
Introduction to
Assembly Language
for the
TI Home Computer
by Ralph Molesworth

Introduction to
Assembly Language
for the
TI Home Computer
By Ralph Molesworth

FIRST EDITION

Copyright © 1983 by Steve Davis Publishing

Steve Davis Publishing
P.O. Box 190831
Dallas, Texas 75219

All Rights Reserved

ISBN 0-911061-01-0
Library of Congress Catalog Card Number 83.90770

Also available from Steve Davis Publishing:

PROGRAMS FOR THE TI HOME COMPUTER, by Steve Davis.
(ISBN 0-911061-00-2), $14.95 (US) plus $1.50 postage.

If you would like to receive announcements of future titles, send your name and address to the address above.

TABLE OF CONTENTS

1. TAKING THE PLUNGE FROM BASIC TO ASSEMBLY 	 3

2. BINARY AND HEXADECIMAL ARITHMETIC 	 6

3. ADDRESSING 	 15

4. REGISTERS 	 19

5. CODING 	 24

6. ASSEMBLING AND RUNNING A PROGRAM 	 42

7. SCREEN AND CHARACTER DISPLAYS 	 48

8. PROCESSING KEYBOARD INPUT 	 61

9. FILE HANDLING 	 79

10. SORTING AND HANDLING ARRAYS 	 91

11. MIXING ASSEMBLY WITH BASIC 	 110

CHARACTER DEFINITION PROGRAM 	 128

BARGRAPH PROGRAM 	 133

PARTING WORDS 	 138

3

CHAPTER ONE
The purpose of this book, as the title implies, is to introduce you, the TI 99/4 and 99/4A Home Computer
user, to TMS9900 assembly language and get you started writing in assembly with a minimum of grief.
The reference guides provided with the TI Editor/Assembler and Mini-Memory packages are just that,
reference manuals. They assume you have a knowledge of programming in assembly. Naturally, this
poses a problem for the beginner. Now, this book can act as a supplement to give you the background
and skills needed to understand and utilize your Editor/Assembler manual. Upon completion of this
material, you will be able to code simple programs in 9900 assembly language and be better prepared to
use your Editor/Assembler, or the Line-by-Line assembler with the Mini-Memory, and the reference
manuals to develop more complex programs and routines.

It is best to read this book from start to finish because each lesson builds upon the previous one and
program examples illustrate functions covered to that point. To get the most from this book, you should
have the TI Editor/Assembler software, which includes the Editor/Assembler manual. Those who do not
own the peripherals necessary to run that software (memory expansion and disk drive) may use the
Mini-Memory module to enter many of the program examples. In this book, when the Line-by-Line
assembler is mentioned, this will refer to the assembler program that is provided with Mini-Memory. The
Line-by-Line assembler has certain restrictions which are described later in this book, but the concepts
of writing assembly programs is the same as with Editor/Assembler. Those without Editor/Assembler
should obtain a copy of the TI Editor/Assembler manual, which is available separately. At the end of
each section, this book provides page references to that manual where relevant information can be
found.

Before proceeding with this work, you should be familiar with using TI BASIC. Just as the BASIC
language varies slightly from one type of computer to another, so do assembly languages. But if you are
able to learn one form of the language, it is simple to apply what you have learned to another similar
language. By now, you should have experience writing at least simple programs in TI BASIC and TI
Extended BASIC. You will see that assembly is far more powerful than BASIC. But, it is a computer
language, and like all computer languages it has particular rules, disciplines and terms that must be
learned. Once you learn more than a couple of computer languages, the similarities between various
languages will be more apparent than the differences.

TAKING THE PLUNGE FROM BASIC TO ASSEMBLY

The program statements you probably have written so far in TI BASIC have no meaning to the computer
taken as they are. Each statement must be interpreted into the language the computer understands. This
is called "machine language." A language which is at machine level is said to be a "low level" language.
A language such as TI BASIC which closely resembles English phrases is called a "high level" language.
The interpretation process is carried out by a system of programs, subroutines, and data put into your
computer by the manufacturer. This system is known as the BASIC interpreter.

The interpreter analyzes each BASIC statement and converts the high level BASIC statements into a set
of machine language instructions which actually cause the computer to function. No matter what popular
programming language you write in, they all must be translated into the machine code the computer
understands. It is the need to perform this interpretation process as each statement is executed that
causes programs written in TI BASIC or TI Extended BASIC to run much slower than a program
comprised of machine code instructions.

4 	 Introduction to Assembly Language

The assembly process improves upon this vastly. A program written in assembly language is assembled
by the assembler much the same as the interpreter processes a BASIC language program. However with
assembly, the resulting set of machine codes can be saved on some device for reuse. Then, when the
program is run, there will not be any "middleman" as in BASIC. The machine code is directly executable
by the computer and, so, executes very fast. Many arcade type games and some application programs
written in TMS9900 assembly language actually require subroutines to waste time in order to slow them
down!

The statements which comprise a program written in a high level language such as TI BASIC are merely
the source of material from which a machine language program is generated. In assembly language, the
program that you code is called the source program. The program which is assembled from your source
code is called the object program. Since these are always saved on some device, they can also be
called the source file and the object file. After your assembly language program has been assembled, it
exists in two forms. The original source code remains unchanged while a new file containing the object
code is created. (The Line-by-Line assembler, as the name implies, creates machine code when you
enter the line. Thus, your source code is not saved as a separate file).

In addition to the redundant interpretation of a BASIC language program during execution, there are
other drawbacks as well. The BASIC language program needs a large and sophisticated "supporting
cast" of hardware and software just to make it all work. This requires that a portion of the computer's
resources be dedicated to that purpose and makes them unavailable to the program application. TI
BASIC is designed to be easily readable by humans. Common words, such as PRINT, FOR, NEXT and
DATA are used, and statements may read like an ordinary sentence. This way of representing
instructions and data to a human being is not necessarily the most efficient way to represent the same
information to a machine. A relatively short BASIC program actually generates many times more
machine instructions than the number of BASIC statements which comprise it. A single BASIC statement
such as

10 INPUT X

requires many machine instructions to accomplish the stated task. The degree of complexity involved in
the execution of a BASIC statement is not apparent to the BASIC programmer. Some programmers feel
that BASIC encourages people to generate programs which are not particularly efficient and which may
be downright sloppy when compared to a really good assembly language program which accomplishes
the same end result. Assembly language is not machine language. It is at a higher level than machine
language but is closer to machine language than BASIC. Because it is closer to machine language in its
approach and style, it is always possible to write a much more efficient program in assembly language
than in BASIC.

Object code takes up far less space both in memory and on a storage device than source code would. A
significant reduction in the number of bytes required to store and execute a program frees up more of the
computer's resources and power for data storage and manipulation. With the Editor/Assembler module, it
is possible to produce object code which is in compressed format. This even further reduces the object
file size and storage requirements. As one might expect, any program that is written shorter and simpler
will run faster and use less memory.

There are trade-offs, of course. In a high level language such as TI BASIC you can write programs in
simple, short, English statements which can tackle some rather complex tasks in a few lines. And,
modifying those statements is simple because you do not have to re-assemble your program before
running. You may simply type RUN to see the results of the change. With assembly language, while you
may not have to code hundreds of instructions, you will have to code far more statements than in

for the TI Home Computer 	 5

BASIC. You will need to be much more specific and far reaching with your code. With TI BASIC, you
were insulated from the actual workings of the computer. You did not need to know anything about how
the computer actually did the things you told it. You only had to know how to write the commands in
BASIC.

With assembly language programming, you have the computer at your disposal. You are in command.
Consequently, you are required to tell the computer far more about each task to be performed. You will
need to know a thing or two about the internal details of the computer. The amount of detail in an
assembly program will always be greater than an equivalent BASIC program. Most of the subroutines
and supporting programs you were accustomed to in TI BASIC and TI Extended BASIC are not there.
You must devise and design your own routines as the need arises. This may seem like an inconvenience
or nuisance, but actually it is indicative of the degree of power which is handed over to you in assembly
language. You have the opportunity to use your creativity in designing any routines you might want. You
can customize many of the functions which are provided for you in BASIC. Of course it may be a while
before you decide to write an assembly language program which taxes the very limits of your 99/4A, but
the potential is there.

Don't be afraid of assembly. It can seem overwhelming at first, but you will learn to appreciate what it
can do for you. Because it places more of the power of the computer at your hand, more will be required
of your skills as a programmer, but more will be delivered. The payoff comes in speed and performance
as well as an increased knowledge and appreciation on your part of how your computer actually
accomplishes the tasks you give it.

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on the assembly process.

Section 1.1, page 15
Section 15.1, page 235

Look up these terms in the glossary:

Assembler
Assembling
Assembly Language
Compressed Object Code
Machine Language
Object Code
Syntax
Syntax Definition
TMS9900 Microprocessor

6 	 Introduction to Assembly Language

CHAPTER TWO
BINARY AND HEXADECIMAL NOTATION
Before you can begin to program your computer in a low level language such as assembly, it
is important to understand how your computer represents and processes information. By
knowing how your computer "thinks," you can orient your thinking, and therefore your
approach to programming, toward a machine level. Actual machine language is in the form of
binary code. Binary refers to the numbering system on which computers are based—the
binary, or base two, system. Some understanding of the binary number system is necessary to
program in assembly.

Your computer could be thought of as a vast array of miniature switches, each of which may
either be on or off. Each of these switches is referred to as a bit. The on/off status of a bit can
be used to represent many things: yes or no, high or low, hot or cold, or the values one and
zero. If a bit is on, it represents a one, and if the bit is off, it represents a zero. It is, of course,
because only two numbers are used (zero and one) that this system is called binary. If you
were to consider a series of bits taken as a unit as a value expressed in binary form, large
values could be interpreted from the on/off states of a series of bits.

The numbering system you are used to is the decimal system, base ten. When representing a
value with a decimal number, the numeric symbols actually represent powers of ten. Thus, the
decimal number 2139 can be broken down as follows:

3
10 = 1000 2 x 1000 = 2000

2
10 = 100 1 x 100 = 100

1
10 = 10 3 x 10 = 30

0
10 = 1 9 x 1 3C 9

2139

The same rules apply to numbering systems with bases other than ten. If you are to deal with
significant numbers, you will obviously need more than one bit to do it since a single bit can
only represent 1 or 0. A byte is a series of eight bits taken as one unit. Sixteen bits is equal to
two bytes, or one word. Here is a byte, represented by eight numbers, each of which can only
be a one or a zero:

0 0 0 01 1 0 1

for the TI Home Computer 	 7

In a binary system, each position represents an exponential power of 2. Just as with any other
numbering system, leading zeroes have no effect on the value of the expression, so just
examine four bits on the right. These are sometimes called the low order bits, or the least
significant bits.

BIT 	VALUE 	1 	1 	0 	1

PLACE VALUE 	EIGHT FOUR TWO 	ONE

EXPONENT
	

3 	2 	1 	0
BASE
	

2 	2 	2 	2

The on/off states of these bits represent the value thirteen if taken as a binary number. Here is
how you can represent this value as a decimal number:

1 x 8 = 8

1 x 4 = 4

0 x 2 = 0

1 x 1 = 1

13

What value does the following byte contain?

0 0 0 0 0 1 1 0

The answer is six. Do you know why? How about this byte?

0 0 0 0 1 1 1 1

If you said fifteen, then you are catching on! How about this byte?

0 0 0 0 0 0 0 1

Well, one is still one, even in binary.

Introduction to Assembly Language

While binary notation applies readily to the on/off states of bits, writing all values in binary
format can be quite cumbersome. Needing a shorthand for binary notation, programmers use
base 16, or hexadecimal notation. Once again, each digit in hexadecimal notation represents a
power of the base, which is sixteen. The exponent values with relation to the position of each
hexadecimal numeral would be:

PLACE VALUE 4096 256 16 1

EXPONENT 3 2 1 0
BASE 16 16 16 16

Throughout your assembly materials from TI, hexadecimal numbers are indicated by the
greater— than symbol (">") immediately preceeding the number. Consider the hex number
>10. Using the exponent model above, the numeral on the right half of the number represents
0 x 16 or zero. The next numeral would represent 1 x 16 or sixteen. Combining the two
answers, 16 + 0 = 16. Thus, >10 = sixteen. In the decimal system, ten symbols (0-9) are
needed to express values. For the hexadecimal system, sixteen symbols are needed. Digits
above 9 are represented by the first six letters of the alphabet (A — F). Thus, "A" represents
ten, "B" represents eleven, etc. on up to "F" for fifteen.

The value fifteen in binary would take up four digits: 1111. In hex, the value can be represented
in just one digit: F. Thus, a byte of data can be represented in hex with just two digits instead
of eight binary digits. This is obviously a more efficient way to express values. Here are some
examples:

DECIMAL BINARY HEX

1 00000001 >01

2 00000010 >02

3 00000011 >03

4 00000100 >04

5 00000101 >05

6 00000110 >06

7 00000111 >07

8 00001000 >08

9 00001001 >09

for the TI Home Computer 9

10 00001010 >0A

11 00001011 >0B

12 00001100 >0C

13 00001101 >0D

14 00001110 >0E

15 00001111 >0F

16 00010000 >10

32 00100000 >20

33 00100001 >21

The largest value that can be represented with one byte (eight bits) is binary 11111111, hex
>FF, or decimal 255. If you express a word (sixteen bits) as a binary expression, then the
largest value of a word is binary 1111111111111111, hex >FFFF, or decimal 65,535. Even larger
values can be accommodated by using two or more successive words. Whether a value is
negative or positive can be of importance for most math and so some way of indicating a
number's sign is necessary. The sign of a 16 bit binary expression is indicated by the left bit. If
this bit is off (zero), then the value represented by the remaining bits is positive. If that bit is
on (one), then the value is negative. The binary number represented by the sixteen bits
0111111111111111 would be +32767. For numbers larger than 32,767 the left bit, or sign bit,
would have to be used. To avoid conflict, numbers larger than 32,767 are represented as
negative two's complement numbers. Two's complement is a handy way for the computer to
deal with binary arithmetic.

Suppose you wanted to compute 16 minus 10. The computer cannot actually subtract, so
instead it has to perform two's complement addition. The value to be subtracted is converted
to two's complement format and added to the first value. This gives the same answer as
subtraction would. Since this is logically the same as negating the second value and adding,
the two's complement of a value is said to be negative.

To tackle the problem above, examine the bit values before, after and during the two's
complement arithmetic. Since both numbers are small enough, you can use one byte (eight
bits) to represent each amount.

10 	 Introduction to Assembly Language

BINARY 	DECIMAL 	HEX

VALUE #1 00010000 16 >1 0

VALUE #2 0 0 0 0 1 0 1 0 1 0 >0A

First, flip all the on bits to off, all the off bits to on for value #2.

0 0 0 0 1 0 1 0

becomes 	11110101

Notice that the left bit is now on, giving this value a negative sign. Next, add one to the result.

11110101

+ 1

11110110

Value #2 is now in two's complement format. Now, add value #1 to value #2.

0 0 0 1 0 0 0 0

+11110110

100000110

Disregard the one bit on the left which has been carried over. The remaining bits, 00000110,
equal six. Thus 16 — 10 = 6. The computer uses two's complement for negative values and
for any value greater than 32,767. This is of importance to you when you wish to write
addresses larger than 32,767 in decimal format in programs that access specific addresses. A
very easy rule to follow is this: for any address larger than 32,767, subtract 65,536 from the
address. For example, to place a value of 79 in address 33008, using the formula 33008 —
65536 = —32528, the TI Extended BASIC language code would look like this:

10 CALL LOAD(— 32528,79)

for the TI Home Computer 	 11

This most likely will be your major use of two's complement notation, using decimal notation
to express addresses larger than 32,767. Two's complement notation does not apply to hex
notation. Hex notation handles values greater than 32,767 without any problem.

Go over these examples and practice writing numbers in binary and hex notation. Write your
age in each notation. Try any other familiar values. Remember the process is the same for
each numbering system. The only difference is the base power each numeral represents.

If all else fails, there are special calculators that do hexadecimal as well as decimal arithmetic
and that convert values from one base to another. One is made by Texas Instruments, and it is
simply called "The LCD Programmer."

Just like anything else, hex notation comes easier as you do more and more of it. TMS9900
assembly language will allow you to express values in decimal format if you wish. However,
because the internal representation of the computer is binary, hex notation most graphically
reflects bit values.

Here are four hexadecimal arithmetic problems. See if you can figure them out.

1) 	>6800 	2) 	>7402 	3) >D066 	4) >0FAB

	

+ >029A 	— >0EF0 	+ >110C 	— >0A95

Remember, the greater—than symbol is used here to denote that all the numbers are in
hexadecimal notation. Since this is a base 16 numbering system, there are few differences
between this and decimal arithmetic. The single most confusing thing to beginners of hex are
the letters A through F which have taken the place of decimal numbers 10 through 15. Here is
an example of simple hex and decimal addition.

HEXADEC IMAL DEC IMAL

>9 + >1 = >A 9 + 1 = 10

>A + >1 = >B 10 + 1 = 11

>B + >1 = >C 11 + 1 = 12

>C + >1 = >D 12 + 1 = 13

12 	 Introduction to Assembly Language

>D + >1 = >E 13 + 1 = 14

>E + >1 = >F 14 + 1 = 15

>F + >1 = >10 15 + 1 = 16

Note that in the decimal format nine is the number to which you can count before a one must
be carried to the left and a zero inserted in the low order digit. In hex, this value is fifteen (F),
and a one is carried over to represent sixteen, not ten. When subtracting in hex, sixteen is the
value which is borrowed from the left, not ten. First, look at Problem #1. Notice that the
numbers are added in columns from right to left, just as in decimal addition.

>6800

+ >029A

= >6A9A
I II 0 + A = A

I
I I 0 + 9 = 9

I 8 + 2 = A

6 + 0 = 6

>6A9A

Now, jump to Problem #3. In the right column, six plus twelve equals eighteen, so a one is
carried over to the next column to the left. The value of the one carried is actually sixteen,
leaving two remaining (eighteen minus sixteen equals two).

>D066

+ >110C

>E172
I II 	 6 	+ C 	= 	2

I
I I 	6 + carry value + 0 = 	7

	 0 + 1 = 1

D + 1 = E

>E172

eleven — five = six

F — 9 	= 	6

fifteen — nine = six

F — A = 5

for the TI Home Computer 	 13

In Problem #4, subtraction works in a similar fashion.

>OFFB

— >0A95

= >0566
I 	 B — 5 	= 	6

fifteen — ten = five

>0566

Moving back to Problem #2, examine how the subtraction works. In the second column from
the right (zero minus fifteen), a one must be borrowed from the next column to the left. This
borrowed value is sixteen, which makes the second column sixteen minus fifteen, which of
course is one. After the value is borrowed, the third column from the left becomes three minus
fourteen (>3 — >E). Again, a one must be borrowed from the column to the left. This adds
sixteen to the value of 3, making it nineteen. Nineteen minus fourteen (>13 — >14) equals
five. In the left column, because of the borrowed value, the operation has become six minus
zero, which of course is six.

>7402

— >0EF0

= >6512
I II 2 	— 0 = 2

I
I 0 	— F = 1

4 — borrowed value
+ carry value — E = 5

7 — borrowed value — 0 = 6

>6512

14 	 Introduction to Assembly Language

With a little practice, you will find that hexadecimal arithmetic is just as easy as decimal.
Once you become accustomed to using hex, it will become second nature. It will come in very
handy, because this way of representing bytes and words of data tells you a lot about the
status of various bits in a short space. Take time now to write down a list of numbers in hex
and add and subtract them.

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on binary and hex-
adecimal notation:

Appendices
Section 24.1 page 393 through Section 24.1.4 page 397

Look up these terms in the glossary:

ASCII
Binary
Bit
Byte
Hexadecimal
Hexadecimal Integer Constant
Nybble
Two's Complement

for the TI Home Computer 	 15

CHAPTER THREE
ADDRESSING
Recall for a moment the conceptual model of the computer as a vast array of switches. This
array is analogous to a city, street map of buildings, blocks, streets, intersections, and entire
communities. To manipulate the bits and bytes of data in the computer, you must "map" the
computer's resources by designating certain "communities" and assigning addresses to these
areas and to individual bytes within these areas.

Later, you will see various ways to specify addresses in assembly programs. A majority of the
program steps you will need to code will involve the movement of data from one area to
another or the manipulation of a particular bit, byte, or word. The computer expects you to
specify the exact location of the area you wish to access either directly or indirectly. All the
possible areas of the computer are numbered to uniquely indentify each one. The number by
which the computer locates each byte is its address.

In assembly language programming, a method called base plus displacement addressing is
used to calculate and notate internal addresses. Given a known base address, you need only
figure the amount of offset, or displacement, needed to arrive at the desired address.

When counting bytes, start with zero as the address of the first byte. Zero is the first positive
number to the computer, so always begin counting at zero, not one. Consider a particular area
of memory, VDP RAM (Video Display Processor Random Access Memory). In VDP RAM, the
first byte (byte zero) represents the first available screen position. In TI BASIC, this would be
row 1, column 1. One byte represents one character. For example, if the zero byte of VDP RAM
contained the value >41 (decimal 65); the letter "A" would be displayed at row 1, column 1 of
the screen. Hex >41 or decimal 65 is the ASCII code for the letter "A." It is by placing the
correct values into this area of VDP RAM that symbols and graphics are made to appear on
the screen. Most of the functions you will want the computer to do will involve placing certain
values into specific areas of the computer.

The area in VDP RAM referred to is the Screen Image Table. There are 768 bytes here which
represent all of the available screen positions (24 rows x 32 columns = 768). The
corresponding addresses within VDP RAM are 0 through 767 decimal, or >0000 through
>02FF hex. In order to make assembly language coding more readable and understandable,
addresses do not have to be coded by their numeric values. Instead, you can associate some
meaningful name, or label, with the address. Whenever you refer to this label, the assembler
will translate it to mean a certain address. This can be done with the EQUate statement.

In TMS9900 assembly language, labels may be up to six characters in length. Establish a label
for the first byte of the screen image table. Call the address in VDP RAM where the screen
image table begins "SCRTAB." This is an assembly language instruction to do that:

SCRTAB EQU >0000.

16 	 Introduction to Assembly Language

Now you may refer to the first byte as simply SCRTAB, or SCRTAB + 0, where +0 represents a
displacement value. Adding +0 to SCRTAB would not change the value of the symbolic
address SCRTAB. If you wrote a 7 digit number across the top of the screen, it would occupy
VDP RAM addresses SCRTAB + 0, SCRTAB+ 1, SCRTAB + 2, SCRTAB+ 3, SCRTAB + 4,
SCRTAB + 5, SCRTAB+ 6. Notice that in displacement values the first seven bytes of VDP
RAM are 0 through 6. To address the last possible screen position (row 24, column 32) you
could use the notation SCRTAB+ 767. Often an address needed must be calculated from some
base address and some displacement value. If the number above was 5551234 then the byte
values in hex would be:

Symbolic Byte 	 VDP RAM Character
Label Base Displacement Value 	Relative Represented
Address Value Hexadecimal Address by Byte Value

SCRTAB + 0 >35 >0000 u 5 u

SCRTAB + 1 >35 >0001 ii5u

SCRTAB + 2 >35 >0002 11 .5 ”

SCRTAB + 3 >31 >0003 "1"

SCRTAB + 4 >32 >0004 "2"

SCRTAB + 5 >33 >0005 11 3 “

SCRTAB + 6 >34 >0006 "4"

If you describe to the computer an algorithm for calculating addresses using a base address,
you can have a program that can "find its way around" without you having to define in
advance any of the internal areas needed. Simply put: NEW ADDRESS = BASE ADDRESS +
DISPLACEMENT.

Some diagrams and examples in the TMS9900 assembly reference materials break down
individual bytes in order to show the status or importance of each of the eight bits. You will
notice that the bits are numbered 0,1,2,3,4,5,6,7. If a full word (two successive bytes, 16 bits) is
broken down then the bits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. This is another application of the
practice of always counting from zero. Remember, when you are addressing areas of the
computer, displacement values count bytes, not bits.

for the TI Home Computer 	 17

The notation SCRTAB+ 2 refers to a byte with an address 2 bytes away from the byte SCRTAB.
Remember that in assembly language programming, zero is a number that always represents
the first of a series when used in the context of addressing or position. If you have done any TI
BASIC coding with relative files, you will recall that the first record on a relative file is always
the zero record. With the DIM statement for table definition, you may have used the Option
Base 0 parameter. This establishes zero as the first susbscript of an array. These are counting
schemes similar to base plus displacement.

EDITORIASSEMBLER MANUAL REFERENCES

The following references will provide you with more information on addressing.

Appendices
Section 24.2 page 398 through Section 24.2.2 page 402

Look up these terms in the glossary:

Addresses
Addressing Mode
Console
CPU
Memory
RAM
ROM
Symbolic Memory Addressing
VDP RAM

Memory maps can be found in the Editor/Assembler manual and the Mini-Memory manual.
Here is another view of the architecture of the Ti-99/4A that may help you in visualizing the
various memory locations.

MEMORY MAPPED PORTS

>8000 >8300 >8400 >8800 >8C00 >9000 >9400 >9800 >9C00
768 256 Sound VDP VDP Speech Speech GROM GROM
Byte Byte Read Write Read Write Read Write
Block CPU PAD I I I I I I

I I I I I I I

>0000 >2000 >4000 >6000 >8000 	>A000
Console Memory Device Command CPU PAD 	Memory
ROM Expansion Service Module Memory 	Expansion
Operating "Low" RAM Routines ROM/RAM Mapping 	"High" RAM
System ROM Mini— (24K bytes)
GPL Memory
Interpreter
BASIC
Interpreter

18 	 Introduction to Assembly Language

TMS9900 CPU MEMORY

TMS9919 TMS9918A Video TMS5200 GROM
Sound Display Processor Speech
Chip Synthesizer >0000

VDP RAM 	(16K) 	3 Console
 	Vocabulary GROMs
>0000 Screen ROM containing

Image
>0300 Sprite

(32K bytes) Monitor,
Operating

Attribute System and
>0380 Color BASIC

Table >4800
>0400 Sprite 5 Command

Descriptor Module
>0780 Sprite GROMs

Motion
>0800 Pattern

Generator
>1000 Free Space

PABs/Buffers
>3500 Disk DSRs

for the TI Home Computer 	 19

CHAPTER FOUR
REGISTERS
A register is a specially designated word (16 bits, 2 bytes) of storage which has special powers
and responsibilities. There are 16 general workspace registers available to the TMS9900
assembly programmer. These general workspace registers are numbered 0 through 15.
Registers are the CPU's workspace or scratchpad. They are used for arithmetic, addressing,
and bit manipulation. They do special tasks that other available areas of the computer cannot.
The general workspace registers always occupy a contiguous area of storage with a total
length of >20 (decimal 32) bytes (each register = 16 bits, or 2 bytes; 16 x 2 = 32). Other 32
byte blocks of storage may be designated by your program to be used as general workspace
registers as well. Only one set of sixteen may be used at any one time.

If you are using the Editor/Assembler module, choose option "R" at assembly time. This will
automatically label the sixteen general workspace registers RO through R15. If you are using
the Line-by-Line assembler, these symbols are pre-defined. You may also refer to these
registers by their numbers (0,1,2,3, etc.). Most people find it far less confusing to stick with the
symbols R0,R1,R2,R3,etc.

While registers are special in their uses and functions, their makeup is identical to other
storage areas. Each register is a series of 16 bits with on/off states that represent some value
in binary format. The hexadecimal notation for the contents of a register is given as four digits
(16 bits, 1 hex digit per 4 bits), i.e. >0020.

In addition to the general workspace registers there are three hardware registers used by the
computer to manage the computer and the program while it is running. These registers keep
track of such things as the address of a subroutine, data or other resources needed by your
program, the location of the next instruction to be executed, the resulting status of the last
instruction executed, and the beginning address of the general workspace registers. The
values contained in these hardware registers will be important to you when designing your
assembly language program.

The program counter register (PC) keeps track of a program's instruction set. The values in
this register are used in conjunction with other address data to locate or "point to" the next
instruction in your program. When your program is run by the computer, all the information
contained in it is stored in memory. The address in storage which contains the binary code
representing each program instruction is managed by this register. As program instructions
are executed, this register is incremented to always point to the address of the next logical
instruction.

20 	 Introduction to Assembly Language

PROGRAM COUNTER REGISTER (PC)

HARDWARE
	

PROGRAM INSTRUCTION SET
REGISTERS
	

RESIDING IN MEMORY

TMS9900 	 MEMORY

INSTRUCTION 1
I
I P.C. 	 \
I \ \ INSTRUCTION 2

\ \
\ \

I \ > INSTRUCTION 3
I W. P.
I

INSTRUCTION 4 - - -PROGRAM

I
I ST. INSTRUCTION 5
I

INSTRUCTION 6

1
1

PROGRAM

WORKSPACE "A"

R 0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

WORKSPACE "B"

RO R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

for the TI Home Computer 	 21

The workspace pointer register (WP) contains the address pointing to the beginning address of
the 16 general workspace registers. Multiple sets of workspace registers can be defined, and
each set can be accessed by program manipulation of the address contained in this register.
This can be especially useful when subprograms are called by your program which need their
own registers.

WORKSPACE POINTER REGISTER (WP)

HARDWARE
	

PROGRAM INSTRUCTION SET
REGISTERS
	

AND WORKSPACE REGISTERS

TMS9900
	

MEMORY

P. C.

W. P. I 	 \ 	
\ 	>

ST.

22 	 Introduction to Assembly Language

The status register records the status of the last instruction executed. The individual bits are
set (1), or cleared (0) to indicate certain conditions as each instruction executes. Your program
code will refer to this register either directly or indirectly quite often. Suppose you wanted to
compare value X and value Y. Immediately after the computer executed the compare
instruction, the status register would indicate by the status of its bits some relation:

STATUS REGISTER (ST)

BIT
	

MEANING IF SET (1)
POSITION

0
	

LOGICAL GREATER THAN

1
	

ARITHMETIC GREATER THAN

2
	

EQUAL

3
	

CARRY

4
	

OVERFLOW

5
	

ODD PARITY

6
	

EXTENDED OPERATION

7 — 11 NOT USED

12 — 15 INTERRUPT MASK

The status register can let you know if two values are equal or give evidence of many other
conditions. Arithmetic operations treat all bytes as representing an arithmetic value. Logical
operations treat bytes as representing a series of bits. Various instructions available to you in
assembly language will allow you to instruct the computer as to how you wish the contents of
a byte to be evaluated. Use of the status register will be covered in other chapters dealing with
actual coding.

Some assembly language instructions only apply to registers or are required to involve at least
one register. The transfer of data to and from special subprograms is accomplished through
certain registers as is the movement of data to and from special areas of the computer.
Special addressing calculations and indexing are possible with registers. The three hardware
registers and the sixteen general workspace registers do the majority of the "number
crunching" and assist in almost every other phase of data handling and management.

Various manufacturers of computers and assembly languages offer differing numbers of
workspace registers. Some only have three, some eight, sixteen, or thirty-two. You may never
write a program which needs to use all sixteen registers of the TMS9900, but the potential is
there. Registers are a component of the microprocessor and are designed into the processor's

for the TI Home Computer 	 23

Instruction set. It is more efficient and much faster for the microprocessor to operate on its
registers than to use a more distant address in memory.

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on registers:

Section 3.1 page 39 through Section 3.1.3 page 40

Look up these terms in the glossary:

Arithmetic Greater Than Bit
Carry Bit
Equal Bit
Logical Greater Than Bit
Odd Parity Bit
Overflow Bit
Program Counter Register
Register
Status Register
Workspace
Workspace Pointer Register

IMPORTANT: Before proceeding to the next section of this book, go to the
EDITOR/ASSEMBLER MANUAL REFERENCES at the end of Chapter Five. Read over the
recommended pages and glossary terms. Then read the chapter, then read the manual
references again as needed.

24 	 Introduction to Assembly Language

CHAPTER FIVE
CODING
To put the theory covered so far to use, you will learn to code an assembly program. But first, take time
now to read the Editor/Assembler manual references at the end of this chapter. When you have done
that, look at this simple program written in TI BASIC. Examine each TI BASIC statement while bearing in
mind what has been discussed in the preceding sections.

10 CALL CLEAR
20 LET AMTX=10
30 LET AMTY=33
40 LET AMTY=AMTX+AMTY
50 PRINT AMTY
60 END

10 CALL CLEAR. This will clear the screen of any characters currently displayed. The TI BASIC program
is "calling" a resident TI BASIC subprogram with the name "CLEAR." This routine will do all the things
necessary to clear the screen then return control to the next instruction in the TI BASIC program. The
next instruction is in line 20.

20 LET AMTX=10. Reserve a storage space in memory to be referred to by the label "AMTX". Then
initialize "AMTX" to an arithmetic value of 10.

30 LET AMTY=33. Set aside another storage space. Give this space the name "AMTY". Initialize
"AMTY" to an arithmetic value of 33.

40 LET AMTY=AMTX+AMTY. Take the sum found by adding the value at address "AMTX" to the value
at address "AMTY" and place it at the address "AMTY".

50 PRINT AMTY. Display the value stored at address "AMTY" on the screen in ASCII symbols. The
actual screen location of this display has been predetermined by TI BASIC as the lower left corner of the
screen.

60 END. Return control of the computer to the operating system.

As you can see, there are many things that the computer must do to execute each TI BASIC statement.
Few of the details about these tasks have been spelled out. The BASIC interpreter and the rest of the
"supporting cast" have taken care of all that. In an assembly language program, you will need to be
much more exact in telling the computer about its tasks and how it is to perform them.

Try coding an assembly program to do the same thing as the BASIC program above. Each assembly
statement has three major parts: a label, an op-code or instruction and one or two operands. Recall the
previous assembly statement example:

SCRTAB EQU >0000

"SCRTAB" is the label. The label starts in the first position of the line and can be up to six characters in
length (2 characters with the Line-by-Line assembler), and the first character must be alphabetic. The
label is an option and is not always needed. The op-code is separated from the label by at least one

for the TI Home Computer 	 25

space. The op-code is the actual program instruction. The operand field is separated from the op-code
by at least one space. There may be one or two operands. If there are two, they must be separated by a
comma. The operand field identifies the register or other address that the instruction (op-code) is to
operate on. When comments are needed, they may begin at least one space to the right of the last
operand. By beginning a new line with an asterisk (*), an entire line can de devoted to comments.

