

w

ASSEMBLY LANGUAGE

FOR THE

TI HDME CDMPUTER

For correspondence regarding this book
address the following:

D % D PUBLISHING Co.

3177 Bellevue
Toledo, Ohio 43606

Copyright 1984 D & D Publishing Co.

All rights reserved

No part of this bool may be reproduced 1n any form or by any
means, electronic or mechanical, i1ncluding photocopying,

without permission in writing from the publisher.

Frinted 1n the Unitted States of America 1984

|

INTRODUCTION

There 1s something really big underlying the BASIC language'

Many gitted programmers have considersd writing elcirting games
tor the TI Home Computer only to be faced with the limitations ot
the cumbersome BASBIC language. It does not tabe une long to
realize that 1t 15 simply not possible to accomplish all that
arcade silyle games entail using BASIC alone. BASID 18 sometlimes
just too slow.

There 15 wssentially nothing wrong with using BADIC 1+ vou re
programming operations don’t require a great deal of speed. But if
vou are writing programs which have a lot of things happening
simultaneously, such as a number of obiects flyving around tLhe
screen with the program trying to beep track ot colncaidence
checks, BASIC just can’'t do the joh.

BASTC byv tts very natuwre lLends to use wpe a lot of memory 1n &
short period of time. For these reasons and the ones previously
alluded to, vou may wWwant to consider adding program modules
written 1n assembly language to yvow BABIC programs. O even
writing yvour complete program entirely 1n assemblv lanouage.

This boot 1s designed to heip the beginner in 1nitroducing him
or her to assembly language. The bool assumes that vou have no
previous sxperlence 1n programming other then BASIC. T+ you
already Frnow BRASIC, that 1s fine. If vou are already developing
programs 1n assembly language, that 1s even better.

This bool was designed as a study text. Thabt 1s, 1t was meant
to be read cover to cover, each chapter building on what was
learned 1n the preceding chapters. If something 1s discussed that
you do not guite understand after a thorough reading, go on as 1t
will probably become clear in later sections. Take the time to
complete the study guestions at the end of each chapter. They will
reinforce important concepts.

2 INTRODUCTION

This bool begins with the tundamentals. Chapter 2 covers the
binary and hexadecimal numbering systems. It al=o discusses
1mportant terms and concepts that will be carried throughout the
bool . Male suwre you completely understand chapter 2 before
proceeding.

CORMNTENTS O THIS ECO0O0E

This bool containsg 14 chapters. In chapter 2 vou are introduced
to the counting system that the computer uses to keep tracl of
numbers. You are also introduced to the hexadecimal system which
greatly simplifies programming.

Chapler 2 discusses the assembler, memory uwtilicaetion and the
internal registers of vour Home Computer. It also euplains hiow
assembly language programs are developed and written.
Additionally, you are introduced to the source statement, which 1s
a programing line i1n assembly language akin to a BASIC statement.

Chapter 4 introduces the instruction set. The firct topic talen
tor distussion 1 s Addressing Modes, or ways to 1nform the computer
g.actly where date or irnformation can be found in memor y.
Subseqguent sectirons of this chapter introduce vou to the
Instruction Set with sach 1nstruction disrucsed at lengih as to
1ts usage and pur pose. PMlumerouws eramples a e used to dramatize
important points.

In Chapter 3 vou learn abput Assembler Directives. These
consist of instructions to the assembler program that can
zigniticantly reduce program development Lime on vouwr part.

Chapter 6 discusses Utility programs in-depth. These are
already constructed aczemblv language programs that are available
to vou. Agaitn, numer ous examples are provided to 1llustrate
tmportant points.

Chapters 7, 3 and 7 discuss screen BGraphics, Sprites and Sound
control. You Jearn how Lo control complex screen graphics as well
as how to incorporate sound into vow programs.

Frior to chapter 19 this book discusses how Lo create assembly
language programs using the Editor 7Ascembler package. Chapter 10
1w & complete description ot how to create assembly language
programs using the line-by-line assembler and the Mini-Memory
module. Explicait instructions are given esplaining the differences
and how to create programs that will run witih either system
contiguwration.

Chapter 11 outlines the conversion of many BASIC commands 1nto
their assembly lamguage equivalents. This 1s done to 1llustrate

.

. . = O .- L

|

—

(-

INTRODUCTION

general assembly language concepts.

Chapter 12 outlines BRSIC support routines that are available.
It explains how to lint BASIC programs with assembly language
programs. Jt also outlines how parameters are passed boetwesen the
two tvpes of programs.

Chapter 17 presents a brief descraiption of the advanced
mathematical routines that are available. Linpking to console
resident routines is also discussed.

This book provides four appendices +Or youw CONVENLENTE.
Appendis: A& contains tables that aitds an interchanging decimal and
heradecimal numbers. Appendix B outlinges the TMS9200 lnstruction
Set. Appendi: T liste the Assembiler Directive set. Appendi: D is
perhaps the most interesting, it provides some sowce code for
freguently used assembly language game modules. You can operate
iovsticlks, simulate gravity, scroll the screen, Create delays
ect. ..

GOy L LT !

—

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Index

1: Introduction s...ceeennncnnas cssunacsseennenennannan 1
2: How A Computer Countsncevescncccsnnsccennnannns S5
3: The Assemblerccceceieressscncnascnnsnunsna cscaas . 15
4: The Instruction Setanvencunns smsecsansme ceene 25
S: Assembler Directives ...cveennsees sueeus ceeanmmann . 65
6: Utility Programs ...eeeven sewmemsasasanas aameennn wen 77
7: BraphiCS .c.cvevcesansuncnnnnnuasnsansnnnansannans aees 97
8: Those Spirited Spritesicevecnncncnnns ceenennn 115
9: Let There EBe Sound csusuesmsamssenees . eee 127
10: The Line-by-Line Assemblerccenvvucsnnnneans 139
11: Converting BASIC to Assembly Language 149
12: Linking With BASICc.iuiieeenanncnnnanaanans .. 169
13: High Precision Mathematicsva.. cmananae cnea. 183
e e smeaameeesrasesaeeanen . fenmssemmens s ceamen 1935

HOW COMPUTERS

o cmrn o 1 G oo s G e e oo S St Seioh S Sa4en T Sobem bkt e Soand Y00 S400% $0003 Bt At daaen ey Ak SO0SS S famen Seumn e faree Saest Seune SeSGe e Soumt $90%0 FFRD SAFFY SPNES Amede G4mbe Sedms St 4105 $400e e Susre SHPTe Teore Soeen Peasn e Seave S Sepem Ssaas Seovs e SepPe e et

The difficulties encountered in learning assembly language have
often been greatly exaggerated. In fact, once the instructions and
the rules that govern them are understood, programming in assembly
language becomes almost as easy as programming in BASIC.

All humans are born with ten fingers and toes and hence it was
natural that our mathematics would develop along the base ten
numbering system. However, there is no natural "law" that states
this must be so. A computer is designed along a base 2 or binary
numbering system. It is made up of only two digits, O and 1 (in
contrast to the decimal system which is made up of the digits ©
through 9). When you are working with the binary numbering
numbering system you are talking in the computers own language.
The computer can act directly upon instructions rather then having
to go through an interpreter first as is necessary with any higher
level language like BASIC.

There is one additional numbering system that you should become
familiar with in this chapter. This is a base sixteen or
hexadecimal numbering system or simple HEX. The HEX system is made
up of the digits O through 9 and letters A through F. When
programming in assembly language the computer assumes all numbers
that you enter are decimal numbers unless you precede the number
with a "greater than" symbol (*). The greater than symbol
indicates to the computer that the number following it is in
hexadecimal notation.

124 (Decimal) >7C (HEX)

This chapter is a basic introduction to computer numbering
systems. It is aimed at those who have no or limited knowledge in
this area. If you already understand these concepts and how they
apply to assembly language programming, feel free jump ahead to
the next chapter.

o

b6 HOW A COMPUTER COUNTS

a0 BEINMOSORY PRNUIMEBEEFRRS

The computer stores &ll the information contained within it in an
area called the memory. Memory can be thought of as a large
collection of electrical switches. Each switch can be either "on"
or "off" and each can be set or reset by the computer as needed.
Lach individual switch can be thought of as the computers smallest
single memory cell. This single memory cell is known as a BIT
which is short for Binary DIgiT. A bit holds the smallest piece of
information that the computer can handle. A bit is either on or
oftt, true or false, plus or minus. It has no in-between states.

The On and Off settings of the memory bits correspond to the
two digits that make up the binary numbering system. The binary
system consists of the two digits 0 and 1 and ie the fundamental
system the computer uses to keep track of numbers. The digits are
represented by OWWFf+) and 1 {On).

Im your Home Computer groups of eight bits are lumped together
to form a single byte. It might be easier if you think of a byte
as a row eight lightbulbs mounted on a long board. Each lightbulb
represents a single bit and camn be either on or off. The entire
board with its eight lightbulbs is taken as one byte. In the
following sections we will see how the computer can use these bits
and bytes to store information.

LEB801DAY; =0

Looking at the above illustration of our byvte we see that each
of the lights (bits) are currently turned off. From this we can
say that the byte is representing zero value. In computer language
it 18 said to be "holding" a zero. Now consider that we want this
byte to represent the number one instead of zeroc. 6s we watch the
light bit) orn the far right comes ons

iz

3 (3 (e () L@ =

—
.//

HOW A COMPUTER COUNTS 7

The column on the far right of ow byte is the one's column and
hence the byte on the preceding page would represent or "hold" a
value of one. I+ we wanted ow byte to hold a value of two instead

we would turn on the next bit 1n the row like so:

/
\\1 /

._..Jg 1 =
‘ - ___,’

——

And to represent the number three we simple add the values of
the last two bits together like so:

l/'\l/
2 Yattate
p 5015 (B) %) () =
W‘——- |/4

By simply looking at & byte, checking to see which bits are
turned on, and adding their values together the computer can tell
the value of the number being held there. Each bit has its own
special position on the byte. Starting on the right and proceeding
to the left, each it is worth twice what the one before it was.
Another way to think about it is to consider each bit (from right
to left) as an increasing power of two. Thus the rightmost bit is
2 to the power of O or 1, the next bit is 2 to the power of 1| or
2y then next 2 to the power of 2 o 4, and so0 on until the
leftmost bit is reached which is & to the power 7 or 128. By
adding combinations of bits that are twned on together the value
of any number from O {(all bits off) through 285 (all bits on) can
be represented:

I

\! / //\\\///\\l//\\\///'\\)///\\‘///\\1//\l /

(BTN - 255

L P ot

8 HOW A COMPUTER COUNTS

Lets review, eight bits together make up a single byte. A
single byte can hold any value ranging from O to 2595 decimal. The
following examples are binary (bvte) representations of some
decimal numbers. kKeep in mind that each 1 or 0 represents a bit
that is either ON(1) or OFF(2). The bite are divided into two

groups of fouwr bits each to make them easier to read:

BENARY DECIMAL

0010 0010
(ZI2)+ (D)= 34

0100 0010
(64)+(2)= &6

Normally yvou would not have to add binary numbers together when
programming, this function being performed by the computer.
However, to provide a complete presentation we will briefly
discuss the addition of binary numbers.

When adding binary numbers together you follow essentially the
same procedure as when adding two decimal numbers together. For
example, when adding the values 6 and 8 together you must carry a
1 into the "tens" column in order to arrive at the correct result
of "14"., Gimilarly, when the two binary digits 1 and 1 are added
together, a 1 must be carried into the two’'s column. Thus the
addition of 0000 0001 with Q000 Q000 becomes 0000 0001 and the

addition of Q000 0001 with 0000 0001 becomes 0000 O010. The
following illustrate some further examples of binary addition:

* * % ¥ % * ¥carried 1's
1 11 11 1
0101 0111 0110 0110
+.0001 r 011 +.0111 0011
0110 1101 1101 1001

The first problem invelves a carry of one from the first column
to the second (1+1). This carries over to the second column which
contains only two 0's. Adding the carried 1 makes the result under
this column a "1".

21 SIGNED NUMEBERS

Up to this point we have been discussing how to represent
positive numbers with the binary system (using bytes). To
bits and bytes we must retuwn to our row of eight bits that we
discussed in previous sections. Remember that each bit represented

HOW A COMPUTER COUNTS 4

a certain value that was determined by its row position on the
byte. To make them easier to refer to, bites are numbered O through
7 starting on the left and proceeding to the right (in contrast to
their value which increases from right to left). The nunbering of
bits is 1llustrated below:

WU 0507 U 0 0

O + 1 32 ¥ 5 € 7

Bits are also said to become more significant as they increase
in value. That is, bit 7 is considered the least significant bit
(LSR), and bit © is the most significant bit (MSB). Also, bit O is
more significant than bit 1 and bit 1 is more significant than bit
2 and so on down the line., Bignificance than ise tied to the
relative value of a bit. As the relative valug increases, so does
the bits signiticance as illustrated below:

(183aB08

z
MR LSk

When a byte holds a signed number, only the 7 least significant
bits hold the value of the number (bite 1 thro 7). The most
significant bit (bit O is reserved and is used to indicate the
sign of the number being held. I+ this bit is set to "1" then it
indicates that the number being held is a negative number. I+ this
bit is reset to 0 then it indicates that the number being held is
a positive number.

Az you may have already guessed, a byte that holds a signed
number uses bit O to hold the sign. Therefore it can’t hold as
wide a rarnge of values. Bytes holding positive numbers can only
hold values ranging from O (binary QOO0 O000) to 127 (binary 0111
1111) while bytes holding negative numbers carn hold values ranging
from -1 (bhinary 1111 1111) to 128 (binary 1000 0000).

You may be wondering why -1 is represented in binary as
1111 1111 instead of 1000 QO000. The reason for this is that
negatively signed numbers are represented in what 15 known as
their 2's compliment form. By using 2's compliment to represent
negative numbers the dilemma of having zero be represented by all
0's (positive zero) and all O's with a 1 in the sign position
(negative zero) are avoided.

10 HOW A COMFUTER COUNTS

To find the binary representation of a negative number (that
is, to find its two’'s compliment form) simply reverse each bit,
that is change each 1 to @ and each O to 1, then add 1 to the
result. The following example illustrates how to +ind the Z°'s
compliment representation of —é65:

0100 0001 +65

1011 1110 Reverse all bits.
+ 1 Add one.

1011 1111 -65

The reverse procedure (reverse all bits and add 1) can also be
used to find the positive form of a negative number.

2.2 COMRFUTER WORDS

A bit is the smallest piece of information that the computer
can hold. The computer lumps 8 of these bits together to form a
single byte which it can use to store usable information. By now
vou should begin to see some limitations with this system. For
example, using bytes alone you could only represent unsigrned
numbers whose values range from 0 to Z585 or signed numbers whose
values range from —-1Z28 toc +127. To represent numbers larger than
this we must devise some alternate scheme. The simplest approach
would be to hook two bytes together in order to form a larger
number of bits from which to draw information.

Two bytes hooked together in this fashion are referred to as a
single WORD. The lett byte contains the first 8 bits that make
up the left-halt of the "word" while the right byte cortains the
second group of 8 bits that form the right—-half of the "word". The
bits are numbered consecutively left to right from bit O, the
left-most bit on the left byte, through bit 15 which is the right-
most bit of the right byte. The value of each bit is double as we
move from right to left along the bits. For example:

EIT RNMUMEBEEFR

o / 2 3 ¥ S ¢ 7 0 NV R 15 1Y)5
R, IRRR056 0,

.?"4"1'.2 27372 2 2° 2 222Y 2 a3t 2
AL LIVEE L) = =EFIT

Notice that by linking two bytes together in this manner to
form a single word we can now represent a much greater range of

HOW A COMPUTER COUNTS 11

numbers.

To sum up, in your Home Computer most chunks of information are
processed in units referred to as words. Each word is made up of
two bytes. Each byte i1s made up of eight bits.

For words that contain signed numbers, bit O (the left-most bit
of the left byte) is used to hold the sign of the number. Words
can hold signed values that range from O (0000 0000 QOO0OO OO00) to
2,767 (0111 1111 1111 1111). Words holding negative numbers can
hold values ranging from -1 (1111 1111 1111 1111) through -32,768
(1000 Q000 0000 0000). Keep in mind that negative numbers are
represented in their two’'s compliment form. The following is a
graphic representation of -4356:

| . £y AV N Ll LD
)77 ':‘"” 2 :\ (L\H:’\s ‘ \ 'l[/\\ > l/,\ AN/ RN/
= -

2.3 HEXADECIMALL NOTAT IO

When computers were in their infancy programmers had to enter
each byte of binary code by hand. Not only was this a very tedious
and time consuming process, but it was extremely prone to error as
well, For example, & binary number like 0000 1110 could easily be
transposed into the entirely new value 0000 110G1.

The HEX system (shorit for hexadecimal) was designed to speed up
the process of writing in binary code. The following chart
compares the Decimal, HEX, and Rinary numbering systems:

DECIMAL HEX BINARY
' 0 =00 QOO0 OO0 !
H i 8 QOO0 OOO1H H
{ 2 Q000 0010 i
H A OO0 0011 H
' 4 OOO0 Q100 :
i 5 QOO0 0101 [
i 6 OO00 0110 i
H 7 QOO0 0111 H
1 8 0000 1000 !
] G OO00 1001 1
: LTOH# OOO0 1010 ;
! i1 OOO0 1011 '
: 12 QOO0 1100 !
i 173 0000 1101 {
} 14 QOO0 1110 d
; 15 GOOO 1111 i

12 HOW A COMFUTER COUNTS

Mote that (#) signifies that the digits begin to repeat on the
preceding page (10°'s decimal, 16's HEX, 27 binary!.

If vou study these systems you find that in decimal you begin
O, 1, 2, %, 4, 5, &, 7, B, %, then start again in the 10's column:
10, 11, 12, 1%, 14, ... and so on.

Nlth HEX you count =0, x1, 2, =3, 4, 5, b6, 7, 8, X9, A,
R, *C, D, *E, *F, then start again in the 16's colwn: >10, 12,
13, #14, 215, ... *18, =19, =1A, 1B, *1C, ... and so on.

Im both decimal and hexadecimal numbering svstems the
individual digits have some "weight" which is a power ot the base.
In the HEX system the base is sixteen so each digit has a value 16
times the value of the digit to its immediate right (as opposed to
the decimal system where each digit has a value 10 times the value
of the digit to its immediate right). For example, the herxadecimal
number H4CEF has a decimal value of 19,695 because:

3 2 1 8]
(416 Y+ (Cxlb Y+(Ex1S Y+(Fxlb) = 19,695

reduces to the decimal forme
(4x4096)+ (12:256)+(14x16)+(13) = 19,695
where C=12, E=14, and F=13% from the table on page 11.
Whern writing in assembly language all HEX numbers are
designated with & "greater than" sign (*) in front of them to
differentiate them from decimal values. The following are some HEX

equivalents of decimal values:

UNSIGNED NUMBERS

HEX DECIMAL BINARY
SO0 10 QOO0 Q000 QOO0 QOO0
JOTATAY 170 QOO0 O000 1010 10410
*R3AF 2,879 DO0D 1011 0011 1111
SFFFF &5, 555 1111 1111 1141 1111
FFEOX J,QH 1111 1110 Q000 0011l
=071 4 IR D000 O010 0001 OLo)
SIGHED NUMBERS
=FC - &} l]ll 1111 1111 1100
e -235 1111 1111 1110 1001
=08 & QOO0 0000 0060 1000
*7FFF EE,767 0111 1111 1141 1111

Learning to work with hesadecimal numbers 18 perhaps the
biggest huwdle to get over when trying to master assembly
language., You should not be disillusioned if everything is not

HOW A COMPUTER COUNTS 13

crystal clear up to now after all, this counting system is
unnatural. You should spend some time now practicing the

exercise at the end of this chapter. You should at least be fluent
in converting hexadecimal numbers into their decimal equivalents
and vice-versa before proceeding even if you don’'t guite
understand what is going on vet.

To sum up, in order to figure out the decimal value of a HEX
number, simply multiply the second digit by 16, the third by 16
squared the fourth by 16 cubed and add all four values together.
Thus *12A becomes (I1x256)+(2x16)+(1011)=298.

HEX at first does seem impossibly confusing. Do not let this
discourage you as the system will probably become second nature to
you after you have worked with it for awhile. You can quickly look
up HEX values that you reed in a hurry in Appendix A at the end of
this book. Remember, all HEX numbers are distinguished by placing
a "greater than" sign (*) in front of them: >0A or 1222,

14

HOW A COMPUTER COUNTS

CHAPTER 2 STUDY EXERCISES

Convert the tollowing decimal values to their binary
equivalents:

Ay 15 (B 24 (CYy 20,121 (D) —-10,250
Convert the following unsigned binary values to decimal:
(A)Y 0100 (B) 0010 0100 1110 1101 (C) 1061 0060 0000 0000

Write all four numbers in exercise 1 in hexadecimal
notation.

Ligt the decimal equivalent of »1C34 if:
(A) The value represents a signed number.

(B) The value represents a unsigned number.

THE
ASSEMBLER

Im the last chapter we learned that the computer speaks in a
binarv code. We also learned that binary code is the most
efficient and fastest executing language. In addition, we legarned
an alternate method of designating numbers; that being the
hexadecimal svetem.

Early on programmers found it difficult to program instructions
into the computer using binary codes. For instance, to enter the
instruction that would add two numbers together required having to
type in the binary code 1010 Q000 Q000 0000, or the HEX

equivalent, *A000. Likewise, to enter the subtraction instruction
required having to enter the binary code 0110 0000 0000 OO0O0, or
the HEX equivalent, >6000. As can be easily seen, this is not only

a time consuming process, but is extremely prone to error as well.

Eventually somegone got the idea to replace the binary commands
with english abbreviations that programmers could easily remember.
In thigs way an addition instruction could be typed in as "@A"
instead of 1010 0000 0000 0000, and a subtractiorn instruction
could be written as "8" instead of 0110 0000 0000 0000, A separate

program referred to as the "assembler" is then used to convert
these abbreviations into their binary eguivalents.

Whern a program is first written in this "assembly language" it
cannot be run on the computer vet since the computer does not
understand the abbreviations. Betore a program can be run 1t must
he assembled by the assembler program. There are thus two versions
of an assembly language program. The first version written by you
using the abbreviations is termed the source program (or source
code) while the second binary version created by the assembler
program is termed the object program (or object code).

In summary, the purpose of the assemble program is to convert
the souwrce code which you have written into object code which the
computer can understand.

16 THE ASSEMBLER

Fer» REGISTERSDS

Before we advance too far into assemble language programming
proper, it would be useful {or us to discuss how the computer
keeps track of instructions and how it follows throagh with them
in a neat, orderly manner. The electronic brain of your computer
ig the TMS 9900 processor. It has the capability to perform a wide
variety of tasks quickly and efficrently.

I we could look down into the computer we would be able to see
distinct areas that serve specific functions. One area is called
RAM which stands for Random Access Memory. RAM contains a large
number of free bytes. Youw can, as the name implies, randomly
access any of the bytes located here. This is the area where vour
program instructions are stored when you type them into the
computer. Thus, RAM can be thouwgh of as a blank slate waiting for
vouw to type in information.

Another area 1s referred to as ROM which stands for Read Only
Memory. This is an area where the computer permanently stores a
set of instructions that it can refer to when needed. For
instance, when vou tvpe in a BASIC command, ROM is where the
instructions that translate the BABIC command into binary code
reside. :

The third major area of the computer 1s termed the CRU or
Central Processing Unit. It is the heart and soul of the computer.
The CPU continuously takes in numbers from memory locations all
over the computer. These numbers can then be sent out wunchanged to
other Jocations, or they can be compared, added to, or otherwise
modified before being sent back to RAM or ROM. The CPU can perform
all these tasks with the help of some special "tools". These
tools are referred to as Registers. A Register can be thought of
as a memory word that is reserved tor a specific purpose
(remember , & word is made up of 2 bytes hooked together).
Registers located in RAM that you can alter dwing programming are
reterred to as Software Registers. Registers located in ROM that
car be wused only by the CFU are termed Hardware Registers. & set
of sixteen consecutive Registers is referred to as a Workspace.

Tt may be helpful to think of a Register as an area of memory
where you can store information that youw want the CFU to perform
some oper atiaon on. For example, suppose vou wanted to add two
numbers together. You would firset place the values to be added in
two Registers and then instruct the computer to add them together
and place the sum into & third Register. Registers can be located
anywhere in RAM as long as you tell the computer where they are.
In later chapters we will discuss how this is done.

In your Home Computer you have a total of sixteen Software
Registers (Ltermed & workspacs) available to youw. Each Register is

THE ASSEMBLER 17

one word (2 bytes) in size. These sixteen Registers are numbered
RO through Ri1%5. These sixteen Registers are collectively referred
to as your Workspace Registers.

In addition to the Software Registers available to you there
are three Hardware Registers that are used by the CFU to keep
track of things. These are as follows:

) g PROGRAM COUNTER REGISTER
2. WORKSFACE FOINTER REGISTER
3. STATUS REGISTER

The following sections describe the three Hardware Registers in
great detail.

FROGRaSM COUNTER REGISTER D

The Frogram Counter Register (FPC) keeps track of the location
of the next instruction to be executed by the CFU when it is
running a program. In this way a sequential and orderly flow of
instructions is maintained.

WORKSFACE PFPOIMNTER REGISTER W 2

The Workspace Fointer Register (WF) keeps track of the location
in memory of the current Software Workspace. This is the pointer
that informs the computer where your Software Workspace area
begins in RAM.

Each byte in RAM is numbered so that the computer can find it.
This number is referred to as the Address of the byte. This is
similar to how the location of each house in a large city is
designated by its street address. With this in mind it can be
stated that the Workspace Fointer Register holds the beginning
address of the current Software Workspace.

STATULUS REGISTER CESET

The Status Register is important in that it reports to the CFU
about the current Status of things. For example, when the computer
compares two numbers together it is useful to record the result of
this comparison somewhere in memory. That is the purpose of the
Status Registeri it "holds" the information long enough for the
CFU to make a decision based on it. Remembering that a Register is
made up of sixteen bits, the Status Register reports various
status conditions in the first six of its bits (0-5). The four
least significant bits (12-15) hold information important towards
interrupting the computer; but we will have more on interrupts

18 THE ASSEMELER

later. Rits 7 through 11 are not used by the Status Register.

Each bit in the SBtatus Register can be thought of as a flag
that signals some piece of information to the CFU. Every time a
bit is set to 1, it signals to the CFU which may act on the flag,
or ignore it depending on youwr program instructions.

The following figure demonstrates how the "flags" are arranged
in the Status register:

c OF oP X NOT———-USED INTERRUPT MASK
3 4 S 6 789 10 11 12 13 14 15
EIT rNMUMBER

L= A EQ
0 1 2

L» ~—-— LOGICAL GREATER THAN RIT C ~—-—- CARRY RIT

A —— ARITHMETIC GREATER THAN OF -— OVERFLOW RIT
E@ ~-- EQUAL ERIT oF -- 0ODD FARITY RIT
X —=— EXTENDED OFERATION

The Status flags signify the following conditions:

BIT 0: LOGICAL GREATER THAN (L3>, i1s set to 1 if a larger
unsigned number is compared to & smaller unsigned number.

BIT 1: ARITHMETIC GREATER THAN (AX), is set to 1 if a larger
sigrned number is compared with a smaller signed number.

As we have noted in the preceding chapter, the most significant
hit (bit O of a word holds the sign of the number (O for
positive, 1 for negative). For positive numbers, the remaining
bits represent the binary value of the number. For negative
numbers, the remaining bits represent the two's compliment form of
the hinary number.

BIT 2: EQUAL (ED), is set to 1 when two numbers being compared
are equal. The egual bit is set regardless if the comparison is
between two signed numbers or two unsigned numbers.

RIT 3: CARRY (), is set to 1 if anm add operation produces a
carry or 1f & subtraction operation produces a borrow of bit O
otherwise it is reset to 0. The Carry bit also holds the value of
a bit that has been rotated or shifted out of & Register or Memory
location.

BRIT 4: OVERFLOW (OF), is mainly an error indicator. It is set
to 1 when the addition of two like signed numbers, or the
subtraction of two oppositely signed numbers, has produced a
result that is too large or small to be represented correctly by a
single word.

Additionally, the OF bit is set to 1 if, during an arithmetic
left shift, the most significant bit of the Register being shifted

THE ASSEMBLER i9

changes value.

Also, during divide operations the OF bit is set to 1 i the
most significant 16 bits of the dividend are greater than or equal
to the divisor.

BIT S5: 0ODD PARITY (OP), is set to 1 when the parity of the
result of a byte operation is odd. The OF is reset to O when the
parity of the result is even.

The parity of a byte is said to be odd when the number of bits
contained within it having a value of 1 is odd. For example the
byte 0001 1111 is said to have odd parity because it has amn odd
{(3) number of bits set to 1. Even parity is just the opposite.

BIT 6: EXTENDED OPERATION (X)), is set to 1 when software
implemented extended operation is initiated. However, the
instruction XOF (for extended operation) is not available on all
Home Computers. The only way to see i1+ your computer supports this
instruction is to try it.

BITS 7-11: UNUSED

BITS 12-15: INTERRUPT MASK, allows the TMS 2900 to recognize
interrupt requests from peripheral devices hooked into the system.
If the peripheral device has a level number less than or equal to
the value in the interrupt mask, it is permitted by the CFU to
interrupt a running program. Thus, if the four bits making up the
interrupt mask are set at 2 (0010), then any device with a level
b, 1, or 2 may interrupt a running program. In your Home Computer
the interrupt mask is always set at 2 (0010). Recause of this only

~

values of 2 and O are useful.

Everybody has interruptions in their lives. Some of these are
necessary such as when a newborn cries for food, you must stop
what vou are doing attend to the infants needs. While other times
you may be to busy to be interrupted, such as when the phone rings
during your favorite T.V. show; you may choose to let it go
unanswered! The same is true for the computer. Sometimes
peripheral equipment needs information from a running program and
interruptions are the only way they can get it. Also, some ROM
routines such as automatic sprite motion or sound generating
routines need to be able to interrupt your running program in
order to execute.

When you first turn on the computer all the Status bits are
reset to O. Don't worry if your not guite sure yet as to the
significance of the Status Register, it should become clearer as
we progress.

20 THE ASSEMBLER

Fal WRITINMG FROGRAMS

When first putting a program together from scratch you should
follow a certain logical sequence of steps. These steps are summed
up below:

1. Decide first exactly what it is you want the computer
to do. Rough diagramming a "plan' of the program,
referred to as a flowchart, helps get vour thoughts
together.

2. Start putting the instructions (referred to as source
statements or code) down onto paper.

3. Enter the instructions into the computer through an
Editor program which we will discuss in greater detail
later.

4. Convert the source code you have written into
obiject code that the computer can understand using an
assembler program. If the assembler finds any errors,
correct these and reassemble.

5. Run the program on the computer. If it performs
differently than what vou had expected, you must debug the
program. This involves taking a copy of your source code
and changing it until you can get the program to run right.

THE EDITOR FRFROGRAMF

The Editor is & program that we have not mentioned vet. The Editor
program allows yvou to write out vour source code and edit it
directly on the screen before assembling it. The Editor program
also allows you to save an incomplete sowce program on disc for
later revision. This book assumss that vou are already familiar
with the Editor program. If you are not sure, refer to the
instructions in the beginning of the Editor/fAssembler manual that
accompanies the software. If you are using the mini-memory module
and line~-by-line assembler refer to chapter 10.

Ee 2 SOUIRCE CODE

Mow that we have a general understanding about how to go about
constructing source code, it is time to proceed along the
specifics; namely creating a program.

The souwrce code is a logical sequence of instructions designed
to guide the computer along a desired couwrse. A source statement
can be categorized as an instruction, pseudo-operation, or an
assembler directive.

THE ASSEMBLER 21

As we have mentioned before, an assembly language abbreviation
(instruction) is a symbolic representation of a binary
instruction. It is translated literally by the assembler program
during the assembly process.

Fseudo—operations and assembler directives give directions to
the assembler program (not the computer) as to what to do with
certain instructions or data.

Assembler directives, pseudo-operations and assembly language
instructions will be covered in greater detail in future chapters.

CONSTARNMNTS IN FROGRAMMIMNG

When entering numbers or constants into the computer you may use
one of several forms:

1. DECIMAL —- Entered as a base ten number. May be an
unsigned number from O through 65835, or a signed
value ranging from -32768 through 3I2767.

123
-2410
65535

2. HEXADECIMAL —-- Entered as a string of up to four
alphanumeric (A thru F) characters preceded by a
greater than (») sign. The following are valid
examples of hexadecimal constants:

>OF
*1AC
>32FD

. CHARACTER CONSTANTS ~— Entered as a string of ABSCII
characters enclosed in single quotes; for example
‘A or ‘AD’. A character constant consisting of
only two guotes (no characters) is also valid. The
following are valid character constants:

Character Constant ASCIL values
2 T{S0)
‘AR’ ‘(6S) (66)
F30%4° "(B1) (48) (37) 7
‘HELLD '~ AT2)Y (LD (TE) (T76) (79) (32) (33) 7
4. ASSEMBLY~-TIME CONSTANTS -~ These constants are

defined at the time of assembly. The are written in
the operand field of an EGU instruction. We will
spend more time explaining how these constants are
used when we reach this instruction in later
chapters.

22 THE ASSEMBLER

Negative numbers are also easily specified. I+ the constant is
in decimal form simply precede it with a minus sign (e.g.-23). If
the number is in hexadecimal notation you must enter it in its
two’'s compliment form. For example, —-42 and D6 both represent the

same value.
THE SOURCE STaTEMERRT

EFach line in an assembly language program is referred to as a
source statement. Each source statement contains up to four
Fields separated by a single blank space. The fields are
positioned as follows:

Label Op-code Operand(s) Comments

0f these four fields, only the op-code field is always required
for a valid source statement. The other fields may or maynot be
reqguired depending on the op-code used. The maximum length of a
souwrce statement is 80 characters, however only 60 of these will
be displayed when using a list file. The first character typed on
a line begins the label field. If you do not use the label field
then the first character must be a blank space. All the fields are
separated by at least one blank space. The following is an example
of a single source statement that uses all four fields:

MYREG BSS »32 #RESERVE MEMORY FOR MY WORKSFPACE REGISTERS

The following sections will describe the four fields that make
up a source statement.

@l . F IEL D

The label field is a name or label that you give to a source
statement so that youw can refer back to it. This label can then be
used in other instructions to refer back to it. For esample, when
vou instruct the computer to jump from one instruction to another,
vyou give its destination by specifying its label.

Unless the firset character is a blank, the +irst character in a
source statement begins the label. It can be up to é6 characters in
length. A label can be made up of any alphanumeric characters, but
the first character must always be alphabetic. I+ you elect to
omit the label field the first character of the source statement
must be a blank space. Also, you are not allowed to put a blank
space in the middle of a label; ie: MYREG not MY REG.

Labels are usually used to identify the target of a jump
instruction.

THE ASSEMBLER 23

OF—CODE FIELD

The op-code field (short for operation code) is also known as the
mnemonic field (pronounced knee-mon-ik). It holds the one to four
letter acronym for the microprocessor instruction. When the
assembler program is run it uses an internal reference table to
translate each acronym into the appropriate binary code. The type
of op-code used determines how many and what type of operands
should be found in the operand field.

OFERAaND FIELD

The operand field contains the data or the location of the data
needed by instruction in the op-code field. Some op-codes do not
require an operand while others require one or more. If more then
one operand is required they are separated by a comma. The operand
field may contain one or more terms, expressions, or constants
depending on the needs of the instruction in the op-code field.

To sum up, the operand field contains the data that the
instruction in the op-code field refers to. For example, in this
ADD operation:

A RO,R1

the ADD (A) instruction refers to the addition of the value in
Workspace Register 0 to the value in Workspace Register 1.

COMMENT FIELD

The comment field is an optional field that begins one space
after the operand field ends. It is always begun with an
asterisk (%). The comment fields contains comments written by the
programmer as a reminder to what the source statement does. These
statements are ignored by the assembler program during the
assembly process.

Comments are utilized to remind you what the function of a
source statement or group of source statements is. For example,
the statement:

MYWSP EQU >»B300 *BEGIN WORKSPACE AT THIS ADDRESS

reminds you that your workspace was begun at the specified address
in memory. Comments can also stand alone on a line if the line
begins with an asterisk (%¥). In this way entire blocks containing
just comments can be constructed:

XX I I I I RS S R R I X I IR R Y Y IR Y Y Y
* *
* DEFINE EQUATES *
RS LI I I RS S BT I I I R SRS S ST LTI LR SR L

24

‘object rode

THE ASSEMBLER

;
o5
H 11
3
i
L
;
W
i
&‘)
¥
~
N
s
.
ad
s

K
PRy

CHAPTER 3 STUDY EXERCISES

What is the name of the program thdt converts BD%££E¥CDdE
£ PR R T AR S X T

R [e A S ST 635 S S RN P T X1 L R T

A Software Workspace area consists of how many registers?

Which bit of the Status Register is set when the result of
arithmetical expression is too large to be represented in |
two’'s compliment form?

B

Ve
Regarding the four fields in the aﬁurce Etatemeht?«
(a) Which three of the fields may be optional? -
(b) Which character always begins a }inéJDf“cmmment‘ar is
the first letter in a comment field. P
(c) Which field of a source statement ié'glbays.féqhi?ed? y

What is the difference between an assembler directive and a
instruction.

Is the following a valid hexadecimal number?

“

+DEFG . .-

Which portion of & souwrce statement determines which and what
type of operands are required.

3 $ "
4 i KR N ¢ 4 ERa N NI e a2 i e
y t; Toab y ® ' - e TR T ~r
. PR
! h G PR TN A ST o S 2 3y Ap R
Good athre s
} B ez s A [P Ty = TREURN
¥ . SRV P R TR o £ 3
=Y f
. “"fﬁ , - £ <o . g
* PARNRA H Teme; - e o e LI [
(N L 5 S
[. * T PR L g [0
- - -~ o Y
R [" = 2 E RS & T CEATEPTINN H I
. VoL t i - « “
LA SRR AEET, . EEO R i | RO V) T
£ Lo el BN s & R om oA P r MG L
S
.,.,4 : I

4

THE
INSTRUCTION SET

mias s Loins oot mate Sonee e Ss0e4 e et St 8 s oot e CAVSS Hots S Sest et Seses Sonte LSS SRVES Merks dogls SO Meske SO Eke s SENES 00t Sois S010e Seeid Soeed St o Sfate St s S4des eSS S5O0 Somis e Seses et ARG fasi A Mo Seset S0 Soess sebde SAae et s o048 hoses Seten s

For a quick review, remember that the location of each byte in RAM
is designated by an address, much like the location of each house
in a city is specified by 1ts address. Also keep in mind that the
number held at a particular address could in turn specify another
address where information is located. With this in mind we will
proceed with a discussion on addressing modes which simply stated,
are ways of telling the assembler program exactly at what address
in RAM needed information is located.

“F .0 ADDRESSING MODES

Your Home Computer provides a variety of ways to access the
numbers that your programs perform operations on. These numbers
are referred to as operands and specific ways to address them are
referred to as addressing modes. There are a total of five
addressing modes available when programming, they are:

1. WORKSPACE REGISTER AND IMMEDIATE ADDRESSING

2. WORKSPACE REGISTER INDIRECT ADDRESSING

3. SYMBOLIC REGISTER ADDRESSING

4. INDEXED MEMORY ADDRESSING

S. WORKSPACE REGISTER INDIRECT AUTOD-INCREMENT ADDRESSING

The operand is the actual value that is to be "operated on" by
the instruction. How you want to specify the operand determines
the addressing mode that you will use.

In the sections that follow each addressing mode is discussed

in detail. An example is provided of each modes usage.

.—25_

26 IHE INSTRKUUTIUN SET

WORK.SFACE REGISTER &AGQDDRESSIMG

In Workspace Register Addressing The operand is located in the
specified register. Remember that a Workspace consists of sixteen
consecutive Registers labeled RO through R1S. Workspace Register 5
would thus be referred to as "RE". You specify in the beginning of
your program where these registers will be located in RAM. We
will have more on this later. An example of Workspace Register
Addressing is the statement:

MOV R2,R4

which moves a copy of the contents of Workspace Register 2 (KD
into Workspace Register 4 (R4). Another example:

A R6 ,R7

adds the contents of Workspace Register 6 (R6) to the contents of
Workspace Register 7 (R7). The result is then placed in R7.

When using Workspace Register Addressing Mode it is important
to remember that the operand is found in the Register specified.

IMFMMEDIASTE ADRDDRESSIMNG

You can also specify a constant as a source operand. In this way
the value is right there for the assembler to get and does not
have to be located in a Register or found at another address. This
is termed Immediate Addressing. An example is the following
statement:

LI RO,324

which places (loads) the value 324 into Workspace Register O, and
the statement:

LI R9,:144

which loads the value »144 (324) into Workspace Register 9, and
the statement:

LI Rb,-32

ek

which loads the value -32 into Workspace Register 6.

NOTE: Remember when using signed numbers the most significant
bit holds the sign of the number. This limits signed
values to numbers that can be represented with only 15
bits. The signed values thus range from +3I2767 (:7FFF)
to -32768 (XBO0OO). Unsigned numbers, however can range
from O (F0000) to 685535 (:XFFFF) since bit O does not have
to be used to hold the sign of the number.

THE INSTRUCTION SET 27

INDIRECT ADDRESSIHNG

With this type of addressing, the register specified contains the
address of the operand instead of the operand itself. An indirect
Workspace Register Address is preceded by an asterisk (#). For
example, the statement:

MOV *R3,*RO

copies the word at the address given in Workspace Register 3 into
the address found in Workspace Register O. Notice how both RZ and
RO are indirectly addressed, that is they both contain the address
of the information rather then the information itself. Another
example is the statement:

A *R4,R6

which adds the contents of the word being held at the address
given in Workspace Register 4 to the contents of the word in
Workspace Register 6. The result is then placed in Workspace
Register &. Notice how in this cazse R4 is indirectly addressed
while R6 is directly addressed.

IMDIMRECT AQuUTO-TITROCOREMERT SDIDDRESS TG

With this type of addressing the register specified contains the
address of the operand as with indirect addressing. After the
address is obtained from the Workspace Register, the address in
the Workspace Register is incremented by 1 for a byte instruction
or by 2 for a word instruction. This allows you to access data in
memory in a seqguential manner from a given starting point. A
Workspace Reglster auto-increment address is preceded by an
asterisk (*) and followed by & plus (+) sign. For example, the
following statement:

A *R3+,R1

adds the contents of the word found at the address given in R3 to
the contents of Rl1. The result is placed in R1. The address in
FZ is then incremented by two (A7 1s a word instruction).
Another example is the statement:

MOV R?,*R10+

which copies the contents of R? into the address given in R10 and
increments the address in R10 by two. Now lets consider an
example using real values. Suppose Rl contains »0004 and RZ2
contains >000A and address 0004 contains the value 0010, then
the statement:

A *R1+,R2

28 THE INSTRUCTION SET

adds the value found at address >0004 which is »>0010, to the value
found in R2 which is »>000A. The result, »001A is placed in RZ.
The value in Rl i1s then incremented by two (A is a word
instruction). Thus, after completion of this statement R1
contains »0006, and RZ contains *001A.

SYMEOL IO MMEFORY QaADDRESS IMNG

This type of addressing allows you to use a symbol to represent
the address that contains the operand. The symbolic memory
address is preceded by an "at'" character (@ . For example, if RO
contains »0002 then the statement:

JOYI EQU »>00FF

A @JOYI,RO

. adds the contents of RO with the contents at "JOYI" (in this case
*0FF) the result, *0101, would then be placed in RO. Another
example is the statement:

MOV @>AA03,@F0E3F
which copies the word at address *AA0T into location OESF.
IMNDEXED MEMORY SDIDRESS IS

With indexed addressing, the effective address is gotten by adding
the value of an index register to a displacement variable. You
often use this addressing mode to access elements in a table. In
such a case the value in the index register points to the
beginning of the table, and the displacement to an element in the
table.

