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PART 1: Electrical Signals, Number Systems & CPU Architecture 

I f you're a reader of 99'er Home Computer Magazine, 
you are probably aware that there is a difference be-
tween 8-bit and 16-bit computers . . . although just 

exactly what that difference is—other than "16 bits are 
twice as many as 8 bits"—might not be that obvious. My 
purpose in this series of articles is, therefore, to discuss 
the inner workings of your 16-bit computer by gradually 
introducing you to its operation and low-level program-
ming in a language much closer to the way your com-
puter operates without any BASIC interpreter slowing 
things down, or coming between you and the power of 
your machine. 

The heart of any computer is its microprocessor, and 
the one we'll be examining is, naturally enough, the Texas 
Instruments TMS9900—the 16-bit chip around which this 
magazine is organized. To understand its operation, we 
first have to know something about electrical signals and 
number systems, so let's begin our discussion here. 

Clocks, Pulses, Bits & Bytes 
The electrical signals used by a computer are labeled 

high and low, or 1 and 0, respectively. One of these 
signals is called a bit. Inside the computer this cor-
responds to one wire. All of the wires together are called 
a bus. The computer reads and writes a part of the bus 
called the data bus at specific intervals, which are 
regulated by a clock. The signals that the clock produces 
to tell the computer when to read and write are called 
clock pulses. 

#1 	 *2 	*3 	*4 

1 	1 	I 	1 	1 	1 	I 	1 

---I– – 	 111 	1E  
HIGH 

L"  

1 0 1 	 1 I 
	

DATA RECEIVED 

2 SIGNAL LINES 
READ TOGETHER 

1 0 I 	11 I 	DATA RECEIVED 

At each pulse of the clock, the computer reads a group 
of lines. Your normal, run-of-the-mill microcomputer 
uses groups of 4,8,or 16 bits. All the information read 
or written is called data. If the computer is reading or 
writing on 1 line, the data is called serial. If it is reading 
or writing on a group of lines together, the data is called 
parallel. 4 bits in parallel are called a nybble; 8 are a byte; 
and 16 has no name, but I propose to call it a gobbyl. 

Look at Chart 1. The top line is the clock. In this ex-
ample when the pulse is high, the computer reads the 
signal lines. Notice that when there is only one signal line, 
the data received can be only a 1 (when the line is high) 
or a 0 (when the line is low). There are only two possible 
codes you could see during one clock pulse. You would 
see a 1 or a 0. 

Now look at what happens when you have two signal 
lines grouped together: 4 different codes are possible. On 
clock pulse #1 both lines are low (code 00); on pulse #2 
the bottom line is low and the top one is high (code 01); 
pulse #3 has the bottom high and the top low (codel0); 
and pulse #4 has both lines high (code 11). 
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Number Systems 
These codes could also be considered numbers. Count-

ing with only 0's and l's is called binary (from the Latin 
word for two) or base two counting. Ordinary, plain, 
vanilla numbers that we use everyday that are called 
decimal (from the Latin for ten, of course) or base ten 
numbers. Even though we have only the ten digits from 
0 to 9, we can make very large numbers by using the same 
digits in different positions. Follow along on chart 2. 

The position on the extreme right in a decimal number 
is the ones column. For that matter, the position on the 
extreme right in any base is the ones column. Why? 
Because you find the column value by taking the number 
of digits you have and raising it to the power of column 
minus one. For example, if you have ten digits, and the 
column is number 1 (from the right), then the value of 
that column is 10 to the 1 minus 1, or 10 to the 0 power. 
Any number to the 0 power is 1, so the first column is 
always ones in any base. 

The second column is a different matter. In base ten 
it is 10 to the 2 minus 1, or 10 to the 1st power, or 10. 
So if you write 14 what you mean is 4 groups of ones 
and 1 group of tens. In base two the second column (from 
the right) would be 2 to the 2 minus 1, or 2 to the 1st, 
or 2. The second column or position in binary is the twos 
column. 

The thing that makes the zero so neat is that it holds 
the position without giving it a value. Zero ones is zero! 
If you just left a blank there, people would have to write 
all their numbers in little boxes or pretty soon the col-
umns would get all jumbled up. Is there one blank or 
two? . . .or three?? Better use the zero. 

The columns in binary numbers are just like the signal 
lines in a computer. In theory, the columns go on 
forever—and so do the numbers. Regardless of the base 
you are in, you can keep writing numbers forever! But 
wait! I just said that signal lines are usually groups of 
4, 8, or 16. If signal lines are the same as columns, then 
there is a limit to the size of number a computer can 
understand. How big is the biggest number you can use? 