Here is the TMS9900 assembly language code written with the Editor/Assembler package. The "ruler"
numbered 1 through 50 represents columns and is included here to illustrate the relative position of each
field. (The Mini-Memory example is listed toward the end of this chapter. Instructions for loading and
running the program appear in the next chapter.) Look over the following sample program.

1 	 10 	20 	 30 	40 	50

Label Op-Code Operand (s)

01 DEF 	START
02 REF 	VSBW,VMBW
03 STATUS EQU 	>837C
04 SAVRTN DATA >0000
05 AMTX DATA >000A
06 AMTY DATA >0021
07 DECTEN DATA >000A
08 HEX30 DATA >0030
09 PNTANS BSS 	2
10 WSPREG BSS 	>20
11 START LWPI WSPREG
12 MOV 	R11,@SAVRTN
13 BL 	@CLEAR
14 ADDUP A 	@AMTX,@AMTY
15 MOV 	@AMTY,R5
16 CLR 	R4
17 DIV 	@DECTEN,R4
18 MASKUP A 	@HEX30,R5
19 MOV 	R5,@PNTANS
20 MOV 	R4,R5
21 CLR 	R4
22 DIV 	@DECTEN,R4
23 A 	@HEX30,R5
24 SLA 	R5,8
25 MOVB R5,@PNTANS
26 PUTUP LI 	R0,738
27 LI 	R1,PNTANS
28 LI 	R2,2
29 BLWP @VMBW
30 EOJ MOV 	@SAVRTN,R11
31 CLR 	R0
32 MOVB R0,@STATUS
33 RT
34 CLEAR CLR 	R0

26 Introduction to Assembly Language

35 CLR R1
36 LOOP BLWP @VSBW
37 CI R0,767
38 JEQ CLEARX
39 INC R0
40 JMP LOOP
41 CLEARX B *R11
42 END

Do not be alarmed by the sheer number of statements. Assembly languages are always more "wordy"
than high level laguages such as BASIC. Each line will be dissected and explained along with many
useful commands along the way. Many of the statements in an assembly language program are required
entries and show up in program after program. Once you have written several assembly language
programs, they become redundant. As you learn to design your own subroutines, they can be used in
any other program without having to "go back to the drawing boards" and re-invent them. For all their
apparent complexity, all assembly operations are but constant variations on the principles of bits and
bytes, addressing, registers, binary arithmetic, and so forth.

The program was written in a simple manner to demonstrate specific program functions with which you
are familiar. The program could have been written shorter and "slicker," but then who needs a program
just to find the answer to 10+33?! Here is the assembly program:

Line 01 DEF START

DEFine is an assembler directive. A directive is an instruction to the assembler, which is needed for
proper assembly of the program. It has no impact on the logical execution of the program. The DEF
directive has the effect of placing the name given ("START") into an area in the computer known as the
REF/DEF table. Here are kept the names of all programs which are currently in memory. The DEF
directive insures that when your program is loaded, its name will be added to the REF/DEF table. When
you RUN your program, this is where the RUN software looks for your program name.

"START" is the symbolic address of the point at which program execution commences. The DEF
directive must precede the label it defines. The most common practice is to simply make it the first
statement in your program. The label used can be any valid label; "START" is just the one used in this
program example.

Line 02 REF VSBW,VMBW

The REFerence directive tells the assembler that you intend to use some special resident programs. The
REF directive also accesses the REF/DEF table. This directive insures that when your program is loaded
these routines will be available to it. VSBW will be equated with the address of the VDP RAM Single
Byte Write routine. VMBW will be equated with the address of the VDP RAM Multiple Byte Write routine.
These are routines used to display graphics and characters on the the screen. They are just two
members of the TMS9900 assembly language "supporting cast."

for the TI Home Computer 	 27

Line 03 STATUS EQU >837C

This is an EQUate statement. EQUates are also . directives. The address is that of the status byte. You
will need to refer to the status byte in your program, referring to the actual address by the symbolic label
"STATUS." The EQUate directive associates the given label with the actual address of >837C. The
actual address along with the symbol "STATUS" is loaded during the assembly process into an area
called the symbol table. The assembler uses the symbol table to find the actual address meant whenever
you use any symbolic label, such as "STATUS." You must define these relationships between machine
addresses and their symbolic names with the EQUate directive.

04 SAVRTN DATA >0000
05 AMTX DATA >000A
06 AMTY DATA >0021
07 DECTEN DATA >000A

These lines use the DATA directive. This directive is used to initialize a word (16 bits, 2 bytes) of
memory to some value. If a label is included, that label is associated with the beginning address of the
word.

The label represents a symbolic address. The operand contains the value that the word is to be set to.
The value may be written in decimal or hexadecimal notation. By using symbolic addresses whenever
possible, you do not need to keep track of actual address values. The labels you devise should always
be of mnemonic (aiding the memory) value. Your program will be more readable and understandable if
the labels picked say something about what they define.

AMTX DATA >000A roughly equals LET AMTX=10
AMTY DATA >0021 roughly equals LET AMTY=33

A similar directive is the BYTE directive. The statement MYBYTE BYTE >04, intitializes one byte (8 bits)
of memory. The effect of DATA and BYTE are similar; the only difference is the number of bits which are
initialized (8 vs. 16). The Line-by-Line assembler does not recognize the BYTE directive.

09 PNTANS BSS 2
10 WSPREG BSS >20

Lines 9 and 10 use the Block Starting with Symbol (BSS) directive. This reserves blocks of memory
without any initialization. These areas will be used as workspace by the program and will be part of the
program. In line 9, two bytes of memory have been reserved. They will be referred to as "PNTANS." Line
10 sets aside 32 (>20) bytes called "WSPREG."

The first quarter of this program has been covered, and no instruction has been performed. All that has
been done so far might be thought of as housekeeping, things that must be done in preparation. When
coding TI BASIC statements, you could define variables in the same statement in which they were first
used. Not so in an assembly language. You must define all labels and workspace areas before you can
refer to them in any program statement. Deciding your program's housekeeping needs means planning
and forethought.

Line 11 START MOV R11,@SAVRTN

Here is the label "START" that was defined in line 1. The first order of business is to save the entry
address of the program. Register 11 is the computer's general purpose linkage (addressing) register.
When your assembly program begins execution, the address to which your program should return when

28 	 Introduction to Assembly Language

done is in R11. This address is vital to successful program completion. You want to save that address
since R11 will be used elsewhere in the program. The word of memory called SAVRTN was set aside
just for this purpose. MOVe the value in R11 to the storage location. The address is a symbolic address,
which is represented in a MOVe instruction by the "at" symbol (@). The MOV operation copies a word
(16 bits, 2 bytes) of a register or other address in memory to another register or address. The sending
storage location remains unchanged, while the receiving storage location becomes its clone. Suppose
R11 contains the address value >3238. Before the MOV instruction:

R11 	@SAVRTN

>3238 	>0000

After the MOV:

R11 	@SAVRTN

>3238 	>3238

Note that the entire word (16 bits, 2 bytes) is affected. Suppose that you only needed to move one byte
(8 bits) at a time. Then the MOVB (Move Byte) instruction can be used. Throughout TMS9900 assembly
language you will find parallel instructions which address either one word (16 bits) at a time or one byte
(8 bits) at a time. If you use a byte instruction with a register or other full word address, the instruction
always uses the left byte (high order byte). For example:

MOVB R3,R4

Suppose that the contents of the registers involved before the instruction was executed were:

R3 	R4

>104C 	>0011

Then after the MOVB:

R3 	R4

>104C 	>1011

Notice that the right byte (low order byte or least significant byte) is unaffected in either register by the
MOVB instruction.

Line 12 LWPI WSPREG

Now you Load Workspace Pointer Immediate (LWPI). You need to establish an alternate area of
workspace registers for use by special routines that are needed. They can have their own set of general
workspace registers. The effect of this statement is to point to the address of the block of memory that
was defined in line 10. This is a statement you will typically need in any stand-alone TMS9900 assembly
language program.

for the TI Home Computer 	 29

Line 13 BL @CLEAR

Instead of calling a resident routine to clear the screen, this program has its own routine coded. The
Branch and Link (BL) instruction is roughly equivalent to the GOSUB with RETURN you have seen in TI
BASIC. Control is passed from this point in the program to the address CLEAR, and once again the
return address (address of the next sequential instruction) is loaded into R11. When coding TI BASIC
statements, you had to GOTO line numbers, and sometimes resequencing could be disastrous if you had
an unresolved line number. One of the niceties of using labels is that line numbers have no affect on
program logic. CLEAR refers to the beginning address of the CLEAR subroutine no matter what line
number it is on. R11 now contains the address of line 14. That is where you want to return to when you
have finished the CLEAR routine. Program execution now transfers to:

	

Line 34 	CLEAR 	CLR 	R0

	

35 	 CLR 	R1

"CLEAR" is the label to which you have instructed the computer to branch. The first step of the CLEAR
routine is to set all the bits in registers RO and R1 to zeroes. The CLR instruction clears (sets the bits to
all zeroes) a word of memory or a register at a time. RO and R1 now contain:

RO 	R1

>0000 	>0000

	

Line 36 	LOOP 	BLWP @VSBW

Now you can begin to "fiddle with" the video display processor chip. The label LOOP will be used to
build a simple loop much like a FOR-NEXT loop in TI BASIC. A loop allows you to execute one
instruction many times.

The instruction BLWP is like the branch and link except that this time you want the workspace pointer
register (WP) to point to the alternate workspace registers established at line 11. This is required of the
VSBW and other resident routines. BLWP stands for Branch and Load Workspace Pointer. The address
to which program execution branches is the address of the VDP RAM Single Byte Write routine. You can
pass values to this program via RO and R1. Into RO you put the destination address in VDP RAM to
which you want to write. Place the single byte of data into the left byte of R1.

Currently RO and R1 contain all zeroes. Remember that VDP RAM address zero corresponds to row 1,
column 1 of the screen and RO addresses VDP RAM. The VSBW routine has written to this address the
left byte (8 bits) of R1 (all zeroes). What will be displayed at row 1, column 1? Nothing! Then, if you add
1 to the value in RO and repeat this step, VDP RAM address 01 (row 1, column 2) is cleared. There are
768 screen positions to be cleared. These VDP RAM addresses are 0 through 767 decimal, or >0000
through >02FF hex. Thus, by looping through these steps until RO has been incremented to a value of
767, the entire screen can be cleared. The next statement checks RO for this value.

	

Line 37
	

CI 	RO, 767

	

38
	

JEQ CLEARX

30 	 Introduction to Assembly Language

Line 37 is a Compare Immediate (CI) instruction. This is used to compare the value of a register to a
known value. As a result, the bits in the status register are affected and are tested by the next line. In
addition to comparing registers to known values, there are compare instructions for word to word
comparisons and byte to byte comparisons.

The Jump if EQual (JEQ) instruction completes the comparison by directing some action based upon the
result. This instruction checks the status register's equal bit and, if it is set, transfers control to the label
CLEARX. Jump instructions are like short range branch or GOTO instructions. The addresses they use
must be within 256 bytes of the instruction itself. If the difference is too great, the error "Out Of Range"
appears during assembly. Jump instructions do not need the "@" prefix on symbolic addresses. The first
time through this loop, the equal condition is not true and the JEQ instruction at line 38 has no effect on
program execution.

Line 39 INC RO

INCrement the value in RO by binary 1. Remember this value is being used as an address in VDP RAM.
Each time through, you increment that address by 1. The INC instruction will increment (add a binary 1
to) the register or word of memory specified in the OPERAND. There is also an INCT instruction which
will increment by 2.

Line 40 	 JMP 	LOOP
41 CLEARX B 	*R11

Line 40 is an unconditional jump to the label LOOP which completes the loop described above. When a
value of 767 is reached in R0, program execution transfers to line 41, CLEARX. This instruction is an
unconditional branch (like a GOTO) to the address in R11. The use of the asterisk (*) immediately
preceding the named register indicates that the value in R11 is to be used as an address. The BL
instruction at line 13 put the address of line 14 into R11 before the subroutine CLEAR was performed.
You are now instructing the computer to branch to the address in R11, which is the address of line 14.

Line 14 ADDUP A @AMTX,@AMTY

The label ADDUP helps you remember what this step does. The contents of the word (16 bits, 2 bytes)
at symbolic address AMTX is added to the value at address AMTY. Both addresses require the @ prefix
for this step.

Before the Add: 	 @AMTX 	 @AMTY

>000A 	 >0021

+ >000A

33

+ 10

After the Add: 	 >000A 	 >002B 	= 4 3

Now the answer (43) is at AMTY. But the value in AMTY is a binary value, not the correct ASCII code
for representing the characters "43" on the screen. You need to display a >34 (the ASCII code for the
symbol "4") at one screen position and >33 (ASCII for "3") at the very next screen position in order to
display "43". The next series of instructions will convert the answer to its displayable format.

for the TI Home Computer 	 31

Line 15 	 MOV 	@AMTY, R5
16 	 CLR 	R4

Registers 4 and 5 will be used for the arithmetic needed. The answer (still in binary format) is moved to
R5 and R4 is cleared.

Line 17 DIV @DECTEN,R4

The DIVide instruction does just that, divide. DIV uses two successive registers, in this case R4 and R5.
You only need to specify R4 in the second operand since the use of the next available register (R5) is
implied. The first operand @DECTEN is the divisor. This statement will divide the value in R5 by the
value at DECTEN and put the answer in R4 and any remainder into R5. Before the DIV:

@DECTEN 	 R4 	 R5

>000A 	 >0000 	>002B

After the DIV:
	

>000A 	 >0004 	>0003

In decimal, this would be the same as 43 divided by 10 equals 4 with a remainder of 3.

Line 18 MASKUP A @HEX30,R5

This Adds the value at HEX30 to the value in R5 and puts the answer into R5. Before line 18 is
executed, R5 contains >0003, a binary three. The ASCII code for a displayable "3" is >33. The
difference between this and the answer is >30 (>33 minus >03 = >30). This >30 or HEX30 "mask"
must be added to the binary value to make it a proper ASCII numeral. Before the Add:

@HEX30 	R5

>0030 	>0003

After the Add:
	

>0030 	>0033

AS now contains the ASCII code for "3". This is the first digit of your displayable answer.

Line 19 MOV R5,@PNTANS

Save this much of the answer in the area which was set aside at line 9, PNTANS. This is a full word
move, 16 bits. Before the MOV:

R5 	 @PNTANS

>0033 	 >0000

After the MOV: 	>0033 	 >0033

32 	 Introduction to Assembly Language

	

Line 20 	 MOV 	R4,R5

	

21 	 CLR 	R4

	

22 	 DIV 	@DECTEN,R4

	

23 	 A 	@HEX3 0,R5

In lines 20 through 23 the process is repeated for the second digit of the answer. When 43 was divided
by 10 at line 17, the answer 4 was placed in R4. The answer of 4 is divided again by 10. To do that, you
need to place it in R5 and set R4 to all zeroes. Four divided by 10 yields an answer of zero with a
remainder of 4. The remainder is placed into R5 to which a >30 mask is added. In this type of
conversion logic, you are operating on the remainder in R5. R5 now contains >0034 (the ASCII code for
"4").

	

Line 24
	

SLA 	R5,8

	

25
	

MOVB 	R5, @PNTANS

Now you have the "4" portion of the "43" you wish to display. The next step is to move it to PNTANS
and match it up to the "3." Since you do not want to destroy the "3" now at PNTANS, a byte-sized move
would be better than a word-sized move. Remember that byte instructions always operate on the left
byte. R5 contains >0034, which means that the value to move is in the "wrong" byte. (There are many
approaches to all this and the method used here is contrived to illustrate instruction usage). One way to
approach this is shown in line 24. This is a SHIFT instruction and is one of the special things that only
registers can do. The particular instruction used is the Shift Left Arithmetic (SLA) instruction. Line 24
specifies that the bits in register five are to be shifted to the left 8 positions and that the right side of the
register be filled with zeroes Here are the contents of R5 broken down into individual bits shown before
and after the SLA is performed:

Before the SLA: REGISTER FIVE — BINARY HEX

BIT 0 1 2 3 4 5 6 7 8 9 ABCDEF

VALUE 0 0 0 0 	0 	0 	0 0 	0 	0 	1 1 0 	1 0 	0 >0034

< 	 SHIFT 8 PLACES

After the SLA:
0 0 1 1 0 	1 	0 0 	0 	0 0 	0 	0 	0 	0 	0 >3400

Before the MOVB: R5 @PNTANS

>3400 >0033

After the MOVB: >3 4 0 0 >3433

	

Line 26 	PUTUP 	LI 	R0,738

	

27 	 LI 	R1, PNTANS

	

28 	 LI 	R2, 2

	

29 	 BLWP @VMBW

for the TI Home Computer 	 33

Lines 26 through 29 use the VDP RAM Multiple Byte Write (VMBW) subroutine to display the final
answer. Lines 26, 27, 28 use the Load Immediate (LI) instruction. LI is used to place values into registers.
Like the Compare Immediate instruction, LI is used with specific values. The first operand names a
register, the second, the value. RO is loaded with the VDP RAM address of the desired screen position.
R1 is loaded with the address (symbolic or real) of the data to be moved (not the data itself, but the
beginning address of where the data is to be found.) Into R2 is loaded the length in bytes of the data to
be moved. The branch to the subroutine places >3433, found at address PNTANS, at VDP RAM
address 738 (lower left corner of the screen). VDP RAM address 738 contains >34 (ASCII for "4") and
VDP RAM address 739 contains >33 (ASCII for "3").

Line 	30 EOJ 	MOV 	@SAVRTN,R1 1
31 	 CLR 	@STATUS
32 	 DECT 	R11
33 	 RT

These lines complete the program. Line 42, the END directive, is a required entry and instructs the
assembler that this is the end of the source code. If the label START were included as an operand of the
END directive (and you are using the Editor/Assembler package):

42 END START

then this program would begin to execute as soon as it is loaded. Depending on the application for
which an assembly program is written, this may, or may not, be suitable.

In line 30 the return address which was saved in @SAVRTN is MOVed to R11. Line 31 CLeaRs (sets to
all zeroes) the word of memory at address >837C. Address >837C is the address of the GPL
(Graphics Programming Language) status byte. You are in effect telling the computer's operating system
that everything is okay by clearing this location.

Line 32 DECrements by Two the value in R11. DEC and DECT are just the opposite of INC and INCT.
They subtract by 1 and 2 respectively. By branching to an address which is 2 less than the entry point
address, the computer will "freeze" the displayed answer and will not do anything else until Quit (FCTN
=) is pressed. Altering the return address in this way is not really the proper way to end your program.
At some point, try this program without the DECT R11 instruction at line 31, and you'll see how
incredibly fast TMS9900 assembly language is. The screen will barely blink as the program runs and
ends.

Line 33 uses the RT instruction. This instruction has the same effect as "B *R11". The two are
interchangeable. The return (RT) instruction simply makes the code more understandable and readable.
It has more mnemonic (aiding the memory) value than "B *R11" does. The program performs an
unconditional branch to the address in R11. This completes program execution and returns control of the
computer to the operating system.

Here is the assembly listing produced with the Editor/Assembler package. Options used were "R" (label
general workspace registers RO-R15), "L" (produce a listing), "S" (print the symbol table), and "C"
(produce object code which is in compressed format).

34 	 Introduction to Assembly Language

99/4 ASSEMBLER
VERSION 1.2

0001
0002

DEF
REF

PAGE 0001

START
VSBW,VMBW

0003 837C STATUS EQU >837C
0004 0000 0000 SAVRTN DATA >0000
0005 0002 000A AMTX DATA >000A
0006 0004 0021 AMTY DATA >0021
0007 0006 000A DECTEN DATA >000A
0008 0008 0030 HEX30 DATA >0030
0009 000A PNTANS BSS 2
0010 000C WSPREG BSS >20
0011 002C C80B START MOV R11,@SAVRTN

002E 0000'
0012 0030 02E0 LWPI WSPREG

0032 000C'
0013 0034 06A0 BL @CLEAR

0036 007E'
0014 0038 A820 ADDUP A @AMTX,@AMTY

003A 0002'
003C 0004'

0015 003E C160 MOV @AMTY,R5
0040 0004'

0016 0042 04C4 CLR R4
0017 0044 3D20 DIV @DECTEN,R4

0046 0006'
0018 0048 A160 MASKUP A @HEX30,R5

004A 0008'
0019 004C C805 MOV R5,@PNTANS

004E 000A'
0020 0050 C144 MOV R4,R5
0021 0052 04C4 CLR R4
0022 0054 3D20 DIV @DECTEN,R4
0023 0058 A160 A @HEX30,R5

005A 0008'
0024 005C 0A85 SLA 	R5,8
0025 005E D805 MOVB R5,@PNTANS

0060 000A'
0026 0062 0200 PUTUP LI R0,738

0064 02E2
0027 0066 0201 LI R1,PNTANS

0068 000A'
0028 006A 0202 LI R2,2

006C 0002
0029 006E 0420 BLWP @VMBW

0070 0000
0030 0072 C2E0 EOJ MOV @SAVRTN,R11

0074 0000'
0031 0076 04E0 CLR @STATUS

0078 837C

for the TI Home Computer 35

0032 007A 064B DECT R11
0033 007C 	045B RT
0034 007E 04C0 CLEAR CLR RO
0035 0080 	04C1 CLR R1
0036 	0082 0420 LOOP BLWP @VSBW

0084 0000
0037 	0086 	0280 CI R0,767

0088 02FF
0038 008A 1302 JEQ CLEARX
0039 008C 	0580 INC R0

99/4 ASSEMBLER
VERSION 1.2 PAGE 0002

0040 008E 10F9 JMP LOOP
0041 0090 	045B CLEARX B *R11
0042 END

The first column of numbers are your line numbers. The values in the second column (0000, 0002, 0004,
etc.) represent the location counter. With the Editor/Assembler, it starts at >0000 and is incremented to
address each line. The location counter goes from > 000A to > 000C at line 10 because the BSS
directive at line 9 sets aside 2 bytes of storage that are part of the program. So, >000A + 2 = >000C.
Notice that the first three directives do not affect the location counter values. The values seen here are
displacement values. They are added to the beginning address where the code is loaded in order to
address each line or label in the program.

The third column of numbers are hex representations of the machine code at each address (location
counter value). At line 5, location >0002, you will see the value >000A (ten) which is the value to which
AMTX is initialized. Line 16, location >0042, shows the value >04C4. This is hex for the machine
language instruction to clear (CLR). The length of your program can be determined by subtracting the
beginning value of the location counter from the last value in the location counter. In this case
>0090 - >0000 = >0090, indicating that this program is >90 (144 decimal) bytes long.

Here is the symbol table that was built from the program. Each symbol which was used along with its
address is shown in alphabetic order. The address next to each symbol may be an actual address
(STATUS > 837C), or the value of the location counter.

99/4 ASSEMBLER
VERSION 1.2 PAGE 0003

I ADDUP 0038 o AMTX 0002 ' AMTY 0004 ' CLEAR 007E
s CLEARX 0090 v DECTEN 0006 1 EOJ 0072 ' HEX30 0008
o LOOP
RO

0082
0000

v MASKUP
R1

0048
0001

' PNTANS
R10

000A
000A

' PUTUP
R11

0062
000B

R12 000C R13 000D R14 000E R15 000F
R2 0002 R3 0003 R4 0004 R5 0005
R6 0006 R7 0007 R8 0008 R9 0009

I SAVRTN 0 0 00 D START 002C STATUS 837C E VMBW 0070
E VSBW 0084 WSPREG 000C

000 0 ERRORS

36 	 Introduction to Assembly Language

LINE-BY-LINE ASSEMBLER/MINI-MEMORY NOTES

To accomplish the same results in an assembly language program using the Line-by-Line assembler,
several things must be done differently. The Line-by-Line assembler does not recognize some of the
directives that the Editor/Assembler does. Some instructions are needed with the Line-by-Line assembler
program which are not usually needed with the Editor/Assembler.

When your object program is run, all the information in it is loaded into memory. With the
Editor/Assembler package and a program as simple as this one, the actual address at which the
program is stored is of little importance. Simply allow the loader to start loading the program wherever it
wants. Except for some special programs this is almost always the case. With the Mini-Memory however,
your assembly language programs must be loaded into a limited amount of space. Within this same
space you must allow for the symbol table's storage requirements as well as the REF/DEF table. The
symbol table is built during assembly from symbols you use in your program. The REF/DEF table is an
area where the computer stores the program name and the names of other routines (VSBW, VMBW,
etc).

The default load address with the Line-by-Line assembler is >7D00. If you do not use a command
which alters the location counter, then > 7D00 is the value it will start at when using the Line-by-Line
assembler. The symbol table built from your program begins at address > 7CD8 and contains one 4 byte
entry for each symbol you have used and one additional 4 byte entry which marks the end of the table. If
you generate too many symbols in your assembly program, the default load address of > 7D00 will not
be suitable. Your symbol table will have grown to exceed this address and your program , when loaded,
will overlay this table. For this reason, it is wise to limit the use of EQUates and labels (which generate
symbol table entries) when using the Line-by-Line assembler. To determine the optimum load address for
your assembly language program using the Line-by-Line assembler, use this formula:

Load address = >7CD8 + (4 * (number-of-labels + 1))

For example, if there are 12 labels:

4 * (12+1) = 4 * 13 = 52 or >34

>7CD8
+ >0034

= >7D0C

You now know that the optimum load address is >7DOC, not >7D00. In order to get the value loaded
into your program, you must include a directive known as AORG (Absolute ORiGin).This would be coded
as:

AORG > 7DOC

AORG is the op-code. There is no label. This instruction affects the the location counter. The value in the
location counter is where your assembled code is stored. In the above example, the AORG directive
should be the first or nearly the first statement in your program. However, it can be used again and
again. If you had a large program, you might want to start out loading the first section of it at one
address and continue until that space was used up. Then by placing an AORG statement in the program
before the next section of code, the remaining portion of the program could be stored beginning at a new

for the TI Home Computer 	 37

location. This kind of application is only feasible when the 32K memory expansion is attached and
represents an advanced programming technique. With the Line-by-Line assembler, use fewer labels. Use
specific values instead. Perform the calculation above to determine your optimum load address.

Now that you know something about AORG, look over the following program example. Here is the same
program as it would have to be written to be entered using the Line-by-Line assembler:

Line
Number

I
I

Label
I
I

Op
Code Operand

001 AORG >7D0C
002 VS EQU >6024
003 VM EQU >6028
004 AX DATA >000A
005 AY DATA >0021
006 DT DATA >000A
007 H3 DATA >0030
008 PA BSS 2
009 WR BSS >20
010 ST MOV 11,6
011 LWPI WR
012 BL @CL
013 A @AX, @AY
014 MOV @AY, 5
015 CLR 4
016 DIV @DT,4
017 A @H3,5
018 MOV 5, @PA
019 MOV 4,5
020 CLR 4
021 DIV @DT,4
022 A @H3,5
023 S LA 5,8
024 MOVB 5, @PA
025 LI 0,738
026 LI 1, PA
027 LI 2,2
028 BLWP @VM
029 CLR @>837C
030 DECT 6
031 B *6
032 CL CLR 0
033 CLR 1
034 LP BLWP @VS
035 CI 0,767
036 JEQ CX
037 INC 0
038 JMP LP

38 Introduction to Assembly Language

039
040
041

CX 	B
AORG
DATA

*11
>701C
>7FB2

*These lines show how to add program
*name and entry point to REF/DEF

042 DATA >7FE0 *table. Though this is not included
043 AORG >7FE0 *in subsequent program listings,
044 TEXT 'EXAMP1' *this step is required with any
045 DATA ST *program entered with Line—by—Line
046 END *assembler.

Labels used with the Line-by-Line assembler can only be 2 characters in length. Whenever a label is
used, it will generate a symbol table entry. With the space restrictions of the Line-by-Line assembler, it is
important to limit the use of labels. For this reason, most of the labels shown in the Editor/Assembler
version have been eliminated.

The Line-by-Line assembler does not recognize the directives DEF and REF. An alternate method of
adding your program's name to the REF/DEF table will be discusssed in the next chapter. In the
Editor/Assembler example, the REF directive was used to automatically equate the symbolic names
VSBW and VMBW with their addresses. In the Line-by-Line assembler example, this must be
accomplished with EQUates at lines 2 and 3. The names given these routines have been shortened to
the 2 character limit as well.

The symbolic addresses SAVRTN and STATUS have been eliminated order to conserve label usage and
therefore symbol table entries. Instead, at line 10, the contents of register 11 (the return address) is
moved to register 6. The "R" prefixes have been left off of all references to registers in this program
example for two reasons. First, R0,R1,R2,R3, etc. will result in symbol table entries, so this is one way to
cut down. Second, you may be able to decide for yourself from this example whether or not this method
of register naming is for you. Most people find the symbols R0,R1,R2,etc. easier to follow. Register 6 will
not be used anywhere else in this program, so it will do just fine for temporary storage.

At line 29, you want to clear the status byte just as you did in the Editor/Assembler version. Simply code
the specific address as @>837C instead of the symbol STATUS, which was dropped. Both ways of
coding are valid. In the Editor/Assembler version you have certain "luxuries" and don't have to be as
conscious of symbols. You could have coded the specific address in the Editor/Assembler version just as
you could have used a symbolic address in the Line-by-Line assembler version.

The RT instruction is not recognized by the Line-by-Line assembler either. Instead, use an unconditional
branch to the return address in register 6. Your return address was moved back to register 11 in the
Editor/Assembler version because RT uses register 11.

Lines 40 through 45 are needed to add the program name (EXAMP1) and the entry point (ST) to the
REF/DEF table. There will be more on this in the next chapter. Line 44 uses the TEXT directive. The
TEXT directive allows you to initialize storage much the same as the DATA directive. With the TEXT
directive the values may be entered as a string of characters enclosed by single quotation marks. Each
character takes up one byte of storage.

There are quite a few of these coding differences between the Line-by-Line assembler and the
Editor/Assembler. Generally they are the directives recognized, label lengths, program length. and the
assembler/loader. The instruction set and the way they operate are practically indentical. The
explanations are valid for either assembler product.

for the TI Home Computer 	 39

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with more information on coding.

Section 3.3 page 46 through Section 3.9 page 55
Section 4.1 page 56 through Section 5.8 page 74

ADDRESSING—There are five general addressing modes. Three are used in the program example:

Example
Workspace Register Direct
	

MOV 11,6
Workspace Register Indirect
	

B 	*R11
Symbolic Memory
	

A @AMTX, @AMTY

Section 14.1 page 208 through Section 14.1.1 page 210
Section 14.1.4 page 212
Section 14.3 page 224 through Section 14.4.2 page 228
Section 14.5.2 page 234

DIRECTIVES—These directives are covered in the program example:

AORG - Absolute origin, affecting the location counter.
BSS - Block Starting with Symbol, reserves storage.
EQU - Equate, associates a label with an address.
BYTE - Initialize 8 bits of storage to some value. Not recognized by Line-by-Line Assembler.
DATA - Initialize 16 bits of storage to_some value.
TEXT - Initialize storage using a character string.
DEF - Define, makes the labels it defines part of your object code so that your program is available to

other software and adds the labels to the REF/DEF table. Not recognized by the Line-by-Line
assembler.

REF - External Reference, make other program labels available to your program. Not recognized by the
Line-by-Line assembler.

END - End of source code.

Section 6.1 page 78 through Section 6.14.2 page 102

ARITHMETIC INSTRUCTIONS—These arithmetic operations are used and detailed in the program
example:

A - Add words, adds the operands and puts the answer at the second operand.
INC - Increment the contents of the operand by 1.
INCT - Increment the contents of the operand by 2.
DEC - Decrement the contents of the operand by 1.
DECT - Decrement the contents of the operand by 2.
DIV - Divide, divides the first operand into the second operand (which must name a register).

Each arithmetic instruction affects the status register according to the result of the operation.

40 	 Introduction to Assembly Language

JUMP AND BRANCH INSTRUCTIONS—Five of the many kinds of jump and branch instructions used in
the example are:

B - Unconditional Branch, branch to a secified address.
BL - Branch and Link, branch and place the return address into R11.
BLWP - Branch and Load Workspace Pointer, branch to a routine and set the WP register to point to

that routine's own register space.
JMP - Jump, unconditional jump to an address.
JEQ - Jump if EQual, if the equal bit in the status register is 1, then jump to the specified address.

Section 8.1 page 138 through Section 8.3 page 143.

COMPARE INSTRUCTIONS—Only one type of compare instruction is used in the program example.
However, they all operate in similar fashion.

CI - Compare Immediate, compare the contents of the named register (first operand), to a specific value
(second operand).

Section 10.1 page 161 through Section 10.5 page 168.
Section 10.9 page 172

LOAD AND MOVE INSTRUCTIONS—There are eight of these instruction types. The example program
used four:

LWPI - Load Workspace Pointer Immediate, needed to establish alternate workspace registers.
MOV - Move a word, copies a word (16 bits) to another word.
MOVB - Move Byte, copies one byte (8 bits) to another byte.
LI - Load Immediate, used to put specific values into a register.

These instructions affect the status register according to the value at the address involved.

Section 11.5 page 184.

LOGICAL INSTRUCTIONS—Only one is used in the example program:

CLR - Clear, set all the bits at the named register or address to all zeroes.

Section 12.1 page 194 through Section 12.5 page 204.

WORKSPACE REGISTER SHIFT INSTRUCTIONS—Again, only one is used in the program example,
but its operation is analogous to the other types of register shift instructions.

SLA - Shift Left Arithmetic, shift the bits of the named workspace register a specified number of positions
to the left and fill the right side with zeroes. All shift instructions affect the status register.

Section 13.1 page 206 through Section 13.2 page 207.

PSEUDO INSTRUCTIONS—Only one is used and it is not recognized by the Line-by-Line assembler.

RT - Return, has the same effect as "B *R11".

for the TI Home Computer 	 41

Section 19.2 page 307.