The indexed memory address is preceded by an "at" sign (@)
after which comes the displacement value followed by the index
register which is closed in parentheses. For example,

A @4 (R4) ,R1

gets the word found at the address computed by adding 4 to the
address in R4. This word, in twn, is added to the waord found in
1. The result is then placed Rl. Another example in the
statement:

MOV RS,E@TABLE+3(R7)

which copies the contents of register 5 into a memory word. The
address of this memory word is determined by taking the sum of

THE INSTRUCTION SET 29

TABLE plus % and adding it to the contents of register 7 (R7).

note: Workspace Register 0 (RO) is reserved and may rnot be
specified as an index register.

FROGRAM COURMTER RELLATIVE SQDDRESS T RS

This addressing mode can only be used in the operand fields of
"Jump" instructions the program counter relative address is
written as an expression that corresponds to an address at a word
boundary. An Example is the statement:

JMFP GETKEY

which jumps wnconditionally to locatiom GETHEY. GETKEY is a label
that vou gave another source statement in the program.

It should be noted that when an expression (like GETEEY in the
last example) is evaluated it is subtracted from the value of the
current location plue two. This value is then divided by two with
the result being placed in the obiect code. This value must fall
between the values -128 through 127 or the jump will not be
executed. This means that the destination of a jump cannot be any
farther than 256 (>100) bytes from the current address in the
program counter.

To sum up you are not allowed to make a jump (using JMF) in
your program greater than »100 bytes in length.

ART THMHMETIOC OFERAQT IORMS

When programming youw will have occasion to add, multiply or
otherwise manipulate numbers. The TMEI900 allows addition (+),
subtraction (), multiplication (#), and signed division (/).

When an expression i evaluated, the assembler first negates
all constants or symbols preceded by a minus (~) sign. All
succeeding operations are carried out from left to right.
Frecedence is only given to the negation of svmbols and constants,
not to any other procedure. Therefore 4+6/2 is evaluated as 5 and
not as 7. A remainder 1s disregarded in division, thus 5/72+4
equals &.

Farentheses cannot be used to alter the order that an
espression is evaluated in.

<. 2 THE IMNSTRUOOCOT ION SET

The TMS?900 recognizes & number of different instructions. Table
4.1 lists the assembler mnemonic for each instruction and explains
what each mnemonic stands for. Also listed is the required
operand(s) and operand format for each instruction. You should

30 THE INSTRUCTION SET

have a thorough understanding of addressing modes before
proceeding to the instruction set.

TABLE 4.1 INSTRUCTION SET

MNEMONIC DESCRIFTION OFERAND (S) & FORMAT
A ADD WORDS G, (B)
AE ADD EYTES G, (6)
AES TAKES ARSOLUTE VALUE OF OFERAND ¢
Al ADDS AN IMMEDIATE VALUE TO WORKSPACE REG. (W), #
ANDI LOGICAL AND IMMEDIATE VALUE (W) . %
E ERANCH €
BL BRANCH & LINK G
BLUWF ERANCH % LINK WORKSFACE FOINTER 5
» COMFARE WORDS G,
CE COMFARE BITS G,
CI COMFARE IMMEDIATE VALUE W, #
CLR CLEAR G
coc COMPARE ONES CORRESFONDING G,W
czc COMFARE ZERDOS CORRESPONDING G,W
DEC DECREMENT G
DECT DECREMENT RY TWO 5
DIV DIVIDE G,W
INC INCREMENT G
INCT INCREMENT BY TWO G
INV INVERT G
LDCR LOAD CRU G, #*
11 LOAD IMMEDIATE VALUE (W), #
LIMI LOAD INTERRUPT MASKE WITH IMMEDIATE VALUE #
LWFI LOAD WORESFACE FOINTER W/ IMMEDIATE VALUE #
MOV MOVE G, (G)
MOVE MOVE EYTE B, (G)
MFY MULTIFLY 5, (W)
NEG NEGATE G
ORI LOBICAL OR IMMEDIATE VALUE (W), %
RTWF RETURN WORKSFACE FOINTER

g SUBTRACT G, ()
SE SUBTRACT BYTES G, (G)
SEO SET CRU BIT TO ONE CRU
SEZ SET CRU EBIT TO ZERO CRU
SETD SET TO ONE c
SLA SHIFT LEFT ARITHMETIC (W), #xx
500 SET ONES CORRESFONDING G, (6)
50CE SET ONES CORRESFONDING, BYTE G, (G)
SRA SHIFT RIGHT ARITHMETIC (W), %%
SHC SHIFT RIGHT CIRCULAR (W), H%x

SRL SHIFT RIGHT LOGICAL. (W), Hxx

THE INSTRUCTION SET 31

TABLE 4.1 INSTRUCTION SET (CONTINUED)

MNEMONIC

DESCRIFTION OPERAND (8) % FORMAT

JEQ
JBT
JH
JHE
JL
JLE
JLT
JMF
JNC
JNE
JNOD
JOC
JOF
STRC
STST
STWF
SWFE
SZC
SZCE
TR

X
XOF
XOR

* This

This
*% This
*x%¥This

JUMF IF EQUAL

JUMF IF GREATER THAN
JUMF IF LOGICAL HIGH
JUMF IF HIGH OR EQUAL
JUMF IF LOGICAL LOW
JUMF IF LOW (OR EQUAL
JUMF IF LESS THAN
JUMF

JUMP IF NO CARRY
JUMF IF NOT EQUAL
JUMF IF NO OVERFLOW
JUMP ON CARRY

JUMF IF 0ODD FARITY

B S U T X e % T £ e % s O L

STORE CRU (G) ,H*
STORE STATUS W
STORE WORESFACE FOINTER W
SWAF BYTES 5
SET ZEROS CORRESFONDING G, (G
SET ZEROS CORRESFONDING, BYTE G, (06)
TEST CRU RIT CruU
EXECUTE G
EXTENDED OFERATION B, #Hexx
EXCLUSIVE OR G, (W)

operand represents the number of bits to be transferred.
value ranges from ¢ through 15 with O indicating 16 bits.
operand is the shift count.

operand specifies the extended operation.

53 ~ Indicates a general address which can be in
one of any of the following modes:
a) Workspace Register
b Indirect Workspace Register
¢) SBymbolic Memory
o) Indered Memory Address
&) Indirect Workspace Register Auto-Increment

W - When this is specified the operand has to be a
Workspace Register Address.
- Value entered as a constant.
F - This operand is a program counter relative address.
CRU - Give CRU bit address.
{) ~ The address at which a result is placed when two
oper ands are required.

32 THE INSTRUCTION SET

The instruction set can be divided into the following 7
functional groups:

1. DATA TRANSFER INSTRUCTIONS or LOAD AND MOVE
Instructions allow vou to move information between
registers and memory locations.

2. ARITHMETIC INSTRUCTIONS allows yvou to perform
arithmetic operations.

Z. JUMP AND BRANCH INSTRUCTIONS performs jumps, calls to
procedures, and returng from procedures, in this way
vou can control the order in which the program
executes.

4. COMPARE INSTRUCTIONS let vou compare wordes, bytes, o
immediate values with each other. They even let you
compare groups of bits within a byte or word that mavy
correspond with each other. These instructions only
affect the Status Register.

. LOGICAL INSTRUCTIONS permit the performance of logical
operations on workspace registers and memary locations.

&. SHIFT INSTRUCTIONS allouw vou to shift the bits in a
Workspace Reglster a specified number of positions.

7. RIT INPUT/0OUTPUT INSTRUCTIONS allow vou to manipul ate
the CRU bits.

Ao TE ER&TT ey PRSP ESEEIF T T LY O O S

Data transter instructions move numbers between regilisters and
memcry locations. Table 4.2 outlines the format of each
insbruction as well as which bite of the Status Register are
aftected by each instruction.

TAEBLE 4.2

Status Fegister Bits
() indicates bails atfected by instruction
MNEMONIC FORMAT L A E& C 0OV OFP X INT MASE

MOV G, (G
MUVE G, (&)
LT (W) B
LWF'] #

LTHM1 #

§TST W - = = - = = e e - e
5 TWF W - - = = = == - .-

BuWFR & - - - e - - _— - -

I > > >
| > > >
R

i

I

>

1

i

!

!

i

I
!
I
|
|
i
|
>
>
>
>

THE INSTRUCTION SET 33

CHOYN D) MOVE WORD

One of the foundational instructions in assembly language is the
"move word" (MOV) instruction. It can transfer a word from a
source operand into a destination operand. The destination
operand is then compared to zero and sets (or resets) the L», AX,
and EQ status bits accordingly.

The following are examples of operand combinations that are
leegal:

MOV @HERE,@THREE *MEMORY TO MEMORY (COPY INTO THERE)

MOV @HERE,R7 *MEMORY TO REGISTER (LOAD REGISTER)
MOV R3,R4 *REGISTER TO REGISTER
MOV R7,@DEST *REGISTER TO MEMORY

Another use of the MOV instruction is to compare a memory
location to zero. For example, the following source statements:

MOV RS5,RS *Move RS into itself and compares it to O.
JE@ CHECK *Jump to location "CHECEK" if RS=0.

move Workspace Register § into itself and then cuompares the
contents of RS to zero. If RS is equal to zero than the ER bit is
set and the JE@ instruction will cause the program to "jump" to
location "CHECK®".

POV ER > MOVE BEYWTE

This instruction copies the most significant byte of the source
operand into the destination operand.. For example suppose memory
location *2EI2 contains the value 2346 and HOLD is located at
address »REZ2, and if R2 contains >34CC then the statement:

MOVB @HOLD,R2

changes the contents of R2 to *RICC and compares the contents of
F2 to zero. As a result of this comparison and the logical
greater than, arithmetic greater than, and odd parity bits are
set, while the equal status bit is reset.

LG T) L@l TMMEED X 2T E

Flaces a given number in a specified Workspace Register. The
contents of this register is compared with zero and the results of
this comparison affect the L»r, A, EQ bits of the Status Register
accordingly. For example, the statement:

LI R2, X232 *Load Workspace Register 2 with »00Z7E.

loads R2 with 0023 (35) and sets the logical greater than,
arithmetic greater than, and resets the equal status bits.

34 THE INSTRUCTION SET

CL WF X » WORKF. SFQIDE FOIMNTER IMMEDIATE

Flaces the Workspace Fointer at the address specified by the
immediate operand. For example, the statement:

START LWPI >20BA *#SET START EQUAL TO »20BA

Sets START equal to *R20BA and also sete the Workspace Fointer to
location *20BA. The LWFPI instruction has no effect on the Status
Register.,

L T N L B L.OhéealD INNTERMARLIFT MaSkE IMMEDIAaTE

This instruction loads the interrupt mask of the Status Register
(bits 12-13) with a specified value. For example, the statement:

LIMI 2

ry

sets the interrupt mask at 2 (0010 and enables interrupts at
levels 0, 1, and 2. While the statement:

LIMI O

disables all interrupts and is the normal state of the computer

(STST 0 STORE ST TS RESIISTER

Btores the current contents of the Status Register in a specified
Workspace Register. For example the statement:

5T8T RS

stores the current Btatus Register contents in Workspace Register

CETT A D STCRRED B SRR e TR PO TR R
This instruction saves a copy of the contents of the Workspace
Fo.nter Register in a specified Workspace Register. For example,
the statement:

STWH R4
stores the Workspace Fointer value in R4,
I F- e S By T EDES

This instruction switches the most significant byte with the least
significant byte in a General Register. In other words, SWFR

THE INSTRUCTION SET

o
&}

exchanges the left and right bytes of a specified word. For
example, the statement:

SWAF SWPER R2

replaces the most significant byte of register 2 (bits 0-7) with a
copy of the least significant byte (bits 8-19) contained within
the register. Conversely, the least significant byte of register
2 1is replaced with a copy of the most significant byte. In this
way bytes can be interchanged in anticipation of various byte
instructions. In another example, suppose RO contained the value
2244, and memory location 2244 contained the value *FF2Z3, the
instruction:

SWFE *RO
would change the contents of memory location *2244 to »33IFF.

In summary, the SWFE instruction exchanges left and right
(least/most significant bytes) of a word specified in a general
register. The SWFR instruction has no effect on the Status
Register.

e 2 THE &S&SRITITHMETIE RETROLHDT XD E

Arithmetic instructions allow you to perform a variety of
arithmetic operations in yvouwr program. Table 4.3 shows which bits
of the Status Register that are affected by each instruction.

TABLE 4.3 ARITHMETIC INSTRUCTIONS

STATUS REGISTER RITS
(X) IMDICATES BITHE AFFECTED BY INSTRUCTION

Mnemonic Format L A+ E& C 0oV 0OF X INT MASK
A G5, (G X X X X X - - _— = =
AR 3, (B) X X X X X X - - -
ARS 5 X X X - X = - -— = =
AT (WY # X X X X X - - - - - -
DEC G X X X X X - - —_— = =
DECT (] X X X X X - - - - - =
DIV 5, (W) - — - - X - - - - - -
INC (5 X X X X X - - - - - -
INCT {5 X X X X X - - - - - =
MFY G, (W) - - - - - - - - - - -
NEG G X X X - X =- - - - —
S G, () X X X X X = = = - -
SR G, (B3 X X X X X X = == --=

O
Rk

36 THE INSTRUCTION SET)y

N
%1
ﬁ.

e D I WORIDE

This instruction adds a copy of the sowce operand to a copy of
the destination operand and places the sum in the destination
operand. For example, the statement:

A *RI, *R4+

adds the contents of the word found at the address in R3 to the
word found at the address in R4. The sum is placed at the address
given in R4 and the address in R4 is incremented by two (Workspace
Register auto-increment addressing). The sum is compared to zero
and the results of the comparison are reflected in the Status
Register. Ancther example we can look at supposes that the
address labeled TABRLE contains *2123 and RE contains >000R, the
statement:

A R2,E@TABLE

then causes the contents at TABLE to change to *212E. The logical
and arithmetic greater than bits are set and the equal, carry and
overflow bite are reset in the Status Register. The contents of
RZ remain *000H

L Ry BT EEES

This instruction adds the left most byte (bits O-7) of the
specified source register to the left most byte of the destination
register. The result is placed in the left-most byte of the
destination register. For example, in the statement:

AE R3,R4

the left byte of RI is added to the left byte of R4 and the sum is
placed in the left byte of R4. Another example, suppose that R2
contained the address >23FA at which was located the memory word

e S

E23E, and RE contains DDE8B, then the statement:
AR *R2+,R3

changes the contents of RY to >FFBB and increments R2 by one to
23FBR. This result is obtained by taking the left most byte of
the memory word specified in the address given in R2 (*22) and
summing it with the left most byte in RZ (:DD) coming up with >FF.
This sum is then placed in the left most bvte of R and R2 is
incremented to *2EFB. Compariszon of the sum with rero sets the
logical greater then, overflow, and odd parity bits of the Status
Register while it resete the arithmetic greater thanm, equal, and
carry status bits. #Another example, R4 contains »>B100, and

THE INSTRUCTION SET 39

The instruction is ignored and the overflow status bit is set
while the source and destination operands remain unchanged. Lets
take some time now to look at a few examples to see if we can
clarify things. Suppose that memory location LOCA containes 0005,
R2 contains »>0001 and RE contains 000D, then the statement:

DIV eLOCA,R2

divides 65549 (X0001000D) by & and places the guotient 13109
(*2335%) in RZ and the remainder, .2 (represented as "2'") in R7.
In another example suppose that LOCA containsg 0002 and RZ

contains >0004, also RI contains a zero, then the statement:

DIV eLO0CA,R2
attempts to divide 262144 (00040000 by 2. The resultant
quotient, 131072, cannot be represented in a 1é6-bit word. The
result is that the overflow bit 1s s=et in the Status Register and
the operation is canceled.

In summary, the destination operand is a consecutive Z-word
area of a Workspace Register. It should be noted that 1f the
destination operand is Workspace Register 19 (R1%) the first word
of the destination operand is in RIS and the second word is 1n the
memory location immediately following the Workspace area.

Mote that the DIV instruction does not let you divide by an
immediate value directly. 7To do this, you must put the immediate
value into a register a Register or memory location. The
following examples illustrates this point.

HERE EQU *>14 *
THERE EQU =095 * Load equates
ZERO EQU =00 *

MOV @HERE,R7
MOV @THERE,RS
MOV @ZERO,Ré
DIV RS,Ré

Move
values into
Registers
Computes 20/5, result goes in Ré6.

fnother example,

LI RS, »Q5 *

LI R&6,0 * Load Registers

LI R7,%14 *

DIV R3,Ré * Computes 20/5, result goes in Ré6.
L B BN I) IR EMEDT

This instruction increments the sowce operand by one (1). The
result then replaces the souwrce operand. The computer compares
the rnew value to zero and sets/resets the status bits accordingly.

40 IHE INSTRUCTION SET

With a carry of bit O, the carry bit is set. With an overflow,
the overflow bit is set. An example of the INC instruction is the
statement:

INC @ADRS
which increments the value specified at location ADRS by one.
CINCT INCREMERMNT BY T

This instruction increments the source operand by two (2). The
result then replaces the source operand. The computer then
compares the sum to zero and sets/resets the status bits
accordingly. When there is a carry of bit zero the carry bit is
set. With an overflow, the overflow bit is set. Lets consider an
erample where R3I contains »002%:

INCT R3

this statement then increments R by two and places the result
(»0024) in RZ. The arithmetic greater than, logical greater than
status bits are set while the equal, carrv, and overflow status
bits, are reset.

Eoth the increment and the decrement instructions are useful to
index byte arrays while the increment and decrement by two
ingtructions are useful to index word arrays.

P ¥ FILIL T I LY

The MFPY instruction performs a multiplication. The source
operand is multiplied by the destination operand. The product is
then placed in the Z-word destination operand. For example if RO
contains the value »000Z, RIZ contains the value >0005, and R4
contains the value *OEA7, the statement:

MFY RO,R3

multiplies the conternts of RO and RY together to get »O00F and
places this value in R4. R3I now contains a zero (>0000)., The
Status Register is unaffected by the MFY instruction. Another
example supposes that the memory location HERE contains *FFFF and
FZ3 contains >0002, then the statement:

MPY @HERE,R3

multiplies the contents HERE (6552Z5) to the contents of RIT (D).
The product 131070 (F0001FFFE) is placed into RIE (H0001) and R4
(:FFFE). Memory location HERE is unchanged as is the Status
Register. iIf the destination operand is specified as R1S the
product is placed into R1% and the +first memory word immediately
following the workspace memory area.

THE INSTRUCTION SET 41

(HRNEG) NEGAaTE

This instruction replaces the sowce operand with its additive
inverse. The computer then compares the result to zero and
sets/resets the status bits to reflect this comparison. Suppose
memory location VALUEl contains the value *9BC1, then the
statement:

NEG @VALUE1

changes the contents of VALUELl to »643E. The logical greater than
and arithmetic greater than status bits are set in the Status
Register while the equal and overflow status bits are reset.

(= SUBRTRAOCT WOoORDS

This instruction subtracts a copy of the souwce operand from a
copy of the destination operand and places the result in the
destination operand. The result is compared to zero and the
status bits are set/reset accordingly. When there is a carry of
bit zero, the carry bit is set. When there is an overflow, the
overflow bit is set. For example, suppose that memory location
HERE contains *2127 and memory location THERE contains *AAZE, then
the statement:

5 @HERE,@THERE

changes the contents of THERE to BEL1O (AF3EZ-32127). The logical
greater than, arithmetic greater than, carry and overflow status
bits are set, while the equal status bit is reset.

{E5SE) SUETHRSCT EYTEDS

This instruction subtracts the souwrce operand, which is a single
byte, from the destination operand, which is also a single byte.
The difference is then placed in the destination operand. The
computer compares the resulting byte to zero and sets/resets the
Status Register bits to reflect the results of this comparison.
When there is a carry of the most significant bit of the byte (bit
0), the carry status bit is set. When there is an overflow, the
overflow status bit is set. If the resulting byte has an odd
rnumber of bits set to one, then the odd parity bit is set. I¥ the
operand is specified in a Workspace Register, then only the lett
most bits (bits 0-7) are used. For esample the statement:

SE RO,R1

which subtracts the left-most byte of RO from the left-most byte
of R1, and places the difference in the leftmost byte of R1.

fnother example supposes that memory location ADDR comtaine the
value *12%1D and RS contains the value »23F5, then the statement:

42 THE INSTRUCTION SET

Sb RS5,@ADDR

changes the contents of RS to »Fé610. The logical greater than bit
is set, while the other status bits affected by this instruction
are reset.

4.5 UM 2 BRARMCH IMNSTRLUOLUCT IORS

Jump instructions as well as branch instructions are used to
transfer control from one area of the program to another. This
control transfer may be conditional or nonconditional. These
instructions are mainly used to control the sequence in which a
program executes. Table 4.4 outlines the conditional and
nonconditional branch and jump instructions and the status bits
tested by each instruction:

TABLE 4.4 JUMP % BRANCH INSTRUCTIONS

STATUS REGISTER RITS TESTED/AFFECTED
(t) indicates bits tested by instruction
Mnemonic Format L> A:x E& C 0OV OF X INT MASK

UNCONDITIONAL TRANSFERS

E G e
EL 6 - - - - = - - e - -
BLWF e
JMF expression - - - - - - - - - - -
RTWF *32 o » HoOM x X WX X N

CONDITIONAL TRANSFERS

JEG eupression - - t - - - - - ==
JNE EHPRresslon - - t - = - - - -
JH epression t - t - - - - - - = -
JL gxpression t - t - - - - - - - -
JHE BXPressi on t t - - - - - - = =
JLE eXpression t - t - - - - - - - -
JET** BHPrESS1 On - t - - - - - - = =
JL T ExXpression - t t - - - - —— = =
JNG expression - - - t - - - - - - =
JOC expression - - t - - - - - - -
JNQO edpression - - - - t - - - - - -
JOF exXpression - - - - - t - - - = =
ITERATION CONTROLS
X SOUE Ce * % I ! ¥ b b4 oM X M
XOF souwrce,operation - - - - - - - - - - -

t=tested status bit, x=affected status bit

THE INSTRUCTION SET 43

¥ Restores all status bits to the value contained in
Workspace Register 15 (R13).

*%¥ Only JGT % JLT instructions use signed arithmetic
comparisons. All other comparisons are logical
(unsigned) comparisons.

*%¥%¥ The instruction ‘X’ does not directly affect any
status bits, however the executed instruction affects
the Btatus Register accordingly.

CE D BEFRAaMCH

This instruction transfers control to another line in the program.
It does this by replacing the contents of the Frogram Counter
Register with the address specified in the operand. This
instruction has no affect on the Status Register. For example, if
R4 contains »*32F1, the statement:

B *R4

causes the word at location *32F1 to be placed in the Program

Counter Register. This has the effect of letting the word at

location »32F1 be used as the next instruction executed by the
program.

CEL D ERSPNCH SNDy L Xk

This instruction transfers control to another line in the program.
It also stores the address of the instruction immediately
following the BL in R1il. The transfer of control is accomplished
by replacing the value in the Program Counter Register with the
value specified by the source operand. The BL instruction has no
atfect on the Status Register. For example, if the statement:

BL. @SUBRL

occuwrs at memory location *06CA, the instruction places the value
*O06CE 1in R1l1 and places memory location SUBL in the Frogram
Counter Register.

note: The instruction BL @SURL requires two words of machine
code which are placed at addresses »060CA and »06CC.
Therefore, the word address immediately following the
second word i1s »06CE which is the value placed in R11.

CEL W 3 ERaNOCH S L eI
WORF SF@COCE FOINTER

When this instruction is implememnted the following occurs:

1) The source operand is placed in the Workspace Fointer
Register.

44 THE INSTRUCTION SET

2)Y The word immediately following the source operand is placed
in the FProgram Counter Register.

Z) The previous contents of the Workspace Fointer Register are
placed in new Workspace Register 13 (R13).

4) The previous contents of the Frogram Counter Register (the
address of the instruction immediately following BLWP) are
placed in new Workspace Register 14 (R14).

%) The contents of the Status Register are placed in the new
Workspace Register 135 (R18).

When all operations are finished, the computer transfers
control to the new value in the program counter. With the BLWF
instruction you can link to subroutines and program modules that
do not necessarily share the calling programs workspace.

C O D LIRMbCORMND I T IORSL. JULIFF

The JMF instruction allows you to move around in your program. It
is similar to the GOTO instruction in BASIC. The JIJMP instruction
causes the computer to take its next instruction from another
location. It does not affect the Status Register. It's clean and
simple. The following are examples of the JMF instructions usage:

1) JMP THERE #* Jumps to location THERE.
2) JMP 11AF % Jumps to address >11AF.

Keep in mind that when using ‘jump’ instructions the address
you are jumping to has to be within >100 bytes of the address of
the jump instruction or the instruction is ignored.

CRT W FETLIFRM WDRFSFAOCE FOIMTE

This instruction serves to retun the computer to how things were
before the calling of a subroutine through use of a BLWF
instruction. Also returns from an interrupt or XOF instruction.
The RTWF instruction accomplishes this in the following steps:

1) Replaces the contents of the Workspace Fointer with a copy
of R13.

) Replaces the value in the Frogram Counter Register with a
copy of Ri4.

Z) Replaces the contents of the Status Register with a copy
of R15.

In summary, the RTWF instruction restores the execution
environment after completion of a BLWP instruction, interrupt, or
XOF instruction.

THE INSTRUCTION SET 45

CONDITIONAL TRAaMSFERS

There are 12 different instructions that allow your computer to
make a "decision" before proceeding along a course of action.
These decisions are based on the contents of the Status Register.
Some of the conditional jump instructions test to see 1f the carry
(C) bit has been set others test differing combinations of bits.
For instance, the instruction Jump on Odd Farity (JOF) jumps only
when the (Odd Farity (OF) bit is set, others such as the Jump if
logical High (JH) only jump if the logical greater than (L3>) bit
is set to 1 and the equal (EQ) bit is reset to 0.

The conditional jump instructions do not change any of the
status bits; instead they are the instructions which look at the
bits in the Status Register. They are the only instructions which
base their activity on Status Register settings. They are the
reason the Status Register exists at all.

~

All conditional transfer "jump" instructions occupy 2 bytes in
memory. The first byte holds the operation code, while the second
holds the relative displacement. You shouvld always try and
construct your programs so that the expected outcome executes when
the jump is not taken.

Here are a few examples of conditional transfer "jump"
instructions:

1) A rRO,R1 % Jumps to location BIG if the add instruction
JOC RBIG * produces a carry.

2) S R4,RS #* Jumps to location ZERO if the result of this
JE& ZERO * subtraction operation is a 0.

You can also check to see if a Register contains a zero by
using a MOV instruction, as in the following example:

3) MOV R4,R4 =* Copies the contents of R4 into itself and
* compares the result to zero.
JE& ZERO * Jump to location ZERO if E@ bit set.

You can also set up a counter in a program for use in Creating
delays, loops, arrays, or printing to consecutive screen
locations. Counters have the general format:

4) LI R1,1000 * Put 1000 in Ri.
DELAY DEC R1 * Decrement R1.
MOV R1,R2 # Copy R1i into R1 and compare R1 to 0.
JNE DELAY * Jump if R1>0 (EG=0) to DELAY.
* Continue program.

46 THE INSTRUCTION SET

Conditional jump instructions have the general format:
J—= expression

where (——-) is & one or two letter modifier. The expression may be
a constant or symbol. Looking at Table 4.5 we see a summary of the
conditioina™ jump instructions, as well as the conditions that
cause a jump to occuwr. ‘Jump...if’ refers to status bit settings.

TABLE 4.5 CONDITIONAL JUMP INSTRUCTIONS

Instruction Description ‘Jump if....’

JEQ JUMF IF EQUAL TO ZERO EG=1

JNE JUMFP IF NOT EQUAL TO ZERO EQ=0

JH JUMF IF LOGICALLY HIGHER THAN ZEROD L=l & EQ=0

JL JUMP IF LOGICALLY LOWER THAN ZERO L= & EG=0

JHE JUMF IF LOGICALLY HIGH OR EQUAL TO ZERO Li=1 or EQ=1
JLE JUMF IF LOGICALLY LOW OR EQUAL TO ZERD L¥=0 or EQ=1
JGT* JUMF IF GREATER THAM ZERO Ar=1

JLT* JUMP IF LESS THAN ZERO A=l W EQ=D

JNC JUMF ON NO CARRY (CARRY BIT RESET) C=0

Joc JUMF ON CARRY (CARRY BIT SET) C=1

JNO JUMF IF NO OVERFLOW Oy=0

JOF JUMP IF ODD FARITY OF==1

*¥signed comparisons/all others use unsigned (logical) comparisons
L A] BTN

The execute instruction allows you to utilize & souwce operand as
an instruction. The X instruction doeg not alter the Status
Register, but the inserted instruction affects status bits
normally. If a Jump is executed (that is if the status test for a
Jumnp is passed) the jump is executed from the location of the X
instruction. The X instruction can specify an instruction one,
two, or three words in length. Th™ Frogram Counter Register is
then incremented the reguired one, two, or three words required by
the source operand. The X insbtruction is mainly used when the

instruction needed is dependent upon a variable factor.

A o S LTI S P XSO ES

It is very useful to compare various values when computing. That
is the purpose of the compare instruction set. Compare
instructions have no effect obher then to set or reset various

status bits. They are used in combinaticn with conditional jump
instructions to help the program make decisions. The compare
instructions make simultaneous logical and arithmetic comparisons.

THE INSTRUCTION SET 47

Arithmetic comparisons compare the two operands as two’'s

compliment values. A logical comparison compares them as unsigned
numbers. Table 4.6 outlines a summary of the compare instructions
and the status bits each affect:

TABLE 4.6 COMPARE INSTRUCTION SET

Status Register Bits
(%) indicates bits affected by instruction

Mnemonic Format » A EB C 0OV oFP X INT MASK

c G,G ® b ¥ - - - - - - - -
CE G,6 b X { - - ¥ - - - - =
CI W, #] X X - - - - - - - -
coc G,W - - M - - - - - - - =
czc G,W - - b - - - - - = - -

L M) COMFARE WORDS

This instruction compares the source operand, which is a word of
memory, with the destination operand which is also a word of
memory. The result of this comparison is then reflected by the
Status Register. The arithmetic greater than and egual status
bits reflect a signed comparison while the logical status bit
reflects an unsigned (16 bit) comparison. The operands are

left unchanged.

The compare instructions act very much like the subtract (5)
instruction in that the compare instructions subtract a source
operand from a destination operand. The difference is then
compared with zero with the Status flags being set accordingly.
But unlike the Subtraction instruction, the compare instructions
do not save the result; the operands remain unchanged. The sole
ftunction of the compare instructions is to set/reset status bits
in the Status Register for decision-making by conditional jump
instructions. An example of the compare word (C) instruction is
the statement:

C RO,R1

which compares RO with R1 (the contents of RO are subtracted from
the contents of Rl; the difference being compared to rero). The
Status Register is then set/reset to reflect the result of the
comparison. Table 4.7 gives some examples of the compare words (C)
instruction:

48 THE INSTRUCTION SET

TABLE 4.7 COMPARE WORDS INSTRUCTION

Status Register settings after 'C° instruction
Source—op Destination-op Logical (L») Arithmetic (A») Equal

*FFFF 0000 1] O
»7FFF #0000 1 1 Q
=8000 >QOO0 i O Q
*AFRZ =AFRZ Q Q 1
*F214 »BI45 1 0 Q
=EHOO0 #SFFF Q) (@] O

CCTE D COFMFaORE BEYw TES

The cvompare bytes instruction is very similar to the compare words
instruction we have just covered. The exception is that two bytes
are compared instead of two words. For example, the statement:

CB RO,R1

compares the left byte of RO with the teft byte of Rl. The result
of this comparison will set or reset the appropriate status bits.
The operands are unaffected. In addition to the L», Ax, and EE
status bits, the OF (Odd Farity) status bit is set when the result
of the CR operation {(really a subtraction operation) contains an
odd number of logic one bits. Table 4.8 gives some examples of the
vee of the CB instruction:

TABLE 4.8 COMPARE BYTES INSTRUCTION

Statuse Register settings after "CE’ instruction
Source-op Destination—op L A Equal Odd Parity

=00 *FF 1 O 0 0
=00 =7 1 1 C 1
= 7F =80 1 0 8] 1
“TE =7F 0 Q 1 0
FH0 =7F) 1 0 1

THE INSTRUCTION SET 37

address 2222 contains *F411. Also RS contains >Z23%, the
statement:

AE R4 ,*RS

then changes the memory word »2232 to *F492 because *B1 (the value
of the left most byte in R4) plus *11 the (the value in memory
byte »2232) equals *92. The left byte in memory word 2232 is
unchanged. In thise example the logical greater than, overflow,
carry and odd parity bits are set, while the arithmetic greater
than, and equal bhits are reset.

Ca RS) EEESOLLTED WAenll LD

This instruction takes the absolute value of an operand. It first
checks the sign bit (bit ©0) to see i+ it is equal to one. It 1t
is then the two’'s compliment of the number is taken. If the sign
bit is egual to zero, then the number is already positive and the
source operand is unchanged. For instance, if RO contains the
value >FEQO then the statement:

ABS RO
changes the value of RO to >0020, In this case when the result is
compared to zero, the logical greater than and arithmetic greater
than status bits are set, while the overflow, and equal status
bits are reset.

(e X oo SIS I HFMED T ST E

This instruction adds an immediate value to a specified Workspace
FRegister and places the result in the Workspace Register. The sum
is then compared with zero and the Status Register bits are
set/reset accordingly. For example, the statement:

Al R2,8

adds the value 8 to the contents of R2 and places the result in
RZ. Another example supposes that RS contains >0006:

Al RS, 23
the value >0029 is placed in R3. In this case the logical greater

than and arithmetic greater than status bite are set, while the
equal , carry, and overflow bits are reset.

CIDECT) DECREMEMMT
This instruction decrementse the contents of & specified general

register (or a memory location specitied in the address) by one
(1). The result then replaces the sowce operand. The result is

8 THE INSTRUCTION SET

compared with rzeroc setting/resetting the Status Register
accordingly. For example, the statement:

DEC *R4

decrements by one, the word starting at the address given in R4.
The DEC instruction is very helpful in counting and indexing of
byte arrays. For example, if memory location TABRLE contains the
value 0001, then the statement:

DEC @TABLE

places a value of zero in location TABLE (>Q000). As a result of
this the equal and carry status bits are set, while the logical
greater thamn, and overflow status bits are reset.

CIDEZCTT FDECREMEMT B T

This instruction decrements the sowce operand by two (2. The
result then replaces the operand. For example, the statement:

DECT @ADDR1

decrements the contents of ADDRLI by two. The result is compared
to zero with the results of this comparison setting or resetting
the status bits accordingly. The carry bit is set 1f there is a
carry of bit zero. The DECT instruction is very helpful in
counting and indexing word arrays. For instance, suppose memory
location TABLE contains the value »*2AEQ then the statement:

DECT @TAEBLE

places a value of H26DE in TABLE. 7The logical greater than,
arithmetic greater than and carry status bite are set, while the
equal and overflow status bits are reset.

iDL A D DX L E

This instruction divides the destination operand (which is a
consecutive two (2) word area of a Workspace Register) by a copy
of the source operand (one word from & general Register). For
erample the instruction:

DIV Ri,R2

divides the contents of Workspace Reglsters 2 and 2 by the
contents in Workspace Register 1. It shouwld be remembered that
whern the source operand is greater than the destination operand,
normal division ococurs. However, if the souwce operand is less
than or egual to the first word in the destination operand, then
the gquotient will be too large to be represented in a 16 bit word.

THE INSTRUCTION SET 49

CCTI> CoOoMFARE IFMMEDIATE

This instruction compares the contents of a Workspace Register to
some immediate value. For example, the statement:

CI R3,>21
and the statement:
CI R3,33

both compare the contents of RZ with the number Z3. The
comparison is accomplished in the same manner as with the C
instruction. The Status Register bits are set/reset to reflect
the results of the comparison.

CCOC > COMFAaRE ORNES CORRESFORND I NG

This instruction will set the EQ status bit if the bit positions
set to 1 in the destination operand correspond to the bit

positions set to one in the source operand. For example, the
statement:

CoOC @TEST,R3

compares the logic bits set to 1 in TEST with the bits set to 1 in

Z. In another example, suppose MASK contains the word *D0O12Z and
RZ contains the value *FB893%, then the statement:

COC @MASK,R3
sets the equal status bit to 1 for we see that:

»DO12
»F893

1101 0000 0001 0010 and
1111 1000 1001 0011

for each bit set to 1 in the source operand there is a 1 bit in
the corresponding bit position of the second operand. I+ R% had
contained »>FB8%0, the eqgqual status bit would have been reset.

LG B R COMRPFAaRE ZEROSE CORRESFORMD I MG

This imstruction will set the EQ status bit if the bits in the
source operand that are set to 1 correspond to the bits set to O
in the destination operand. For example, the statement:

COC @MASK,R3
compares the bits set to 1 in MASK, with the bits set to zero Q)

in R3. In another example, suppose MASK contains the word *ARILE,
and R> contains the value :44DF, the above instruction sets the

S0 THE INSTRUCTION SET

equal (ER) status bit to 1 because:

*AB32 = 1010 1011 0011 0010 and
»44DF = 0100 0100 1101 1111

[oy ! S B
for every logic bit set to 1 (one) in the source operand (:*ARID),
there is a logic bit set to () zero({n the corresponding bit
position of the destination operand (:*44DF). However, if R3 had
contained the value >44DE the EO bit would have been reset
because:

*AB32
»44DE

1010 1011 0011 0010 and
?100 0100 1101 1110
1 ' T 1

in the destination operand (:*44DE), in bit position 15 (least
significant bit) the bit is not set (not=1).

The COC and CZC instructions are used to compare a word with a
mashk in order to see if either its one bits correspond or its zero
bits correspond. To sum up, the COC instruction is used to
determine if the word in a Workspace Register has 1°'s that
correspond to the 1's in a mask that you specify. Conversely, the
CZC instruction is used to determine of the word in a Workspace
Fegister has O's in the bit positions indicated by 1's in a
specified mask.

A .7 LIDODGIEAaL. ITMNSTRLCT IOMS

Logical instructions are so named because they operate according
to the rules of formal logic as opposed to the rules of
mathematics. When dealing with logical instructions it is helpful
to think in terms of bits set (=1) as "true" and bits reset (=0)
as "false." There are ten instructions that allow you to perform
various logical operations on memory locations and/or Workspace
Registers. These instructions are outlined along with the status
bits they affect in Table 4.9.

TABLE 4.9 LOGICAL INSTRUCTION SET

Status Register Rits
() indicates bits affected by instruction

Mnemonic Format L= Ax EQ C ov 0P X INT MASK
AND I Wy, # X X o - - - = - - - -
ORI (WY , # % H - - B - - - -
XOR Gy (W M % X - - - - _— = -
INY G H % H - - - - - - - -
CLR G - - - - - - - _- - -
SETO G - - - - - - - - -
S0C G, (G b M » - - - - - - - =
SOCH G, (B) b b b - - woo- - - - -
S0 G, (G b b M - - - - - - - =

SZCE G, (6

X
4
x
!
1
~
|
|
|
1
l

THE INSTRUCTION SET 51

CAanNDI) LOGICAL. AanND
CXORD EXCLUSIVE—OR

Logical instructions are primarily used to manipulate the
individual bits of an operand. This is opposed to manipulating an
entire group of bits as we will learn to do in later sections of
this chapter with "shift" instructions. The ANDI instruction
utilizes the rule of logic stated:

If A is true and B is true, then C is true.

Specifically the 16 bit value in a Workspace Register is
compared bit-by-bit (ANDed) with an immediate value that you
specify. If both bits are "true' (that is =1) than the resultant
bit is true (set). This procedure is repeated for each bit, with
the resultant value obtained being placed in the Workspace
Register. For example, if R2 contains a value of »AZD4, the
statement:

ANDI R2,>6C4E

then places the value »2044 in R2Z because:

*A3D4 = 1010 0011 1101 0100 ANDed
*»6C4E = 0100 1100 0100 1110 with this
#2044 = 0010 0000 Q100 0100 results in this

Notice how if two "set bits" are compared it results in the
setting of the corresponding result bit, however, if the bits do
not match the corresponding bit is reset.

Table 4.10 is a "truth table" which gives the result ot all
poscsible combinations of :zeros and ones that can be "ANDed"
together:

TABLE 4.10 LOGICAL AND IMMEDIATE

Workspace Register bit Immediate operand bit ANDI result
] 0 Q
1 O 0
0 1 (8]
1 1 1

The logical-or immediate (ORI) instruction compares the 16 bit
value in a specitied Workspace Register with some immediate value.
The logical "OR" utilizes a slightly different version of the
previously stated logic rule:

I+ A is true or B is true, then C is true.

o2 THE INSTRUCTION SET

Specifically, the 16-bit value in a Workspace Register is
compared bit-by-bit (ORed) with some immediate value that you
specify. If either of the two bits being compared is "true"

(set to 1), then the resulting bit is also true (set=1). This
procedure is repeated for each successive bit with the resulting
value being finally placed into the Workspace Regicster. For
example, if R3I holds the value *AZD4, then the statement:

ORI R3,>6C4E

places the value *EFDE in RI because:

ATID4 = 1010 0011 1101 0100 ORed
*6C4E = 0110 1100 0100 1110 with this
*EFDE = 1110 1111 1101 1110 results in this

Notice that if either bit being compared 1= set (=1), then the
resultant bit is also set. If neither bit being compared i1s set,
then the resultant bit 1s reset (=0).

Table 4.11 is a 'TRUTH' table listing the result of all
possible combinations of bits that can be ORed together.

TABLE 4.11 LOGICAL OR IMMEDIATE

Workspace Register Bit Immediate Operand Bit ORI result
0 Q 0
1 O 1
Q0 1 1
1 1 1

The logical exclusive-or [XOR1 uwtilizes the rule of logic which
states:

I+ either A is true or B is true but not both, then C is true.

The format of the XOR instruction is slightly different then
for the ORI and ANDI instructions. The XOR instruction allows the
source operand to be specified by any of the general addressing
modes while the destination operand must be in a Workspace
Register. For example, the statement:

X0OR @WORD , RS
exclusive~0OR = the contents of memory location WORD with the value
in R3. The result of this exclusive-0OR operation is then placed in

RS.

The instruction XOR takes the source operand and does an

THE INSTRUCTION SET 53

exclusive~0OR on a bit-by-bhit basis with the destination operand.
The result of this operation replaces the destination operand. I+
either of the two bits being compared is "TRUE" (that is =1), but
not both, then the resulting bit is also true (set =1). However,
if both bits are reset (=0), or both bits are set (=1) then the
resulting bit is reset (=0). For example, if R4 contains *AZ341 and
memory location WORD contains *C3F4, then the statement:

XOR @WORD,RS

places the value of *66B5 in RS because:

*AZ41 = 1100 0101 1111 0100 XORed
*CS5F4 = 1010 0011 0100 0001 with this
*66BE = Q0110 0110 1011 0101 results in this

Notice that if either bit being compared, but not both, is set
(=1) then the resulting bit is also set. If neither bit being
compared is set then the resulting bit is reset (=0).

Table 4.12 1s a 'TRUTH" table listing the result of all
possible combinations of bhits that can be exclusive-0ORed together:

TABLE 4.12 EXCLUSIVE-OR LOGIC TABLE

First Operand Bit Workspace Register RBii XOR Result
O 0 0
1 O 1
O 1 1
1 1 O

The value that results from the logical operations ANMDI, ORI,
and XOR is compared with zero before being placed in the Workspace
Register. The results of this comparison then atfect the first
three bits (L», A», E) of the Status Register accordingly. For
example, if RZ contains *A%D4 then the statement:

ORI R3, »6C4E
places the value *EFDE in K3, sets the logical greater than bit of
the Status FRegister while resetting the arithmetic greater than

and equal status bits.

The following chart combines all three "TRUTH® tables. This
chart summarizes the effects of the three logical operations:

ANDI ORI XOR
O AND O = O O 0OrR O =0 0 XOR O = 0O
O AND 1 = 0O O0OrR 1 =1 O XOR 1 = 1
1 AND O = 0O 1 0R O =1 1 XOR 0 = 1
1 AND 1 = 1 1 0rR 1 =1 1 XBR 1 = 0O

54 THE INSTRUCTION SET

DA N Y LN IPNWVERT

This instruction takes the source operand and reverses all the
logic bits. It has the effect of changing each zero in the source
operand to one, and changing each one to zero. This is referred to
as "taking the one s compliment of a number . The resulting value
is then compared with zrero and sete/resets the Status Register
atcordingly. The new value also replaces the source operand.

