR I (LINE) I CLINE LOOP ;
12 : 30K 0 0 GOTOX7 QUIT ;
13 : ?TR SCR 3 3/SCR * CUR I 3/3UF /MOD ROT . SLOCK 	;
1 4 : R/C CUR 1 C/L /MOD ; (--- COL ROT.:) 	2-)3ASE

SCR *DI
0 (64 COLUMN EDITOR) 3ASE-)R HEX
1.
2 : CINIT zacto DU? 	SPDTA3 ' 300 / h 7;472
a 	SATE 2 0 DO DU?)2 D000 SPS R) 	'1M3')7 DROP 4 * LOOP DROP
4 	0000 0000 0000 0000 5 SPC-1AR 0 CUR '
5 	0000 0000 0000 00F0 h SPCHAR 0 1 F 5 0 SPRITS ; DECIMAL

7 : ?LACE CUR 3 h4 /MOD 3 	1. S'AA2 4 * 1 - DUP 0< :7 DROP 0 ENDIF
8 	SWAP 0 SPEPUT ;
9 : UP -1,4 *CUR ?LACE ;
20 : DORN ha +CUR ?LACE 	;
o4

1.2 	R:1H7 	*CUR 7T AC
1. ,-.1C70",*7 (COL 30;4) 	"' 1 :U2 P....ACIS

13 2->RASR

7: FOR7:4. --- a fig-FORTH ex.:".ensicn

:1 -2 *24
0 (COLUMN EDITOR) EASE-2 , R
t
2 DECIMAL

4 	: .CUR CUR 0 C/L /MOD COOTOXY ;
5 	: DELHALP ?AD 64 BLANKS ?TR PAD C/L R/C DRO? - CMOVE

7 	: DELLIN R/C SWAP MINUS +CUR ?T2 PAD C/L CMOVE DU? LISCR SWAP
DO ?TR 1 +LIN PT2 SWAP C/L CMOVE LOOP

9 	0 +LIN ?TR C/L 32 FILL C/L * !CUR ;
0 	: INSLIN 2/C SWAP MINUS +CUR L/SCR +LIN DU? 1+ L. SCR 0 +LIN

DO PT! 	+LIN PTA SWAP C/L CMOVE -1 +LCOP
PAD PT? C/L CMOVE C/L * icua ;

•

▪

RELINE 1/C SWAP DRO? DU? LINE. UPDATE .CUR ;
4 	+.CUR +CUR .CUS ;
L5 R->BASE --)

—CR *25
.0 C 64 COLUMN EDITOR) EASE-)2 DECIMAL

: -TAB PT! DUP C0 EL)
—2 	IF BEGIN 1- DUP -t +CUR C3 EL =

UNTIL
• 4 	rNDIF

3EGIN CUR a IF 1- DU? -1 +CUR C0 EL) ELSE .CUS t ENDIF UNTIL
6 	BEGIN CUM 1 IF 1- DU? -1 +CUR C3 EL = DU? :F 1 -.CUR ENDIF

13 	
UNTIL D20? ; ELSE *CUR t ENDIF

I 	7A3 ?TR DUP CC EL = '0=
4 0 	IF SEGIN t+ DU? t *CUR Cl EL =

UNTIL
ENDIF

-1,3 	CUR @ 102: = IF .CUR t
_4 	 ELSE BEGIN 1- DU? 1 +CUR C0 EL 	UNTI.. .CUS

L,L.5 	 EMI; DROP ; 	1-)EASE. -->

IL *26
0 (.64 COLUMN EDITOR) 3ASZ-)E

- 1 DECIMAL
2 : 'ELK ?TR C' UPDATE ;
3 : ELNKS ?TR R/C DROP C/L SWAP - 32 FILL ;

- -4 : HOME 0 0 COOTOX7 ;
5 : REDRAW SCR 0 CL 1ST UPDATE .CUS ,
& : SCINO CLS 0 0 GO OX? ." SCR *" SC! 0 BASE - ;S DEC:'.4.AL U.

_ 7 	R-)3A37. C2 ;
: +SCR SCE 3 1+ DUP SCR ' SCSNO CLIST

9 : -SCE SCE 1 	0 MAX DU? SC2 ' SCRNO CLIST
.0 • DEL P71 DU? 1- SWAP A/C ORO? C; -- SWAP - cnvs

?TR S/C Z20.7 - 	 C'

---3 	i CZ ,:-CCY 	P.O?L 	:1.72 ;UP 	LSO:
: 	- 4. 	t

FORTH --- a -'';-FCETH

Se.: 	= 1'7
0 (6 4L COLUMN En:TOR 15JUL3: LAO) 	 BAS- -:R DECINAL
1 0 VARIABLE BLINK 0 VARIABLE OKEY
2 to CONSTANT RL 150 CONSTANT RH 0 VARIABLE K: RH VARIABLE RLOG
2 • RKEY BEGIN ?KEY -DUP 1 BLINK +! BLINK 	DU? 60 < IF 6 0 SPRPAT
4 ELSE 5 0 SP2PAT ENDIF 	120 = IF 0 BLINK ! END/7

	

5 	 IF (KEY IS _PRESSED) 	KC 0 	1 KC *.! 	0 BLINK !
IF (WAITING TO REPEAT) 	RLCG 0 KC a

	

7 	 IF (LONG ENOUGH) RL RLOG ! 1 KC ! 1 (FORCE rX7)

	

S 	 ELSE OKI"? 0 OVER =

	

9 	 IF DROP 0 	(NEED TO WAIT MORE)

	

10 	 ELSE 1 (FORCE EXIT) 	DU? KC ! 	ENDIF

	

11 	 ENDIF

	

12 	 ELSE (NEW KEY) 1 (FORCE LOOP EXIT 1 ENT:IF

	

12 	 ELSE (NO Ki? PRESSED) RH RLOG ! 0 KC ! 	0

	

14 	 ENDIF
15 UNTIL DU? OKE7 ! 	 2->BASE

SCR *OS
0 (64 COLUMN EDITOR) SAS E->3 HEX
1 : EDT VDPMDE 0 5 = 0= IF SPLIT CINIT ENDIF .!CUR 	CCOTCXY

	

2 	DU? DUP SCR ! SCRNO CLIST BEGIN RKE7

	

3 	CASE 08 OF LEFT ENDOF 	 OC OF -SCR 	 ENDOF
OA OF DOWN ENDOF 	 02 OF DEL RELINE 	ENDOF
OB OF UP 	ENDOF 	 04 OF INS RELINE 	ENDOF
09 OF RIGHT ENDOF 	 07 OF DELLIN REDRAW ENDOF

	

7 	OE OF HOME ENDOF 	 0. OF INSLIN REDRAW ENDOF
02 OF +SC2 ENDOF 	 16 OF TAB ENDCF
OD OF 1 +LIN.CUR PLACE ENDOF 77 OF -7A3 	 ENDOF

	

10 	01 OF DELHALF BLNKS RELINE ENDOF

	

1' 1 	 OF OF S 0 5PIPAT CLS SCRNO DROP au:7 ENDOF

	

1 ' 	1F. OF INSLIN BLNKS 2ZDRAW ENDOF
12 DUP 1? > 0 11 ER 7F < AND IF DU? !SLK R/C SWAP nRC? DU? SCR
14 (LINE) ROT CLINE 1 +.CUR ELSE 7 EMIT ENDIF ENDCASE A3A1N ;
ta R->BASE -->

SCR 429
0 (a4 COLUMN EDITOR) BASE->2 HEX
I FORTH DEFINITIONS
2 : EDIT EDITOR: 0 EDT ;
7 • WHERE EDITORS 3/SC2 /MOD SWAP 2/3U7 t ROT 	-- 127 ;

S • EDO ::::7oaa SC2 a'SCRNO EDIT ;

B
9

to

1 5

TI FORTH --- 3 fig-FORTH extansl.:r.