Look up these terms in the glossary:

Arithmetic Operators
Assembly-Time Constant
Comment Field
Constant
Context Switch
CPU RAM
Destination Operand
Directives
Expressions
Immediate Instruction
Indexed Memory Addressing
Jump Instructions
Label Field
Location Counter
Mnemonic Code
Op-Code Field
Operand
Operand Field
Predefined Symbols
Pseudo-Instructions
Symbol
Symbol Table
Symbolic Addresses
Symbolic Memory Addressing
VDP RAM
Workspace Register Addressing

42 	 Introduction to Assembly Language

CHAPTER SIX
ASSEMBLING AND RUNNING A PROGRAM
Using The Editor/Assembler

The following is a brief overview of the steps you should take to enter, assemble, save, and run the
sample program in Chapter Five. Read the documentation provided by TI with the Editor/Assembler
product covering use of the Editor in preparing source programs. Take some time to become familiar with
the editing capabilities which are available. Many of the features of the Editor program apply readily to
the preparation of text and documents as well as assembly source statements. The steps given here
assume that you have only one disk drive. If you have more than one, leave the diskette with the
Editor/Assembler programs in drive #1 and save your source and object files on drive #2 or #3.

Get to the Editor/Assembler title screen, and with the software diskette in drive #1, select the EDIT
option (#1). This should take you to the title screen for the Editor. From the Editor menu, select the EDIT
option (#2). The Editor program will load from the diskette. Carefully type in the sample program using
all upper-case characters. Check your typing. The sample program has been sucessfully assembled and
run using both the Editor/Assembler and the Mini-Memory. If you encounter errors, it may be because
you have entered something incorrectly.

When you have completed entering the source code, press ESCAPE (FCTN 9) twice to return to the
EDITOR title screen. Then, insert the diskette on which you are going to save your source program into
disk drive #1 and select the SAVE option (#3). The prompt VARIABLE 80 FORMAT (Y/N)? appears.
"Y" indicates variable, "N" indicates fixed. The Editor/Assembler handles both variable or fixed length
files For this exercise, answer "Y" to this prompt. Next you will be asked for the file name you want to
call your source program. For this exercise, type in DSK1.SOURCE, and press ENTER. The contents of
the text buffer (the SOURCE program you have just entered) will be saved on disk drive number one in
variable 80 byte record format, as "DSK1.SOURCE". Next, remove your diskette and insert the software
diskette which has the assembler program on it. Press ESCAPE (FCTN 9) to return to the
Editor/Assembler title screen and select the ASSEMBLE option (#2).

You will be asked if you want to load the assembler at this point. This is done to allow you to check to
be sure the proper diskette is in the drive. When you have the diskette in drive #1, reply "Y" to this
prompt. The next prompt you should see will be for the name of the file which contains your source
program. Remove the diskette containing the assembler and insert the diskette that you saved your
source program on. Type in DSK1.SOURCE. The next prompt is for the name you want to give the
object code that will be generated from your source code. For this example, type in DSKLOBJECT. The
next prompt is for a valid device name for the assembly listing. If you do not have a printer, you can
save the listing on disk for later viewing with the editor program, or you can elect not to produce an
assembly listing. If you have a printer, you should enter the parameters which describe the interface port
you are using for your printer. (Examples: RS232.BA=1200, RS232/2.BA=9600.PA=N, PIO).

If you choose not to produce a printed listing or a list file, press enter at this prompt. The option to
produce or not to produce a listing comes up in the next prompt. The next prompt asks for the options
you want for this assembly. Option "R" allows you to refer to the general workspace registers in your
program as R0,R1,R2.. R10, etc. Option "C" will produce object code in compressed format which takes
up less storage than uncompressed code. Option "L" is the option to produce an assembly listing. If you
do not choose option "L", no listing will be produced. Option "S" will include a symbol table map if you
have also picked "L''. For this exercise, the minimum option you will need is "R". Choose the other
options depending on your own hardware configuration.

for the TI Home Computer 	 43

There is an additional option available that is not documented in the Editor/Assembler manual. This is
the "T" option. This will print out the location and hexadecimal value of each byte of a TEXT string.
Without the "T" option, the assembly listing will print only the beginning address (location counter value)
of a TEXT string and the hexadecimal value of only the first byte of that string.

"Assembler Executing" should now appear as the assembler processes your code. If everything has
gone right, the assembly process should end with 0000 ERRORS. If errors do occur, go back and re-
examine the source code that you saved as DSK1.SOURCE. To edit your source code, place the
software diskette into disk drive #1. Get to the Editor title screen and select the LOAD option (#1). After
the editor program has loaded, there will be a prompt for file name. Insert the diskette containing your
source program into disk drive #1 and type in DSK1.SOURCE. The editor will load your source program
from the diskette. Select the EDIT option (#2) to review and edit your source program. When you are
finished making corrections, save the source code under the same name, and repeat the assembly
process.

Once you have successfully assembled the sample program, press Enter to return to the
Editor/Assembler screen and select the LOAD AND RUN option (#3). The first prompt will ask you for
the name of the file that contains your object program. Type in DSK1.OBJECT and the loader will load it
from the diskette into memory. Another prompt for "File Name" will appear. This is because the loader
provided with the Editor/Assembler will allow you to continue loading object programs until memory is
full. There is only one program to load and run, so at this point press Enter. The next prompt will be for
"Program Name." The name of this program and its entry point address was DEFined as "START".
Type in START for this prompt and the program should run. If you coded END START as the last line of
the program then the program will execute as soon as it is loaded without needing you to state the entry
point address.

The numerals "43" should appear in the lower lefthand corner of the screen. To exit from the program's
control, press QUIT (FCTN =). This should return you to the main title screen.

Remember, it is entirely possible to have made a mistake entering the sample program and still wind up
with 0000 ERRORS at the end of the assembly process. When your assembly program runs, it is in
control of the computer. It may be necessary to turn the computer off to stop a "runaway" program and
then turn it back on.

Using the Line-by-Line Assembler

Follow the step by step instructions for loading the Line-by-Line assembler program from cassette. Get to
the Mini-Memory title screen and select the RUN option (#2). The prompt PROGRAM NAME? appears.
Type in NEW to get into the Line-by-Line assembler program.

The Line-by-Line assembler immediately assembles each assembly statement as you enter it and stores
the resulting machine language instructions at the address indicated. Two columns of numbers appear to
the left of each line displayed. The first column is the location counter. The values in this column are
addresses. They are shown in hexadecimal notation. The Line-by-Line assembler starts out "pointing to "
address >7D00.

The next column of numbers represents the value in hexadecimal notation stored at the address
indicated. You are in effect, "peeking" into the computer and seeing the value presently stored at a
specific address. The screen shows:

44 	 Introduction to Assembly Language

7D00 045B

Try pressing Enter several times and notice what happens. Each time you press Enter the location
counter is incremented by two. The location counter advances two bytes, or one word, at a time. The
hexadecimal value at each word of memory is displayed as well. The location counter always advances
to an even address. Not only can you move forward like this, but you can also jump around to various
locations too. To affect the location counter, use the assembler directive AORG. With AORG, you can
"peek" at any location. Press the space bar and type:

AORG 7D00 and press ENTER.

The screen shows:

7D00 045B

So, you are back where you started. Now type:

AORG >7DOC and press Enter.

The screen shows:

7DOC A100

This will be the first entry in the sample program. In addition to peeking into the computer's memory, you
can also alter the contents of any location with the Line-by-Line assembler. You can "poke" a number
into any address. Type:

AORG >837C and press Enter.

The screen shows:

837C 2000

Now type in:

DATA >0000 and press Enter.

The screen now shows:

837C 0000 DATA >0000
837E 0000

The DATA directive you entered with a value of all zeroes initialized the address indicated by the
location counter to all zeroes. The Line-by-Line assembler then advanced to the next even address,
>837E. Address >837C is the address of the GPL status byte. When you first looked at the address of
the GPL status byte, its value was >20. The very next byte's address is >837D which contained >00.
The display showed 2000, which is the contents of the word made up of bytes >837C and >837D.
When you entered the DATA >0000 directive you cleared (set to all zeroes) the status byte and the very
next byte as well. Now type:

AORG >837C and press Enter.

for the TI Home Computer 	 45

The screen shows:

837C 2000

The status byte value is back to >20. One of the things the status byte can detect is the depressing of
keys on the keyboard. Whenever any key is pressed, the value >20 will be present in the status byte.
This knowledge will be applied in a later example. The DATA directive cleared the status byte, but as
soon as you pressed the keys to type in "AORG", the status byte was reset by the computer to >20.

Now type AORG >7DOC. This is line 01 of the sample program. Enter the source code very carefully
just as it'appears in all upper case characters. If you make a mistake while entering a line and you
realize it before you press Enter, type in "E" and press Enter. This informs the Line-by-Line assembler
that you have made an error and allows you to re-enter the line immediately. You will naturally make
some errors at first. Many errors will be detected by the Line-by-Line assembler program the moment
you enter them much the same as TI BASIC syntax errors are detected. You may scroll backward and
forward to view the code you have already entered by use of the up and down arrow keys. Refer to
"Editing Techniques" in the Line-by-Line asssembler instruction book and take some time to learn to
enter and correct source statements.

Lines 41 through 45 were inserted into this version of the sample program to add the program name and
entry point to the REF/DEF table. At line 41, a calculation is needed to find out if there is sufficient room
left to add the program name to the REF/DEF table. To do this, you need to find the difference between
two values which are stored at addresses >701C and >701E. The value stored at address >701C is
the First Free Address in the Module (FFAM). The value stored at address >701E is the Last Free
Address in the Module (LFAM). Type:

AORG >701C and press Enter

The screen shows:

701C >7FB2

Now type in:

DATA >7FB2 and press Enter

The screen shows:

701C >7FB2 DATA >7FB2
701E > 7FE8

The effect of the DATA > 7FB2 directive is to not change the value at >701C and advance the location
counter to the next even word address, >701E, the other address to be checked.

>7FE8
- > 7FB2

= >0036

46 	 Introduction to Assembly Language

The answer to this calculation must be greater than 8 bytes. Otherwise, there is not enough space. The
answer of >36 is easily large enough. The next step is to take the value at address >701E (in this case
> 7FE8), subtract 8 bytes from it and place the new value back at >701E.

>7FE8
- >0008

= >7FE0

Since the location counter is currently pointing at address >701E, all that is needed is a DATA directive
to place the new value there.
Type:

DATA >7FE0 and press Enter

The next entry will be AORG and the address you just calculated. Type in:

AORG >7FE0 and press Enter

This points to the REF/DEF table area into which will be placed the program name and entry point. The
program name takes up 6 characters, which is entered as a string with the TEXT directive: Type in:

TEXT 'EXAMP1' and press Enter

If the program name used is less than six characters, the rest of the name entry in the REF/DEF table
will be padded with spaces. The next required entry will be a DATA directive followed by the label which
marks the entry point of the program. Entry point means the address of the first instruction to be
executed in the program. Reading an assembly program from top to bottom, the entry point may, or may
not, be the first program instruction in the program sequence. In the sample program the label for the
entry point address was "ST". Type in:

DATA ST and press Enter

The label "ST" will be equated with the entry point address in the program named EXAMP1.

END

The effect of the END directive with the Line-by-Line assembler is to signal an end to the source code
and the assembly process. The moment you type END, you will exit from the assembler. The use of
"END START" is not possible for programs entered using the Line-by-Line assembler. When you type
END and then press Enter, there should not be any unresolved references. Before you type in END,
scroll back over the source program you have just entered by use of the up and down arrow keys. If you
have entered the sample program exactly as shown, there should not be any problems.

Once you have successfully assembled the sample program, go to the Mini-Memory title screen and
select the RUN option (#2). The prompt "Program Name?" appears. Type in EXAMP1. The run program
will look in the REF/DEF table, find the name EXAMP1, and branch to the entry point of the program
(symbolic address ST) also found in the REF/DEF table.

The numerals "43" should appear in the lower lefthand corner of the screen. To exit from the program's
control, press QUIT (FCTN =). This should return you to the main title screen.

for the TI Home Computer 	 47

Remember, it is entirely possible to have made a mistake entering the sample program and still wind up
with 0000 unresolved references at the end of the assembly process. To repeat, when you run your
assembly program, it is in complete control of the computer. It may be mecessary to turn your computer
off to stop a "runaway" program, and then turn it back on.

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on assembling and running
programs.

Section 1.1 page 15 through Section 2.5 page 38
Section 15.1 page 235 through Section 15.1.1 page 236
Section 15.5 page 243 through Section 15.5.2 page 245
Section 19.1 page 305 through Section 19.2 page 307

Look up these terms in the glossary:

Assembler
Assembly Options
Command Mode
Edit Mode
Editor
End-of-File Marker
Fatal Error
List File
Loader
Loading
Non-Fatal Error
Special Keys
Symbol
Symbol Table
Window

48 	 Introduction to Assembly Language

CHAPTER SEVEN
SCREEN AND CHARACTER DISPLAYS
One of the things you can do right away with a language such as TI BASIC is to display
numbers, letters, and other symbols on the screen and control their position and color. The
sample program introduced two fundamental Video Display Processor routines. The numerals
"43" were displayed at the lower left corner of the screen as its only output. The numerals
appeared as black symbols on a green background. These are the preset colors of the screen
and displayable character sets which are in effect when your assembly is run. This chapter will
examine the TMS9900 assembly language approach to screen displays more closely.

The processing necessary to generate the video signals that create symbols and graphics Is
handled by a separate microprocessor known as the TMS9918 chip in the older 99/4 and as the
TMS9918A in the 99/4A computers. The central processor in your computer is the TMS9900
chip. It is the microprocessor dealt with directly in TMS9900 assembly language. Actually, your
Texas Instruments home computer contains several distinct microprocessors which work in
concert to make the home computer a reality.

The area within memory which is designated for the Video Display Processor's needs Is a
specially segregated area known as VDP Random Access Memory (RAM). TMS9900 assembly
instructions like MOVe, or Add, will not work on addreses within VDP RAM. Data must be
manipulated within your program's domain (CPU RAM) and written to or read from VDP RAM
by means of special routines which allow these two processors to share data and
communicate with each other. The first program example introduced two very handy VDP
routines, VSBW (VDP Single Byte Write), and VMBW (VDP Multiple Byte Write), which copied
data from your program into VDP RAM. The data was first set up within the program. Then, by
placing certain required values into the proper registers, and branching to the routine's
address, the screen was cleared, and then the sum of 10 plus 33 was displayed. This pattern of
loading certain key registers with parameter values and branching to a special address is a
recurring one throughout the various VDP routines. To use any VDP routine in your program
you must include a REF directive (Editor/Assembler) or an EQUate directive (Line-by-Line
assembler) with the symbolic name for each VDP routine you want to use.

One of the easiest ways to display titles and messages combines the use of the TEXT
directive and the Multiple Byte Write routine. With the Editor/Assembler, this routine's
symbolic address is equated to VMBW. The Line-By-Line program example equated the name
as VM. With the TEXT directive memory can be initialized in easily readable character strings.
The way the string appears in the program is exactly how it will look when properly displayed.
Here is a program segment to accomplish this:

MSG1 TEXT'** PROGRAM NUMBER 2 **'

The character string is enclosed by single quote (') marks. The single quote marks will not be
part of the display. Any characters can be used with the TEXT directive except the single
quote mark. The single quote mark can only be used to delimit the contents of the string. To
display this program title you must give VMBW three pieces of information:

1. The address in VDP RAM you want this message to be placed at (written to). The position
on the screen.

for the TI Home Computer 	 49

2. The begining address of the message. Where to find the message.

3. The number of bytes to write. The length of the message.

In TI BASIC, the screen can be addressed as row N, column N. There are 24 rows and 32
columns. This same screen configuration is defined in assembly language as a table of 768
bytes. This is the Screen Image Table In VDP RAM. Each byte of this table represents one
screen position. The VDP RAM addresses for these 768 bytes are 0 through 767 decimal and
>00 through >2FF hexadecimal. Use this formula to determine the proper VDP RAM address
for a given set of row and column values:

VDP RAM ADDRESS DECIMAL = ((ROW - 1) * 32) * (COLUMN - 1)

To display the above message at row 10, column 6:

ADDRESS = ((10 — 1) * 3 2) + (6 — 1)

= 	(9 * 32) + 	5

= 	 288 	+ 	5

= 	 293

To pass this information to VMBW, place it into register 0 with a LI (Load Immediate)
instruction:

LI R0,293

The next piece of information required by VMBW is the beginning address of the message. The
label "MSG1" was included with the TEXT directive and is therefore equated to the value of
the beginning address of the message. Remember that this value is the ADDRESS of the
message, not the data itself. The VMBW routine needs this information in register 1. Again
using the LI instruction:

LI R1,MSG1

Finally, VMBW needs to know how long the message is in bytes. One byte is required for each
character of the message. There are 22 characters in the message labeled MSG1. This value
must be put into register 2:

LI R2,22

Since the location counter always advances to an even word address, it is always a good idea
to set aside storage with directives like TEXT in even byte amounts.

To display the message, perform a Branch and Load Workspace Pointer to the address of the
VMBW routine:

BLWP @VMBW

50 	 Introduction to Assembly Language

The program segments:

REF VMBW

MSG1 TEXT '** PROGRAM NUMBER 2 **'

.

	

DISP LI 	R0,293

	

LI 	R1,MSG1

	

LI 	R2,22
BLWP @VMBW

Of course the TEXT directive is just one way to build displayable data and must be "hard
coded" into the program. You can also use the ASCII codes for letters and numbers and have
the program create numeric and alphanumeric strings just as the sample program did with the
answer to its addition problem:

PNTANS BSS 2

.
MOV R5, @PNTANS

MOVB R5, @PNTANS

PUTUP 	LI 	R0,738
LI 	R1, PNTANS
LI 	R2,2
BLWP @VMBW

The VSBW (Single Byte Write) routine only writes one byte at a time. Since the length of the
data to be written is always 1, R2 is not needed for VSBW. You need only give VSBW the
correct VDP address in RO, and the data to be written in the first 8 bits (left byte) of register 1.
This is different from VMBW where register 1 must contain the address of the data.

Suppose that instead of the title MSG1, You want to display an asterisk (*) at row 10, column
6. The ASCII code for an asterisk is 42 decimal, >2A hexadecimal. You have already
calculated the proper address in VDP RAM for row 10, column 6, as 293. The code would look
like this:

	

LI 	R0,293

	

LI 	R1,>2A00
BLWP @VSBW

A TI BASIC statement you should be familiar with is CALL SCREEN (n). The value of n is some

for the TI Home Computer 	 51

number between + 1 and + 16. Each number represents a different screen color. In TMS9900
assembly language the same set of colors are available to you. Their values are all one less
than their TI BASIC counterparts or 0 through 15 decimal, >0 through >F hexadecimal. The
color of the screen border is controlled by VDP RAM Write Only Register 7. Access to this
register and control of screen border color is accomplished through the VDP Write To Register
subroutine equated by the Editor/Assembler to VWTR. With the Line-by-Line assembler this
routine's address of >6034 must be EQUated to some 2 character label. The colors and their
respective TMS9900 assembly language hexadecimal values are:

TRANSPARENT >0 MED. RED >8
BLACK >1 LIGHT RED >9
MED. GREEN >2 DARK YELLOW >A
LIGHT GREEN >3 LIGHT YELLOW >B
DARK BLUE >4 DARK GREEN >C
LIGHT BLUE >5 MAGENTA >D
DARK RED >6 GRAY >E
CYAN >7 WHITE >F

To set the border color of the screen to magenta, the TMS9900 assembly instructions would
be:

LI 	R0,>070D
BLWP @VWTR

Register 0 contains all the information that VWTR needs. The left byte (reading from left to
right, the first and second hex digits >07 of register 0 tells VWTR which VDP register to write
to. In this example, it is VDP register 7. The VDP registers are single byte registers (8 bits)
unlike the general workspace registers which are full word (16 bit) registers. The right byte (hex
digits >OD) contains the value of the color you want. Of these 8 bits, the least significant 4
(hex digit >D) set the screen border color. The most significant 4 bits (hex digit >0) set the
foreground color when the TMS9918A is in text mode. Text mode is another form of display
available with the TMS9918A. When you reach a proficient level with TMS9900 assembly
language and VDP handling, you may want to try other modes. For right now though, the value
you place in this position is of no consequence. The display mode your home computer
operates in while in BASIC, Extended BASIC, and most applications is the graphics mode.
Learn to master this display mode before you attempt to use any others.

The effect of setting VDP RAM register 7 to >OD is to generate bands of magenta color at the
top and bottom of the screen. The actual effect of the TI BASIC CALL SCREEN(n) instruction
involves not only setting the color of the border, but setting the background colors of any
characters that might be displayed to the same color. In this way, no matter what is displayed
on the screen, there will be one uniform background color for the entire display. The
foreground and background colors of the TI Home Computer character set are controlled by an
area in VDP RAM known as the color table.

Each entry in the color table is made up of one byte of data. Each byte controls the foreground
and background colors of a set of 8 characters. The color table is a relocatable table. That is,
with certain TMS9900 instructions, it is possible to change the location within VDP RAM that

52 	 Introduction to Assembly Language

the table will occupy. Changing the color table's location is only necessary for other display
modes. For right now, do not relocate the color table. Instead, use its default VDP RAM
beginning address of >0380.

To change the foreground and background colors of a particular character, the corresponding
address within the color table must be determined, and one byte of data must be placed into
that address. To emulate CALL SCREEN(n), it is necessary to change the background color
while leaving the foreground color at its default value of >1 (black). The value for black on
magenta would be >1D. The left 4 bits of the byte control the foreground color (>1, black),
and the right 4 bits control the background color (>D, magenta).

Of course this data must be placed into the correct color table address to yield the desired
result. Here is a handy chart which details the color table. The addresses given are
displacement values. Each value from the chart must be added to the beginning VDP RAM
address of the color table. In the case of the example, operating in graphics mode and not
having done anything to relocate the color table, the beginning VDP RAM address of the color
table is >0380.

COLOR TABLE REFERENCE CHART

COLOR TABLE
DISPLACEMENT

CHARACTER
CODES AFFECTED

>00 >00 THROUGH >07
>01 >08 >OF
>02 >10 >17
>03 >18 >1F
>04 >20 >27
>05 >28 >2F
>06 >30 >37
>07 >38 >3F
>08 >40 >47
>09 >48 >4F

>OA >50 >57
>OB >58 >5F
>OC >60 >67
>OD >68 >6F
>OE >70 >77
>OF >78 >7F
>10 >80 >87
>11 >88 >8F
>12 >90 >97
>13 >98 >9F

>14 >AO >A7
>15 >A8 >AF
>16 >BO >B7

for the TI Home Computer 	 53

>17 >B8 >BF
>18 >CO >C7
>19 >C8 >CF
> 1A >DO >D7
>1B >D8 >DF
>1C >E0 >E7
>1D >E8 >EF

>1E >FO >F7
>1F >F8 >FF

The character codes for the entire range of possible characters start at >00 and end at >FF.
Referring to the chart above, the color table address displacement value for character >FF =
>1F. Add each of the displacement values to the beginning address of >0380:

>0380 >0380

+ >0000 + >001F

= >0 38 0 = >0 3 9F

This demonstrates that to affect the colors of this range of characters, one byte of color data
must be placed at VDP RAM addresses >0380 through >039F. Since one byte of data is
required at each address, the Single Byte Write routine will be used. The instructions to do
this are:

LI
LI

PUTCOL BLWP
INC
CI
JLE

R0, >0380
R1,>1D00
@VSBW
R0
R0,>0 39F
PUTCOL

Load R0 with first address in VDP RAM
Place color codes into left byte of R1
Write left byte of R1 to address in R0
Add 1 to the address in R0
See if it has gone too far
If not, repeat the process

The last instruction used was the Jump if Low or Equal. The previous Compare Immediate is
checking RO for the last address value to be written to. The JLE instruction completes the
comparison by directing program logic to keep returning to the loop PUTCOL as long as the
address value in RO is less than or equal to >039F.

The steps outlined so far to affect the color table entries are designed to mimic the effect of
the TI BASIC CALL SCREEN(n) command. Another TI BASIC command is CALL COLOR(s,f,b).
The "s" represents the set of characters to be affected, "f" the foreground color, and "b" the
background color. Set may be a number from + 1 to + 14. In TI BASIC, these color sets are
equivalent to color table displacement values >04 through >11. To specify a color
combination of white on dark blue for the asterisk (character code 42 decimal, >2A hex) the TI
BASIC statement CALL COLOR(2,16,5) would be used. The asterisk is a member of character
set 2 in TI BASIC and the TI BASIC color codes for white and dark blue are 16 and 5
respectively.

54 	 Introduction to Assembly Language

To accomplish the same result in TMS9900 assembly language, first consult the color table
reference chart above and find the range of character code values to which the asterisk
belongs. >2A falls within the range of values >28 through >2F. The displacement value for
this set is >05. Next, add this displacement value to the beginning address of the color table
to determine the correct address (>0380 + >05 = >0385).

The color values in TMS9900 assembly language are all one less than in Ti BASIC. White is 15
decimal, >F hexadecimal. Dark blue is 4 decimal, >4 hexadecimal. The instructions to set the
color of the asterisk to white on dark blue would be:

LI 	R0,>0385 COLOR TABLE ADDRESS OF ASTERISK
LI 	R1,>F400 COLOR VALUES, WHITE (F) ON BLUE (4)
BLWP @VSBW 	WRITE ONE BYTE OF DATA

No program loop is involved because this example only affects the foreground/background
colors of one set of characters. Notice from the color table reference chart that there are color
table entries for character codes which are less than and greater than the range of ASCII
characters (30 through 126 decimal, >1E through 7E hexadecimal). These character values are
not defined as displayable characters. Some of these character codes represent ASCII control
characters which are used to regulate communications between computers. Others have no
definition at all. Through TMS9900 assembly language you can make use all these character
values in a variety of ways.

First, recall the example program and its CLEAR routine. The standard method of clearing the
screen display is to fill the entire screen with spaces (ASCII code 32 decimal, >20
hexadecimal). But the CLEAR routine in the sample program wrote the >00 character code to
the screen. Since character code >00 is not defined as a displayable symbol, the effect looks
the same as using the space character code.

Another way to use these extra character codes is for color graphics. Recall from TI BASIC
that if the foreground/background colors of a character are set to the same color, anytime that
character is displayed, a solid block of color would appear. One way to apply this would be the
creation of a border of color around the screen. Each row of the screen has 32 columns. To
create the side borders, use columns 1,2,31,32 of each row. Set the characters used to fill
these positions to the same color as the top and bottom screen borders. So that you can still
be able to display and use the standard ASCII character set, use a character code which is
outside the ASCII range and will not be needed for anything else.

Here are the TMS9900 assembly language instructions. Note that the DATA directive can be
use to intialize more than one word at a time.

BORDER DATA >8080,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>8080

*Define 32 characters to be used to fill
*each row on screen. Characters occupying
*columns 1,2,31,32 are greater than any
*ASCII codes and characters in remaining
*columns are ASCII spaces.

RED

R
E
D WHITE

R
E
D

RED

for the TI Home Computer 	 55

LI
BLWP
LI
LI
BLWP
LI
LI

CLOOP 	BLWP
CI
JEQ
INC
JMP

BPUT LI
LI
LI

BLOOP 	BLWP
CI
JEQ
AI
JMP

EXIT

RO,>0706
@VWTR
RO,>0390
R1,>6600
@VSBW
RO,>0383
R1, >1F00
@VSBW
RO,>038F
BPUT
RO
CLOOP
R0, 0
R1,BORDER
R2,32
@ VMBW
R0,736
EXIT
R0, 32
BLOOP

Set top and bottom screen borders
to dark red

Set the color of character >80 to
dark red on dark red

Set range of ASCII characters to
black on white. Space character (>20)
will appear white.

Fill screen with BORDER pattern.

Add Immediate adds 32 to RO to
address the next row.

(rest of program)

Here is the effect on the screen:

The patterns used to generate characters are controlled by another table in VDP RAM called
the pattern descriptor table. The pattern descriptor table is also a relocatable table. The
default beginning address in VDP RAM for the pattern descriptor table is >0800. Each table
entry takes up 8 bytes. By changing the values stored in the pattern descriptor table, you can
create graphics and symbols of your own. You can redefine the ASCII character set or use any
of the other available characters. For a complete explanation of creating patterns see the TI
BASIC or Extended BASIC reference material on the CALL CHAR subprogram. Access to the

56 	 Introduction to Assembly Language

pattern descriptor table is much like that of the color table. To redefine a character or create a
graphic, the data which describes the pattern must be placed into the corresponding address
In the pattern descriptor table for the character code used. To help get you started, here is a
partial list of pattern descriptor table displacement values and their respective character
codes. With a little arithmetic, you should be able to determine the address you want.

PATTERN DESCRIPTOR TABLE REFERENCE CHART

(ALL VALUES ARE HEXADECIMAL)

PATTERN DESCRIPTOR

TABLE DISPLACEMENT

CHARACTER

CODE AFFECTED

>000 >00

>008 >01

. .

>OFO >1E

. .

>100 >20

>108 >21

>110 >22

.

>150 >2A

>158 >2B

>160 >2C

>168 >2D

If you multiply the value of a charcter code by 8, you will find the displacement value in the
pattern descriptor table for that character. This value must be added to the beginning address
in VDP RAM for the pattern descriptor table. Unless you relocate the table by means of special
instructions, the table starts at >0800 hexadecimal, 2048 decimal. To create a new symbol for
the cursor, for example, you would first multiply the the character code for the cursor by 8:

for the TI Home Computer 	 57

	

HEX
	

DECIMAL

CURSOR =
	

>1E
	

30

	

x >8
	

x 	8

= >F0 	 = 240

Then, add this answer to the beginning VDP RAM address:

Beginning PDT address >0800 	 2048

Displacement value + >00F0 	 + 240

Address desired

>08F0 	 = 2288

You now know that the address of the pattern descriptor table entry for the pattern of the
cursor character is >08F0. The TMS9900 assembly language instructions to change the cursor
pattern are:

CURPAT DATA >007E, >4242,>4242,>7E00

LI
LI
LI
BLWP

R0,>08F0
R1,CURPAT
R2, 8
@VMBW

*DEFINE 8 NEW BYTES OF DATA
*TO DESCRIBE NEW PATTERN
*LOAD VDP RAM ADDRESS INTO RO
*LOAD ADDRESS OF DATA INTO R1
*LOAD DATA LENGTH INTO R2
*WRITE DATA TO PDT

Now, anytime the cursor symbol is displayed with an instruction set such as these:

LI 	R0,293
LI 	R1,>1E00
BLWP @VSBW

The pattern that was defined will be displayed instead of the standard cursor symbol. Note
that the character code for the cursor of >1E Is still used. The computer takes the character
code you specified, looks In the color table for the correct foreground/background colors,
looks in the pattern descriptor table for the pattern to be displayed, and displays that
pattern/color combination at the specified screen address.

Screen and character displays created through TMS9900 assembly language programs are not

58 	 Introduction to Assembly Language

difficult once you master the fundamentals outlined in this chapter. The amazing speed of the
TMS9900 assembly language becomes evident when it is used with Video Display Processor
applications. Changes to the screen display happen almost instantaneously. Many more
graphics capabilities become available through TMS9900 assembly language than are even
possible in TI BASIC. Here is a complete TMS9900 assembly language program which will
demonstrate some of the principles covered in this chapter:

DEF START
REF VWTR,VSBW,VMBW

WR 	BSS >20
RETURN BSS 2
STATUS EQU >837C
BORDER DATA >8080,>2020,>2020,>2020

DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020020200202008080

MSG1 	TEXT '** PROGRAM NUMBER 2 **'
START MOV R11,@RETURN SAVE RETURN ADDRESS

LWPI WR 	 LOAD WORKSPACE POINTER
LI 	RO,>0706 	SET BORDER COLOR TO
BLWP @VWTR 	DARK RED
LI 	RO,>0390 	SET COLOR OF >80 CHARACTER
LI 	R1,>6600 	TO DARK RED
BLWP @VSBW 	 ON DARK RED
LI 	RO,>383 	SET RANGE OF ASCII DISPLAY
LI 	R1,>1F00 	CHARACTERS COLOR TO

CLOOP BLWP @VSBW 	 BLACK ON
CI 	RO,>038F 	WHITE
JEQ BPUT
INC RO
JMP CLOOP

BPUT 	LI 	R0,0 	 LOAD THE SCREEN IMAGE
LI 	R1,BORDER 	TABLE WITH THE
LI 	R2,32 	 BORDER PATTERN

BLOOP BLWP @VMBW
CI 	R0,736
JEQ EXIT
AI 	R0,32
JMP BLOOP

EXIT 	LI 	R0,293 	DISPLAY THE PROGRAM
LI 	R1,MSG1 	TITLE
LI 	R2,22
BLWP @VMBW
CLR @STATUS 	CLEAR THE GPL STATUS BYTE
MOV @RETURN,R11 GET RETURN ADDRESS
DECT R11 	ALTER THE RETURN ADDRESS
RT 	 RETURN
END

Follow the instructions in Chapter Six for assembling and running this program. Since this

for the TI Home Computer 	 59

program alters the return address in the same way that the first sample program did, it, too,
will "freeze up" in order to allow you to view the results. Press QUIT (FCTN =) to exit from
program control. The sample program is written for the Editor/Assembler. To code and run this
program using the Line-by-Line assembler, refer to Chapter Five for the steps to make the
changes required. Here is the listing for the Line-by-Line assembler:

* SCREEN DISPLAY PROGRAM EXAMPLE *
* MINI—MEMORY VERSION 	 *
* *

AORG >7D0C
VW 	EQU >6034
VS 	EQU >6024
VM 	EQU >6028
WR 	BSS >20
BD 	DATA >808002020,>2020,>2020

DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>8080

Ml 	TEXT v ** PROGRAM NUMBER 2 **'
GO 	MOV Rll,RlO

LWPI WR
LI 	RO,>0706
BLWP @VW
LI 	RO,>0390
LI 	R1,>6600
BLWP @VS
LI 	RO,>383
LI 	R1, >1F00

CL 	BLWP @VS
CI 	RO, >038F
JEQ BP
INC R0
JMP CL

BP 	LI 	R0,0
LI 	Rl,BD
LI 	R2,32

BL 	BLWP @VM
CI 	80,736
JEQ EX
AI 	R0,32
JMP BL

EX 	LI 	R0,293
LI 	Rl,Ml
LI 	R2,22
BLWP @VM
CLR @>837C
MOV Rl0,Rll
DECT R11
RT
END

60 	 Introduction to Assembly Language

EDITORIASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on screen and character
displays.