For example, if RZ contains »3ZEF4 and memory location >3EF4
contains *A6CC the statement:

INV R3
places *C10B in R3 and sets the logical greater than, as well as

resetting the egual and arithmetic greater than bits in the Status
Register because:

*3EF4 0011 1110 1111 0100 becomes

N e s e ey

*C10R 1100 0001 0000 1011 on bit-by-bit reversal

CCLLF D) Cri EdmsFRD WO

This instruction changes the sowce operand (16 bit) to zero. That
is, all bits are reset. For example, if Ré contains >3001 then the
statement:

CLR *xR6&6+

clears the contents of memory locations >3000 and 5001 to rero.
Fé& is then incremented by two (word instruction? so Ré now
contains the address *3003. Word operations such as CLR operate on
the next lower address when an odd address is specified as the
operand, since all memory words have to begin at an even address.

The CLE instruction does not affect the Status Register.

CESEITT O D SET WD T COED
This instruction 1s the opposite of CLR in that it replaces the

souwrce operand with a full lé-bit word of ones. It does not affect
any Status Register bits. For instance, the statement:

SETO @BUFF (R3)

THE INSTRUCTION SET

on
i

places the value FFFF at the address found by adding RZ to the
contents of BUFF. The SETD inmstruction is useful to signify the
end of a file or in the setting up of flag words.

S0 D S5ET ONES CORRESPFORMD X NS ORI

This i1nstruction compares two words (16 bits) together. The
souwrce aperand compares 1ts bits set (1) againset the destinalion
operand, All corresponding bits are set in the destination
operand regardless of their previows condition. For example, if
FZ contains »AZE4 and R4 contains *iC3Z, then the statement:

s0C R3,R4

changes the contents of R4 to »*CFF7 because:

XAZE4 = 1010 0011 1110 Q100 source operand
FIC3T = 1001 1100 0011 0011 destination operand
*CFF7 = 1011 1111 1111 0111 resulting destination

operand

This instruction will set the logical greater than bit of the
Status Register and reset the equal and arithmetic greater than
bits. Notice that the 50C instruction is really an OR operation
that can operate on two operands through any general addressing
mode.

LR 2 SET ORMES CORRESF O T eSS, B D

This instruction compares the sowrce operand {(byte) with the
destination operand (byte). It is an OR operation in that if a
bit 18 set in the source operand the corresponding bit 18 set in
the destination operand. The result of this bit-by-bit comparison
replaces the destination operand and is then compared with zero.
The Btatus Register bits are selt/reset to reflect the results of
this comparison. I+ & word of memory is specified as one of the
operands, only the most significant byte (bits 0-7) are OR ed
together. For example, if RIZ contains ARSI and memory location
BEST contains »>F72321, then the instruction:

SOCE R3,@BEST
places the value HFB31 at location BEST and sets the logical

greater than and odd parity status bits while resetting the
arithmetic and egual status bits because:

*AAZZ = 1011 1010 0011 0011 souwce operand
*FCZ1 = 1111 1011 0011 0001 destination operand
BT = 1111 1011 Q011 0001 resulting destination operand

56 THE INSTRUCTION SET

CSZ00> SET ZEROS CORRESFOMID ING , WIORID

This instruction compares the 0's in a source operand (word) with
the O0's in a destination operand (word). I+ a zeroc bit
corresponds then it is not atfected. If & zero bit in the source
operand corresponds with a one bit in the destination operand,
then that bit is reset to zero, The result of this operation is
placed in the destination operand. The result 1s compared with
zero and the status bits are set/reset accordingly. For example,
if R3 contains 2133 and R4 contains »335399, then the statement:

SIC R3,R4
places *2111 in R4 and sets the logical greater than, arithmetic
greater than status bits while resetting the eqgqual status bit

because:

»2132 = 0010 0001 0011 0011 source operand

*»33FP = 0011 0011 1001 1001 destination operand
*2111 = Q010 Q001 9001 0001 resulting destination operand

Notice that if the souwrce operand bit is rero it resets the
corresponding destination operand bit. This is a logical OR
operation dealing with zeros instead of ones. The opposite of the
S0C instruction.

CIESETE D SET ZERODS CORPMRESFONNI MG , B

This instruction compares the O bits in a source operand (byte)
with the O bits in a destination operand (byte). I¥ a zero bit
corresponds then it is not affected. If a zero bhit in the sowce
operand corresponds with a one bit in the destination operand, the
destination operand bit is reset to zero. The result of this
wperation is placed in the destination operand. The resulting
binary number from this operation then replaces the destination
operand. It is compared with rero and the results of this
comparison set/reset the status bits accordingly. For example, if
F11l contains the value 2001, location 2001 contains 7D, and
location MASBE contains *90, then the statement:

SICE @MASKk,*R11
results in the contents of memory location 2001 being changed to

*11 and the logical greater than, arithmetic greater than status
bits being set while the equal bit being reset because:

MASE = 1001 0000 sgurce operand
*7D = @111 1101 destination operand
*11 = 0001 0000 resulting destination operand

THE INSTRUCTION SET =57
4.8 SHIFT INSTRUCTIORNS

Where as logical instructions allow you to manipulate individual
bits, Shift instructions allow you to manipulate entire groups of
bits. There are four instructions that allow you to shift the
contents of a Workspace Register one or more bit positions to the
lett or right.

With all four shift instructions the carrvy status bit (C) holds
the value of the last bit shifted out of the register. For
example, 1f a Register is shifted to the right &6 bits, and the
sixth bit is a '1', the carry bit in the Status Register is set.

Shift instructions can be divided into two groups; Logical
shift instructions and arithmetic shift instructions. Logical
shift instructions displace an operand without regard for its
si1gn. They are used on unsigned numbers and non-numbers such as
masks. Arithmetic shift instructions preserve the sign bit. They
are used to operate on signed numbers.

ALl four shift instructions require two operandsy a Workspace
Register containing & sidteen bit word and a shift count. The
count may be any number from 1 to 16.

Table 4.13 outlines the shift instructions and indicates which
status bits are affected.

TABLE 4.13 SHIFT INSTRUCTIONS

Status Register Bits
() indicated bits atfected by instruction

Mnemonic Format L: A> E@ C OV X INT MASK
SRA (W), # X X X X - - - - - -
SL.A (W), # X X X X x - - - - -
SRL. (W), % X X X X - - - - - -
SRE (W), 4 X X X X - - - - - -
CSFRAaY SHIFT RIGHT &I THMHMET I

LESL Ty D ST FT O LLEFT @SR T T HHMET IO

These two instructions zhift sigrned numbers. The BRA instruction
preserves bthe sign by replicating the sign bit throughout the
shift operation. The SLA instruction on the other hand does not
preserve the sign bit, but puts & 1 in the overflow bit of the
Status Fegister if the sign of the number changes after the shift
operation. With each bit position shift using ShaA, the vacated
bit positions are replaced with zeros.

When using shift instructions the first operand is the word to
be shifted. The second is the number of bits to be shifted (shift
count) which ranges anywhere from 1 to 16. I+ the shift count in

58 THE INSTRUCTION SET

the instruction is zero, the shift count is taken from

Workespace Register ROj; bits 12 through 185. I+ bits 12 through 135
in RO are all zero then the shift count is 16 bit positions. If a
shift count is specified that is greater than 15, then the value
is placed in RO and the least significant four bits are taken as
the shift count (bits 12-15). If you specity 0 as the shift count
the shift count is 16 bit positions. For example, the statement:

SLA R2,4

shifts R2 left fouwr bit positions, if the sign changes the
overflow (OV) bit of the Status Register is set.

Atter & shift takes place, the result is compared with zero and
the Status Register bits are set/reset to reflect this comparison.
The following are examples of arithmetic shift operations:

1. If R3 contains *12F3 then:

SLR R3,1

places a value of *23Eé&6 in RE and sets the logical greater
than and arithmetic greater than status bits while resetting the
equal , carry, and overflow status bits because:

#12F3 = 0001 0010 1111 0011 R3

*28BE6 = 0010 0101 1110 0110 RI result (all bits shifted
left 1 bit)

2. If R4 contains *FA97 then:
SLA R4,5
places a value of F6ZEO in R4 and sets the logical greater
than, carry, and overtlow status bits while resetting the

gqual status bit because:

+FA97

1111 1010 1001 0111 R4

*62E0 = 0101 0010 1110 0000 R4 shifted left 5 bits
Note sign change (bit o), and thalb the F#ifth bit shitted out
is a one so the carry and overtlow bite of the Status
Fegister «ae set.

IR I+ RY3 contains »6C0FD and RO contains »FFFA thern:

SLA RS5,0

THE INSTRUCTION SET 39

places a value of *F400 in RS and sets the logical greater
than, carry, and overflow bits of the Status Register, while
resetting the arithmetic greater than bit because:

»6CFD 0110 1100 1111 1101 RS

1111 0100 0000 0000 RS LEFT SHIFT *A RITS.

*F400
4, If R6 contains »B&690 and RO contains A3IR0O then:
SRA R6,0

places a value of *FFFF in Ré and sets the logical greater
than, and carry status bits while resetting the arithmetic
greater than and equal status bits because:

*B6F0 = 1011 0110 1001 Q000 R6

1111 1111 1111 1111 R6 right shift 16 bits
sign bit replicated

*FFFF

{ SR SBHIFT RIGHT LOGICHSL.

This instruction shifts unsigned numbers to the right. The
vacated bits are filled with zeros. The carry bit of the Status
Register holds the value of the last bit shifted ocut. The shifil
count is specified in the same manner as with the SRA and SLA
instructions, that is if 0 i1s specified as the shift count, the
shift count is taken from bits 12-15 of RO. I+ these bits egqual
0, then the shift count is 1é6. The result of the shift is placed
in the Workspace Register and compared with zero. The Status
Register is set/reset to reflect the results of this comparison.
The following are some examples of the SRL instructions usage:d

1. If REZ contains *FFFF, then the statement:
SRL R3Z,6

places the value OIFF in *RZE, sets the logical greater
than, arithmetic greater than, and cearry status bits
while resetting the eqgual status bhit because:

1111 1111 1111 1111 R3

0000 0011 1111 1111 RZI shifted right S
bit positions

i

»FFFF

»O3EFF

2. I1f R4 contains »731F, then the statement:

SRL R4,456

60 THE INSTRUCTION SET

has a shift count of B8 because:

RO = 456 = 0000 0001 1100 1000
--—— last 4 bits = 8

The logical and arithmetic greater than status bits are set,
while the equal and carry bits are reset.

L == Sl EHEHIFT RIGHT DIRCUIL &S

This instruction shifts the contents of a Workspace KRegister to
the right a specified number of bit positions. The displaced bits
are then used to fill the vacated bit positions on the left. The
carry status bit contains the value of the bit shifted out of bit
position O (sign bit with signed numbers). The resulting value is
thern placed in the Workspace Register. It 18 compared with zero
and the status bits are set/reset to reflect the results of this
comparison. For example, 1+ RE contains *EC62, then the
statement:

SRC R2,6
results in the value *8BRI being placed in RZ. The logical

greater than, and carry status bits are set while the esqual and
arithmetic greater than bits are resel because:

*EC62 = 1110 1100 0110 Q010 R2
*8BRB1 = 1000 1011 1011 0001 R2 shifted right 6 bits

Note that this instruction fills vacated bit positions with the
bits shifted cut of position 15, In thise example the bit shifted
out. of bit O was one, so the carry bit in the Status Register is
st .

There iz no "Bhidt Left Circuler" instruction because the same
effect can be accomplished with 5RC. To ghift left a specified
count simple shift right & count egual to 16 minus the number.
For example, to shift left circular 9 bhits use the statement:

SRC R2,16-9

SRC R2,7

The shitt instructions also can be used as fast-erecuting
multiply and divide instructions. For instance, shifting the
operand one bit poszition to the left doubles its value (nultiplies
by 2) and shifting the operand to the right one bit position

halves its value (divides by).

The following shift instructions show you how to maltiply or

THE INSTRUCTION SET 61

divide the contents of a Workspace Register by 4:

SRL RS,2 * DIVIDES UNSIGNED NUMEER BY 4.

SRC RS,16-2 * MULTIFLIES AN UNSIGNED NUMEER BY 4.
SKRA RS, 2 * DIVIDES A SIGNED NUMBER BY 4.

SLA RS,2 * MULTIFLIES A SIGNED NUMBER RY 4.

These shift procedures can save you considerable program
execution time when multiplying or dividing numbers. Fach shift
operation takes a fraction of the time to complete then does a DIV
or MPY instruction. '

Of couwrse there are limitations, you can only multiply or
divide with the shift instructions using multiples of two. You
can get around this obstacle by juggling some registers. For
example, to multiply the contents of RI by 10, use the following
sequence of instructions:

MOV R3,R4 * Put a copy of R3 in R4.

SCR R4,16-2 * Shift R4 by 14 (multiply by 4).
A . R3,R4 * Add original R4 (multiply by 5).
SRC R4 ,16-1 * Shift R4 by 15 (multiply by 10).

This is the same as:
[(RZ%#4)+ (R3) J#2=R3*10

Thie instruction sequence involves four steps as opposed to the
simple instruction sequence:

LI R4,10
MPY R3,R4

which only reqguires two sbteps. However, the former sequence is
almost three times faster then the single MPY instruction!

“F o % FEELIDO - TISNET LAY T2 S

fs mentioned in earlier sections, psewdo-instructions are not
really machine language instructions, but rather provide some
direction to the assembler as to what to do under certain
circumstances. There are two pseuwdo-instructions that are
outlined below in Table 4.14:

TABLE 4.14 FSEUDO-INSTRUCTIONS

Mnemonic Description
NOF MNo operation
RT Return

62 THE INSTRUCTION SET

CPJOF 3 MO OFERGT IO

The NOF pseudo-instruction performs no operation when run. It
only serves to slow the execution time of the program. No
operands are specificed and the Status Register is unaffected.

The NOF pseudo-instruction is most often used with the
minimemory assembler to allow you to leave "holes" in your code
that vou may want to come back later and fill with some
additional instructions.

CEFT 2 RE TURRM
This itnstruction tells vour computer to retuwrn back to a calling

program from & subroutine called up by a BL instruction. For
example, the instruction seguence:

line# Label OF-C Operands Comments
0001 MAIN .
Q200 BL. @sur1i ¥ Branch to location SUE1 and store
=Q201 START ¥ Return address of next

. ¥ Instruction in R11l.
»Q800 SUE1 * Beginning of subprogram SUR1.
=0805 RT * Go back to location START.

branches to location SURF, carries out a sequence of instructions
and then retuwns via the RT to the point just atter the BL
instruction (in this case we would retuwn to location START).

When the RT instruction is specified the assembler supplies the
logic code for the following:

B *R11

Remember that when control is transferred by a BL instruction,
the link to the calling routine (the Frogram Counter setling just
after the BL instruction) is placed inm R1l. The RT pseudo-
instruction retwns control of the program to the instruction
tfolluwing the BL command. Do not alter FLI1 unless you first save
the address somewhere. Do not forget to reload the address in K1l
betore RT or there is no telling where you will end up!

6

Construction
number by 12

Where is the

THE INSTRUCTION SET

CHAPTER 4 STUDY EXERCISES

instruction is called?

return address stored when a BL (Branch %

How far can a "jump" be specified in your program?

The sole purpose of the Status Register is to provide
information on which decisions are based to what group of
instructions?

What pseuwdo-instruction is
BL instruction?

used in

combination with the

an instruction sequence that will multiply a
using only shift instructions.

Limk)

Identify the addressing mode used in each of the following
examples:

(a)
(b))

MOVE Ri,*R:

a

*R1+,R2

(c)
()

™
MOy

@0n, @evVaLUE]
Ré oy @NUML £ (R2)

6

-
2

|

ASSEMBLER
DIRECTIVES

Bt rie e e 4208 G et 99508 e S4ath S emae P S SRS Gawas e St WO e S TS S8 e e WO 4 G S SaSeE $9050) S4D B HASE SOSMS e S8 FLES S4442 40008 Shvrm AbaSe s AAD e eme oo Tean SeAne oo e SSeen Toest b Soese e S SOS8 VArse Sousé P et So4re Tesas SErel

As we have mentioned befbre, the purpose of the assembler is to
convert your source code into the appropriate object code. That
is, the assembler program takes yow opcodes and their operands,
translates them into the appropriate binary numbers, and places
them in memory for you. This is the assembly process in its
simplest form. By providing some additional commands you can
"teach" the assembler program to assist you in creating your
assembly program. This is where Assembler Directives come in.
They are not part of the computers instruction set. They are
directions for the assembler to follow during the assembly
process. Sometimes they are referred to as "pseudo-instructions”
as are NOFP % RT, but for now we will put them in a distinct
category and refer to them separatly as assembler directives.

There are 28 separate directives that are available, however
with the assebler and loader we are using only 22 directives are
useful. These will be the ones that we will discuss. The
directives can be divided into 5 separate groups based on their
functional similarities.

&6 ASSEMELER DIRECTIVES

The assembler directives can be divided into the following 3
functiomnal groups:

1. LOCATIDON COUNTER DIRECTIVES. These directives affect the
location counter in some way. The location counter is the
pointer that determines where the assembler is in the
assembly process. It keeps an orderly flow of where data
and/or instructions are stored in the memoryv.

2. INITIALIZE CONSTANT DIRECTIVES. These directives let vou
define symbols. It allows you to assign a symbolic name
to an expression. Youw can also directly defing words &
bytes.

i, PROGRAM LINKAGE DIRECTIVES. These directives allow you
to link difterent assembly program modules together into
one long program. This featuwre can greatly simplify
program devel opment .

4. MISCELLANEOUS DIRECTIVES. These directives allow vow to
define extended operations. They alsce allow you to define
the end of your program.

3. ASSEMBLER QUTRUT DIRECTIVES. These directives allow yvou to
change the assembler oubtput in order to make 2t sasier to
read, such as page lengths, page titles, program
idenlifiers, ect.

LT DO O S TE R D Y RENCT X WEDES

The location counter is the pointer that determines where the
azsemblear stores instructions or data in memory. It seguentially
follows the steps in the souwrce listing as it converts 1t anto the
gbject listing. There are & wseful directives for alltering the
location counter.

Table 5.0 LOCATION COUNTER DIRECTIVES

Mnemonic Directive Format

ARG Absolute ORLGLIN P eSSl ond
RORGE Felocatahle ORIGLn B DI ESsl O

DORG Dummy ORiGin

Bs5 Block Starting with Symbol ;
BES Block Ending with Symbol wokrd (e presst o)
EVEN Move to &« Word Boundar v

ASSEMBLER DIRECTIVES 67

CEIDRG AMBSOLUITE ORIGIN

Whern the assembler reaches a ADRG directive, the location counter
is altered to store the object code for subseqguent instructions
starting at the location specified by a word. For example if X=7,
then the souwce code statement:

LABEL. ADRG >DOOO+X

sets the location counter to D007, and LABREL is assigned the
value *DOO7.

With the Editor/fAssembler you normally let the computer make
the placement decisions but ADRG gives you the option of making
these decisions yourself.

When using the Line-by-Line Assembler with the Mini Memory
Module you will use the ADRG directive quite freguently to move
through various memory locations. 8See chapter 10 section 10.1 for
further details.

OISy FEL.aTIVE ORIGTIR

You may locate object code relative to the current active storage
laocation in memory. The RORG places a value in the location
cournter which, if encountered in absolute code, also defines
succeeding locations as program re—locatable. The dollar sign (%)
symbol refers to the current value of the location counter. The
statements:

LAREL RORG #-40

overlays the last 20 words (40 bytes) by backing up the location
counter 20 wordes. LABEL 1s assigned the value that is placed in
the location counter.

You may never have cccasion to use ADRG and RORG in your own
programs (provided you are not using the MMMY, but vou’'ll
gncounter them if you ever delve into listings of system prooarams.
For this reason you should krow what AORG and RORG do.

LU R § g) DR pri=1™" O X G T R

This directive places & valueg 1in the location counter and detines
the following address locations as a dummy block or section.

CExE3Es EL O33R O MEMCOFR ST
T EFRTINMG W TH S MMEOL. o - -

The BSS directive allows you to reserve an area of memory for
future use. I+ a label is used it is assigned the location of the
first byte in the block. It does this by advancing the location

68 ASSEMBLER DIRECTIVES

counter by the value specified in the expression. You reserve
memory for use to set up reference tables, arrays, ect. The
ey

following code reserves a I2 byte area of memory for your 1é
Workspace Registers:

MYREG BRS5S 32

I+ the ADORG directive is to be used in yow program, it must
precede come before you use any BSS directives.

CEREES D EL CHITRE, OF MEMORY
ErIDING W TH SWwHMEOL - .

This directive is similar to that of the BSS directive in lthat it
reserves a block of memory by advancing the location counter by
the value specified in the expression. The label is assigned the
location of the last byte in the block. For example, if the
location counter contains 200 when the assembler processes the
statement:

RUFF RES =30
BUFF is assigned the value 230 and a 48 byte area of memory is
reserved. The BES directive can be used to mark the end of a
bBlock started with the BSS directive. For example, when the
assenbler processes the statements:

BUFF1 BSS 10
BUFF2 BES 10

a Zd-byte buffer (memory area) is set beginning abt location BUFF1
and ending at location BUFFZ.

ORISR D il A EH ESSEE BRIy BT RS e ey R

Al words in memory begin at an even address. EVEN ie a directive
that cann force the location counter to point to an even address.
T4 the location counter is already at an even address then the
directive ie ignored, but i+ the counter is at an odd address,
EVEN causes the assembler to jump to the next even address. For
example, if the location counter points to addrese >3001, an EVEN
Jirective makes it point to »I002

The only time you would need Lo use the EVEM directive would be
to ensure that a statement comsisting of only & label is at an
even word boundary after a TEXT or BYTE directive.

TEXT "HELLOC
EVEN -
DATA »8BAF

ASSEMBLER DIRECTIVES 69

You do not need to use an EVEN directive after a machine
instruction or a DATA directive because the assembler

automatically advances the location counter to an even address
when it processes machine instructions or a DATA directive.

You can avoid much of the hassle of having to use the EVEN

directive by simply not specifying a statement consisting of only
a label after a TEXT or BYTE directive.

DIRECTIVES THAT INITIALIZE CONSTAaNTS

These directives allow you to define the values of constants and
place the values in bytes or words of memory.

Table 3.1 outlines the directives that initialize constants
along with their mnemonics and formats:

TABLE 5.1 DIRECTIVES THAT INITIALIZE CONSTANTS

Mnemonic Directive Format
EQu Define assembly-time constant (EQUate) expression
DATA Initialize BYTE EXD EHD Y. BXD
BYTE Initialize WORD EHP L EYD. .« XD
TEXT Initialize TEXT ‘string”’
CECLD ECHIATE — Defime conmnstanmnts

at assemblyw time .

This directive assigns a value to some symbol. The label field
contains the symbol that you assign. Once you assign the symboal
vou may use it anywhere you would normally use the expression.

The EQU directive can be used to define a symbol for a lé6-bit
constant, or another symbolic name. Some examples of the EQU are:

JOYX EQU 8376 * Constant
urF EQU J0OYX * Another symbolic name.

You can also specify an index reference through some juggling
of the EQU directive like so:

MYREG EQU 8300 * My own workspace area begins here.
R1HE EQU MYREG+2 ¥ Value in high byte of R1 addr. >B302.
RiLB EQU MYREG+3 * Value in low byte of R1 addr. >8303.

Here we see the individual bytes of a Workspace Register
reterence through the use of a symbolic equate directive.

70 ASSEMBLER DIRECTIVES

CE T E > INITISL. IZE BYWTE (S)2

This directive can place one or more values in successive bytes of
memory. When you specity a label it is assigned the location
which the first byte is places at. Each expression is evaluated
individually as a signed two’'s compliment B-bit rumber. The
following statements show the allowable maximum and minimum values
for byte—size variables, in decimal:

BUMAX BYTE 2535 ¥ Maximum byte constant, unsigned.
BSMAX BYTE 127 ¥ Maximum byte constant, signed.
BESMIN BYTE ~128 % Minimum byte constant, signed.

You can also allow the assembler to calculate the value of a
constant as in the following example:

HERE RYTE *F+4,-1,-34+3:12,3>10/8, A"

which initialize five bytes of memory starting with the byte at
location HERE. The contents of five successive bvtes are 173,
R, xF0, 02, and =41.

The EVEN directive is aoften used after the BYTE directive when
a DATA or TEXT directive is next in the source code. This is
to assuwre that the next directive begins at an even word boundary.

CIDET 6 2 IMITIOL IFEE WRID

This directive only difters from the BYTE directive in that it can
nlace one or more successive values in 16-bit word locations.

Each word 1s evaluated as a signed two’'s compliment 1é6-bit number
and, if necessary, places a value of >00 in any byltes not filled.
The followed statements outline the maximum and minimum values for
word-size variables, in decimal:

WUMAX DATA 65535 * Maximum word constant, unsigned.
WSMAX DATA 32767 * Maximum word constant, signed.
WSMIN DATA -32768 * Maximum word constant, signed.

fAgain, it is possible to let the assenbler calculate some o
the values of the constant as in the following example:

HERE DATA 1+:FZ,3121+ C, "AB’

which initialize three words of memnory beginning at location HERE.
The contents of the three successive words are >00F4, 021,
#4142,

The BYTE and DATA directives can be uwsed to set wy & data table
in memory. To do this simply list the table elements and separate
them with & comma. The following sequences of source code set up
two 20-element tables, one comprised of bytes and bLhe other

ASSEMBLER DIRECTIVES 71

comprised of words:

SOUND1 EQU =34

ETAELE EYTE 0,0,2%,32,43,23,-12,45
BYTE 36,-120,33A, ‘AB’ ,— DX’ (EYTE TABLE)
BYTE 64,30 ,45,0,3,7+%5,SOUND1

SOUNDZ EQU =35

WTABLE DATA »3025, *FFAR,~4356,0,23,-34
DATA 4567 ,~ 535, VL, ‘G ~4, 5523 (WORD TABLE)
DATA 2332, ¥23,0,5%:34,36,1,34,S0UND2

T E XT3 IMNITIL Y ZE TEXT

The text directive allows yvou to define a character string as an
expression. The string characters are stored in successive bytes
of memory as their ASCII hexadecimal eqgivalents. The string may
be up to S characters in length. You may precede the string with
a urinary minus (—) sign in which case the last character of the
string is negated. When a label is uwsed its location is the first
byte in the string. The string must be enclosed in single guotes
as shown here with two possible error messages outlined:

NICE TEXT ~“THAT NUMEBER IS TOO LARGE.
TEXT 'FLEASE RE-ENTER IT.°
RUDE TEXT °'TRY IT AGAIN, STUFID-’

The byvtes are ftilled sequentially by the assembler when
processing a TEXT directive. 5o i+ he assembler 1 on an even
address when 1t starts to execute the following directive,

MESG TEXT 'HELLO’

the result i1s 4845, =4C4C, and *4F-— with {--) being determined
by the next sowce statement. For this reason the EVEMN directive
usually follows a TEXT statement to insure that the next
instruction starts at an even word boundary.

FoRPohiE st e § b0 e G5 ED B 0 P ECT T X WA RS

Frogram linkage directives allow you to create programs as
separate modules which yvou later connect together to form one long
program. There are a total of five directives that are availlable
to allow vou to link programs, however, only three of them can be
used with the loader provided with the assembler. These will be
the ones we will discuss in depth 1n the sections that follow.

72 ASSEMBLER DIRECTIVES

Table 5.2 outlines the directives that allow you to link
programs along with their mnemonics and required formats:

TABLE 5.2 DIRECTIVES THAT LINK PROGRAMS

Mnemonic Directive Format

DEF External DEFinition symbol ,symbol.....symbol
REF External REFerence symbol ,symbol..... symbol
Copvy Copy "File Name"

C(IDDEF 2 EXTERMMSL DEFIMMNIT IO

The DEF directive allows you to makes one or more symbols
available to other programs for reference. The DEF directive can
be thought of as supplying "entry" points into the program for
other programs. The DEF directive must precede the object code
that contains the symbols to be defined. For this reason the DEF
directive is usually at the beginning of the souwrce code. The
following statement shows an example of the usage of the DEF
directive:

LABEL DEF START,SL.0AD

This statement will cause the assembler to include the symhbols
START and SLOAD in the object code so that these symbols are
available to other porgrams. If a label is specified, it is
assigned the current value of the location counter.

{FREF > EXTERMSDIL REFEREMOE
The REF directive allows you to have access to one or more symbols
defined in other programs. The REF gives youw the location of

where "entry" into another program is to take place. For
instance, the statement:

LAREL REF START,SLOAD

causes the assembler to include the symbols START and SLOAD in the
object code so that the corresponding address may be obtained from
other programs.

If a symbol is listed in a REF directive inside youwr program,
then the same symbol must be present in the DEF directive of the
program that you are trying to link with.

CCTOF™N 2 COFY FILLE

This directive will fetch a file from a diskette during the

ASSEMBLER DIRECTIVES 73

separate source file in the assembly process as if it were a
series of source statements in the program. The assembler

continues right on through. You can use as many COFY directives
in a program as you want but if an EMD directive is encountered
the assembly process ends. This happens no matter if the END
directive is in the file called up or part of the original
program. The following statement is an example of the COFY
directives use:

LABEL COPY "DSK1.GAMEL"
COPY "DSK1.GAMEZR"
COPY "DSK2.GAME3"
END

This last example will first copy the file GAMEL from disk
drive 1 into the computer in order for the assembler to assemble
it. It then loads file GAMER from disk drive one and keeps right
on assembling it. Finally, file GAMEZD is loaded from disk drive
two and 1t is assembled. The assembler then reaches the END
directive and the assembly process stops.

The main use of the COPY directive is to allow you to wite
programs as separate modules which can then be assembled together.
You may want to do this for writing convenience or because the
souwrce program is too long to it on one file.

MISCOEL LadEDuUE DT _RECT DWW E S

The two miscellaneous directives are the Define eXtended Operation
directive (XOF) and the END directive. The miscellaneous
directives are outlined in Table 5.3 below:

TABLE 5.3 MISCELLANEOUS DIRECTIVES

Mnemonic Directive Format
XOF Define extended OFeration symbol ,term
END Frogram ENMD sywmbol

R 2 DEFIME E@XTEMRIDDED COFEFR&T OO0

Thig directive can only be utilized on the TI-99/44 Home Computer.
The DXOF directive will assign a symbaol to be used in the operator
field to specify an extended operation.

CEIPAID B ErIDD FROGRAOM EEECLLT T O

The END directive causes the assembly process to stop. The last
sowce statement you put into yvowr program should be an END
statement to signify to the assembler that this is where you want
the program to end. 1¥ you specify a label it 1s assigned the
current value in the location counter.

74 ASSEMEBLER DIRECTIVES

You can specify and entry point into the program by placing a
symbol in the operand field of an END directive. If this is done
the program will automatically begin running as scon as it is
loaded into the computer. For example, the statement:

END START

will cause the program to begin running immediately upon loading
starting at address START. If an operand is not specified in the
END directive, then vou must define the entry point with & DEF
directive and type in this entry point in response to the ‘FROGRAM
NAME ° prompt you receive atter loading the program using the
Editor/Assembler.

If you are using the Line-by-Line Assembler with the Mini
Memory Module to program in assembly language the END directive
will cause you to exit the assembler. See chapter 10 for more
detailed information.

5.9 DIRECTIVES THOT &AFFECT
AaESESEMEBELER COUTRFROUT

There are 3 different directives that you can use to affect
assembler output. You may on occasion want to alter the assembler
cutput in order to make the object and/or sowce code more readily
readable.

Table 5.4 outlines the five directives that affect the output
of the assembler:

TABLE 5.4 ASSEMBLER OUTPUT DIRECTIVES

Mnemonic Directive Format
LINL. DoNgt List Source

LIST List Source

FAGE FAGe Eject

TITL page TITLe ‘stiring’
DT program IDenTitier ‘etring’

L. XIST D LT ET SO0RCE
LG § N | S Dvi3JOT L XY ESET SO0 e

These directives have no effect on the assembler unless you have
specified a listing to an output device with the L option of the
Editor /Assembler. I+ you have specified a list file option then
the UNL. directive will halt the output to the +ile device such as
list file or printer. The UNL directive in not primnted out and
any souwce statements following it are not printed.

ASSEMBLER DIRECTIVES 75

The LIST directive may be used after a UNL directive to resume
printing to an output device such as a list file or printer. The
list statement is not printed, but the location counter is
incremented and the listing begins with the rext source statement.

To summarize the UNL and LIST directives are used to stop and
start output by the assembler to a list file device such as a disk
drive or printer.

(FaGE » FasbE EJECT

This directive causes the assembler to start printing the source
listing {(provided the L option has been selected) on & new page.
If a label is specified it is assigned the current value of the

location counter.

CTITL > FeaGE T X TLE

The TITL directive will print a heading (provided the L option has
been selected) on each subsequent page of the szouwce listing. For
example, the statement:

TITL ‘FROGRAM FOR FPRINTING AMORTIZATION SCHEDULE '

prints the heading: "FROGRAM FOR FRINTIMG AMORTIZATION SCHEDULEY
on the top of each page of the program listing. The title may be
up to 30 characters on length after which the message "OUT OF
RANGE" is primted and the title is truncated to the first 50
characters.

C TN ol R R] S TDERRTIFTEFR

The IDT directive assigns & name to the program. It is printed in
the souwrce listing but serves no other purpose during the assembly
process. The name is limited to 8 characters in length after
which a "TRUNCATION" error is displaved. If & label in specified
it is assigned the value of the current location counter.

76

t3

ASSEMBLER DIRECTIVES

CHAFPTER S STUDY EXERCISES

If R1 contains *123A and R2 contains »456C, list the contents
of Rl after each of the following statements is executed:

(a) AND R2,R1
(b) OR R3,R1
(c) XOR R2,R1
(d) MOVE R2,R1
(e) SLA R1,2

What does this sequence do?

START MOV 40,R3

INC Ré6
DEC R3
JERQ 0UT

Write some statements (two lines should suffice) that will
store the contents of R3 into & word location called SAVE.

What does this instruction do?

MPY :23FF

UTILITY
PROGRAMS

In your computer there exists two distinct areas of random access
memory (RAM). The first is termed CPU RAM (Central Proceasing Unit
RAM) and is readily manipulated by you. The second is VDP RAM
(Video Display Processor RAM) and is more difficult to manipulate
because it is memory mapped. When you are putting something on
the screen, describing sprites, or writing to the sound table you
are actually writing to the VDP RAM.

Normally it would be difficult to read and write to the VDP RAM
areas because in order to read data you would first have to write
a value to a specific address, wait while the data is obtained and
then read the data from another address. 7o write data to VDP RAM
the opposite process occurs, namely you place the data in a
apecific address, write a value to another address to signify that
the date is to be written, and then wait while the data is
written. This requires an in-depth knowledge of the addresses to
use, as well as how to use them.

Fortunately, you have ready access to certain utility programs
that allow you to write and read easily to and from the VDF RAM.
The following ie a listing of utility programs available to you.
All utility programs needed by your program must be referenced
in a REF statement at the beginning of the source code unless you
are using the Mini Memory Module with the line-by-line assembler
in which case you should refer to chapter 10.

-] 7=

78 UTILITY PROGRAMS

Table 6.0 outlines the utility programs that are available to you
along with a description as to what they do:

TABLLE 6.1 UTILITY PROGRAMS

am anee ooins et e peeg Seaas Seose s Pesas ot g e OSSO S e Senas Sat Seeae SaPeS e &SP T SemE St et Al oot At U e e CLAme o Akt e Al Smare e A S S AR SSVAS S At SO S S T Gatie HB. S0 FHEPD SRS Toren St Vet St St Voot S Sames Yo

Symbol Name Description
VSBW . VDP Single Byte Write Copies a single byte from
CPU RAM into VDP RAM.
VMBW VDP Multiple Byte Write Copies Multiple bytes from
CPU RAM into VDF RAM.
VSBR VDP Single Byte Read Copies a single byte from
VDP RAM into CPU RAM.
VMBR VDP Multiple Byte Read Copies multiple bytes from
VDP RAM into CPU RAM.
VWTR Write to VDP Register Copies a single byte from
CPU RAM into a VDP register.
KSCAN keyboard SCAN Scans the keyboard and joystick
for input and returns it.
GPLLINK Graphics Frogramming Links your program to Graphic
Language Link. subroutines that you can use.
DSRLNK Device Service Routine Links your program to
Link peripheral devices.

XMLLNK Extended Memory Language Links your assembly program
Link to ROM and RAM routines.

S e ot GRS Souas Gt et S i GO Wkt et Vot L Suarn e Seren TS S Seent S St Yo St TOren et S4 Vorie SN S $9005 $antn $4s (ALet e St Srite Vorie s VoS ShAb N Yovin ey Seren Sosen RS Samce semee B -ive o Towen e S Vo S8 SRS QRSSO o SRS G408 St Semnt seare

(VERW?> VDF SINGLE EYTE WRITE

This utility allows you to place a single byte in VDF RAM. You
place the VDP RAM address you want to write to in RO. VYou place a
copy of the byte you want to write in the most significant byte of
R1. VYou then call the utility. For example, to place »>0% at VDF
RAM address >0040, you would use the following source code:

REF VvSBW

LI RO, >0400
LI R1, >0500.,
BLWP @VSBW

UTILITY PROGRAMS 79
CVMEW)D VDF MULTIFLE BYTE WRITE

This utility program allows you to copy any number of bytes from
an area of CPU RAM into an area of VDP RAM. The Block Starting
with Symbol (BSS) instruction is usually used to reserve the CFU
RAM to hold bytes prior to transfer. To use the VMBW utility,
place the VDP RAM address you wish to start writing to in RO.
Flace the starting address of the information in CPU RAM that you
wish to copy in R1. R2 is then loaded with the number of bytes to
copy. The utility program is then called. For example, the
following source code:

REF VMBW

BUFFER BSS 32

LI RO, >0300
LI R1,BUFFER
LI R2,32
BLWP @VMBW

copies the 32 bytes located in BUFFER into VDF RAM starting at VDP
address >0300,

C(VSEBERDY VDF SINGLE EYTE REaGD

This utility allows you to copy a single byte from an address in
VDF RAM into CFU RAM. You do this by placing the VDF address you
want a copy of in RO. Then when the utility is called, the value
at that address is placed in the most significant byte of R1. For
example, if VDF address »0300 contains the value :*FF, then the
following statements:

REF VSBR
LI RO, »0300
BLWP @VSBR

places a value of »*FF in the most-significant byte of Rl.
CWFMTEBER D VDF MFMULTIFLE EBYTE READ

This utility allows you to copy any number of successive bytes
from VDF RAM into CPU RAM. Load RO with the starting address in
VDF RAM that you want to start copying from. Load R1 with the CFU
address that you want to copy into. You load R2 with the number of
bytes to be copied. You then call the VMBR utility.

80 UTILITY PROGRAMS

For example, if you want to copy 40 bytes from VDP RAM beginning
at address >0780 into CPU RAM beginning at address BUFFER, you
would use the following source code:

REF VMBW

BUFFER BSS >28

LI RO, >0780
LI R1,®@BUFFER
LI R2,>28
BLWP @VMBW

(NVRWT R WRITE 7TO VDF REGISTER

This utility allows you to change the contents of the VDP
Workspace Registers. You place the value you want the VDP
register to be in the least-significant byte of RO. The most
significant byte of RO is loaded with the VDF register you want to
change. For example, the code:

REF VWTR

LI RO, >02CE
BLWP @VWTR

places a value of *CE in VDF register 2.

NOTE: When changing VDF register 1, place a copy of what you
are changing it to at CPU RAM address *83D4. You have to
do this because the value at this address is loaded into
VDFP register Rl when a key is pressed after the screen
has "blacked—-out" which it does if no key is pressed for
a long period of time.

(HE.SCAaR? HKEYBOARD SCaAanN

This utility allows you to check the keyboard and joysticks for
input. It also returns the ASCII value of the key that was
pressed or the position of a specified joystick. On the next page
is Table 6.2 which presents the CPU RAM addresses used by the
KSCAN routine.

UTILITY PROGRAMS 81

TABLE 6.2 ADDRESSES USED BY KSCAN UTILITY

e Semes S0 Towen Towen e e W emee e S40e8 SRant Veree e Seren Voo Veren Sa0er e Sabad U bl S4840 et Glmte Sdeen Sinee Voren Seste S Bemms b St St St S St Sares S0 $2eTY e Sov bemne Seme% Seast Wovte Yoot fmams Seste vem Seme bemet eote SaM SLA feimt SMnsh b Sea Saees S M e S oo

>8374 Flacing a value here selects the keyboard device to be
checked. The following values are allowed:

»00 -— Causes entire keyboard to be checked.

>01 —— Causes the left side of the keyboard and input
from joystick #1 to be checked.

>02 —— Causes the right side of the keyboard and input
from joystick #2 to be checked.

>8375 This byte holds the ASCII value of the last key pressed.
If no key was pressed, then this address contains a value
of *FF.

>8376 Holde (Y) position of joystick input.

8377 Holds (X) position of joystick input.

>837C Status byte. If a key is pressed then bit 2 is set.

maon e somee e et (vt oy st Saace cen baren S e Seemn pomsy et Sremn Sevas PR SRS4 et $0evY S Bemat S9e0 Heass Siuen e Sists SR oot Sales 1888 $bes S148% Lovet Semtn beosd $1d S4aMS et seemt Soses bemme s £o8 bamme 1abes e Homse e St Ve b Serms Seaes e eete e o e bemve v

If your program contains a keyboard scanning loop and your program
needs to enable interrupts (to move sprites, create sound, ect.)
the key scanning loop is an excellent place to do so. The
following is an example of how to structure the key scanning loop
so that interrupts may be enabled:

REF * Reference needed utility program.
LOOP LIMI 2 * Enable interrupts
LIMI 1§ # Disable interrupts
BLWP @KSCAN * Call utility program to scan keyboard.

A keyboard status byte is located at CPU address *837C. It
gives certain status information beased on keyboard input. It can
be used in combination with a compare ones corresponding (COC)
instruction to determine if a key has been pressed. Bit 2 of the
status byte is set if a pressed key is detected during execution
of the KSCAN utility. The following source listing on the next
page can be used to detect a pressed key.

82 UTILITY PROGRAMS

REF KSCAN * Reference needed utility.

SET DATA >2000

* Binary 0010 0000 0000 0000.
EQU >»837C *
. *
GETKEY BLWP @KSCAN # Call up utility program.
MOV @STATUS,R3 +* Move status word into R3.
coc @SET,R3 * Check and see if bit 2 is set.
JNE GETKEY * If no key pressed loop again.

An alternative method of checking to see if a key has been
pressed is to check address »B375 to see if it contains the value
*FF (no key pressed). The following source code performs this
check:

REF KSCAN

KEY EQU »>8375
HEXFF BYTE O>FF

BETKEY BLWP @KSCAN
CB @HEXFF,@KEY # See if a key was pressed.
JEQ GETKEY * If no key pressed, check again.

CGRFLLLNEDD GRAFHICS FPROGRAMMING
LANGUAGE L IRNK

The following GPL routines can be used by your program to perform
some useful tasks such as loading character sets, producing tones,
allocating string space ect. All the GPL routines are accessed
through GFLLNK. The GPL routines covered in the following sections
return to your program after they have finished executing.

In grder for you to use the GPLLNK utility you must include the
statement REF GPLLNEK in your program source code. You must also
set the status byte located at address *837C egual to >00 before
branching to GFLLNK. The address of the desired GFL routine is put
in a DATA statement immediately following the BLWP @GPLLNEK
instruction. The source code on the following page illustrates
these points.

UTILITY PROGRAMS 83

REF GPLLNK #* Reference BPLLNK routine.
CLR R1 * Ri=0

MOVB R1,@>837C * Set Status Register byte=0
BLWP @GPLLNK # Call utility.

DATA >XXXX * Designate routine desired.

Table 6.3 lists all the subroutines available with the GPLLNEK
utility.

