
PERSONAL COMPUTER
NEWS ISSUE 26 1st
September 1983

TEXT FROM ARCHIVE.ORG
-
Originally full of OCR errors,
corrected as far as possible.

TI TRANSFORMATIONS

Stephen Shaw details the
pleasures and pitfalls of making
your TI programs rewrite
themselves.

Self-writing TI

The idea of a program which
can change itself is not
particularly new... infact, it is
one of the oldest concepts
around.

However, it has never been
exploited to any major extent,
largely because the received
wisdom in the industry is that
self-modifying programs are a
bad thing. Lest this should
sound autocratic, we should add
that there's a very good reason.

Ordinary common-or-garden
nonmodifying programs are hard
even for the original author to
follow or modify. Imagine trying
to follow one which changes
every time you look at it!

So. enjoy the idea, use it to do
some clever tricks, but take care
not to include the technique in
any programs which you expect
to use for a long time and don’t
wish to be endlessly modifying

=====================

When either the Mini Memory
Module or the Extended Basic
Module plus 32K Extended
Memory are used, it is possible
for TI99/4A owners to examine
the storage of their programs in
the computer's memory.

The T199/4A stores program
lines on a stack principle. As
each line is entered, regardless
of its line number, it is placed at
the top of the stack. When a
program line is edited, the old
line is removed, the stack is
adjusted, and the new line added
to the top, hence the delay
before the cursor reappears. The
computer is changing the
memory locations of every line
above the edited line, and
changing the line index which it
uses to point to the lines, and
which is stored at the very top of
the program stack in line
number order.

If no disk controller is attached,
users may find their TI Basic
programs in VDP RAM. The
first line entered will end at
address 16383. and each
subsequent line entered will end
at a lower address.

With Extended Basic (Vn 100)
and 32K RAM. programs are
stored from CPU RAM address
-25. each subsequent line having
a more negative address. A
handful of Extended Basic
Version 110 modules have been
sold in the UK. With these,
programs start from CPU
address 0 (zero).

Programs are stored in coded
format, with single byte codes

for the command words, using
ASCII codes 129 to 254. This is
why users may not define 255
characters. Internally an offset
is used to make ASCII 32
(space) appear to be a code 0,
and ASCII 159 appear to be a
code 127, for screen printing
purposes.

In program storage the offset is
not used and characters appear
as having their proper coding.

Enter this program, in this order:

100 REM PCN
110 A=B+2
120 C$=D$&“E”

In Extended Basic, in command
mode, enter the following line
(NB: no line number!):

FOR T=-25 TO -51 STEP -1
:: CALL PEEK(T,A) ::
PRINT T;A;CHRS(A) :: NEXT
T
[UPDATED: Using XB Vn 110
use for T=0 TO -26 STEP
-1]

When you press ENTER the
computer will display the short
three line program by showing
the memory location, the value
in that location, and the
equivalent character (if
appropriate).

Without 32K RAM the program
is stored in VDP RAM and
Extended Basic does not allow
you access to this area of
memory.

With mini memory, the
command mode section must be
added to the program, using
locations from 16383 to 16356.
Note that in TI Basic the storage

format is slightly different,
although the same codes are
used, eg in TI Basic a space is
inserted on both sides of the
REM PCN. For mini memory,
use PEEKV instead of PEEK.

A list of the command codes is
given in figure I. They are fairly
straightforward, except the way
in which fixed values are stored.
NUMBERS and UNQUOTED
STRINGS are identified by code
200. This is followed by the
number of digits or characters
involved, and then the number
or the characters themselves.

An example of an unquoted
string is the name given to a
subprogram. CALL COLOR for
instance uses one byte for CALL
but COLOR takes up 7 bytes —
5 for the word and one each to
identify the unquoted string and
to indicate its length. This is
why you cannot use CALL
SUB$: SUB$ is a quoted string.
Ouoted strings are identified by
code 199. and follow the same
format — one byte is used for
the length of the string.

LINE NUMBERS when they
appear in a program (eg GOTO
123) are identified by code 201.
and the actual line number then
takes up just two bytes,
whatever number it is. If the first
byte is A and the second byte is
B, the line number is:

LINE NUMBER = A times 255
plus B.
Byte B has a maximum value of
127. and byte A a maximum
value of 255, giving a maximum
line number of 32767.

It is possible by entering short
programs such as the above to
obtain a good understanding of
how the computer stores its
programs.

As you have the capacity to
change the contents of CPU
RAM with Extended Basic
(CALL LOAD) or VDP RAM
with Mini Memory (POKEV). it
becomes possible for a program
to almost completely rewrite
itself.