To find out, raise the base to the same power as the 
number of positions you have. On chart 1 when we used 
two lines, that was 2 to the 2nd power, or 4 codes or 
numbers. With 4 lines, there are 16 (2 to the 4th); with 
8 there are 256; and with 16 lines there are 65536. 

The last code on the chart is 1111, which in decimal 
is 15. I said you could get 16 numbers with four lines, 
so where is the last number? Don't forget to count 0! 0 
through 15 is sixteen numbers, 0 through 255 is 256 
numbers, and so on. 

There are other bases, or course. The numbers marked 
hexadecimal are from a base with 16 digits—the normal 
10 digits from 0 to 9, plus the letters A to F. Use them 
just like any other digits. For instance, on the chart, 1111 
binary is 15 decimal and F in hexadecimal (hex for short). 
The next number in hex is 10; in decimal it is 16; and 
in binary you have to add a new position (sixteens) and 
write 10000. 

You can always add as many zeros to the front of a 
number as you want without changing it. However, if you 
make a binary number divisible into groups of four, an 
interesting thing happens: Each group of four can repre-
sent 16 codes or numbers. Since that is exactly the number  

of digits in the hex number system, you can substitute! 
This makes long binary numbers much easier to read, and 
doesn't change their values at all. 

Try a few yourself. They're easy! 
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Hardware 
The TMS9900 is called a 16-bit CPU (Central Proces-

sing Unit). This means that when it fetches an instruc-
tion from memory, it gets 16 bits in parallel. And when 
it reads or writes data this is usually done in groups of 
16 bits too. [In the TI-99/4A, however, this 16-bit group 
is converted into an 8-bit data bus.—Ed.] You may hear 
the term word used for 16 bits. If you are talking about 
a 16-bit machine, the term is correct. But remember, if 
you are talking about an 8-bit CPU, 8 bits (or byte) is 
a word; if the CPU is 32 bits, the word is 32 bits. 

It is necessary for a programmer to know about only 
two kinds of memory. Random-access memory (RAM), 
sometimes called read/write memory, is what stores the 
user's program, data, etc. The user or the computer can 
read or write in it. The memory location is chosen by the 
lines on the bus called address lines. The data that is be-
ing read or written appears on the data bus. 

Read-only memory (ROM) comes in many varieties 
and works just like RAM except for one thing—it can't 
be written to. If you tell the computer to write, it will 
go through the motions of writing, but it doesn't work. 
The old data is still there. 

Inside the CPU there are a few memory locations that 
are not addressed by the address bus. The chip itself 
knows where they are. These are called registers. All 
machine language and assembly language programming 
involves manipulating the data in these registers, because 
that is all that the computer really can do! 

How many registers there are and how big they are 
varies widely. The chip manufacturer usually labels the 
registers and decides on a short code, called an opera-
tion code (op-code), for each of the manipulations that 
the chip can do. An assembler is a program that reads 
these op-codes and writes them into memory in the binary 
form that the CPU understands. When you write a pro-
gram using the op-codes, you are writing in assembly 
language. If you write your own assembler you can devise 
your own op-codes. But because the manufacturer 
generally writes an assembler for his chip, you can use 
his op-codes. 

About the only thing all CPUs have in common is a 
register called the Program Counter (PC). The address 
bus is just an extension of the PC. Each bit of the pro-
gram counter is, in effect, connected to one signal line 
of the address bus. Since the TMS9900 chip was designed 
especially for dedicated control purposes (e.g., produc-
tion lines inspection or phone switching) where the pro- 
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gram is always in ROM—and since at the time most 
ROMs were made for 8-bit computers—the address bus 
of the 9900 is a little unusual. 

The bits of the PC allow the chip to address 65536 
blocks of memory. The blocks could be any size, but as 
1 said, most ROMs were in blocks of 8 because most com-
puters had an 8-bit data bus. The PC in the 9900 has 16 
bits. These are labeled 0-15, from (left to right), most 
significant bit (MSB) to least significant bit (LSB). Why 
are there only 15 address lines? Follow on Chart 4 as we 
go along. 

Normally the PC advances after each instruction or 
parameter it fetches so that it points to the next memory 
byte. But the 9900 needs 16 bits instead of the 8 available 
at each location in most ROMs. So the 9900 has two dif-
ferent fetch cycles: it reads the byte indicated by the PC 
on the first cycle, hooks the next byte to it on the second 
cycle, then increments the PC by two. To the user this 
all appears as one fetch, except that the PC is incremented 
by two instead of by one as expected. By eliminating the 
last bit, however, the address line appears to step nor-
mally. The drawback is that you can address only 32767 
words. It's still 65536 bytes though. 