- SCR -437

	

(S7STF1' CALLS 09:ULS: LOT) 	0 CLOAD RANDOMIZE
1 BAS'->1 DFCIMAL 7a 1->'-'ASF CLOAD ;CCD
2 BASE->2 DECIMAL
3 : VSEW 0 SYSTEM ; : tin:4 72 SYSTEM ; 0
4 	VSBR 4 SYSTEM ; • ym2a b S7ETEM ;
5 • VW 71 i SYSTEM ; : SFLLNY, 0 3:aa0 C' 10 SYSTEM ;
6 : XMLLNK 12 S YS TEM 	: DSRLNK S 14 SYSTEM ;
7 • CLS la SYSTEM ; : FSEMAT-OISK 1+ 12 SYSTEM ;
8 : VFILL 20 SYSTEM ; • VALID 22 SYSTEM ; 	VOR 2a SYSTEM ;
9 	VXOR 2b SYSTEM ; 	HEX

10 CODE MON 0200 , 4E4F , 0202 , 2000 , CC40 , 0281 , 1000 , 1TFC ,
iA 	 0420 , 0000 ,
12 	RNDW 83C0 DU? 3 aFE5 4 7A39 - 5 SRC DU? ROT '
13 • END RNOW ABS SWAP MOD ; 	• SEE: 53c3 	;

: RANDOMIZE 2202 ca DEO? 0 BEGIN 1+ 2802 S3 20 AND UNTIL SEED ;
15 2->BASE

SC2 *3a
0 (SCREEN EDITOR 09TUL22 LCT) 0 CLOAD ED'S

L 	t BASE-1>1 DECIMAL 33 2->BASE CLOAD RANDOMIDE
2 BASE->1 	HEX VOCABULARY EDITOR1 IMME'IATF EDI:SRI T.1 1°FINITICNS
3 	• BOX SF7 2F1 20 84 I VSEW LOOP ;

CU' '* ;
5

,•

• !CUR 0 MAX 3/SC2 2/BUF 4 1- MIN CUE '
a 	e +CU' CUR 1 + 'CU' ;
7 	+LIN CUE 3 C/L / + C/L + ICU?. ;
2 	0 VARIABLE S_H 	DECIMAL

FT7?E. •0 + 124 * SWAP VMEW
10 	• LISTA DECIMAL 0 0 GOTOX? SU? SCR
11 	.° 	SC' * " . CR C' C1 la 	SC I -7 .1 C' LOC? ;
4, ROWCAL S-H 2 IF 29 . ENDIF ;

r 13 	: LINE. DO I SCE 3 (LINE) DES? E0 CAL 35 I FTYFE ISO? ;
14 	r'ST2 '/SCR 0 LINE. :
15 1->BASE -->

"-SCE *25
. 0 (SCREEN EDITOR 09:UL22 LC7)

LISTL aAss->a LISTA 4 1 1C 1.70X?
. 4 3 	 2 GOTOXT

5 0 S-H 	LISTE 2->BASE ;
a : LIST1 BASE-)3 CEO? s 1 acTcx7
7 . 4 	5 	 CTOX7
S .* 	0....+....0....+....0....+.... 0....'

777 	 •
•••

13 : DELHALF FA: -,:t /TANK= :=72 ?AZ 	a::

-7 	-

SCR *36
0 (SCREEN EDITOR 1::uLa: _CT) BASE-:R DECIMAL

	

1 	• .CUR CUR- 0 C/L /MOD 7 	SNAP 4 T DU? S_H 1

	

2 	IF 32 > IF 29 - ELSE SCR 3 LISTL ENDIF

	

3 	ELSE 79 (0= IF SCR 1 LISTR 29 - ENDIF

	

4 	ENDIF SWAP GOTOX? ;
DELLIN R/C SWAP MINUS +CUR ?TR ?A: C, 	C11C7E 2UP L,SOP. SNAP

	

6 	DO PTR 1 +LIN ?TR SWAP C/L CMOVE LOOP

	

7 	0 +LIN ?TR C/L 32 FILL C/L * 'CUR ;

	

8 	: INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DU? 1- L/SCR 0 -L:N 1 	
DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOC?

	

10 	PAD PTR C/L CMOVE C/L * !CUR ;

	

11 	• RELINE R/C SWAP D110? DU? 13 EMIT LINE. UPDATE .CUR ;
12 : +.CUR +CUR .CUR ;
13 : TAB PTR DU? 0 32 = 0= IF BEGIN 1+ DU? 1 -.CUR CO 72 = UNTIL

	

14 	ENDIF CUR 9 1023 = IF .CUR 1 ELSE BEGIN 1+ DU? 1 -CUR CO 72

	

15 	UNTIL .CUR ENDIF ; R->BASE -->

SCR *37
0 (SCREEN EDITOR 12TUL32 LCT) BASS-)R DECIMAL
1 : -TAB ?TR DU? CO 72 > IF BEGIN 1- DU? -1 +CUR CO 72 = UNTIL

	

2. 	ENDIF BEGIN CUR @ IF 1- DU? -1 +CUR CO 32) ELSE .CUR 1 END:.

	

3 	UNTIL BEGIN CUR 1 IF 1- DU? -1 -CUR CO 32 = DU? I. 	+.CUR

	

4 	ENDIF ELSE .CUR 1 ENDIF UNTIL ; : 'BT-r, ?TR C! UP:ATE 1 	;
5 • BLNKS ?TR R/C DROP C/L SNAP - 32 FILL
o : FLIP S_H @ IF -29 ELSE 2 9 ENDIF +. CUR ;
7 : REDRAW SCR 1 S_H 1 IF 	ELSE LIST: ENDIF UPDATE ,CUR

: NEW3CR 0 SWAP LIST:. !CUR .CUR ;
: +SCR SCR 1 1+ NEWSCR

	

10 	-SCR SCR 3 1- 0 MAX NENSCR ;
11 • DEL PTR DU? 1+ SWAP 2/C DROP C/L SNAP - CMOVE 3:

	

12 	?TR R/C DROP - C/L + 1- C! ;
13 : INS 32 FTS DU? R/C DROP C/L SNAP - 	SNAP 2C

	

14 	I CO LOOP ORO? ?TS DU? R/C DROP C/L SNAP - - 1- SNAP 	SNAP

	

ta 	DO 	C! -t +LOO? 	R-)BASE --)

SCR *38
0 (SCREEN EDITOR 12:uL3: LCT) BASE-)R HEX
I : WED BOX SNAP CLS LISTL !CUR .CUR REG:N K27 CASE

	

2 	OF OF BCK 	 ENDOF 01 07 DELHALF BLNKS REL:N7 EN2OF

	

3 	as OF -1 +.CUR 	 ENDCF 02 CF +SCR 	 7>1207

	

4 	OA OF C/L +.CUR 	ENDOF OC OF -SCR 	 ENZOF

	

5 	OB OF C/L MINUS +. CUR ENDOF 03 CF DEL RELINE 	 ENDCF

	

6 	09 OF 4 +.CUR. 	 ENDOF 04 OF :NS RELINE 	 ENDOF

	

7 	OD OF 1. +LIN .CUR 	ENDOF 07 OF DELLIN REDRAW 	 ENDOF

	

8 	OE OF FLIP 	 ENDOF 06 OF INSLIN RE:. RAN 	 ENDOF

	

9 	1E OF INSLIN 3LNKS a:EZRA:4 ENDOF 16 CF TAD 	 ENDOF

	

10 	7F OF -TAB ENDOF
CU? 	CvER 77 	Aa: :7 Zr.j2 2:1:7 ;127 	 - 1'4:7

	

12 	iNZCASE AGA:A :
";14.222 	 ::7T:7, •

"77= 	772 	: 	77 :7:2.1

	

. 4 3 	->L7A3 17.