Section 16.1 page 246 through Section 16.1 page 248
Section 21.1 page 325 through Section 21.2.3 page 330
Section 21.7 page 342 through Section 21.7.1 page 342
Section 24.7 page 428

Look up these terms in the glossary:

Character Constant
Character Set
Character String
Color Table
Undisplayable Characters
Utilities
VDP RAM

for the TI Home Computer 	 61

CHAPTER EIGHT
PROCESSING KEYBOARD INPUT
Accepting and processing data entered by the computer user from the keyboard is always an
important program function. The acceptance of keyboard input also implies manipulating the
screen display as well. Whenever you enter data by pressing keys you expect to see the
characters you are typing displayed upon the screen as they are entered. In addition to
entering data, you are accustomed to using special function key combinations to control
operation of the computer.

Several methods of accomplishing this were available to you in TI BASIC. INPUT X is a TI
BASIC statement which can be used to input a numeric value. CALL KEY(X,Y,Z) is another
statement that can detect specific key strokes. These simple TI BASIC commands are capable
of performing tasks which are far more complex than is apparent from the TI BASIC syntax
that invokes them.

The TMS9900 assembly approach to these objectives involves reading from and writing to VDP
RAM and the use of a special routine called the Keyboard Scan Utility. This routine Is
accessed by including a REF KSCAN directive when programming with the Editor/Assembler
or by EQUating the routine's address of >6020 to some 2 character label when using the Line-
By-Line assembler. As with most of the preceeding subroutines dicussed, KSCAN needs to
use the BLWP instruction to activate the utility.

Besides the routine itself, there are also some special addresses you need to know about to
make effective use of KSCAN. The value of the byte at address >8374 controls which
keyboard device is to be scanned. A value of >00 scans the entire keyboard. A value of >01
scans the left side of the keyboard including joystick number one. Values from the joystick are
placed at addresses >8376 (Y value) and >8377 (X value). A value of >02 at address >8374
scans the right side of the keyboard and joystick number two. The values from joystick number
two are placed at the same addresses as number one (>8376,>8377). The normal or default
value at >8374 is >00 (scan entire keyboard). Another address Is >837C, which has been
used before, and Is the address of the GPL status byte. Whenever a key is pressed that Is
different from the key pressed the last time KSCAN was called, bit 2 of the GPL status byte Is
turned on. The value of the key pressed is placed at address >8375. If no key was pressed,
address >8375 contains >FF.

When data is keyed into the computer, you expect to see a cursor on the screen marking the
start of the Input field. As the data is entered, you expect the cursor to move to the right and
the data itself to be displayed where the cursor was. Lastly, if a mistake is made entering the
data, you would like to be able to back up and re-enter data as long as Enter has not been
pressed.

Here Is a fundamental subroutine for accomplishing the above scenario. Its name Is CURSOR.
It assumes that EQUates have been included for KEYADR EQU >8374, KEYVAL EQU >8375,
STATUS EQU >837C and that BYTE directives are Included for ENTERV BYTE >OD, LEFTV
BYTE >08, RITEV BYTE >09, ANYKEY BYTE >20. For Line-By-Line assembler, use DATA
directives such as EV DATA >0D00, LV DATA >0800, etc.

62 	 Introduction to Assembly Language

* "CURSOR" SUBROUTINE. INPUT: R0 = SCREEN ADDRESS OF *
* RESPONSE, R10 = MAX LENGTH OF RESPONSE. OUTPUT: R9 *
* = LAST KEYSTROKE VALUE, R7 = ACTUAL LENGTH OF 	*
* RESPONSE, RESPONSE DATA BEGINS AT R0 FOR A LENGTH *
* OF R7 	 *

01 CURSOR CLR R9
02 MOV R10,R10
03 JEQ SCAN
04 CLR @KEYADR
05 LI R1,>1E00
06 BLWP @VSBW
07 MOV R0,R8
08 A R8,R10
09 MOV R8,R7
10 SCAN CLR @STATUS
11 BLWP @KSCAN
12 CB @ANYKEY,@STATUS
13 JNE SCAN
14 MOV R10,R10
15 JNE ENTCHK
16 RT
17 ENTCHK CB @ENTERV,@KEYVAL
18 JEQ ENTER
19 CB @LEFTV,@KEYVAL
20 JEQ LEFT
21 CB @RITEV,@KEYVAL
22 JEQ RITE
23 C R7,R10
24 JEQ SCAN
25 MOV R7,R0
26 MOVE @KEYVAL,R1
27 MOVE @KEYVAL,R9
28 BLWP @VSBW
29 INC R7
30 CURPUT MOV R7,R0
31 LI R1,>1E00
32 BLWP @VSBW
33 B @SCAN
34 LEFT C R7,R8
35 JEQ SCAN
36 MOV R7,R0
37 LI R1,>2000
38 BLWP @VSBW
39 DEC R7
40 JMP CURPUT
41 RITE C R7,R10
42 JEQ SCAN
43 MOV R7,R0
44 LI R1,>2000

for the TI Home Computer 	 63

45 BLWP @VSBW
46 INC R7
47 JMP CURPUT
48 ENTER LI R1,>2000
49 MOV R7, R0
50 BLWP @VSBW
51 S R8, R7
52 RT

Before dissecting this subroutine, here is how you would use It in your program. Before
performing a BL @CURSOR, place into RO the beginning screen address where you want the
keyed input to appear. Into R10 place the maximum length of the data to be accepted. If you
want to emulate a "PRESS ANY KEY" situation, place a length value of 0 into R10. The
CURSOR routine will return to your program as soon as any key is pressed without capturing
any data at all. Quite often when you want the computer user to respond to a prompt, the
answer to be given is a one digit value. An example of this would be when the user is to
respond "Y" or "N" or pick a number or letter from a menu. CURSOR always places the value
of the last key pressed before Enter was pressed into the left byte of R9. For one digit replies,
the reply value is available in R9 after returning from CURSOR without any moves or other
manipulations. R7 will contain the actual length of the data which was entered. The actual
number of characters keyed in may or may not be the same as the maximum allowable.

01 CURSOR CLR R9
02 	 MOV 	R10 , R10
03 	 JEQ SCAN
04 	 CLR 	@KEYADR
05 	 LI 	R1 ,>1E00
06 	 BLWP @VSBW

Line 1 of CURSOR clears register 9. Lines 2 and 3 check R10 for a value of zero. If a register,
word, or byte is moved to Itself, and the value of the item is zero, then the equal bit is set in
the status register. Line 3 jumps to the label SCAN if R10 is zero. Line 4 clears addresses
>8374 & >8375. The CLR instruction clears (sets to all zeroes) a full word of memory.
Symbolic addresses KEYADR was EQUated to >8374. The CLR instruction clears this byte and
the very next byte (>8375) also. >8375 Is the address of KEYVAL. With one instruction, you
have specified that you want to scan the entire keyboard, and clear any previous key stroke
value. Line 5 loads R1 with the character code for the cursor symbol (>1E). Line 6 writes the
cursor symbol to the screen address you specified in RO before you branched to CURSOR.

07 	 MOV R0, R8
08 	 A 	R8 ,R10
09 	 MOV R8, R7
10 SCAN 	CLR @STATUS

Line 7 saves the beginning cursor address in R8. Line 8 adds the beginning cursor address in
R8 to the field length value in R10,to determine the maximum cursor address. Line 9 moves
The beginning cursor address into R7, which will be used as an accumulator of cursor address

64 	 Introduction to Assembly Language

values. Line 10 clears the GPL status byte. You need to start out with all zeroes in the status
byte in order to detect any keystroke.

11 BLWP @KSCAN
12 CB @ANYKEY, @STATUS
13 JNE SCAN
14 MOV R10,R10
15 JNE ENTCHK
16 RT

Line 11 invokes the Keyboard Scan Utility. Line 12 uses the Compare Bytes (CB) Instruction to
compare the value of the GPL status byte to >20. This Is the value that will be present in the
GPL status byte If any key has been pressed. At line 13 the Jump if Not Equal instruction
completes the comparison by returning to the label SCAN if no key has been pressed. Line 14
checks R10 for zero again by moving it to itself, and if R10 is not equal to zero, it then
proceeds to the label ENTCHK. If R10 is equal to zero, line 16 returns (B * R11) to the calling
program.

17 ENTCHK CB 	@ENTERV, @KEYVAL
18 JEQ ENTER
19 CB @LEFTV, @KEYVAL
20 JEQ LEFT
21 CB @RITEV, @KEYVAL
22 JEQ RITE
23 C R7,R10
24 JEQ SCAN
25 MOV R7, R0
26 MOVE @KEYVAL , R1
27 MOVE @KEYVAL, R9
28 BLWP @VSBW
29 INC R7

CURSOR Jumps to line 17 if some key was pressed and R10 is not equal to zero. The first order
of business Is to determine if any special keys have been pressed. If the user has pressed
Enter, they have finished entering data. The value at >8375 when the Enter key Is pressed Is
>OD. If the user wishes to correct his typing, he may press either the left or right arrow keys
(FCTN S, FCTN D). The key value of the left arrow is >08, and the key value of the right arrow
is >09. Lines 17 through 22 check for these conditions. Line 23 uses the Compare Words
instruction to compare the cursor address accumulator (R7) to the maximum cursor address
(R10). If they are equal, then the maximum allowable length of the data has already been
reached. When this is true, no more data is accepted by CURSOR, and the only key stroke
values CURSOR will accept are Enter or left arrow. If the maximum has not been reached,
lines 25,26, and 27 accept the key data. Line 25 copies the address at which the data will be
displayed from R7 Into RO. Line 26 moves the value of the key stroke into the left byte of R1.
Line 27 saves the key stroke value in R9. Line 28 writes the character code (key stroke value)
to the screen. Line 29 increments R7, which Is the new address of the cursor symbol.

for the TI Home Computer 	 65

30 CURPUT MOV R7, R0
31 	 LI 	R1,>1E00
32 	 BLWP @VSBW
33 	 B 	@SCAN

Line 30 places the new screen address that the cursor will occupy into R0. Lines 31 and 32
write the cursor symbol to the screen. The visual effect is that the cursor has moved one
space to the right, and the character keyed in appears at the previous position of the cursor
symbol. Line 33 branches to the label SCAN to repeat the entire process and form the loop.

34 LEFT C R7,R8
35 JEQ SCAN
36 MOV R7, R0
37 LI R1,>2000
38 BLWP @VSBW
39 DEC R7
40 JMP CURPUT
41 RITE C R7,R10
42 JEQ SCAN
43 MOV R7, R0
44 LI R1,>2000
45 BLWP @VSBW
46 INC R7
47 JMP CURPUT
48 ENTER LI R1,>2000
49 MOV R7, R0
50 BLWP @VSBW
51 S R8, R7
52 RT

Lines 34 through 52 detail the actions to be taken when one of the special keys is pressed.
LEFT moves the cursor to the left and fills the field with blanks. Line 34 checks to see if the
current cursor address (R7) is already at the minimum value (beginning cursor address). if the
cursor is as far left as it can go, no action can be taken. RITE does just the opposite of LEFT.
ENTER is the label the program jumps to when it is determined that the user has pressed
Enter, signaling an end to the input of data. Lines 48,49, and 50 remove the cursor from its last
known screen position. Line 51 uses the Subtract words instruction. The contents of R8 are
subtracted from the contents of R7, and the answer is placed in R7. This action subtracts the
beginning cursor address (R8) from the last cursor address (R7). The difference between the
two Is the actual length of the data which was keyed in. The RT instruction at line 52 returns
to the calling program.

Suppose that a particular application requires that the computer user enter their full name.
The maximum length of data that will be accepted has been determined to be 30 letters (30
bytes). It has also been determined that the data Is to be accepted at row 10, column 1. Here
are the program segments which prompt and accept this data.

66 	 Introduction to Assembly Language

PROMPT TEXT 'ENTER FULL NAME '

.
LI 	R0,256 	PUT UP PROMPT MESSAGE AT
LI 	R1,PROMPT ROW 9, COLUMN 1
LI 	R2,16
BLWP @VMBW
LI 	R0,288 	ROW 10, COLUMN 1
LI 	R10,30 	LENGTH OF DATA
BL 	@CURSOR GET THE DATA

At this point, the name entered is displayed on the screen beginning at row 10, column 1, and
resides in VDP RAM at addresses 288 through 317, providing that the actual data length Is 30.
To make use of this data in the program, you need to get it from VDP RAM into the program.
To accomplish this, you will need the VDP Multiple Byte Read routine (VMBR). Alternatively,
you might also want to use the VDP Single Byte Read (VSBR). These routines operate much
the same as VMBW and VSBW do. The only difference is the direction in which the data
moves. A read moves data from outside the program into the program. A write moves data
from within the program to some point outside the program, such as VDP RAM. The same
registers are used for the same parameters. RO is used for the VDP RAM address. R1 and R2
regulate the CPU RAM addresses. To use VMBR and VSBR, a REF directive must be Included
when using the Editor/Assembler, or the addresses of the routines must be EQUated to some
two character label when using the Line-By-Line assembler. VSBR = >602C, VMBR = >6030.
Here are the TMS9900 assembly language instructions to use the name data somewhere in the
program:

NAME BSS 30 	SET ASIDE TEMP. STORAGE FOR NAME

LI 	R0,288 	LOAD R0 WITH THE VDP RAM ADDRESS
LI 	R1,NAME 	LOAD R1 WITH THE CPU RAM ADDRESS
LI 	R2,30 	LOAD R2 WITH THE DATA LENGTH

(assuming fixed length of 30 bytes)
BLWP @VMBR 	PERFORM VDP MULTIPLE BYTE READ

Remember that all data looks the same to the computer. Everything is represented as a binary
expression. When programming in assembly language, you must decide how data is to be
interpreted. If a byte of memory contains the value >41, you must decide whether it means
ASCII for "A", or if the value is to be treated as purely numeric (sixty five). INPUT X In TI
BASIC will only let you enter a numeric string; anything else Is rejected. In assembly language,
you must provide for testing the input data to see if It is numeric and for rejecting it if it is not.
Since the CURSOR routine will accept variable length data, you must also decide if variable
length input is allowed or if the data must be fixed length.

Try retrieving a numeric string from the user at the keyboard. To simplify this example, it is
required that the number be exactly four digits and a whole number or all zeroes.

for the TI Home Computer 	 67

PROMPT TEXT 'ENTER A 4 DIGIT NUMBER' 	DEFINE PROMPT MESSAGE

NMTEST DATA >3039 	LABEL NMTEST CONTAINS >30, ASCII FOR "0",

AND >39, ASCII FOR "9"

NUMBER BSS 4 	 TEMP. STORAGE FOR THE NUMBER

.
GETNUM LI 	R0,256 	SCREEN ADDRESS FOR PROMPT - ROW 9, COL I

LI 	R1,PROMPT ADDRESS OF THE PROMPT

LI 	R2,22 	LENGTH OF THE PROMPT

BLWP @VMBW 	DISPLAY THE PROMPT

LI 	R0,288 	SCREEN ADDRESS OF REPLY TO PROMPT

LI 	R10,4 	MAXIMUM LENGTH OF REPLY

BL 	@CURSOR 	GET THE REPLY

C 	R7,4 	IF ACTUAL LENGTH OF REPLY IS NOT 4,REPEAT

JNE GETNUM 	THE PROMPT AND TRY AGAIN

LI 	R0,288 	ADDRESS OF REPLY

LI 	R1,NUMBER WHERE TO PUT REPLY

LI 	R2,4
	

LENGTH OF REPLY

BLWP @VMBR
	

READ THE REPLY FROM VDP RAM INTO CPU RAM

CLR R3
	

SET R3 TO ZERO

TEST 	CB 	@NUMBER(R3),@NMTEST COMPARE BYTE AT "NUMBER" PLUS

VALUE OF R3 TO BYTE AT ADDRESS NMTEST

1ST TIME THROUGH, R3=0 THUS NUMBER+0.

BYTE AT NMTEST = >30 OR "0". IF BYTE

AT NUMBER + R3 IS LESS THAN >30, IT

CANNOT BE A VALID ASCII NUMERIC. GO TO

JLT GETNUM 	GETNUM, TRY AGAIN.

68 	 Introduction to Assembly Language

CB 	@NUMBER(R3),@NMTEST+1 COMPARE BYTE AT NUMBER PLUS

R3 TO BYTE AT NMTEST+1. BYTE AT

NMTEST+1 = >39 OR "9". IF BYTE

AT NUMBER + R3 IS GREATER THAN >39, IT

JGT GETNUM 	CANNOT BE A VALID NUMERIC EITHER.

INC R3 	 ADD 1 TO R3

CI 	R3,R7 	COMPARE R3 TO R7 (R7 CONTAINS 4)

JNE TEST 	IF R3 IS NOT EQUAL TO R7, THEN NOT

DONE. GO BACK AND PERFORM TEST LOOP

AGAIN.

If the check for a length of 4 is replaced by a check for a length of zero, then these
instructions will work for variable length data. Example:

MOV 	R7,R7

JEQ GETNUM

Now a 4 digit string has been retrieved. The actual values in the string are ASCII codes for
numerals. The sequence of the numeric symbols represent a decimal number. If you want to
use the value of this response for any kind of arithmetic anywhere In the program, it must be
converted to a binary value. Here is a sequence of TMS9900 assembly language instructions to
do just that. This routine will only work for values up to 65,535 decimal, the maximum value of
a word of memory. To use this routine in a program, place the numeric string into NUMBER,
place the length of the string into R4, and perform a BL caCONVRT. The answer will be in R5
upon completion of the routine in binary integer format. If the number to be converted is too
large, R5 is set to all zeroes. This routine assumes that you are passing a valid numeric string
to it. Therefore, you must check for ASCII numeric symbols before performing this routine in
order to get a meaningful result.

DTEN 	DATA >000A

NUMBER BSS 6

• •
• •

01 	CONVRT CLR R0
02 	 CLR R1

for the TI Home Computer 69

03 CLR R3
04 CLR R5
05 MOVN DEC R4
06 MOVB @NUMBER (R4) ,R2
07 SRL R2,8
08 AI R2,—>30
09 MOV R0,R0
10 JNE EXP
11 LI R0,1
12 JMP ACCUM
13 EXP MPY @DTEN , R0
14 MOV R1,R0
15 MPY R1,R2
16 MOV R3,R2
17 ACCUM A R2,R5
18 JNO NEXT
19 CLR R5
20 RT
21 NEXT MOV R4, R4
22 JNE MOVN
23 RT

Here Is how this routine performs the ASCII to binary conversion and some new instructions
as well. To help in explaining the logic of the routine, assume that the number to be converted
is decimal 234. Internally, the value at address "NUMBER" can be represented by a series of
hexadecimal numbers each of which represents a byte. R4 contains a value of 3, the length of
the string.

I 	I
>341>001
	 1 	I

1
1 NUMBER+3

>33

	NUMBER+2

	NUMBER+1

NUMBER+0

01 	CONVRT CLR R0
02 	 CLR R1
03 	 CLR R3
04 	 CLR R5
05 MOVN 	DEC R4
06 	 MOVB @NUMBER (R4) ,R2
07 	 SRL R2,8
08 	 AI 	R2,—>30

>32

70 	 Introduction to Assembly Language

Lines 1 through 4 clear the registers which will be used in the routine. Line 5 DECrements
(subtracts 1 from) R4. R4 contains the string length. Line 6 accesses the low order digit by
using the base address of NUMBER plus the proper displacement. The string is comprised of 3
digits, and the displacement values of the digits going from high order to low order are 0, 1, 2.
The displacement value for the last byte in a given series of bytes is always the number of
bytes minus one, in this case, 3 - 1 = 2. "MOVN" is the label which will be used to create a
loop. The first time through the loop, line 6 moves the low order byte (NUMBER plus the value
In R4, NUMBER + 2) to R2. R2 now contains >3400. Line 7 performs a Shift Right Logical on
R2 of 8 positions. R2 now contains >0034. Line 8 uses the Add Immediate instruction to strip
off the >30 mask. By using an immediate value of —>30, the actual affect of this Al
instruction is subtraction.

09 MOV RO, R0
10 JNE EXP
11 LI R0,1
12 JMP ACC UM

Register 2 now contains >0004. Since the number sequence is a decimal number, you must
multiply each digit by the power of ten which corresponds to its position in the sequence. The
low order position of a decimal number represents units of 1. The first digit you have
extracted multiplied by 1 would be equal to itself. Therefore, the low order digit can be used as
It is. Line 9 moves RO to itself so that line 10 can check RO for a value of zero. JNE stands for
Jump if Not Equal. The first time through, RO is equal to zero, and the JNE instruction at line
10 has no effect. Line 11 Loads Immediate RO with a value of 1. Line 12 performs an
unconditional Jump to the label ACCUM.

17 ACCUM A R2, R5
18 JNO NEXT
19 CLR R5
20 RT
21 NEXT MOV R4, R4
22 JNE MOVN
23 RT

Continuing with the first time through, line 17, ACCUM, Adds the contents of R2 to R5. Should
the value in R5 (which is being used as an accumulator for this routine) become too great to fit
in R5, the overflow bit will be set in the status register. Line 18 checks for this condition with
the Jump if No Overflow instruction. As long as the overflow bit is not set, instruction logic
continues at the label NEXT. If the overflow bit is set, then the next two instructions clear R5
and return to the calling program. At line 21, NEXT moves R4 to itself. Line 22 checks R4 for a
value of zero by testing the equal bit in the status register. If R4 is equal to zero at this point
in the logic of the subroutine, the subroutine's task is done and line 23 returns to the calling
program address. The first time through, R4 is equal to 2, and the routine Jumps to the label
MOVN.

The second pass through the routine takes a slightly different course. R4 is DECremented to 1.
Line 6 moves the next byte of the number (>33) to R2. R2 is shifted right 8 positions to
become >0033, and the >30 mask is removed giving >0003. RO now contains 1, so line 10
triggers a Jump to the label EXP at line 13.

for the TI Home Computer 	 71

13 	EXP 	MPY @DTEN,P0
14 	 MOV R1,P0
15 	 MPY R1,R2
16 	 MOV R3,R2

Line 13 uses the multiply (MPY) instruction to calculate the power of ten which corresponds to
the relative position of the decimal digit. The MPY instruction multiplies the first and second
operands (which must name a register). The MPY instruction uses two successive registers
just as the DIV Instruction does. Like DIV, usage of the second register is implied, meaning
that the additional register is not specified anywhere in the instruction. In the example, DTEN
Is multiplied by the contents of RO, and the result ends up in R1 because R1 is the next
register after RO. Now examine the contents of the locations involved.

Before the MPY:
	

DTEN 	 R0 	R1

	

>000A 	>0001 	>0000

After the MPY:

	

>000A
	

>0000 	>000A

Should the result of an MPY instruction be larger than one word, the result will continue on
into the named register. In this example, register 0 would contain the most significant bits and
register 1 would contain the least significant bits. The MPY instruction does not affect the
status register.

Line 14 moves the answer of ten, which is in R1, into RO. This is done to prepare RO for the
next loop. On each pass through the loop, RO will be mutiplied by ten. In this way, the
contents of R1 will be equal to the power of ten needed for each decimal position (1, 10, 100,
1000, etc). Remember that a move merely copies the contents of one location to another. The
contents of R1 are still intact. At line 15, the value In R2, which is the numeral being converted
(>0003) is multiplied by the value in R1 (the power of ten for the position of this numeral.)
Here is the effect of the MPY instruction at line 15.

R1 	 R2 	R3
Before the MPY:

>000A 	 >0003 	>0000

After the MPY: 	>000A 	 >0000 	>001E

The result ends up in R3, the next available register after R2, which was the register named in
the second operand of the MPY instruction. Line 16 moves the answer to R2. This is done
because line 17, ACCUM, expects the value that Is to be added to R5 to be In R2.

The loop is repeated one more time to extract the high order digit. This digit represents units

72 	 Introduction to Assembly Language

of 10 or 100. The number extracted is 2. Multiplied by 100, it equals 200. Adding it to R5 by
ACCUM brings the total value in R5 to >00EA, or 234 decimal. The value In R5 can now be
used for any arithmetic that might be needed.

You do not need to use an extensive routine like CURSOR in your program to interact with
keyboard input or to make good use of a utility like KSCAN. In the first two program examples,
the return address was altered in order to allow you to view the results of the program. Now
that you know about KSCAN, here is a more proper way to end a program. The return address
Is unaltered, and In order to create a pause, KSCAN is used to detect the pressing of any key.
The program will wait until some key is pressed and then end. Here are the program segments
to do this:

EOJ
SCAN

CLR 	@STATUS 	CLEAR THE GPL STATUS BYTE
BLWP @KSCAN 	PERFORM KEYBOARD SCAN
MOVB @STATUS,@STATUS COMPARE THE GPL STATUS BYTE TO >00
JEQ 	SCAN 	IF NO KEY WAS PRESSED, SCAN AGAIN
MOV @SAVRTN,R11 MOVE RETURN ADDRESS TO R11
CLR 	@STATUS 	CLEAR THE GPL STATUS BYTE
RT 	 RETURN VIA R11

Another application of KSCAN would be the detection of special key stroke values like Clear
or Quit. Remember that while your TMS9900 assembly language program is running, it is in
complete control of the computer. In order for the computer user to abort the program, the
program must provide for the detection of such a command. Since these types of key strokes
do not represent any displayable data, there is no need for a routine like CURSOR. Depending
on how you program the actions to be taken for the various control values, your computer can
respond to these commands accordingly. Here are the program segments to detect Quit
(FCTN =).

QUITV BYTE

.
SCAN CLR

BLWP
MOVB
JEQ
CB
JEQ
RT

>05

@STATUS 	CLEAR THE GPL STATUS BYTE
@KSCAN 	PERFORM KEYBOARD SCAN
@STATUS,@STATUS SEE IF A KEY HAS BEEN PRESSED
SCAN 	IF NOT, SCAN AGAIN
@QUITV,@KEYVAL SEE IF "QUIT" WAS PRESSED
ABORT 	IF IT WAS, GO TO END OF JOB

IF NOT, RETURN

Important: Before you abort a program, make sure you close any opened files and clean up any
other "loose ends."

The usual response to pressing Quit while operating under Ti BASIC, Extended BASIC and
most utilities is for the computer to return to the main title screen. Here are the program
segments to accomplish this.

for the TI Home Computer 	 73

GPLWS 	EQU 	>83E0

.
ABORT 	LIMI 2 	ENABLE INTERUPTS

LWPI GPLWS 	LOAD GPL WORKSPACE REGISTERS
BLWP @>0000 BRANCH THROUGH THE VECTOR >0000

The LIMI instruction stands for Load interrupt Mask immediate and Is used to enableldisable
an interrupt. LIMI 0 (interrupts disabled) is the normal state of the computer. The instruction
places the least significant 4 bits of the contents of the immediate operand in the interrupt
mask of the status register. Without interrupts, the CPU processes one instruction or piece of
data after another. This processing sequence occurs at a steady pulse. Certain operations
require that you interrupt this orderly process, usually to allow for differences In speed
between the various microprocessors which make up the computer. LIMI 2 enables interrupts
at levels 0, 1, and 2. Since the branch through >0000 returns to the main title screen by way of
the GPL resident routine, it Is necessary to have the WP register pointing to the workspace
used by GPL

Here Is a chart which gives the key stroke values for the FCTN key and numeric key
combinations.

COMBINATION NAME

KEY STROKE

DECIMAL

VALUE

HEXADECIMAL

FCTN 1 DELETE 03 >03
FCTN 2 INSERT 04 >04
FCTN 3 ERASE 07 >07
FCTN 4 CLEAR 02 >02
FCTN 5 BEGIN 14 >OE
FCTN 6 PROCEED 12 >0C
FCTN 7 AID 01 >01
FCTN 8 REDO 06 >06
FCTN 9 BACK 15 >OF
FCTN 0 188 >BC
FCTN = QUIT 05 >05

Here is a sample program which demonstrates some of the KSCAN principles. The border
graphics and prompts use the same logic as the sample program In Chapter Seven. When the
program Is run, any key you press will result In the character being displayed (providing it is
displayable), and the decimal value for the key or key combination is displayed also. The next
prompt will only accept REDO or ESCAPE. REDO repeats the entire sequence, and ESCAPE
will return to the main title screen. You can use this program to find the value for any key
stroke or combination.

74 	 Introduction to Assembly Language

The routine FIGUR uses the same logic as the first sample program to convert binary to
displayable ASCII. FIGUR uses a loop to allow it to process any number that will fit into a
single register. FIGUR handles both the conversion and the display of the value.

KEYBOARD INPUT PROGRAM EXAMPLE
*EDITOR/ASSEMBLER VERSION 	*

DEF GO 	 DEFINE THE ENTRY POINT
REF VWTR,VSBW,VMBW,KSCAN 	REF ROUTINES TO BE USED

WR 	BSS >20 	 SET ASIDE ALT. WORKSPACE
STATUS EQU >837C 	 GPL STATUS BYTE
KEYADR EQU >8374 	 KEYBOARD DEVICE ADDRESS
KEYVAL EQU >8375 	 KEYSTROKE VALUE ADDRESS
DTEN 	DATA >A 	 DECIMAL TEN
BORDER DATA >FFFF,>2020,>2020,>2020 DEFINE BORDER PATTERN

DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>FFFF

MSG1
	

TEXT '** PRESS ANY KEY 	*lc' DEFINE 1ST PROMPT
MSG2
	

TEXT 1 * KEYSTROKE VALUE IS *' DEFINE 2ND PROMPT
MSG3
	

TEXT 1 * PRESS REDO/ESCAPE *' DEFINE 3RD PROMPT
REDOV
	

BYTE >06 	 "REDO" VALUE
ESCPV
	

BYTE >0F 	 "ESCAPE" KEY VALUE
SAV11
	

BSS 2
GO
	

MOV R11,@SAV11
	

SAVE RETURN ADDRESS
LWPI WR
	

LOAD WORKSPACE POINTER IMMEDIATE
LI 	R0,>070D
	

SET BACKGROUND BORDER TO MAGENTA
BLWP @VWTR
LI 	R0,>039F
	

SET BORDER CHARACTER TO MAGENTA
LI 	R1,>DD0O
BLWP @VSBW
LI 	R0, >380
	

SET CHARACTERS TO BLACK ON WHITE
LI 	R1,>1F00

CLOOP 	BLWP @VSBW
CI 	R0,>039E
JEQ BPUT
INC RO
JMP CLOOP

BPUT 	LI 	R0,0
	

LOAD BORDER PATTERN
LI 	R1,BORDER
LI 	R2,32

BLOOP BLWP @VMBW
CI 	R0,736
JEQ EXIT
AI 	R0,32
JMP BLOOP

EXIT 	LI 	R0,261
	

PUT UP 1ST PROMPT
LI 	R1,MSG1
LI 	R2,22
BLWP @VMBW

for the TI Home Computer 	 75

CLEAR KEYADR & KEYVAL
CLEAR GPL STATUS BYTE
PERFORM KSCAN
SEE IF ANY KEY WAS PRESSED
IF NOT, SCAN AGAIN
PUT UP 2ND PROMPT

CLR @KEYADR
SCAN1 	CLR @STATUS

BLWP @KSCAN
MOVB @STATUS,@STATUS
JEQ SCAN1
LI 	R0,325
LI 	R1,MSG2
BLWP @VMBW
LI 	R0,395
MOVB @KEYVAL,R1
BLWP @VSBW
MOVB @KEYVAL,R4
SRL R4,8
LI 	R3,404
LI 	R0,406
BL 	@FIGUR
LI 	R0,485
LI 	R1,MSG3
LI 	R2,22
BLWP @VMBW

SCAN2 CLR @STATUS
BLWP @KSCAN
MOVB @STATUS,@STATUS
JEQ SCAN2
CB 	@KEYVAL,@ESCPV
JEQ ESCAP
CB 	@KEYVAL,@REDOV
JNE SCAN2
B 	@BPUT

FIGUR 	MOV R4,R5
CLR R4
DIV @DTEN,R4
AI 	R5,>30
SLA R5,8
MOV R5,R1
BLWP @VSBW
DEC RO
C 	RO,R3
JHE FIGUR
RT

ESCAP CLR @STATUS
MOV @SAV11,R11
RT
END

DISPLAY THE KEYED CHARACTER

DISPLAY THE DECIMAL VALUE OF THE
CHARACTER

PUT UP 3RD PROMPT

PERFORM KSCAN AGAIN

ESCAPE OR REDO PRESSED?
IF ESCAPE, GO TO ESCAP

IF REDO, GO TO BPUT
ROUTINE TO CONVERT INTERNAL VALUE
TO DISPLAYABLE DECIMAL NUMERICS
INPUT:R4=VALUE,R3=1ST SCREEN
ADDRESS OF ANSWER,RO=LAST SCREEN
ADDRESS

CLEAR THE STATUS BYTE
RETURN

To try out this program using the Line-by-Line assembler, observe the coding differences
previously outlined for the Editor/Assembler and Line-by-Line assembler products in Chapter
Five. Here is the listing for use with the Line-by-Line assembler:

76 	 Introduction to Assembly Language

* KEYBOARD INPUT PROGRAM EXAMPLE *
* MINI-MEMORY VERSION 	 *
* *

AORG >7DOC
VW
	

EQU >6034
VS
	

EQU >6024
VM
	

EQU >6028
KS
	

EQU >6020
WR
	

BSS >20
DT
	

DATA >A
BD
	

DATA >8080,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>2020
DATA >2020,>2020,>2020,>8080

M1
	

TEXT '** PRESS ANY KEY 	**I
M2
	

TEXT '* KEYSTROKE VALUE IS *'
M3
	

TEXT '* PRESS REDO/ESCAPE *'
EV
	

DATA >0F00
RV
	

DATA >0600
GO
	

MOV R11,R10
LWPI WR
LI 	R0,>0706
BLWP @VW
LI 	R0,>390
LI 	R1,>6600
BLWP @VS
LI 	R0,>383
LI 	R1,>1F00

CL
	

BLWP @VS
CI 	R0,>38F
JEQ BP
INC R0
JMP CL

BP
	

LI 	R0,0
LI 	R1,BD
LI 	R2,32

BL
	

BLWP @VM
CI 	R0,736
JEQ EX
AI 	R0,32
JMP BL

EX
	

LI 	R0,261
	

PUT UP 1ST PROMPT
LI 	R1,M1
LI 	R2,22
BLWP @VM

S 1
	

CLR @>837C
	

CLEAR GPL STATUS BYTE
BLWP @KS N
	

PERFORM KSCAN
MOVB @>837C,@>8 37C SEE IF ANY KEY WAS PRESSED
JEQ S1
	

IF NOT, SCAN AGAIN
LI 	R0,325
	

PUT UP 2ND PROMPT
LI 	R1,M2

for the TI Home Computer 	 77

BLWP @VM
LI 	R0,395
MOVB @>8375,R1
BLWP @VS
CLR R4
MOVB @>8375,R4
SRL R4,8
LI 	R3,404
LI 	R0,406
BL 	@FG
LI 	R0,485
LI 	R1,M3
LI 	R2,22
BLWP @VM

S2 	CLR @>837C
BLWP @KS
MOVB @>837C,@>837C
JEQ S2
CB 	@>8375,@EV
JEQ ES
CB 	@>8375,@RV
JNE S2
B @BP

FG 	MOV R4,R5
CLR R4
DIV @DT,R4
AI R5,>30
SLA R5,8
MOV R5,R1
BLWP @VS
DEC RO
C 	RO,R3
JHE FG
B *11

ES 	CLR @>837C
MOV R10,R11
B *11
END

DISPLAY THE KEYED CHARACTER

DISPLAY THE DECIMAL VALUE OF THE
CHARACTER

PUT UP 3RD PROMPT

PERFORM KSCAN AGAIN

"ESCAPE" OR "REDO" ?
IF ESCAPE, GO TO ESCAP

IF REDO, GO TO BPUT
ROUTINE TO CONVERT INTERNAL VALUE
TO DISPLAYABLE DECIMAL NUMERICS
INPUT:R4=VALUE,R3=1ST SCREEN ADDRESS
OF ANSWER,RO=LAST SCREEN ADDRESS

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with some more Information on processing keyboard
Input.