PART 2: Registers, Programming & The Need For Assemblers 

Status Register 
Almost every CPU has some kind of flag(s). These are 

set (high) and reset (low) by actions performed in the 
manipulations of data. Different instructions affect different 
flags. Modern CPUs combine several flags into a single 
Status Register. The TMS9900 is no exception. Its Status 
Register (ST) is 16 bits long. Bits 7-11 are not used at pres-
ent. The others are shown in the drawing below and are 
explained in the text. 

TMS9900 STATUS REGISTER 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Each of these conditions will be discussed in more detail 
as examples are shown. Until then, these simple descriptions 
will help. 

The four bits labeled 12-15 can select up to 16 interrupt 
levels. All levels equal to or above the level indicated are 
enabled. 

Bit 0 is set after any operation where the destination value 
(answer) is greater than the source (the first operand used; 
it remains unchanged). All 16 bits are used for the 
comparison. 

Bit 1 is similar to bit 0 except that the values are com-
pared as signed integers. The MSB (most significant bit) 
designates the sign of the integer, with a 1 meaning negative 
and a 0 meaning positive. The range is + 32,767 to — 32,768. 

Negative numbers are represented in a two's complement 
fashion. 

Computer math is cyclic. This means that if you add 1 
to the highest possible 16-bit number (FFFF hex), you go 
back to 0000 hex with a carry bit that is set. If you subtract 
1 from 0000 hex without the carry, you get an overflow; 
but if the carry is set, you get FFFF hex. Therefore, — 1 
is FFFF hex in two's complement. To see its usefulness, let's 
add —1 and 1: FP FF hex plus 0001 hex equal 0000, the carry 
is set, and the answer is zero. In a nutshell, this whole 
business of two's complements and carry bits is simply a 
way to subtract by adding. 

Bit 2 is set if the two operands are equal. 
Bit 3 is set if a 1 is shifted out of an operand, or if a carry 

occurs in a math operation. 
Bit 4 is set if the math requested cannot be done. 
Bit 5 is set if the parity is odd, and reset if it is even. Odd 

parity means that there is an odd number of is in the binary 
representation of an operand. 

Bit 6 is set after an extended operation has been com-
pleted. This is done because an interrupt is not checked for 
after completion of an extended operation. (You therefore 
may wish to have the software check for one if this flag 
is set). 

The ALU 
Most CPUs have an Arithmetic/Logic Unit (ALU) where 

the simple math is performed. An accumulator, a special 
register used by the ALU, usually contains the answers to 
the math. In the TMS9900 there is no accumulator because 
the destination address serves as the equivalent of an ac-
cumulator. This means, in effect, that any memory loca-
tion can be the accumulator. There is an ALU on the 
TMS9900 chip, but its operation is intrinsic to the 
instructions. 
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Other Registers 
Most CPUs have a few extra registers where quickly-

eeded values can be stored, as well as a register called a 
Stack Pointer which points to a section of memory where 

ore data can be "piled" and then quickly accessed. These 
two concepts have been combined on the TMS9900 into a 
single Workspace Pointer Register (WP). The WP points 
to a block of 32 bytes of the memory arranged as 16 
workspaces (WS), each 16 bits long. The workspaces are 
synonymous with registers, and are used the same way. We 
can change the WP in several ways and can save the old 
WP when a new one is used. This allows us to return to 
the old one if we need to. This set-up, in effect, acts like 
an elaborate stack. 

There are five different ways to use these WP registers 
to indicate an operand for an instruction. These addressing 
modes are as follows: 

1. Workspace Register Mode 	—the data in the in- 
code 00 
	

dicated register is the 
data used. 

2. Workspace Register Indirect —the data in the 
code 01 
	

register is treated as 
the address of the 
real data. 

3. WS Register Indirect 	—same as above, but 
w/Auto-Increment 
	

the register is in- 
code 11 
	

cremented upon 
completion. 

4. Symbolic or Direct 	—the address of the 
code 10 
	

data follows the in- 
struction in memory. 

5. Indexed 	 —same as above, but 
code 10 
	

the value in the index 
Td or Ts equal 1-15 
	

register is added to 
the address. 