77: FORTH --- a !Lg-FORTH axt-'nslcn

SCR 43/
0 (STRING STORE AN: icazzN CO?? WORDS 1::ULS: L:7) 0 CONSTANT A:

	

t 	0 CLOAD DISK-HEAD 	(ADOR) EASE->R HE2.:
2 : (1 ") R COUNT DU? 1+ =CELLS F.> - 	>2 SWAP E:
3 : 14 22 STATE 1 	(STORE STRING AT ADDS)

	

4 	IF COMPILE (!") WORD HERE CO

	

5 	/* =CELLS ALLOT
ELSE WORD HERE COUNT >r2 SWAP R> CMOWE

	

7 	ENDIF ; IMMEDIATE DECIMAL (SCREEN COPYING)
8 : DTEST 90 0 DO I DU? . SLOCK DROP LOO? ;
9 : SCOPY OFFSET @ + SWAP ELOC.K 2- ! UPDATE FLUSH ; (1K ✓ LOCKS)

	

10 	• SMOVE >2 OVER OVER - DU? 0< SWAP R MINUS > + 	= IF

	

11 	OVER OVER SWA? 2 + 1- SWAP R + 1- -1 ' AD ! ELSE 1 ' AD !

	

12 	ENDIF R> 0 DC OVER OVER SCCP7 AD + SWAP AD - SWAP LOOP D20?

	

13 	DROP ;
14 • FORTH-CO?? 90 0 DO I DU? . 90 * I SCO?7 LOOP ;
15 R->EASE -->

SCR *40
0 (WRITE A HEAD COMPATASLIS WITH THE DISK MANAGER t::uLa: LcT)
t BASE->R HEX
2 : DISK-HEAD 0 CLEAR 0 BLOCK (START SECTOR 0)

DU? '' FORTH 	' DU? A + 108 SWAP

	

4 	pup C p 94a SNAP ! DU? E + 5342 SWAP '

	

5 	DU? 10 0 2000 SWAP ! DU? 12 + De 0 FILL

	

e 	DU? 33 + CS 77 FIT:. 100 + (START SECTOR I)

	

7 	DU? 2 SWAP ! DU? 2+ FE 00 FILL

	

3 	100 * (START SECTOR 2)

	

9 	DU? !' SCREENS ' DU? A 4 0 SWAP !

	

1 0 	DU? C * 2 SWAP ! DU? E JP, 1e5 SWAP '

	

14 	DU? 1 0 	80 SWAP ! DU? 12 	CA02 SAP

	

12 	DU? 1 4 4 3 0 FILL DU? lc , 2250 SWAP '

	

- 13 	1.1:* I= 4. 14, 03 SWAP ! DU? 2'0 + 	SWAP 	22 * ODE CFILL

	

14 	PLUSH

	

Jft

	 R-)3S 7-'

':„.7-=ORTY.

IC= 4L: ,
0 (DUMP RCUT:NES 1::13:32 LOT)
I 0 CLOAD IP:ST 	EAS=-:RHEX
2 : DUMPS -DU?
3 	IF

	

4 	3A31->R HEX 0 OUT ' SPACE OVER 4 U.R

	

5 	OVER OVER 0 DO
DU? 8 0 <4, 4 4 4 * EL HOLD 2: HO:0 47 , 77P= -+

	

7 	+LOOP DROP IF OUT 0 - SPACES
0 DO
DU? CO OUP 20 < OVER 71 > OR

	

10 	IF DROP 2E ENDIF

	

/1 	EMIT 1+

	

t2 	LOOP

	

i3 	CR R->EASE
ENDIF

is -->

CR *4.7 •
0 (DUMP ROUTINES 12TUL82 LOT)'
t : DUMP CR Or) S U/ >1 SRA? I> -DL'?

	

2 	IF 0
DC 8 DUMPS PAUSE IF SWAP DROP 0 S'4AP LEAVE ENDIF LOO?

ENDIF SWAP DUMPS DROP ;
5, 	.S CR SPG 2- SO 8 2- .* I 4 OVER CVER = 0= IF

DO I 8 U. -2 +LOO? ELSE DROP DROP ENDIF ;
7': VL:ST 80 OUT ! CONTEXT / 8
S: 	3EGI:I DU? C8 EF AND OUT 1 -25 >

IF Cl 0 OUT ! iNDIF

	

LO 	DU? :O. ?FA :FA 5 SPACE 'OUP 0= PAUSE OR

	

44 	UNTIL. DEO? ; 	3->SASE

Cl *44
0' (TRAC• COLON 'AORDS-FORTH DIMENSIONS :::/: P-7,3 :11=2 LOT)
I 0 CLOAD (TRACE) RASZ->1 DEC:MAL 4. R->EASZ :LOA: 7LIST
Z. FORTH DEFINITIONS
: 0 VARIAELE TRACT' 	(CONTROLS :NSEET:CM OF TRACE ROUTINE)

	

1.6 0 VARIAZLE TFLAG. 	(CONTROLS TRACE OUTPUT
S : TRACE t TRACT ' ; 	.

: UNTRACI 0 rRACF '

	

7 	TRON 1 TFLAG I
• : TROPP 0 TFLAG ' ;

	

9 	(TnAcs) TFLAG a 	(GIVE TRACE OUTPUT -)

	

tO 	:7 CR R 2- FIFA D. 	SACK TO ?FA N7A FOR NAM:

	

.8 EN0IF ; 	 (PRINT sTAcr ZONT:NTS
REDEFINED TO ::12.."-": 	 A7772 2O — N

=MC 	2;:7=7 7::!"77= :az= : 	:7A
nZR1 2- 	:7-.3c7 	 ;72411.:Z; 	;T.'? 	 i:1227

	

44f. 	! 	:M11 711 :A .77

' F1RT1-! --- a !'-g - FORTH

CR
0
I.

445
(FLOATING POINT <4 	WORD) 	STACK 	RCUTINES 	12:UL32 	LOT)
0 CLOAD 	?: 	 DECIMAL 11 R->EASE CLOAD 	RANDCr:DE

2 3AS=-)R 	14:=X
• FDU? 	SP 1 	DU? 	2- 	S:4 A? 	6 	+ 	DC 	13 	-2 	+LOC? 	;

4 • FDRO? 	D20? 	DROP 	DROP 	D2') ?
5 : 	FOVER 	SPI 	DU? 	6 	+ 	S',1A? 	+ 	DO 	I 	-2 	+LCO?

• FSWA?)2 	>R)2)2)2' 	:2)R
7 FDRO? 	R) 	2) 	2> 	2) 	R) 	2> 	R) 	FL) 	;

: 	F! 	4 0 DO DU?)2 	' 	2> 	2+ 	LOO? 	no? 	;
r 9 : 	=@ 	6 	• 	4 	0 	DO DU? >2 @ 	2) 	2- 	LOOP 	D20? 	;
' 10 S34A CONSTANT FAC 	S12C CONSTANT ARD

,tt • >FAC 	FAC 	F! 	: 	>ARG 	ARG 	F' 	; 	: 	FAC) 	PAC FS
_ i2 : 	SETFL 	>FAC 	>A2G 	;

13 FADD 	0.00 	C 	SYSTEM 	: 	FEU'S 	0 - 00 	C 	S7STEM
t4 : 	FMUL 	OS00 C 	SYSTEM 	; 	: 	FDIV 	0900 	C 	SYST2:!
15 2->BASE 	-->

CE 446

	

' 0 	FLOATING POINT ARITHMETIC ROUT:NES 12:ULS: LC
t SASE->2 HEX
2 : F+ SETFL FADD PAC) ;

r s • F- SETFL FSUS PAC> ;
1 4 : 424 SETFL FMUL PAC> ;

	

L.' a 	F/ SETFL FD: 1,7 FAC)

	

6 	S-)FAC FAC ! 2100 C S7STEM
7 • FAC-)S 1200 C SYSTEM PAC 3
S : FAC)ARG FAC A23 9 CMOVE ;

F->S >FAC FAC-)S
F. 10 : S->F S->FAC FAC> ;

11 DECIMAL

	

1.2 	P2ND 1 0 DO 100 2ND 100 RMD :5-/z 4 4 LOC?

	

1.1 	1.00 2ND 16123 	;

t41.
2->BASE -->

0 (FLOATING POINT CON7S2S:ON ROUT:NES C.ONTONUS: 12.7UL32 L:T)
t 3ASE-)2 HEX
2 : DOSTR PAC 3 - C! 14 GPLLNK

	

_ 3 	FAC 3 * C9 8300 + PAC C + Cl DU? PAD C!
PAD 	3i4A? CMCVS

Li 5
-.6 (MUM3ER IN PAC CON'IZETZ.: TO SASIC ST2:NG AND PLACZD AT ?A')
7 : STR 0 00372 ;
3

$T2. FA: 	:! PAC C

	

.3 	VAL ?AO 1+ 1 000 DU? FAC C + 	?AD Cl CV7 	- 2 ,)
:.0(

5 3-)3Aii -->

FCRTY. --- 3 4,,7-FORTF.