TABLE 6.3 GPLLNK UTILITY ROUTINES

e S e Sooes o Smar e Sen $3008 L3 St Sin S St e SROAS S e T e SSe%e Seee e et Sesee 400 SepS e Towwn Soai Fabnk S Sai b SPSSS SaR Veree fRAek SOAMS Soa Sarin SR 4obe S $S99F b Akl S48 U Shrim Yooin 40 SANMD Saant Shrie $0edd SAM0 Serme mamme Mo e Semes e Shant Smoes Babee

Data Description

>0016 Loads the standard character set into VDF RAM.
>0018 Loads small capitals character set into VDF RAM.
>0020 Executes the "power up" routine.

>0034 Generates the "accept tone".

»0036 Generates the 'bad response tone".

>0038 Executes the "get string space” routine.

>003B Bit reversal routine.

>003D Cassette device service routine.

~004A Loads lower case character set into VDF RAM.

The following are complete descriptions of each GFLLME routine
that is available.

DATA »001&6 LOAD STANDARD CHARACTER SET

This BPL utility loads the standard set into a designated area
of VDP RAM. Before calling this routine, put in CFU RAM address
*034A the beginning address in VDF RAM where characters are to be
loaded. The following is an example of how to load the standard
character set into VDF RAM starting at VDF address >0400:

REF GPLLNK

Reference needed utility.

LI R1, >0400
MOV R1,@>834A

Beginning address to load characters.
Flace beginning address at »B34A.

CLR R1

MOVB R1,@:8376
BLWP @GPLLNK
DATA »0016

R1=0

Move O into »837C.

Call up utility.

Designate subroutine desired.

* %k %k %k %k %k %k k %k %k %

84 UTILITY PROGRAMS

DATA >0018 LOAD SMALL CAPITALS CHARACTER SET

This GPL routine loads the small capitals character set into a
designed area of VDP RAM. Before calling this routine, place the
VDF address you want the characters to start loading at CPU RAM
address >834A. Use the same source listing as in the previous
example except the DATA directive to read DATA >0018.

DATA >0020 EXECUTE POWER-UP ROUTINE

This BPL routine initializes the system. It returns you to the
master title screen, clears the VDP circuits and places the
default values in the VDP registers, character set, status block,
and Color Table. Available VDF RAM size is stored at »8370.

DATA >0034 GENERATE ACCEPT TONE

This routine causes a tone to be generated. It is the same tone
that is generated in BASIC in association with a correct input.

DATA >0036 GENERATE BAD RESPONSE TONE

This routine causes a tone to be generated. It is the same tone
that is generated in BASIC in response to an incorrect input
(error message).

DATA >0038 GET STRING SPACE ROUTINE

This routine sets aside memory space in VDP RAM. CPU address
*83Z0C and »830D are loaded with the number of bytes to be
reserved. After calling this routine, CFU address »831C points to
the beginning of the allocated string space and address >*BI31A
points to the first free address in VDF RAM (byte following
string). This routine destroys bytes at addresses »B356 through
+*8359. Addresses starting at 834A onward may also be destroyed in
SOMEe CASES.

DATA >003B BIT REVERSAL ROUTINE

This routine provides a mirror image of a byte. It is most
commonly used to from a mirror image of a character or sprite
during execution of game programs. Prior to calling this routine,
CPL} RAM address >*834A is loaded with the address of the data in
VDP RAM that you want to reverse. Address *B34C contains the
number of bytes to be reserved.

During execution of this routine, in each byte, bits O and 7 are
exchanged, bits 1 and 6 are exchanged, bits 2 and 5 are exchanged,
and bits 3 and 4 are exchanged. CFU RAM addresses >0830 through
#0840 are destroyed.

UTILITY PROGRAMS 85

DATA >003D CASSETTE DSR ROUTINE

This routine allows you to access a cassette recorder. In order
for this routine to work a number of condition must be met:

1. The Feripheral Access Block (FAB) and data buffer must be
set up in VDF RAM prior to calling the routine.

2. The screen start address must be *00 for prompts issued
by the cassette DSR (Device Service Routine).

3. Address »B34A is the beginning of the device name
(ie. "CS1").

4. Address »B3I536 points to the first character following
the name in FAEB.

9. Address 8354 and 8355 are the length of the device
name (ie. »0003Z for "CS1").

&. The word at address »83ZD0 should be set to 0000,

7. Address »B36D must be set to *08 to indicate a
DSR call.

8. The status byte at CFPU address *837C must be set to 00,
DATA >004A LOAD LLOWER CASE CHARACTER SET

This routine is only available on the TI-99/4A. This routine
allows you to load the lower—case character set into a designated
area of VDP RAM. Before calling this routine, load CPU RAM
address »>B834A with the starting address in VDF RAM that you want
to begin loading the characters.

(DSRLMNE? DEVICE SERVICE ROUTINE LOIRMNME

This utility allows you to link your assembly language programs
with peripheral devices such as printers, disk drives, cassette
recorders, ect. It also allows you to link to a subprogram in
ROM. Before calling this utility a number of conditions must be
set up:

1. A Peripheral Access Rlock (FAB) must be set up in
VDP RAM to describe the characteristics of the device
and file to be accessed.

3

The word at CPU RAM address 8336 must be loaded with the
value that represents the device or subprogram name
length.

86 UTILITY PROGRAMS

3. A DATA directive after the BLWF @DSRLNEK is »8 for
linkage to a Device Service Routine and >10 for
linkage to a ROM routine.

If after the DSRLNK utility is called and no error has
occurred, bit (ER) of the Status Register is reset. If however,
and Input/Output error has occurred, the equal bit is set and the
error code is stored in the most-significant bit of RO of the
calling programs workspace. Appendix F outlines the Input/Output
error codes.

NOTE: VYou can not use this routine to access a cassette
because the cassette Device Service Routine
is located in GPL GROM and not normal DSR ROM. In
order to access a cassette you must use the statement:

BLWP @GPPLNK
DATA >003D

“ e 1 CFAED FERIFHERAAL ACCESS
ElL_ OCHKE STRUCTURE

PARs are used by Device Service Routines to access peripheral
devices. The structure and format of a PAR is the same for every
peripheral. You must place the necessary information describing
the peripheral device into the FAB before attempting to open the
file.

The FAB is made up of 10 more bytes which provide information
to the DSR Utilities regarding the characteristics of the
peripheral device and file attributes that you want to access.

Table 6.4 describes the bytes that make up the PAR as well as a
description of the information each contains:

TABLE 6.4 PAB STRUCTURE

Byte## Bits Contains Description

4] All 1/0 code I1/0 code describing current file
condition. See following sections for
complete description of all allowable
1/0 codes.

1 ~8tatus Byte- This byte contains all the information
the computer needs to describe the
file. It includes information regarding
file type, data type, and operation mode.
The contents of each bit is outlined
below:

Byte# Bits

Contains

UTILITY PROGRAMS

Description

0-2
3
4
S5-6
7
2-3 All
4 All
5 All
6-7 ALL

Error Code

Record
Style

Data
Format

Operation

Mode

File Style

Data Buffer
Address

Record
Length

Character
Count

RECORD #

L e s020s e oo S000t 40 Semtn S Seren Seren Seatn Soove Secee S S SO Son D SabS Som FReve Soene Temst e Seere Sbeme M0

When an error is detected during an

operation the error code is returned
here. ‘00’ indicates that no error

has been detected. The error codes

are further outlined in Table 6.6

Flace a value of "0’ for "Fixed length
records" and a value of ‘I’ for
"Variable length records".

Place a value of ‘0O’ for "DISPLAY" and
‘1’ for "INTERNAL".

"UFDATE"="00", "OUTPUT"='01"
"INPUT"='1C,', "APPEND"""Iil

Load ‘0’ for "Sequential Files" and
‘1’ for "Relative Files".

This is the address in VDF RAM that
vou want to put data read from a
record or where you place data that
you want to write to a record.

The length of each record for "fixed
length records” or the value of the
maximum length of a "variable length
record".

This byte contains the number of
characters that you want to WRITE
onto a record or it contains the
number of characters that is to be
READ from & record.

This byte is only used with "relative
files". It gives the current record
number that the next I/0 operation is

87

88 UTILITY PROGRAMS

TABLE 6.4 PAB STRUCTURE (continued)

Byte# Bits Contains Description
to be performed. But O is discarded so
that this number can range from a value
of O through 3I2767.

8 All Screen This byte contains the offset of the
Of fset screen characters with respect to their
normal ASCII values. This is only used
with a cassette interface, which requires
prompts to be placed on the screen.

9 All Name This byte contains the length of the File
Length Descriptor begins at byte 10,
10 All Device/File Contains the device name and if necessary,

Descriptor the file name. The length of this des-—
cription is given in byte 9.

-t Yoo b 0 0 T00R0 Gt St (i G 459 Soeen e 0008 Vst et Goers Shere S St W Whene PSSP S S Vom0 SHOTP $9008 L4140 st $0009 $4080 s VoSS $500 Srmmt SHmR rheke ceans Semen Horin Yeoms S S e Toven Pt Sova Vo SRS PPV PHP S88ED FHRCS et Sk Wi Sa00e S 20000 i S

FPFAaE INFUT Z70UTFUT CODES

The following are complete descriptions of each Input/OCutput
code that can be used in Byte O of the FAR:

OFEMN O

Before you can do anything with a file or device you must open it.
The only exceptions to this are the SAVE and LOAD operations. You
cannot alter byte 1 (STATUS BYTE) when an OPEN operation has been
performed, the file remains open until a CLOSE operation takes
place.

If byte 4 of PAE is set to »0000 (Record Length), the record
length that is specified by the attached peripheral is returned in
byte 4. 1If the value for the record length is given by you is
greater than 0O, then it is used only after being checked against
the peripheral in question.

CL.LOSE »>O1
This operation will close a previously opened file. If the file
was originally opened in APFEND or OUTPUT mode, an END OF FILE

(EOF) record is written to the device or file before closing
DCccurs.

After a file is closed you can alter byte 2 (STATUS BYTE) to

UTILITY PROGRAMS a9

change to a new mode of operation before going through the next
OPEN operation.

READ =02

This operation will READ a selected record from a designated
peripheral device. The obtained information is stored in VDP RAM
beginning at the address specified in bytes 2 & 3 (Data Buffer
Address) of the PABR. The size of the buffer is number of bytes
stored is given in byte % (Character Count) of PAB.

When a READ operation takes place, if the length of the
inputted record exceeds the buffer size, the remaining bytes are
discarded.

WRITE >OX

This operation will write to a record from the buffer specified in
PAB bytes 2 & 3. The number of bytes that will be written is
given in byte 5 of the PAB.

RESTORE A"REWIND ol o P

This operation will reposition the file pointer to the beginning
of the file for sequential files. If the file is a relative file,
the pointer is set to the record specified in bytes 6 & 7 of PAE.

The RESTORE/REWIND operation can only be carried out if the
file was opened in UPDATE or INPUT mode. You can simulate a
RESTORE operation when you are using relative files by entering
the record at which the file is to be positioned in bytes 6 & 7
(Record #) of the PAB. This will then be the next record accessed
in the next operation.

LOAD =S

This operation code will allow you to load the memory image of a
file from a peripheral into an area of VDF RAM. You are allowed
to use LOAD without a previous OPEN operation.

The following information must be placed in the PAR before
instituting a LOAD operation:

1. FPlace »05 in byte 0 of PAB.

2. Place the starting address in VDF RAM that you want the
file to be copied into in bytes 2 & 3 (Data Buffer
Address) of the PAB.

3. Place the maximum number of bytes to be loaded in bytes
6 % 7 (Record #) of the PARE.

4. Place the name length in byte 9 of the FAR.

5. Place the file descriptor information in bytes 10 on.

90 UTILITY PROGRAMS

Keep in mind that the LOAD operation will require as much memory
space in VDP RAM as the file occupied on a diskette or other
medium.

SAvE g oY

This operation code will allow you to write a copy of a file in
VDP RAM to a peripheral. You are allowed to use SAVE without a
previous OPEN operation.

The following information must be placed in the PABR before
instituting a SAVE operation.

1. Place >06 in byte O of PAB.

2. Place the starting address in VDP RAM from which the file
is to be copied in bytes 2 & 3 (Data Buffer Address) of
the PAB.

3. Place the number of bytes to be saved in bytes 6 & 7
(Record #) of the PAB.

4, Place the name length in byte 9 of the PAB.

3. Place the file descriptor information starting in byte 10
of PAB.

DELETE FILE =07

This operation code will delete the file specified from the
peripheral. A CLOSE operation will then be performed.

DELETE RECORD =0

This operation code will remove a specified record from a relative
record file. The number of records that you want to delete is
placed in bytes 6 & 7 (Record #) of the FPAR. If this operation
code is specified with files opened as sequential, an error
oCccurs.

STaTus o o Lo

When the operation code is specified certain status information is
returned regarding the peripheral device and file. The status
information returned is placed in byte 8 (Screen Offset) of the
PAB. BRits O through 5 have meaning whether the file is opened or
closed, bits 6 & 7 only have meaning when the file is open;
otherwise they are reset.

UTILITY FROGRAMS 71

Table 6.5 outlines bits of byte 8 (Screen Offset) and the in-
formation regarding status that each returns:

TAELE 6.5 PERIFHERAL STATUS RITS

Bit Status Information

Q If this bit is set (=1), the file does not exist. If this
bit is reset (=0), the file does exist. With devices such as
printers this bit would never be set because any file can
conceivably exist,

1 The file is write-protected if this bit is set. I+ resel,
this file is not protected and can be written to.

2 Reserved, Always reset.

A I this bit is set it indicates that the Data Format is
INTERNAL. If this bit is reset it indicates that the Data
Format is DISPLAY or that the file is & program file.

4 If this bit is set it indicates that the file is a program
file. If this bit is reset it indicates that the file is a
data file.

b I+ this bit is set it indicates that the record length is
VARIARLE. If this bit is reset it indicates that the record
length is FIXED.

b It this bit is set, the file is at the actual physical end
of the peripheral and no more data can be written.

7 If this bit is set, the file is at the end of its previously
entered data. You can wite more data to the file but i+ you
attempt to read past this point an error will be generated.

Mow that we have discussed the basic structure of the FAER 1t iw
time we go through an example of creating one for your own program
sooyvouw can better understand how it is accomplished.

Suppose we wanted to OFEN a FIXED 80 file "DSBE, FILEL",
2IERLAY, TRPUT, SEQUENTIAL. To start, byte O of the FPAE would
specify an OFEN operation like so:

Q000 QOO0 (OFEN operation code)

Byte 1 would indicate FIXED, DISFLAY, INFUT & SEGUENTIAL 1ike

B0.

000 0100

92 UTILITY PROGRAMS

Bytes 2 & 2 would indicate the address in VDF RAM where we will
place the data that we will later input to the file. In this case
we will put it starting at address *1000 like so:

0001 Q0000 0000 0000

Byte 4 would indicate our fecmrd length, which is 80 or >50:
0101 0000

Byte 9 is ouwr character count which will be:

QOO0 0QO0

Bytes & & 7 are only used with relative files so we will
reset them both to O like so:

QOO0 Q0O 0000 0000

Byte 8 is our screen offset for a cassette inteface which we
are not using, so we reset it to o like so:@

Q000 QOO0

The remaining bytes, 10 and on, contain the Device and File
Description. Since these are given as ASCII values we will use a
TEXT directive to enter it:

TEXT ‘DSK1.FILEL”

Thus, our FABR would look something like thie:

FAE EQU >0004, 31000, *5000, 20000, *000A
TEXT ‘DSK1.FILE!"

When accessing files some errors are bound to ococur. Errors are
returned in bits 0 through 2 of the first byte of the FABR. Table
b.b6 on the next page indicates all the possible error codes and
their respective meanings.

UTILITY PROGRAMS 93

TABLE 6.6 FILE ACCESS ERROR CODES

0 000 Bad device name.

1 001 Device is write protected.

2 010 Incorrect file type, incorrect record length,
incorrect I/0 mode, no records in a relative
file.

3 011 Illegal operation: a operation that is not

supported on the peripheral or a conflict with
the OFEN attribute.

4 100 Out of Buffer space on the device.

5 101 You have attempted to read past the end of the
file. The file is closed when this error
OCCcurs.

& 110 Device error, bad medium and other hardware
problems.

7 111 File error such as data/program file mismatch,

non-existent file opened in INFUT mode ect.

NOTE: An error code of © indicates that no error has occurred.
unless bit 2 of the status byte at address *BZ7C is set.
If bit two is set in the Status Register it indicates
a bad device name.

Your program should check bits O through 1 of byte 1 of the FAE
after every I/0 operation to see if an error has occurred. You
should also clear these bits before every 1/0 operation.

There are some default values that the DSR will use if no
values are specified. The following chart outlines these defaults.

DEFAUL.T CONDITIONS
1. SEQUENTIAL
2. UPRPDATE
3. DISPLAY
4. FIXED if relative records, VARIAEBLE if seqguential
5. Record length depends on the peripheral

You also need to construct a PAR in order to comunicate with
RBLIE interfaces. The following source code illustrates how vou
may output information to a printer or other peripheral attached
via a RE2IZ interface:

000 DEF START
001 REF VSBW, VMEW, KSCAN, DSRLNE
Q02 *

002 MYREG RSS 20
004 =

74 UTILITY PROGRAMS

005 PAR EQU >F80
006 STATUS EQU >BF7C
007 PNTR EQU »B356

008 FPDATA BYTE 0O * OP-CODE

009 BYTE >10 * Flag status

010 DATA »0002 * VDP buffer

o111 BYTE 80 * Record length

012 BYTE 34 * # of characters to write
013 DATA © *

014 BYTE © *

015 BYTE 12 * Name length

016 TEXT 'RS232.BA=300" % Device name

017 %

018 ERMSEG TEXT ‘ERROR DETECTED=
019 ERROR# TEXT ‘0123456789ABCDEF

020 *

021 START LWPI MYREG

022 MOV R11,R10 * Save return address.
023 *

024 Loor BLWP @kKSCAN *

025 MOVE @STATUS,RO * key scanning loop
026 JE& LOOF *

Q27 *

028 STEP1 LI RO, 0002 *

029 LI R1,MESS * Put message on screen
030 LI R2,34 *

031 BLWF @VMEW *

032 *

0Z3 STEPZ2 LI RO,PAR *

034 LI R1, 0300 * Write PAB data to
035 LI R2, »29 * VDF RAM

036 BLWP @VMEW *

037 *

038 STEP3 EBL @STEF4 * Open file

032 LI R1, #0300 *

040 BLWFP GVSEW *

041 EL @STEF4 * Write to file

042 LI R1,>0100 *

047Z BLWFP @VSEW *

044 BL @STEF4 * Cloge file

045 JMP LOOP *

046 =

047 STEP4 LI Z,PAR+9 * Set

048 MOV R3,@PNTR * PAE ponter

049 BLWP @DSRLNK *

0SS0 DATA 8 *

051 JE@ ERROR *

052 RT *

053 *

054 ERROR

055
056
057
058
059
060
061
062
063
064
065
066
067
068

*

MESS
*

CLR
MOVE
SWPR
MOVE
L.I
BLWF
LI
LI
LI
BLUWP

TEXT

END

R4
RO,R4

R4
@ERROR# (R4) ,R1
RO, 79
@VSEW

RO, 62
R1,ERMSG
R2,16
@VMBW
*R10

UTILITY PROGRAMS 95

Error handling routine

Get error number

error
number
and
message

*
*
*
*
*
* Print
*
*
*
*
* on screen

‘THIS SENTENCE WILL BE PRINTED OUT!

START

96

UTILITY PROGRAMS

CHAPTER 6 STUDY EXERCISES

Write a short program that will place the value 34 at VDF
RAM address »1000.

If CFU RAM address *BI73 contains *FF after calling the ESCAN
utility, what does that indicate?

Write a short program that will select the keyboard device
that checks input from the left side of the keyboard and
Joystick #1.

I~

GRAPHICS

Your TI home computer is a versatile machine in that it can
construct colorful graphics in a virtual infinite number of
different shapes. There are fouwr basic screen modes you can use
to aid you in constructing graphics, they are as follows:

1. GRAPHICS MODE
2. MULTICOLOR MODE
3. BIT-MAP MODE

4. TEXT MODE

Before we discuss each individual screen mode and how each can

be used, we must first discuss the VDP (Video Display Processor)
registers and how they affect what appears on the screen.

-7

98 GRAFPHICS MADE EASY

T .0 VDF REGISTERS

There are a total of 8 VDF registers labeled O through 7. Each
register contains a single byte. You can change the contents of a
VDF register by using the VWTR utility. The VDP registers contain
information that determines how the computer displays graphics on
the screen. The following is an example of using the VWTR utility
to put a value of >01 in VDF register 73

REF VWTR * Reference needed utility program.
LI RO, >0701 * VDP R7/value to load=:>01
BLWP GVWTR # Call utility program

The following is a brief description of each VDP register. The
default values (values loaded in when the computer is turned on)
are also listed:

VDF REGISTER O

The default for VDP Register O is >00 for BASIC, xBASIC, and
Editor Assembler.

The following table outlines what each of the bits in VDF
Register O controls.

TABLE 7.0 VDP REGISTER O BITS

cotn ot saeme gmome S0seq e s Smeen Smane, S Saetn M S PR SV GYIOY e s Mo GPAS oS GHese e S G4t Saead SSeme e $m0es Shess VIR oot Mt Sbere Hoese V40eY Soems Soped Pmies Liere Seave Seem Freme Seeey St Sraap Poase SERSS Soeee e Veped St 90000 e Soged Livre SVHS St smmns oot VRS Srirt Sereh b

O -5 These bits are reserved. All these bits must be reset
(=000000) .

6 If this bit is set, the screen is put in BIT-MAP MODE.

7 External video enable/disable. Setting this bit enables
video input and resetting this bit disables video input.

The default configuration of this register is:
0000 Q000
VDF REGISTER 1

The default for VDP Register 1 is »E0Q for BASIC, »BASIC, and
Editor Assembler.

A copy of VDP Register 1 is located at CFPU RAM address »>83D4.
If no key has been pressed for a long time the computer
automatically "blanks" the screen. When subsequently a key is

GRAPHICS MADE EASY 99

pressed, the computer reloads VDF register 1 with a copy of what
is in address >83D4. Therefore if you want to change VDP register
1, make sure you put a copy of its new value at address »83DA4.
Table 7.1 outlines what the bits in VDP Register 1 controls.

TABLE 7.1 VDP REGISTER 1 BITS

s oaar i e OO SuB S8 Bk DA bt Sumtt R A B s B Soom et e SR seien saetn P ek S e 40 S Smnte S bt S Bt $50% Bt 45098 o Fodas e S SRS S S oo S SOV b St S 40t B St Semee Seeas G 000 Tt b Soess 10000 b W e St M

(8] Selects 4K or 16K RAM operation. A value of 0 selects 4K
RAM operation, and a value of 1 selects 16K RAM operation.

1 Blank enable/disable. Setting this bit (=1) causes the
screen to go blank. Resetting this bit (=0) causes the
screen to display normally. When the screen is blanked,
only the border color remains on it.

8]

Interrupt enable/disable. Setting this bit (=1) enables VDF
interrupt and a resetting this bit (=0) disables VDF
interrupts.

'

3 I this bit is set, the display is in TEXT MODE.
4 If this bit is set, the display is in MULTICOLOR MODE.

Reserved, must be 0.

wt

1) Sprite size selection. Resetting this bit (=0) selects for
standard sized sprites. 8Setting this bit (=1) selects
double-sized sprites.

7 Sprite magnification selection. Setting this bit (=1)
selects magnified sprites, and resetting this bit selects
unmagnified sprites.

The default configuration for this register is:
“1110 0000

VDF registers 2 through 6 define the beginnings of the Screen
Image Table, Color Table, Fattern Descriptor Table, Sprite
Attribute Table, and Sprite Descriptor Table. We will discuss
each of these tables in great depth in subsequent chapters. But
for now it is a good idea not to alter these registers from their
default values.

100 GRAPHICS MADE EASY

VDF REGISTER 2

The default for this register is >00 in BASIC, XBASIC and Editor
Assembler.

This register defines where the Screen Image Table begins The
beginning of the Screen Image Table is found by multiplying the
value in this register by >400.

vVDF REGISTER 3=

The default value for this register is >0E in Editor/Assembler,
>0C in BASIC and >20 in xBASIC.

This register defines the beginning of the Color Table. The
beginning address is found by multiplying the value in this
register by >40.

VDF REGISTER 49

The default value for this register is >01 in the Editor/Assembler
and >00 in BASIC and xBASIC.

This register defines the beginning of the FPattern Descriptor
Table. The beginning address is found by multiplying the contents
of this register times >800.

VDF REGISTER 5

The default value for this register is >06 in the
Editor/Assembler, BASIC and xBASIC.

This register defines the beginning of the Sprite Attribute
Table. The beginning address is found by multiplying the contents
of this register times >80.

VDF REGISTER &

The default value for this register is >00 in the Editor/Assembler
BASIC and xBASIC.

This register defines the beginning of the Sprite Description
Table. The beginning address is found by multiplying the contents
of this register times »800.

VDF REGISTEWR 7

The default value for this register is »F3 in the Editor/Assembler
and >17 in BASIC and ®BASIC.

GRAPHICS MADE EASY 101

Table 7.2 lists the bits in VDP Register 7 and what each
controls:

TABLE 7.2 VDP REGISTER 7 BITS

S (i 04004 49000 600m8 AR S Gaten e saetn S St Temee o Sem Seves e b S e SO e S0 S e 1 SO S44SS et St AR S G SO R S et B, et Soon® 5098 S SRR S Sea PR $080 een s S8 Setes e S904e MBS St SR S e S8 S R PSS i S04t o0

o i e caten o Lot S e S ST S4B G SSTVE T G S PSR B b SO S0P S0P B e PSR S90S S4atn e G5O $UOP et ek Seren HASR SA Saa B0 Soset Tt Sl s S So4mt 400 s bt sumre Semen Seetn S48 seien SuS PoORD e $e0e8 G aess et S4ARS S42E% soaen H4aP e Sosid

o -3 Holds the color code for the foreground color in TEXT
MODE.

4 - 7 Holds the code for the upper and lower screen border
ctolor in all modes.

SuUIMMARY

The following table summarizes the most important bits in the
various VDP registers. These are the bits that you should become
familiar with, as a working knowledge of them is necessary in
order to program properly.

TABLE 7.3 SUMMARY OF IMPORTANT VDP REGISTER BITS

vDP
Register Bit Controls
RO b* If set, display is in BIT-MAP MODE.
R1 3% If set, display is in TEXT MODE.
R1 4% If set, display is in MULTICOLOR MODE.
R1 6 If set, sprites are double-sized.
R1 7 If zet, sprites are magnified.

*Resetting these 3 bits puts the display in GRAPHICS MODE.
el GCRAFHICS MODE

GRAFHICS MODE is the mode you probably will be programming in most
of the time. It allows you to use the standard ASCII characters
and define patterns of your own to display on the screen. You can
also define the foreground and background colors for any
characters. The ASCII character patterns are available to you.
You can use sprites and set them in motion in graphics mode.

Graphics consist of characters. Each character is made up by a
8 % 8 dot pattern. The character is defined by turning some dots
"on" and leaving others "off" in the pattern.

In order to display a graphic pattern on the screen you have to
first describe the shape of the character, then you describe its
foreground and background colors, and finally vou describe where

102 GRAPHICS MADE EASY

on the screen you want the character to be displayed. There are
three separate tables that contain the information needed to
produce graphics on the screen. The three tables and the
information they contain are as follows:

1. PATTERN DESCRIPTOR TABLE
a) Holds character pattern identifier

2. COLOR TABLE
a) Holds color code for foreground and background
color of character

3. SCREEN IMAGE TABLE
a) Refers to the screen location of the pattern.

To sum up, graphics are created by setting up information
about their shape, color and screen location in the tables. It is
recommended that your three graphics tables start at the following
VDF RAM addresses (These are the VDFP Register default values):

TABLE 7.4 LOCATION OF GBGRAPHIC TABLES

e o L potus o casas S S boads i Soads $eone EVPES Sass et S99 racss FPES STOm AR Jhens Gl S STHSH VML Casae S S bAM e Feees Sase YOGS Shme e PSS e Seee Seit S FRAde Mbeh SH43 SO THOTS MBS AR e S Saats bR Peoee e s SESES S14s Srece Seeas it Poete FRens e Ao Soves

Table VDP RAM Table Location
PATTERN DESCRIPTOR TARLE >0800
COLOR TABLE >0380
SCREEN IMAGE TARLE >0000

e e e e oo et st BB BAAS Peass e Gt e R v M et Seien LS Peass e S e S4ewd S2e SSRGS S4s0n St 447 PeeSs brmse Geene S4e BB e Ferme a0 S Mk Seess Saete Soves AR smben S4Aen P emee b oo e So0ey emee $0004 SHSSS Thi ambes v St oot e Grees v s St e

FAaTTERN DESCRIFPTOR TAERLE

The Fattern Descriptor Table can hold wup to 256 different patterns
or characters. Each character is defined by a "pattern
identifier”" as outlined in your User’'s Reference Guide. Each
pattern takes up 8 bytes in the Pattern Descriptor Table. Thus
character 0 takes up addresses >0800 through »>0807, character 1
takes up addresses >0808 through >080F, and character 2856 occupies
addresses *0FF8 through >0FFF.

In GRAFPHICS MODE the standard ASCII character patterns are
avtomatically loaded into the Fattern Descriptor Table by the
system. So character 32 (space character) occupies bytes 0900
through >0%907, and ASCII character 33 (exclamation point) occupies
addresses »0908 through *090F and so on with the other ASCII
characters. To find the Table address for any character simply
multiply its character number times 8 and add it to >0800. For
example to find the table address that starts defining ASCII
character 65 (Capital letter 'A’):

L (65) # (B) 1 + 2048 = 2568 = >0A08

GRAPHICS MADE EASY 103

If you want to add additional character patterns of your own
but do not want to alter any of the ASCII character patterns
already present you can place your own character patterns
beginning with character number 128 and extending through 256. Of
course, you can alter any pattern in the Fattern Descriptor Table,
if you wish.

COLOR TaARLE

The Color Table codes for the foreground and background color of
each character. Each color code takes up one byte in the Color
Table. Each byte codes for the foreground and background color of
eight successive characters. The four most-significant bits code
for the foreground color and the four least significant bits code
for the background color.

The Color Table begins at VDFP RAM addresses »0380. The
following are the values for the 16 colors available on the TI
Home Computer. Note that the values are somewhat different in
assembly language then they are in BASIC:

TABLE 7.5 COLOR CODES

ores S s e e e b 4004 S MO S S0 Sraa S St e e Sea ot s Sads Vol st So0en e b o i oo Susts bt 44RO S, O 400 s e e LA S0 Seert S0 Ml Skt S e bt dmbe BuA S e $40n0 o St $009%

COLOR CODE BITS SET COLOR CODE BITS SET

Transparent =0 0000 Light yellow *8 1000
Black =1 0001 Light red 9 1001
Medium green 2 0010 Dark yellow A 1010
Light green *3 Q011 Light yellow P s 1011
Dark blue =4 Q160 Dark green =C 1100
Light blue =3 0101 Magneta *D 1101
Dark red b 0110 Gray +E 1110
Cyan =7 0111 White *F 1111

The byte at address *0380 specifies the colors for characters 0
through 7, the byte at address >0381 specifies the colors for
characters 8 through 135, and the byte at address »03X9F specifies
the color of characters 248 through 255.

For example, if we place a value of *F1 at VDF address 0384,

-

characters 22 through 39 are displayed as white on black.

SCREERNMN IMAGE TAEBELE

ey

In the BASIC language the screen is divided into 24 rows of 32
columns. A screen location is designated by a row and column
number. For example the statement:

CALL HCHAR(4,5,65,1)

will place the capital letter ‘A’ in the 4th column row 3.

104 GRAPHICS MADE EASY

The computer has no concept of a "screen"; it just views the
screen as a series of memory locations. There are no rows and no
columns, only 768 possible memory locations numbered 000 through
767. These memory locations begin at VDP address »>0000 and extend
through address »02FF. These addresses make up the Screen Image
Table. Figure 7.6 shows how the consecutive memory locations

designate the consecutive screen locations:

FIGURE 7.6 SCREEN IMAGE TABLE/SCREEN POSITION

Q00 Q01 Q02 Q03 004 029 030 031

032 033 034 0I5 . s e e e e s w . . 062 063
064 965 066 . . v s e e s e e a . . . 095
756 « x s e e e a . . . 767

. sname ate gians 20450 Saank SHOSS et 1OHHS N S BEVRY i FSea MRS it o MLSe Sinte Semis fuppe Seeve $o14s SHBF VSATS beve SPEYE THHTY Mme FHLSR A SMBtH SHF Seom SIAAD 04 Surtt SN MASS BRSNS 008 e PSS EHTA WY FRS o oW SIS et LSS saste S PR e $Seds $4reb b Sctre Soyed e oot boads bekdl Feant ease

If you place the ASCII value of a character in the Screen Image
Table, the character will appear in the designated place on the
screen. For example, if you place the value 65 in VDF RAM address
*23 then the character A’ will appear in screen position 033, To
convert a row and column location into a Screen Image Table
address simply use the following formula:

LC+ (R* 32) 1=F

where C is the column number, R is the row number, and P is the
resulting Screen Image Table address.

Now that we know how graphics are put together we can construct
a small assembly language program to illustrate how it all goes
together. Consider the BASIC program:

10 CALL COLOR(1,16,2)
20 CALL HCHAR(4,10,65,1)
30 GOTO 30

This short program prints character 63, which is the "A"
character, on the screen at row 4 column 10. The character is
printed white on a black background. To convert this to an
assembly language program we have to load the needed information
into the proper tables as demonstrated on the next page.

001 DEF START *
002 REF VSBW *
003 *

004 MYREG BSS >20 *
003 =

006 START LWPI MYREG *
007 *

008 LI RO, >0384 «*
009 LI R1,>1FO0 %
010 BLWFP @vsBwW *
011 =

012 LI RO,138 *
013 LI R1,>4100 =
014 BLWP @VSBW *
015 =

016 HERE JMP HERE *
017 END START *

Now suppose we want to define

we would add a CALL CHAR statement to ouwr previous program.

GRAPHICS MADE EASY 108
Define program entry point.
Reference needed utilities.

Reserve memory for my registers.

Pointer to beginning of my
workspace.

Color Table address.

Byte to write (white on black).

Screen Image Table address.

Load character ‘A’ ASCII 65.
Character is displayed in screen
position 138.

This holds display on screen.
Program runs when loaded.

In BASIC
We

a character of our own.

will now define a ball pattern as character 128 and color it red.
We will then display it on the screen:

10
20
30
40

CALL COLOR(13,9,1)
CALL HCHAR(4,10,128,1)
GOTO 40

CALL CHAR(128,"3C7EFFFFFFFF7E3C")

To translate we simply add some additional code to load the new

pattern into the Pattern Descriptor Table,

values in the Color Table:

001 DEF START
002 REF VSBW ,VMBW
003 *

004 MYREG BSS >20

003 BALL DATA

006 *

007 START LWPI MYREG
009 LI RO, >0390
010 i1 R1, »>8000
011 BLWP avVsSBuw
012 =

013 1.1 RO, >0C00
014) | R1,BALL
015 LI rR2,8

016 BLWP @vMBW
017 =

018 LI RO, 138
019 L1 R1, »>B0O0O
020 BLWP @vsSBuw
021 HERE JMP HERE

022 END START

>3C7E, >FFFF , >FFFF, >7E3C

and change the color

* Define program entry point.
* Reference needed utilities.

#* Pattern

Pointer to beginning.
* Load

* Color

* Table (red)

Load ball
pattern into
Pattern Descriptor Table

* %k k %

Screen position

Character (ball) to write.
Place ball on screen.

Hold it on screen.

Program runs when loaded

* % ¥ ¥ %

106 GRAFHICS MADE EASY

Vel MUWL_TICOLOR MODE

MULTICOLOR MODE divides the screen into a series of "boxes". Each
box is a 4 ¥ 4 pixels in size. You can define the color of each
individual box. There are 64 boxes in a row and there are a total
of 48 rows. You are not allowed to define characters or use ASCII
characters when in MULTICOLOR MODE. You are allowed to use sprites
in MULTICOLOR mode.

To place the screen in MULTICOLOR MODE you must set bit 4 in
VDF register 1.

You must place the following values in the Screen Image Table
when using MULTICOLOR MODE:

TABLE 7.7 VALUES TO LOAD IN SCREEN IMAGE TABLE

VDF VALUES VDFP VALUES
ADDRESSES TO LOAD ADDRESSES TO LOAD
Q000 TO »Q01F =00 TO =1F #0180 TO =Q19F =60 TO *7F
FOO20 TO »003F =00 TO »1F 0180 TO *Q1BF =60 TO FT7F
*Q040 TO »Q05F =00 TO =1F *O1CO TO =01DF 60 TQ =7F
Q060 TO =0O07F =00 TO »1F =O1EQ TQ =O1FF =60 TO »7F
0080 TO 009F P20 TO =2 FO200 TO 021F =BO TO »9F
FO0AD TO =O0BRF P20 TOQ =2F FORZ20 TO =027F *BO TO =9F
000 TO >00DF =20 TO =2F Q240 TO Q25F =8O TO =9F
*QOEQ TO =00FF *20 TQ »2F Q260 TO »0R2T7F *BO TO »9F
0100 TO »011F =40 T »3F FOR280 TO FOR9F A0 TO =BF
0120 TO »013F =40 T =3F FOZ2A0 TO >02BF A0 TO *BF
0140 TO =018F =40 T »EF 0200 TO FOZ2DF A0 TO *BF
20160 TO =017F =40 TO =3EF *O2EQ TO »0ZFF A0 TO =RF

Dnce youw have loaded the Screen Image Table with the above
values youw can start describing the colors of the boxes on the
screen. This is done by placing values in the Fattern Descriptor
Table. The FPattern Descriptor Table thus describes colors in
MULTICOLOR MODE instead of patterns as it did in GRAFHICS MODE.

The Fattern Descriptor Table should begin at address 0800 in
VIF RAM. The first byte in the Fattern Descriptor Table describes
the color of the first two adjacent boxes on the first row. The
color codes are given on page 103, The left fouwr bits of the byte
describe the color of the first box and the right four bits
describe the next box on the same row.

The next byte in the table defines the colors of the first two
boxes in the second row. The third byte describes the first two
boxes in the third row. This continuves until the first two boxes

GRAPHICS MADE EASY 107

in all 48 rows have been defined. Thus, the first eight bytes in
the Pattern Descriptor Table describe the color of the first two
columns of boxes. The second group of eight bytes in the table
define the colors of the third and fourth columns of boxes. This
continues until the last eight bytes in the Pattern Descriptor
Table are reached (>0DF8 to >0DFF) which in their turn define the
colors of the last two columns of boxes.

ZT-F TEXT MODE

In TEXT MODE the screen is 40 columns by 24 rows. You are not
allowed to use sprites. FEach character is 6 % 8 pixels in size.
There are 960 possible screen positions instead of 768. Thus the
Screen Image Table is longer. TEXT MODE is most often used in
word processing programs.

To place the screen in TEXT MODE you must set bit 3 in VDP
register 1. Two colors are available in TEXT MODE, the pixels
that are turned off are the color defined in bits 4 through 7 of
VDP register 7. The bits that are turned on are the color defined
in bits 0 through 3 of VDP register 7.

The tables used in TEXT MODE are set up the same way as the
Screen Image Table and Fattern Descriptor Tables are in GRAPHICS
MODE except that the Screen Image Table is longer, and in the
Fattern Descriptor Table the last two bits of each entry are
ignored because each character is only 6 % B pixels instead of
8 x B pixels as they are in GRAPHICS MODE.

a9 BIT MAF MODE

BIT-MAFP MODE is available only on the TI-99/4A Home computer due
to its use of an advanced microprocessor chip. BIT-MAP MODE
allows you to define independently each of the 768 screen
positions. You can also independently set the color of each pixel
in a character. You can use sprites in BIT-MAP MODE but you
cannot move them using automatic motion.

In BIT-MAF MODE the Fattern Identifier Codes are stored in the
Pattern Descriptor Table. The color codes that describe the
colors of these patterns are stored in the Color Table. The
Screen Image Table contains the number referencing a given pattern
from the Pattern Descriptor Table. The reference numbers range
from >00 to *FF each referencing a successive pattern in the
Pattern Descriptor Table.

In BIT-MAP MODE you should start the Screen Image Table at VDF
RAM address >1800. You do this by setting VDP Register 2 equal to
*0b. Add the following code to your program to accomplish this:

LI RO, >0206 * (SEE PAGE 80 FOR A REVIEW
BLWP @VWTR * OF THIS UTILITY)

108 BRAPHICS MADE EASY

The Pattern Descriptor Table begins at VDF RAM address :>0000
and is >1800 bytes long. In order to start the table at address
0000 you must load VDF Register 2 with >00 as in the last
example. Each pattern identifier code (pattern) takes up 8 bytes
in the Pattern Descriptor Table, thus there are 748 possible
patterns. See your User’'s Reference Guide, subprogram CHAR, for
further discussion of pattern identifier codes.

The Color Table should begin at VDP RAM address »2000., You can
do this by loading a value of »04 into VDF Register 3. The Color
Table is »1800 bytes long. Each color code is 8 bytes long. The
color codes are described on page 103. The first four bits of
each byte code for the color of the pixels that are ‘on‘ in one
row of 8 pixels, and the last four bits of each byte code for the
color of the pixels that are ‘off’ in the same row of 8 pixels.
For example, the pattern identifier for our ball,
"IC7EFFE7E7FF7E3C," which starts at address 0000 of the Fattern
Descriptor Table would have =00 as its reference code. You can
display the ball anywhere on the screen by entering its reference
code in the appropriate place of the Screen Image Table. Other
patterns in the table are referenced in the same way. For
example, the second group of B8 bytes in the Fattern Descriptor
Table (second pattern) are referred to in reference code *01 and
so on for all other patterns. The 8 bytes in the Color Table
beginning at address 2000 hold the color codes for the ball, the
next 8 bytes code for the colors of the next pattern and so on.

Now lets look at an example to illustrate these last points.
Say we want the ball to be red with a black background. We also
want the ball to have a white square in its center. Our ball
pattern would be constructed as follows:

__________________ HEX CODE
bod dwiwixdixt 44 >3C
d_dixixixinixixi | >7E
inixixixixinixint >FF
axixind 4 _dxixixl *E7
dwixind 3o ixlxixi >E7
dxixdxixinixixixt >FF
odrixixixixixdt 1 »7E
b dxixixdiwt 4o »3C

The following code would load this pattern into the Fattern
Descriptor Table beginning at VDF address >0000. Don‘t forget to
change the value of VDF Register 4 to 00 first.

PATTAR EQU >0000

PAT DATA >3C7E, >FFFF, >FFFF, >3C7E
LI RO,PATTAB
LI R1,PAT
LI R2,8

BLWP @vVMBW

GRAPHICS MADE EASY 109

Now that the pattern is loaded we need to define its colors.
First lets draw a map outlinning the colors we want. Black=B,
Red=R, and White=W:

COLOR CODE

iBiBIRIRIRIRIBIBI >81 *Each row of B pixels is coded for
{BIRIRIRIRIRIRIB!} >81 *with one byte. The first 4 bits
IRIRIRIRIRIRIRIR >81 #code for the pixels that are °‘ON’
IRIRIRIWIWIRIRIR! >8F #in the row, in this case the code
JIRIRIRIWIWIRIRIR! >8F #is red (8). The second group of
iBIRIRIRIRIRIRIR} >81 #bits code for the color of pixels
LBLB_B_BLB_B_BLQL >81 #that are 'OFF’ in the row, in
iBIBIRIRIRIRIBIB] >81 #this case black (1) or white (F).

We can use the following code to load these values into the
Color Table beginning at address >2000. Remember to load VDP
Register 3 with >04 prior to reaching this segment:

COLTAB EQU >2000
COLORS DATA >8181,>818F, >8F81,>8181

LI RO,COLTAB
LI R1,COLORS
LI R2,8

BLWP @VMBW

When programming there will be instances when you will want to
change which pixels are ‘on’ and which pixels are ‘off’ in a
character. To do this it will be necessary to calculate the byte
and bit position that needs to be changed in the Fattern
Descriptor Table. You may also on occasion wish to change the
foreground and background colors of a group of eight pixels. To do
this it will be necessary to calculate the byte in the Color Table
that should be changed.