Read: Section 10.2 page 164
Section 16.2 page 250
Section 16.3 page 264 through Section 16.3.1 page 264
Section 24.11 page 440 through Section 24.11.3 page 442

78 	 Introduction to Assembly Language

Look up these terms in the glossary:

ASCII
Console
Interrupt Mask Bits

for the TI Home Computer 	 79

CHAPTER NINE
FILE HANDLING
The creation, reading, and updating of data files through TMS9900 assembly language is
another important function which involves VDP RAM. File specifications describing a file's
record length, length format, data and file format, and mode of operation are accumulated in a
block of memory known as a Peripheral Access Block (PAB). The PAB details all the
information required by the computer to recognize and access the files you want. The reading,
writing and updating of file data is handled by resident routines called DSRs, Device Service
Routines. File management is implemented through TMS9900 assembly language by
manipulating data within the PAB for a file and making the PAB data available to the correct
DSR.

When programming in TI BASIC, you supplied all of the parameters about a file in the OPEN
statement, which opened the file and specified how the file was to be used, input, output,
update or append. The file was then accessed within the program by INPUT or PRINT
statements. When you were finished with the file, it needed to be closed. These four file
functions, defining the file, opening the file, reading from or writing to the file, and closing the
file, are always required of any programming language. TMS9900 assembly language requires
a few more lines of code to accomplish the same result than TI BASIC does, but file handling
generally is not very complex.

The first step is to define the file characteristics to the computer. The bytes of data which
make up the PAB define the key parameters of the file. The actual number of bytes which
make up a PAB is variable, depending on the device/file name selected. The first byte (the zero
byte) of the PAB instructs the Device Service Routine as to what operation you wish to perform
(open, read, write, close, etc.) The initial setting of this byte for most files would be >00, or
open. Here are the available op-codes for PAB byte zero.

VALUE 	OPERATION

>00 	OPEN
>01 	CLOSE
>02 	READ
>03 	WRITE
>04 	RESTORE/REWIND
>05 	LOAD
>06 	SAVE
>07 	 DELETE FILE
>09 	STATUS

Op-code >08 (scratch record) is generally not used by the TI 99/4 or 99/4A because the disk
controller does not allow a record to be scratched.

The next PAB byte (the 1 byte) controls several functions. Depending on which bits are set on
or off, it defines the file's open mode (input, output, update), record type (fixed, or variable

80 	 Introduction to Assembly Language

length), the type of data to be contained (display or internal format), and whether the file Is to
be processed sequentially or by random access (relative files). All of these parameters are
defined by various combinations of bits 3 through 7 of the 1 byte. Bits 0,1,and 2 are used to
report various error conditions as they occur. The Initial setting of bits 0,1, and 2 should
always be zeroes (no errors). Here is a summary of PAB byte 1 values and their meanings.

PAB BYTE 1 VALUES AND MEANINGS

RELATIVE FILES — ALL RELATIVE FILES ARE FIXED LENGTH

>01 	UPDATE, DISPLAY
>03 	OUTPUT, DISPLAY
>05 	INPUT, DISPLAY
>09 	UPDATE, INTERNAL
>0B 	OUTPUT, INTERNAL
>0D 	INPUT, INTERNAL

SEQUENTIAL FILES

>02 	OUTPUT, FIXED, DISPLAY
>04 	INPUT, FIXED, DISPLAY
>06 	APPEND, FIXED, DISPLAY
>0A 	OUTPUT, FIXED, INTERNAL
>0C 	INPUT, FIXED, INTERNAL
>0E 	APPEND, FIXED, INTERNAL
>12 	OUTPUT, VARIABLE, DISPLAY
>14 	INPUT, VARIABLE, DISPLAY
>16 	APPEND, VARIABLE, DISPLAY
>1A 	OUTPUT, VARIABLE, INTERNAL
>1C 	INPUT, VARIABLE, INTERNAL
>1E 	APPEND, VARIABLE, INTERNAL

Bytes 2,3 (1 word) contain the address in VDP RAM which is to be used as a buffer (temporary
storage space) for each record as it is read or written. Byte 4 defines the logical record length
In bytes. For variable length records this value is the maximum length. The largest value that
can be defined using one byte is > FF or 255. Byte 5 defines the number of bytes to be written
for a write operation, or the actual number of bytes read for a read operation. For fixed length
records PAB byte 4 and 5 should be set equal when writing, and will always be equal when
reading. For variable length records PAB byte 5 can be tested to determine the actual record
length on a read and can be dynamically changed for each write. The value in PAB byte 5 can
never be greater than the logical, or maximum record length. PAB bytes 6,7 (1 word) are only
used for relative (random access) files. This word contains the relative record number to be
accessed. The most significant bit of this word is ignored so that the range of possible values
Is from zero (the first record on a relative file) to 32,767. Byte 8 Is only used for files to be
stored on a cassette tape device. The value in this byte is the amount of screen offset (>60 In
BASIC, >00 in assembly). The cassette DSR needs this value for the screen prompts it must
display for operation of the cassette recorder. Byte 9 indicates the length of the file descriptor
which begins In byte 10. The file description can be of variable length. This is where you would

for the TI Home Computer 	 81

place the file/device name you have chosen for the file ("CS1", "DSK1.FILE",
"RS232.BA= 300", etc.). Since the actual length of this entry will vary depending on the device
selected, the computer needs the length of this data in byte 9. Here is a PAB as it would be
coded in a TMS9900 assembly program:

OPERATION: >00 = OPEN

FILE TYPE: >12 = OUTPUT,
VARIABLE, DISPLAY,
SEQUENTIAL

BUFFER ADDRESS IN VDP RAM
(SYMBOLIC OR ACTUAL)

RECORD LENGTH: >50 (80)

CHARACTER COUNT

RELATIVE RECORD NUMBER

CASSETTE SCREEN OFFSET
I 	T
I 	1 	FILE DESCRIPTOR

I I —LENGTH
PAB 	DATA >0012, BUFADR, >5000, >0000, >000A

FILE DESCRIPTOR
I
I
I

TEXT 'DSK1.FILE1'

THIS DESCRIPTOR IS >0A
(10) CHARACTERS LONG

PABs are coded in your program and then placed Into VDP RAM with a routine such as VMBW.
VDP RAM is used by all DSRs for PABs and buffer space. Since there are many important
tables and other data In VDP RAM, only certain areas should be used for PABs and buffers.
The first free address in VDP RAM normally used for PABs Is >F80. This address actually
overlaps the end of the pattern descriptor table, but the character codes >F0 through >FF are
not defined as displayable, so this usually does not cause any problems. VDP RAM free space
extends through VDP RAM address >37D6. This represents a considerable amount of space
for PAB and buffer needs. Be careful to use this space for only these functions. Where
multiple files are to be used, enough space must be allocated between PABs and buffers to
insure file data integrity. Here are the program segments which establish a PAB and buffer.

82 	 Introduction to Assembly Language

BUFADR 	EQU 	>1000 VDP RAM ADDRESS FOR RECORD BUFFER
PABADR 	EQU >0F80 VDP RAM ADDRESS FOR PAB
PAB 	DATA >0012, BUFADR , >5000, >0000, >0009

TEXT ' DSK1. FILE '

LI 	R0, PABADR
LI 	R1, PAB
LI 	R2,20
BLWP @VMBW

Once the PAB and buffer for a file have been established, the actual access Is accomplished
via the Device Service Routine (DSR). By pointing to the PAB (file definition) to be accessed,
manipulating byte zero of the PAB (operation), and branching to the DSR, the file can be
opened, read from, written to, closed, etc. The DSR for all peripherals except cassette is
accessed by including a REF DSRLNK in your program when using the Editor/Assembler, or by
EQUating the address >6038 to some 2 character label when using the Line-by-Line
assembler. The cassette DSR is a GPL (Graphics Programming Language) routine located in
GROM (Graphics Read Only Memory). Cassette file handling and DSRs will be covered later
on. The pointer needed by DSRLNK is the address of the file descriptor byte. This value must
be placed in the word at address >8356. For the above example:

LI 	R6, PAB+9
MOV 	R6,@>8356

DSRLNK is then invoked with a BLWP instruction. DSRLNK also needs the value 8 passed to it
to complete the instruction.

BLWP @DSRLNK
DATA 8

The same DSRLNK instruction is used for any operation on any file except cassettes. The
actual operation performed on the file by each BLWP to DSRLNK (open, read, etc.) depends on
the value in PAB byte zero. The file to be accessed depends on the value you place at >8356.
DSRLNK will determine if the file characteristics match the device, and if the operation
requested is compatible with the device/file characteristics. Errors of this kind as well as end
of file (disk), and other processing conditions are detected by DSRLNK and are reported in
BITS 0,1,2 of PAB byte 1. Assuming no errors occur during file processing, DSRLNK handles
ail aspects of the process, such as updating the catalog entries for a disk file. Your TMS9900
assembly language program must check for error conditions and provide for some action to be
taken as a result. When errors do occur, the equal bit in the status register is set (1). If no
errors occur, the equal bit in the status register is reset (0).

for the TI Home Computer 	 83

If the device you have selected is either RS232 or TP (Thermal Printer), you must save the
GROM read and GROM write addresses before each BLWP @DSRLNK, and restore them
afterwards. The DSRs for these devices render these addresses indeterminate. Here are the
program segments to save and restore these addresses.

REF GRMRA
REF GRMWA

.
SAVADR BSS 2

.
MOVB @GRMRA,@SAVADR 	GET FIRST BYTE OF ADDRESS
NOP
MOVB @GRMRA,@SAVADR+1 GET SECOND BYTE
DEC @SAVADR 	 DECREMENT THE ADDRESS

.
BLWP @DSRLNK 	 ACCESS PERIPHERAL
DATA 8

.
MOVB @SAVADR,@GRMWA 	RESTORE FIRST BYTE OF ADDRESS
NOP
MOVB @SAVADR+1,@GRMWA RESTORE SECOND BYTE OF ADDRESS

In the above example, the pseudo instruction "NOP" is used to allow a time delay between
accesses to the GROM addresses. NOP performs no function, but it takes up as much time as
a real instruction would. NOPs can be useful in this way when there are timing considerations
which dictate that your TMS9900 assembly program idle while a slower area of the computer
catches up.

Here is a program example of sequential file access. The input file contains variable length 80
character records in display format. Each record contains a first name with a maximum length
of 14 characters and a last name. The actual length of the last name field (and therefore the
record) is variable, although the first character of last name must begin in position 15. This
program reads the file of names and selects the third record on the file. The first and last
names of the third record are then displayed.

0001 DEF BEGIN
0002 REF DSRLNK, VSBW, VMBW, VMBR, VSBR
0003 STATUS EQU >837C 	GPL STATUS BYTE ADDRESS
0004 POINTR EQU >8356 	DSR POINTER ADDRESS
0005 BUFADR EQU >1000 	VDP RAM ADDRESS FOR RECORD BUFFER
0006 PABADR EQU >F80 	VDP RAM ADDRESS FOR PAB
0007 READ BYTE >02 	"READ" 	OP—CODE
0008 CLOSE BYTE >01 	"CLOSE" OP—CODE
0009 EOF DATA 0 	 END OF FILE FLAG

84 Introduction to Assembly Language

0010 PAB DATA >0014,BUFADR,>5000,>0000,>000A 	PAB DATA
0011 TEXT 'DSK2.FILE1'
0012 ERRMSG TEXT 'I/O ERROR=' DSR ERROR MESSAGE
0013 CPUBUF BSS 80 CPU RAM RECORD BUFFER ADDRESS
0014 FNAME EQU CPUBUF FIRST NAME ADDRESS
0015 LNAME EQU CPUBUF+14 LAST NAME ADDRESS
0016 LEN BSS 2 ACTUAL RECORD LENGTH WORKSPACE
0017 RETURN BSS 2 SAVE RETURN ADDRESS AREA
0018 WR BSS >20 WORKSPACE REGISTERS
0019 BEGIN MOV R11,@RETURN SAVE RETURN ADDRESS
0020 LWPI WR LOAD WORKSPACE POINTER
0021 LI RO,PABADR VDP RAM ADDRESS FOR PAB
0022 LI R1,PAB CPU RAM ADDRESS OF PAB DATA
0023 LI R2,20 LENGTH OF DATA
0024 BLWP @VMBW WRITE PAB TO VDP RAM
0025 BL @DSR OPEN THE FILE
0026 MOVB @READ,R1 LOAD READ OP-CODE INTO R1
0027 LI RO,PABADR LOAD PAB ADDRESS INTO RO
0028 BLWP @VSBW PUT READ INTO PAB BYTE 0
0029 CLR R4 CLEAR RECORD COUNTER
0030 READF BL @DSR PERFORM DSR ROUTINE
0031 MOV @EOF,@EOF CHECK FOR END OF FILE
0032 JNE EOJ IF EOF GO TO END OF JOB
0033 INC R4 ADD 1 TO RECORD COUNT
0034 CI R4,3 CHECK FOR THIRD RECORD
0035 JNE READF IF NOT THIRD, READ AGAIN
0036 LI RO,PABADR+5 ADDRESS OF CHARACTER COUNT
0037 BLWP @VSBR READ COUNT INTO LEFT BYTE R1
0038 SRL R1,8 SHIFT LEFT TO RIGHT
0039 MOV R1,R2 MOVE VALUE TO R2
0040 MOV R1,@LEN SAVE VALUE IN LEN
0041 LI RO,BUFADR VDP RAM RECORD BUFFER ADDRESS
0042 LI R1,CPUBUF CPU RAM ADDRESS FOR RECORD
0043 BLWP @VMBR GET RECORD FROM VDP TO CPU RAM
0044 LI R0,290 SCREEN ADDRESS FOR FIRST NAME
0045 LI R1,FNAME CPU RAM ADDRESS OF FIRST NAME
0046 LI R2,14 LENGTH OF FIRST NAME FIELD
0047 BLWP @VMBW DISPLAY FIRST NAME
0048 LI R0,305 SCREEN ADDRESS FOR LAST NAME
0049 LI R1,LNAME CPU RAM ADDRESS OF LAST NAME
0050 MOV @LEN,R2 MOVE RECORD LENGTH INTO R2
0051 AI R2,-14 SUBTRACT LENGTH OF FIRST NAME

* DIFFERENCE IS LAST NAME LENGTH
0052 BLWP @VMBW DISPLAY LAST NAME
0053 JMP EOJ GO TO END OF JOB
0054 DSR LI R6,PABADR+9 LOAD R6 WITH DESCRIPTOR LENGTH
0055 MOV R6,@POINTR MOVE ADDRESS TO POINTER
0056 BLWP @DSRLNK PERFORM DSRLNK
0057 DATA 8 DATA NEEDED BY DSRLNK
0058 *

for the TI Home Computer 85

0059 JEQ DSRERR CHECK FOR ERROR
0060 RT RETURN
0061 DSRERR INC @ EOF SET EOF INDICATOR
0062 LI RO, PABADR+1 ADDRESS OF PAB BYTE 1
0063 BLWP @VSBR READ PAB BYTE 1 INTO R1
0064 SRL R1,13 SHIFT HIGH ORDER 3 BITS TO LOW
0065 CI R1,5 CHECK FOR EOF VALUE=5
0066 JNE IOERR IF NOT EOF THEN OTHER ERROR
0067 RT IF EOF THEN RETURN
0068 IOERR AI R1,>30 MASK ERROR CODE
0069 SLA R1,8 SWAP LOW ORDER TO HIGH ORDER
0070 LI R0,299 DISPLAY ERROR CODE
0071 BLWP @VSBW ON THE SCREEN
0072 LI R0,288 DISPLAY ERROR MESSAGE
0073 LI R1, ERRMSG
0074 LI R2,10
0075 BLWP @VMBW
0076 EOJ MOV @EOF , @EOF IF EOF REACHED, DSR WILL
0077 JNE NOCLOS CLOSE FILE
0078 MOVB @CLOSE, R1 MOVE CLOSE OP—CODE TO R1
0079 LI R 0, PABADR LOAD PAB ADDRESS
0080 BLWP @VSBW WRITE CLOSE OP—CODE TO PAB 0
0081 BL @DSR CLOSE FILE
0082 NOCLOS DECT @RETURN ALTER RETURN ADDRESS
0083 MOV @RETURN, 11 MOVE RETURN ADDRESS INTO R11
0084 RT RETURN
0085 END

Line 25 opens the file because the op-code in PAB byte zero is originally set at >00 (the op-
code for "OPEN"). Lines 26,27, and 28 write the op-code for "READ" (>02) to PAB byte zero.
Once this is done, each successive DSRLNK performs a read and will continue to perform
reads until the op-code is changed to some other value. The subroutine "DSR" at lines 54
through 60 contain the instructions and data which perform the DSR. Line 59 uses the Jump if
EQual instruction to test the equal bit in the status register. DSRLNK sets this bit if there are
any errors. End of file is reported as an error with a value of 5 in bits 0,1,2 of PAB byte 1. Lines
61 through 67 test for end of file. If end of file has been reached, then the word "EOF" is
changed from zero to 1. DSRLNK will close the file for you if end of file has been reached. For
this program example, end of file would only occur if the file contained fewer than 3 records. If
the condition reported is something besides end of file, lines 68 through 75 display the error
code and an error message.

Lines 30 through 53 detail the actions which read through the file until the third record is
found. Lines 36 and 37 extract the character count from PAB byte 5. VSBR (VDP Single Byte
Read) reads from the address in RO into the left byte of R1. The value from PAB byte 5 is the
actual length of the record Just read. This value is used along with VMBR to get the record
from its VDP RAM buffer into a buffer which the program can access directly (lines 39 through
43). Lines 44 through 47 get and display the first name. Lines 48 through 52 get and display the
last name. The calculation at line 51 determines the actual length of the last name field by
subtracting the length of the first name field from the actual record length which was found in
PAB byte 5.

86 	 Introduction to Assembly Language

At end of job (line 76) a determination must be made as to whether or not the file needs to be
closed. To close the file, the op-code for "CLOSE" (>01)is written to PAB byte zero and one
more access to DSRLNK is performed. Then the program follows previous examples which
wait for some key to be pressed before ending. Here is a TI BASIC program which will create a
name file like the one used as input in the TMS9900 assembly language program example.

100 CALL CLEAR
110 OPEN #2:"DSK2.F1LE1",OUTPUT,VARIABLE 80
120 INPUT "ENTER AN E WHEN DONE":X$
130 IF X$="E" THEN 190
140 INPUT "FIRST NAME? ":FN$
150 IF LEN(FN$)>14 THEN 140
160 INPUT "LAST NAME? ":LN$
170 PRINT #2:FN$,LN$
180 GOTO 120
190 CLOSE #2
200 END

Here is a hexadecimal display of the file created by the TI BASIC program. This was produced
with the TI Programming Aids II diskette. While the BASIC program limits the size of the first
name field to a maximum of 14 bytes, there is no such specification governing the size of the
last name. If you intend for a TMS9900 assembly language program to process a file created
by a TI BASIC program, it is important that the TI BASIC program be coded to specify definite
field positions and field lengths. Or, as was done in this case, you can use a dump utility such
as the one in TI Programming Aids II to reveal how the file's records will appear to the
assembly program.

FILE TYPE IS DISPLAY

RECORD TYPE IS VARIABLE 80

13 44 41 56 (. DAV)
49 44 20 20 (ID)
20 20 20 20 ()
20 20 20 53 (S)
54 4F 4E 45 (TONE)
14 4D 41 52 (.MAR)
56 49 4E 20 (VIN)
20 20 20 20 ()
20 20 20 53 (S)
50 41 52 4B (PARK)
53 15 57 41 (S.WA)
59 4E 45 20 (YNE)
20 20 20 20 ()
20 20 20 20 ()
4E 45 57 43 (NEWC)
4F 4D 45 (OME)

for the TI Home Computer 	 87

When creating files with TMS9900 assembly programs you must design the layout of each
record. You decide how long each field can be and its beginning position within the record.
One of the inefficiencies Ti BASIC is that it assigns string space within records in
predetermined blocks of bytes. Unless you code the TI BASIC program to structure each field,
TI BASIC follows a preset algorithm for field lengths. Alphanumeric strings, for example,
always start out with a length of 14 bytes. In the case of the first name field, even if all the
first names entered are never longer than 5 bytes, 14 byte strings are built for each.
Discounting line 150, which restricts the field length, if the first name entered had a length of
15 bytes, then an additional 14 byte block would be added to the first. Thus, a 28 byte block of
string space would be created when a 15 byte space is all that is really needed. This waste
becomes even worse with numeric strings. Even if a one digit number is entered, a 13 byte
string space is created.

When determining the size requirements of record fields with TMS9900 assembly language,
you can and should make more efficient use of space. You can either define exact beginning
and ending positions for fields, or where variable length fields are needed, you might use a
special character to separate fields, or designate a byte which preceeds each field to contain
the length of the field. For numeric items, if it is known that a value will only have a range of 1
to 255 for example, then the value can be stored as a binary expression in only one byte.

Any methodology that works for you can be valid, as long as you are consistent. Use your
creativity and the flexibility of the TMS9900 language to design files which make efficient
utilization of storage and memory. As long as the data files you create are to be used only by
other TMS9900 assembly language programs which you have also coded, then any design that
works for you will be acceptable. However, if you intend to process other kinds of files or feed
the files you create to other kinds of programs, then you must know to what specification the
file and record layout has been geared. When this information is not available, the dump utility
from TI Programming Aids II can be of great help. This utility is strongly recomended both as a
handy tool and as a key to understanding how records and files are created by TI BASIC.

Relative record (random access) files allow direct access to any record on the file without the
need to read through the entire file as is the case with sequential files. Not only can this
feature be used to randomly access a single record, but it can also be used to position the
read/write head of the disk drive on a particular record. Then, you could read the following
records sequentially. Relative record files can also be read from front to back, or back to front
sequentially as well. All relative record files must utilize fixed length records. PAB bytes 4,5
(record length and character count) should be equal.

The coding and establishment of PABs and buffers for relative record files is identical to that
of the previous example. The design of a subroutine to perform the DSR can be exactly like
that of the sequential example. The type of access you can perform on a relative file depends
on how the file is opened. Input allows you to read only. Output allows you to write only.
Update lets you read and write. Append will let you add records to the end of a previously
created file.

The key to random access is manipulation of the relative record number in PAB bytes 6 and 7.
If these bytes contain all zeroes on your first read, and you issue successive reads without
altering the relative record number, DSRLNK will increment the value for you. To know which
record you are about to read or write, get the relative record number from PAB bytes 6,7 before
each DSRLNK. Here are some instructions which do this.

88 	 Introduction to Assembly Language

RELREC BSS 2 	 STORAGE FOR NUMBER

.
LI 	RO,PABADR+6 ADDRESS IN PAB OF

RELATIVE RECORD NUMBER
LI 	R1, RELREC
LI 	R2,2
	

LENGTH OF READ — 2 BYTES
BLWP @VMBR
	

GET THE NUMBER

Likewise, if you wish to read a specific record from a relative file, you must place the relative
record number into PAB bytes 6,7 before the DSRLNK is executed. The above instructions will
work for this if you replace VMBR with VMBW. The effect of trying to read a non-existent
relative record would be an end of file error (5) and DSRLNK will close the file.

CASSETTE DSR

The DSR routine for cassettes is located In GROM and is one of the resident GPL (Graphics
Programming Language) routines. When creating files on cassette several restrictions must be
observed. Cassette files must be of fixed record length and the record length must be a
multiple of 64 (64, 128 or 192). Cassette files can only be opened as Input or output. There is
no end of file detection with cassettes. You must create an end of file record as the last
record on a cassette file and code any program which reads the file to detect whatever end of
file data you created.

To access the cassette DSR or any of the other GPL routines, include a REF GPLLNK in your
program when using the Editor/Assembler or EQUate the address >6018 to some valid two
character label with the Line-by-Line assembler. When using the cassette DSR or other GPL
routines, the automatic run feature (including the entry point address with the END directive)
cannot be used.

The biggest difference with cassette file handling is the cassette DSR itself. Remember when
coding the PAB data for your cassette files to use the correct value for PAB byte 8 (screen
offset). For a stand-alone assembly program, this value should be >00. If your assembly
program is called from BASIC, then this value must be >60. Here Is a program example which
uses a cassette file. This program writes 10 records to a cassette device. In truth, this program
does not create any valid data for each record. It is merely an example of cassette access. Any
actual data gathering or manipulation is up to you.

01
02
03
04
05
06
07
08
09
10
11

STATUS
FAC
PABBUF
PAB
PDATA
DEV
RETURN
WR
START

REF
EQU
EQU
EQU
EQU
DATA
TEXT
BSS
BSS
MOV
LWPI

GPLLNK,VSBW,VMBW,KSCAN
>837C
>834A
>1000
>F80
>0002,>1000,>8080,>0000,
'CS1 	 1
2
>20
R11, @RETURN
WR

>0003

for the TI Home Computer 	 89

12
	

LI 	RO, PAB
	

ESTABLISH PAB
13
	

LI 	R1, PDATA
14
	

LI 	R2,14
15
	

BLWP @VMBW
16
	

BL 	@DSRCAS
	

OPEN FILE
17
	

LI 	R1,>0300
	

ENABLE WRITE
18
	

LI 	RO, PAB
19
	

BLWP @VSBW
20
	

CLR R6
21 CPUT
	

BL @DSRCAS
	

WRITE A RECORD
22
	

INC R6
	

ADD 1 TO RECORD COUNT
23
	

CI 	86,10
	

CHECK FOR 10 RECORDS WRITTEN
24
	

JLE CPUT
25
	

LI 	R1,>0100
	

ENABLE CLOSE
26
	

LI 	RO, PAB
27
	

BLWP @VSBW
28
	

BL 	@DSRCAS
	

CLOSE FILE
29 	JMP EOJ
	

GO TO END OF JOB
30 DSRCAS CLR @STATUS
	

CLEAR GPL STATUS BYTE
31
	

CLR @>83D0
	

CLEAR ADDRESS >83D0
32
	

LI 	R3,3
33
	

MOV R3,@>8354 PLACE VALUE OF 3 AT >8354
34
	

MOV @DEV,@FAC 	PLACE DEVICE NAME AT FAC
35
	

MOVB @DEV+2,@FAC+2
36
	

LI 	R3,>0800
37
	

MOVB R3,@>836D PLACE VALUE OF 8 AT BYTE >836D
38
	

LI 	R3,PAB+13
39
	

MOV R3,@>8356 ESTABLISH DSR POINTER
40
	

BLWP @GPLLNK 	PERFORM CASSETTE DSR
41
	

DATA >003D
42 *
43
	

RT 	 RETURN
44 EOJ
	

CLR @STATUS 	CLEAR STATUS
45
	

BLWP @KSCAN 	WAIT FOR SOME KEY TO BE PRESSED
46
	

MOV @STATUS,@STATUS
47
	

JEQ EOJ
48
	

CLR @STATUS
49
	

MOV @RETURN,11
50
	

RT 	 RETURN
51
	

END

The heart of this program example Is the cassette DSR routine at lines 30 through 43. The GPL
status byte and address >83D0 must be all zeroes. The device name ('CS1") must be placed at
address >834A and the length of the device name (3) must be at >8354, >8355. The value 8
must be In the byte at address >836D to Indicate a DSR call. The PAB pointer address must
be placed at address >8356 as In the other DSR examples. However, with the cassette DSR,
this value must point to the byte after the device name "CS1" (PAB + 13). GPLLNK Is Invoked
with a BLWP Instruction and needs the value >3D passed to it to complete the Instruction.

90 	 Introduction to Assembly Language

In this program example, the open causes the "REWIND CASSETTE" prompt to appear. The
write prompts "PRESS CASSETTE RECORD," and the close prompts "PRESS CASSETTE
STOP."

EDITOR/ASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on file handling.

Section 16.2.2 page 251
Section 16.2.4 page 262
Section 16.5 page 270 through Section 16.5.4 page 271

Notes on GROM access:

1. Accesses to GROM/GRAM must be separated by at least one instruction to accomodate
differences in hardware performance.

2. GROM addressing is auto-incrementing. That Is, after each access to a GROM address the
address is automatically incremented by one by the computer.

3. GROM addresses are written most significant byte first.

4. When the GROM/GRAM read address (GRMRA) is read, the GROM address Is destroyed and
must be restored if required by the program.

Section 18.1 page 291 through Section 18.3 page 303
Section 24.12 page 443 through Section 24.12.4 page 444

Look up these terms in the glossary:

Device Service Routine
DSR
Field
File
GPL
GROM
Mode Of Operation
Peripheral Access Block
PAB

for the TI Home Computer 	 91

CHAPTER TEN
SORTING AND HANDLING ARRAYS
The sequencing of data into a prescribed order, or sorting, is a prime example of table
handling. A recurring theme throughout this text is the edge which TMS9900 assembly
language holds over TI BASIC in speed and performance. Perhaps no other task can better
illustrate the speed of TMS9900 assembly language than sorting. Conversely, sorting is one of
the best examples of the shortcomings of TI BASIC in terms of computing speed.

Sorting is a task which involves a lot of computer overhead, a large number of repetitive
actions which are time consuming in any language. There are several approaches to sorting
which seek to alleviate the number of repetitions required to accomplish the sort. None of
these various approaches involve any magical gimmicks and they all rely to a large extent on
the processor involved to rapidly process the logical actions involved. As the number of
records involved grows so does the amount of time required to sort them. Since speed and
performance are critical to sort performance, the logical choice of a language to write the sort
program in is assembly.

It is not the intent of this section to teach you all about sort theories but rather to illustrate
how a simple sort can be implemented by using TMS9900 assembly language and the various
instructions, subroutines, and methodologies covered so far. If you want to get serious about
writing sort programs and learn some of the various approaches to sorting which are available,
there are many books devoted to sorting, merging, and other processing of lists. Some of
these are:

Lorin, Harold, SORTING AND SORT SYSTEMS, Reading, MA: Addison-Wesley, 1973.

Knuth, D. E., THE ART OF COMPUTER PROGRAMMING, Reading, MA: Addison-Wesley, 1973.

Flores, Ivan, COMPUTER SORTING, Englewood Cliffs, NJ: Prentice-Hall, 1969.

The sort program given in this section does not use any instructions or routines which have
not already been covered. Some of the routines whose names you will recognize have been
enhanced over previous examples or are used in new and different ways. Things such as
program titles, prompts, color graphics, keyboard interaction, and file handling are all based
on the examples and explanations given in previous sections. The actual sort logic used is
rather crude compared to some of the more advanced techniques which are available. This
simplistic approach provides a more easily understandable model and still runs quite fast
because of the inherent speed of the TMS9900 assembly language and the TMS9900
microprocessor.

The file of data to be sorted is very similar to the first and last name file example of a previous
section. However, to facilitate faster processing it is assumed to be a relative file with fixed
length 80 byte records. In larger computers with much higher storage capacities it is feasible
to process most any format file by loading its data into some work area in the form of a table
and manipulating the data from there on. With the small number of records on the example file
this approach could be taken using the home computer as well. The relative file format allows
for the processing of a file as if it were already a table and uses the storage device (disk) for
storage of the table rather than CPU RAM.

92 	 Introduction to Assembly Language

One of the basic tricks of sorting which eludes many beginners is that you do not need to sort
entire records of data. The only data needing to be sorted is that data which makes up the sort
key, the field or fields on which the file is to be sorted. This is providing of course that each of
these sort keys can be associated with the record to which it belongs. This is where the
relative record number (which may be thought of as a table subscript) comes into play. The
basic premise of this program is to create an internal table, each entry of which is comprised
of the sort key and relative record number of each record. This data is then sorted into the
desired sequence. The table is then processed sequentially to get each record by way of its
relative record number, and a new file is written which is in the sorted sequence. The storage
capacity of a single-sided single-density diskette is about 90K bytes. This amount is far greater
than the available CPU storage, so it is impossible to load this many bytes worth of records
into memory at once. With this type of sort program however, tackling a file this large is
feasible. In an assembly program, a record number stored in binary would occupy one word or
two bytes. If the diskette contains 358 records of 250 bytes each, and the sort key data for
each record is 20 bytes in length, then the amount of storage needed for the sort table would
be (Sort Key Length + Relative Record Length) x Number of Records, or, (20 + 2) x 358 =
7,876 bytes.