There are three other addressing modes not dealing with 
registers per se: (1) The immediate mode has the data im-
mediately follow the instruction code. In other words, the 
address of the data is the address immediately following the 
PC. (2) The CR U mode has the address of an external in-
put/output (I/O) device determined by bytes 3-12 of register 
12. (3) The JMP instruction (and all variations thereof) uses 
the last 8 bits of the instruction to determine where on a 
256 byte page to jump. The PC indicates the center of the 
page, so the jump can be from PC — 128 to PC + 127. One 
byte is taken up by the jump instruction itself. The 8 bits 
store the relative jump in two's complement form. 

Programming and the Need for Assemblers 
If your CPU is the TMS9900, the simplest computer you 

could construct would be composed of a clock, a CPU, 
some memory, a few control switches, 16 data switches, 16 
lights for read out, and 15 address switches. It would be 
crude and slow to program, but once programmed, it would 
operate as well as any other computer. But how could we 
program it? 

Suppose we wanted to load register 1 with zero, and then 
increment it until its contents were equal to either 1024 
(decimal) or the contents of register 2. The first step can  

be done several ways. Immediately loading register 1 with 
0 comes to mind first. A little investigation of the instruc-
tions for the chip show that we could save a word of memory 
by using the Clear command. Figure 1 shows the register 
format for the various commands, and Figure 2 shows the 
op codes for the instructions. 

Using this information, we can now determine the binary 
values of each word. Load Immediate uses the first 10 bits 
as the op code; the 1 1 th bit is not used; and bits 12-15 select 
the register. This means the first word is 

00000010000X0001, where X can be 1 or 0. 
The second word is the value to load, and in this case would 
be all zeros. 

Using our simplified computer, just flip each switch on 
if there is a 1 at the corresponding bit, off if there is a zero. 
Press the Input control switch (it might be called Load, or 
. . . ), and the instruction is stored in whatever address the 
address switches are set to. Then add 1 to the address switch- 
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to —128 	 Figure 1. 

es (which adds 2 to the PC) and set all the data switches 
to zero. Press Input again, and our complete instruction is 
ready. 

If instead, we use the Clear instruction, we would use the 
single-operand general format with the first 10 bits being 
the op code. The next two bits indicate address mode, and 
the last 4 bits select the register. Since we want to clear the 
register itself (not the word it points to), the code is 00,and 
the whole instruction is 0000010011000001. 

Even with a hex keypad and a small monitor program, 
it would be a very time-consuming process to piece together 
the binary words, and then convert to hex and type them 
in. Typing in 04C1 is easier than setting switches to 

0000010011000001, 
but putting together those op codes is just the tedious, bor-
ing kind of work that computers are supposed to free us 
of. So why not use them for that? 

Why not, indeed. . .That's exactly what we'll do when 
we look at a TMS9900 assembler. 
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Figure 2. 

Mnemonic Op Code Format Status Bits Affected Meaning 

A 1010 0-4 Add words 
AB 1011 0-5 Add bytes 
ABS 0000011101 0-4 Absolute Value 
Al 00000010001 0-4 Add immediate 
ANDI 00000010010 0-2 And immediate 
B 0000010001 -- -- -- Branch 
BL 0000011010 Branch and Link (R11) 
BLWP 0000010000 -- - -- Branch, load WP 
C 1000 0-2 Compare words 
CB 1001 0-2, 5 Compare byte 
CI 00000010100 0-2 Compare immediate 
CKOF 0000001111000000 -- -- - External Control 
CKON 0000001110100000 External Control 
CLR 0000010011 -- -- -- Clear 
COC 001000 2 Compare Ones Corresp. (OR) 
CZC 001001 2 Compare Zero Corresp. (AND) 
DEC 0000011000 0-4 Decrement by one 
DECT 0000011001 0-4 Decrement by two 
DIV 001111 4 Divide 
IDLE 0000001101000000 -- - -- Computer idles 
INC 0000010110 0-4 Increment by one 
INCT 0000010111 0-4 Increment by two 
INV 0000010101 0-2 Invert (complement) 
JEQ 00010011 -- -- -- (ST2=1) Jump if equal 
JGT 00010101 (ST1=1) Jump greater than 
JH 00011011 (STO and ST2=1) Jump high 
JHE 00010100 (STO or ST2=1) Jump high or equal 
JL 00011010 (STO and ST2=0) Jump low 
JLE 00010010 (STO=0 or ST2=1 Jump low or equal 
JLT 00010001 (ST1 and ST2=0) Jump less then 
JMP 00010000 (none checked) Jump unconditionally 
JNC 00010111 (ST3=0) Jump no carry 
JNE 00010110 (ST2=0) Jump not equal 
JNO 00011001 (ST4=0) Jump no overflow 
JOC 00011000 (ST3=1) Jump on carry 
JOP 00011100 -- - - (ST5=1) Jump odd parity 
LDCR 001100 0-2, 5 Load CRU 
LI 00000010000 0-2 Load immediate 
L IMI 00000011000 12-15 Load immed. INT mask 
LREX 0000001111100000 12-15 External control 
LWP I 00000010111 - -- Load immed. WP 
MOV 1100 0-2 Move word 
MOVB 1101 0-2, 5 Move byte 