If you know the X-position and Y-position of a pixel, you can
use the following source code to calculate the bit offset and byte
that refers to the pixel in the Pattern Descriptor Table. This
source listing also provides the byte to change in the Color
Table. See page 115 for a description of how how to determine
pixel X and Y coordinates.

110 GRAPHICS MADE EASY

In this example RO contains the X—-position and R1 contains the
Y-position of the pixel:

MOV R1,R6

SLA Rb6,5

S0C R1,R6

ANDI Ré,65287

MOV RO,R7

ANDI R7,7

A RO,R6 # R6 is the byte offset
8 R7 ,R6 *# R7 is the bit offset

Ré is the address in the Pattern Descriptor Table that you must
change. R7 is the bit that must be altered. The address of the
Color Table byte that you will need to change is found by adding
>2000 to Ré6.

The following source code segment can be used to alter the VDF
Register values so that the Fattern Descriptor Table, Screen Image
Table and the Color Table all begin at the proper addresses
required for BIT-MAF MODE:

LI RO,2 * Put screen
BLWP @VWTR * in BIT-MAP MODE.
LI RO, >0206 * Screen Image Table
BLWF @VWTR * begins at address »1800
LI RO, >0403 #* Pattern Descriptor Table
BLWP @VWTR * begins at address >0000
LI RO, >03FF #* Color Table
*

BLWP @VWTR

begins at address >2000

This next source code segment can be used to initialize the
Screen Image Table. The values *00 through »*FF are loaded three
times in succession:

LI RO, >1800 =*
CLR R1 *
LI R2,3 *
LOOP BLWP @VSBW *
INC RO
Al R1,>100 * When FF+1 is reached, (>00)
JNE LOOP * no jump is made
CLR Ri *
DEC R2 # Repeat loading >00 to >FF
JNE LOOP * three times

GRAPHICS MADE EASY 111

This final segment can be used to initialize the Color Table.
Here we will color all pixels that are "on" black and all pixels

that are "off" white. We do this by loading successive values of
»F1 into the Color Table:

LI RO, >2000

LI R1,>F100
LOOP BLWP @VSBW

INC RO

CI RO, >3801

JNE LOOP

The following subprograms illustrate how BIT-MAFP MODE can be
used. Subprogram INITBM will initialize all tables and place the
screen in BRIT-MAF MODE. Subprogram TURNON will ‘turn-on’ a single
pixel whose X and Y coordinates have been placed into RZ and R4
respectively. If you are using the Editor/Assembler, you need not
type in these subroutines directly into your program. This is
because they are all DEF'd. All you need to do is include the
subprogram names in a REF statement in youwr program and follow
these steps:

1. Type in the subroutine coding for INITBM and TURNON
and save it to disk. Assemble it into an object file
named BITMAF.

2. Write your own program which places the X and Y
location of the pixel you want to turn—on in RZ and
R4 respectively.

3. Include in your program a REF INITBM, TURMON
statement. Assemble your program into a file named
DEMO (or whatever).

4. Select the LOAD % RUN option and when prompted for
the file name type DSE1.DEMO and press ENTER.

4}

When prompted for the next file name type
DSK1.RITMAP and press ENTER.

6. Press ENTER again.

7. When promptecd for a program name, type START and
press enter. Frogram should now execute.

If you are using the Line-by-Line assembler you will have to
type in the source code as part of every program that uses BIT-MAF
MODE.

112 GRAPHICS MADE EASY

This program will draw a rectangle when given the two points of
one of its diagonals.

001 DEF START

002 REF INITEM, TURNON

003 *

004 HIGHX EQU 65 ¥ Diagonal

005 HIGHY EQU S0 * end

006 LOWX EQU S50 * points
007 LOWY EQU 150 *

008 *

009 START BLWP @INIT *# Initialize & enter BIT-MAF MODE
010 =

011 LI R, HIBHX
012 LI R4 ,HIGHY
013 PLOT BLWP @TURNON

014 DEC R3

015 CI R3, LOWX

016 JNE PLOT

017 LI R3,HIGHX
018 INC R4

019 CI R4, LOWY

020 JNE FLOT

021 *

022 LIMI 2

023 JME $

024 END

The following are the INITBM and TURNON routines:

001 DEF INITBM, TURNON
002 REF VWTR, VSEW
003 =

004 MYREG BSS *20
005 INITEBM DATA MYREG,$+2

006 LI RO, 2

007 BLWF GVUTR #* Enter BIT-MAF MODE

008 LI RO, 0206

Q09 BLWP @&VWTR * Screen Image Table = »1800
010 LI RO, »0403

011 BLWF @VUWTR ¥ Pattern Descrp. Table = >0000
01z LI RO, »OXFF

013 BLWF @VUWTR ¥ Color Table = »2000

014 %

015 LI RO, »1800

016 CLR R1

017 LI RZ,3

018 LOOFP BLWP @VSBW

019 INC RO

020 Al R1,>100

021 JNE L.OOF

022
Q23
024
025
026
027
028
029
QIO
031
032
Q33
04
035
0Z6
0327
038
039
049
050
051
082
053
054
059
056
057
058
059
Q60
061
062
063
064
065
Q66
067
068
069
Q70
071
072
073
074
075
076
077

*

LOOF1

LOOF2

*
TURNON

GET

CLR
DEC
JNE

LI
LI
BLWF
INC
CI
JNE

LI
CLK
BLWP
DEC
JNE
RTWP

DATA
MOV
Mov
MOV
ANDI
SiC
SL.A

MOV
ANDI

SWFE
MOVE
SWFE
MOVER
NOF

MOVE
SOCE
ORI

SWFE
MOVE
SWFE
MOVE
NOF

MOVE
RTWP
DATA
END

K1
R2
LOoP

RO, 22000
Ri, *F100
@VSEW

RO

RO, 3801
LOOF1

RO, 1800
R1

@VSEW

RO

LOOF2

MYREG, $+2
@6 (R13) ,R3
@8 (R13) ,R4
R4 ,RS

RS,7

RS,R4

R4 ,R5

RS, R4
RZ,R0O

RO, *FFF8
RO ,RE
R4 , RO

RO
RO,@>BCO2
RO

RO, @-8BC0O2

@-8808,R1
@GET (R3) ,R1
RO, 4000
RO

RO, @-8C02
RO

RO, @:8C02

R1,@-8C00

GRAPHICS MADE

*B0O40, 2010, 0804, »0201

EASY

113

114

GRAPHICS MADE EASY
CHAPTER 7 STUDY EXERCISES

Write a few lines of source code that could be used to put
the screen in MULTICOLOR MODE.

Write a few lines of source code that could be used to
display sprites as double-sized and magnified.

What will the following source code statements do?

REF VWTR

LI RO, >0701
BLWP @VWTR

Write a complete short program that will display a medium
green colored ball-shaped sprite in the center of the
screen.

How does the computer view the screen?
How do you make a program start running immediately upon

loading it with the LOAD AND RUN option of the Editor/
Assembler?

|

THOSE

SPIRITED

SPRITES

et e Gt et st Somse 4 Saten bt Sotes Soamn e e S S bt St S M S e S S St Akt e AL Sabtt Smoe e SH4RS A0S FoARD S FooS F4Rt0 SUBAS Sh Setms Fomsy S et Sebee e St o Seett S St o 00 e et 0098 S v A S0000 $4004 ot S S04 oot Mhbt ot s

Sprites are the mainstay of the game programmer. They can be any
shape and color and can occupy screen positions independent of any
characters already present. Once set into motion, a sprite can
move independently of direct program control. You can magnitfy or
make sprites double-sized. From these characteristics you can see
that sprites are a very powerful asset to the programmer intent on
designing fast-executing arcade games.

You are allowed to define up to 32 separate sprites on the
screen at any given time. You can use sprites in GRAPHICS and
MULTICOLOR MODES. You can also use sprites in BIT MAF MODE but vyou
cannot use their automatic motion feature. You cannot use sprites
at all in TEXT MODE.

-115~-

116 THOSE SPIRITED SFRITES

In your computer there are three different tables that
collectively contain all the information needed to define sprites.
You simply load the desired information into the tables and change
it as needed to redefine the characteristics of your sprites. The
three tables and the information they contain are as follows:

1. SPRITE ATTRIBUTE TABLE

a) Sprite position
b) Sprite color

2. SPRITE DESCRIPTOR TABLE

a) Sprite pattern identifier
b) Specify magnified or double-sized sprites

3. SPRITE MOTION TABLE
a) Define X and Y velocities of sprite
To sum up, sprites are created by setting up information in the
three tables that define their position, pattern, color, direction

of motion, speed, and their si:ze.

It is recommended that your three sprite tables begin at the
following memory locations (default values):

TABLE 8.0 DEFAULT LOCATIONS OF SPRITE TABLES

Table Table Begins at This VDP Address
SPRITE ATTRIBUTE TARLE *0300
SFRITE DESCRIFTOR TAELE *0400
SFRITE MOTION TARLE >0780

ks s e o i o Sl S4840 ot et Ahbid e Wb Sonsy b AAbsd A Somen St Sarks Soest Srre MAbt e oo Soemy St S et MBS AL e s oaat S4RSY AAied s $0909 i) i) PP et Sobmn oM Soemt Prrs STOve SH9SS P Seres VMM bekem Seaae S it S Reare Seete SeuSe ALbd Aot ervee b daaee drest

As mentioned before you can have up to 32 separates sprites
completely defined and operating at one time. These sprites are
numbered from 0 (first sprite) to 31 (last sprite).

Before we discuss the three sprite tables in greater detail we
must first understand how the computer defines the screen for
sprites. For sprites the computer divides the screen into a
series of rows and columns. The columns are labeled starting on
the left from O to 256 (00 to *BE). The rows are numbered
somewhat differently, starting from the top left, the first row
is numbered 256 (>100), followed by the numbers O through 255 (>00
to *FF). Each screen location defined by a row and column in this
manner is referred to as a pixel. A pixel is the smallest area of
the screen that can be turned on or off. Most of the time you

THOSE SPIRITED SPRITES 117

will probably enter the sprite screen position as hexadecimal
values, so table 8.1 outlines the rows and columns of all pixel
locations in HEX code:

TABLE 8.1 ROW AND COLUMN PIXEL LOCATIONS

PIXEL COLUMN
200 >01 >02 >FC >FD >FE D>FF
2

>100

v
[
.
]

v

>00

>01

>02

FmMx =T

E0X
l - e me T e TE e Me W e e me e e me W W me e e e wm

Looking at Table 8.2 it can be seen that pixel pl is in row
>100 and column >02, p2 is in row >100 column >FF, p3 is in row
301 column »02, and p4 is in row >BE column >01.

There are some formulas available for converting a graphic row

and column location into pixel locations and vice-versa. These
formulas are as follows:

ot e st a0 o Vot G saiaa i s S S4are e o Sommm $4090 4B Sorim S80S et S840 S4SFS $4993 et S LAt ST HARS Senry $0058 Fetmt v S e e T

GRAPHIC ROW TO PIXEL ROW BR#8-7=PR
GRAPHIC COLUMN TO PIXEL COLUMN GC*8-7=PC
PIXEL ROW TO GRAPHIC ROW INTL (FR+7) /81=GR
PIXEL COLUMN TO GRAPHIC COLUMN INTL (PC+7) /81=GC

e o ot v v e Sas0y S s S SO botes Soben 4RrY Gobes Soben T bt e SOnes Bt bukem Sat0y G000 SRS v e e v v ot totm bt e oot v e MY S e o0 e e e e S o8 RS0 Seasy s

BR=graphic row, GC=graphic column, PR=pixel row, PC=pixel column

118 THOSE SPIRITED SPRITES

8.0 SFRITE ATTRIBUTE TAaBLE

You should begin the Sprite Attribute Table at VDF address »>0300.
The Sprite Attribute Table holds the information regarding the
present screen position of all sprites as well as their colors.
The entries in the Sprite Attribute Table change constantly as the
position of moving sprites changes.

There are 32 possible sprites numbered O through 31. Each
sprite takes up four bytes in the Sprite Attribute Table. The
first byte is the row or "Y" position of the sprite. The second
byte is the column or "X" position of the sprite. The (Y)
position starts with >FF then continues with >00, >01, *02 and so
on until *BE. The (X) position extends from »00 through >FF. The
third byte references the pattern of the sprite as to where it is
located in the Sprite Descriptor Table. It can contain any value
from >00 to *FF. The fourth byte is the early clock attribute and
also codes for the color of the sprite.

When your computer moves sprites it updates the entries in the
Sprite Attribute Table. The more sprites it has to update the
longer it takes to execute the program. To shorten the time and
increase program efficiency you can place a value of »D0O as the Y-
location of the lowest numbered non-moving sprite in the Sprite
Attribute Table. This indicates that all subsequent sprites are
undefined. For example, if you have 10 sprites in motion you
should place a value of *DO at address »0328. If you have no
sprites defined, you should place a value of »DO at address »0300.
To sum up, it is recommended that you always let the final unused
sprite be undefined by specifying a Y-location of :DO.

The third byte references a pattern in the Sprite Descriptor
Table. The pattern reference number can range from *00 to »FF.
The value of this byte corresponds to a character defined in the
Sprite Descriptor Table. For example, if the third byte contained
a value of »*B0O it would represent the character defined by address
»0400 through »>0407 in the Sprite Descriptor Table.

The fourth byte controls the early clock of the sprite and its
color. The four most significant bits (bits 1-4) control the
early clock. If the last bit (bit 4) is reset to zero the early
clock is off and the location of the sprite is said to be its
upper left-hand corner. This means that the sprite will fade in
and out on the right hand side of the screen. If the fourth bit
is set to one the early clock is on and the sprites location is
shifted Z2 pixels to the left. The sprite can then fade in and
out on the left side of the screen.

The color of the sprite is determined by the contents of the
four least significant bits of the fourth byte in the Sprite
Attribute Table. The values are given on the next page.

THOSE SPIRITED SPRITES 119

TABLE 8.3 COLOR CODES

COLOR CODE BITS SET COLOR CODE

Transparent O 0000 Medium red 8 1000
Black 1 0001 LLight red 9 1001
Medium green 2 0010 Dark yellow A 1010
Light green 3 0011 Light yellow B 1011
Dark blue 4 0100 Dark green C 1100
Light blue e 0101 Magenta D 1101
Dark red 6 0110 Gray E 1110
Cyan 7 0111 White F 1111

You should take note that the color codes differ slightly in
assembly language from their counterparts in BRASIC.

The following diagram illustrates how an entry into the Sprite
Attribute Table might be constructed. Two sprites are specified.

Sprite O Sprite 1

SALIST DATA >3336,>8001,>AB828,>810F,>D0 —— third sprite
/7 7/ /7 / undefined
Y X / color
pattern

8.1 SFRITE DESCRIFTOR TAaEBLE

The Sprite Descriptor Table describes the patterns of sprites in
the same way that the Pattern Descriptor Table describes
characters. You will usually begin the Sprite Descriptor Table at
address »>0400. You can start it at a lower address, but these are
usually reserved for the Screen Image Table, Color Table, and
Sprite Attribute List. Addresses »>0400 through »0407 are defined
as sprite pattern >80, sprite pattern »81 occupies addresses >0480
through >040F and so on through sprite pattern »EF which occupies
addresses »0778 through >077F.

You can make sprites magnified double-sized or both by writing
a value to the two least significant bits of VDP register 1.
Table 8.4 which begins on the next page, explains the different
sizes and magnifications possible as well as the correct values to
write to VDP Register 1.

120

B e et e e e e s snows e oo s e Ganey e Swvee wevns o

THOSE SPIRITED SPRITES

TABLE 8.4 MAGNIFIED & DOUBLE-SIZED SPRITES

Description

10

11

Standard size sprites: Each sprite is 8 » 8 pixels which
is the same size as a standard character. HEX (>0Q0)

Magnified sprites: sprites is 16 % 16 pixels in size, equal
to four standard characters on the screen. Note that the
pattern displayed is exactly the same as that for standard
size sprites except the sprite is 4% as big. HEX (:01)

Double-sized: Each sprite is 16 » 16 pixels on the screen.
Each sprite is defined by four consecutive patterns from
the Sprite Descriptor Table. For erxample, if the last two
bits (bits 14 & 15) are 01, then if character >80 is
referenced the sprite will be formed by characters »BO,
+81, B2, and >83. The first character, character >80,
makes up the upper left hand portion of the sprite, the
second character, character >81, makes up the lower left
hand portion of the sprite, the third character, character
*82, makes up the upper right portion of the sprite, and
finally the last character, character >B3, makes up the
lower right portion of the sprite. HEX (:02)

Double-sized magnified sprites: Each sprite is 32 x 32
pixels in size. This is equal to the space occupied by 16
standard size characters on the screen. Sprites are
defined in the same way that double-sized sprites are
except that each of the four characters is in turn four

standard characters in size. HEX (>0

SFRITE MOTION TAEBLE

The Sprite Motion Table specifies the X and Y velocity of each

sprite.

The Sprite Motion Table begins at address »0780. Refore

a sprite can be put into motion, several conditions must be met.
The first thing that must occur is that your program must allow
interrupts. You can enable interrupts with the LIMI 2 instruction
however, before your program accesses VDF RAM you will have to
disable the interrupts with a LIMI O instruction in order that the
interrupt handling routine does not alter the VDF write address.

You must also indicate in your program how many sprites will be
in motion. This is done by placing a value at address »837A in CPU

memory.

For example if sprites 2, 5, and 7 are in motion, the

number 8 be put in address *B37A in order to allow motion of
sprites 0, 1, 2, 3, 4, 5, 6, and 7.

THOSE SFPIRITED SPRITES 121

A description of the motion of each sprite must be placed in
the Sprite Motion Table. Each sprite takes up four bytes in the
table. The first byte specifies the (Y) velocity of the sprite,
the second byte specifies the (X) velocity of the sprite. The
third and fourth bytes are used by the interrupt routine so all
vyou have to do is remember to leave space for them in the table.

The following are allowed as values for (X) and (Y) velocities,
alsp shown are direction of travel:

TABLE B.5 ALLOWED VALUES FOR X AND Y SPRITE VELOCITIES

— s e - e tates sov0e oo S LList P St thant bt Sedm S e i30S P A0 oS i S04 LIS BB Sttt bt S92y et Skt SRS Srene Seren Foius st Seam Srees poven Sooee Sonee SHOOS Semee Seabs S S0k SRLRD $000 bt PO et St B Sa0t

Decimal Hex Motion Description

0 to 127 0 to »7F Down (Y) Fositive velocities. Down or
Right (X) right motion.

-1 to -128 *»FF to »BO Up (Y) Negative velocities. Up or
Left (X) left motion.

A value of 1 (:01) will cause the sprite to move one pixel
every 16 VDF interrupts. This is approximately once every
16/60ths of a second.

To summarize, in order to put sprites into motion you must:
1. Enable interrupts to occur with the LIMI 2 instruction.

2. The number of sprites in motion must be placed in CPU RAM
address >837A.

3. Place descriptions of motion in the Sprite Motion Table
which begins at VDP address >0780.

We will now create some programs to illustrate the points
covered in this chapter. The first program will place a standard
sized sprite in the center of the screen, but we will not put it
in motion just yet:

001 a2 22 AT TR TR R I T R Y R YRR T R TR R R ey
Q02 * *
QO3 * Frogram to place a red ball-shaped sprite *
004 * in the center of the screen. *
005 * *
006 a2 T Y R Y IR T LR R
007 DEF START

008 REF VMBW

009 *

010 SATAB EQU >0300 *SFRITE ATTRIBUTE TABLE.

122 THOSE SPIRITED SPRITES

011 SDTABR EQU >»>0400 * SFRITE DESCRIFTOR TAELE.

012 *

013 BALL DATA >3C7E, >FFFF, >FFFF,>7E3C * FATTERN CODE.

014 SPAT DATA >70D0, >8008 * SFRITE ATTRIBUTES.
015 DATA >D0O0O * UNDEFINED SFRITE.
016 *

017 MYREG BSS >20
019 START LWPI MYREG

020 LI RO,SDTAB * LOAD BALL PATTERN INTO
021 LI R1,BALL % SPRITE DESCRIFTOR TABLE.
022 LI R2,8 *

023 BLWP @VMBW *

024

025 LI RO,SATAB

026 LI R1i,SPAT

027 LI R2,8

028 ELWP @VMBW

029 LOOP JMP LOOP * HOLD DISPLAY ON SCREEN.
030 END START

Most programmers think of sprites when referring to moving
graphics. Sometimes other methods of imparting motion to
characters on the screen are better suited for certain situations.
The following program will place six red ball-shaped characters on
the screen and scroll the screen upwards moving the characters
with it. I+ you run this program you will notice that the motion
of the characters is somewhat jerky, this is because sprites are
not used:

001 e R 2 St S g e Ty Y R E T T R R R R R A S R v S
Q02 * *
003 * Flace 6 ball-shaped characters on the screen % scroll »
004 * the screen upwards. This is an example of how to *
005 * put graphics into motion without using sprites. *
006 * *
Q07 LR 22 SR LI I T ST ST I T T T E ST LT SR TR AR L TR ARV GO ROPgre s
008 DEF GRAPH

009 REF VSBW,VMBW,VMBR

010 %

011 BALL DATA :»3C7E, >FFFF, >FFFF, >7E3C
012 COLOR DATA >8100

013 =

014 COLTAB EQU >0384 * COLOR TARLE

015 PATTAB EQU >0908 * FATTERN DESCRIFPTOR TAELE

016 =

017 MYREG BSS >20

o018 *

019 GRAPH LWPI MYREG *

020 LI RO,COLTAB ¥ LOAD FOREGROUND & RACKGROUND
021 MOV @COLOR,R1 * COLORS OF BALL CHARACTER INTO
022 BLWP @vsSBW * COLOR TABLE

023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
030
051
052
053
054
Q55
056
057
058
059
060
061
062
063
064

LOOP

*
LINE1L

LINEX
*

SCROLL

LOOF1

ouT

LI
LI
LI
BLWFP

LI
LI
LI
BLWP
Al
DEC
JBT

BSS
BSS

CLR
LI
LI
BLWP

LI
LI
LI
BLWP

CLR
BLWP
Al
CI
JHE
BLWP
Al
JMP

LI
LI
BLWP

JMP
END

RO,PATTAB

Ri,BALL
R2,8
avMBw

RO, 325
R1,>2100
R2,6
avseW
RO, 33

R2

LOooOP

>20
>20

RO
R1,LINE1
R2, 320
@VMBW

RO, >20
R1,LINEX
R2, ¥20
@VMBR

RO

@VMBW
RO, >40
RO, >300
ouT
@VMER
RO, >FFEO
LOOP1

RO, >2E0
R1,LINE1
@VMBW

SCROLL
GRAFPH

* & Kk X * %k %k % * % * X k ¥k k ¥ % * % X %

N EEEEE

* & X

THOSE SPIRITED SPRITES 123

LOAD THE BALL FPATTERN INTO
THE PATTERN DESCRIFTOR TABLE

FPLACE 6 BALL SHAPED CHARACTERS ON
THE SCREEN ONE AT A TIME IN
DIFFERENT SCREEN FOSITIONS

ARE ALL 815 ON SCREEN YET?

RESERVE MEMORY TO HOLD SCROLLED
LINES OF SCREEN

SAVE TOF SCREEN ROW (EEGINNING
WITH POSITION >000) IN LINEIL

SAVE SECOND SCREEN ROW IN LINEX

EACH SCREEN ROW IS SUCCESSIVELY
READ INTO LINEX AND THEN FRINTED
IN THE ROW POSITION JUST AROVE IN
ORDER TO SCROLL THE SCREEN "uUp"
WHEN THE LAST ROW IS REACHED

THE PROGRAM JUMFS TO "OUT"

FRINT FIRST LINE IN LAST ROW

JUMP RBACE TO SCROLL AND REPEAT

The source code listing on the next page places our red ball on
the screen as a sprite instead of as a graphic.

It also places the

sprite in motion from left to right across the screen. By
pressing any key you can change the magnification of the sprite.
The sprite is moved by successively changing its X-location on

124

the

001
Q02
003
003
Q06
007
008
009
010
011
013
014
0135
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
035
036
037
038
039
040
041
042
043
044
045
Q46
047
048
049
050
051
052
033
054

Automatic motion is not used.

3 336 33 3 I 3K W I I I I K I B I I H I I I I I I I KWK KN N

CALL SFRITE
THIS FROGRAM FPLACES A RED RBALL-SHAFED SFRITE IN
MOTION ACROSS THE SCREEN BY SUCCESSIVELY ALTERING ITS

KEY ALTERS THE MAGNIFICATION

* k ¥ %k ¥ %

L At s 2 22 d e e RS s 2T TR L LIRSS I SIS L ST L LS Y LR

vsSBWw, VMEW,VSBR ,,VWTR , KSCAN

>3C7E, >FFFF , *FFFF , >7E3C

* ok Kk K K Kk

* K ok *

¥ %k %k % % %

THOSE SPIRITED SPRITES

screen.

*

*

*

*

%* X-LOCATION. PRESSING ANY

*
DEF MOTION
REF

KBOARD EQU >8375

SKEY EQU >8374

SATAE EQU >0300

SDTAB EQU >0400

*

BALL DATA

SDATA DATA >7080, >8008
DATA >DO00O

¥*

STATUS EQU >837C

SET DATA >2000

MYREG BSS >20

*

SPRITE LWFI MYREG
CLR @KEYEOARD
LI RO,SDTAB
LI Ri,BALL
LI R2,8
BLWP @VMBW

*
LI RO,SATAB
LI R1,SDATA
LI R2,6
BLWF @VMBW

*

LOOP LI RO,SATABE+1

READ BLWP @VSER
SRL R1,8
DEC Ri
JNE MOVE
LI R1,>00FF

*

MOVE SLA R1,8
BLWP @VSEW
CLR RS

DELAY INC RS
CI R8,B00
JNE DELAY

* ¥k % k X X

KEYBOARD DEVICE=03; SCAN ALL KEYS
LOAD
SPRITE
DESCRIFPTOR
TABLE

LOAD
SFRITE
ATTRIBUTE
TABLE

GET X POSITION OF SPRITE AND
SUBTRACT 1 FROM X (X—-1)

IF X=0 THEN
LET X=3FF

WRITE NEW X POSITION
THIS IS A SHORT DELAY TO

SLOW DOWN THE SPEED OF THE
SFRITE (FOR I=1 TO 800)

THOSE SPIRITED SPRITES 125

056 0OUT BLWFP @KSCAN *

0357 MOV @STATUS,R3 * CHECE TO SEE IF A KEY HAS

058 CoC @SET,R3 * BEEN PRESSED

059 JNE LOOP *

060 *

061 CHECK INC Ré6 * Ré6 IS USED AS A COUNTER TO KEEP
062 cI R6,4 * TRACK OF WHICH MAGNIFICATION

063 JLT GO * LEVEL (1 TO 4) WE ARE ON.

064 CLR Ré6 *

065 =

066 GO CI Ré6, 1 * SELECT

067 JE@ MAG * NEXT

068 CI R&,2 * MAGNIFICATION

069 JEG DSIZE * LEVEL

070 CI R6,3 *

071 JE@ DSIZEM *

072 =«

073 SMALL LI RO, >01EO * LOAD RO WITH THE FROFER VALUE
074 JMP WRITE * TO LOAD INTO VDP REGISTER 1 IN
073 MAG LI RO, >01E1 * (ORDER TO CHANGE THE

076 JMP WRITE ¥ MAGNIFICATION

077 DSIZE LI RO, >O1EZ2 *

078 JMP WRITE *

079 DSIZEM LI RO, >O1ES *

080 =

Q81 #5955 %3 33053 3036 3 133363 33 3030 9636 3030 3 9 3036 36 96 9636 36 3 3 9636 3696 30 36 3630360 30 336 30 36 36 30 36 6 6
082 ¥ ACTUALLY LINES 066 THROUGH 079 TAKE UF A GREAT DEAL *
083 # 0OF MEMORY. CAN YOU SUM UF THESE LINES OF CODE INTO *
084 x A SIMPLE TWO LINE STATEMENT THAT WOULD WORK AS WELLT® *

085 3 2K I I K I3 I K I W I K W I I I I I I K I W K I I I I I I I I KWW I I, KX
086 =

087 WRITE BLWP @VWTR * CHANGE THE VDP REBISTER
088 B @L00F
089 END MOTION

This next source code listing again places our red ball on the
screen as a sprite. The ball is magnified and is moved using
automatic sprite motion. The LIMI 2 instruction is present to
allow interrupts to occur. Keep in mind that automatic sprite
motion cannot occur without interrupts.

001 92 W I I I H I I K I I K 6 I I I I I W I I I I I 36 I J I I I I I I I K I WX I

003 * CALL SPRITE *
004 % THIS PROGRAM PLACES A MAGNIFIED SPRITE ON THE SCREEN AND *
005 % PUTS IT IN MOTION USING AUTOMATIC SPRITE MOTION *
006 EIRI LTI LIELI IS LS LLI LIS LIS L SIS LIS LS LT L L 8 83
007 DEF START

009 REF VMBW,VWTR

010 %

011 NUMB EQU »837A
012 SATAER EOQU >03Z00

126

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
033
036
037
038
039
040
041
042
043
044

THOSE SPIRITED SPRITES

SDTAB
SMTAB
BALL

SDATA

SPEED

MYREG
START

EQU

EQU

DATA
DATA
DATA
DATA
DATA

BSS
LWPI
LI
LI
LI
BLWP

LI
LI
LI
BLWP

L1
LI
LI
BLWP

LI
SLA
MOVB

LIMI
JMP
END

>0400
>0780

>3C7E, YFFFF , >FFFF , >7E3C

>70D0
>8008
>DO00

20505, >0000

>20
MYREG
RO,SDTAB
R1,BALL
R2,8
@VMBW

RO,SATAB
R1,SDATA
R2,8
@VMBW

RO ,SMTAB
R1,SPEED
R2,4
@VMBW

R1,1
R1,8
R1,@NUMB

2
$
START

* % * %k Kk X * Kk %k X * X % X

*

LOAD
SPRITE
DESCRIPTOR
TABLE

LOAD
SPRITE
ATTRIBUTE
TABLE

LOAD
SPRITE
MOTION
TABLE

INDICATE NUMBER OF BPRITES IN
MOTION (1) IN ADDRESS >837A

ENABLE INTERRUPTS
ENDLESS LOOP TO HOLD DISPLAY ON
THE SCREEN

|

LET
THERE

Both versions of BASIC; BASIC and Extended BASIC- provide a
statement that lets you generate sound through the internal
console speaker. This statement, CALL SOUND, requires that you
specify the duration, frequency and volume of a desired sound.

The frequency can range from 110 Hertz (cycles/sec) to 44,733
Hertz. If you want "noise" instead of a tone to be produced you
can specify a negative frequency value of from -1 to -8 depending
on the exact noise desired. The duration of a tone or noise can
vary from 1 to 4250 milliseconds (.001 to 4.25 seconds). The
volume can range from 0 (loudest) to 30 (quietest).

The TI Home Computer is capable of generating up to three tones
and one noise simultaneously. Sound is generated using the TMS89919
sound generator controller chip.

In order to produce sound in your assembly language programs a
number of conditions must be met. First, you must load the Sound
Table with a description of the tone or noise you wish to produce.
Secondly, you must set the least significant bit of the byte at
CPU address »83FD. This indicates that the Sound Table is in VDP
RAM to the computer. Thirdly you must enable interrupts with the
LIMI 2 instruction so that sound processing can occur.

-127-

128 LET THERE BE SOUND

The following steps summarize what must be done in order for
your program to produce sound:

1. Load the Sound Table which begins at VDF
address »>83CC with sound data.

2. Set the 1least significant bit of the
byte located at CPU address »83FD to
indicate to the computer that the Sound
Table is in VDP RAM.

3. Enable interrupts by using the LIMI 2
instruction.

Once all the above conditions are met, you can start the sound
generator by placing a value of >01 at CPU address »B3ICE. This
address is used by the interrupt routine as a count-down timer
during sound generation.

NOTE: You will have to disable interrupts if you are
going to read or write to VDP RAM because the
interrupt routine may alter the read/write
address. If your program has a key scanning
loop this may be a good place to enable/disable
vyour interrupts. See page 81 for an example.

F.O0 THE SOURND TAEBELE

In order to produce sound you must construct a Sound Table that
describes the characteristics of the sound you wish to produce.
The TI Home Computer has the ability to produce up to three
separate tones simultaneously. It can also produce a number of
different "noise" sounds. Up to three tones and one noise can be
produced simultaneously.

The computer has three tone generators labeled 1, 2, and 3.
Noise is produced by a separate noise generator. In order to
produce a tone you must enter the following information into the
Sound Table:

1. Specify which TONE GENERATOR is to produce the tone.
2. Specify the FREQUENCY of the tone.

3. Specify the VOLUME of the tone.

4. Specify the DURATION of the tone.

To produce noise you must enter this information into the Sound
Table:

1. Specify WHITE or PERIODIC noise.

2. Specify SHIFT RATE (type of noise).
3. Specify VOLUME of noise.

4. Specify the DURATION of the noise.

LET THERE BE SOUND 129

All the bytes that describe the characteristics of a tone or
noise except one are referred to as specification bytes. The
exception is the DURATION byte which is not considered a
specification byte.

It takes a total of three specification bytes to hold the
generator number, volume and frequency of a tone. Table 9.0
outlines the contents of each of the three bytes. It should be
noted now that the frequency is not entered as such (that would be
to easy). Instead it is entered as a "frequency code" which we
will have more on later.

TABLE 9.0 SPECIFICATION BYTES FOR TONES

e ante o cvom o Srer e S0ovs s S G SPOTY SO S4ewe SHem i S4vtn S00% Sevwe e Sheme Leven Soeve SFSSS SRS e e eSS dmman Seved S Seous Sbete -~ — B e b T L T T p——

e 34w S3ove Hem S0oT e SoERS FSS O Gman S50 SSE SH4T sases SV D S Seebe o St S $00% SHase S S40RS Sk Seess S0SS0 SHeTE £HUSS S4sme Seeet SeesS i S3ove e Seeet Srees Seeme SoemS SRR 00T SH1 saben SO S FHORS Hece MAERS STeT SHmS Saess SHeRS Seive Y Sk Grine TSt SHETE SHEN e SV PSP vt

/ (¢] This bit is always set (=1),.
ONE 1-2 Specifies the Sound Generator.
\ 3 This hit is reset (=0).
4-7 Contains the 4 least significant frequency code bits.
TWO 0-1 These bits are always reset (=00).
\N2-7 Contains the 6 most significant frequency code bits.

/ Q This bit is always set (=1).
THREE 1-2 Indicates Sound Generator used.
N3 This bit is set (=1).
4-7 Volume level.

e oo s 00 e St 0o St o s oo - — D e e e T T S

All the noise information requires only two specification
bytes. They are structured as outlined in Table 9.1:

TABLE 9.1 SPECIFICATION BYTES FOR NOISE

e e e 40090 e e i S2540 S e 44929 $0049 SR Soans S SR St LS S00es Sesee eSS AP ST Se000 oS Sesde S SHUNY s s SOORE cases wanen ———— — 00020 02040 bhtte ates oo aes s coocs S it

Byte Bit# Holds The Following Information:
0 This bit is always set (=1).
/ 1-2 Specify noise generator (both set =11).

= This bit is reset (=0).
\ 4 This bit is reset (=0).

S Specify WHITE (1) or PERIODIC (0) noise.
6-7 Indicate TYPE of noise.

/ O This bit is always set (=1).

-2 Indicates Sound Generator used.
\ 3 This bit is set (=1).
4-7 Volume Level.

130 LET THERE BE SOUND

Bits 1 and 2 in all bytes refer to one of the three tone
generators or the noise generator. A bit configuration of 00
selects tone generator #1. A bit configuration of 01 selects tone
generator #2. A bit configuration of 10 selects tone generator #3.
Finally, a bit configuration of 11 selects the noise generator.

Table 9.2 illustrates several examples of the structure of tone
and noise bytes. An X in a bit position is for frequency or volume
information that we will cover lever.

TABLE 9.2 EXAMPLES OF TONE AND NOISE SPECIFICATION BYTES

— v - — e o e ovos o~ —

Bit configuration Byte # Description HEX
1000 XXXX i Tohe tenerator # 1 8-
Q0XX XXXX 2 Yo
1001 XXXX 3 >R
1010 XXXX 1 Tone Generator # 2 *A-
OQOXX XXXX 2 P
1011 XXXX 3 >E—
1100 XXXX i Tone Generator # 3 -
00XX XXXX 2 oo
1101 XXXX 3 D~
1110 XXXX 1 Noise generator >E-
00XX XXXX 2 r——
1111 XXXX = F-

FREQUENCY V3. FREQUERNCY (CODNE

You may think that plugging in the desired frequency into the
Sound Table is all there is to it. However, it is not that easy.
First of all the frequency must be converted into a frequency code
which is then loaded into the table. The frequency code is defined
as half the period of the specified frequency. To save you a lot
of time trying to figure out what this means you can use the
following formula:

111860.8
—————————— = Frequency Code
Frequency

Suppose we want to find the frequency code for "middle C" which
has a frequency of S23.25 . We simply plug this value into our
formula as follows:

111860.8

523.25

LET THERE BE SOUND 131

We easily find that the proper frequency code equals 213.8, a
value that rounds up to 214 (:0D6).

The most significant 6 bits (bits 0-8) of the frequency code
are placed in bits 2 through 7 of our second specification byte.
The four least significant bits of the frequency code are placed
in bits 4 through 7 of our first specification byte. If this
sounds a bit confusing don't worry, actually its quite simple.
For example, suppose we wanted to define the first two
specification bytes of a tone with a frequency of 392 HZ.
Further, we want to produce this tone on generator #1. We find
from our formula the frequency code which equals 285 or >11D.

1000 XXXX 00XX XXXX = 8-—-

Here we have selected generator #1. Now we will take our
frequency code >11D and place its 4 least significant bits (:D) in
bit positions 4 through 7 of our first specification byte:

1000 1101 00XX XXXX = 38D~

Finally, we take the most significant 6 bits of ouwr frequency
code (*11) and place them into bit positions 2 through 7 of our
second specification byte:

1000 1101 0001 0001 = »8Di1
We now have created the first two specification bytes required

to produce a tone of 392 HIZI on tone generator # 1. The following
are some additional examples:

1000 0110 0000 1101 [>860D1 Gen #1 freq = 3523.25
1010 1110 0000 1011 [>AEOB] Gen #2 freq = 587.33
1101 100t 0011 1111 [>C93F]1 Gen #3 freq = 110.00

VOLLULUIME SFECIFICASTION BYTE

The third specification byte required for tones holds the volume
of the tone. It also holds the value of the generator number you
are referring to as did the first specification byte.

The volume is held in bit positions 4 through 7 of the third
specification byte for tones. Its value can range from O (loudest)
to 30 (no sound). When determining the volume level these four
bits may be thought of as having a binary zero following them. In
this way a volume level of 0001 may be considered as 00010, The
following are some examples of the third specification byte:

1001 1111 [*9F1] TURNS OFF GENERATOR #1 VOLUME LEVEL = 30
1011 0000 L>BO1] GENERATOR #2, VOLUME LEVEL = O
1111 0011 L>F33 NOISE GENERATOR, VOLUME LEVEL = 6

1101 1110 L *DE] GENERATOR #3%, VOLUME LEVEL = 28

132 LET THERE BE SOUND

NOISE SFECIFICATION BYTE

To produce a noise requires only two specification bytes to be
loaded into the Sound Table. Referring to Table 9.3 gives the bit
values to be loaded into the first specification byte for the
desired noise. The second specification byte holds the volume
level and is constructed the same way the third specification byte
for a tone is constructed except that you specify the noise
generator instead of a tone generator.

TABLE 9.3 ALLOWAERLE NOISE EBIT CONFIGURATIONS

Bit S Bits &6 & 7 Description
0 00 "Periodic Noise" Type 1
0 01 "Periodic Noise" Type 2
0 10 "Feriodic Noise" Type 3
O 11 "Feriodic Noise" varies with the frequency
data in tone generator #3
i 00 "White Noise" Type 1
1 01 "White Noise" Type 2
i 10 "White Noise" Type 3
i 11 "White Noise" varies with the freguency

data in tone generator #3

e ot e o e bt Satos iod e frmes Snbtt o demes seted S5000 S Semmm 004 Sht04 Gmeas S0ses Shenn S AAMS Seent S4bed SHL0S SS0NS BRSNS SN Semne BOSSS S Sman et S S D S0t o e die St 4S0me So44% S S Saime ekt S et Soras S4beS S8 100 Soome BeaaS s S b See34 Semne s M b s

Suppose we wanted to construct the two required noise
specification bytes for a Type 2 Periodic Noise with a volume
level of 6. From Tables 9.1 and 9.3 we put together the first
byte like so:

1111 0010 C>F21

The second specification byte containing the volume information
would look like this:

1111 0011 L>F31]
DURATION OF TONE OFR NMNOISE

The DURATION byte is not considered a specification byte. It
informs the tone or noise generator how long the tone or noise
will last. It is measured in sixtieths (1/60) of a second.
Fossible values range from 0O (>00) no sound, which stops the
generator, to 256 (xFF) which is approximately 4.25 seconds.

LOADING THE SOURND TABELE
One last thing to note before we begin constructing a Sound Table

is that when you are setting up a byte table you must indicate the
number of specification bytes that you are going to feed to the

LET THERE BE SOUND 133

sound generator. For example, if you wanted to specify a tone with
a frequency of 110 HZ, a volume of 2 and a duration of 0.5 seconds
on generator #1, the specification and duration bytes needed are:

>03, >89, >3F, >91,30

The first byte (:03) indicates that there are 3 specification
bytes to load into the sound generator. The second and third bytes
(»893F) tells us that on generator #1 (>8---) a tone of 110 HZ
(»~93F) is desired. The fourth byte (:91) sets the volume level of
generator #1 at 2. The last byte (30) specifies a duration of
30/60ths of a second for the tone.

The following are some additional examples of values to load
into the Sound Table:

1. >3,>8D,»11,591,20
~% specification bytes to load
1 -Tone Generator #1
tone ~Frequency = 392.00 FC = >11D

-Volume level = 2
-Duration = 20/60ths second

2. >3,>A6, 70D, >BS,244
-3 specification bytes to load
1 ~Tone Generator #2
tone ~-Frequency = 523.25 FC = >0Dé
-Volume level = {0 (0101 O

-Duration = 244/60ths second

3. >9,>83,>15, *A6, »0D, >C7,>09,>91, »BS, >DA, 10
-9 specification bytes to load
3 ~Tone BGenerators #1, #2, % #3
tones —Frequencies = 329,63, 523.2% and 739.99
-Volume levels Gi=2, G2=10, G3I=20

-Duration = 10/60ths second

4, >2,>ES5,>FE, 119
-2 specification bytes to load
1 —-Noise Generator (FEQ)
noise -White Noise, Type 2 (>0%5)
-Volume level = 28

—Duration = 119/60ths second
Se >1,>9F,0

~This data will terminate the sound in Generator #i1.

134 LET THERE BE SOUND

6. >0B,»BE,>OF, >AD, >17,>CC, >1F, >E3, >90, >B6, >D3, >F6,249

-11 specification bytes to load

~Tone Generators #1, #2, #3 and noise generator
-Frequency = 440,00, 293.6&66, 220.00

-Feriodic Noise of the type that varies with the
frequency data loaded into tone generator #3.

-Volume levels Gi=0, G2=12, G3=4, NB=12
-Duration = 249/60ths seconds.

The following source code can be used to access the sound
controller and start sound processing.

SOUNDT EQU >1000 * Begin Sound Table at VDP Address >1000
ONE BYTE >01

START LI R10,S0UNDT
Put VDF address that Sound Table
begins at in CFU address >83CC
Sound Table is in VDF RAM.

Start sound processing.

MOV R10,@>83CC
SOCB @ONE ,@B3FD
MOVE @ONE,@>83CE
LIMI 2

* Kk kK Kk

The following program plays "HOME ON THE RANGE" on your computer.
Note how all three tone generators are used together to produce
multiply notes.