Some sort approaches allow for in-place sorting of the original file. This program creates
instead a new sorted file and preserves the original or "master" file's integrity. One drawback
to the in-place sort is that, if for some reason, a processing error occurs, the original file might
be damaged or lost if no backup copy was made. This approach also allows for the original
data file to exist as many different files, each in its own sequence. This can be useful when it
is necessary to process the same data from more than one sort key.

for the TI Home Computer
	

93

Here is the sort program.

0001
0002

DEF
REF

SORT
VMBW,VWTR,VMBR,VSBW,KSCAN,DSRLNK,VSBR

0003 KEYVAL EQU >8375
0004 STATUS EQU >837C
0005 PABIN EQU >F80
0006 PABOUT EQU >FAO
0007 RECBUF EQU >1000
0008 PNTR EQU >8356
0009 CLOSB BYTE >01
0010 WRITB BYTE >03
0011 READB BYTE >02
0012 ENTV BYTE >OD
0013 LEFTV BYTE >08
0014 RITEV BYTE >09
0015 CURVAL BYTE >1E
0016 REDOV BYTE >06
0017 QUITV BYTE >05
0018 EVEN
0019 CURPAT DATA >007E,>4242,>4242,>7E00
0020 BORDER DATA >FFFF,>2020,>2020,>2020
0021 DATA >2020,>2020,>2020,>2020
0022 DATA >2020,>2020,>2020,>2020
0023 DATA >2020,>2020,>2020,>FFFF
0024 ERRMSG TEXT ' 	I/O ERROR I 	CODE= 	'
0025 TIT1 TEXT ' 	Chapter 	10 Sort Program 	1
0026 TIT2 TEXT ' 	Output File/Device Name? 	1
0027 TIT3 TEXT ' 	Sorting Now 	 '
0028 TIT4 TEXT ' 	End Of Job 	 1
0029 TIT5 TEXT ' 	Press Any Key To Continue 	'
0030 TOT1 TEXT ' 	Record Count 	 '
0031 TOT2 TEXT ' 	Input==—Output 	'
0032 ORD1 TEXT ' 	<A>scend 	<D>escend 	> 	1
0033 EQLN TEXT ' 	 1
0034 WATFLD TEXT ' What Field# To Sort On > 	1
0035 FIELD1 TEXT ' 	First name 	 1 	1
0036 FIELD2 TEXT ' 	Last 	name 	 2 	'
0037 VERIFY TEXT ' 	Screen Complete — Redo? 	1
0038 EOF DATA >0000
0039 SAVRTN DATA >0000
0040 FLDLEN DATA >000E
0041 TBFEND DATA >000D
0042 TABEND DATA >000F
0043 TABLEN DATA >0010
0044 BLINK DATA >OBAO
0045 DTEN DATA >000A
0046 RELREC DATA >0000
0047 TBMARK DATA >FFFF
0048 INFILE DATA >0005,RECBUF,>5050,>0000,>000A

94 Introduction to Assembly Language

0049 TEXT 'DSK1.FILE1
0050 OUTFLE DATA >0003,RECBUF,>5050,>0000,>0000
0051 TEXT 'DSK 1

0052 OPTION BSS 2
0053 INBUFF BSS 80
0054 FNAME EQU INBUFF
0055 LNAME EQU INBUFF+14
0056 OUTBUF BSS 80
0057 HLDTAB BSS >10
0058 MYREG BSS >20
0059 SRTTAB BSS >1000
0060 SORT MOV R11,@SAVRTN SAVE RETURN ADDRESS
0061 LWPI MYREG LOAD WORKSPACE POINTER
0062 LI R0,>0766 SET BORDER COLOR TO DARK RED
0063 BLWP @VWTR
0064 LI R0,>0380 SET CHAR SETS TO WHITE/BLUE
0065 LI R1,>F400
0066 LOOP1 BLWP @VSBW
0067 INC R0
0068 CI R0,>039F SET BORDER CHARACTER TO RED
0069 JLT LOOP1
0070 LI R1,>6600
0071 BLWP @VSBW
0072 LI R0,>08F0 LOAD CURSOR PATTERN
0073 LI R1,CURPAT
0074 LI R2,8
0075 BLWP @VMBW
0076 PROMPT BL @SCREEN SET UP DISPLAY GRAPHICS
0077 LI R0,66
0078 LI R1,TIT1
0079 BLWP @VMBW DISPLAY PROGRAM TITLE
0080 LI R0,130
0081 LI R1,TIT2 PROMPT FOR OUTPUT DEVICE
0082 BLWP @VMBW
0083 LI R0,195
0084 LI R10,15
0085 BL @CURSOR GET OUTPUT DEVICE NAME
0086 MOV R7,@OUTFLE+8 MOVE FILE DESC LGH TO PAB
0087 LI R0,195
0088 LI R1,OUTFLE+10
0089 MOV R7,R2
0090 BLWP @VMBR READ DEVICE NAME INTO PAB
0091 WHTFLD LI R0,258 WHICH FIELD TO SORT ON?
0092 LI R1,WATFLD
0093 LI R2,28
0094 BLWP @VMBW
0095 LI R0,290
0096 LI R1,FIELD1
0097 BLWP @VMBW
0098 LI R0,322

for the TI Home Computer 95

0099
0100
0101
0102
0103
0104
0105
0106

LI
BLWP
LI
LI
BL
CI
JLT
CI

R1,FIELD2
@VMBW
R10,1
R0,282
@CURSOR
R9,>3100
WHTFLD
R9,>3200

GET FIELD # CHOICE
VERIFY RESPONSE = "1" OR "2"

0107 JGT WHTFLD IF NOT, PROMPT AGAIN
0108 ORDER LI R0,418 PROMPT ASCEND/DESCEND ORDER?
0109 LI R1,ORD1
0110 BLWP @VMBW
0111 LI R10,1
0112 LI R0,443
0113 BL @CURSOR GET ORDER CHOICE
0114 CI R9,>4100 VERIFY RESPONSE = "A" OR "D"
0115 JLT ORDER
0116 JEQ VERIF
0117 CI R9,>4400
0118 JNE ORDER IF NOT, PROMPT AGAIN
0119 VERIF LI R0,706
0120 LI R1, VERIFY
0121 BLWP @VMBW VERIFY CHOICES MADE
0122 CLR R10
0123 BL @CURSOR
0124 LI R0,443
0125 BLWP @VSBR
0126 MOVB R1,@OPTION SAVE ORDER OPTION
0127 LI R0,282
0128 BLWP @VSBR
0129 MOVB R1,@OPTION+1 SAVE FIELD OPTION
0130 LI RO,PABIN ESTABLISH INPUT FILE PAB
0131 LI R1,INFILE
0132 LI R2,20
0133 BLWP @VMBW
0134 BL @DSRIN OPEN INPUT
0135 MOVB @READB,R1
0136 BLWP @VSBW PUT READ OP-CODE INTO PAB+0
0137 BL @SCREEN REDO SCREEN GRAPHICS
0138 LI R0,226
0139 LI R1,TOT1 DISPLAY RECORD COUNT HEADING
0140 BLWP @VMBW
0141 LI R0,258
0142 LI R1,TOT2
0143 BLWP @VMBW
0144 LI R8,SRTTAB DEST. ADDRESS FOR MOVWRD RTN
0145 MOV @FLDLEN,R9 FIELD LGTH FOR MOVWRD RTN
0146 CLR @EOF
0147 READ LI RO,PABIN+6 PAB ADDRESS OF REL RECORD #
0148 LI R1,RELREC

96 Introduction to Assembly Language

0149
0150
0151
0152
0153

LI
BLWP
MOV
LI
LI

R2,2
@VMBR
@RELREC,R4
R3,295
R0,300

GET RELATIVE RECORD NUMBER

0154 BL @FIGUR DISPLAY INPUT RECORD COUNT
0155 BL @DSRIN READ A RECORD
0156 MOV @EOF,@EOF CHECK FOR END OF FILE
0157 JNE DONE1 IF EOF GO TO "DONE1"
0158 LI RO,RECBUF VDP RAM BUFFER ADDRESS
0159 LI R1,INBUFF CPU RAM BUFFER ADDRESS
0160 LI R2,80 RECORD LENGTH
0161 BLWP @VMBR GET RECORD
0162 LI R1,>3100 CHECK FOR WHICH FIELD
0163 CB R1,@OPTION+1
0164 JNE MOVLNM
0165 LI R7,FNAME FIRST NME ADDR. FOR MOVWRD
0166 JMP MOVS
0167 MOVLNM 	LI R7,LNAME LAST NME ADDR. FOR MOVWRD
0168 MOVS BL @MOVWRD DO MOVWRD - LOAD SORT TABLE
0169 MOV @RELREC,*R8+ LOAD REL RECORD # INTO TABLE
0170 JMP READ READ ANOTHER RECORD
0171 DONE1 	MOV @TBMARK,*R8 LOAD END OF TABLE MARKER
0172 LI R0,322
0173 LI R1,EQLN
0174 LI R2,28
0175 BLWP @VMBW DISPLAY "SORTING NOW"
0176 LI R0,354
0177 LI R1,TIT3
0178 BLWP @VMBW
0179 LI R5,>4400 LOAD R5 WITH VALUE OF "D"
0180 COMPAR 	LI R1,SRTTAB FIRST TABLE ENTRY ADDRESS
0181 GETTAB 	MOV R1,R3 MOVE ADDR. VALUE IN R1 TO R3
0182 MOV R1,R2 MOVE ADDR. VALUE IN R1 TO R2
0183 A @TBFEND,R2 CALC. TABLE ENTRY LENGTH
0184 MOV R3,R4
0185 A @TABLEN,R4 CALC. NEXT TABLE ENTRY ADDR.
0186 C @TBMARK,*R4 CHECK FOR END OF TABLE
0187 JEQ DONE2 IF END OF TABLE, GO TO DONE2
0188 MOV R3,R0 SAVE "A" ADDRESS IN RO
0189 MOV R4,R1 SAVE "B" ADDRESS IN R1
0190 ORDCHK 	CB R5,@OPTION CHECK FOR ASCEND/DESCEND
0191 JEQ CLOPD

* ASCENDING ORDER 	*
0192 CLOP C R3,R2 CHECK FOR LAST BYTE OF FIELD
0193 JEQ GETTAB IF =, GET NEXT TABLE ENTRY
0194 CB *R3+,*R4+ COMPARE A BYTE OF "A" TO "B"
0195 JEQ CLOP IF EQUAL, REPEAT
0196 JGT SWIT IF A > B, SWITCH
0197 JMP GETTAB IF A < B THEN GET NEXT ENTRY

for the TI Home Computer 97

* 	DESCENDING ORDER 	*
0198 CLOPD C R3,R2 CHECK FOR LAST BYTE OF FIELD
0199 JEQ GETTAB IF EQUAL, GET NEXT ENTRY
0200 CB *R3+,*R4+ COMPARE A BYTE OF "A" TO "B"
0201 JEQ CLOPD IF EQUAL, REPEAT
0202 JGT GETTAB IF A > B THEN GET NEXT ENTRY
0203 SWIT MOV R1,R7 LOAD R7 WITH "B" ADDRESS
0204 LI R8,HLDTAB LOAD R8 WITH HLDTAB ADDRESS
0205 MOV @TABLEN,R9 LOAD R9 WITH LENGTH OF MOVE
0206 BL @MOVWRD MOVE "B" TO HOLD AREA
0207 MOV R0,R7 LOAD "A" ADDRESS
0208 MOV R1,R8 LOAD "B" ADDRESS
0209 BL @MOVWRD MOVE "A" TO "B"
0210 LI R7,HLDTAB LOAD HOLD ADDRESS
0211 MOV R0,R8 LOAD "A" ADDRESS
0212 BL @MOVWRD MOVE HOLD (B) TO "A"
0213 JMP COMPAR GO BACK AND CHECK TABLE SEQ
0214 MOVWRD MOV R9,R6 LOAD MOVE LENGTH
0215 A R7,R6 CALC. MAXIMUM ADDRESS
0216 MOVEM MOV *R7+,*R8+ MOVE A WORD & INC ADDRESSES
0217 C R7,R6 CHECK FOR MAXIMUM ADDRESS
0218 JNE MOVEM IF NOT MAX, MOVE AGAIN
0219 RT ELSE, RETURN
0220 DONE2 CLR R9 CLEAR REGISTER 9
0221 LI RO,PABOUT ESTABLISH OUTPUT FILE PAB
0222 LI R1,OUTFLE
0223 LI R2,25
0224 BLWP @VMBW
0225 BL @DSROUT OPEN OUTPUT FILE
0226 MOVB @WRITB,R1 PUT WRITE OP-CODE TO PAB+0
0227 BLWP @VSBW
0228 LI RO,PABIN RE-ESTABLISH INPUT FILE PAB
0229 LI R1,INFILE
0230 BLWP @VMBW
0231 BL @DSRIN OPEN INPUT FILE
0232 MOVB @READB,R1 PUT READ OP-CODE TO PAB+0
0233 BLWP @VSBW
0234 LI R8,SRTTAB+14 TABLE ADDR. OF REL RECORD #
0235 GETRR MOV R8,R4 MOVE ADDRESS IN R8 TO R4
0236 S @FLDLEN,R4 CALC. ADDR. OF FIRST ENTRY
0237 C @TBMARK,*R4 CHECK FOR END OF TABLE
0238 JEQ EOJ IF END OF TABLE, GO TO EOJ
0239 MOV R8,R1 MOVE REL RECORD # ADDR. TO R1
0240 LI RO,PABIN+6 LOAD RO WITH DEST. ADDR.
0241 LI R2,2 LOAD R2 WITH LENGTH OF DATA
0242 BLWP @VMBW PUT REL RECORD # INTO PAB+6
0243 BL @DSRIN READ THAT RECORD

98 Introduction to Assembly Language

0244
0245
0246
0247
0248
0249
0250

INC
BL
A
MOV
LI
LI
BL

R9 	 INCREMENT OUTPUT REC COUNT
@DSROUT 	WRITE OUTPUT RECORD
@TABLEN,R8 	CALC. NEXT REL REC. ADDR.
R9,R4 	 MOVE RECORD COUNT TO R4
R3,304
R0,309
@FIGUR DISPLAY OUTPUT RECORD COUNT

0251 JMP GETRR GET NEXT REL RECORD NUMBER
0252 EOJ LI R0,354 DISPLAY "END OF JOB"
0253 LI R1,TIT4
0254 LI R2,28
0255 BLWP @VMBW
0256 LI R0,706
0257 LI R1,TIT5
0258 BLWP @VMBW
0259 LI RO,PABIN
0260 MOVB @CLOSB,R1 PUT CLOSE OP-CODE TO PAB+0
0261 BLWP @VSBW
0262 LI RO,PABOUT PUT CLOSE OP-CODE TO PAB+0
0263 BLWP @VSBW
0264 BL @DSRIN CLOSE INPUT FILE
0265 BL @DSROUT CLOSE OUTPUT FILE
0266 EOJX CLR R10
0267 BL @CURSOR PERFORM "PRESS ANY KEY"
0268 EOJQ CLR @STATUS CLEAR THE GPL STATUS BYTE
0269 MOV @SAVRTN,R11 MOVE RETURN ADDRESS TO R11
0270 XT RT RETURN 	(B *R11)
0271 CURSOR CLR R9 CLEAR REGISTER 9
0272 CLR @KEYVAL CLEAR KEYSTROKE VALUE ADDR.
0273 CLR @STATUS CLEAR GPL STATUS BYTE
0274 MOV R10,R10 CHECK R10 FOR ZERO VALUE
0275 JEQ CURL1 IF ZERO, GO TO CURSOR LOOP1
0276 MOV R0,R8 SAVE BEGINNING CURSOR ADDR.
0277 A R8,R10 CALC. MAXIMUM CURSOR ADDR.
0278 MOV R8,R7 MOVE BEGIN ADDR.TO ACCUM.
0279 CURPUT CLR R6 CLEAR REGISTER 6
0280 MOV R7,R0 MOVE ACCUMULATOR TO RO
0281 LI R1,>2000 LOAD REGISTER 1 WITH SPACE
0282 BLWP @VSBW DISPLAY SPACE
0283 CURL1 BLWP @KSCAN PERFORM KEYBOARD SCAN
0284 MOVB @STATUS,@STATUS CHECK FOR KEYSTROKE
0285 JNE DETECT IF KEY PRESSED, WHICH KEY?
0286 AI R6,4 ADD 4 TO REGISTER 6
0287 C R6,@BLINK COMPARE R6 TO BLINK COUNT
0288 JLT CURL1 IF LESS, REPEAT CURL1
0289 MOV R10,R10 CHECK R10 FOR ZERO VALUE
0290 JEQ CURL1 IF ZERO, GO TO CURL1
0291 CLR R6 CLEAR REGISTER 6

for the TI Home Computer 99

0292
0293
0294
0295
0296
0297
0298

CURL2

DETECT

MOVB
BLWP
INC
C
JLT
JMP
CB

@CURVAL,R1
@VSBW
R6
R6,@BLINK
CURL2
CURPUT
@REDOV,@KEYVAL

MOVE CURSOR CODE TO R1
DISPLAY CURSOR
ADD 1 TO R6
COMPARE R6 TO BLINK COUNT
IF LESS, REPEAT CURL2
REPEAT CURSOR LOOP
CHECK FOR "REDO" VALUE

0299 JEQ REDOX IF REDO, GO TO REDO EXIT
0300 CB @QUITV,@KEYVAL CHECK FOR "QUIT" VALUE
0301 JEQ EOJQ IF QUIT, GO TO EOJ/QUIT
0302 MOV R10,R10 CHECK R10 FOR ZERO VALUE
0303 JEQ XT IF ZERO, RETURN
0304 CB @ENTV,@KEYVAL CHECK FOR "ENTER" VALUE
0305 JEQ ENTER
0306 CB @LEFTV,@KEYVAL CHECK FOR "LEFT ARROW"
0307 JEQ LEFT
0308 CB @RITEV,@KEYVAL CHECK FOR "RIGHT ARROW"
0309 JEQ RITE
0310 C R7,R10 CHECK FOR MAX. CURSOR ADDR.
0311 JEQ CURPUT IF EQUAL, GO TO "CURPUT"
0312 MOV R7,R0 MOVE NEW ADDRESS TO RO
0313 MOVB @KEYVAL,R1 MOVE KEYSTROKE VALUE TO R1
0314 MOVB @KEYVAL,R9 SAVE KEYSTROKE VALUE IN R9
0315 BLWP @VSBW DISPLAY KEYSTROKE CHARACTER
0316 INC R7 ADD 1 TO ADDRESS ACCUMULATOR
0317 JMP CURPUT GO TO "CURPUT"
0318 LEFT C R7,R8 CHECK FOR MIN CURSOR ADDR.
0319 JEQ CURPUT IF EQUAL, GO TO "CURPUT"
0320 MOV R7,R0 MOVE CURRENT ADDRESS TO R0
0321 LI R1,>2000 LOAD R1 WITH SPACE CHAR.CODE
0322 BLWP @VSBW WRITE A SPACE AT CURR. ADDR.
0323 DEC R7 SUBTRACT 1 FROM CURR. ADDR.
0324 JMP CURPUT GO TO "CURPUT"
0325 RITE C R7,R10 CHECK FOR MAX CURSOR ADDR.
0326 JEQ CURPUT IF EQUAL, GO TO "CURPUT"
0327 INC R7 ADD 1 TO CURRENT ADDRESS
0328 JMP CURPUT GO TO "CURPUT"
0329 ENTER LI R1,>2000 LOAD R1 WITH SPACE CHAR CODE
0330 MOV R7,R0 MOVE CURRENT ADDRESS TO R0
0331 BLWP @VSBW SPACE OVER CURSOR SYMBOL
0332 S R8,R7 CALC. ACTUAL LENGTH OF DATA
0333 JEQ CURSOR IF ZERO, REPEAT CURSOR RTN
0334 RT ELSE, RETURN
0335 REDOX B @PROMPT BRANCH TO ADDRESS "PROMPT"
0336 SCREEN CLR RO CLEAR REGISTER 0
0337 LI R1,BORDER LOAD R1 WITH ADDR. OF BORDER
0338 LI R2,32 LOAD R2 WITH LENGTH OF DATA
0339 SCRL BLWP @VMBW WRITE ONE LINE OF PATTERN
0340 CI R0,736 COMPARE RO TO MAXIMUM VALUE
0341 JHE LEAVE IF = OR >, GO TO "LEAVE"

100 Introduction to Assembly Language

0342
0343
0344
0345
0346
0347

LEAVE

AI
JMP
LI
LI
LI
BLWP

R0, 32
SCRL
R0, 2
R1,EQLN
R2,28
@VMBW

ADD 32 TO RO
GO TO "SCRL"
LOAD RO WITH THE VALUE 2
LOAD R1 WITH GRAPHICS ADDR
LOAD R2 WITH LENGTH OF LINE
DISPLAY AT SCREEN ADDRESS 2

0348 LI RO,738 LOAD RO WITH THE VALUE 738
0349 BLWP @VMBW DISPLAY AT SCREEN ADDR 738
0350 RTN RT RETURN
0351 DSRIN LI R6,PABIN+9 LOAD R6 WITH PAB ADDRESS
0352 JM P DSR
0353 DSROUT LI R6,PABOUT+9 LOAD R6 WITH PAB ADDRESS
0354 DSR MOV R6, @PNTR MOVE R6 TO POINTER ADDRESS
0355 BLWP @DSRLNK PERFORM DEVICE SERVICE RTN
0356 DATA 8
0357 JNE RTN IF NO ERRORS, RETURN
0358 ERROR MOV R6,R0 MOVE R6 TO RO
0359 AI R0, -8 CALC. ADDRESS OF PAB BYTE 1
0360 BLWP @VSBR READ PAB BYTE 1 INTO R1
0361 SRL R1, 5 SHIFT R1 RIGHT 5 POSITIONS
0362 MOV R1,@EOF MOVE R1 TO THE EOF FLAG
0363 CB @QUITV,R1 CHECK FOR EOF (VALUE >05)
0364 JEQ RTN IF EQUAL, RETURN
0365 BL @SCREEN ELSE, REDO SCREEN GRAPHICS
0366 MOV R6,R0 MOVE R6 TO RO
0367 INC RO CALC. ADDRESS OF PAB BYTE 10
0368 LI R1,INBUFF LOAD R1 - TEMP CPU RAM ADDR
0369 LI R2,20 LOAD R2 - LENGTH OF WRITE
0370 BLWP @VMBR GET FILE NAME IN ERROR
0371 LI RO,259 LOAD RO - SCREEN ADDR 259
0372 BLWP @VMBW DISPLAY FILE NAME IN ERROR
0373 MOV @EOF,R1 MOVE ERROR CODE TO R1
0374 AI R1,>3000 MAKE IT AN ASCII NUMERAL
0375 LI R0,343 SCREEN ADDR FOR ERROR CODE
0376 BLWP @VSBW DISPLAY ERROR CODE
0377 LI RO,322 SCREEN ADDR FOR ERROR MSG
0378 LI RLERRMSG ADDRESS OF THE MESSAGE
0379 BLWP @VMBW DISPLAY ERROR MESSAGE
0380 B @EOJX GO TO EOJ
0381 FIGUR MOV R4,R5 MOVE R4 TO R5
0382 C LR R4 CLEAR R4
0383 DIV @DTEN,R4 DIVIDE R4/R5 BY TEN
0384 AI R5,>30 MAKE R5 AN ASCII NUMERAL
0385 SLA R5,8 SHIFT R5 LEFT 8 PLACES
0386 MOV R5,R1 MOVE R5 TO R1
0387 BLWP @VSBW DISPLAY A DIGIT
0388 DEC RO SUBTRACT 1 FROM RO
0389 C R0,R3 COMPARE RO TO R3
0390 JNE FIGUR IF NOT EQUAL REPEAT
0391 RT ELSE, RETURN
0392 END

for the TI Home Computer 	 101

At nearly 400 lines, this TMS9900 assembly program might appear formidable to the beginner.
However, this program is not as complex as the number of lines would seem to indicate. In
addition to performing sort logic, this program represents an example of everything that has
been covered in this text so far. It includes a number of options and features besides sorting
which add considerably to its length. In fact, the actual sorting instructions range from line
147 through 251, or only about 28 percent of the entire program. The rest of the program is
comprised of the instructions, directives, and subroutines which have been previously detailed.
Lastly, the key to understanding any program that you are looking at for the first time is to
take it one line at a time. This is true whether the program is 5 or 5000 lines long. Do not be
intimidated by a program's length. The only sections of this program to be detailed will be
those which involve new logic (the sort) and new or enhanced applications of previously
introduced instructions and subroutines.

Lines 1 through 59 use the various TMS9900 assembler directives to define the constants,
addresses, data, and work areas this program will require. The data items include a new
pattern description for the cursor, graphics characters for the screen display, PAB data for the
input and output files, and the titles, prompts, and messages which will be displayed. Line 59
sets aside 4096 bytes (hex >1000) for the sort table space. This is an arbitrary value. When
designing a sort program or any other program's internal workspace size, it is necessary to
allow for some expected or maximum number of records and, therefore, bytes.

Lines 60 through 75 save the return address, load the workspace register pointer, set the
foreground/background colors of the border characters and display characters, and load the
cursor pattern data to the pattern descriptor table in VDP RAM. All these steps and
instructions have been used before in previous program examples. The colors used in this
program are white on blue for the displayable character set with a dark red screen border.

Line 76 performs a Branch and Link to the subroutine SCREEN. This routine will load the
border pattern into the screen image table and write a line of "=" symbols across the top and
bottom of the screen. This function is coded as a subroutine to allow the screen graphics to
be established or redone at any point in the program without having to code the actual
instructions more than once. Lines 79 through 90 display the program title and prompts the
user for the file/device name for the sorted output file. While the file/device name of the input
file is hard-coded into the program, the user is free to specify the output file. Since the sorted
output file in this program example is a relative file like the input file, it naturally must be on
disk. The file/device name is read from screen address 195 into the output file PAB byte 10.
The length of this data is returned in R7 by CURSOR. This length value is moved to output file
PAB bytes 8,9 to complete the output file PAB data.

In chapter eight you were introduced to a fundamental keyboard input routine called CURSOR,
which provided interactive keyboard ability. This routine is again included in this program. This
version of CURSOR includes some additional capabilities not found in the original. Besides
using a unique symbol pattern for the cursor, the new CURSOR routine also makes the cursor
blink. Two additional exits are allowed as well. If the user presses REDO the new CURSOR
routine branches to line 76 (PROMPT) to let them re-enter the data which is required. Should
the user press QUIT, the routine branches to line 268, EOJQ. Branching to this address
bypasses the closing of the input and output files (which have not been opened yet) and ends
the program. Lastly, so long as the response length specified in R10 before the BL to CURSOR
is greater than zero, CURSOR will not allow the user to simply press ENTER without having
entered some data.

102 	 Introduction to Assembly Language

Lines 91 through 107 ask the user to specify which field the file is to be sorted on. The
prompts defined in lines 34, 35, and 36 allow the user to enter a "1" for first name, or a "2" for
last name. The actual response is compared to the ASCII codes for these two numerals to
verify that a valid choice has been made. If any value is entered other than those allowed, the
prompt sequence is repeated. This has the same effect as pressing REDO at this point. The
only other option available would be QUIT. Next, lines 108 through 118 ask that the user
specify the order in which the records are to be sorted. A response of "A" indicates that the
file is to be sorted in ascending sequence. A reponse of "D" means that the file is to be sorted
in descending order. The actual responses are verified to be either "A" or "D". Up to this
point, the program has required the user to tell it the file/device name of the sorted ouput file,
which field to sort on, and whether the sort is to be in ascending or descending order.

Lines 119 through 123 ask that the user verify the information they have just entered, and
respond by either pressing REDO or any other key. If the response is REDO, then CURSOR
branches to the beginning of the prompt sequence to allow the data to be re-entered. If any
other key is pressed the program continues. Lines 124 through 136 get and save the field and
sequence options, establish the input file PAB in VDP RAM, open the input file, and enable the
input file to be read.

Lines 137 through 144 get rid of the prompts and responses by repeating the screen graphics
and display the headings for the record counts which will be taken and displayed during
processing. A count will be taken of the number of input records (sort in) and the number of
output records (sort out). These two counts should always be equal as long as the program is
functioning properly and no processing errors occur.

The first phase of the sort process involves reading the file to be sorted and building a table
from the sort field and relative record number for each record. Because many repetitious word
(16 bit) moves are involved in loading the table and performing the actual sort, a subroutine
called MOVWRD has been coded just for this purpose. Whenever the same or similar set of
instructions needs to be executed more than once, it is preferable to create a subroutine
comprised of the instruction set rather than coding the instructions over and over again. The
routine MOVWRD uses registers 6, 7, 8 and 9 to move words of memory between various CPU
RAM locations. Register 7 must contain the origin address, register 8 the destination address,
register 9 the length of the move in bytes (always an even number for word moves), and
register 6 is used for calculatiOns.

Line 144 loads R8 with the destination address (sort table area, SRTTAB). Line 145 places the
length of the data into R9. Lines 162 through 167 put the origin address into R7 depending on
which field has been selected to be sorted on. The length of the sort field is set to 14 (>E) for
either field. This is the maximum length of the first name field as defined in the TI BASIC
program which created it. The actual length of the last name field is variable. The length of the
sort field determines the number of bytes which must be compared to detect those records
which are out of sequence. The larger this number, the more time the sort will take. One
shortcut which can be taken in setting up sort logic is to only sort on a given number of bytes
regardless of the length of the sort field. Since it is unlikely that any record will contain a last
name greater than 14 bytes, and even more unlikely that two last names would contain the
same characters until the fifteenth position, this approach is reasonable, accurate, and time
saving. The length value could be less or greater, but too much of a deviance could be
inaccurate or time consuming. The actual number of bytes you choose to compare is a matter
of judgement, but it is possible to cheat a little.

for the TI Home Computer 	 103

To demonstrate how the sort logic in this program operates, it is necessary to make a few
assumptions about which options have been selected, and provide some data for the program
to process. For the rest of this explanantion, assume that the user wants to sort the input file
on the last name field, and wants the file sorted in ascending order. Here is an input file of 10
records.

Relative First
	

Last
Record # Name
	

Name

0000 	JIM 	 SMITH
0001 	BOB 	 JONES
0002 	MARY 	 QUEENS
0003 	MARVIN 	 STONE
0004 	LINDA 	 BLACKSMITH
0005 	GEORGE 	 WASHINGTON
0006 	THOMAS 	JEFFERSON
0007 	WILLIAM 	MCKINLEY
0008 	HOWARD 	 TAFT
0009 	HOWARD 	 JOHNSON

As you can see, the records are not in any particular order. Lines 147 through 170 read the file
and build the sort table. Each table entry is composed of the first 14 bytes of the last name
field plus 2 bytes for the relative record number of each record for a total length of 16 bytes
for each table entry. When the end of the file is reached, line 171 moves a word containing
> FFFF to the next table address in order to mark the end of the table. The subroutine
MOVWRD, which is used to create the table, illustrates the use of an addressing mode known
as Workspace Register Indirect Auto-Increment. The line: 0216 MOVEM *R7+ ,*R8 + specifies
that the values in each register are to be used as addresses and that after each move the
values in the registers will be automatically incremented. This handy addressing feature
Increments the registers involved by 1 for byte instructions and by 2 for word instructions.
After the file has been read and the sort table Is created, the sort table would appear as below.
Note that the actual values in the sort table are ASCII codes for the letters and binary
expressions for the relative record numbers. The example here is shown in display format.

104 	 Introduction to Assembly Language

ADDRESS

SRTTAB+0

SRTTAB+16

SRTTAB+32

SRTTAB+48

SRTTAB+64

SRTTAB+80

SRTTAB+96

SRTTAB+112

SRTTAB+1 28

SRTTAB+144

SRTTAB+160

TABLE CONTENTS

SMITH 	 00

JONES 	 01

QUEENS 	 02

STONE 	 03

BLACKSMITH 	04

WASHINGTON 	05

JEFFERSON 	06

MCKINLEY 	07

TAFT 	 08

JOHNSON 	09

>FFFF

The second phase of this sort process is to arrange the table entries into the desired order. To
do this, the program starts with the first table entry and compares each byte of the sort key
data to that of the next table entry. If the sort key data of the two table positions being
compared is already in the correct sequence, or if the two are equal, then no action is required
and the comparison moves on to the next pair of table entries. To make it easier to keep the
relationship of the entries being compared straight, the first table entry will be referred to as
"A" and the next table entry as "B". For the ascending sequence example, whenever A is
found to be greater than B, their positions are switched in the table.

Lines 180 through 185 calculate the table addresses of the pair of table entries to be
compared. The "A" address is saved in R0, and the "B" address is saved in Al. Lines 186,187
test for the end of the table marker. If the end of the table has been reached then this phase
of the sort is done, and line 187 directs the program to address "DONE2". The first time
through this logic, R3 is loaded with address SRTTAB, and R4 is loaded with address
SRTTAB+ 16. R2 will contain the address value of the last byte of the sort key portion of the
table entry. If R2 is equal to R3 at line 192, then all the bytes of the sort key have been
compared and it is time to move on to the next pair of table entries. Lines 190 and 191 check
the order option again by comparing the option to >44 (ASCII for "D"). If descending order
was selected, then the compare loop CLOPD is performed. Otherwise, the default is ascending
order, which performs compare loop CLOP. Here is a diagram of the first comparison.