SCR
0
1
2

3

*48
(FLOATING POINT - COMPILF. NO TO 	STACr, 	127UL3: 	LC7) 	EASE-:R
: 	FS 	PAD 	1+ 	SWAP 	>P. 	R CMOVE 	R) 	PAD 	C' 	VAL FAC) 	;
: 	(), F) 	R 	COUNT 	DUP 	/+ 	=CELLS 	R: 	+ 	>R 	F3 	;
• 	>F 	20 	STATE 	@

IF 	COMPILE 	(>F) 	WORD 	HERE C2
5 1+ =CELLS ALLOT
6 ELSE WORD HERE COUNT FS
7 ENDIF 	IMMEDIATE
S
9 (FLOATING POINT OUTPUT ROUTINES)

10 : 	1ST PAD CO - SPACES PAD COUNT T?PE ;
11 : 	F.E 	>R 	>FAC 	STR 	R) 	:ST 	;
12 : 	F. 	0 	F.E 	;
13 : 	FF.R)R 	>P 	>E)FAC 	R) 	0 	P.) 	STE. 	a: JET ;
14 : 	FF. 	0 	FF.R 	;
/5 R-)BASE 	--)

SCR #49
0 	(FLOATING POINT COMPARE ROUTINES

BASE-)R HEX
2 	: 	FCLEAN)R DROP DROP DROP R) 	;
3
4 	: 	FO< 	0< 	FCLIAN 	;
5

	

3 	FO= 	0= 	FCLEAN ;

S 	• 	FCOM 	SETFL 	()AGO C 	SYSTEM 	37 7 C 	C2

	

9 : 	F) 	FCOM 40 	AND MINUS 	0<
10 	: 	F= 	FCOM 	20 	AND MINUS 	OC 	;
11 	: 	F< FCOM 60 	AND 	0= 	;

	

12 • 	FLERR 8354 CO 	;
13 	: 	FLERR FLT=RP. 	A , zaaca 	;
1 4

15 R-)BASE 	-->

12:ULS2 LCT)

;

SCR *50
0 	(FLOATING POINT TRANSCENDENTAL FUNCTIONS
1 BASE->R HEX
2 0 VARIABLE LNKSAV

12:UL32 	LC7)

3 : 	GLNK 83C4 a LNKSAV 	GPLLNK LNKSAV 3 330 4 	1 ;
4 	: 	/ NT)FAC 	22 GLNK PAC) 	;
S • 	SETFL ARG asbE G 3 VM3W 24 GLNK PAC: 3 alTaz
6 	: 	SOB)FAC 	26 GLNK FAC> 	;
7 : 	EX? ›FAC 23 GLNK FAC> 	;
8 	: 	LOG 	>FAC 	2A GLNK PAC) 	;
9 	: 	COS)FAC 2C GLNK FAC) 	;

10 	: 	SIN 	>FAC 	2E GLNK FAC)
11 	: 	TAN)FAC 30 GLNK FAC) 	;
12 	: 	ATN)FAC 	32 GLNK FAC) 	;
13 	: 	PI 	›F 	3.!!;.159265350 	;
14
15 R-)PASS

HEX

Ti FORTS --- a ..!g-FORTH ex:enlE.Lzm

ica #=I
0 (CONVERT TO TEXT MODE COMF:GUEAT:CN 1-_ :?32 LAC)
t 0 CLOAD TEXT 3A3E-73 DECIMAL 	E-> GAS= CLOAD S=TVDP 7

 ? BAS=->R H=X

4 : TEXT
5 0 7C0 20 VFILL (:3LANKS TO SCREEN :MACE AREA

28 SCEN_W:DTH ! 0 SCRN-START ! 	co7 	SCEN_END ! 	FARS
7 S=7VDP1 	VDPMZE '
S (NQU SET VD? REGISTERS)

1 6 1P,IT3 	CF4 7 VWTR
10 OF0 S=TVD:27
i 4

17
/a

la E-)3AS=

SCR *52
r - 0 (CONVERT TO GRAPHICS MODE CONP'IG 14SEPSD.LAO)

t 0 CTOAn SAPHICS SASE->R DECIMAL 	R->SAS= VOA:: SET VD?:
2 RAS=->Ft HEX
7
4 • GRAPHICS
5 0 300 20 VFILL (3LANKS TO SCREEN IMAi7E AREA 	70C SC 0 VFILL
• 780 20 F4 VP -ILL
7 20 SC3N_IDTH ! 0 SCR:{-START '! 300 scaN_EN: !

SE7V0P1 	2 VDPMLE !
? (NOW S=7 VD? R=GIS7=ES)

tO 	1 ,b VW72 	0F4 7 VUTE
t 4 =0 S=TVD?:

17

7 t5 E)EASE

— 0 (CONV=717 TO MULTI-COLOR nc:s CONFIC 14SS7S2 LAC)
r 	

1 0 CLOAD MULTI SASE-)R 0ZCZMAL 2b R->DASE CLCAO 717F3Z72
2 3ASE->2 HEX

• • MULTI 	OSO 1 V1•;7:1 (:LANK THE SCE==M)
5 -1 18 0 DO 	' / OF? SUA? 00 lo I CV=2 VSZ;4 3 , LCO? ?CC? oac?
• ao0 500 0 V?ILL 	 (:NIT 05a CHAR ?A7722MS 70 0)
7 300 SO 0 VF:LL ZSO 20 OF=: VFILL
S 20 SCRN_;4ID7H ! 0 SC:IN...START ! 300 SCRN_SMID 	=00 ?A23 !
? .:000 .0:1K_:LUF 	 ass7cas SEE

4 0 7 717-7

'7 0= 7 3=772? - _

'5 3,-:2AS 7

- 	 a 4:_g-F7R7:H

SCR *54
0 (CONVERT TO GRAPHICS: MODE CONFIG 14SEPS: LAO)
1 0 CLOAD GRAPHICS: SASE->R DECIMAL 56 R->EASE CLOAD VOPEET:
2 BASE->I1 HEX : GRAPHICS: OAO 1 VUTR
3 -1 1B00 1800 DO i+ DU? OFF AND I VSEW LOOP DROP
4 1 PABS @ VSBU 16 ?ABS @ 1+ VSEW I (*FILE) 874C C! PAZS 	S756
5 OA OE SYSTEM (SUBROUTINE TYPE DSRLNK TO SET 2 DISK BUFFERS)
6 0 1800 OFO VFILL (INIT COLOR TABLE)
7 2000 1800 0 VFILL (INIT BIT MAP)
8 20 SCRN-WIDTH ! 1300 SCRN_START ' 1300 SCRN_END ' 1200 PAZ:, '
9 IC00 DISL.BUF ! (USER VARIABLES NOW SET UP)
10 2 0 VWTR 	6 2 VWTR (SET VD? REGISTERS)
11 07F 3 VWTR 	OFF 4 VWTR
12 70 5 VWTR 	7 6 VWTR
13 OF1 7 VWTR 	0E0 DU? 8324 C! 1 VWTR 	lECO 836E ! (VSPTR
14 0 0 GOTOXY 4 VDPMDE ! 0 837A C! 	;
15 R->BASE

SCR *55
0 (CONVERT TO SPLIT MODE CONFIG 14SEP82 LAO)
1 0 CLOAD SPLIT BASE-)R DECIMAL 56 R->EASE CLOAD VDPSET:
2 BASE->R DECIMAL 54 R->BASE CLOAD GRAPHICS:
3 BASE->R HEX
4 : SPLIT GRAPHICS2 IA00 SCRN_START ! OAO 1 VWTR .3000 300 OFF

	

S 	VFILL 3100 834A ! 18 GPLLNK 7300 834A ' 4 A GPLLNK

	

6 	1A00 100 :0 VFILL 1000 900 OF4 VFILL 0 0 GOTOXY 0E0 I VWTR

	

7 	5 VDPMDE ' 	0 837A C! 	;
8
9 : SPLIT2 GRAPHICS: 1930 SCRN_END ! 2000 400 OFF VFILL

	

10 	2100 834A ! 13 GPLLNK 2300 874A ' 4A G?LLNK

	

11 	1800 80 20 VFILL 0 400 OF4 VFILL 0 0 GOTOXY b VDPMDE !