(Sl T LT ITLLLLLLETLL LI LL LS RILI S SRS L L LSRR L L2 S8R L L b 2L 8 8% L

002 * *
00% # Program plays "HOME ON THE RANGE' on your computer. *
004 = *
OO %35 9636 336 96 9090 3 3 3636 36 3036 3636 26969 36 36 36 36 363636 366 9636 0 969 36 96 3636 36 336 I3 06 0 36 96 096 36 M 06 96
006 DEF START

007 REF VMBW

008 *

009 MYREG BSS >20
010 SOUNDT ERU *>1000

011 ONE BYTE >0t

012 EVEN

013 *

014 START LWPI MYREG

015 LI RO, SOUNDT *
016 LI R1,SDATA *
017 LI R2,274 *
018 ELWP @VMBW *
019 *

020 LOOP1 LIMI ©

021 LI R10,SOUNDT *

022 MOV R10,@:83CC *

023
024
027
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
0850
051
052
0353
054
055
056
037
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
o78

LOOP2

SDATA

sOoCB
MOVB
LIMI
MOVB
JEQ
JMP

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
END

LET THERE BE SOUND 135

@ONE , @83FD *
@ONE,@>83CE *

2

@>83CE,a>83CE * When CPU address »83CE = 0
LOOP1 * sound processing is

LOOP2 * finished % program repeats

>03,>8D, >11, 591,40

>04,>AD, >11,>9F, >B1,40

>03, >Ab, >0OD, >B1,40

>06, YBE, 0B, >AD, >11, >95, >BS, 40

>09, >8A, >0A, >Ab, >0D, >CD, >11,>95, >BS, >DS, 60
>05, >86, >0D, >91 , >BF , >DF , 20

>03, >82, >0E, >91,40

>03, >8E , >OF , >91,40

>03, >80, >0A, >91,40

>04, >A0, >0A, >9F , >B1 , 40

>09, >80, >0A, >Ab, >0D, >CD, >10, >95, >BS, >D5,460
>05, >80, >0A, >91 , >BF , >DF , 20

>03, >80, >0A, >91,20

>03, >8F , >08, >91,40

>09,>8A, >0A, >Ab, >0D, >CD, >11, >95, >BS, DS, 40
>05, >86, >0D, >91, >BF , >DF , 20

>04, >Ab, >0D, >9F , >B1, 40

>05, >Cé, >OD, »9F , >BF , >D1,40

>03, >C2, >OE, >D1,40

»03, >Cé, >0D, >D1,40

>03, >CE, >0B, »D1,80

>03,>CD, >11,D1,40
>04,>8D,>11,>91, >DF ,40

>03, >86, >0D, >91,40

>06, ¥BE, 0B, >AD, >11, >93, >B3, 40

>09, >8A, >0A, >Ab, >0D, >CD, >11, ¥95, >BS, >DS, 60
>05, >86, >0D, >91 , >BF , >DF , 20
>03,>82, >0E, >91,40

>03, >BE, >OF , >91,40

>03, >80, >0A, >91,40

>04, >A0, >0A, >9F , >B1,40

>06, >80, >0A, >AD, >10, >93, >B3, >60

>04, >80, >0A, >91, >BF , 20

>04 , »A0, Y0A, >9F , >B1,40

>09, >8A, >0A, >Ab, >OD, >CD, >11, >95, >BS, >D5, 50
>05, >8E , OB, >91 , >BF , >DF , >30

>03, >86, »0D, >91 ,40

>09,>82, >0E, >AD, >11,>CD, >17, >95, >BS, >D5, 40
>05, >86, >0D, >91, >BF , >DF , 40

>03, >8E, >0B, >91,40

>03, >86, >0D, >91 ,100

>01,>FF,0

136 LET THERE BE SOUND

The following table gives you a quick reference guide for
frequency specification bytes (specification bytes #1 & #2).
Simply look up the desired note or frequency and follow it over to
the DATA column to get the first two specification bytes.

The DATA in Table 9.4 always refers to tone generator #1. If
you want to produce the tone on generator #2 change the first
nybble of the DATA to *A. To produce the tone on generator #3
change the first nybble of the DATA to *C. For example, to produce
a tone with a frequency of 5587.65 on generator #2 the DATA would
be >A401.

TABLE 9.4 TONE DATA REFERENCE TABLE

NOTE OCTAVE FREQUENCY FREQUENCY CODE DATA
F b6 5987.65 =014 >8401
E 6 S9274.04 =015 *B8301
D# b6 4978.03 *Qlé »8601
D 1) 4698. 64 =018 =8801
C# é 4474 .92 Q19 8901
c 6 4186.01 *O1R *8RO1
) 2] bl Z9G1.07 *0O1C »>8C01
A# 5 3729.31 *O1E *BEO1
A 3 3I520.00 Q20 »BOOZ
G# 5 IT22.44 Q22 »8202
G 5 I135.96 024 *8802
F# 5 2959.96 026 8602
F S 279%.83 =028 8802
E S 2637.02 =020 *BAOZ
D# 5 2489, 02 02D =8D0O2
D S 2349, 32 *QR0 =B0O03
C# 5 2217.46 FOBRD =B203
c 5 209,00 O3S 83073
E 4 1975.5% 029 »8903
A 4 1864. 66 =QZC =BC03
A 4 1760. 00 040 *8004
G# 4 1661.22 043 *8304
G 4 1567.98 »Q47 =B704
F# 4 1479.98 >04C =8C04
F 4 1396.91 OS50 *B00YE
E 4 1318.51 055 »8905
D# 4 1244.51 =Q5A *8A0S
D 4 1174. 66 =OSF »BFOS
C# 4 1108.73 065 *B506
Cc 4 1046. 50 =*0bB *8RO&
B = ?87.77 »071 *B107
AH# 3 @3I2.33 =078 »8807
A) 880. 00 =Q7F =8F07
G# 3 B830.61 =087 =8708
G 3 78%.99 =Q8F *8BF 08

o

LET THERE BE SOUND 137

TABLE 9.4 TONE DATA REFERENCE TABLE (Continued)

. e oo e s St Sooen

- e et o tadm Sanas o i Seare SO St $0000 Sl S e s Sedee bt s Seoas oo A e e St $H0AS e SHe S e S400S 000

NOTE QOCTAVE FREQUENCY FREQUENCY CODE DATA
F#& 3 739.99 >097 »8709
F 3 698. 46 >0A0 *800A
E 3 659.26 *OAA »BA0OA
D# 3 622.25 *OB4 *840B
D 3 587.33 *OBE *BEOR
C# 3 554.37 *0OCA »BAOC
c 3 523.295 +»0D6 »860D
B 2 493.88 *OE2 *B20E
A% 2 466,16 *QFQ *BO0OF
A 2 440,00 “OFE *BEQOF
G# 2 415. 30 >10D »8D10
G 2 392.00 >11D »8D11
F# 2 369.99 »12E *8E12
F 2 J49.23 140 >8014
E 2 329.63 *153 8315
D# 2 311.13 >168 8816
D 2 293.66 17D *8D17
C# 2 277.18 *194 8419
C 2 261.63 >1AC *8C1A
B | 246.94 >1CS =851C
A% i 233.08 *1EQ »B01E
A i 220.00 *1FC *8C1F
G# | 207.65 *21B *BB21
G 1 196.00 278 >8R2Z
F# 1 185. 00 >28D *BD25
F i 174.61 »281 *8128
E i 164.81 »2A7 *8B72A
D# 1 155.56 »2CF »8F2C
D i 146.83 »2FA *BAZF
C# i 138.59 327 8732
C 1 130.81 »357 8735
E 0 123.47 *38A »BA3B
A% ¢) 116.54 =300 *BOEC
A O 110.00 >3F9 >893F

——ans s o - o cass sovwn oo ——— et e a0t s s s Fe489 4 ST S Juree S2009 Sveee ST Seace Sheme 000 Feee e T Sanas D

NOTE: If you need to find a note that is a half-step higher
than a given note, you can use the following formula:

(Dld Frequency) #* 1.059463094 = New Frequency

For example, to find the frequency of a note a half-step
higher then Middle ‘C’:

(523.25) % 1.059463094 = 554.37

THE

LINE-BY-LINE

Although the disc based Editor/Assembler is the most commonly
associated package for programming in assembly language, you can
also program using the cassette based Line-by-Line assembler in
conjunction with the Mini Memory Module. This chapter will attempt
to explain the differences in each, as well as how programs
written for the Editor/Assembler may be modified for the
Line-by—-Line assembler.

The first major difference encountered is the fact that the
Line-by-Line assembler assembles each line of code as soon as it
is entered. This is opposed to the disc based Editor/Assembler
which assembles the entire source listing at one time after it has
been written.

The Line-by-Line assembler provides a 9-page text buffer which
allows you to scan previously entered lines of code. You can
scroll through the pages of the text buffer by using the up and
down arrow keys.

One advantage of learning assembly language on the Line-by-Line
assembler is that you get to see what values are placed into
memory as soon as a line of source code is entered. This gives
you much greater insight into the workings of the computer and how
the instructions affect it.

-139-

140 THE LINE-BY-LINE ASSEMBLER

10O. O THE SOURCE CODE STAaTEMERNMT

As with the Editor/Assembler each source code statement is made up
of four fields. These fields are named and arranged as follows:

LABEL OrPCODE OPERAND COMMENT

If you do not specity a LABEL then you must leave a space
before typing in the OPCODE. If you use a LABEL the first
character must be alphabetic. The second may be any alphanumeric
character. The LABEL field when using the Line-by-Line assembler
is limited to 2 characters in length. This is our first major
difference over the Editor/Assembler which can have LABELS up to &
characters in length.

The OPCODE, OFERAND and COMMENT fields are all constructed as
outlined in section 3.2 of Chapter 3.

1001 ASSEMEBLER DIRECTIVES

There are 7 assembler directives that are recognized by the
Line-by~Line assembler. They are:

ADRG Absolute ORigiN

BSS Block of memory Starting with Symbol

DATA Word definition (initialization)

END END program

EQU Let a LABEL represent a constant

TEXT String constant definition (initialization)
SYM Call up SYMbol table

The Directives BSS, DATA, EQU and TEXT are used exactly as
outlined in Chapter 5 entitled ‘ASSEMEBLER DIRECTIVES . The
functions of the remaining directives are oputlined in the
following sections.

C(AORG Y AERESOL UTE ORIGIRM

You will not need to use this directive much when programming with
the Editor/Assembler. However, you will find it indispensable if
vyou attempt to program using the Line-by-Line assembler.

The AORG directive is used to change the value of the Location
Counter (which is always an even address). In this way you can
jump to any memory location you want in order to alter or review
its contents. For example, if you type:

AORG >7DOO

the Location Counter will now be set to location »>7D00 and the
contents of this location will be displayed. If you were to

THE LINE-BY-LINE ASSEMBLER 141

type in a new source statement and press enter memory location
>7D00 would now contain the new value and the Location Counter
would advance to address >7DO02.

There are basically two main uses for the AORG directive. The
first is to point to where you begin entering your program. The
second use is to correct errors in the code after you have entered
them. To illustrate these two points consider that we are entering
the following program where #### represents whatever number
happens to be held in a paticular address:

Location &

Contents Instruction Comments

HE4H Hud8 ADRB >7D00 * Go to this address to load program.

7D00 0000 MW BSS 32 * Reserve my workspace area. Mew 8533 = !
7D20 0201 LWPI MW * Put pointer to workspace. £oPE
7D22 7D0O0 ,

7D24 0201 LI R1,30 * Load a value into RI1. 4% R0
7D26 OO1E AL Ry2eoe
7D28 0202 LI R2,64 * Load a value into R2.

7D2A 0040

7D2C 0203 LI R3,96 * Load a value into R3.

7D2E 0060

7D30 06A0 BL @si # Branch & Link with subprogram Si.

7D32R0000 .

7D34 ##44 .

Lets say we have reached this point on entering our program and
found that we have made a mistake; instead of loading a value of
30 into R1 we wanted instead to load a value of 32. To get back to
address »7D24 and change the value we use the AORG directive as
illustrated below:

7D34 0000 AORG >7D24 # Return to address of mistake.
7D24 0201 LI R1,32 % Insert corrected code.

7D26 0020

7D28 0202 ADRG >7D34 * Go back to where we left off.
7D34 #H## . * Continue entering program.

(SYM) DISFLAY SYMBOL TABLE

When programming with the Line-by-Line assembler you will specify
symbols for operands that have not yet been defined. For example,
you may write the instruction JMP 81 where S1 is a destination
further along in the program (a point you have not reached to type
in yet). The Line-by-Line assembler must keep track of these
references somewhere until they are defined by you. These
references are kept in a SYMBOL TABLE until you resolve them.

142 THE LINE-BY-LINE ASSEMBLER

By typing in 8YM you can call up the Symbol Table to review
references which are unresolved. There are 3 categories within the
Symbol Table. These categories and their contents are outlined in

Table 10.0.

TABLE 10.0 CATEGORIES OF THE SYMBOL TABLE

v o 98 e sovrs S sy S Sreee Pt S S04 S S Semte W o e b S4440 o e oot S0 b Sabte Sempe SSSSS S Sammt semee SIS ShMAS Somd S Sonen e St SO S SO 000 $0000 Sho4e U SO G000 Mmes S ooy Sne SOt STEMG MY STHS ST ST YRR SO S dbhee Semey Seace S Semwe v

vt araee <o Gatat beors e vreee srmme Sreer Seewe Sems Svme S8 S4its SHASS e Srme SHSch SR choee S Semet Sh4S% e Seeme SH0er soeme MELS St A dmcs Semee Sovee S SMSRY SPISH SFRSC Sio0n et Gaees SPRSY SO Mbes STENY PV SSee SeSS Ve S0 MSEL Trate SR reawe SBOS 4SS STIS Griae teaes SHve Souks Seeey S Semve SUMSe Seecs Seers

RESOLVED REFERENCES These are any symbols that have
already been defined.

UNRESOLVED REFERENCES (WORD) These are any symbols that are
undefined and are not referenced
by a jump instruction.

UNRESOLVED REFERENCES (JUMP) These are any symbols referenced by
a jump instruction.

To see how the 8SYM directive works lets consider the following
example:

Location &
Contents Instruction Comments

o tonse Se0ss smree et seane oot o v csees v sa00s e v sones o somes SR ot ere et ceaas oese tmes o Smme Sammt ceass aee Sebte St St St Shess Soree Mmes et henes ot asee s sarn ovna o e cosas v o

AORG >7DOO * Starting address of program.

7D00 0000 MW BSS 2 * Reserves workspace area.

7D20 0201 LWPI MW * Load pointer to workspace area.
7D22 7DOO

7D24 0201 LI R1,A1 * Load R1 with undefined data.
RO0O0OO

7D28 0202 Al EQU >0400 * Define Al.

7D26 %0400

7D28 06A0 BL @s1 * Branch % Link to undefined point.
7DRCR 10FF JMF 87 * Jump to undefined destination.
7D2E #4444 SYM *# Now call up Symbol Table.

RESOLVED REFERENCES
MW-7D0O0 A1-0400

UNRESOLVED REFERENCES (WORD)
S1-7D2A

UNRESOLVED REFERENCES (JUMP)
87-7D2C

7D2E #### * Ready for next instruction.
I1f a category has no symbols associated with it, that category

is not printed on the screen. If all three categories are empty,
the SYM directive is erased and the assembler waits for you to

THE LINE-BY-LINE ASSEMBLER 143

enter the next instruction. A maximum of 32 unresolved references
can be displayed by the Symbol Table.

CEND) END FPROGKRAaM 8 EXIT ASSEMEBERLER

The END directive signifies to the computer that this is the point
that your program will end. If you press ENTER after using the
END directive you will exit from the assembler. If you press any
other key, the END directive is erased and you can keep on
entering source code.

After you enter the END directive the statement:

UNRESOLVED REFERENCES

will be displayed on the screen where #### is the number of
references that you have not yet resolved. You must go back and
figure out which ones they are (by using the SYM directive) and
resolve them before attempting to exit from the assembler.

10.2 EDITING

The assembler retains some of the source code in a nine-page
buffer which you can review by using the up and down keys to
scroll the screen. When the buffer is filled the assembler
scrolls back onto the screen to indicate that the buffer is full.
Any additional instruction that are entered will overwrite
previously written lines in the buffer. Because of this it is a
good idea for you to keep a written copy of your source code so
that you can refer to it when programming.

Once you start typing a line you cannot “"back-up" with the
arrow keys to correct a typing error. If you have not pressed
"ENTER" you can delete the whole line by pressing "ERASE" and then
retyping the entire line correctly. If you have already pressed
ENTER then you have to return to that address by way of the AORG
directive to change it. If you do not use the label field you can
move right to the OPCODE field by simply pressing the SFACE BAR
once. You can then move to subsequent fields by pressing the
SPACE BRAR again.

144 THE LINE-BY-LINE ASSEMBLER

100 = ERROR HarMDL I MG

When entering source statements, the Line-by-Line assembler will
display an ERROR message under one of three conditions:

1. If you attempt to redefine a previously defined
label. For example:

ADRG >7DOO
7D00 0200 MW BSS 32
7D20 O2EO0 LWPI ™MW
7D22 7D0OO
7D24 0200 MW *ERROR#*

2. If you attempt to enter an undefined opcode or
directive. For example:

7DO0 0200 MW BSS 32 .
7D20 OZEO LWPP *ERROR#*

3. If you attempt to erceed the reach (256 bytes) of a
Jump instruction. For example:

7D00 ###%# JEQ JI

7EO02 ###% JI CLR R1
7D00 *R-ERROR#*

NOTE: If you even suspect that a jump instruction to an as yet
undefined label might possibly be out of range (that is
more than 256 bytes away) you would be better off
using a B (branch) instruction. If you did not you
couldn 't go back later because a Branch requires 4 bytes
of memory while a jump instruction requires only 2. The
following illustrates these points:

THIS WAY NOT THIS WAY

7D00 ###% JINES$+6 7DO0 #¥## JEQ@ JI
7D02 0460 B @JI .

7D04 7EOZ2 .

7D06 CO81 MOV R1,R6 .

7EO02 #H###% JI CLR R1 7EO02 ###%# JI CLR R1

1O0O.494 THE REFERENCEDEFINITION TAaELE

Once you have finished entering your program you must also enter
the program name and location of its starting point in the REF/DEF
table so that mini memory module can find it.

THE LINE-BY-LINE ASSEMBLER 143

The following is a short program that will print a message on
the screen. We will then demonstrate how to use assembler
directives to enter its name and starting point in the REF/DEF
table:

AORG >7DOO
7D00 #### WS BSS 32

7D20 #### MW EQU >6028 * EQUATE VMEW UTILITY.
7D20 4B84F A1 TEXT ‘HOW ARE YOU?' * MESSAGE TO DISFLAY.

7D22 5720

7D24 4152

7D26 4520

7D28 S94F

7D2A 5535

7D2C O2E0 ST LWPI WS * POINTER TO WORKSPACE AREA.

7D2E 6028

7D30 0200 LI RO,138 * SCREEN TABLE LOCATION.

7D32 008A ‘

7D34 0201 LI R1,A1 * BEGINNING OF MESSAGE.

7D36 7D20

7D38 0202 LI R2,12 * # OF BYTES TO WRITE.

7D3A 0O0OC

7D3C 0420 BLWP @MW * BRANCH TO VMBEW UTILITY. |
7D3E 6028 |
7D40R10FF NP 8 * HOLD DISPLAY ON SCREEN.

7D40%10FF

7DA42 END

Assuming that you have just entered the preceding program
exactly as written and have not exited from the assembler, the
screen will appear as follows: ‘
7D42 #### END

0000 UNDEFINED REFERENCES

Do not press ENTER at this point (if you do you will exit from
the assembler). Instead you should enter the following code to
place the program name and starting location in the REF/DEF table
so that you may run the program:

7DA2 ###% AORB >701C >7D42 is the first address that is 1
not used in your program. That is,
it is the First Free Address in the
Module (FFAM). #### represents
whatever value happens to be contained
in address »7D42. Address >701C holds
the FFAM.

701C #4484 ###4 represents the address of the old
FFAM. We need to put the new FFAM
(>7D42) here.

146

701C

701E

701E

7020

7020

7FEO
7FE2
7FE4

7FE6

7FE6

7FES

THE

7D42

7FEB

7FEO

i

L2 2

S052
494E
5431

#H44

7D2E

HiHH

LINE-BY-LINE ASSEMBLER

DATA >7D42

DATA >7FEO

AORG >7FEOQ

TEXT ‘PRINT1

DATA ST

END

Remember, FFAM is the First Free
Address that follows your program,
in this case >7D4Z.

Address >701E holds the Last Free
Address in the Module (LFAM).

Subtract this value from the FFAM; if
the difference is 7 bytes or more, you
have enough room to insert yvour
program name.

Subtract 8 bytes from the old LFAM and
place the result at address :»701E like
we have done here by using the DATA
directive.

Location counter advances to here
displaying any data located at this
address. We now need to jump to the
REF/DEF table and enter our program
name.

Jump to new entry point in REF/DEF
table. >7FEQ #### Data at this
address is displayed.

Enter the program name as PRINTI1.
The program name must be exactly 6
characters long. The characters
making up the name are stored in six
bytes beginning at location >7FEOQ.

Location counter advances to this
next location, where we will define
the 2-character entry point into our
program.

Entry point at where we want program
to start running.

Enter the END directive and press
ENTER to leave the assembler.

We can now run this last program by selecting the RUN option
from the MINI MEMORY selection list and typing in PRINT1 for the
FPROGRAM NAME? prompt and pressing ENTER.

THE LINE-BY-LINE ASSEMBLER 147

To summarize, in order to run your assembly program you must:

1. Place new FFAM at address >701C.

2. Compare new FFAM with LFAM to see if there is a difference
of 7 bytes or more. If there is then you can proceed.

3. Subtract 8 bytes from old LFAM and place the resulting
value at address <701E with a DATA directive,

4. Jump to new LFAM and by using a TEXT directive enter your
program name which must be exactly 6 characters in length.

5. Define the entry label into your program with a DATA
directive at address LFAM+6.

If you have a disk memory system, you can use the LOAD AND RUN
option of the MINI MEMORY module to execute assembly programs that
were written using the Editor/Assembler system. When the mini-
memory comes across a BLWFP @VMBW instruction while it is loading
from a disk system, it will look up the address it needs in order
to use the required utility. It will do this with all subsequent
utilities it encounters.

Thus, even though you can not create a program with the line-
by-line assembler using the instruction BLWFP @VMBW you can RUN
programs that contain these symbols with the mini-memory module
when the LOAD AND RUN option is used. All predefined symbols in
the Editor/Assembler will load correctly into the Mini-Memory
Module because they are all predefined in an internal table used
by the loader.

10.5 SAVING PROGRAMS

You can save your assembly language program on cassette tape in
the following manner:

1. Select EASY BUG option from the selection menu.
2. Use the 8 command.

X. You can enter the actual starting and ending address of
your program, but it is recommended that you enter a
starting address of >7000 and an ending address of »*7FFF
in order to include the REF/DEF table and pointers. If
you do not do this you will have to re—enter the program
name in the REF/DEF table every time you load the program.

148 THE LINE-BY-LINE ASSEMBLER

108 UTILITY FPROGRAMS

All the utility programs discussed in chapter 6 are available when
using the Line~by-Line assembler. However the Line-by-lLine
assembler does not recognize the predefined symbols that the
Editor/Assembler package does. With the Line-by-line assembler you
simply cannot reference the needed utilities, you have to branch
directly to the address the utility is located at. The following
routine is an example of how utility programs are accessed when
programming with the Line-by-Line assembler.

Location
& Contents Instruction Comments
AORB >7D0OO
7DO0 ###% MW BSS 32 *
7D20 02E0 LWPI MW *
7D22 7DOO
7D24 ##4%44 GP EQU >6018 # GPLLNK begins @>6018
7D24 0A4C1 CLR R1 # Set status byte=0
7D26 D8O1 MOVB R1,@>837C *
7D28 837C *
7D2A 042A BLWP @GP * BL with GPLLNK
7D2C 6018
7D2E 0034 DATA >0034 * Accept tone routine
7D30 #H### END # Exit assembler

This short program uses an equate directive to create a symbol
(GF) for the GPLLNK utility which begins at address »6018. Of
course, the program could have just as easily referenced the
address directly. The following table lists the available ROM
utilities and their respective addresses.

Address E/A Symbol Utility
6018 GPLLNE Link to GROM routine

26010 XMLLNE Link to ROM routine

(020 KSCAN Keyboard scan routine

6024 VSEW VDP single byte write

*6028 VMEW VDF multiple byte write
6020 VSBR VDF single byte read

*HOI0 VMER VDP multiple byte read
*6034 VWTR Write to VDF Register

*60OZE8 DSRLNK Device service routine link
F60ZC LOADER Link to tagged object loader
*6040 NUMASG Numeric assignment routine
*6044 NUMREF Get numeric parameter

»>6048 STRASG String assignment routine
*>604C STRREF Bet string parameter

6050 ERR Error reporting routine
»6FOE Beginning of REF/DEF Table

+6FFEF End_of REF/DEF_Table

Tees e senen oot S RS ket Svise S Svise STIS T $4000 Sbtas 4S00a Som0 100t SoURY Seeen Peies Games Seiss B Sabes Saps Saa0s S S S shere bamet A Srams $4bee hats e ST b ket st M ey S s S s 100 Seace Seabe SO Seves

1

CONVERTING
BASIC TO ASSEMBLY

ANGUAGE

Using a high level language such as BASIC or xBASIC to create a
program is relatively easy. The sprite capabilities and the clear
straight—-forward instruction set give you a great deal of control
during program construction.

In fact, in most applications BASIC is ideally suited over most
other languages for programming. However, when fast—executing
arcade style games or other similarly designed programs are
needed, BASIC can be intolerable slow. To overcome this speed
barrier, we must deal on a level much closer to the level the
computer actually communicates on. That is why we write this type
of program in assembly lanquage. Assembly language executes at
many times the speed of BASIC. Unfortunately, assembly language
for many people is much more difficult to work with. One way to
circumvent this difficulty is to first write the program in BASIC
or »BASIC and then translate that working program into the much
faster assembly language.

This chapter covers some of the more common BASIC and xBASIC
commands, arranged alphabetically. Each command is followed by the
source code which duplicates its function. Often, because assembly
language is so much freer then BASIC, there will be several ways
to accomplish the same task. Of these choices one might be faster,
one may take up less memory, and one might be easier to program
and understand. When presented with these alternatives, I have
selected the example routines which are easiest to program and
understand.

-149-

150 CONVERTING BASIC TO ASSEMBLY LANGUAGE

CalL . Cl_EAaR

The CALL CLEAR BASIC routine clears the screen by placing a space
character in all screen positions.

To understand how assembly language accomplishes this we must
firset understand how the compute creates a ‘screen’. The computer
has no concept of a screen; it views the screen as one continuous
series of memory locations. There are no rows and columns, only
768 possible character locations numbered beginning at the upper
left of the screen at 000 and continuing to the bottom right hand
corner 767. These memory locations are in VDFP RAM beginning at
address 0000, Figure 11.0 illustrates this below:

FIGURE 11.0 NUMBERED SCREEN LOCATIONS
000 001 002 003 004 005 029 030 031
032 033 034 035 - . 062 063
064 065 066 « . . 093
096 - - -

736 - - L] - - - - " - » - L] - - L] L] - L] 767

To convert a BASIC row and column position into a assembly
language graphic screen position we use the following algebraic
expression:

L C+ (R#32) 1 = SP

Where 'C’ is the column number, ‘'R’ is the row number and 'SP’
is the resulting screen position, For example, to find the screen
position of (5,7) we simply plug in the values:

£ S + (7%32) 1 = 229

CONVERTING BASIC TO ASSEMBLY LANGUAGE 151

Clearing an entire screen is accomplished by placing a space
character (32 or »>20) in all successive screen locations as
demonstrated in the following routine:

OO0 F 4696363 3696 36 9696 26969096 3636 96 6 3636 6 96 3 30 36 3 96 9696 3636 69696 96 36 96 36 I 36 96 96 369696 36 9696 3636 30 9636 36 36 36 96 3¢
002 *

003 * CALL CLEAR

004 % This module will place a space character in all
005 # screen positions.

006 +

OO7 359934565 336 36 36 36 336 36 36 3 36 3 3636 3696 363698 36 96 36 39696 96 363636369636 6 969696 96 9696 36 96 3096 94 969636 3696
008 DEF BEGIN

* % ¥ % %

009 REF VSBW

010 MYREG BSS 32 * Reserve memory for my workspace.
011 =

012 BEGIN LWPI MYREG % Set pointer to workspace area.
013 LI RO,0 * First screen position to print to.
014 LI R1,>2000 # Load space character.

015 LI R2,767 * Load our count register.

016 LOOP BLWP @VSBW * Place character on screen.

017 INC RO * Increment screen position by 1.
018 DEC R2 * Decrement our count register.
019 JBT LOOoP #+ See if whole screen filled.

020 *

021 END BEGIN # End program.

Lines 008-012 reserve memory for the Workspace Registers, set
the workspace pointer at the beginning of this work area and
reference all needed utility programs. Line 013 is the beginning
of the working part of the program. It loads RO with the first
screen position to receive & blank character (position 000). Line
014 loads character 32 (the blank space character) into the left
byte of R1 as this is the byte that VSBW will utilize. Line 015
sets up R2 as a count register that will reach 0 when all screen
positions are filled. Line 016 places the character on the screen
and is the beginning of our loop.

The first time this program runs through the ‘LDOOFP’ a blank
space character will be written to VDP RAM address >0000, Lines
017 and 018 will increase RO by one and decrease the count
register by one. The program will then jump back and write a space
character in the next screen location. This will continue until
the count register has been decremented to zero. When this happens
the program will end. The loop in this program will execute a
total of 768 times; filling VDF RAM memory locations 000 through
767 with the value for the space character.

CAalLl SCREERN

The source code used to color the screen in BASIC is the
‘CALL SCREEN’ statement. It is gquite similar to the source code

152 CONVERTING BASIC TO ASSEMBLY LANGUAGE

we used to mimic the CALL CLEAR routine. The difference is that
the foreground and background color of the space character has to
be redefined before we fill the screen with it. For example, if we
make the foreground and background color of the space character
black, then fill the screen with it, it will leave the screen
appear black.

The foreground and background color of a character is altered
by changing the values of addresses in the Color Table. The Color
Table begins at VYDP RAM address »0380 and extends to address
*039F. Each byte in the Color Table codes for the foreground and
background of a group of eight characters. For example, VDP
address »0380 holds the byte that codes for the foreground and
background colors of character codes O through 7. Address >0381
holds the byte that codes for characters 8 through 15. Address
*0Z82 holds the byte that codes for characters 16 through 23.
This continues on until address »>039F is reached which holds the
byte that codes for the final character codes 248 through 255.

Table 11.1 lists the Color Table addresses and character codes
each byte holds the color of.

TABLE 11.1 COLOR TABLE ADDRESSES

Table Char. Table Char. Table Char. Table Char.
Address Codes Address Codes Address C(Codes Address Codes
=Q3BO 0-7 =084 239 0388 64-71 038C FLH-103
>0381 8-15 0385 4047 0389 72-79 028D 104-111
0382 16-23 0286 48-59 »QEQ0 80-87 >038E 112~-119
*Q383 24-31 0387 S6-67 >0391 88-95 rQIBF 120-127
QTR0 128-135 *Q394 160-167 0398 192-199 :039C 224-231
*0I91 136147 Q395 168-1795 0399 200-207 039D 2F2-239
*0Z92 144-1351 FOZQ96 176-183 *0400 2208-215 »0Z9E 240~-247
*039E 152-159 *0X97 184-191 »0401 216-223 »OT9F 248235

e 1010 canee Saee et e Ghat comne S RS Sman Senrt S S4m e o St S et Gt S Gabee S Suend Srmee o b Smeun Soees o St feane SPVS Sepes SeSes oo e S SHTS Seete PP et Seeen e oot amass St S S St e SHAre SHomt W SS4Se CHAST e e 1958 St s Semen b S S Shane

The space character is character 32 (HEX »20). Looking at the
Color Table outlined in Table 11.1 we see that address »0384 holds
the byte that contains the color code for character 32. As we
already know there are eight bits in a byte. In the case of a
color byte the left most fouwr bits (4 most significant bits) code
for the foreground color, while the right four bits (4 least
significant bits) code for the background color. From this
information we know that if we place a value of *F1 at address
*0386 it will set characters 48 through 35 white on black.

The following source code can be used to load a value into a
color table address. In this case characters 32 through 39 are
set black on black.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 133

001 3 I 36 36 I I I K I3 I I I I 6 I I I I I I I I I I I I I 16 W I I 6 I 6 I I 6 I I I I I I W I 3
003 % CALL SCREEN(2) *
004 » PROGRAM MODULE TO LOAD VALUE (BYTE) INTO THE COLOR *
005 » TABLE, THEREBY SETTING THE FOREGROUND AND BACKGROUND *
006 * COLOR OF A DESIGBNATED CHARACTER SET. *
Q08 F6 96 9 36 I I I I I3 I I I I I 6 W I I I W I I I I I I K I I I I K I I I W I I W I W I NI I W R
009 REF VSBW

010 MYREG BSS 32

011 COLTAB EQU >0384

012 COLOR DATA >1100

016 BEGIN LWPI MYREG

017 LI RO,COLTAB

018 MOV @COLOR,R1

019 BLWFP @VSBW

020 *

021 LI RO, O

022 LI R1, >2000

023 LI R2,767

024 LOOP BLWP @VSBW

025 INC RO

026 DEC R2

027 JGT LOOP

Line 010 sets up the Workspace Register area. Line 011 sets
COLTABR equal to >0384, the address in the table we want to write
to. Line 012 defines the byte we will use, in this case >11, or
black on black. Line 016 starts the program proper. Here we load
the address of the Color Table into RO. Line 018 moves the byte
we are going to write (:11) into the most significant byte of R1.
Line 019 calls the utility program that executes the write. At
this point address *0384 now contains the byte »*11. Characters
I2-39 are now set to black on black.

Lines 021 through 027 are just the CLEAR SCREEN program that
prints the space character in all screen positions, but now that
character is set to black on black. The screen is now totally
black except for the upper and lower border which can be changed
by writing a value to VYDP Register 7.

DISFLAY aT

To display a message somewhere on the screen in xBASIC you use the
simple command:

100 DISPLAY AT(4,5):"HIGH"
which will put "HIGH" on the screen with the first letter

beginning in column 4 row 3 of the screen. As already mentioned,
the computer regards the screen as a series of memory locations

154 CONVERTING BASIC TO ASSEMBLY LANGUAGE

numbered 000 to 767. To convert a row and column location into
its memory location eguivalent use the algebraic expression:

L C+ (R#32) 1 = P

where C is the column, R is the row, and F is the assembly
language memory location. Thus location (4,3) becomes:

L4+ (5%32) 1=164

Now that we know the location on the screen where we want to
put the message, we need to know how to store the message in the
program until we print it out. This is done through the use of a
"TEXT" directive. The following source code outlines the
procedure to print something on the screen:

001 I 696 3 3 3 3 36 I 96 I I I I I I 6 I I I I IE I6 96 I I 36 I 6 I I 6 66 I I I 616 I I K 6

003 % DISPLAY AT (6,3):"HOW ARE YOU?" »
004 % PROGRAM MODULE TO PRINT A STATEMENT IN A *
005 * DESIGNATED SCREEN POSITION. *
007 FE 96 I 9636 6 36 3696 3 I 316 I I I I I I I I W A6 I 36 36 I I I I I I I I I I I I I I 6 I W N
008 REF VMBW

009 MYREG BSS >20

010 ADDR1 TEXT 'HOW ARE YOU?® + Message to print.
011 =

012 BEGIN LWPI MYREG

013 LI RO,102 * [6+(3#32)] Screen location.
014 LI R1,ADDR1 % Load message.

015 LI R2,12 * # of characters to write.
016 BLWP @VMBW

017 JMP % # Hold display on screen.

Call L. CHAR

This BASIC statement redefines a specified character using a 16
character HEXadecimal coded string. For example character 23
[+21] is the ASCII value for the exclamation point ('). If we
enter the statement:

100 CALL CHAR (33, "FFFFFFFFFFFFFFFF")

~rr

then character 37 is redefined as solid square (all areas shaded).
If we wanted to redefine a character into a ball shape, we could
use the procedure on the following page which outlines a grid to
help us create our pattern.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 155

HEX CODE
A _AXEXAXEXE 4 4 >3C
A_AXAXIXIXIXEXD 1 >7E
AXIXIXIXIXIXIXIXE >FF
AXIXIXEXIXIXEXEXE >FF
IXIXIXIXEXIXAXIXE >FF
IXAXIXIXIXIXIXDXA *FF
J_AXIXIXIXEIXIXE 4 >7E
VoA AXEXSaXiXi o4 d >3C

From the figure above it can be seen that the pattern
identifier for the 'BALL’ is "3C7EFFFFFFFF7E3C". We now construct
the following statement:

100 CALL CHAFR (128,"3C7EFFFFFFFF7E3C")

Which defines character 128 as our "ball". We can then place
the ball anywhere on the screen with a CALL HCHAR statement. The
complete code is thus:

100 CALL CHAR (128, "3C7EFFFFFFFF7E3C")
110 CALL HCHAR(4,10,128,1)

To understand how assembly language accomplishes the same task
we must know where the computer stores patterns. It holds them in
a Pattern Descriptor Table. This table begins at address »0800
and extends through to address >0FFF in VDP RAM.

Each pattern requires eight bytes to define one character. The
pattern of character 0 occupies addresses »0800 through >0807,
character 1 occupies addresses 0808 through »080F, character 3
occupies addresses *0810 through 0817 and this continues until
the last character, character 286, is reached which occupies
addresses *OFF8 through >0OFFF.

To quickly find which address begins the code for which
character, you can use the following formula:

L 2048 + (C#8) 1 = A
Where 'C’ is the decimal value of the character and ‘A’ is the
decimal value of the desired address. Using this formula we can
find that the address that begins the description of character 128
[-BO] is :
L 2048 + (128 # 8) 1 = 3072

which is VDP address >0C0Q.

156 CONVERTING BASIC TO ASSEMBLY LANGUAGE

Now that we know the pattern identifier for a ball and the
address of where that pattern belongs for character 128, we can
write & translation of the following BASIC code:

Q01 36 36 96 3 36 I I I I 363 I K I 96 3 K I I K I I I I I IE K I I I I K I I 6 I3 I KA I 6 KKK K%

Q02 % *
0% % 100 CALL CHAR(128,"2ZC7EFFFFFFFF7E3C™) *
004 110 CALL HCHAR(4,10,128,1) *
00s % *
QOG5 39363 363 330 3 336 3 36 96 3 3 3696 3696 36 36 2036 96 369636 36 96 36 96 366 3636 36 96 96 36 36 96 9696 96 96 96 96 36 36 96 %
007 REF VMBW,VSBW

008 MYREG BS&S 32 *

009 PATTAB EGQU >0C00 * [2048+(Cx8((1=0C00

010 PAT DATA >3C7E,>FFFF,>FFFF,>3C7E % "BALL" pattern
o11 #

012 START LWPI MYREG * lLoads the pattern for the balll
013 LI RO,PATTAB * into the Pattern Descriptor

014 LI R1,PAT * Table.

015 LI R2,8 *

016 BLWP @VMBW * .

017 +*

018 LI RO, 138 * Places the "ball" (character 128)
019 LI R1, >8000 # on the screen in position (4,10)
020 BLWP @&V5BW *

021 O JIMP $ * Hold display on screen.

By adding a few additional lines of code we can repeat the
pattermn any number of times in the horizontal direction. The
following additional lines of source code when placed in the
program above will simulate the BASIC statement:

CALL HCHAR(4,10,128,8)

Replace lines 018 through 029 with the following code:

018 LI RO, 138

019 LI R1,>8000

020 LI rR2,8 # Count register: loop B times.

021 LOOP BLWP @VSBW * Put character on screen.

022 INC RO * Next position to place character.
023 DEC R2 * Decrease count register.

024 JGT LOOP * Check if all 8 characters are on
025 =« screen, if not loop again.

To translate the VCHAR statement requires only a slight
modification of the code for the HCHAR statement as illustrated on
the next page (note only line 022 was altered):

CONVERTING BASIC TO ASSEMBLY LANGUAGE 157

018 LI RO, 138

019 LI R1, >8000

020 LI rR2,8

021 LOOP BLWP @VSBW

022 Al RO, 32 % Increment to screen position
023 DEC R2 * below last one written to.
024 JBT LOOP

025 +

You will notice that line 022 adds 32 to the current screen
position that you are writing to. In this way the next screen
location specified is the one directly under the previous one.

This source code, when added to the program lines previously
mentioned, is a direct translation of the BASIC statement:

CALL VCHAR(4,10,128,8)

In fact, by altering the amount that you increase *or decrease
RO in your program you can make the patterns print up, down,
diaqonally or virtually any way by altering this one line of
source code.

CAalLlL KEY

This BASIC command sets the keyboard to be tested and returns two
variables based on input from the keyboard. The first variable
tells you whether or not a key has been pressed, while the second
variable returned gives you the value of the key pressed. There
is a utility program in assembly language that you can use to
return keyboard input. This utility is referred to as KSCAN.

In order to use the KSCAN utility, you have to first determine
where you want the input to come from. You can input from the
whole keyboard, right side of the keyboard, left side of the
keyboard or input from the joysticks.

Address 8374 contains the byte that determines which keyboard
device you want to select. The following values select for
desired keyboard devices:

>00 Checks the entire keyboard.
>01 Checks left side of keyboard and joystick #1.
>02 Checks right side of keyboard and joystick #2.

From the above table we see that if a value of >01 is placed at
address >8374 the KSCAN routine will check for input from the left
side of the keyboard as well as input from joystick #1.

When a key is pressed 1ts ASCII value is placed at address
*8375. If no key was pressed this address will contain *FF. Lets

158

CONVERTING BASIC TO ASSEMBLY LANGUAGE

consider a program where input from the keyboard is used to
perform some task.
message on the screen based on which arrow key has been pressed.

100
110
120
140
160
180
190
200

The following BASIC program will print a

CALL KEY (1,KEY,STATUS)

IF STATUS=0 THEN 100

IF KEY=5 THEN A$="UP KEY PRESSED"

IF KEY=3 THEN A%$="RIGHT KEY PRESSED"
IF KEY=0 THEN A$="DOWN KEY PRESSED"
IF KEY=2 THEN As$="LEFT KEY PRESSED"
DISPLAY AT (4,10):A$

60TO 100

This program will display the "UF KEY PRESSED" message if the
key is pressed. If the ‘D’ key is pressed the "RIGHT KEY

up ‘E°

PRESSED ’
(X & S5).

message appears. This continues on for the other two keys
The assembly language translation of this program

illustrating the CALL KEY function is as follows:

001
002
003
004
005
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

FE I I I I I I3 I6IE I I I I 96 36 K I I 6 I 6 I I I I I I K K IE 6 6 I I K 36 I I I I I W I K I I KK H

* CALL KEY (1,KEY,STATUS) *
¥ This module will input from the arrow keys (E,D,X,S) *
* and display a message indicating the pressed key. *
I 2 2 A6 636 4636 3096 36 2 HE 06 2 JE I I J 6 3 J A 6 S0 63 I I 36 3 I I 3 I I 3636 3 6 I I
DEF BEGIN * Reference needed utilities.
REF KSCAN, VMBW * Address to select keyboard
KBOARD EQU >8374 * Holds ASCII # of pressed key
KEY EQU >8375 *
*
KEYUP BYTE 5 * ASCII values
KEYRT BYTE 3 * of E, D, X and S
KEYDN BYTE O * keys
KEYLT BYTE 2 *
HEXFF BYTE >FF * No key pressed value
ONE BYTE 1 *
*
uP TEXT ‘UP KEY PRESSED ‘
RIBHT TEXT 'RIGHT KEY PRESSED’
DOWN TEXT 'DOWN KEY PRESSED
LEFT TEXT 'LEFT KEY PRESSED
EVEN
*
MYREG BSS >20
*
BEGIN LWPI MYREG
MOVB @ONE,@KEYBOARD #* Check left side of keyboard.
LOOF BLWP @KSCAN ¥ Check for keyboard input.
CB @HEXFF ,@KEY * Was a key pressed”?
JEQ Loop *
CB @GKEYUF ,@KEY * Compare to see which
JEQ PUP * arrow key was pressed.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 159

035 CB @KEYRT ,@KEY *

036 JEQ PRIGHT *

037 CB @KEYDN,@KEY *

038 JEQ PDOWN *

039 CB @KEYLT,@KEY *

040 JEQ PLEFT *

041 B aLoorP * If key not found, LOOP again.
042 PUP LI R1,UP * Load

043 B @PRINT * correct

044 PRIGHT LI R1,RIGHT * message

045 B @PRINT * into
046 PDOWN LI R1,DOWN * R1
047 B @PRINT *

048 PLEFT LI R1,LEFT *

049 B @PRINT *

030 +

031 PRINT LI RO, 138 * Print

052 LI R2,17 * message on

033 BLWP aVMBW * sSCreen

054 B @aL0oP * Repeat program

* End program.