I
"B" 'JONES

I

	

I 	 I 	 I

	

011
	

>"HLDTAB" 'JONES 	 011

	

I 	 I 	 I

for the TI Home Computer 	 105

0194
	

CB *R3+,*R4+
0195
	

JEQ CLOP
0196
	

JGT SWIT

ADDRESS IN
REGISTER 3

SRTTAB+0

VALUE AT
ADDRESS

>53 or "S"

ADDRESS IN VALUE AT
REGISTER 4 ADDRESS

SRTTAB+16 	>4A or "J"

The Compare Bytes instruction is used because the comparison must be done on a character
by character basis, and one character takes one byte. The value at the address in R3 ("S") is
greater than the value at the address in R4 ("J"). This comparison results in the greater-than
bit being set in the status register. This condition Is checked and the resulting action is
directed by line 196. It will be necessary to exchange the positions of the two table entries.
Using the A and B naming convention, the table entry for SMITH is "A", and JONES is "B".
There are three steps to the switch process:

Move "B" to a hold area - HLDTAB.

I
"A" 'SMITH

I

1
00 1

1

Move "A" to "B".

I 	 I
"A" (SMITH 	 001

I 	 I
1

V

I
	

I
"B" 'SMITH
	

001 	 "HLDTAB" (JONES
	

0 11

I
011

I
"HLDTAB" 'JONES

I
"A" !JONES

I

106 	 Introduction to Assembly Language

Move TABHLD ("B") to "A"

I
"B" (SMITH

1
00 1

1

I

These are the instructions which perform the switch logic.

0203 SWIT MOV R1,R7 LOAD R7 WITH "B" ADDRESS
0204 LI R8, HLDTAB LOAD R8 WITH HLDTAB ADDRESS
0205 MOV @TABLEN , R9 LOAD R9 WITH LENGTH OF MOVE
0206 BL @MOVWRD MOVE "B" TO HOLD AREA
0207 MOV R0,R7 LOAD "A" ADDRESS
0208 MOV R1,R8 LOAD "B" ADDRESS
0209 BL @MOVWRD MOVE "A" TO "B"
0210 LI R7, HLDTAB LOAD HOLD ADDRESS
0211 MOV R0,R8 LOAD "A" ADDRESS
0212 BL @MOVWRD MOVE HOLD (B) TO "A"
0213 JMP COMPAR CHECK TABLE SEQUENCE AGAIN
0214 MOVWRD MOV R9,R6 LOAD MOVE LENGTH
0215 A R7,R6 CALC. MAXIMUM ADDRESS
0216 MOVEM MOV *R7+, *R8+ MOVE WORD,INCREMENT ADDRESS
0217 C R7,R6 CHECK FOR MAXIMUM ADDRESS
0218 JN E MOVEM IF NOT MAX, MOVE AGAIN
0219 RT ELSE, RETURN

Line 213 returns to the label COMPAR after the switch has been done. Each time a pair of
table entries are found to be out of order and are switched, the comparison logic starts all
over again at the beginning of the table. This is done over and over again until all the table
entries are in the correct order. If all the entries are in correct order there is never a condition
which causes the switch logic to execute and the end of the table is reached. The type of sort
algorithm being applied to the sort table is known as a "Bubble" sort. Each item in the table is
moved up to the position where it belongs. You may come across many different programs
which are all called bubble sorts. Their specifics will vary, but the general approach is the
same. When this second phase of the sort program Is completed, the sort table now looks like
this.

for the TI Home Computer 	 107

SRTTAB+0

SRTTAB+16

SRTTAB+32

SRTTAB+48

SRTTAB+64

SRTTAB+80

SRTTAB+96

SRTTAB+112

SRTTAB+128

SRTTAB+144

SRTTAB+160

BLACKSMITH 	04

JEFFERSON 	06

JOHNSON 	09

JONES 	 01

MCKINLEY 	07

QUEENS 	 02

SMITH 	 00

STONE 	 03

TAFT 	 08

WASHINGTON 	05

>FFFF

The 3rd phase involves reading the table sequentially, and using the relative record numbers to
randomly retrieve records from the input file and write them out to the output file.

Lines 220 through 233 prepare for phase III by establishing the input and output file PABs,
opening the input and output files, and setting the input file op-code to Read and the output
file op-code to Write. In phase I the input file was read until end of file and was closed by the
DSR routine. Now it is to be read again, so the PAB data is re-established and the file opened.

Line 234 loads the beginning table address for the first relative record number entry into R8.
Lines 235 through 238 check for the end of table marker each time through the loop GETRR.
Lines 239 through 243 get the relative record number from the table, place it into PAB bytes
6,7 of the input file, and read that record from the file. The PAB data for the input file names
the VDP RAM area RECBUF as the buffer space into which each read operation places a
record from the input file. The PAB data for the output file uses the same buffer area as the
place where each write operation expects to find the record to be written. No other
manipulation of the record data is required. Here is a diagram of the first GETRR loop.

Get (read) the record number found at the address in R8 from the input file into RECBUF.

108 Introduction to Assembly Language

REGISTER 8 SRTTAB INPUT 	FILE

SRTTAB+14 +14 04 00 JIM SMITH

+30 06 01 BOB JONES

+46 09 02 MARY QUEENS

03 MARVIN STONE

04 LINDA BLACKSMITH

05 GEORGE WASHINGTON
v

I
	

I
RECBUF (LINDA
	

BLACKSMITH 1
I
	

I

Write an output file record from RECBUF.

I
RECBUF (LINDA 	BLACKSMITH I

I 	 I
OUTPUT FILE

I
I 	 I 	 I
	 > 100 LINDA 	BLACKSMITH 	j

Add the value at TABLEN (16, hex >10) to R8 and repeat the loop.
REGISTER 8 now contains SRTTAB+ 30.

This process continues until the end of table marker is detected, at which time the program
logic transfers to EOJ. The End of Job message is then displayed and the files closed. The
message "Press Any Key To Continue" and a BL to CURSOR allows for a pause before
actually ending the program. With the REDO capability of this version of CURSOR, the user
may elect to repeat the entire sort program at this point or press any other key to end
processing.

At the end of the program, the input file exists In its original state, and the new, sorted output
file has been created.

for the TI Home Computer 	 109

INPUT 	FILE OUTPUT 	FILE

Relative First Last Relative First Last
Record # Name Name Record # Name Name

0000 JIM SMITH 0000 LINDA BLACKSMITH
0001 BOB JONES 0001 THOMAS JEFFERSON
0002 MARY QUEENS 0002 HOWARD JOHNSON
0003 MARVIN STONE 0003 BOB JONES
0004 LINDA BLACKSMITH 0004 WILLIAM MCKINLEY
0005 GEORGE WASHINGTON 0005 MARY QUEENS
0006 THOMAS JEFFERSON 0006 JIM SMITH
0007 WILLIAM MCKINLEY 0007 MARVIN STONE
0008 HOWARD TAFT 0008 HOWARD TAFT
0009 HOWARD JOHNSON 0009 GEORGE WASHINGTON

The way in which the input/output requirements of the two files are addressed demonstrates a
way in which Device Service Routines can be applied. In the section on file handling, it was
stated that all DSR requests are handled the same for any device except cassettes and the the
only differences were the particular file data (PAB) pointed to, and the operation (op-code)
requested. In the above DSR routine, the only difference between the input and output file
access are the lines 351,352,353, which set the pointer for the PAB (file description) used. The
Individual op-codes for read, write, and close were changed within the body of the program.
The remaining instructions work for either file. Should an error be detected, the pointer
address in R6 can be used to calculate the address of PAB byte 1 (the error code), and PAB
byte 10 (the file description "DSK1.FILE1") If the output file was to have been written to a
cassette device, this approach would not work. The cassette DSR must be accessed by a
different set of instructions as outlined in the chapter on file handling.

The cursor subroutine as coded in this program example is an improved version of the one
first introduced. This version operates much the same as the original. The most notable
difference is the blinking cursor. Lines 279 through 288 write a space (hex >20) to the screen
and count to 2,976 (hex >OBAO) by fours. Once the loop CURL1 has reached this value, lines
289 through 297 then display the cursor symbol. The loop CURL2 counts to 2,976 by ones.
Some indication of the speed of TMS9900 assembly language is evidenced by the fact that all
of this counting occurs in the space of a blink. Counting by fours while the space is displayed
and then counting by ones while the cursor is displayed, means that 80 percent of the time the
cursor is seen and 20 percent of the time the space is seen. You can alter the rate of blink by
changing the value at BLINK, or by changing the incremental value for either CURL1 or CURL2.
The keyboard scan utility is performed within the first loop so that the response to the
pressing of a key is not too sluggish.

Lines 298 through 301 check for the QUIT and REDO values and direct program logic
accordingly. When the actual length of the data entered is calculated at line 332, the equal bit
will be set in the status register if the answer in R7 is zero. If an allowable value of zero was
placed into R10 before the CURSOR subroutine logic was performed, then lines 329 through
334 are never reached. Therefore, if CURSOR reaches the label ENTER, a value greater than
zero must have been specified. Line 333 checks for the value in R7, and if it is zero, the entire
CURSOR subroutine is repeated.

110 	 Introduction to Assembly Language

CHAPTER ELEVEN
MIXING ASSEMBLY WITH BASIC
It is possible to create subprograms in assembly language that can be called from your TI
BASIC or TI Extended BASIC programs. This can result in a hybrid variety of programs that
offer the best of both worlds. Program tasks that can be accomplished with adequate
efficiency in BASIC can be coded and debugged easily in that language. Tasks that require
improved speed and performance, or tasks that simply are impossible to perform in BASIC,
can be coded in assembly. The Editor/Assembler module and the Mini-Memory module both
provide additional statements for use with TI BASIC. These statements facilitate linking
assembly routines with BASIC programs. Likewise, TI Extended BASIC offers statements to
facilitate this function that are not normally available in TI BASIC. When you are running an
assembly program with Editor/Assembler or Mini-Memory, the computer's memory is not
arranged exactly the same as when you are operating in TI BASIC or TI Extended BASIC. In
order for your assembly language subprograms to function correctly in the BASIC environment,
there are specific differences that you must be aware of.

First, you must determine which BASIC environment your program will be operating in. Of
primary consideration to the assembly language programmer are the differences found in VDP
RAM. The BASIC program and all its data, routines, and workspaces occupy a good portion of
this area. Your assembly language program must not change the values of any addresses
being used by BASIC. Certain VDP RAM value tables, such as the color table, are located at
different addresses in BASIC than they are in stand-alone assembly programs.

Further, your assembly program must allow for screen bias and offset while running with
BASIC. The value of this offset is always >60 or decimal 96. Any character your assembly
language program wishes to display must have its character code value incremented by >60.
Normally, to display an "A" on the screen, the character code >41 is used. In the BASIC
environment, however, this value must be adjusted:

LI
	

RO, 293
	

LOAD R0 WITH VDP RAM SCREEN ADDRESS
LI
	

R1,>4100 LOAD R1 WITH "A" CODE
AI
	

R1,>6000 ADJUST FOR BASIC
B LWP
	

@VSBW
	

DISPLAY THE "A"

For string constants such as those created with the TEXT directive, every byte of the string
must be adjusted by adding >60 before it is written to the screen image table address.

for the TI Home Computer 	 111

VDP RAM UTILIZATION

ASSEMBLER MODE 	 BASIC MODE
ADDRESS 	 ADDRESS

HEX 	DECIMAL 	 HEX 	DECIMAL

>0000 	 0 	SCREEN 	 >0000 	 0 	SCREEN
IMAGE 	 IMAGE

>02FF 	767 	TABLE 	 >02FF 	767 	TABLE

>0300 	768 	SPRITE 	 >0300 	768 	SPRITE
ATTRIBUTE 	 AND COLOR

TABLE
>031F 	799

>320 	800 	BASIC
>037F 	895 	 BUFFER

>0380 	896 	COLOR 	 >3BD 	957
TABLE
AND 	 >35E 	958 	BASIC
FREE 	 TEMPORARY
SPACE 	 AND

INTERPRETER
>03FF 	1023 	 >03FF 	1023 	ROLLOUT

>0400 	1024 	SPRITE 	 >0400 	1024 	PATTERN
DESCRIPTOR 	 DESCRIPTOR
TABLE 	 >05FF 	1535 	TABLE

>0600 	1536 	VALUE STACK
>07FF 	1919

STRING SPACE
>0800 	1920 	PATTERN

DESCRIPTOR 	 DYNAMIC
TABLE AND 	 SYMBOL TABLE

>OFFF 	4095 	FREE SPACE 	 AND PAB's

>1000 	4096 	FREE SPACE 	 STATIC
PAB's 	 SYMBOL TABLE
AND

>137F 	4991 	BUFFERS 	 LINE NUMBER
TABLE

>1380 	4992 	PROGRAM
FILE LOAD 	 BASIC

>34FF 	13567 	BUFFER 	 PROGRAM

>3500 	13568 	DISK
DSR's

>3FFF 	16383 	 >3FFF 	16383

112 	 Introduction to Assembly Language

Here is the sample program from Chapter Eight. This version incorporates the changes
necessary for this assembly language program to be called by a BASIC program:

DEF GO
REF VWTR,VSBW,VMBW,KSCAN

WR 	BSS >20
STATUS EQU >837C
KEYVAL EQU >8375
DTEN DATA >A

* ALL SPACE CHARACTER CODES (>20) HAVE BEEN INCREMENTED
* BY >60

BORDER DATA >FFFF,>8080,>8080,>8080
DATA >8080,>8080,>8080,>8080
DATA >8080,>8080,>8080,>8080
DATA >8080,>8080,>8080,>FFFF

MSG1 	TEXT 1 ** PRESS ANY KEY 	**/
SG2 	TEXT 1 * KEYSTROKE VALUE IS * 1

MSG3 	TEXT 1 * PRESS REDO/ESCAPE * 1

* SCREEN BIAS OR OFFSET CONSTANT FOR BASIC

OFFST BYTE >60

**** ******************* ******** ******************* ******** *******

REDOV BYTE >06
ESCV 	BYTE >0F

EVEN 	FORCE AN EVEN WORD BOUNDARY IN THE
LOCATION COUNTER

SAV11 BSS 2
GO 	MOV R11,@SAV11

LWPI WR
LI 	R0,>0755
BLWP @VWTR

for the TI Home Computer 	 113

* THE ADDRESSES USED BY THESE INSTRUCTIONS TO ACCESS THE COLOR
* TABLE IN VDP RAM HAVE BEEN ADJUSTED FOR BASIC

LI 	R0,799
LI 	R1,>5500
BLWP @VSBW
LI 	R0,780
LI 	R1,>1F00

CLOOP BLWP @VSBW
CI 	R0,798
JEQ BPUT
INC RO
JMP CLOOP

BPUT
	

LI 	R0,0
LI 	R1,BORDER
LI 	R2,32

BLOOP BLWP @VMBW
CI 	R0,736
JEQ EXIT
AI 	80,32
JMP BLOOP

EXIT 	LI 	R0,261
	

VDP RAM ADDRESS FOR FIRST MESSAGE
LI 	R2,MSG1
	

CPU RAM ADDRESS OF THE MESSAGE
LI 	R3,22
	

MESSAGE LENGTH
BL 	@PBASIC
	

PRINT MESSAGE
SCAN1 CLR @STATUS

BLWP @KSCAN
MOVB @STATUS,@STATUS
JEQ SCAN1
LI 	R0,325
	

VDP RAM ADDRESS FOR SECOND MESSAGE
LI 	R2,MSG2
	

CPU RAM ADDRESS OF THE MESSAGE
LI 	R3,22
	

MESSAGE LENGTH
BL 	@PBASIC
	

PRINT MESSAGE
LI 	R0,395
MOVB @KEYVAL,R1

* THE KEYSTROKE VALUE MUST BE ADJUSTED BY >60 BEFORE IT IS
* DISPLAYED

AB 	@OFFST,R1

114 	 Introduction to Assembly Language

BLWP @VSBW
CLR R4
MOVB @KEYVAL,R4
SLR R4,8
LI 	R3,404
LI 	R0,406
BL 	@FIGUR
LI 	R0,485
	

VDP RAM ADDRESS FOR THIRD MESSAGE
LI 	R2,MSG3
	

CPU RAM ADDRESS OF THE MESSAGE
LI 	R3,22
	

MESSAGE LENGTH
BL 	@PBASIC
	

PRINT MESSAGE
SCAN2 CLR @STATUS

BLWP @KSCAN
MOVB @STATUS,@STATUS
JEQ SCAN2
CB 	@KEYVAL,@ESCV
JEQ ESCAP
CB 	@KEYVAL,@REDOV
JNE SCAN2
B 	@BPUT

FIGUR MOV R4,R5
CLR R4
DIV @DTEN,R4
AI 	R5,>0030
SLA R5,8
MOV R5,R1

* THE ASCII NUMERIC MUST BE ADJUSTED BY >60 BEFORE IT IS
* DISPLAYED

AB 	@OFFST,R1

BLWP @VSBW
DEC RO
C 	RO,R3
JHE FIGUR
RT

ESCAP CLR @STATUS
MOV @SAV11,R11
RT

for the TI Home Computer 	 115

* "PBASIC" ROUTINE ADDS THE BASIC OFFSET TO EACH BYTE *
* OF THE DISPLAY DATA AND WRITES ONE BYTE AT *
* A TIME TO THE SCREEN 	 *

PBASIC MOVB *R2+,R1
AB 	@OFFST,R1
BLWP @VSBW
DEC R3
JNE PBASIC
RT

MOVE ONE BYTE OF MESSAGE TO R1
ADJUST FOR BASIC
WRITE ONE BYTE
DECREMENT CHARACTER COUNT
IF NOT ZERO, DO IT AGAIN
ELSE RETURN

END

Now, to call this routine from a TI BASIC program, you could write a program in this format:

10 REM ****************************
20 REM * BASIC PROGRAM TO CALL
	

*
30 REM * THE CHAPTER EIGHT
	*

40 REM * ASSEMBLY PROGRAM
	 *

50 REM ****************************
60 CALL INIT
70 CALL LOAD("DSK1.OBJECT")
80 CALL LINK("GO")
90 CALL SCREEN(4)
100 FOR LOOP=780 TO 799
110 CALL POKEV(LOOP,19)
120 NEXT LOOP
130 GOTO 80

For Mini-Memory users who have already assembled the program, stored it in the module and
added the program's name and entry point to the REF/DEF table, the LOAD instruction at line
70 is not necessary. CALL INIT initializes memory, clears previously loaded programs and data
and checks to see if memory expansion is attached and, if so, initializes the values needed to
link memory expansion to console memory for assembly language use. CALL INIT must appear
in your program before the first CALL LOAD.

CALL LOAD loads the object code from the device/file name specified. It can also be used to
place (or "poke") values into CPU RAM with the format CALL LOAD(ADDRESS,VALUE1,
VALUE2,VALUE3,...). CALL LINK branches to the entry point address in the assembly language
program. Control is passed at this point to the subprogram. Execution of the remaining BASIC
statements does not continue until the assembly program completes its task and returns.

116 	 Introduction to Assembly Language

The assembly program in this example resets the screen and character colors to white on
blue. Upon returning from the subprogram, the BASIC program resets the screen and character
colors back to black on green.

In addition to using CALL LOAD to place values into CPU RAM, other handy instructions are
available in TI BASIC with Editor/Assembler and Mini-Memory. CALL PEEK(ADDRESS,
VARIABLE1,VARIABLE2,...) allows you to retrieve one or more values from an address in CPU
RAM. Similarly, CALL PEEKV(ADDRESS,VARIABLE1, VARIABLE2,...) retrieves a value from VDP
RAM. CALL POKE V(ADDRESS,VALUE1, VALUE2,...) places one or more values into an address
in VDP RAM.

The format for each of these statements is the same. Values are stated in decimal format.
Addresses larger than 32767 are expressed in negative two's complement notation. Each
variable or value denotes one byte of data. When more than one value or variable is used, the
first is assigned to the byte at the address specified and each successive value or variable is
assigned to the next byte at the next address.

The POKEV statement resets the foreground and background color values in the color table to
black on green in the BASIC program example above. Each byte in the color table is set to
>13 or decimal 19. With your knowledge of tables and addresses, using POKEs and PEEKs in
your BASIC program can perform certain tasks faster than normal BASIC statements and also
do things that are not normally possible with BASIC. Remember the screen offset or bias of 96
affects these statements as well. For example, CALL POKEV(2,161) displays an "A" at row one
column three. Although the normal ASCII code of "A" is 65, adding the offset (65 + 96) makes
this value 161.

CPU RAM bytes >837D, >837E and >837F are part of the area known as the CPU RAM PAD.
These addresses make up the VDP character buffer. By placing a character code value at
>837D, the character will be displayed on the screen at the row and column specified at
>837E and >837F respectively. Since address >837D (decimal 33661) is greater than 32767,
the address must be given in two's complement notation. Also, these addresses are in CPU
RAM and can be accessed with CALL LOAD. In this way, some VDP access can be obtained
without using POKEV, which is not available in Extended BASIC. CALL LOAD(-31875,161,1,3)
displays "A" at row 1 column 3, just as the POKEV example did. The first value (161) is placed
at address >837D (-31875), the second value (1) is placed at address >837E (-31874), and the
third value (3) is placed at address >837F (-31873).

for the TI Home Computer 	 117

THE EXTENDED BASIC ENVIRONMENT

There are differences in how assembly subprograms may be used with TI Extended BASIC
compared to TI BASIC. Particularly, the usage of VDP RAM varies from both the BASIC and
Assembler mode. Also, CPU RAM, the area occupied by the memory expansion unit, can be
used by Extended BASIC. Addresses >2000 to >3FFF and >A000 to >FFEO are used by the
Extended BASIC loader. Assembly language programs may only be up to 8K bytes in length
with Extended BASIC.

VDP RAM UTILIZATION
EXTENDED BASIC MODE

ADDRESS
HEX 	DECIMAL

>0000 	0 	SCREEN
IMAGE

>02FF 	767 	TABLE

>0300 	768 	SPRITE
ATTRIBUTE

>03FF 	1023 	LIST

>0400 	1024 	PATTERN
DESCRIPTOR
AND SPRITE
DESCRIPTOR

>077F 	1919 	TABLE

>0780 	1920 	SPRITE
MOTION

>07FF 	2047 	TABLE

>0800 	2048 	COLOR
>081F 	2079 	TABLE

>0820 	2080 	EXTENDED
BASIC
PROGRAM
INTERPRETER,
WORK AREAS,
DATA TABLES,

>3FFF 	16383 	ETC.

118 	 Introduction to Assembly Language

The Extended BASIC loader does not recognize external references (REFS). For access to
utilities such as VSBW, the addresses of the utilities must be EQUated to their names. These
utilities are located at different addresses than they are in BASIC or assembler modes. Not all
utilities are supported. For example, DSRLNK is not supported under Extended BASIC. When
your assembly language program is run from Extended BASIC, or when it is run automatically
by including the entry point label with the END directive, it starts out in the GPL workspace.
The GPL workspace begins at >83E0. You must not use this area as your own workspace.
Rather, you should establish your own workspace by defining a workspace and using the LWPI
instruction at the start of your program. This has been done in every program example so far
and generally makes for good practice. In order for your program to properly return to the
program which called it, you should set the workspace pointer register so that it points to the
GPL workspace before returning. The following instructions illustrate how this is done.

GPLWS EQU >83E0 BEGINNING ADDRESS OF THE GPL WORKSPACE
SAV11 BSS 2 SAVE AREA FOR RETURN ADDRESS
MYWS BSS >20 SET ASIDE 32 BYTES FOR MY WORKSPACE

.
START MOV 	Rll , @SAV11 SAVE RETURN ADDRESS

LWPI MYWS ESTABLISH MY OWN WORKSPACE

END LWPI GPLWS RE—ESTABLISH THE GPL WORKSPACE
MOV @SAV11,R11 RESTORE RETURN ADDRESS
CLR STATUS CLEAR THE GPL STATUS BYTE
RT RETURN

Another way of ending the program works in any environment, no matter if your assembly
program is called from BASIC or Extended BASIC. For this method, the contents of R11 do not
need to be saved. The following instructions illustrate this technique.

GPLWS EQU >83E0

.
END 	LWPI GPLWS

CLR @STATUS
B 	@>0070

for the TI Home Computer 	 119

Once again, here is the sample program from Chapter Eight. This time, it has been written with
the changes necessary to call it from Extended BASIC.

DEF GO

* THE EXTENDED BASIC LOADER DOES NOT RECOGNIZE EXTERNAL *
* REFERENCES. THE UTILITIES VWTR, VSBW, VMBW, AND KSCAN *
* MUST BE ACCESSED BY INCLUDING EQUATES FOR THEM. 	*

* THE ADDRESSES OF THE UTILITIES ARE DIFFERENT UNDER 	*

* EXTENDED BASIC 	 *

VWTR 	EQU >2030
VSBW 	EQU >2020
VMBW 	EQU >2024
KSCAN EQU >201C

* "GPLWS" address of the GPL workspace 	 *

GPLWS EQU >88E0
WR 	BSS >20
STATUS EQU >837C
KEYVAL EQU >8375
DTEN DATA >A
BORDER DATA >FFFF,>8080,>8080,>8080

DATA >8080,>8080,>8080,>8080
DATA >8080,>8080,>8080,>8080
DATA >8080,>8080,>8080,>FFFF

MSG1 	TEXT 1 ** PRESS ANY KEY 	**1

MSG2 	TEXT 1 * KEYSTROKE VALUE IS *'
MSG3 	TEXT 1 * PRESS REDO/ESCAPE 	*1
OFFST BYTE >60
REDOV BYTE >06
ESCV BYTE >OF

EVEN
GO 	LWPI WR

LI 	R0,0755
BLWP @VWTR

120 	 Introduction to Assembly Language

* THE ADDRESSES USED BY THESE INSTRUCTIONS TO ACCESS 	*
* THE COLOR TABLE HAVE BEEN CHANGED 	 *

LI 	R0,>081F
LI 	R1,>5500
BLWP @VSBW
LI 	R0,>0800
LI 	R1,>1F00
BLWP @VSBW
CI 	R0,>081E
JEQ BPUT
INC RO
JMP CLOOP
LI 	R0,0
LI 	R1,BORDER
LI 	R2,32
BLWP @VMBW
CI 80,736
JEQ EXIT
AI 	R0,32
JMP BLOOP

EXIT 	LI 	R0,261
	

VDP RAM ADDRESS FOR FIRST MESSAGE
LI 	R2,MSG1
	

CPU RAM ADDRESS OF THE MESSAGE
LI 	R3,22
	

MESSAGE LENGTH
BL 	@PBASIC
	

PRINT MESSAGE
SCAN1 CLR @STATUS

BLWP @KSCAN
MOVB @STATUS,@STATUS
JEQ SCAN1
LI 	R0,325
	

VDP RAM ADDRESS FOR SECOND MESSAGE
LI 	R2,MSG2
	

CPU RAM ADDRESS OF THE MESSAGE
LI 	R3,22
	

MESSAGE LENGTH
BL 	@PBASIC
	

PRINT MESSAGE
LI 	R0,395
MOVB @KEYVAL,R1
AB 	@OFFST,R1
BLWP @VSBW
CLR R4
MOVB @KEYVAL,R4
SRL R4,8
LI 	R3,404
LI 	R0,406
BL 	@FIGUR
LI 	R0,485
	

VDP RAM ADDRESS FOR THIRD MESSAGE
LI R2,MSG3
	

CPU RAM ADDRESS OF THE MESSAGE
LI 	R3,22
	

MESSAGE LENGTH
BL 	@PBASIC
	

PRINT MESSAGE

CLOOP

BPUT

BLOOP

for the TI Home Computer 	 121

SCAN2 CLR @STATUS
BLWP @KSCAN
MOVB @STATUS,@STATUS
JEQ SCAN2
CB @KEYVAL,@REDOV
JNE SCAN2
B @BPUT

FIGUR MOV R4,R5
CLR R4
DIV @DTEN,R4
AI 	R5,>0030
SLA R5,8
MOV R5,R1
AB 	@OFFST,R1
BLWP @VSBW
DEC RO
C 	RO,R3
JHE FIGUR
RT

********** * ***************** * ***************** * ********
* 	 *
* "ESCAP" RESETS THE WORKSPACE POINTER REGISTER TO *
* 	 THE GPL WORKSPACE, CLEARS THE STATUS BYTE, *
* 	 AND BRANCHES TO ADDRESS >0070 	 *
* *

ESCAP LWPI GPLWS
CLR @STATUS
B @>0070

PBASIC MOVB *R2+,R1
AB 	@OFFST,R1
BLWP @VSBW
DEC R8
JNE PBASIC
RT
END

MOVE ONE BYTE OF MESSAGE TO R1
ADJUST FOR BASIC
WRITE ONE BYTE
DECREMENT CHARACTER COUNT
IF NOT ZERO DO IT AGAIN
ELSE RETURN

122 	 Introduction to Assembly Language

10 REM *****************************
20 REM * EXT BASIC PROGRAM TO CALL *
30 REM * THE CHAPTER EIGHT 	 *
40 REM * ASSEMBLY PROGRAM 	 *
50 REM *****************************
60 CALL INIT
70 CALL LOAD("DSKLOBJECT")
80 CALL LINK("GO")
90 CALL SCREEN(4)
100 FOR LOOP=0 TO 16
110 CALL COLOR(LOOP,2,4)
120 NEXT LOOP
130 GOTO 80

In addition to having BASIC and Extended BASIC programs call assembly language programs,
you may pass numeric and string data from one to the other. This may be done with PEEKs
and POKEs, or the CALL LINK statement can be used. The entry point address in CALL LINK
can be followed by up to 16 variables which are available to the assembly language for it to
act upon.

The following subprogram example emulates the DISPLAY AT statement in Extended BASIC. It
is written to be run from TI BASIC with either the Mini-Memory or Editor/Assembler module
installed. The program was written with Editor/Assembler, so if you will be using the Line-by-
Line assembler with the Mini-Memory, you will need to make the changes mentioned In
Chapter Five. A similar program for the Line-by-Line assembler is listed in the Mini-Memory
manual.

The format of a TI BASIC program that will use this subprogram will vary depending on which
module is used and which hardware configuration you use with your computer. For Mini-
Memory users who have already assembled the program, stored it in the module and added
the program name and entry point to the REF/DEF table, this format would be used:

CALL LINK(`DEF LABEL",ROW,COL,STRING)

For example:

110 CALL LINK(`GO",12,6,S$)

for the TI Home Computer 	 123

Editor/Assembler users would use a format similar to this TI BASIC program:

10 REM *****************************
20 REM * BASIC PROGRAM TO CALL *
30 REM * THE "DISPLAY AT" ASSEMBLY *
40 REM * LANGUAGE SUBPROGRAM *
50 REM *****************************
60 CALL INIT
70 CALL LOAD("DSK1.BSCSUP")
80 CALL LOAD("DSKLOBJECT")
90 INPUT "STRING?":S$
100 INPUT "ROW?":R
110 INPUT "COLUMN?":C
120 CALL LINK("GO",R,C,S$)
130 FOR DELAY=1 TO 500
140 NEXT DELAY
150 GOTO 90

The special routines used in this assembly program known as "Basic Support"
(NUMREF,STRREF,ERR) are included on diskette "A" of the Editor/Assembler package. These
must be loaded into the computer with a BASIC statement, such as the CALL
LOAD("DSK1.BSCSUP") statement used here, in order for the assembly program to resolve the
symbolic names of these routines. These routines already exist in the Mini-Memory module, so
no such statement is required. Next, the object file which was created by assembling the
program is loaded. You should specify the device name that fits your situation.