MPY 001110 - - -- Multiply 

NEG 0000010100 0-4 Negate (2's comp.) 

OR I 00000010011 0-2 OR immediate 

RSET 0000001101100000 12-15 External control 

RTWP 0000001110000000 0-6, 12-15 Return with WP 

S 0110 0-4 Subtract word 

SB 0111 0-5 Subtract byte 

SBO 00011101 -- -- -- Set CRU bit to one 

SBZ 00011110 Set CRU bit to zero 

SETO 0000011100 -- - -- Set ones 

SLA 00001010 0-4 Shift left (0 fill) 

SOC 1110 0-2 Words (OR) Set ones corresp. 

SOCB 1111 0-2, 5 Bytes (OR) Set ones corresn. 

SRA 00001000 0-3 Shift right (MSB fill) 
SRC 00001011 0-3 Shift right circular 
SRL 00001001 0-3 Shift right zero fill 
STCR 001101 0-2, 5 Store from CRU 

STST 00000010110 -- -- - Store ST 

STWP 00000010101 Store WP 
SWPB 0000011011 _ _.... Swap bytes 
SZC 0100 0-2 Words (AND) Set zero corresp. 

SZCB 0101 0-2, 5 Byte (AND) Set zero corresp. 
TB 00011111 2 Test CRU bit 
X 0000010010 Execute 
XOP 001011 

--6-- 
Extended operation 

XOR 001010 0-2 Exclusive OR 
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IT'S SUPER 
LANGUAGE 

PART 1: Fundamentals of Assembly Language 
Programming on the TI-99/4A 

B efore getting into the details of the TI-99/4A 
Editor/Assembler package, we should first consider 
what an assembler is and what it can do for us. Most 

readers are already familiar with the TI BASIC language, 
and many have already experienced the disk-oriented 
features of Extended BASIC. These BASICs are interpreted 
languages. When a BASIC program is being run, the BASIC 
interpreter converts (interprets) the BASIC statements, one 
statement at a time, into machine language—the binary ones 
and zeros that the computer understands. It then executes 
the statement it has just converted. Since a single BASIC 
statement usually generates several machine instructions, 
programs can execute relatively slowly. This is especially true 
in programs containing loops because each statement in a 
loop is interpreted each time it is encountered. 

BASIC programs are simply input and RUN, but pro-
gramming in assembly language involves an extra step which 
is not apparent in BASIC programming—namely the 
assembler stage: Assembly language programs must be in-
put, then assembled and finally RUN. The assembler con-
verts the assembly language statements (or source program) 
to machine language; it is the machine-language (or object) 
program which is RUN. Because there is no waiting for each 
statement to be interpreted at runtime, programs written in 
assembly language run extremely fast. 

Another major difference between BASIC and assembly 
language is the difficulty of writing programs. A BASIC pro-
gram is relatively easy to code because the instructions are 
English-like and the programmer does not have to worry 
about where variables reside in memory or have to under-
stand the structure of the machine. Assembly language pro-
grams, on the other hand, are harder and more time- 

consuming to write because the instructions are machine-
oriented (see "TMS9900 Machine and Assembly Language") 
and the programmer must understand the structure of the 
machine. Debugging assembly language programs is harder, 
too. But these difficulties are not necessarily disadvantages, 
because an understanding of the machine allows a program-
mer to create more efficient programs. Programming in 
assembly language is an education in itself, and is one of the 
best ways to learn how a computer works. 

A programmer must consider these tradeoffs in choos-
ing the best language for each application. In general, 
BASIC is faster to write and debug, but assembly language 
programs execute faster. Happily, TI has made it possible 
to choose both by enabling Extended BASIC programs to 
CALL assembly language subroutines. This means that a 
programmer can write mainly in Extended BASIC and use 
assembly language for portions of the program where faster 
execution is required (loops, and especially, sorts). Writing 
short assembly language subroutines to CALL from Extend-
ed BASIC programs is a good way to ease into assembly 
language programming, and after some practice you may 
find yourself writing entire applications in assembly 
language. 