CALL JOoOYSsST

If you place a value of >01 at address »>8374 the KSCAN routine
will check for input from Jjoystick #1 (as well as from the left
side of the keyboard). If you place a value of 02 at address
*8374 the KSCAN utility will check for input from joystick #2 (as
well as from the right side of the keyboard). Input from joysticks
is placed into CPU addresses »B376 (Y—position) and »8377
(X—position). Table 11.2 lists the possible values that may be
returned.

TABLE 11.2 JOYSTICK INPUT Y POSITION

ot ot coam Semre Seaie e a4 Gy S St S0 S St S S48 SO 4SR0S S4tRS St Sesea Seame S S SO $4174 TS S SHSLS SrAM S S S TGS SSRGS PP St FROSS 4RSS e St S S St TSOSS SO0S Saras Sonen SO THOSS EESS FHESS i S S Samee PSR $P PHO0% . Srmes S b S5RRS

Joystick Y Position Value Returned Address
CENTER >00 »B376
ur >04 8376

- S ——— A o 2020 U 7YY Yo S SO S ote eSS i TSRS VS SoewS T THETY St e S Thdon o Son S50m8 T TSRS Wt e MRS TS RS hbbe Seims SaPeS SSAle S Soam SIS S SHSSS Soam SOV UGS MSYY SPOR 0SS eSS VAl H4SLL Lo Saeew Se4es Sess SNgD Seams e Srasn Lim Samar Sneme

amae oo bt e Saeee saves Seam St SeSra SeeeS S sabms ekt MO WSS mmren S04k WS s eves Sriie Sebms WSS SMSD S W) PSS U FS St So0e8 N L Y o54mt TSR S SHowR Seoes Sepem SRS et Fhats Vares v G Seees SmvES i St SH4S8 SHFeS SMead SHRCS SUASS S Saete SeVeD SN Seamm dries Sa00s YR Sawet meevy %y

160 CONVERTING BASIC INTO ASSEMBLY LANGUAGE

TABLE 11.3 JOYSTICK INPUT X POSITION

e e e oo svame S5m0 mammn e St S S50 42004 SO0k 2Ok S e OGS e e S TP SaPYS METS i SH4sh Senen S SeoAs i i e oo e oo 0008 SaRes TS e Sesat S nt Sem M iSRS G T MOV TP SO S SHa 00O THESH SO EES SHe S O Gt S T S e i e

Joystick X Position Value Returned Address

center w0 8377
rieer ses 8377
cerr e awm

Lets assume that a value of 01 is at address »8374. Lets also
assume that joystick #1 is in the DOWN-RIGHT position. When the
ESCAN routine is called a value of -4 (:FC) is placed at address
*B3I76 and a value of 4 (>04) is placed at address 8377.

The following xBASIC program will print out a2 message on the
screen reporting on the current position of joystick #1. It is
very similar to the CALL KEY program that was presented earlier.

100 CALL JOYST(1,J0YX,JOYY)

110 IF JOYY=0 AND JOYX=0 THEN A$="CENTER"

120 IF JOYY=4 AND JOYX=0 THEN A$="UP"

130 IF JOYY=4 AND JOYX=4 THEN A$="UP-RIGHT"
140 IF JOYY=0 AND JOYX=4 THEN A$="RIGHT"

150 IF JOYY=-4 AND JOYX=4 THEN A$="DOWN-RIGHT"
160 IF JOYY=—4 AND JOYX=0 THEN A%="DOWN"

170 IF JOYY=-4 AND JOYX=-4 THEN A$="DOWN-LEFT"
180 IF JOYY=0 AND JOYX=-4 THEN A$="LEFT"

190 IF JOYY=4 AND JOYX=-4 THEN A$="UP-LEFT"
200 DISPLAY AT(4,10):A%

210 GOTO 100

The above program will display a message on the screen
reporting on the current position of joystick #1. The source code
that follows is a direct translation of the previous %BASIC
program. You may wish to study it in great detail as most game
programs utilize a joystick input of one type or another.

OO 1 395 3396 9696 3696 36 9696 9696 363 3 2365636 36 96 I3 36 3696 963636 3 3 36 3 36 36 36 I 3 3636 36 96 36 3 3 I 36 36 9% 3 36 36 96 39

QO % CALL JOYST(1,J0Yx,JOYY) *
004 % This module will input from joystick #1 and display its «
005 * current position on the screen. *

QO7 #5396 363 63696 06 26 064636 336 363096 30 3636 36 36 K J0 3609636 9696 3696 9696 9696 3 30 90 303006 4 300630 6 4630 6 3 66 6 2 6 6
008 DEF START

009 REF KSCAN, VMBW

010 =

CONVERTING BASIC TO ASSEMBLY LANGUAGE 161

011 KBOARD EQU »8374 # Address of keyboard device select.

012 Jovy EQU *8376 » Joystick input "Y' value.
013 =
014 JOYUP BYTE 4,0 *
015 JOYUR BYTE 4,4 *
016 JOYRT BYTE 0,4 *
017 JOYDR BYTE -4,4 *
018 JOYDN BYTE -4,0 »
019 JOYDL BYTE -4,-4 *
020 JOYLT BYTE 0,-4 *
021 JOovyuL BYTE 4,-4 *
022 JOYCT BYTE 0,0 *
023 HEXFF BYTE »FF *
024 ONE BYTE 1 *
0235 =
026 UP TEXT ‘UP *
027 UPRT TEXT UP-RT * JOYSTICE
028 RT TEXT ‘RIGHT ! *
029 DNRT TEXT 'DOWN-RIGHT o POSITION
030 DN TEXT ‘DOWN *
031 DNLT TEXT 'DOWN-LEFT * MESSAGES
032 LT TEXT LEFT *
033 UPLT TEXT 'UP-LEFT *
034 CENTER TEXT ‘CENTER
33 EVEN
036 *
037 MYREG BSS 32 #+ Reserve space for Workspace
038 = Registers.
039 BEGIN LWPI MYREG * Load pointer.
040 MOVB @ONE, @<BOARD * Select keyboard device.
041 *
042 START BLWF @KSCAN * Scan joystick..
043 c @Jovy,e@JoyYur
044 JEQ P1
045 c @J0YY,@JOYUR
046 JEQ P2 #* Compare to see what
047 C @Jovy,@JOYRT
048 JEQ P3 * the X and Y position
049 C @JOYY,®@J0YDR
050 JEQ P4 * of the joystick is.
051 c @JoYyY,@I0YDN *
082 JEQ PS5 *
053 C @JOYY,@JOYDL *
054 JER P& *
055 C @JOYY,@JOYLT *
056 JEQ P7 *
0S7 C @JOYY,@JOYUL *
038 JEQ P8 *
059 =+
Q60 LI R1,CENTER *

*

061 B @FRINT

162 CONVERTING BASIC TO ASSEMBLY LANGUAGE

062 P1 LI R1,UP *
063 B @PRINT *
064 P2 LI R1 UPRT * Load
065 B @PRINT *
066 P3 LI R1,RT * appropriate
067 B @PRINT *
068 F4 LI R1,DNRT * message
069 B GFRINT *
070 PS5 LI K1 ,DN *
071 B GPRINT *
072 Pé6 LI R1,DNLT *
073 B @PRINT *
074 P7 LI R1,LT *
075 E @FRINT *
076 P8 LI R1,UPLT *
077 %
078 PRINT LI RO,138 # Display
079 LI rR2,10 * message on
08O BLWF @VMEW * screen.
081 B @START # Return and check again.
082 END BEGIN
DoDImMm

BASIC is a powerful language when it comes to automatic string
manipulation, array handling and specific error messages letting
you know exactly where you went wrong. The price you pay for
these luxuries is that the BASIC program will run very slowly when
compared with assembly language. Because array management is not
directly handled by the computer when using assembly language, you
will have to set memory aside for that purpose. The best way to
do this is through the use of the BSS and BES directives, either
of these directives will set aside any amount of memory. Handling
these ‘chunks’ is not too difficult, but it may help to use a pen
and paper to keep track of your own arrays as you set them up in
memory.

FOR—NMNEXT

The FOR-NEXT statement in BASIC can be used to create a delay loop
or a counting loop. For example, if you want to put something on
the screen for someone to read you might incorporate a "delay
loop" to hold the message on the screen for a period of time.

In game programming with assembly language these delays become
much more important because the program executes so quickly that
an object on the screen could move so quickly that it would de
visible only as a blur. The sowce code on the next page outlines
a simple delay loop.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 163

001 3696 I 96 I W 96 I 96U I 3996 I I I IE I IE I 36 I I 36 I I KB K I I K I I I IE I I I I KK KX R

QO3 ¥ FOR DELAY=1 TO 1000 :: NEXT DELAY *
Q05 39636 35559 336365696 9 96362606 96 9696 96 3 36 396 03636 3696 96 3636 3606 969696 06 96 96 369626 06 36 9696 6 36 3096 36
Q06 .

007 .

008 LI R1,1 * For 1

009 LI R2, 1000 * To 1000

010 DELAY DEC R2

011 C R1,R2

012 JNE DELAY * Next Delay

013 .

Of course this delay loop will execute much more quickly then
its BASIC counterpart. In fact, unless you were looking for it
you would probably not even notice this small of a delay!

The maximum value we can use in a single delay loop like the
one in the previous example is 32767. To loop with larger numbers
we can create two registers working together to keep count. In
the next example, the first register counts down from 32767 and
then R2 clicks in to repeat the count for a total delay of 98301
"loops".

Q01 Fe 969 K I 9 J I I I I I 6 IE I U696 96 I0 I I I I I I KKK I KKK K K K I I I I IE I I I I IR K X

O0Z % FOR DELAY-1 TO 98201 :: NEXT DELAY *
OO R I H I IE I 963626 369636 26 96 969646 26 36 36 36 36 36 96 3636 36 96 3696 36 96 96 96 96 36 06 0 36 06
006 .

007 .

008 LI R2,3

009 LOOP1 LI R1,32767 +#* Load a count register.

010 LOOFPZ DEC R1 * Load maximum delay.

011 JNE LOOPZ2

012 DEC R2

013 JEG 0OUT

014 JMF LOOP1

015 0uUT -

Here we use R2 as our "second count" register and we use Rl as
our "primary count" register. Line 009 is the beginning of our
loop, R1 is loaded with the maximum signed value it can hold.

The next line (010) decrements R1 by one and line 011 tests to see
if R1 is zero yet. If not, the program jumps to LOOFZ2

and decrements R1 again. This continues until Rl is equal to
zero, then R2 is decremented. If R2 has been decremented to zero
program control jumps to OUT, otherwise the program jumps to LOOF1
and R1 is reloaded and the delay continues.

164

CONVERTING BASIC TO ASSEMBLY LANGUAGE

FOR——NEXT —STEF

For this instruction you just increment your counter register the

amount

001
003
005
Q06
Q07
Q08
Q09
Q10
011
012

of the step as demonstrated in the following source code:

¥ I I I I I KW I I I I I IE I I K I, I I I T I I I I I I I I W I I KW KRR

* FOR DELAY=0 TO 75 STEP 3 :: NEXT DELAY *
6 I I I I 36 6T 66T H I N I I I I I I KNI I TEIEIE I I IE I IE NI

-

LI R1,0
DELAY INCT R1

INC R1

CI R1,75

JNE DELAY

Notice that lines 009 and 010 of the last example increment our
count register (R1) a total of three for each pass of the DELAY

loop.

008
009
010
011

Take note that this source code could also be written:

LI R1,0
DELAY AI R1,3
CI R1,75
JNE DELAY

Either version would work equally as well.

For very large numbers we can again use two counter registers
to keep track of things. Following our first example above we
could translate the xBASIC statement FOR I=10000 TO O STEP -1
into the source code:

Q01
003
Q05
006
007
008
009
010
011
012
013

969 F 3 6 I I 363636 I3 366963 I I F I I6I6 63636 636 33036 I3 I I3 I 36336 096 96 96 306K 0 K KN
* FOR I=10000 TO O STEF -2 :: NEXT I *
3 I H 363636 36 36669696339 3696 3636 636 696 336 06 0606 396 06 36 96 36 36 36 96 6 06 96 96 9006 90 06 36 9696 96 96 36 36 6 36 9

LI R2,10
LOOP1 L1 R1,1000
LoorP2 DECT R1

JNE LOOF2

DEC R2

JNE LLOOP1

Here we see R1 decremented by two after each loop. If you were
using the value of "I" for some other procedure in the program you
could get it simply by multiplying R1 and RZ2 together at any point
during execution of these loops.

CONVERTING BASIC TO ASSEMBLY LANGUAGE

IF—THERN—EL.SE

165

Conditional jumps and compare instructions constitute the primary

computing structure in assembly language.

It is fairly straight

forward and can be easily demonstrated with a translation of the

following:

001

Q03 %

Q05

008 DAMAGE DATA >0000

009 SHIF DATA 0000

200 SuUB1 MOV @DAMAGE ,R1 *
201 CI R1,100 *
202 JNE 0OUT1

203 LI R1,10 *
204 MOV R1,@SHIP *
205 0uT1 RT

36 9 36 9 3 I ¥ ¥ I I I I I I IE IE I I I I I I I I I I IE I I I I I I KK I I I IE IE I I IE I I IE K K K I I I IE I KX

IF DAMAGE=100 THEN SHIF=10
W FE T U I HE TN I I I I AN T I I T K I I I T KT I IEIE NN I I NI NI

¥*

I+ DAMABE=100

* Then...

« « SHIF=10

To add an ELSE to the statement you simply add three additional

lines of source code as follows:

001

00ZF *

o0s

008 DAMAGE DATA >0000
009 SHIP DATA >0000
200 MOV @DAMAGE ,R1
201 CI R1, 464
202 JNE ELSE1
203 LI R1,*A
204 MOV R1,@3HIF
205 JMP ouT1

206 ELSE1L LI Ri,>5
207 MOV R1,@5HIF
208 0UT1 RT

o GOSUE

36 36 3 6 3 I A 369 K 3 I 36 I I I I I A I I K I I W IE I I B I I I I A I I IE I IE I I I AWK I I I X

IF DAMAGE=100 THEN SHIP=10 ELSE SHIP=5
W F IR R I I I KKK KNI I NI NI I AT T I K I I IE I I I I I

¥*

In BASIC, you are limited with the GOSUB instruction to test very

specific values before proceeding.

100 ON Y GOSUB 200,

In this example Y must be 1 or

For example:
230,240

3

2 or 3. Only one branch test is

166 CONVERTING BASIC TO ASSEMBLY LANGUAGE

performed with control returning to the statement just after the
GOSUR after that one branch is finished. Also, if Y was not equal
to any of the branches (ie: not=1, 2, or 3) an error message
would be returned by the computer.

Assembly language permits you much greater freedom in
programming in that it permits multiply branch testing. In this
situation, one, two or all the branches might be executed. Or
alternatively, none of the branches may be branched to under
certain conditions. The source code on the following page could
be found in a game program where some value, perhaps inputed from
the keyboard, determines which subprogram is branched to.

QO 533333 363636 3 36 36 3696 3 36 3696 363 26363636 3696 96 36 36 36 36 36 36 36 36 36 36 3696 96 36 36 3 3 9 3636 369 9 3 369 3 %

003 * ON VALUE GOSUR 100,200,300 *
004 * Frogram module to perform a multiple branch test *
QUG 2593636336 396 263696 3636396 303636 36 3036 36363636 0626 9636 36 96 36 36 36 3696 30 3636 36 96 96 36 106 36 36 6 3696 36 2690 96 36
007 .

008 .

009 MOV @VALUE ,RO

010 CI RO, 100 * See if VALUE=100Q

011 JNE NEXT1 * If not, then jump to NEXTI
012 BL MISS # Branch & Link w/ MISS routine
013 NEXT1 cI RO, 200 * See if VALUE=200

014 JNE NEXT2 * If not, then jump to NEXTZ2
015 BL HIT * Branch & Link w/ HIT routine
016 NEXT2 cI RO, 300 * See if VALUE=300

017 JNE ouT ¥ If not, jump to OUT

018 BL KILLED * Branch & Link with KILLED

You will be BLing out of the program and RTing back to within
the multiple branch test above to continue until all the branches
have been tested. You will have to be careful that your
subprograms MISS, HIT and KILLED do not change the value in RO or
an accidental triggering of another branch may occur.

OoN GOTO

This is another version of the GOSUB structure we have just
covered. The difference is that after one branch meets with a
successful test, control jumps back to the point following all the
branch tests.

OO 1 93636 36 969 3636 3 96 36 96 96 96 36 3636 36969 36 36 3696 36363636 96 36 36 36 36 96 36 9696 963696 3636 6 3696 6 3 96 96 46 96 26 W 36 36 36 36
002 * ON GOTO *
003 ¥ This program module allows you to test branches one at #
004 ¥ a time. Frogram control transfers to a point following *

005 * all branch tests after completion of a subroutine. *
QO7 33633 136363 9 36 963636 36 36 36 36 3 36 36 3636 3636 36 3696 36 36 36 36 9636 3636 96 9696 36 96 96 96363636 36 3 3696 3 9 62696 3 34 %
Q10 .

011 .

CONVERTING BASIC TO ASSEMBLY LANGUAGE 167

012 MOV @VALUE,RO
013 CI1 RO, 100

014 JNE NEXT1

015 JMP SUBR1 »
016 NEXT1 CI RO, 200

017 JNE NEXT2

018 JMP SUBR2 *
019 NEXT2 CI RO, 300

020 JNE ouT *
021 JMF SUBR3 »

022 0uUT [all subroutines "JMP" to location OUT when finishedl

Instead of RT, each subroutine in the last example will JMP
back to location OUT, which lets the program continue without
running through any more tests of the branches. In this way no
branch is accidentally triggered if the subroutine were to change
the contents of RO.

REM

You can make notes directly inside program by preceding them with
an asterisk (#). An entire line in a source program may be
reserved in this way for comments or notes about your program.
Comments also can be made after the operand field in most
instructions by spacing once and typing in an asterisk (%)
followed by your note or comment. The asterisk serves as a signal
to the assembler to ignore the information you have typed. Your
remarks remain part of the source code only and are omitted
during the assembly process.

RETURMN

There are two return instructions in assembly language. They
operate very similar to the way RETURN does in BASIC. THE RTWP
takes you back from a subprogram to just after the BL (GOSUR)
instruction that sent you to a subroutine.

When a BL or BLWF instruction is reached, the address which
immediately follows the BL or BLWP instruction itself is placed
in R11. That address then stays in R11 until a RT or RTWP is
encountered. When this occurs, the address is taken from R11 and
placed into the Program Counter. This transfers program control
back to the instruction just after the BL or BLWP line.

RURN

If you are not going from BASIC to an assembly program, but are
only running an assembly program by itself, there are basically
two ways to run the program using the Editor/Assembler. The first
way is to define an entry point with the DEF statement at the

168 CONVERTING BASIC TO ASSEMBLY LANGUAGE

beginning of the program. Using this method you load the object
code into the computer using the LOAD and RUN option of the
Editor/Assembler module. After the program is loaded you press
ENTER and the PROGRAM NAME? prompt appears. You then type in the
starting point of program. This entry must match a entry in the
DEF statement at the beginning of the program.

The second way to run a assembly language program is to place
the entry point of the program in the operand field of an END
directive. When this program is locaded it will start running
automatically as soon as the file is loaded. The following
illustrates these two methods of starting assembly programs:

001 DEF START

020 START . .

Using this procedure you must load the file that contains the
pbject code with the LOAD and RUN option of the Editor/Assembler.
When the file is loaded hit ENTER and the PROGRAM NAME? prompt
appears. You then type in the entry point in your program which
also must be found in a DEF statement at the beginning of the
program.

020 S8TART . .

800 END START

Flacing the entry point to your program in the operand field of
a END statement causes the program to start running automatically
as soon as it is loaded with the LOAD and RUN option of the
Editor/Assembler.

12
LINKING

WITH

cseoe oeat s eas e Beses s SrAES BoUES S SAvEn Betes S80S S49ES SH9SE HAdR Sbame R FH B804 TS BHIOS SETED F4RS BSOS FHtwe Smee Smmee SEe Beese ot Simee Sedme Setoe S S000n S J0SHS Sy oo 400t Srsse Setme (Hadh o0 Sesse Soben SRR SENRS BT SSOED 48040 SN SOSED BSOS SETED 1904S S00RD SATES Loees SO0t S Saeve Beiee RS TS

Many times in programming you will want to add an assembly
language module to a BASIC program. This has the effect of
allowing you to create your "own" BASIC commands which you can use
as needed. You can also add fast—executing modules at specific
points to speed up program execution. This chapter will discuss
in detail the ways in which you can link your BASIC programs with
assembly 1language programs.

—-169-

170 LINKING WITH BASIC

Both the Editor/Assembler module and the Mini Memory module
provide you with several additional BASIC commands. These
commands are designed to aid you in the task of interfacing your
assembly 1language programs with BASIC. Table 12.0 outlines these
commands.

Command Description

CALL INIT Initializes CPU memory for AL subroutines
CALL LOAD Load data or AL program into CFU RAM memorvy.
CALL LINK Link BASIC program with AL program.

CALL PEEK Look at data in a CFU RAM address.

CALL FPEEKV Look at data in a VDP RAM address.

CALL POKEV Load data into VDP RAM.

CALL CHARPAT Return the value of a character pattern.

Each preceding BASIC command is discussed in detail in the
sections that follow in this chapter.

Cal L. INIT

This command must be called before any assembly language programs

are loaded through the BASIC program. This command should not be

called once the assembly language program is loaded or the program
will be rendered inaccessible. The CAlLL INIT command goes through
the following procedures when called:

1. Check to see if memory expansion is connected
to the console.

2. Loads utility routines from the Editor/Assembler
module into the memory expansion starting at
address »2000.

3. Loads the REF/DEF tables into the memory expansion
at addresses »3F38 through >3FFF,

If you use the command CALL INIT ‘with the mini memory module,
all programs and data are erased. CALL INIT also initializes CPU
RAM for assembly language subroutines and re-—initializes the
internal tables of the mini memory module. If memory expansion is
attached, access is enabled to both the module and memory
expansion. If the memory expansion is not connected or turned
off, the memory expansion is not recognized. VYou do not need to
use CALL INIT each time you use the module, since it has its own
internal power supply. Remember that all data and programs on the
module are lost when you use the CALL INIT command!

LINKING WITH BASIC 171
CAalLl. LOAaD

There are two ways in which the CALL LOAD command can be used.
The first is to load an assembly language object code file, and
the second is to load or "poke" data directly into CPU RAM.

LOADING ORJECT CODE

To load an assembly language program (object code) you would
use the following format of the CALL LOAD statement:

CALL LOAD("device.filename")

where the device.filename is a string expression such as
DSK1.FILE1l. This file must be object code. VYou can load more
than one object file at a time by separating the files you want by
commas as in the following example:

CALL LDAD(“DSKI.FILEI","DSK;.FILEZ")
which loads the two files FILE1l and FILE2 from disk drive 1.

Relocatable object code is loaded at the first available
address. With no files loaded and memory expansion attached this
address is *A000. When using the mini memory module without the
memory expansion unit attached this address is »7118, the lowest
available address in the module’'s RAM. Subsequent programs are
loaded in a sequential manner, with the next program loaded in
memory immediately following the previous program. Absolute code
is loaded at the absolute address specified by the object code.
Your program should not use absolute code unless extreme care is
taken, as loading data into an area of memory used by the TI BASIC
interpreter can cause the computer to "crash".

“"FOEIMNG'" DAaTA

To load or "poke" data into an area of CFU RAM you would use
the following format of the CAll LOAD command:

CALL LOAD(address,value)

where the address is a decimal number which can be any value from
=-32768 through 32767. Values 0 through 32767 represent addresses
0000 through 7FFF, while the values -3276B through -1 represent
8000 through FFFF expressed as two’'s compliment form. In order to
find an address above 327467 you must subtract 63536 from it. VYou
can load any number of bytes beginning at an address by specifying
the values to load. For example, the statement:

CALL LOAD(-36864,24,13,90)

172 LINKING WITH BASIC

loads the values »18, 0D and *3A into the respective bytes at
locations >7000, 7001 and >7002.

You can specify more than one poke list by separating the last
byte of one poke list and the starting address of the next poke
list with a pair of quotes as in the next example

CALL LOAD(-36864,24,13,"",53248,19)

which loads the same values as the preceding example and also
loads the value >13 into address >D0O0O.

You could also load an assembly language program byte-by-byte
in this manner by poking in the various instructions. However to
run a machine language program loaded in this manner you would
have to enter the program name and starting point into the REF/DEF
table so that the computer could find it. You do not need to worry
about these steps if your program was loaded by the
Editor/Assembler loader since that is done for you. If you are
using the Mini Memory Module you should use the procedure outlined
on page 144. If you use xBASIC to run your assembly language
program you must first perform the following steps:

1. Read the First Free Address in the Module
with the CALL PEEK command. The FFAM can
be found at address »>2028.

2. Read the Last Free Address in the Module.
This address can be found at address >202A.

3. Subtract the FFAM from the LFAM. If they
differ by at least B bytes, there is room
to add your program name and address.

4. Use the CALL LOAD command to change the LFAM
to a value 8 bytes less then its old value.

3. Use the CALL LOAD command to load the
program name (& bytes in length) starting
at the new LFAM followed by two bytes which
give the program starting address.

For example, suppose the LFAM is >B0O00O, your program name is
FILE. The program begins at addess »8300. You would then load the
following information:

CALL LOAD(28700,127,251)
CALL LOAD(32763,70,73,76,69,32,32,131,00)
/7
NAME PADDED TO 6 CHARACTERS

LINKING WITH BASIC 173

CAal L. LINK

The CALL LINK command lets you pass control from a BASIC program
to an already loaded assembly 1language program. It also lets you
optionally pass a list of parameters from the BASIC program to the
assembly language program.

The format for the CALL LINK command is as follows:
CALL LINK("program—name","parameters...")

The program—name is a 1 to 6 character string that defines the
entry point into the program. It must appear in the REF/DEF Table
of the assembly language program that you are trying to link with.
The assembly language program must already be in memory (loaded
via the CALL LOAD command).

The parameters are optional. They allow you to pass string
variables, numeric variables, or expressions between your BASIC
and assembly language programs. For example, the statement:

CALL LINK(“BEGIN",A,D$)

passes control from a BASIC program to the assembly language
program BEGIN, with the numeric variable 'A’ and the string
variable 'D¥’' passed to it.

The CALL LINK command goes through the following operations when
called:

1. Check to see if AL program name is 1 to 6
characters in length.

2. If name is right length, the name is looked up
in the REF/DEF Table, beginning at the lowest
address. The program name is then pushed onto
the value stack.

note: An error is generated if there are duplicate
names in DEF instructions.

Z. If parameters are to be passed the utility will
build an argument list. This list identifies

the type of arguments and builds a stack entry for
each argument.

4. Program control is transferred to the assembly
language program through a direct AL "branch®
instruction.

174 LINKING WITH BASIC

note: In order to return to your BASIC program,
your AL program must preserve and restore
the values in Workspace Registers R11, R13,
R14, and R13 before ending.

5. At the end of the assembly language program,
control will return to the calling BASIC program
unless an error has occurred. If an error has occurred,
the program branches to an error routine.

note: Address 8310 contains the value stack pointer
in use by BASIC interpreter.

FARAMETER FASSING WITH CALL. L INK

Up to 16 arguments can be passed between a BASIC program and

an assembly language program., If the parameter is an expression,
it is passed by its value, if it is a variable it is passed by
name. Any variable except an expression can have its value
changed by the assembly language program. This value, in turn,
can be passed back to the BASIC program.

You can pass entire arrays by enclosing them in parentheses.
Arrays with more than one dimension are indicated by placing
commas between the parentheses to indicate the number of
dimensions. The following is an example outlining several simple
variables (simple variables do not include expressions):

CALL LINK("BEBIN",A,B$,SCORE,F$(),6%(,))

A = numeric variable
B = string variable
SCORE = numeric variable
F$() = one-dimensional array
G$(,) = two-dimensional array

If you need to pass variables to your assembly language program
but do not need to change their values, surround the variable with
parentheses. Arrays however, can not be passed in this manner.
For instance, all but the last two in the last example can be
passed without having their value changed on return to the calling
BASIC program as outlined below:

CALL LINK("BEGIN", (A), (B%), (SCORE))

Also, constants such as SCORE-3, do not have their values
changed by the assembly language program on return to BASIC.

Arguments are passed to an assembly language through an
identifier list in CPU RAM. It is not necessary for you to have a
knowledge of how arguments are passed if you use the utilities
described in section 13.1 If you want to delve deeper and

LINKING WITH BASIC 173

construct your own utilities, see pages 278-280 of your
Editor/Assembler manual.

CaAalLlL FEEK

The CALL PEEK command allows you to read bytes of CFU RAM directly
into BASIC variables. The following statement is an example of
the format of the CALL PEEK command:

CALL PEEK (address,variable....)

where the address is a decimal number which can be any value from
-32768 through 32767. Values 0 through 32767 represent addresses
*0000 through >7FFF, while the values -32768 through -1 represent
*8000 through >*FFFF expressed as two's compliment form. In order
to find an address above 32767 you must subtract 65360 from it.
You can peek into any number of successive bytes of CFU RAM by
simply specifying the variables.

The following example illustrates how data can be read from CPU
RAM:

CALL PEEK(-36864,A,B,C,D)

This statement lets ‘A’ represent the value held at address
»7000, ‘B’ the value at address >7001, 'C’ the value at address
»7002 and 'C’ the value at address >7003.

You can read from more then one address in a single PEEK
statement by separating the last variable of one PEEK list and the
Beginning PEEK address of the next list with a pair of quotes.
This is illustrated as follows:

CALL PEEK(53248,A,B(3),"",-368464,C)

This statement lets A’ and the third element in the array
designated ‘B’ represent the values at addresses D000 (53248) and
*D0O0O1 (53248) respectively.

CaAalLll. FEEEKW

The CALL PEEKV command is used to read bytes of data from VDP RAM.
It works in exactly the same manner as the CALL PEEK command
except that CALL PEEKV will read from VDF RAM. The format of

the CALL PEEKV is the following:

CALL PEEKV(address,variable,var...)
The address is a decimal number which can range in value from

0 through 16383. The values 0 through 16383 represent addresses
>0000 through >3IFFF in VDP RAM. If you try to access a higher

176 LINKING WITH BASIC

address then »>3IFFF the system will crash requiring you to turn the
power off and back on again in order to continue.

The following example illustrates the use of the CALL PEEKV
command:

CALL PEEKV(768,A,B(2),"",10,C)

This statement will read a value from VDP RAM address >03I00
into ‘A’ and a value from VDFP RAM addres >03Z01 into the second
element of the numeric array designated 'B’'. A value will also be
read from VDF RAM address >Q00A into 'C-’.

Call. FPOHEEWY

The CALL POKEV command allows you to read bytes of VDP RAM
directly into BASIC variables. It works in exactly the same
manner as the CALL POKE command, except that CALLPOKEV will poke
data into VDF RAM instead of CFPU RAM. The format of the CALL
POKEV command is as follows: ‘

CALL POKEV(address,variable...)

where the address is a decimal number which can be any value from
0 through 16383. Values 0 through 16383 represent addresses »>0000
through *IZFFF. Keep in mind that VDF RAM only has 16K of memory.
If you try to poke a value into an address higher than »>3FFF, the
system will crash requiring you to turn the console off and back

on in order to continue.

The following example:

CALL POKEV(300,32,32,32,"",5,SCORE)

places the value 32 (>20) in VDP RAM addresses 300 (:>012C), 301
(>012D), and 302 (»012E). It also places the value of SCORE in
VDFP RAM address S (:>0005).
Call. CHAaARFAT
The CALL CHARPAT command returns a lé-character pattern identifier

that codes for the character specified by the character—-code. The
format of the CALL CHARPART command is as follows:

CALL CHARPAT (character—code,string-variable)

where the character—-code is any character number from 32 to 159.
The pattern identifier codes for the ASCII character set normally
occupy character codes 32 through 93, although you can redefine
and can be defined through the use of the CALL CHAR command.

LINKING WITH BASIC 177

FARAMETER FASSING

Besides the additional BASIC commands provided, the
Editor/Assembler and Mini Memory module also provide several
assembly language utility programs that greatly simplify passing
arguments between AL and BASIC. VYou can also return errors that
occurred during execution of an assembly language module. Table
12.1 outlines these utilities.

TABLE 12.1 BASIC INTERFACE UTILITIES

UTILITY DESCRIPTIO

NUMSAG Number Assignment.
STRASG String Assignment.
NUMREF Number Reference.

STRREF String Reference.

ERR Error reporting routine.

If you are using the Editor/Assembler these utility programs
can be found on the disk labeled ‘A’ in the file named BSCSUP.
They are in relocatable code and are about 900 bytes long. To use
them you must include them in a REF statement at the beginning of
your program. In order to load them you must place the statement:

CALL LOAD ("DSK1.BSCSUP")

in your BASIC program.

If you are using the Mini Memory module, the addresses of these
utilities can be found on page 148.

RaDI X 100 NOTAT ION

The values of variables passed from BASIC to assembly language
programs are stored in the Floating Foint Accumulator which begins
at VDFP RAM Address >»>B34A. Before we progress to the utility
programs proper, we must explain radix 100 notation.

ranging from -64 to 64.

Each number is coded for in an 8 byte "value stack" located in
VDF RAM. The first byte in the value stack indicates the exponent
of the numerical value. If the exponent is positive, the byte

178 LINKING WITH BASIC

value is 64 more than the exponent. If the exponent is negative,
the byte value is gotten by subtracting 64 from the exponent. For
example, if the exponent is 3, the byte is &7 or »43. If the
exponent is -2, the byte is 62 or >3E. If the exponent is
negative, the first two bytes are entered in two’'s—compliment
form.

After the exponent byte, the remaining seven bytes in the value
stack contain the value of the number. No regard is given to the
decimal point when transforming numbers into their hexadecimal
equivalents. The second through eighth byte for a radix 100 value
of:

3
100 x 23.456

is constructed as follows:

3
100 x 23 45 60 00 00 00 00
>43 >17 >2D >3C >00 >00 >00 >00

The following examples illustrates how several different
numbers would be written in radix 100 notation and how the value
stack would be structures in each case.

TABLE 13.2 EXAMPLES OF CONVERSION TO RADIX 100 NOTATION

P T) e s s v onrs e ooton e e 20020 s Poet e Semee Seane e Sooen oot o s St

Decimal Radix 100

Value Notation Value Stack

e e e e e e e e ; _______ —_ - ___________~_~____i__
6 6 » 100 »40 06 00 00 00 200 >00 00
60 60 x 1000 40 »>3C »00 00 >00 >00 >00 00
1,234,560 1.27456 = 1003 4% >01 »17 2D >3C »00 »00 >00
12,345,600 12.3456 1003 47 »OC »22 *Z8 00 »00 »00 >00
O O 100D 00 F00 XX XX #XX XX FXX XX
-6 -6 % 100D *BF 2FA 00 00 00 00 >00 »00
-60 -60 x 100D *BF =C4 >00 >00 00 >00 >00 00

3

-1,234,560 -1.23456 » 100 *BC *FF »17 2D »>3C >00 >00 00

- e e o ——— e st e o soown —-— e e s e e S e S b 40008 sanae soree S 840

#*Zero is expressed by 00 in the first two bytes & undefined in
the remaining 6 bytes.

LINKING WITH BASIC 179

(NUIMASGE) NUMBER ASSIGNMENT

This utility allows you to assign a value to a variable passed as
an arguement via the CALL LINK command of BASIC.

Follow the steps outlined below in order to use this utility.

1.

iz

Place a value of 0 in RO if the variable is a simple
variable. If the variable is an element in an array,
place the element number in RO.

Note: With OPTION BASE O (BASIC default) the array
elements are numbered starting at 0. If OPTION
BASE 1 is selected the array elements are
numbered starting at 1.
Element numbers for multiple dimension arrays
are found by counting through the first level,
then the second level and so on. For example,
an array defined as X(6,6,6) with an OPTION
BASE of 0; element number X(3,2,1) is found:

2 1 0
(I % 7) + (2% 7) + (1 # 7) = 162 = element #

Place the arguement number as a full word in Rl. The
arguement number is at it appears in the arguement
list of the CALL LINK statement.

Note: The arguement number is the order in which the
arguement appears in the parameter list of the CALL
LINK statement. For example, in the statement:

CALL LINK("BEGIN",X,Y,Z)

‘X" is arguement #1, 'Y’ is arguement #2, and ‘Z’ is
arguement #3

Enter the value you want to assign into the Floating
Foint Accumulator which begins at address »834A. The
number must be in Radix 100 notation.

Access the utility by BLWF @NUMASG using the
Editor/Assembler or BLWP @6040 if you are using the
Mini Memory Module.

For example, the statement CALL LINK("FILE1",X,Y,Z) when
encountered in BASIC would pass control to the assembly language

program FILE1.

If the Floating Point Accumulator beginning at

address »>B34A contains >43 >02 »22 >38 00 »00 »00 >00, RO
contains *00 and R1 contains >02, then BLWFP @NUMASG assigns

2,345,600 to

'YIQ

180

LINKING WITH BASIC

The following source code can be used to load a value into the
FAC area:

(STRASG??

FAC

EQU

VALUE BYTE

LOOP

LI
LI
LI
MoV
DEC
JNE

>834A
PXX g 2XX 3 DXX g 2XX g 2XX 3 XXX g XXX 4 >XX

R1,FAC
R2, VALUE
R3,4

*R2+ ,#R1+
R3

LOOP

STRING ASSIGNMENT

This utility allows you to assign a string to a string variable
passed via BASIC command CALL LINEK. Before using this utility you

must:

1’

Create the string in CPU RAM with the first byte in
the string indicating the length of the string.

For simple string variables, place a value of O in
RO. If you are assigning a string to an array; place
the array element number in RO.

Flace the address of the string in R2.

Flace the arguement number as a full word in Ri. |

Access the utility with BLWP @STRASG if using the
Editor/Assembler or BLWP @-6048 if you are using the
Mini Memory Module.

The example outlined below demonstrates the usage of the STRASG

utility.

The string "HELLO" is assigned to the string variable A%

which is displayed on return to BASIC.

001
002
003
004
003
006
007
008
009
010

MESS

START

DEF START
REF STRASG
BYTE >05
TEXT ‘HELLO’
CLR

LI

LI

BLWP @STRASG
RT

END

LINKING WITH BASIC 181

The following is the BASIC program that is needed. If you are
using the Mini Memory module, omit line 20 as the program is
already in memory. You would also need to change line 010 of the
source code and omit lines 001 and 002.

10 CALL INIT

20 CALL LOAD("DSK1.BSCSUP","DSK1.START")
30 CALL LINK("START",AS$)

40 PRINT A%

CNUMREFI NUMEBER REFERENCE

This utility allows you to get the value of a variable passed into
vour assembly language program through CALL LINK. In order to do
this you need to follow the following steps:

1. If it is a simple variable, place O in RO. If
it is an array element, place the element number
in RO.

2. Place the arguement number as a full word in Ri1.
3. Call the utility via BLWP @NUMREF or BLWP @:»&6044.

The value of the variable will be returned in the Floating
Point Accumulator area starting at address >B34A. The number will
be in Radix 100 notation.

CSTRREFI] STRIMNMNG REFERENCE

This utility allows you to get a string that was passed via CALL

LINK command from BASIC. VYou must reserve an area of memory to -

hold the string before calling this utility. The following steps
outline how this accomplished:

1. Reserve a buffer area in memory to hold the
string. The first byte of the buffer area
should hold the length of the string. If the
the string length actually exceeds this value,
an error is generated. Otherwise the actual
length is placed in the first byte.

2. Place 0 in RO if it is a simple string variable.
Place the element number if the string is in an
array.

3. Load the starting address of the buffer in R2.

4. Call the utility.

182 LINKING WITH BASIC

ERROR KEFORTING

This utility allows you to transfer control to the error reporting
routine in BASIC. To use this utility all you have to do is load
the error code into the most significant byte of RO and call the
utility via BLWFP GERR or BLWP @6&6030.

The error codes that can be listed by your program are found in
Table 13.3 on the adjacent page.

TABLE 12.3 BASIC ERROR CODES

CODE ERROR MESSAGE CODE ERROR MESSAGE

00 I1/0 error (bad name) 14 Number too big

01 1/0 error (write protected) 15 String—-number mismatch
02 1/0 error (bad attribute) 16 Bad argument

03 1/0 error (illegal operation) 17 Bad subscript

04 I/70 error (buffer full) 18 'Name conflict

05 1/0 error (read past EOF) 19 Can't do that

06 1/0 error (device error) 1A Name conflict

07 1/0 error (file error) iR For—-Next error

08 Memory full (closes file) 1iC 1/0 error

09 N/A 1D File ervor

0A Bad tag 1E Input error

OB Checksum error iF Data error

oC Duplicate definition 20 Line too long

oD Unresolved references 21 Memory full (file not
OE N/A closed)

OF Program not found 22 Syntax error

10 Incorrect statement 23 Numeric over+tlow

11 Bad name 24 Unrecognized character
12 Can’'t continue 25 String truncated

13 Bad value 26—~FF Unknown error

e sa04s o sosne Saoss Saats Giose ate MSBAG ekt st Gios8 Soots a4t miaee Beeos e Sabe SMb G084 S0eeh Aebet LS Sitat SHNMS Soeet e hebse Sl S4res st S MSben G008 Fots Heeoe Sonet SS4es S00es SR ins Shiee easd SIS SAFRH SH4SS SRS mihee SRS o SSdab BHSSH SYES) SRIBS AR Sett PSS S Skt s S (s Pt S000s Shins S

HIGH

PRECISION

MATHEMATICS

ront s canre e bt banns s sanns S0 U o e oo v sasae same - - g o 49008 cares oo co0os e So0e Sonss e ot Some B AR S4bet s s Seaat Smans aat et mond St

Along with the many utilities discussed in Chapter 6, there are
many additional utility programs related to mathematics that
literally save you hours (or days) in programming time.

The first section of this chapter outlines mathematical GPL
routines that can be accessed through GPLLNK. The second section
of this chapter discusses ROM console routines that can be
accessed through XMLLNEK.

-183-

184 HIGH PRECISION MATHEMATICS

All of the following routines involve floating point numbers. If
an error occurs during execution of the routine, the error is
indicated in byte »8345. Table 1Z.0 gives all the possible error
codes that can be returned.

TABLE 13.0 FLOATING POINT ROUTINE ERROR CODES

CODE ERROR TYPE

*01 Over+flow.

=02 Syntax error.

=03 Integer overflow on conversion.

=04 Sguare root of a negative number.

*05 Negative number to non—-integer power.
06 Logarithm of a non-positive number.
>Q7 Invalid argument in trigonometric fxn.

Table 13.1 outlines the mathematical routines that can be
accessed through GPLLNE.

TABLE 13.1 XML ROUTINE CODES

ROUTINE CODE DESCRIPTION

0014 Convert number to string.

0022 Greatest integer function.
Q02 Involution routine.

0026 Sguare root routine.

=028 Exponent routine.

*0O02A Natural logarithm routine.
>Q020C Cosine routine.

*Q02E Sine routine

QO30 Tangent routine.

>0032 Arctangent.

The sections that follow in this chapter describe the GPL
mathematical routines. The address of the Floating Foint
Accumul ator is *834A. The Floating Point Accumulator is
abbreviated FAC in the following sections.

Parentheses indicates the BASIC statement which would call the
routine from a BASIC program.

DATA >0014

HIGH PRECISION MATHEMATICS 185

[STR1 CONVERT NUMBER TO STRING

This routine allows you to convert a floating point number into
a ASCII string. The following are the necessary steps:

1.

The eight bytes defining the number are located
beginning at FAC.