In Extended Basic, add to the
short program above the
following line:

130 CALL INIT:: CALL
LOAD(-28,77,65,71)
 (XB Vn 100)

Before you RUN the amended
program. LIST it. Now ENTER
RUN and LIST again. Notice
any change?

When changing a line in a
program in this manner, there
are two important precautions:

1. The line, and any lines below
it in the program stack, must not
be edited. Otherwise when you
change the contents of memory
locations, you won't be changing
the line you thought you were! It
is possible to look up the line's
memory location in the line
index before the program
rewrites the line, but it is much
easier to ensure that the line(s)
to be rewritten are at the bottom
of the stack. If only one line is to
be edited, enter it first With a
middle value line number:

10000 REM PCN

Now you may enter lines on
either side, and edit them, and
the location of that (first
entered) line will not alter. You
may also RESEQUENCE
without causing any problems.

2. The length of the line is the
first byte in the line, and it is
probably not possible to rewrite
a line with a different length.

In Extended Basic this is not too
much of a problem: the initial
line can terminate with a tail
REM (!) and a long false REM.
When rewritten you merely
ensure that the overwriting
terminates with a tail REM
(code 131) and a space (code
32). then the rest of the line
remains as a dummy REM.

In TI Basic it is usually
necessary to keep the line length
the same, but some commands
do permit dummy endings. This
is a matter for experimentation.

What use is this facility? I have
programs in TI Basic and
Extended Basic which permit
pseudo high resolution pictures
to be drawn by redefining
characters. When completed the
computer scans the screen and
rewrites the program by
dumping the definitions and
positions of the characters to
defining lines. When the
overwritten program is re-run,
the sketch appears quite quickly.

Another use is to create
commands TI do not give you.

A popular use is to enable a
generalised disk directory to be
added to each disk.

When Extended Basic is
selected, the automatic directory,
on the disk as LOAD, is loaded
and RUN automatically.

It then reads the disk index and
presents you with a menu. The
menu selection is then
automatically run. Extended
Basic will permit the program
line:
100 RUN “DSK1.GAME"
but not:
100 RUN “DSK1."&A$
There seems to be no reason for
this not to be accepted, except
that it gives an error message
SYNTAX ERROR

Therefore the rewrite facility is
used to CALL LOAD the
required line into memory, one
byte at a time, so that the
computer sees the line as RUN
"DSK1.GAME", exactly as it
wants to see it. In this case,
because the disk file names are
not of fixed length, a value of
zero was placed in the unused
dummy line positions. Zero
marks end of line and prevents
crashes.

It is possible with this facility to
insert your own (if limited) VAL
function, to permit for example
the INPUT of a fraction in the
form 3/4.

First you need a dummy line:
10000 A = AAAAAAAAAA +
AAAAA
AAAAA+AAAAAAAAAA
If this is the first line input it is
fairly simple to find the
locations of each character in the
line, as they are stored in
memory.

Your input will be to a string
variable: INPUT “FRACTION":
A$ then you must split this up
into its three parts and place
them into the DEF line.

Use a loop and SEG$ to
determine the location of the
oblique "/". This will enable you
to determine each part of the
string.

Following the equal sign in the
DEF statement you will need
code 200, then a value equal to
the number of digits in the first
number (use LEN and SEG$).
Then place the number using the
ASCII codes for each digit.
Then follows code 196 (/), code
200, and the length of the
second number, then the digits
in ASCII code.

Finally, so that the excess AAA’s
have no effect, in Extended
Basic load the aides 131 and 32,
or in TI Basic load the codes
193 (+) and two 65’s (A).

Provided your program does not
use variables made up of several
AAA's, these have a zero value
and no effect.
To quickly see a final result,
clear your computer and enter:
 1000 A-
45/788+AA+AAAAAA+
AAAAA

Now see how that is stored,
using the methods described
above.

After you have entered your
fraction. and CALL LOADed
(orPOKEV'd) it into memory,
you may refer to the fraction in
your program by GOSUBbing to
1000 to set the value of A.

If the line is to be used more
 than once, it should be restored
to its original state between each
use, by CALL LOADing the
original values.

The ability to change a program
in this way opens a powerful
and useful door for TI99/4A
owners, who are no longer quite
as limited as they may have
thought.

It is possible for a 13K program
to almost completely overwrite
itself — only the last line needs
to be unaltered, to prevent a
crash during overwriting.

Note the use of CALL LOAD
above. You may load a line fully
with only one command, and in
the correct order. When using
Mini Memory CALL INIT is not
used.

Figure 1
see image

■ Many codes are not accepted
by the TI Basic interpreter,
■ Some code* (mariied NK) an
not accepted in Extended
Basic.■ Codes may be used
slightly differentty by TI Basic
to Extended Basic. The
computer adjusts storage format
If a program saved in TI Basic is
loaded with Extended Basic and
vice versa.