What follows is a preliminary look at the TI-99/4A 
Editor/Assembler package. It is, however, only an over-
view of the product. Other sections will go into more depth 
on specific features of the software. 

Software Media and Required 
Hardware 

The Editor/Assembler software resides in a Command 
Cartridge and on a disk. To run it, you'll need at least one 
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Larger system (TXMIRA): 
LI 	2,0 
LI 	12,>C0 
SBO 	>F 
LDCR @ZERO,II 
SBZ 	>F 

LOOP LDCR @AB(2),7 
SBZ 	>8 
SBZ 	>A 
INC 	2 
CI 
ILT 	LOOP 

ZERO DATA 0 
AB 	TEST 	'AB' 

TI-99/4A assembler: 
REF 	VMBW . 

1_1 	0,0 
LI, 	1,AB 
LI 	2,2 
BLWP @VMBW 

AB 
	

TEXT 'AB' 

MOVE 0 TO REGISTER 2 FOR INDEX 
SET CRU BASE ADDRESS FOR SCREEN 
SELECT CRU WORD I 
MOVE CURSOR TO HOME POSITION 
SELECT CRU WORD 0 
PUT CHARACTER ON CRU LINE 
STROBE CHARACTER TO SCREEN 
INCREMENT CURSOR POSITION 
ADD I TO INDEX REGISTER 
COMPARE REGISTER 2 TO 2 
I OOP IF MORE CHARACTERS 

DATA DEFINITIONS 

EXTERNAL REFERENCE TO ROUTINE UTILITY 

VDP RAM ADDRESS = 0 FOR HOME POSITION 
REGISTER I POINTS TO FIRST CHARACTER TO DISPLAY 
REGISTER 2 = NUMBER OF BYTES TO WRITE 
CALL UTILITY ROUTINE TO WRITE STRING 

DATA DEFINITION 	 Figure 1 

disk drive and the 32K expansion RAM. Both the Editor 
and the Assembler are selectable from menus, and most of 
the screens include easy-to-understand prompting messages. 

The Editor 
The Editor is used to input Assembly Language source 

programs initially, to update programs previously saved on 
disk and to print programs. The Editor's features compare 
favorably to those of larger systems. 

There are two modes: Edit Mode and Command Mode. 
Edit Mode is always used to input a program for the first 
time, but either mode can be used to change existing pro-
grams after loading them from the disk or typing them in 
Edit Mode. 

Edit Mode is entered directly from the menu. The screen 
is a 40 x 24 window on the source program. Function keys 
allow you to move this window to the right or left in 
20-character increments, or up and down 24 lines at a time. 
(Since most of my Assembly Language programs have fewer 
than 40 characters per line, I tend to view the leftmost 40 
characters and make heavy use of the up and down scroll-
ing). The four cursor keys are enabled in Edit Mode, mak-
ing it especially easy to correct typographical errors. Whole 
lines can be inserted into the text by moving the cursor to 
the adjacent line and pressing the Insert function key; a new 
blank line is inserted, and the user simply types in a new 
line. Similarly, a whole line can be deleted by moving the 
cursor there and pressing the Delete function key; the line 
is removed and the line numbers of the following lines are 
automatically decremented. There are also keys for insert-
ing or deleting characters. A Tab key is also provided for 
tabbing to columns 8 and 16. Edit Mode makes it very easy 
to enter new programs because the user can both type the 
source program in a natural manner and correct errors and 
omissions as they occur. Edit Mode is exited via the Back 
function key, which puts the Editor into Command Mode. 

Command Mode reminds me of the UCSD Pascal editor. 
The first line of the screen shows the Command Mode op-
tions: Escape, Find, Replace, Move, Insert, Copy, Delete, 

Show, and Adjust. Line 2 is reserved for parameters to be 
input by the user, so in this mode the text window is 40 x 

22. Most options require further information to be given 
on line 2, and very clear prompts given so the user knows 
what line to enter. 