	

12 	0 837A C' ;
13
14
15 R->EASE

SCR *56
0 (VDPMODES 14SEP82 LAC) 0 CLOAD SETVDP2 3ASE->R DECIMAL 33
I R->BASE CLOAD RANDOMIZE BASE->R HEX
2 • SETVDPI OBO 1 VWTR 	(BLANK THE SCREEN)

	

3 	800 800 OFF VFILL 	(:NIT 256 CHAR PATTERNS TO FF)

	

4 	900 834A ! IS GPLLNK (LOAD CAPITAL LETTERS)

	

5 	BOO 834A ! 4A GPLLNK (LOAD LOWER CASE - ON 99 /4A ONLY) ;
: SETVDP2 (n) 460 ?ABS '

	

7 	1000 DISK_BUF ' 	(RESTORE USER VARIABLES

	

8 	(SET VD? REGISTERS)

	

9 	0 0 VWTR 0 2 VWTR OE 3 VWTR

	

10 	1 4 VWTR 6 5 VWTI

	

11 	3E0 836E ' 	 (VSPTR
12 1 PABS @ VSBW 16 ?ABS 1 1-, VSEW S (*FILE) 834C C! ?ABS 1 8756 '

	

13 	OA OE SYSTEM 	 (SUB TYPE DSRLNK TO SET 3 DISK EUF)

	

14 	0 0 GOTOXY 0 837A C'

	

15 	DU? 8324 C! 1 VWTR ; R->BASE

Ti FORTH --- a __g-FORTH

• t 	.C2
-

-->

SCR *57
•(:) (GRAPHICS P'2 IMITI7=2 127 .J182 L27' 	̂) 2LOAD CHAR DA8E-:R :EC:MAL

4

 •

73 2-)EAS2 CLOAD RANromi:: SASE-'= 2 1. 2:MAL 74 2-:SASE C'OAD
;CODE 	RASE--)2 HEX

,3 380 CONSTANT COLTAR 300 CONSTANT SAT?. 720 CONSTANT SMTN
4 800 CONSTANT ?DT 300 CONSTANT S?CiAD
3 : CHAR (Wi W2 W3 W4 CH ---)

3 4 ?Di + >2 -2 6 DO PAD 1 * 	-2 *L00? ?AD R) 	VMEW ;
: CHARPAT (CH --- WI W2 W3 W4

8 	?DT + PAD 8 VM3R 8 0 DO ?AD I * 3 2 +LOO? ;
9 : VCHAR (X Y CNT CH ---)

>2 >11 SCRN_W/DTH 2 4 	SCRN-END 0 SCRN_START i - SWAP
2) 2) SWAP 0 DO SWAP OVER OVER SCRN_START 3 + VSSW SCRN_WIDTH

12 	2 + ROT OVER OVER /MOD IF 1+ SCRN-WIDTH 2 OVER OVER = I? -
T -4a 	ELSE DROP END IF END /7 ROT DROP ROT LOC? DROP DROP ORO?

• 2-)3ASE --)
i=

*5a
o (GRAPHICS PRIMITIVES 200CT37 LAO) 	BASE-)R HEX
t 	HCHAR (X 	CNT CH)

›3 >2 SCRN-W/DTH 3 4. + SCR'-START 	R) 2) VF:LT ;
3 : COLOR (PG 3G CHSET) >2 SWAP 10 + 	2) COLTA2

•

7S3W ;
4 : SCREEN (COLOR ---) 	7 VWT2 ;

GCHAR (X Y 	ASCII) (COLUMNS AND ROWS Num: -22 -=0 Faom 0)
• SCRN_WIDTH 8

•

+ SCRN_START 2 + VS?.
--7• SSDT (ADOR) (SET SPRIT= DESCRIPTOR TARE_7 ADDRESS)

DU? ' SPDTA2 ' SOO / o v ,,vra (RESET VD? 223)
9 	SATR 20 0 DO DUP >2 0000 SP2 2) 2 VMEW DROP- - :00? :RC?•

VDPMDE 3 	< IF SMTN 30 0 VFILL ZOO 	SATE 	TN2/P
4

4.. 	
(:NIT ALL SPRITES)

• SPCHA2 (iii W2 W3 W4 CH*)
__13 	3 4 SPDTAR + >2 -2 b DO PAD I + 	**OOP FAn 2: 3 7M2W

SPRCOL (COL *) 	4 4 SATS 0 - + DU?)R V 	07.0 AND 02
2>]Si3 ; 	 2->DASE

• *5'0
(GRAPHICS PRimiT:vss 200CT33 LC7)
RASE->2. HEX

2 • SPRPAT (CH *) 4 * SATR ", + 702U
7 : EPSPUT (DX DY *)

4 4 SATE * >2 1- 100 U 4 DROP + S?1 a: 2 VM2W :RCP ;
: SPRITE (DX DY COL CH *) (SPRIT'S NUM".2"
OUP 4 4 SATE +)2 DUP >2 SPRPAT 2 SPRCCL 2: SP PUT
SATE DO 1 VS32 DO = IF COOL 5P2 : 2 'IMEW DROP 7Nr1 :7 4
MOTION (SPX SPY *)
4 4 SMTN 	1 SLA P:UA? 1))7777 AN 	7R =:71
*MOTION (0) 	80'A C'
SP2GET 	 0?)

T^"=^'..1

SC2 460
0 (GRAPHICS PRIMITIVES 1 2IU'S2 L27)
1 SASE->R HEX ; SEE? 34 GPLLNK ; 	: HONK 76 G.FLLK
2 : SPRDIST (*t *2 --- OIS 17 - 2) (::STANCE : 5 7N 5 =N 2 	 E S.

SPRGET ROT SPRGET 2X7 OVER OVER

	

4 	+ DU? > 5 OR OR 9000 AND IF R.> DROP 7FFF ELSE R> 5N:IF ;
3 : SPRDISTXY (X Y 4 --- DIET':) SPROET 2X7 OVER OVER

	

6 	4 DU? >R OR OR 3000 AND IF R> ORO? 7FFF ELSE R: EN:IF
7 : MAGNIFY (MAG-FACTOR)

	

9 	81D4 C9 OFC AND + DU? 21D 4 C' 1 YNT2 ;
9 : :CYST (KEYEDNO --- ASCII XSTAT YSTAT) S774 C!

	

30 	/KEY DROP 9375 C@ DU? DU? 12 = IF :RC? 0 0 ELSE OFF =

	

li 	IF 8377 C9 8376 CI ELSE 8375 C2

	

12 	CASE 4 OF OFC 4 ENDOF 5 OF 0 4 ENDOF 6 CF 4 	4 ENDOF

	

33 	 2 OF OFC 0 ENDOF 23 OF 4 0 ENDOF 0 OF 0 OFC EMDCF

	

t4 	OF OF OFC OFC ENDOF OR OF 4 OFC ENDOF DROP 7,R07 0 0 0 0

	

15 	ENDCASZ ENDIF ENDIF 4 8374 CI ; 2->EAss -->

SCR *61
0 (GRAPHICS PRIMITIVES 12TUL22 LCT) EASE->R HEX
t • COINC (42 *2 TOL --- F) (0= NO COINC 1= COINC)

	

2 	DU? + AU? + >R spapIsT R> > 0= ;
3 : COINCXY (DX DY * TOL --- F)

	

4 	MU? * DU? + >R SP:11713TX? R> > 0= ;
3 : COINCALL (F) (1:7 SET IF ANY TWO SPR2TES OVERLAP)

	

6 	8802 Ci 20 AND 20 = ;
7 : nztsn ()

	

8 	4 * DU? SATE 4. >1 0 C001 SP3 R> 	VMEW CRC= 27.2)?