** "DISPLAY AT" SUBPROGRAM **

01 DEF GO
02 REF VSBW,VMBW,VMBR,NUMREF,XMLLNK,STRREF,ERR
03 FPAC EQU >834A
04 SBUFF BSS 256 	 DEFINE STRING BUFFER
05 LBUF BSS 32 	 DEFINE LINE BUFFER
06 LIM DATA >0001,>0018,>001C 	DEFINE ROW & COLUMN RANGES
07 GO MOV R11,R10 	SAVE RETURN ADDRESS
08 CLR RO 	 CLEAR RO — NUMREF PARAM #1
09 LI R1,1 	 INIT R1 TO 1 — NUMREF PARAM #2
10 BL @GETNUM 	GET 1ST VARIABLE (ROW NUMBER)
11 BL @CHKLMR 	CHECK ROW LIMITS
12 MOV @FPAC,R4 	MOVE ROW VALUE TO R4
13 DEC R4 	 ADJUST FOR ASSEMBLY LANGUAGE
14 SLA R4,5 	 MULTIPLY ROW BY 32
15 MOV R4,R7 	 MOVE ROW ADDR TO R7
16 INC R1 	 INCREMENT R1 FOR NEXT PARAMETER
17 BL @GETNUM 	GET 2ND VARIABLE 	(COLUMN NUMBER)
18 BL @CHKLMC 	CHECK COLUMN LIMITS
19 A @FPAC,R4 	ADD IN ROW VALUE

124 Introduction to Assembly Language

20
21
22
23
24

INC
INC
LI
SETO
BLWP

R4
R1
R2,SBUF
@SBUF
@STRREF

ADJUST FOR BASIC
INCREMENT R1 FOR NEXT PARAMETER
LOAD R2 W/STRING BUFFER ADDRESS
INITIALIZE FIRST WORD TO >FFFF
GET 3RD VARIABLE 	(THE STRING)

25 CLR R5 CLEAR R5 	(BYTE COUNTER)
26 MOV R2,R3 MOVE SBUF ADDRESS TO R3
27 MOVB *R3+,R5 GET 1ST BYTE 	(STRING LENGTH)
28 JEQ XT IF STRING LENGTH EQUALS ZERO EXIT
29 SWPB R5 SWAP THE BITS OF R5 (LEFT ADJ)
30 BL @PRINT DISPLAY THE STRING
31 XT B *RIO RETURN TO CALLING PROGRAM
32 GETNUM BLWP @NUMREF GET BASIC NUMBER (FLOATING POINT)
33 BLWP @XMLLNK PERFORM FLTP TO INT CONVERSION
34 DATA >1200 ADDRESS OF XML ROUTINE
35 B *Rll RETURN
36 CHKLMC C @FPAC,@LIM+4 COMPARE THE INTEGER TO 28
37 JGT ERROR IF GREATER THAN, JUMP TO "ERROR"
38 JMP CHK JUMP TO "CHK"
39 CHKLMR C @FPAC,@LIM+2 COMPARE THE INTEGER TO 24
40 JGT ERROR IF GREATER THAN, JUMP TO "ERROR"
41 CHK C @FPAC,@LIM COMPARE THE INTEGER TO 1
42 JLT ERROR IF LESS THAN, JUMP TO "ERROR"
43 B *Rll RETURN
44 ERROR LI 0,>1300 LOAD RO WITH ERROR MESSAGE VALUE
45 BLWP @ER R BRANCH TO ERROR MESSAGE ROUTINE
46 PRINT MOV R11,9 SAVE LINKAGE ADDRRESS
47 LI R6,>6000 LOAD R6 WITH SCREEN OFFSET VALUE
48 AI R7,30 CALC NEXT ROW ADDRESS
49 PLOOP MOV R4,R0 MOVE VDP ADDRESS TO RO
50 MOVB *R3+,R1 GET A BYTE FROM STRING BUFFER
51 AB R6,R1 ADD SCREEN OFFSET TO R1
52 BLWP @VSBW WRITE ONE BYTE
53 INC R4 POINT TO NEXT SCREEN ADDRESS
54 DEC R5 DECREMENT THE CHARACTER COUNT
55 JNE Ll IF R5 IS NOT = 0, JUMP TO Ll
56 B *R9 RETURN
57 Ll C R4,R7 COMPARE NEW ADDRESS TO LIMIT
58 JL PLOOP IF LESS THAN, JUMP TO "PLOOP"
59 AI R7,32 ELSE INC LIMIT BY 1 ROW (32)
60 Al R4,4 INCREMENT SCREEN ADDRESS BY 4
61 CI 87,766 IS NEW ROW OFF THE SCREEN
62 JLE PLOOP JUMP TO "PLOOP"
63 BL @SCROLL BRANCH TO SCROLL
64 AI R7,-32 ADJUST LIMIT AFTER SCROLL
65 AI R4,-32 ADJUST SCREEN ADDRESS AFTER SCROLL
66 JMP PLOOP JUMP TO "PLOOP"
67 SCROLL LI R0,-32 INITIALIZE SCREEN ADDRESS
68 LI R1,LBUF LOAD R1 W/LINE BUFFER ADDRESS
69 LI R2,32 LOAD R2 WITH LENGTH OF LINE

for the TI Home Computer 125

70
71
72
73
74
75
76

L4 AI
BLWP
AI
CI
J LT
JEQ
B

RO, 64
@VMBR
RO , —32
RO,>2E0
NP
51
*R11

MOVE DOWN ONE LINE
READ A LINE INTO LINE BUFFER
MOVE UP ONE LINE
IS THIS THE LAST LINE?
IF NOT JUMP TO "NP"
IF IT IS, 	JUMP TO "51"
SCROLL IS DONE, RETURN

77 S1 MOV R1, R13 COPY BUFFER POINTER
78 MOV R2,R14 COPY BUFFER LEN
79 LI R15,>2020 LOAD 2 SPACES INTO R15
80 L3 MOV R15, *R13+ MOVE SPACES TO BUFFER
81 DECT R14 DECREMENT BYTE COUNT
82 JNE L3 PAD NEXT WORD
83 NP BLWP @VMBW WRITE MULTIPLE BYTES
84 JMP L4 JUMP TO "L4"
85 END

Lines 8 and 9 clear RO and load R1 with the value of 1. These registers are used by the
NUMREF and STRREF routines as indicators. The value of RO tells the routine what type of
value it will retrieve. The value of R1 tells the routines which variable is to be retrieved. A "1"
indicates the first value passed from the BASIC program by the CALL LINK statement. The
first value in the example is the row number. Line 10 performs a Branch and Link to the routine
"GETNUM" at line 32. NUMREF gets the value (which is in floating point format) from the TI
BASIC value stack and places it at address >834A. This address is the Floating Point
Accumulator. Next, the XMLLNK routine takes the floating point number and converts it to an
integer (actually a binary expression which the assembly program can act upon). The result of
the conversion is still at the address of the Floating Point Accumulator (>834A).

It must be verified that this number is a valid row number from 1 to 24. Line 11 performs a
Branch and Link to the routine "CHKLMR" at line 39. First the value is compared to the value
at LIM +2, which is 24. Then the value is compared to the value at LIM which is 1. If the row
value is greater than 24 or less than 1, then a jump is made to the label ERROR at line 44. The
error routine causes the message "BAD VALUE" to be displayed and returns to the BASIC
program.

Line 12 in the assembly program is only reached when the row value has been verified as
valid. Line 12 moves the row value into R4. The value needed to calculate the screen address
in assembly language terms for this row is one less than the actual value retrieved. Line 13
adjusts for this by DECrememting R4. The screen address of this row is equal to the value now
in R4 multiplied by 32. Line 14 accomplishes this multiplication by shifting the bits of R4 to
the left 5 positions. Any time the bits of a register are shifted left, the effect on the value of
the register is equal to VALUE * 2 A N, where N is the number of positions shifted to the left.
Since R4 is shifted left 5 positions and 2 A 5 = 32, the effect is the same as multiplying by 32.
Using the shift left instruction this way is a handy way to perform multiplication if the value
you wish to multiply by is a power of 2. The value now in R4 is the screen address of the
selected row. Line 15 saves this value in R7.

126 	 Introduction to Assembly Language

Line 16 adds 1 to the value in R1 before lines 17 and 18 retrieve and verify the column number.
Adding one to R1 tells the routines NUMREF and STRREF to operate on the next value which
was passed by CALL LINK. Line 19 is only reached once the column number has been
retrieved and verified. It adds the column value to the row address in R4. Line 20 adds one to
this value to make it correspond to the way in which DISPLAY AT handles row and column
addresses. Ordinarily, when the user selects row one, column one, this translates to screen
image table address 0, the first position on the screen. However, DISPLAY AT only recognizes
columns 3 through 30 in each row for a length of 28 bytes per row. Thus, if row one, column
one is selected, the actual display will begin at row one, column three. Columns 1, 2, 31 and
32 of each row contain filler characters and are not used for displays. Register four now
contains the VDP RAM screen image table address which corresponds to the row and column
numbers selected.

At line 21, R1 is again incremented to indicate to STRREF that it is to operate on the next
value that was passed by CALL LINK. The STRREF utility retrieves the BASIC string and
converts it to an assembly language string. Line 22 loads R2 with the address of where the
string is to end up (SBUF). The first byte of the string buffer must be a value which sets the
maximum number of bytes to be accepted. When the string is returned by STRREF it will start
at byte SBUF + 1, and the first byte (SBUF +0) will be changed to reflect the actual length of
the string. The maximum number of bytes to be accepted is 255, or >FF. Line 23 uses the
SETO instruction, which sets all the bits in the named address to ones. This is the opposite
effect as using CLR, which sets all bits to zero. If all the bits of a word in memory are set to
ones, the hex value of that word is >FFFF. Line 24 performs the BLWP to STRREF, which
actually gets the string. Line 26 moves the address of the string buffer to R3 since R2 will be
used later. Line 27 moves the string length found at the first byte of the string buffer to R5,
which was cleared at line 25. Line 27 uses the auto-increment addressing feature, leaving the
address in R3 pointing to SBUF + 1 after the move. If the string length is zero when moved into
R5, the equal bit will be turned on in the status register. This condition is checked at line 28,
which directs the logic to return to the calling program, since a length of zero indicates that
no string has been passed. Line 29 uses the Swap Bytes (SWPB) instruction to change the
value in R5 from the left byte to the right byte. If the value moved into R5 at line 27 was >FF,
then R5 would contain >FFOO. After the SWPB instruction, R5 would contain >00FF, or
decimal 255. Line 30 performs a Branch and Link to the routine "PRINT" which will display the
string at the desired screen location.

Line 47 loads R6 with the Screen offset value which must be added to any ASCII character
code before it can be properly displayed by an assembly language program which has been
called from BASIC. Line 48 adds 30 to the value in R7. The value in R7 was the screen address
of the row selected. R7 now contains the screen address value of the 31st column of the row
selected. If the new screen address in R4 has reached this value, then it is necessary to move
to the next row before continuing with the display of the string.

Line 49 moves the current screen address in R4 to RO. Line 50 moves a byte from the string
buffer to R1 and auto-increments the address in R3 by one. Line 51 adds the screen offset
value (>60) to R1 before line 52 writes it to the screen with the VDP Single Byte Write (VSBW)
routine. Lines 53 and 54 increment the screen address and decrement the character count
after each write. If the value in R5 reaches zero, the equal bit is turned on in the status
register. Line 55 checks for this condition and directs the logic of the routine to label "L1" as
long as R5 is not zero. If R5 is equal to zero, then all the characters of the string have been
displayed, and Line 56 returns to the program.

for the TI Home Computer 	 127

Line 57 compares the new screen address to be used with the value in R7. If R4 is greater than
or equal to R7, the next byte to be displayed should go on the next row starting at column
three. If R4 is less than R7, line 58 directs the logic to the label "PLOOP" to write another
byte. Lines 59 and 60 adjust the screen address and row limit values for the next row, column
three. Line 61 compares the row limit value to 766. The maximum allowable row that could
have been selected is 24. The address of the first column of row 24 is equal to 736. Adding the
row limit value to this gives the maximum value for R7 of 766. If R7 is greater than or equal to
766, the current screen display must be scrolled up before the rest of the string can be
displayed. As long as this maximum value has not been reached, line 62 will jump to the label
"PLOOP" to write another byte. Line 63 performs a Branch and Link to SCROLL when the
maximum value in R7 has been reached.

The effect of scrolling the screen display is to move all of the values in the screen table up
one row and fill the bottom row with spaces. Anything displayed on the first row will be lost as
it scrolls off the screen. To aid in this, a temporary storage buffer (LBUF) was set aside at line
5 to hold one row of data (32 bytes). Lines 67, 68 and 69 load the initial values needed for the
scroll operation. The VDP RAM address value in RO is initially set -32 because line 70 will add
64 to it each time through the loop named L4. The first time through this loop, RO will become
equal to 32, the address of row two. R1 must contain the address of the line buffer and R2 the
length, 32 bytes.

Line 71 reads one row of characters from the screen into the line buffer (LBUF). Line 72
adjusts the VDP RAM address in RO by 32 and line 73 checks the new value to see if SCROLL
is done. If the value in RO is equal to >2E0, the logic jumps to label Si. Otherwise, logic
continues at NP at line 83. Line 83 writes the contents of the line buffer to the new screen
address and line 84 jumps to the label L4 to complete the loop. This loop continues until the
compare at line 73 is true at which time logic jumps to the label 51. Lines 77 through 82 copy
the line buffer address and length into registers R13 and R14 and proceeds to fill the line
buffer with spaces (>20). Line 82 keeps returning to label L3 until all 32 bytes of the line buffer
have been filled with spaces. The logic of the routine then falls to line 83 which writes the
contents of the line buffer (all spaces) to the last row on the screen.

Logic transfers to label L4. The Compare at line 73 now has no effect on the logic of SCROLL,
and line 76 returns to line 64 of PRINT. After scrolling, the limit and screen address values are
adjusted by -32 at lines 64 and 65 before continuing to display the rest of the string.

Included here are two programs that demonstrate the use of assembly routines with TI BASIC
or TI Extended BASIC.

128 	 Introduction to Assembly Language

ASSEMBLER CHARACTER DEFINITION

This program redefines the standard character set so that lower case letters appear as "true"
lower case with descenders. This means the tails of the p,q,g,j and y can be printed on the
screen. Also, some special foreign language characters have been defined. The Data
statements in this routine use the same type of 16-character code used to define characters
with the CALL CHAR statement in TI BASIC. Characters with ASCII codes 30 through 126 have
definitions provided. Space for data to redefine characters up to ASCII 143 has been Included
so that you may use the routine to quickly define graphics characters at the beginning of a TI
BASIC or TI Extended BASIC program.

Note that the program cannot be assembled if the source file contains both the Extended
BASIC DEF/EQU and the Editor/Assembler DEF/REF. To use the program with both TI BASIC
and Extended BASIC, save separate versions of the source code and assemble two object files
on separate disks. The Extended BASIC version should be assembled using the "R" option of
Editor/Assembler, while the BASIC version should be assembled with the "C" option. The
object file name should be "DSK1.CHARDF".

To call the routine from your TI BASIC or Extended BASIC program, you need to use the
following routine at the beginning of the program.

100 CALL INIT
110 CALL CLEAR
120 CALL LOAD("DSK1.CHARDF")
130 CALL LINK("CHARDF")

If you use Extended BASIC, you can save the above routine as the filename "DSK1.LOAD".
When you select Extended BASIC, it will run automatically. Then, any Extended BASIC
program you rbn will have the characters defined by the routine if you use a CALL
LINK("CHARDF") statement. Once the routine is loaded into memory expansion, it needn't be
reloaded unless memory expansion is turned off.

* ASSEMBLER CHARACTER DEFINITION *
* by David Migicovsky 	*
* Copyright (C) 1983 	*
* by Steve Davis Publishing 	*

* THE NEXT TWO LINES ARE FOR USE WITH
* TI EXTENDED BASIC VERSION ONLY

DEF CHARDF, VMBW

VMBW 	EQU > 2 0 2 4

for the TI Home Computer 	 129

* THE NEXT TWO LINES ARE FOR USE WITH
* TI BASIC AND EDITOR/ASSEMBLER ONLY

*

DEF CHARDF

REF VMBW

PATTERN IDENTIFIERS *CHAR ASCII

NEWDEF DATA >7C7C,>6C6C,>6C6C,>7C7C * 30
DATA >0000,>0000,>0000,>0000 * 31
DATA >0000,>0000,>0000,>0000 * " 	" 32
DATA >1010,>1010,>1000,>1000 * "!" 33
DATA >2828,>2800,>0000,>0000 * “IIN 3 4
DATA >2828,>7C28,>7C28,>2800 * tgir 35
DATA >3854,>5038,>1454,>3800 * "$" 36
DATA >6064,>0810,>204C,>0000 * nv 37
DATA >2050,>5020,>5448,>3400 * "&" 38
DATA >0808,>1000,>0000,>0000 * 'gym, 39
DATA >0810,>2020,>2010,>0800 * "(" 40
DATA >2010,>0808,>0810,>2000 * ")" 41
DATA >0028,>107C,>1028,>0000 * "*" 42
DATA >0010,>107C,>1010,>0000 * "+" 43
DATA >0000,>0000,>0030,>1020 * "," 44
DATA >0000,>007C,>0000,>0000 * "—" 45
DATA >0000,>0000,>0030,>3000 * "." 46
DATA >0004,>0810,>2040,>0000 * "/" 47
DATA >3844,>4444,>4444,>3800 * "0" 48
DATA >1030,>1010,>1010,>3800 * "1" 49
DATA >3844,>0408,>1020,>7C00 * "2" 50
DATA >3844,>0418,>0444,>3800 * "3" 51
DATA >0818,>2848,>7C08,>0800 * "4" 52
DATA >7C40,>7804,>0444,>3800 * "5" 53
DATA >1820,>4078,>4444,>3800 * "6" 54
DATA >7C04,>0810,>2020,>2000 * "7" 55
DATA >3844,>4438,>4444,>3800 * "8" 56
DATA >3844,>443C,>0408,>3000 * "9" 57
DATA >0030,>3000,>3030,>0000 * ":" 58
DATA >0000,>3030,>0030,>1020 * li ; lo 59
DATA >0810,>2040,>2010,>0800 * "<" 60
DATA >0000,>7C00,>7C00,>0000 * "=" 61
DATA >2010,>0804,>0810,>2000 * ">" 62
DATA >3844,>0408,>1000,>1000 * "?" 63
DATA >3844,>5C54,>5C40,>3800 * "@" 64
DATA >3844,>447C,>4444,>4400 * "A" 65
DATA >7824,>2438,>2424,>7800 * "B" 66
DATA >3844,>4040,>4044,>3800 * "C" 67
DATA >7824,>2424,>2424,>7800 * "D" 68
DATA >7C40,>4078,>4040,>7C00 * "E" 69
DATA >7C40,>4078,>4040,>4000 * "F" 70

130 	 Introduction to Assembly Language

DATA >3C40,>405C,>4444,>3800 * "G" 71
DATA >4444,>447C,>4444,>4400 * "H" 72
DATA >3810,>1010,>1010,>3800 * "I" 73
DATA >0404,>0404,>0444,>3800 * "Jn 74
DATA >4448,>5060,>5048,>4400 * "K" 75
DATA >4040,>4040,>4040,>7C00 * "L" 76
DATA >446C,>5454,>4444,>4400 * "M" 77
DATA >4464,>6454,>4C4C,>4400 * "N" 78
DATA >7C44,>4444,>4444,>7C00 * "0" 79
DATA >7844,>4478,>4040,>4000 * "P" 80
DATA >3844,>4444,>5448,>3400 * "Q" 81
DATA >7844,>4478,>5048,>4400 * "R" 82
DATA >3844,>4038,>0444,>3800 * "S" 83
DATA >7C10,>1010,>1010,>1000 * "T" 84
DATA >4444,>4444,>4444,>3800 * "U" 85
DATA >4444,>4428,>2810,>1000 * "V" 86
DATA >4444,>4454,>5454,>2800 * "Wn 87
DATA >4444,>2810,>2844,>4400 * "X" 88
DATA >4444,>2810,>1010,>1000 * "Y" 89
DATA >7C04,>0810,>2040,>7C00 * "Z" 90
DATA >0810,>3844,>7C40,>3800 * 'fps 91
DATA >3030,>3FFF,>FE7C,>180C * "\" 92
DATA >2010,>3844,>7C40,>3800 * up, 93
DATA >3844,>4040,>4438,>1000 * "^" 94
DATA >1028,>0038,>4848,>3400 * If 	11 95
DATA >0000,>3840,>4038,>1000 * ""--" 96
DATA >0000,>3848,>4848,>3400 * "a" 97
DATA >6020,>3824,>2424,>7800 * "b" 98
DATA >0000,>3844,>4044,>3800 * "c" 99
DATA >0008,>3848,>4848,>3C00 * "d" 100
DATA >0000,>3844,>7C40,>3800 * "e" 101
DATA >1824,>2070,>2020,>2000 * "f" 102
DATA >0000,>3C44,>3C04,>0438 * "g" 103
DATA >6020,>2834,>2424,>2400 * "h" 104
DATA >1000,>7010,>1010,>7C00 * "in 105
DATA >0800,>1808,>0848,>4830 * "1" 106
DATA >2020,>2428,>3028,>2400 * "k" 107
DATA >3010,>1010,>1010,>7C00 * "1" 108
DATA >0000,>A854,>5454,>5400 * "m" 109
DATA >0000,>5824,>2424,>2400 * "n" 110
DATA >0000,>3844,>4444,>3800 * "0" 111
DATA >0000,>7824,>2438,>2020 * "p" 112
DATA >0000,>3048,>3808,>080C * "q" 113
DATA >0000,>5824,>2020,>2000 * "r" 114
DATA >0000,>3C40,>3804,>7800 * "s" 115

for the T1 Home Computer

DATA >2020,>7820,>2024,>1800 * "t" 116
DATA >0000,>4848,>4848,>3400 * "u" 117
DATA >0000,>4444,>2828,>1000 * "v" 118
DATA >0000,>D454,>5454,>2800 * "w" 119
DATA >0000,>4428,>1028,>4400 * "x" 120
DATA >0000,>4444,>3C04,>0418 * "y" 121
DATA >0000,>7C48,>1024,>7C00 * "z" 122
DATA >1820,>2040,>2020,>1800 * "{" 123
DATA >1010,>1000,>1010,>1000 * "1" 124
DATA >3008,>0804,>0808,>3000 * "}" 125
DATA >0000,>2054,>0800,>0000 * "-" 126
DATA >0000,>0000,>0000,>0000 * 127
DATA >0000,>0000,>0000,>0000 * 128
DATA >0000,>0000,>0000,>0000 * 129
DATA >0000,>0000,>0000,>0000 * 130
DATA >0000,>0000,>0000,>0000 * 131
DATA >0000,>0000,>0000,>0000 * 132
DATA >0000,>0000,>0000,>0000 * 133
DATA >0000,>0000,>0000,>0000 * 134
DATA >0000,>0000,>0000,>0000 * 135
DATA >0000,>0000,>0000,>0000 * 136
DATA >0000,>0000,>0000,>0000 * 137
DATA >0000,>0000,>0000,>0000 * 138
DATA >0000,>0000,>0000,>0000 * 139
DATA >0000,>0000,>0000,>0000 * 140
DATA >0000,>0000,>0000,>0000 * 141
DATA >0000,>0000,>0000,>0000 * 142
DATA >0000,>0000,>0000,>0000 * 143

CHARDF LI R0,1008 *THIS IS A DECIMAL NUMBER
LI R1,NEWDEF
LI R2,904 *THIS IS A DECIMAL NUMBER
BLWP @VMBW
RT
END

131

132 	 Introduction to Assembly Language

MINI-MEMORY CHARACTER DEFINITION

To use with the Line-by-Line Assembler and the Mini-Memory, delete all lines except the DATA
statements. Change the label on the first line of DATA from "NEWDEF" to "ND". Insert two
new lines at the beginning of the program, making the first DATA statement line number three:

Line 1 	 AORG 	>7D00
Line 2 	VM 	 EQU 	>6028
Line 3 	ND 	 DATA 	>7C7C 	

Immediately following the last line of DATA statements, add the following lines:

CD
	

LI 	R0,1008
LI 	R1,ND
LI 	R2,904
BLWP @VM
CLR @>837C
B 	*11
END

To access the routine from a TI BASIC program, you would use the statement CALL
LINK("CD").

for the TI Home Computer 	 133

BAR GRAPH PROGRAM

This program example was created by Phil West and Bernie Elsner, two 99/4 enthusiasts from
"down under" in Australia. It Is a routine that is designed to be called from any TI BASIC pro-
gram with the Mini-Memory or Editor/Assembler modules Installed.
The routine allows you to plot high-resolution bar graphs in various colors. To access the
routine, use the TI BASIC statement CALL LINK("BGRAPH",COLUMN,COLOR,HEIGHT). COL-
UMN should be a number between 1 and 28, the screen column in which the bar is to appear.
COLOR is the color of the bar, a number from 1 to 7, derived as follows:

Color Number Color 	Character Set Used

1 Black 10
2 Dark Blue 11
3 Dark Red 12
4 Dark Yellow 13
5 Dark Green 14
6 Magenta 15
7 White 16

HEIGHT should be a number between 1 and 160, Indicating the number of pixel rows tall that
the bar will be. All bars are drawn beginning at character row 20 and may extend upward as
high as the first character row. This leaves character rows 21 through 24 open for text display.
Following the assembly listing is a demonstration program in TI BASIC that allows you to see
the results. If you will be using the Editor/Assembler module, you will need to load the BASIC
Support file from the Editor/Assembler disk A. The demonstration program prompts you to put
the disk in drive one. The object code of the Bar Graph assembly program should be saved
with the filename of "BGRAPH/O" (for Bar Graph Object) and should be in disk drive one when
running the demo.

*
*
*
*

*

BAR—GRAPH ROUTINE
FOR USE WITH MINI—MEMORY FROM TI BASIC
BY PHIL WEST AND BERNIE ELSNER

DEF 	BGRAPH
REF 	VMBW, VSBW, NUMREF , XMLLNK , ERR

D1 DATA >0000 *
DATA >0000 *
DATA >0000 *
DATA >003C * CHARACTER DEFINITIONS
DATA >3C3C *
DATA >3C3C *
DATA >3C3C *
DATA >3C3C *

134 	 Introduction to Assembly Language

D2 	DATA >1040
	*

DATA >60A0
	

* 	COLOUR BYTES
DATA >C0D0
	*

DATA >F000 	*
BGRAPH CLR R0
*
* GET THREE PARAMETERS FROM LINK LIST
*

LI 	R1,>0001 	* GET FIRST PARAMETER
BLWP @NUMREF
BLWP @XMLLNK
DATA >1200
MOV @>834A,R3
CI 	R3,>0000 	* CHECK IF VALID VALUE
JGT C
B @E

C 	CI 	R3,>001D
JLT F
B @E

F 	INC R1 	 * GET SECOND PARAMETER
BLWP @NUMREF
BLWP @XMLLNK
DATA >1200
MOV @>834A,R4
CI 	R4,>0000 	* CHECK IF VALID VALUE
JGT G
B @E

G CI 	R4,>0008
JLT H
B @E

H INC R1 	 * GET THIRD PARAMETER
BLWP @NUMREF
BLWP @XMLLNK
DATA >1200
MOV @>834A,R5
CI 	R5,>0000 	* CHECK IF VALID VALUE
JGT J
B *R11

J CI 	R5,>00A1
JLT K
B @E

* DEFINE CHARACTERS
*
K LI 	R2,>0008 	* HOW MANY BYTES TO WRITE & INCR FOR RO

LI 	R0,>0640 	* VDP WRITE ADDRESS
B LI 	R1,D1 	* ADDRESS OF CHARACTER DATA IN R1
A 	BLWP @VMBW 	* WRITE 8 BYTES INTO CHAR TABLE

A 	R2,R0 	* INCREMENT BY 8 FOR NEXT CHAR
INC R1 	 * SHIFT 1 PIXEL ROW DOWN DATA
CI 	R1,D1+8 	* LAST DATA ADDRESS ?

for the TI Home Computer 	 135

JLT A
	

* NO KEEP GOING
CI 	R0,>0800
	

* LAST CHAR TO DEFINE ?
JLT B
	

* NO DO NEXT CHAR
*
* DEFINE CHARSET COLOURS
*

LI 	R0,>0319 	* VDP ADDRESS FOR CHARSET 10
LI 	R1,D2 	* SET COLOUR
LI 	R2,>0007 	* 7 BYTES TO WRITE
BLWP @VMBW 	*

*
* DETERMINE CHARACTER TO USE
*

SLA R4,3
	

* MULTIPLY BY 8
AI 	R4,>0000
	

* 192 LESS OFFSET OF 96 = 96+8 = 104
* * WHICH IS 1ST CHAR OF CHARSET 10

SWPB R4 	 * CHAR TO USE
LI 	R6,>0020 	* ROW DECREMENT VALUE
LI 	R0,>0261 	* SET ROW 20 COL 2
A 	R3,R0 	* COLUMN TO USE

*
* DRAW BAR ONE PIXEL ROW AT A TIME
*
N
	

CLR R7
MOV R4,R1

M 	BLWP @VSBW
DEC R5

P CI 	R5,>0000
JGT L
B 	*R11

L AI 	R1,>0100
INC R7
CI 	R7,>0008
JLT M
S 	R6,R0
JMP N

*
* ERROR IN PARAMETER
*
E LI 	R0,>1300

BLWP @ERR
END

* BAD VALUE ERROR

* RESET COUNTER
* PREPARE TO WRITE 1ST BYTE
* WRITE ONE BYTE
* REDUCE BAR BY ONE PIXEL ROW
* FINISHED ?
* NO. CONTINUE
* YES. RETURN TO BASIC
* GET NEXT CHARACTER
* INCREMENT COUNTER
* WRITTEN ONE FULL CHARACTER ?
* NO. CONTINUE
* YES. DECREMENT ROW
* CONTINUE NEXT ROW

136 	 Introduction to Assembly Language

100 REM BAR GRAPH DEMONSTRATION
110 REM TI BASIC W/MINI-MEMORY OR
120 REM EDITOR/ASSEMBLER MODULE
130 REM BY PHIL WEST AND BERNIE ELSNER
140 CALL CLEAR
150 RANDOMIZE
160 PRINT "PLACE FILE 'BGRAPH/O' IN"
170 PRINT "DISK DRIVE ONE THEN":"PRESS ENTER"
180 INPUT E$
190 PRINT "LOADING MACHINE LANGUAGE":"PLEASE WAIT"
200 CALL INIT
210 CALL LOAD(28706,0,0,0,0,0,0,0,0)
220 CALL LOAD("DSK1.8GRAPH/0")
230 PRINT :"WHICH MODULE ARE YOU USING?":"ENTER"
240 PRINT " E - FOR EDITOR/ASSEMBLER":" M - FOR MINI-MEMORY"
250 INPUT E$
260 IF E$="M" THEN 350
270 IF E$<>"E" THEN 250
280 PRINT :"PLACE EDITOR/ASSEMBLER"
290 PRINT "DISK A IN DRIVE ONE THEN":"PRESS ENTER"
300 INPUT E$
310 CALL CLEAR
320 CALL LOAD("DSK1.BSCSUP")
330 REM 	RESERVE SPACE FOR CHARACTER DEFINITION
340 REM 	IN MACHINE LANGUAGE ROUTINE
350 FOR 1=104 TO 159
360 CALL CHAR(I,"")
370 NEXT I
380 CALL CLEAR
390 CALL SCREEN(15)
400 PRINT "MICRO RETAIL PROFITS 1982-84"
410 PRINT " 	(Q)UIT OR (R)EPEAT"
420 F=1
430 FOR I=1 TO 28
440 F=F*1.195
450 CALL LINK("BGRAPH",I,1,F)
460 NEXT I
470 FOR D=1 TO 800
480 NEXT D
490 FOR I=1 TO 28
500 CALL VCHAR(1,I+2,32,20)
510 CALL LINK("BGRAPH",I,6,F)
520 F=F/1.195
530 NEXT I
540 FOR D=1 TO 800
550 NEXT D
560 CALL HCHAR(1,1,32,640)
570 REM GENERATE RANDOM PARAMETERS
580 FOR I=1 TO 28

for the TI Home Computer 	 137

590 B=INT(RND*7+1)
600 C=INT(RND*160+1)
610 REM DRAW BAR WITH M/L ROUTINE
620 CALL LINK("BGRAPH",I,B,C)
630 NEXT I
640 CALL KEY(0,K,S)
650 IF K=82 THEN 380
660 IF K<>81 THEN 640
670 END

EDITORIASSEMBLER MANUAL REFERENCES

The following references will provide you with some more information on mixing assembly
with BASIC.

Read these sections:

Section 17.1 page 273 through Section 17.2.6 page 289.
Section 18.2.5 page 300.
Section 21.1 page 326.
Section 24.4 page 410 through Section 24.4.9 page 418.
Section 24.11 page 440 through Section 24.11.3 page 442

Look up these terms In the glossary:

GPL
Loader
Utilities
Workspace
Workspace Pointer Register

138 	 Introduction to Assembly Language

PARTING WORDS
There are several points aside from the actual understanding of TMS9900 assembly language
that can help make programming in this language somewhat easier and more productive.
These involve certain work habits and procedures and appreciating the task at hand when
creating assembly programs.

No matter how proficient you are now or may become with assembly language programming,
it is almost never practical or sensible to simply begin typing lines of code for a new program.
Though this may be possible with TI BASIC, it is not advisable with assembly. Once you have
decided on an application you would like to write in TMS9900 assembly language, take the
time to sketch out your program with pencil and paper before going to the computer. As
stressed earlier in this book, assembly language requires a great deal of detailed
consideration for each and every little thing you want to do.

Consult any reference materials you have at your disposal to insure that the first draft of your
program is as free of errors in logic and syntax as possible. Make use of sections of programs
you have written previously. Many professional programmers maintain an inventory of
subroutines they have developed that can be reassembled modularly to form the basis of a
new application program.

At a very fundamental level, you should pay close attention to the structure and design of your
programs. Assembly languages are basically free-form languages. As long as the rules of
syntax are obeyed, the directives, instructions, and data can appear in any order. This is one
case where freedom is not necessarily a good thing. The program examples given in this book
all follow a prescibed pattern or form. Directives, data statements, references, and equates are
all listed first. These are then followed by the actual program instructions. As much as
possible, your programs should incorporate a "top down" design. As you read the program
from top to bottom, you should be following the logical sequence of events as they occur.

If you were to create a painting, a symphony or a skyscraper, careful design and planning
would be crucial to the successful implemention of your creation. The same applies to
creating an assembly program. You need to consider in advance how you will tackle the task
at hand. You must anticipate the needs of the program itself, such as temporary storage fields
for calculations and data manipulation. Look for redundant functions that could be coded as
subroutines. Document your programs with comments and labels that explain the program
logic. Consistently align the labels, instructions, and operands on the column boundaries they
will occupy. This makes your program easier to read. Paying attention to neatness can usually
make errors easier to detect.

Develop your own style and structure in designing programs and stick to it. Borrow freely from
other examples you find to substitute for, or improve upon, your own designs. You can learn a
great deal from other assembly programmers. A good place to find this kind of help is at a
local users group. And, remember that one of your best teachers is simple trial and error. If
you have been wondering if something will work, try it.

for the TI Home Computer 	 139

Several products are available that can help in program development and debugging. As
mentioned, these include special hexadecimal calculators and software packages such as the
TI Programming Aids series. There are also disassemblers that can convert object code back
into source code. Both the Line-by-Line assembler and the Editor/Assembler come with
interactive debugging programs to assist you in your programming. Pros and hobbyists alike
benefit from these kinds of productivity tools. However, it should be stressed that none of
these is a substitute for a fundamental understanding of assembly language principles.

Remember to make back up copies of programs and data files before running the programs or
accessing the data. This can save you headaches and frustration. Good computer work habits
become more critical when working in assembly language.

If you are using Editor/Assembler, a printer is one of the most useful peripheral devices you
could own. The listings you can produce with it are invaluable for debugging programs and
creating documentation. It will help to have a printed listing to do a "walk through." This
involves reading through the program a line at a time. As you encounter each line of code,
make note of what is stated and record the results as you understand them on a piece of
paper. For example, draw a set of columns and label the top of each with the name of the
label or register involved. Then, as values are initialized or changed, record these values in the
correct column. Draw a line through the previous value when a value changes. Do not erase it
since you may need to refer back to it. Make note of the line number that caused the change.
This will show you the contents of each register or field at each step. If you encounter an
Instruction to add the contents of two registers having values that were determined 20 lines
before, the values to be added will be in the corresponding columns you created.

Developing good work habits and disciplines and learning to pay attention to details will
assist you in assembly language programming and In all other types of interaction with your
computer. Practice makes perfect. The more you work with assembly language, the better you
will become at it. Of course, this will require some effort and determination on your part. You
will be rewarded for your effort with an increased understanding of your computer and a
powerful tool that puts its potential at your command—TMS9900 Assembly Language.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141