Each option is selected by typing the first character of 
the option name. For example, to find an occurrence of a 
string in the source program, the user enters F. The system 
responds with the prompt < count > < (start col, end 
col) > /string/. To find the second occurrence of the string 
ABCD between columns 1 and 50, the user would type 
2(1,50) /ABCD/. The system would then display the sec-
tion of the text containing the second such occurrence of 
ABCD (if any) with the cursor over the A. The symbols 
< > in the prompting message indicate optional parameters. 
To find the next occurrence of the string ABCD in the whole 
source program, the user need only type /ABCD/. The 
Replace option is like Find, except that each specified oc-
currence of the string is replaced by a second string given 
by the user. Replace includes an optional verify operator 
which allows the user to say yes or no to each replacement. 
The Move option allows the user to move sections of text, 
indicated by an interval of line numbers, to a different place 
in the source program. Copy is similar, except that the sec-
tion of text ends up in both the original position and the 
new position. Delete allows easy removal of several con-
tiguous lines from the text. Insert takes a file from disk and 
places it anywhere you want in the program being edited. 
Show is a way of moving the window so that a certain line 
number is at the top of the screen. Adjust is an easy way 
to make the line numbers disappear so that the window 
shows the source program only. Escape gets you out of 
Command Mode and back to the Editor's menu, where you 
can choose to save the source program to disk, print it, purge 
it or edit the same or another program. 

The Editor performs all line numbering automatically as 
lines are entered and maintains these numbers in sequence 
as lines are added or deleted. The user can refer to them 
for operating on sections of the program; they also appear 
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on the Assembler output listing, which is handy for 
debugging. 

TI has incorporated most of the features found in editors 
for larger systems into the 99/4A Editor. In fact, the abilities 
to edit at the character, line, and group-of-lines levels are 
not always all available in larger editors. The only feature 
missing from the 99/4A Editor is a variable right margin—a 
feature which is really not too significant for Assembly 
Language source programs. [But that would be nice for 
word processing applications, since this editor already per-
forms 95 070 of what most people would need for cor-
respondence and document preparation.—Ed.] 

The Assembler 
The Assembler is a program which converts Assembly 

Language source programs into object form—the machine-
language program that executes on the TI-99/4A. The ob-
ject program is written to disk. Optionally, a user can print 
out or write an Assembly Language listing to disk. 

The 99/4A Assembler is a lot like the 9900 Assembler, 
TXMIRA, which runs on larger TI systems. See sample 
listing in Figure 1. A programmer who is familiar with 
TXMIRA will be able to write Assembly Language pro-
grams for the 99/4A without too much difficulty since the 
same addressing modes are used and most of the instruc-
tions operate in the same way. 

One big difference, as might be expected, is in the way 
a programmer handles input and output to the monitor. The 
99/4A Editor/Assembler package includes three groups of 
built-in subroutines, or macros: (1) Utility Routines for ac-
cessing machine resources, such as screen I/O; (2) Extend-
ed Utilities, for accessing routines built into the console 
ROMs and GROMs; and (3) Basic Support Utilities for ac-
cessing the parameter list in CALL LINK statements from 
Extended BASIC. These utilities make it unnecessary to use 
the CRU (Communications Register Unit) lines to the 
monitor. Under TXMIRA, all peripheral devices are ad-
dressed via a fairly complex arrangement of CRU lines. Each 
device has its own CRU base address and CRU bit 
assignments, which means that a programmer must have 
very specific information about each device in order to per-
form any input or output. On the 99/4A Assembler these 
difficulties in handling the screen have been eliminated by 
the Utility Routines. By loading a few registers and invok-
ing the proper utility, a programmer can handle screen I/O 
in a much simpler way. Figure 1 has the code segments which 
might be used for writing the character AB to the upper 
left portion of the screen. 

You can see that the Utility Routines really make screen 
handling easier: You can focus your attention on merely 
the VDP RAM (the memory associated with the 99/4A 
monitor) addresses, and not have to worry about the logistics 
of the move. Furthermore, there is no apparent loss of ex-
ecution speed in doing it this way. 

Another difference between the 99/4A Assembler and 
those for larger TI computers is that the IDLE instruction 
is not implemented on the 99/4A. This causes no great dif-
ficulty, but it is useful to know. The IDLE instruction just 
causes the computer to wait for an interrupt; this can be 
done via another Utility Routine or other means, depend-
ing on which device will cause the interrupt. 

The optional listing produced by the 99/4A Assembler 
is quite complete. Statement sequence numbers, source 
statements, and the hexadecimal code generated are all 
shown clearly. A symbol table can also be given and, of 
course, the number of errors is shown. Each error is also 
flagged in the body of the listing with a descriptive message. 
One very nice—and all too uncommon—feature is that a 
display of the number of errors is on the monitor when the 
Assembler is finished. 