If you set FAC+11 (:>8355) equal to zero, it

indicates that the output string is to be in BASIC
format. Otherwise the output is in FIX mode, which
requires data in FAC+12 and FAC+13 (8356 & >8357).

FAC+12 is the number of significant bytes. If 1, it
expresses overflow from the calculation range.

FAC+13 indicates the number of digits to the right
of the decimal point. A negative value disables the
FIX mode.

After the execution of the 8TR routine, FAC is
modified. FAC+11 (>8385) contains the least
significant byte of the address where the string is
located. This byte must be added to *8300 to find
the actual address of the stringj;
address=(FAC+11)+:8300. FAC+12 (:8356) contains the
length of the string (in bytes).

DATA >0022 [INT] GREATEST INTEGER FUNCTION

This routine allows you to compute the greatest integer contained

in a value.

1‘

2.

i

DATA >0024

FAC contains the floating point value.

"After calling this routine, FAC contains the result.

For positive numbers, the integer is the truncated
value. For negative numbers, the integer is the
truncated value plus one.

The GPL status byte (*837C) is set according to
the result.

INVOLUTION ROUTINE

This routine allows you to raise a number to a specified power.

1.

2.

FAC contains the exponent value.

Address »836E (STACK) contains the address in
VDP RAM that holds the eight byte number.

186 HIGH PRECISION MATHEMATICS

i

. The result is placed in FAC in floating—point

format. This is computed as exp*LOGLABS(base)].

4. After completion of this routine, the data at

addresses 8373 and *8376 is destroyed. The word

at address B36E is decremented by 8.
DATA >0026 [SGR1 SAUARE ROOT ROUTINE
This routine allows you to find the square root of a number.
1. FAC contains the input value.

2. After the routine, FAC contains the square root
of the input value.

Z. The GFL status byte is affected.

4. Addresses »8375% and »B376 are destroyed by this
routine.

DATA >0028 [EXP]1 EXFONENT ROUTINE

This routine will compute the inverse natural logarithm of a
number.

1. FAC contains the input value.

2. After the routine, FAC contains the resulting
value.

Z. The GBFL status byte is affected.

4. Addresses »B375 and »B376 are destroyed by this
routine.

DATA >002A [LOG]1 NATURAL LOGARITHM ROUTINE
This routine will compute the natural logarithm of a number.

1. FAC contains the input value.

2. After the routine, FAC contains the resulting value.

3. The GPL status byte is affected.

4. Addresses 8375 and 8374 are destroyed by this
routine.

HIGH PRECISION MATHEMATICS

DATA >002C [COS] COSINE ROUTINE

187

This routine will compute the cosine of a number that is expressed

in radians.

1. FAC contains the input value.

2. After the routine, FAC contains the cosine of the
input value.

3. The GPL status byte is affected.

4., Addresses >»8375 and 8374 are destroyed by this
routine.

DATA >002E [SIN] SINE ROUTINE

This routine will compute the sine of a number expressed in
radians.

1. FAC contains the input value.

2. After the routine, FAC contains the sine of the
input value.

F. The GPL status byte is affected.

4. Addresses »B375 and »83746 are destroyed by this
routine.

DATA >0030 LTAN1 TANGENT ROUTINE

This routine will compute the tangent of a number expressed in
radians.

1. FAC contains the input value.

2. After the routine, FAC contains the tangent
of the input value.

L

. The GPL status byte is affected.

i

Addresses »8375 and *8376 are destroyed by this
routine.

DATA >0032 [ARC1 ARCTANGENT ROUTINE

This routine will compute the arctangent of a number expressed
radians.,

i. FAC contains the input value.

in

188 HIGH PRECISION MATHEMATICS

Z. After the routine, FAC contains the arctangent off
the input value.

3. The GPL status byte is affected.

4. Addresses >B375 and »BI76 are destroyed by this
routine.

To review how to call up GFL routines through the use of the
GFLLNK utility, refer to page 82 of chapter 6. Remember that you
must reset the GFL status byte at address :*BZ7C, or a meaningless
error message will be returned. Also make sure that any of the
CFU RAM areas that are affected by a GPL routine are not being
used by your program to store information. The addresses that you
need to use these utilities with the mini memory module can be
found in table 10.1 on page 148.

Routines that are located in ROM can be accessed through the use
of the XMLLNK command.

There are two ways to access a routine in console ROM. The
first is to specify the routine’'s code in a DATA statement. For
example,

BLWP @XMLLNK
DATA >0800

branches to the floating-point multiplication routine in the
console.

The second way to access a routine in console ROM is to specify
its addresses in the DATA statement. You should take note that
when using this method, the most significant bit of the DATA word
must be set to indicate to the system that this is an address

instead of a routine code. For example,
BLWP @XMLLNK * 8 D 3 A (note MSB set to indicate
DATA >8D3IA * 1000 1101 001} 1010 an address)

branches to console ROM address »>ODZA which is the floating point
compare routine.

Unless absolutely unavoidable, you should not use direct memory
addresses of console ROM routines as they can vary from one
console to another. Table 13.2 outlines the console routine codes
that can be used with XMLLNK.

HIGH PRECISION MATHEMATICS 189

TABLE 14.2 XML ROUTINES

Routine Code Description
0600 Floating—-FPoint Addition
Q700 Floating-Foint Subtraction
=800 Floating-Foint Multiplication
0900 Floating-Foint Division
*0A00 Floating—-Foint Compare Operation
>OR0O0O Floating—Foint Stack Addition
OO0 Floating-Point Stack Subtraction
>ODOO Floating-Point Stack Multiplication
*QEQO Floating—Point Stack Division
*OFOO Floating—Point Stack Comparison
=>1000 Convert S8String to Number
=1 200 Convert Floating-Foint to Integer
#1700 Fush a value onto Value Stack
1800 Fop a Value for the Value Stack
#1230 Convert Integer to Floating-Point

In the routines that follow, FAC starts at address »834A, ARG
(which stands for arguments) starts at address >*838C. 8STACK is at
address *836E.

All overflow errors, except in convert floating point to
integer, return 01 at address »8354.

DATA >0600 FLOATING POINT ADDITION

This routine adds two values.

1. FAC contains the first value..

2. ARG contains the second value.

3. FAC holds the result after calling the routine.
DATA >0700 FLOATING POINT SUBTRACTION

This routine subtracts two values.

1. FAC contains the value to be subtracted.

2. ARG contains the value from which FAC is
subtracted.

G FAC holds the result of the subtraction after
calling the routine.

190 HIGH FRECISION MATHEMATIC

DATA >0800 FLOATING FOINT MULTIPLICATION
This routine multiplies two numbers together.
1. FAC holds the value of the multiplier.
2. ARG holds the value of the multiplicand.

S FAC holds the result after the routine is called.

DATA >0900 FLOATING POINT DIVISION
This routine divides two values.

i. FAC holds the divisor.

2. ARG holds the dividend.

3. FAC holds the result of the operation after
calling the utility.

DATA >0A00 FLOATING FPOINT COMPARE
This routine compares two floating point numbers.

1. FAC holds the first number while ARG holds
the second.

2. The GPL status byte (:BI7C) is affected. The high
bit is set if ARG is logically higher than FAC.
The greater than bit is set if ARG is arithmetically
higher than FAC. The equal bit is set if ARG and
FAC are equal.

DATA >OROO VALUE STACK ADDITION

This routine will add using a stack in VDP RAM.

1. STACK contains the VDP RAM address where the
left—-hand term is located.

2. FAC holds the right—hand term.

J. FAC holds the result of the addition after the
addition after the routine is called.

HIGH PRECISION MATHEMATICS

DATA >0CO0 VALUE STACK SUBTRACTION

This routine will subtract using a stack in VDF RAM.

1.

rJ

L
.

STACK contains the VDF RAN addreszs of the
multiplicand.

FAC contains the multiplier.

FAC holds the result of the multiplication after
calling the routine.

DATA >0D0O0O VALUE STACK MULTIPLICATION

This routine will multiply using a stack in VDP RAM.

Stack contains the VDP RAM address of the
multiplicand.

FAC contains the multiplier.

FAC holds the result of the multiplication after
routine has been called.

DATA >0E00 VALUE STACK DIVISION

This routine will divide using a stack in VDP RAM

STACK contains the VDF RAM address holds the
dividend.

FAC holds the divisor value.

FAC holds the result of the division after the
routine has been called.

~

DATA >OF00 VALUE STACK COMPARE

191

the

This routine will compare a value in the VDF RAM stack to the

value in FAC.

1.

2
o

STACK holds the VDF RAM address of the value to be

compared.

FAC holds the other value to be compared.

192 HIGH PRECISION MATHEMATICS

3. The GPL status byte (:BZ7C) is affected. The high
bit is set if STACK is logically higher than FAC.
The greater than bit is set if STACK is
arithmetically higher than FAC. The equal bit is
set if STACK and FAC are equal.

DATA >1000 CONVERT STRING TO NUMBER

This routine will convert an ASCII string into a floating-point
number .

1. FAC+1Z (:B356) is the address of the starting in
VDP RAM.

2. FAC holds the result of the conversion in floating—
point format.

DATA >1200 CONVERT FLOATING POINT TO INTEGER

This routine will convert a floating-point number into an
integer.

1. FAC contains the floating-point number to be
converted.

2. FAC will contain integer value as one word. The
maximum value of this word is »FFFF. If there is

an overflow, FAC+10 (:8354) is set to the overflow
error code, >03.

DATA >1700 PUSH VALUE ONTO VALUE STACK

This routine will push a value you have loaded in FAC onto the
value stack.

DATA »1800 POP VALUE FROM VALUE STACK

This routine will pop a value from the value stack and place it
in FAC.

HIGH PRECISION MATHEMATICS 193

1. FAC contains the one-word integer that is to be
converted.

2. FAC will contain the floating-point result after the
routine is called.

NOTE: This routine is only available with the
Editor/Assembler and is not supported in Extended
Basic or by the Line-by-Line assembler. It has
also been found that the correct code for this
routine may be >7200 in some consoles.

oy
A (add words) ...eee.. e Brarch & link enwes 43
AR (add bytes) s 56 Branch & load Workspace
ABS (absolute value) 37 POinter ...ieivenvecannes 3
Absolute valuevevwriunaws 37 Branch instruction 43
Absolute codeivunn. bb,140 BSCSUP s n e ne s 169
AbSOlULE OFigin weeeeeewnouns 66 BESS vewnennnan. e ieeaean &7
Accept tonNe . .cseennvasnnnnus 84 BYTE &t vienennns e n e 70
Add bytes ... eeerereeennuan . 36 Byte structureo b
Add immediateccirivenunnan 37
Add WOrds .uswesenvensnnnsans 6 e
Addressing modesS ...ceeennsas 25 L i eunesnansnannunnnanas 47
Addressing CALL. CHARFAT .. .icuueweuwes 176
immediateiiennnnnnnn .. 26 CALL INIT wniwwwncusnanann 170
indexed Memoryccovaes 28 CALL LINK ..ieinenonsnnan 173
program counter relative... 29 CALL LOAD .. eie i i 171
symbolic memory e-a-. 28 CALL FEEK cem s 175
Workspace Register ce. 26 CALL PEEEV ... auneenana- 175
Workspace Register indirect CALL FOFEY weiweieneennnan 176
anto-increment.... .. nun 27 Cassette DSR routine 85
Add immediate ..o einoernouas 7 CB ... cae P ceesa 48
ANDI .o ue v v o unnannunnsnns 31 10 . 49
ADRG W v in v it nvnaannuess bbb, 140 Clear instruction 54
Arctangent routine c..u.e-.n 187 CLOSE PAR opcode. .vvuweuns 89
Arguement passing .cecesenesa 174 CLR st venensncnrnnenncnnas 54
Arithmetic instructions .. 29,35 0 49
Assembler directives 65 Color codes ..oeueuen 107,119
Assembler outputovnnenan 74 Color table
BIT-MAF MODEn.v.. 107
Ex GRAFHICS MODE ...suv.....101
S 43 Comment field ...aceucanvn . 23
Bad response tone B4 Compare bytes »ee.. 48
BASIC 1inkage s.esvseasssvnns 169 Compare immediate 49
BASIC support utilities 169 Compare instructions 44
BES ... cevensn e &8 Compare ones corresponding
Binary numbering system 6 instruction ...ecivnnea.. 49
Bit reversal routine 84 Compare words ...ueeeuessns .. 47
BIT-MAP MODEcveuennunns 107 Compare zeros corresponding
BIT-MAF MODE example 110 instruction ...ccveeunen. 49
] cnsenaanvanns 43 Constant initialization .. Z1
Block ending with symbol 68 Constants
Block starting with symbol .. &7 assembly—-time 21,69

BLWP ...ttt nncenane Camea s 43 character ...c.cceenvnnne 21

196 INDEX

decimal ... vncinnrnenunenan 2 END wivvnrernvanannonunnne 73
hexadecimalivecnnnarnas 2 Entry points c.u.ivveanan.s 72
Controller access, sound ... 127 EQU it cnsenncnnnanss 21,69
Covert floating to integer . 192 Equates ...eveivecanenea 21,69
Convert integer to floating ERR reporting utility 932
POINt cvr i st it nnnaneraness 192 Error codes that can be
Convert number to string ... 184 Feturned «oavoneees 182,184
Convert string to number ... 191 R Y -1
Copy command ..ceevvunnnnnans 72 External definition 7%
COPY Wi iinrnnn e ek ek 72 External reference 72
Cosine routineeveeona.as. 186
CZC ittt it cn i can s s nannuwsns 49 F
Field
D COMMENE wesevcanenvanans 23
DATA wieriarnwnancans Ch e ma e 70 labelvceunun. e 22
Data initialization ...ccenea. 70 OPEFrand «aeeecennsomness ob
] . ¥4 operation code 23
Decimal to Hexadecimal File characteristics 86
interconversionsuess..- 12 File defaults ..o inon.n R
Decrement by twoa....... 38 File specification 86
Decrementcuceeuennns cewa 7 File tYPE wiwenmnencsnsans . Bé
0 I e Floating point addition . 189
DEF i i i i ncnr e 72 Floating point compare .. 190
DEF/REF table ..oveivuwccenen.. 72 Floating point division . 190
Define assembly time Floating point
constantcunienna. 21,69 multiplication 189
Define extended operation ... 773 Floating point
DELETE FAB opcode svviveeen.a B89 subtraction ...ceeeeea . 189
Device service Freguencies, sound 130
FOULINe i vevevnanonnnncans 85
Directives that affect =
assembler output 74 General addressing modes.. 25
Directives that affect Get string space 84
location counter 66 GPL routines «.veeeavenan. B3
Directives that initialize T T = 1
constants Y <24 Graphif€s weeveawsneneneane 77
Directives that link GRAPHICS MODE 101
ProgramsS ..esecssnscsnannesa 71
Directives, assembler 695 H
Directives, miscellanecus ... 73 Hexadecimal system5,11
DISFLAY, file type .uocvvsce.a 87 Hexadecimal to decimal
DIV tttiensnnnanncnnnononsunan 28 CONVErsions .ceesnveeensns 12
DORG . huervvnerannnsnannannns 67
DSR ... vnu.. A = I
DSRLNE .t n i iinn s saaas B 5 Y 4
Dummy origin directive 67 Immediate addressing 26
Duration control, sound 132 e
DXOF wennenerrsnnncnnnsunnnn 73 Increment by two 40
Incrementien e 3
= Y 40

Editor ..eieennrcenvannnanena 20 Indexed memory addressing. 28

INIT

Initialize byte ..u.c.u.
Initialize text
Initialize word
INFUT PAR opcode
Instructions by group
arithmeticcevaas
branch «.eeciiiaruocnun
COMPArE weuwunsseonesn
control .c.iierinnnnann
JUMP e wans e “meeenna
load and move
logical .cecevncnsunanas
Shift .(.ueneneivnaaans
Interrupt handling

INV

L R A LR B R I R B R]

Involution routine

F

JER
JGBT
JH .
JHE
JL .
JLE
JLT
JMF
JNC
JNE
JNO
Joc
JOrF

Joystick use ... vnennan

Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump

o

if equal ... enan
if greater than ...
if high or equal ..
if less than
if logical high ...
if logical low
if low or equal ...

if NO CaArry weweaue.

if no overflow

if not egual

if odd parity
instructions
ON CAFYFY wavununann

KOCAN v o v ow e emmmmnnenns

170
70
71
70
87

35
42
46

2
42
32
S0
57

-
-t

54
185

47

-
-

47
42
42
47
42
44

=
<

47
42
42
42

159
42
47
42
42

42
~
e
=
e

42
)
.
2
2
b
S

42

80

.

INDEX

197

Label field ceoveccennnnnns 22

. 1)

LIMI Wit ierunrennnaneonnce &
LINK subroutines.

Load immediate value
Load interrupt mask

. 173
e 33
. 34

Load lower case character
= = X o = 1
LOAD PAR op-code

Load small captitals

character set

l.oad standard character

SRt t e s e

Load Workspace pointer
immediate c..vuneianiens 3

Location counter

..... 89
.. 84
ceseeaaa 83

-

directives cveeeivenenes b6
cwwnw 3O
LWFI L.t e sttt cenennnnns 4

Logical instructions

™

Maginfication of sprites
Mathematical routines
Memory—mapped devices
Miscellaneous directives

Mnemonic codes

Modes, addressing

I

MOVE &.oienninnenn

Move commande ..
MPY tienccnnnnnennnan
MULLTICOLOR MODE

Multiply instruction

r~

Natural logarithm routine

routinegueaunn.
NEG vvveennmncnnnusna
Negative numbers ...
No operation
No source list
Noise specification byte

for sound
NOF e e eeenrnannn
NUMASE v e e n s n e v ns
Numbering systems

NUMREF & h i e ienn e

(.}
Object code «u.wes
OFEN FAR op-code .

120

- s 183
wnes 77

. 73

e 23
caunea 25
cnuea 40
eaea. 106
seaee 40
creee 186
eeeaas 41
S =
cenwes 61
cewaen 75
vewes 129
camans 61
cewnw 179
“uwaw oW wd
cawas 181
creaa- 13
R = ¥4

198 INDEX

Operand field ...oneunnennen 23
L cesunonan 9l
OUTFUT PAR op~-code 87
FI-
FAB w.vurennaunn T =1
FAGE directivevveecwun 75
Page title directive ..cuoa.. 75
FPattern descriptor table
BIT-MAFP MODE e 107
GRAFPHICS MODE eeews 102
MULTICOLOR MODE 106
FEEK subroutineuc.e. 175
FEEKV subroutine senaw 173

Feriodic NOiSe ...csassasns 132
Feripheral access block 86
FOKEV subroutine0.. 176
Predefined symbols 77
Frogram counter register ... 17
Frogram counter relative
Addressing caoeceeeas.s e £

Frogram organization 20
Pseudo—-instructions 20

]

@Quit key, interrupts 34
=

READ FAR op-code ..vucnvncus 89
REF (external reference) ... 72
REF/DEF fe s m e ma s 72,144
Registers ...cceveneaas cnana 16
Registers, VDPiuvueenas 98

Relocatable object code 67
RESTORE/REWIND PAR op—-code . 89
Return pseudo—instruction .. 62
Return Workspace pointer ... 44

Returning Cecunann 62
ROll—-up & .rennnnnnens ceneann 143
Roll—-down Wk e eaw 143
ROM Wt iiecnvsemuananucnnnune . 16
ROM routines ...veeenaa.. 82,185
RORB w.vnenrrnnvmasnnnnnnenss &7
Routines

GPL v i i nncennnannnnaa 82

mathematicalcccuan . 183

L 0 183
O 62

RTWP i s it s nananannnns 44
Run optioncevnena. .. 146
s
SAVE FAR op-code veee 90
= Wemm e «sa 41
Screen image table
BIT-MAP MODE 107
GRAFHICS MODEc... 102
MULTICOLOR MODE 106
TEXT MODEvinvmnnnn 107
Set ones corresponding ... 59
Set to onNe ceenenennnnnn .. 54
Set zeros corresponding .. 55

Set zeros corresponding

byte ..eivsrineuninnaanas 55
SETO weveeenonrnannoannnas 54
Shift instructions a57

Shift left arithmetic 57
Shift right arithmetic ... S7

Shift right circular 60
Shift right logical 59
Sine routing ...ieeconsaon 187
Size of sprites va.c.caa .. 120
BLA cevnnnnncnunans I~ V4
SOC vewumeuwanna e hwwa 55
SOCE v e ninnnnmmnnommenans a5
Sound wurerennen o 127
Sound, duration control . 128
Sound, frequency «.ce-eo.e 130
Sound, NDIBE .ueevvennnas 132
Sound, table ...iiceeenn 128
Source listingu.u. . 20
Source statement 20,2%
Sprites s.seesenevanuenos 115

Sprite attribute list ... 116
Sprite descriptor table . 116
Sprite magnification 120

Sprite motion table 116
Sprite size ..ieiecrnnannn 120
Square root routine 186
SRA ..., cm e mes s 37
o feesnmanan &0
SRL thiernnnnnmena ne e T9
STATUS byte .euveencenenes 17
STATUS FPAR op-code wu.eu.. 90
Status Registero.oue.. 17

Status Register bits
affected .c.ovevnvnnnunnsa 18

Store status . .uveeinnnenn 4
Store Workspace pointer .. 34
STRASE ...vviecunnnnsnn ... 180
STRREF seesunana 181
STST wwveannnans ce s s 34
STWF ¢ .uneseancanannsnnnnnn 34
Subtract bytes vaee 41
Swap bytes P em e 34
SWFB & eerssnennnnnnancns Z4
Symbolic memory

addressing ..c.veceanna 28
SIC s v it run feessaaanan Sb
SICB . nnnnnnnnsnsennsnuns =56
T
Tangent routine 187
TEYrMS wueeunewsnasunonnnnan 21
TEXT wevuoanonunsonnann cenae 71
TEXT MODE .vvanunen enwnaas 107

TITL directive ...veveuve.. 75
Two's compliment notation . 8

Li
Unconditional jumps 44
UNL ...vunnn Sewa s men e 75
UFDATE PAB op~code 87
Utilities Y 4
W/

Value stack addition 190
Value stack compare 191
Value stack division 191
Value stack multiplica... 191
Value stack subtraction . 190

VDF QCCESS vecrsvaorunnens 97
VDFP write only Registers . 98
VMBR .. cvevncnnnscensnnnnna 79
UMBW .. eivneenmrnansnnnnns 79
VSBR e s e 79
VEBW . .ivineeinwnnn Cen e 78
VWUTR vt v v rnanrnacnnnnnas 80
W

White NOisSe .seeewsecessen < 132
Word boundry «.eeeneenneas 10
Word organization « 10
Workspace ..esvwveensee caea 16

Workspace pointer Register 17
Workspace Register
addressing .s..eeesee seea 26

INDEX 199

Workspace Register indirect
addressing «...u... cenansana 27

Workspace Register indirect
autoincrement addressing .. 27

Workspace Register shift

instructions .s..vevennee vaw 97
WRITE PAR op-code eeeaas B89
>
X veeca e b Easeassnsanmeman . 44
XMLLNE on oo f e s s e 188
XOF & ininnnnnns e ma e s e Enae e 31
XOR i ivvnnmenn P emems e man 31

APFENDIX A

AFFENDI X &

201

| 6 ' 5 ! a4 1 3 1 2 ! 1 !
| e e e o e e e e e e e o o o o e !
THX! DEC THX! DEC !HX! DEC THX! DEC 'HX! DEC!HX!DEC!
b e e e e e e e e e e e E — — — — ——— — —— e ——_—_——_———————— !
'0 o'n 0'0 0'0 0'0 0'0o 0!
11 1,048,576!1 65,536!'1 4,096!1 256!1 1611 1!
'2 2,097,152!2 131,072!2 8,192!2 51212 322 2!
'3 3,145,728!3 196,608!3 12,288!3 768!3 48'3 3!
4 4,194,304!'4 262,144!4 16,3844 1,024!4 B64'4 4!
15 5,242,880!5 327,680!'5 20,480!'5 1,280!5 80!5 5!
' 6,291,456'6 393,216!6 24,576'6 1,536!6 96!'6 6!
17 7,340,032!'7 458,757 28,672!7 1,792!7 11217 7!
'8 8,388,608!'8 524,288!'8 32,768!8 2,048'8 128!'8 8!
'9 9,437,184!9 589,824!9 36,864!9 2,30419 144'9 9!
'A 10,485,760!A 655, 360!'A 40,960!A 2,560!'A 160! A 10!
'B 11,534,336!'B 720,896!B 45,056!8B 2,8161!B 176'B 111
'C 12,582,912!C 786,432!C 49,152!'C 3,072!C 192'C 12!
'D 13,631,488!D 851,968!0 53,248!D 3,328!'0 208!D 13!
'E 14,680,064!E 917,504'E 57,344'E 3,584!'E 224!'E 14!
'F 15,728,640'F 983,040!F 61,440!F 3,840!'F 240!'F 151
HX=hexadecimal DEC=decimal
POWERS OF 2 POWERS OF 16

! x ! ! x !
! 2 x ! ! 16 x !
R g e ! e e e !
! 1 0! ! 1 o !
! 2 11 ! 16 1!
! 4 2 ! ! 256 2 !
! 8 3! ! 4,096 3!
! 16 4 ! ! 65,536 4 !
! 32 5 ! ! 1,048,576 5 1
! 64 6 ! ! 16,777,216 B !
! 128 7 ! ! 268,435, 456 7 !
! 256 8 ! ! 4,294,967,296 8 !
! 512 g9 ! ! 68,719,476,736 9 !
! 1024 10 ! ! 1,099,511,627,776 10 !
! 2048 11 ! ! 17,592, 186,044,416 11 !
! 4096 12 ! ! 281,474,976, 710,656 12 1
! 8192 13 ! ! 4,503,599,627,370,496 13 !
! 16,384 14 ! ! 72,057,594,037,927,936 14 !
! 32,768 15 ! !' 1,152,921,504,606, 846,976 15 !
! 65,536 16 ! ! !
! 131,072 17 ! ! !

20

AFPPENDIX B

AFFENDI X =

- - - = - - - - x x x as #°¢(M) 140

- - - = - - - - - - - 19 d0ON
- - - = - - x - X x x ot g 93N
- - - - - - - - - - - ot (M) ‘9 AdW
- - - - - x - - x x x £e (9)*a gA0NW
- - - - - - - - x x x ce (a)‘a ADW
- - - = - - - - - - - pE # Idmn
X X X X - - - - - - - vE # IWIN
- - - - = - - - XX x €€ #(M) I
- - - - - e - - - - - gt uoIssaJddxa dar
- - - - - - - 3 - - - 9t uorTssaJddxa J0r
- - - - - - 9 - - - - ap uorssaJddxa ONIC
- - - - - - - - 3 - - gt uoIssaddxa aNr
- - - = - - - 3 - - - 91 UoTssaJddxa aNr
- - - - - - - - - - - vt voTssaJddxa dir
- - m - - - - - ol 7 - gt uorssaJddxs 1r
- - - = - - - - ol - 3 gt uorTssaJddxa 3I7r
- - - - - - - el - q gt voIssaJddxa ar
- - - = - - - - 3 - 3 gt uoIssaJddxs Jur
- - - - - - - - 3 - 3 9t uorTssaadxa HIr
- - - = - - - - - 3 - gt uorssaJddxa Lar
- - - = - - - - e - - gt uorssaddxa D3r
- - - - - - - - x x x €9 g ANI
- - - = - - X X x x X ot g 1ONI
- - - - - - X X x X x 6€ 9 IONT
JSep U] X d40 A0 2 b3 <v <7 abey Jewaqod DTUOWSUNW

sBe14 sn3ejg

(PanNUT3UOD) 135S NOILONY1ISNI 0066SWL 3HL

APPENDIX B

204

AFFENDIX B

- - - - - - - - X x X os (M) ‘g H0X
- - - - - - - - - - - LE (M) ‘g dax
X X X X X x X X x x x =174 9 X
- - = - - x - - x x x gg (8) ‘9 g0zs
- - - - - - - - x x x 55 (9) ‘9 JZs
- - - = - - - - - - - gE 9 gdMS
- - - - - - - - - - - tE M dMl1s
- - - _ - - - - - - - e M 181S
- - - - - - x x x x 65 # (M) ods
- - - - - - - x x x x 65 # (M) S
- - - - - - X x x x S #(m) VHS
- - - - - x - - x x x (=Y~ (a)‘a g0208s
- - - - - - - - X X b s 3} aas
- - - - - - X X p% % x S #(M) Vs
- - - - - - -~ vS) 0L13s
- - - - x X % x x x Lt (9)°g as
- - - - - - X X X x x v (9)‘o S
X X X X X x x X x x x v dM1ld
e - - - - - - - - - 29 14
MSeW 3Ul X 40 A0 D b3 <V <1 abey Jewdo 4 O TUDWAUK

sBeT14 snjejg

(penuT3UOD) 138

NOILIONHLISNI 0066SWL 3HL

THE ASSEMBLER DIRECTIVE

APPENDIX B 205

AFFENDI X O

COMMAND SET

The following table summarizes the Editor/Assembler director
set. These directives are in alphabetical order. For each
directive is shown the general assembler format. The page number
given refers to where in the book the directive is described,
parentheses indicate where the directive is descriked when
referring to source code created using the mini memory module.

DIRECTIVE COMMAND SET

Mhemonic Format Page #
AORG word[expression] 67(138)
BES word[expression] 68
BSS word[expression] 67(138)
BYTE exp,exp...expression 70
COPY "File-name" 72
DATA exp,exp...expression 70(138)
DEF symbol,symbol...symbol 72
DORG expression 67
END Symbol 73(141)
EQU expression 69(138)
EVEN 68
IDT 74
LIST 74
PAGE 75
REF symbol,symbol...symbol 72
RORG expression 657
SYM (139)
TEXT 'string' 71(138)
TITL 'string' 75
UNL 74
X0P Symbol, term 73

APPENDIX D 207

AFPFFENDI X D

This appendix contains a few source code listings that may be of
interest. These examples are of short game program modules that
you can incorporate into your programs. Where possible, The BASIC
version of the program is presented for comparison purposes.

The first program module sets a red ball-shaped sprite in motion
only when the joystick is moved. The border color is black but the
main screen is left uncolored (light green is the default color).

10 CALL CLEAR

20 CALL CHAR(80,"3IC7EFFFFFFFF7E3C")
30 CALL SPRITE(#1,80,9,100,100)

40 CALL JOYST(1,X,Y)

50 CALL MOTION(#1,-Y*4,X%*4)

60 GOTO 40

Notice that the source code listing for the same program is much
longer. This allows you much greater flexability, but the price is
much more time spent programming.

DEF SPRITE
REF VMBEW,VWTR,KSCAN
*
Jov1 EYTE 4,0
Joy?2 EYTE 4,4
JOYZ BYTE 0,4
Jov4 EYTE ~4,4
Jovs EYTE ~4,0
Jovs BYTE -4,-4

Jovyz BYTE ©,-4

Jjovs EYTE 4,-4

ONE EYTE 1
EVEN

*

Jovy EQU *B376

EBOARD EQU »8374

NUME EQU *837A

SATAR EQU *Q300

SDTAR EGU *0400

SMTAR EQU »0780

*

BALL DATA »3C7E, *FFFF, :FFFF, »7E3C

SDATA DATA »70D0, >8008
DATA »DO0OO

*

SFO DATA 0000, 0000

*

208

MYREG
SPRITE

LOOP

LOOFP1

BSS
LWPI
LI
LI
LI
BLWF

LI
LI
LI
BLWP
LI
SLA
MOVE

LI
BLWF

MOVE
LI
LI
LI
BLWF
LIMI
LIMI
BLWF
MOV
JEQ
JEO
JEO
JEO
JER
JER
JEQ

JEQ

APPENDIX D

»20
MYREG

RO ,SDTAR
R1,BALL
rR2,8
aVMBEW

RO, SATAR
R1,SDATA
RZ,8
@VMEW

R1,1
R1,8
K1, @NUME

RO, 20701
@UWTR

@ONE , @EOARD

RO, SMTAR
R1,5FD
R2,4
@vVMBEW

2
O

@K SCAN
@J0YY,@JOYY
LOOF

@JIDYY,@J0Y1
M1
@JOYY,@JOYD
M2
@JOYY,@IOYI
Mz
@JI0YY,@JOY4
M4
@JOYY,eJOYS
MS
@JOYY,@I0Y6
Mb
@JIDYY,@JOY7
M7

M1
M2
M3
M4
M5
M6
M7

*
CHANGE

The last program worked well enough but it went about it the
Using a little ingenuity we can considerably
The source listing that follows

long way around.
shorthen the above program.

LI
E
LI
E
LI
=
LI
R
LI
E
LI
E
LI
B
LI

LI
LI
BLWF

=
END

R1,J0Y6
@CHANGE
R1,J0YS
@CHANGE
R1,J0Y4
@CHANGE
R1,JOY3
@CHANGE
R1,JOY2
@CHANGE
R1,JOY1
@CHANGE
R1,J0Y8
@CHANGE
R1,J0Y7

RO , SMTAR
R2,2

@VMEW

@L00P1

APPENDIX D

209

accomplishes the same task as the last program, only it has been

shortened with some programming tricks.

*

ONE
ZERD
*
Joyy
KBOARD
NUME
SATAR
SDTAR
SMTAER
*
BALL
SDATA

*

SPO
*

DEF
REF

BYTE
BYTE

EGQU
EQU
EQU
EQU
EQU
EQU

DATA
DATA
DATA

DATA

SFRITE

VMEW, VWTR , KSCAN

2
o<

8376
*BI74
*BA7A
>QZ00
*>0400
0780

*3CTE, *FFFF , sFFFF , *7E3C
>70D0, >8008

»0000

»0000 , *0000

210

MYREG
SPRIT

LOOF

LOOF1

*
50
CHANG

APPENDIX D

ESS
E LWFI
LI
LI
LI
BLWP

LI
LI
LI
BLWF

LI
SLA
MOVE

LI
LI
LI
BLWF

LIMI
LIMI
BLWF
MOV
JEB
CE
JEG
MOVE
NEG
MOVE
LI
JMF

LI

E LI
LI
BLUWF

END

=20
MYREG
RO, SDTAR
R1,EBALL
RZ,8
@VMEW

RO, SATAR
R1,SDATA
R2,8
@VMEW

Ri,1
Ri,8
R1, @NUME

RO, SMTAR
R1,SFO
R2,4
@VMEW

2
Q

@HSCAN
@JOYY,@IOYY
LOOP
@JOYY,@ZERD
G0
@JIOY+1 , @RS
@JIDYY

RS, @J0YY+1
R1,JOYY
CHANGE

R1,J0YY
RO, SMTAR
R, 2

@VMEW

@L.00F1

APFPENDIX D 211

The last two programs can be loaded via the LOAD AND RUN option
of the Editor/Assembler and run by typing in SPRITE in response to
the FROGRAM NAME? prompt. In order to run these programs using the
Mini Memory module you must:

1. Alter the length of all LAREL fields to two
characters.

2. Use appropriate address instead of symbols for the
utility programs.

3. Enter the program name and starting point into the
REF/DEF table (refer to page 145).

The third program in this series illustrates additive motion.
The longer you hold the joystick in one direction, the faster your
sprite will move (here a red ball again'!) To stop the sprite vou
will have to cancel out the motion by holding the joystick in the
opposite direction to "brake" the sprite. This module lends itself
well to incorporation of "space games" where you have to simul ate
the abscence of gravity.

10 CALL CLEAR

20 CALL SCREEN(2)

30 CALL CHAR (128, "3C7EFFFFFFFF7E3C")
40 CALL SPRITE(#1,128,9,100,100)

50 CALL JOYST(1,C,R)

60 X=(X+C) %~ (ABS (X) <124)

70 Y=(Y-R) #- (AES (Y)<124)

80 CALL MOTION(#1,Y,X)

NOTE: A direct translation of line 60 is:
IF THE ARSOLUTE VALUE OF X<124 THEN X=X+C ELSE X=0

The following program is the assembly language version of the
above program. Note how the "CALL SCREEN" code was added.

DEF SPRITE
REF VMBW, VWTR , ESCAN, VSEW

*

JOY1 EYTE 4,0
Jovz EYTE 4,4
JOY3 EYTE 0,4

JoY4 EYTE -4,4

Jovs EYTE -4,0

JOY6 EYTE -4,-4

Jovy7 BYTE ©,-4

Joys EYTE 4,-4

ONE BYTE 1
EVEN

LOOP1

Ur

UFRT

RIGHT

DNRT

DOWN

DNLT

LEFT

UPLT

*
ADJUST

LIMI
LIMI
BLWP
MOV
JER

C
JEQ
C
JER
C
JER
C
JEQ
C
JEG
C
JEQ
C
JEQ
C
JEO
JMF

DECT
R
DECT
INCT
B
INCT
R
INCT
INCT
B
INCT
R
INCT
DECT
=}
DECT
B
DECT
DECT

LI
MOVE
BLWF

LI
MOVE
BLWF
2
END

2
<

Q

@KSCAN
@JOYY,®@I0YY
LOOP1

@JOoYY ,@J0Y1
UF

@JIOYY ,@J0Y3
RIGHT
@JOYY,@IDYS
DOWN
@JovYY,@J0Y7
LEFT
@JOYY,@IDY2
UFRT
@J0YY,®IOY4
DNRT

@JOYY ,@J0ovYé
DNLT
@JoYY,@Joys
UPLT

LOOF1

RS
@®ADJUST
RS
Ré6
@ADJUST
Ré
@ADJUST
RS
Ré6
E@ADJUST
RS
@ADJUST
RS
Ré
@ADJUST
Ré6
@ADJUST
RS
R&

RO, SMTAE
RS,R1
@VSEW

RC,SMTAER+1
R6,R1
@VSEW
LOOP

APPEDIX D

213

214 APPENDIX D

This next program will illustrate the double-size and
m,agnified sprite concept. When the program is run the sprite (a
red ball) is standard sized and in motion across the screen. When
any key is pressed the sprite is doublesized. When a key is
pressed again the sprite is magnified. Finally, a third press of a
key will make the sprite double-sized and magnified. Subsequent
pressings of a key will repeat the cycle.

DEF SPRITE
REF VMEW, VSER,VSEW, KSBCAN, VWTR

*
KBOARD EQU 8379
SEEY EQU 8374
SATAR EQU 0300
SDATA EQU 0400
*

BALL DATA =3C7E, *FFFF, >FFFF, *7E3C
SDATA DATA »7080, >8008

*
STATUS EQU »B37C
SET DATA 32000
MYREG EBSS »20
*
SPRITE LWPI MYREG
LI 3,4
LI RO ,SDTAR
START LI Ri,BALL
LI RZ,8
BLWF @UMBW
AT RO,8
DEC R3
JNE START
*
LI RO, SATAE
LI R1,SDATA
LI R2,6
BLWF @VMEW
*
LOOF LI RO, SATAR+1
READ BLWP @VSBR
SRL R1,8
DEC R1
JNE MOVE
LI R, =00FF
*

MOVE SLA K1,8
BLWP @VSEW

CLR r8
DEL.AY INC R8
CI RrR8,800

JNE DELAY

AFPPENDIX D 215

ouT CLR @K BOARD
BLWP @KSCAN
MOV @sTATUS,R3
coc @SET,R3

JNE LOOF
*
CHECE: INC Ré
CI R&6,4
JLT GO
CLR Ré
*
GO CI R&6,1
JEQ MAG
CI R&,2
JEQ DSIZE
CI R&,3
JER DSIZEM
*
SMALL LI RO, *01EQ Can you sum
JMP WRITE all this code
MAG LI RO, *O1E1L into a two
JMF WRITE line
LI RO, >O01E2 statement”?
JMP WRITE
DSIZEM LI RO, »01E3

JMF WRITE
*
WRITE BLWFP @VWTR
B @ 00F
END

The next program places six red ball-shaped characters (not
sprites) on the screen in a diagonal pattern. The screen is then
scrolled upwards. This type of motion is familiar to anybody who
has played the Alpiner game from TI. In oreder to run this program
you must type GRAFPH in response to the PROGRAM NAME? prompt.

DEF GRAFH
REF VSBW,VMEW,VMER
*
BALL DATA »>3C7E, *FFFF, *FFFF, »7E3C
COLOR DATA »B100
*
COLTAE EQU »0384
PATTAE EQU >0908
*
MYREG BSS 20
*
BRAFH LWFI MYREG
LI RO,COLTABE

APPENDIX E 219

AFFENDI X E

INFUT A OUTFUT ERROR CODES

Error code Meaning
Q Rad device name.
1 Device is write protected.

LN]

Bad open attribute.

1. incorrect file type.

2. incorrect record length

Z. incorrect I1/0 mode

4. no records in relative record file
Illegal operation.

1. conflict with OFEN attributes

2. peripheral does not support operation

(%]

4 Out of buffer space on device.

o

Attempt to read past end of file. File is closed.
) Device error. Mechanical or medium failure.

l 7 File error.
1. program/data mismatch
2. openning non-existing file in INPUT

220 AFPENDIX F

AFPFENDI X F

EXECUTION—TIMNME ERRORS

This table lists errors that may be generated when you attempt
to run your program.

Error code Meaning
00-07 Input/Output error

08 MEMORY FULL
09 INCORRECT STATEMENT
OA ILLEGAL TAG
OB CHECKSUM ERROR .
oc DUPLICATE DEFINITION
oD UNRESOLVED REFERENCE
OF INCORRECT STATEMENT
OF FROGRAM NOT FOUND
10 INCORRECT STATEMENT
11 BAD NAME
12 CAN'T CONTINUE
13 BAD VALUE
14 NUMBRER TOO RIG
15 STRING-NUMBER MISMATCH
16 BAD ARGUEMENT
17 BAD SUBRSCRIPT
18 NAME CONFLICT
19 CAN'T DO THAT
1A BAD LINE NUMBRER
iB FOR-NEXT ERROR
iC Input/Output error
1D FILE ERROR
1E INPUT ERROR
iF DATA ERROR
2 LINE TOO LONG
2 MEMORY FULL

22-FF Unknown error code

o conae e e e e e o b $1eeb o e e bl e oo e P ek e P e Wik e $rebe S ke TP bbus SRS o S P00 R SoS4Y D GHLSe S0 SeAD POVt AR SHNS Seies FALR ST S4A S0S4e LA AP PSS SIS S ALES e Frdl e S5058 S0t o S Smire Tt it S Seve

STUDY EXERCISES 221

ANSWERS TO CHAFTER QUEST IORNS

R

CH&aFTER 2

a) 1111

b) 0001 1000

c) 0111 0101 1010 1001
d) 1101 0111 1111 0110

a) 4
b) 9453

a) =F
b) *18
c) F73A9
d) »D7Fé
ay 7220
by 7220
CHAaRFTER =
Assembler program
Sixteen
Overflow bit (0OF)
a) Label field, Comment field, Operand field
b) (%) asterisk
c) Op-code field (operation code)
Assembler directives give instructions to the assembler
program as to what to do with program instructions while
the program instructions make up the actual object code.

NO (G is not a HEX character)

Op—-code field (operation code)

CHAFTER <

* R3 CONTAINS VALUE
MOV R3,R4
S5LA RI,2
SLA R4,3
A RZ,R4

Workspace Register 11 (R11)

222 STUDY EXERCISES

Z. 256 bytes (>»100)
4. Conditional jump instructions
S5. Return (RT)

6. a) WR,WR-indirect
b) WR-autoincrement,WR
c) Symbolic,Symbolic
d) WR,Indexed

CHAFTER S

1. a) No such instruction as ‘AND’
b)Y No such instruction as ‘0OR’
c) »3756
d) »126C
e) »48ES8

2. It is an endless loop because R3 is constantly re-loaded
and never will be equal to zero.

3. SAVE DATA »0000
MOV R3,@SAVE

4. Nothing, MPY requires two operands.

CHAFRFTER &

1. LI RO, *1000
LI Ri, »2200
ELWF @VSEW

2. No key has been pressed.

3. MOVE >01, *8374

CHAaFTER 7

1. REF VTR
L1 RO, *O1E8
ELWP EVWTR

2. REF VWTR
L1 RO, >0 1ER

BLWF @VWTR

8TUDY EXERCISES 223

Change the value of VDP register 1 to »>01.

Review pages 117 to 125,

The computer views the screen as a series of memory
locations in VDP RAM numbered >000 through »>767.

Flace the entry point of the program in a END directive.
The program will begin running as soon as it is entered.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219