	

5 	SMTN + >R 0 0 SPS P.> 4 7M3W :RC? DROP ;
i.0 : DEL ALL

	

11 	0 *moTioa SATE 20 0 no DU? DO SWAP VSSW 	:CC? CRC?
SMTN SO 0 V72LL

13

1 4

	

15 	R-)SASE -->

SCR - *62
0 (GRAPHICS PRIMITIVES 24.,n0 ,:5: LAO) EASE->R HEX, 0 VARIASLI AOR
1 : MINIT IS 0 DO 0 I 4 / 20 	DU? 20 4 SWAP

	

2 	 DO DU? : 1 I HCHAR 14 LOG? :RCP LOC?
MCHAR (COLOR C) DU? >1 2 / SWAP OUP >2 C / SWAP

	

4 	CUP >R GCHAR DU? 20 / 100 U* DROP SO0 + >P. 20 MOD

	

5 	8 4 R) + R> 4 MOO 2 	ADE ! R> 2 MO: R> 2 MO 7, SWAP

	

6 	IF IF 1 ELSE 1 ENDIF ELSE IF 2 ELSE. 0 ENDIF 	ENDIF

	

7 	DU? 2 MOO 0= IF SWAP '10 	SWAP ENCIP

	

3 	CASE 0 OF ADE @ VS3R OF ENDOF 1 OF ADR 9 VS32 FO ENDOF

	

5 	2 OF 1 ADR +! An @ VS3R OF ENDOF

	

10 	3 OF 1 ACE +! ADE @ VSER FO zNnc:=

	

11 	ENDCASZ AND + 	ADS 9 72,2W
12 0 VARIA2LI. DMODE 	VA21A2LZ ocoLza
13 : DRAW 	.:MCC I ! 	UNZRA;; 	 _

, 4() 	 J04 , 	 -

72 ?CRT- --- a t..:4-FORTH

FR:MIT:V=3)
C07/ 	,

3A3=—)= 	HEX

COS1 	, C105 , 	02 4 1 	,
0217 	, 0007 , 	0242 	,
0244 	, 00 FE 0A52
A044 	, 0221 , 	2000 	,
:125 	, DTA2 , 	0624 	,
064/ 	, C641 , 	0457 	,

#65
. 0 (GRAPHICS
1 CODE DDCT

CODS ,
0007 ,
0017 3 ,
A042 ,

;7
	 0424

7
	

C644 ,
3 : DOT (X 7)

DDOT DU? 2000 — >2 :Mons o

	

10 	CASE 0 OF VOR ENDOF 	()
- ti 	 i OF SWAP FF XOR SWAP VAN: ENDOF (UN:RAW)

- 	 2 OF VXOR ENDOF 	(72'5GLE)

	

IZ 	DROP DROP ENDCASE 2>

	

11 	DCOLOR e 0 < IF DEO? ELSE DCOLOR :3 SWAP VSEW EN:IF ;
L3 2—>3ASE -->

SSE *64
"" 0 t GRAPHICS Iza:',1:77:vIrs 1" -UL 	LCT) 3AS=—)R REX

	

t 	SGN DU? IF DU? 0< IF —' ELSE t ZNOIF =LSE 0 ENDIP 	;
2 • LINE)2 2 ROT >3 	SGN SWAP)3 3 ROT >2 3 — SGN OVER AES

	

Z 	OVER AES <)2 b 0= IF SWAP EN:IF 100 ROT ROT */ 3>

	

4 	IF (X AXIS) 2) II) OVER OVER >

	

3 	:7 (MACE L TO 2) SWAP 2) DROP 2)
ELSE 2) 2) :"2 0?
ENZIF 100 * 207 ROT 	SWAP
DO I OVER 0 100 MI SWAP DROP DC; OVER , LOC?

ELSE (7 AXIS) 2) 2> 2) 2) 207)2 207 	OVER cvsa
1C 	IF (MAKE 7 TO 3) SWAP 2) DROP 2)

ELSE 2> 2) DROP
ENDIF 100 + 20T 207 t SWAP

, 	 DO DU? 0 100 M/ SWAP pac? 	:07 OVER * LOOP

	

14 	END I< :20? :RC? ;
" 	1—)RASE

- S (COMPACT LIST)
1 0 CLOAD SMASH EASE—)2 DEC:MAL 74 R—>SASE CLOAD ;CODE

3ASE—)2 DECIMAL 75 2—)3ASE CLOAD aAn:cm::z EASE—)2 OECIMAL
• 0 VARIASLZ "CHAR 782 ALLOT 67 3LOCK 7CHAR 334 CMOVS HEX
— TCHAR 7C — CONSTANT TC 0 VARIAZLI' 2A":R 0 VAR-A.= 1
• SMASH EXPECTS AD:2 *CRAB Linz* --- L3 VA:DR CN7)
6 0 VASIA2L2 LO FS ALLOT
7 CODE SMASH

	

S 	C07/ , CO39 , COO/ , 0204 , L: 	, 	, 1;649 , OoCt ,
, 2000 , , 	 , ;:41 , F777 	. z, 4 • :;.7

OA:" , 	A035 , a0C2 , 1301 , 1:20 , 	 „: 4C6

	

17, 	0700 , EtCE 	:D07 , OECO 	 , 060C 	16F4 a 0,3C 	,
0f,C6 , C503 , 024C 	0002 . 16E7 	lo:n , 	,

'5 —)SASE --;

t;.'FCRTH

SCR *66
0 (COMPACT 	LIST) 	EASE->R 	DECIMAL
1 • CLINE 	LS 	100 	ERASE 	SMASH 	VM2:4
2 • CLOC? 	20 	/ 	OVER 	+ 	6 4 	I 	2L:NE 	LOOP 	DROP ;
3

: 	CLIST BLOCK 	16 	0 	CLOG?

6
7
8
9

10
1/
12
13
14 R->BASE
13

SCR #6a
0 (FIB. 	I/O 	ROUTINES 	1:ruLa: LCT)
t 0 	CLOAD STAT 	SASE->R DECIMAL 3• 	R-:, SASE CLOAD RANOOMIZE
2 BASE->R HEX
3 0 VAR/ABLE ?A9-ADD?

0 VARIABLE PAS-BUF
5 0 VARIABLE PA2-V3UF
6 : 	FILE 	<EU:LDS 	, 	7 	DO 	S> 	OUP 	?AS-YRUF 	' DU? i ?AB-2U::
7 2 , 	1 	PAB-ADDR 	! 	;

: 	GET-FLAG 	PAE-ADDI 9 1 , 	VS3R 	;
9 : 	PUT-FLAG ?A3-ADDR 3 	1* VS3; 	;

10 : 	SZT-PAS 	?AZ-ADDa @ DU? 	OA 0 	VF LL 	2, 	PA3-V2UF SAP 2 	7MR',;
11 : 	CLR-STAT GET-FLAG IF AND ?UT-FLAG 	;
12 • CHK-STAT GET-FLAG ORO 	AND
13 937C CZ 01 AND OR 9 	"R.ROR 	;
1 4 • ?XD GET-FLAG 0E7 AND PUT-FLAG 	;

: 	VR21 GST-FLAG 	10 OR 	PUT-FIAG 	; 	R-:3AS

FORTH --- a =-,7-- CRT.. ext?.r.s.L:n

r

8C 1
, 	0

.
2
3
4
5

7
8
9

It
22
23
24
25

*):.9
(FILE 	I/O 	ROUTINES 	12:U192 	LC T) 	2ASE-:R 	HEX
: 	DSPLY 	GET-FLAG 	OF-7 AND 	PUT-FLAG
• /NTRNL GET-FLAG 	8 	OR PUT-FLAG 	;
: 	I/OMD 	GET-FLAG 	OF'? 	AND 	;
: 	INPT 	I/OMD 	4 OR PUT-FLAG 	;
• OUTPT 	I/OMD 	2 OR PUT-FLAG 	;
: 	UPDT 	I/OMD PUT-FLAG 	;
: 	APPND 	I/OMD 	b OR PUT-FLAG 	;
: 	SQNTL GET-FLAG OF: AND PUT-FLAG
: 	RLIW GET-FLAG 	1 02 PUT-FLAG 	;
: 	EEC-LEN PAB-ADDR a 4 + VSDW
: 	CHAR-CNT' 	?AB-ADD.% 	3 	5 	, 	vss .,4 	;
: 	CHAR-CNT1 PAB-ADOR 9 5 	+ 	VE2R
: 	REC-NO DU? 	SWPB 	PA3-ADD2 	7.92W 	FAB-ADDR
: 	N-LEN' 	PAB-ADDR 	9 9 	+ 	VS74
R-)BASE 	-->

0 7 + VSEW 	;

(7.1E 470
_ 0 (FILE I/O ROUTINES 12:ULS2 LCT) BASE->R HEX
• t (COMPILE A STRING WHICH IS MOVE: TO VD?-A,Dza AT EXECU7::N;
• -

3 : (F-D";
PA3-ADDR 4 OA + R COUNT DU? 	=CELLS R>

'7;)R)2 SWAP B VM2W F.>
Es m F-D' 22 STATE 4
7

COMPILE (F-D") WCRD HERE C11

	

7 	2+ =CELLS ALLOT

	

tO 	ELSE
. 44' a PA2-ADD2 9 OA * SWAP WORD HERE COUNT 	9:4AP R

	

4'1 	 gMBW 2> N-LEN!

	

27 	END-F ; IMMEDIATE

is R->BASE --)

iCE *71
• 0 (FILE iro ROUTINES 12 ✓ ULS2 LC7)

i SASE->• HEX
Z. • DOI/0 CL_'.-STAT PAB-ADDR G VSEW ?A:-Azpa

0 877C C! OSELNK CHK-STAT ;
4 • CPN 0 DOI/0 ;
5 • CLSE 1 DOI/0 ;

RD 2 D0I/0 FA3-V1U7 a PAD-EUF 	C4AR-CNT3 VMER CHAR-CNT3 ;
7 : WRT)R ?AB-BUT 9 ?AB-YEUF 3 2 7M2:4 a> CHAR-CNTI 7 00//0
8 : RSTR REC-NO 4 DOI/0 ;
9 : LD REC-NO 5 D0I/0 ;

• iv aEC-q0 	 ;

1 1=
2->3AEZ

Foa7:4 - 	=

sca *72
0 (ALTERNATE iro sup?ca7 FOR RS 27,_ PNTR 1::uL3: Lc7)

0 CLOAD INDEX 	EASE->R DECIMAL to R-,3ASE CLOAD STAT
2 	0 0 0 FILE >RS232 CAS=-)R EX
3 : SWCH >RS232 ?ASS 	10 + DU? PAZ-ADD? ' 1- FAE-VEUF '
4 	SET-PAS OUTPT F-2" RS232.2A=9=00" 	 O?I
5 	PAB_ADOR 2 VSEW 1 PAS-ADDR a 	 ?AE-ADDR 0 ALTOUT
a 	UNSWCH 0 ALTOUT ' OLSE
7 : /ASCII (BLOCK* --- FLAG)
8 	 BLOCK 0 SWAP DU? 400 T SWAP
9 	 DO I CI 20 > + I CI DU? 20 < SWAP 7F) OR

10 	 IF DROP 0 LEAVE ENDIF LOOP
11 : TRIAD 0 SWAP SWCH 3 / 3 * DU? 3 + SWAP
t2 	DO I ?ASCII IF 1+ I LIST CR ENDIF LOOP
13 	-DUP IF 3 SWAP - 14 ' 0 DO CR LOO?
14 	OF MESSAGE OC EMIT ENDIF UNS:;CH
15 R-)BASE 	-->

SCR *77
0 (SMART TRIADS AND INDEX 15SRPS2 LAO) EASE-)R DECIMAL
1 	TRIADS (FROM TO)
2 	3 / 3 	t + SWAP 3 / 3 * DO I TRIAD 3 +LOO? ;
3 : INDEX (FROM TO) 1+ SWA?
4 	DO I DUP /ASCII IF Cl 4 .R 2 S?ACES 	BLOCS 	TYPE ELSE DROP

ENDIF PAUSE IF LEAVE ENDIF LOC? ;
a

a

to
4i
12
13
1 4
15 R->3ASE

SCR *74
0 (ASSEMBLER 12:UL32 LCT)
i FORTH DEFINITIONS
2 0 CLOAD CODE

4, VOCABULARY ASSEMSLER IMMEDIATE
5

• CODE
7 	?EXEC CREATE SMUDGE LATEST ?FA DU? CFA

CCOMPILE3 ASSEM2LER

tO • ;CODE
4 	7CS? C:11? :11

-

14

72 FORTH --- a ti,g-FORTH

LI

SCR
0
t

#75:
(ASSEMDLER
BASE—).7. 	DEC:AL

LCT) 	0 	CLOAD
74 	R—>EASE 	CLCA: 	;:ODE

2 BASE—).2
3 ASSEMELER DEFINIT:ONS
4 • 	GO?' 	OVER DU? iF 	> 	SWAP70 	< A:12
5

7

IF 	4 	 ,

: 	GO? 	<BUILDS 	,
0440 	GOP 	5,

ELSE 	1. 	, 	END:.
DOES) 	3 	GC? 	;
0680 	GO? 	EL,

;

0400 GC? BLW?,
8 04C0 	GO? 	CL?, 0700 	GO? 	SETO, 0540 GC? :'NV,

0500 GOP 	NEG I 0740 	GO? 	AES, 0/C0 GO? SWPE,
10 0580 	GO? 	INC, 05C0 	GO? 	INCT, 0600 GO? DEC,
11 0640 	GOP 	0E27, 04e0 	GO? 	X,
12
t3

: 	GRO? 	<BUILDS 	,
2000 	GRO? 20C,

DOES> 	9 	SWAP
2400 	GRC? 	CZC,

40 	4

2800
GO?'
GRO?

;
XCR,

14 3800 	GRO? 	MP?, 3000 	GRO? 	DIV, 2C00 GRO? X0?,
15 --)

SC2 #7/
0
1
2

4

(ASSEMBLER 12TUL82 LCT)
GGO? 	<BUILDS 	,

DOES> 	3 	F.',4A? 	DU? 	DU? 	17) 	SUA?
IF 4 0 	* 	SWAP)2 	GO? 	.
ILSE 	40 	+ 	4. 	30:2 , 	EN::?

BO AND

5 A000 	GGO? 	A, 	3000 GGO? AB,
/ 8000 	GGO? 	C, 	;000 GGO? CE,
7

2
to

6000 GGO? 	S, 	7000 	GGO?
E000 	GGQ? 	SOC, 	F000 	GGO?
4000 	GGO? 	SZC, 	5000 	030?
C000 GGO? 	MOV, 	D000 GGO?

SD,
SOCZ,
S222,
MOVE,

11
12 : 	00? 	<BUILDS 	20.14 	R8 ;
13 0740 	00? 	IDLE, 	01/0'00P RSET, 07C0 OC? CKCF.
14 03A0 	00? 	CZCN, 	0710 	00? LREX, 07S0 00? 2".7".;?.
15 -->

- SC:: #77
0 e 	ASSEMBLER 	/':ULS^ 	rC7)
4

: 	 ROF 	<BUILDS 	, 	DOES> 	1 ;

o

02C0 	EC? 	STST, 	02A0 20?

:0? 	<DUILDS 	, 	LOIS> 	,

STU?,

7
8 0220 	:OF 	LW? I, 	0200 	IC? LIM:,

4

4'. 17 -'1 	r7z

1::27

02b0 RIO? 0?:,
7 	7'

SCR
0
I

*78
(ASSEMBLER 	12:12:3: 	ICT)
ECO? 	<BUILDS 	, 	DOES> 	S4A? 	10 	* + 	+

2 0A00 	RCO? 	SLA, 0800 	RCO? 	SEA,
3 OB00 	RCO? 	SRC, 0900 	ECO? 	SRL,
4 • DC? 	<BUILDS 	, DOES> 	S S4A? 	00FF A?ID OR ;
5 1300 	DO? 	:EC, 1500 	DO? 	:GT,
6 1E00 	DO? TH, 1400 	DO? 	:HE,
7 1..00 	DOP 	:L, 1200 	DC? 	:LE,
8 1100 	DOP :LT, 1000 	DC? 	:M?,
9 1700 DC? TNC, 1600 	DO? 	:NE,

10 1900 DO? :NO, 1800 	DO? 	:0C,
11 1C00 	DO? 	TO?, 1D00 	DO? 	S20,
12 1E00 DO? 	SBZ, 1F00 	DO? 	T2,
13 : 	GCOP 	<BUILDS , 	DOES> 	2 	SWAP 	000E AND 040 + +
14 3000 GCO? LDCB, 3400 GCO? 	STCR,
15 -->

SCR *79
0 (ASSEMBLER 12TUL82 LOT)
1 : 	2() 	020 	; 	: 4/ 010 	* 	;
2 - : 	4, /+ 	030 	+ 	; 020 	* 	;
.3 : 	4 	OA 	; 	: 1 (7) 8(4 4 	I(") 	;
. : 	+W 	4 	* 1 	; 	: +:.;+ ',.; 	4.7+ 	;

..,
6 : 	*R? 	RP 	*" 	; 	: *Ea+ 9 ? 	+7+ 	;
7 : 	I? 	00; 	: i(I?) I? 	I(") 	:
3 : 	+IF 	:? 	* 7 	■ 	: .irp. :-.: 	4 - , 	;
9 : 	sp 	09 	; 	: @(SP) S? 	a(') 	;

tO • *S? 	5? 	* 1 	; 	• *824 3? 	4..., 	;
11 : 	U? 	08 	; 	: 0(U?) U? 	a(-) 	;
12 : 	*LT? 	U? 	*/ 	; 	: *U?-6 U? 	4- - - 	:
13 • NE= 	OF 	; 	: *NEXT- N 7:::T 	-1."-
14 : 	*MEXT 	NEXT 4/ 	; 	: i(MEXT) NEXT 	5(/) 	;
15 -->

SC2 #20
0 (ASSEMBLER 12,71La: LCT)
1 (DEFINE SUM? TOKINS)

	

: GTE i ; 	H 	2 ; 	• NZ 3
3 	L 	4;

	

5; 	• E0 6 	:
: OC 	7 ; 	: NC 	9 ; 	: 00 9 	;

5 : HE 04 	: LE 02 ; 	M? OC ;
6 • LT 	OD ; 	• CT OE ; 	: NO OF ;
7 : 0? 	10
8 : CTM? 	'EXEC
9 	CASE LT OF 1101 , 0 zNn07

:7
14 	

w;C

C7 	 77- C7

1• 	ENDCASE 100 + 1000 *
--;

GC?'

TT FORTH --- a ''g-FORTH

:E #et
0 	Ass=m/f_Ta t , :uLa: LOT)
t : :1= 7 	?EXEC

F :COMP:LEI CT'! HERE 2- 4 2 	IMM DIATF
3 : ENDIF, 	/EXFC
4 	4" ??AIRS HERE OVER - 	SNAP 1- C' ; IM;'IATF

: ELSE, 	/ 4XF:
6 	4: ?PAI RS 0 CCOMPILF: C:M? HERE 	4 N,=? 4 2 C22M?: 7 F1
7 	ENDIF, 4 2 ; IMMEDIATE
8 : BEGIN, 	?EXEC

HERE 41 ; IMMEDIATE
10 : UNTIL, 	?EXEC

E 1.1 	SWAP 41 /PAIRS CCOMP:LE1 CIM? HERE - 2 / OOFF AND
t." 	HERE 1- C' 	IMMEDIATE
13 : AGAIN,
14 	0 :COMP:LEI UNTIL, ; ::'MEDIATE

--)

1 -'"ZR *S2
0 (ASSEMBLER 12TUL82 LCT
t 	REPEAT, 	'EXEC

	

..2 	>R >1 :COMP/L 1 AGAIN, Ri

	

3 	; IMMEDIATE

	

- 4 	:4HILS, 	/FXFC
CCOMPILE1 :7, 2- ; :MMFD:ATF

:COMP:LEI END:7,

: NEXT; +NEXT 3, ;
11

DF7IN:T:ONS
13

A s
L5

—)EASS

22, *az
[a (3SAVE 	3INAR7 SAVER FOR FCRTH cvmaLA7s 	TOT '4S F:2 8:
L t 0 CLOA7 BSAVE 	3ASE->R DECIMAL

2 : 38AVE (trvm scl.- 11-no) 	FLUSH
3 	BEGIN

SWAP)R 2UP 1+ SEA?
- 	OFFSET 4 + 3UFFE" UPDATE DU? 7/2U7 ERASE

R OVER . 2+ HERE OVER !
7 	CURRENT 4 OVE2 	 LATEST 	C">-7 :2 j 24,

L.- 4 	CONTEXT 4 OVER ! 2+ 	 CONTEXT 4 4 OVER '
VOC-L:NK 1 OVER 	2 + 	21801 OVER ' 10 +

0 	 H1:6t. R -

1000 MIN CMCV7.
io;A?

3;4A? :RCP ,7-"_US:i 	R—:2AST.

EXEC

SCR *A4
0 (NEW MESSAGE ROUTIN -= 1 -7S7?"4^ TOT 	7,ASTE-:R D=C:MAL
4

2 (THIS VERSION OF MESSAGE HAS THE SCREEN 4 AND
	

MESSAGES
3 	INCLUDED IN THIS ROUTINS.)

5 FLUSH EMPTY-SUFFERS :ZRE TIM - Ts 1 2/7UF 	r - DU? 1M2TZ
6 DP 	(PLACES messace WHERE 57F 22SK EUF IS. 	NOW HA77.. 4 SUFI'
7 : message
8 	WARNING @

IF
10 	-DUF
Al 	IF (NON-:12.10 MESSAGE NUMDER)
12 	 DU? 26 <

IF (MESSAGE NEED NOT 2E RETRIEVED FROM OISr,)
CASE (FOLLOWING CASES FOR MESSAGE NUMBERS)

SCR
0

*85
(NEW MESSAGE CONTINUED)

1 Ot OF . 1 empty stack" ENDOF
2 02 OF ," dictionary 	full" ENDOF
3 03 OF . 1 has 	incorrect address mode" ENDOF
. 04 CF .* isn't 	unique." ENDOF

06 OF .* disk error* ENDOF
7 07 OF .' full stack* ENDOF
3
9 009 	OF ." tile 	i/o 	error" ENDOF

10 10 OF . 1 floating point 	error" ENDOF
1 1 OF .' disk 	fence 	violation" ENDOF
'2 " OF ." an 	load 	from screen zero' ENDOF

1.5 15 OF .' 71 FORTH --- a 	pig-FORTH extenaion" 7NrICF

SC2 *36
0 (NE14 MESSAGE CONTINUED)
1 17 OF .* compilation only, 	use in definition" EN2OF
2 18 	OF ." execution only' ENDOF
3 1.9 OF . 1 conditionals not paired" EN:07
4 20 	OF ." 	definition not 	finished'
5 '1 OF .* in protected dictionary' ENDOF
6 22 OF .' use only when 	loading* ENDOF
7
8 24 OF . 1 declare vocabulary' ENDOF
9 25 OF .• bad 	jump token" ENDOF

E:I:CASZ

4

FORTH --- a ! z-FORTH extnsior.

SCR
0

3
4

7
a
1

10
11
12
13
14
15

*27
■ 	NE',4 	MESSAGE 	C0NT:N',..!ZO

ELSE
4 	OF. ST7 	a 	S/SC2 	-

ENDIF
ENDIF

ELSE
.° 	MSG 	* 	"

ENDIF

DE 	! 	(RESTORE 	DP 	TO 	POSITION
(INSTALL 	NEW MESSAGE)
' 	BRANCH CFA 	' 	MESSAGE
' 	message OVER 	- 	2- OVER 	2+ 	!
R->SASE

.LINE

PRIOR 70 message)

SCR
0
1
2

*28
(CRU WORDS 	120CT82 LAO) 	0 CLOAD 	37CR
•ASE->R DECIMAL 74 R-)SASE CLOAD 	;CODE
BASS-)B 	HEX
CODE 	SBO 0333 	, A30C 	, LD00 0457

4. coos ss: , Azoc 	, , 045F 	,
5 CODE 73 CZ / T AZOC 04O 9 	, IFOO 101 	, OF,31 	, 04.5F

CODS LOC2 0330 	, A300 	, 0073 	, CO3 1 	, 0:41 	, 000F 	,

3 0291 	, 0009 	, 150t 	, OoLO 	, OA1 , 5000
4481 	, 045F 	,

10
11 CODE STCR 0333 	, A30C 	, CO53 	, 04C0 	, 0:;.1 	, 000F 	, CO21 	,

OAV1 	, 02b1 	, 3(4 00 	, 048l 	, cos:
1.7.1 000s ,)CO 	, 0 41 Z7

13 R-2.3,ASZ

	TexSoft-TIForth-00-si.xif.pdf
	Page 1
	Page 2

	TexSoft-TIForth-01-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	TexSoft-TIForth-02-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	TexSoft-TIForth-03-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	TexSoft-TIForth-04-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	TexSoft-TIForth-05-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

	TexSoft-TIForth-06-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

	TexSoft-TIForth-07-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	TexSoft-TIForth-08-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

	TexSoft-TIForth-09-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

	TexSoft-TIForth-10-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4

	TexSoft-TIForth-11-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	TexSoft-TIForth-AA-si.xif.pdf
	Page 1
	Page 2

	TexSoft-TIForth-AB-si.xif.pdf
	Page 1

	TexSoft-TIForth-AC-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

	TexSoft-TIForth-AD-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67

	TexSoft-TIForth-AE-si.xif.pdf
	Page 1
	Page 2

	TexSoft-TIForth-AF-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	TexSoft-TIForth-AG-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	TexSoft-TIForth-AH-si.xif.pdf
	Page 1
	Page 2
	Page 3

	TexSoft-TIForth-AI-si.xif.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