Running and Debugging 
Once a program has been input, edited, and assembled 

with no errors, it can be loaded and run by choosing this 
option from the menu. Another menu option (RUN PRO-
GRAM FILE) allows the user to run programs which were 
assembled on other Texas Instruments systems or previously 
assembled on your system. 

The Editor/Assembler package has a special debugging 
utility called DEBUG, which can be very helpful in isolating 
program errors. For instance, the commands in DEBUG 
allow you to set breakpoints in your program. When the 
program hits a breakpoint and stops execution, you can then 
use other commands to examine the contents of memory 
locations and registers, the Workspace Pointer, the Status 
Register, or the Program Counter, and if necessary change 
them to alter the program's execution. DEBUG commands 
will also allow you to search memory locations for a specific 
value, or to search memory locations and print those which 
don't have a specific value. DEBUG allows you to begin 
executing your program at any point you determine; com-
bined with the breakpoints, this allows you to go through 
a program section by section. All in all, DEBUG provides 
a good repertoire of useful tools which will make it easier 
to find out why the program you wrote isn't working the 
way you thought it would. GO 

PART 2: Fundamentals of Assembly Language 
Programming on the TI-9914A 

I n Part I we gave you a preliminary look at TI's 
Editor/Assembler for the TI-99/4 and TI-99/4A and 
mentioned briefly the advantages of programming in 

Assembly Language. Now let's explore the benefits of 
Assembly Language more fully by comparing some pro-
grams written in Assembly Language and BASIC. 

Some Assembly Language Explanations 
Before examining some programs, it would be useful to 

mention some general characteristics of the TMS9900 proc- 

essor, and then some specifics on the structure of the 
TI-99/4A. 

All 9900 programs make use of 16 workspace registers, 
each containing 16 bits (one word). Assembly Language pro-
grams define 16 contiguous words of memory for these 
workspace registers and set the hardware register called the 
Workspace Pointer to point to the first of these memory 
locations. Having these workspace registers resident in 
memory rather than in the CPU is one of the most power- 
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ful features of the 9900-family processors. In an Assembly 
Language program, the hexadecimal numbers 0 through F 
refer to the current workspace registers. (In addition, an 
Assembly Language option allows you to refer to them as 
RO through R15, which makes programs easier to read.) 

The structure of the memory of the 99/4A is fairly com-
plex. The following explanations cover concepts necessary 
to understanding the programs in this article, but they only 
begin to scratch the surface of the memory structure. 

CPU RAM (Random Access Memory) resides in the con-
sole and is directly addressable by Assembly Language pro-
grams. Workspace registers and other memory locations, 
as well as the programs themselves, reside in CPU RAM. 

VDP (Video Display Processor) RAM, also located in the 
console, takes care of the video screen. Sprites, colors, 
character patterns, and the screen image itself all reside in 
VDP RAM. Unlike CPU RAM, however, VDP RAM is 
not directly addressable by Assembly Language programs. 
VDP RAM is accessed through specifically assigned CPU 
RAM addresses. This is called memory mapping. Locations 
0 through > 02FF in VDP RAM contain the screen image. 
(The symbol " > " means hexadecimal notation; 
> 02FF = 767 in decimal notation.) This means that 
whatever characters reside in this section of VDP RAM are 
visible on the screen. To change the screen, the program-
mer would place the desired character code(s) into VDP 
RAM at the corresponding location(s). VDP RAM loca-
tion 0 corresponds to the home position (upper left) on the 
screen; location 48 (or > 30) corresponds to the position 
called row 2 and column 17 in BASIC. Let's say you want 
to put an * on the screen at row 2, column 17. The ASCII 
code for * is 42, or > 2A, and the desired VDP RAM loca-
tion is > 30. You might be tempted to use a MOVB (Move 
Byte) instruction to accomplish this, but remember, the VDP 
RAM cannot be directly addressed from your Assembly 
Language program. To access VDP RAM, you'll need to 
use a Utility Routine. VSBW (VDP Single Byte Write) is 
a macro instruction which places the most significant (left-
most) byte of workspace register 1 at the VDP RAM ad-
dress contained in register 0. Therefore, to place the * at 
row 2, column 17, you'd write: 

REF VSBW 	UTILITY REFERENCE 

LI 	0, > 30 	RO = VDP RAM ADDRESS 
LI 	1, > 2A00 RI CONTAINS * IN MSB 
BLWP @VSBW MOVE TO VDP RAM 

Most of the utilities use similar schemes of loading data in-
to certain registers and calling the utility by name. I'll talk 
more about some specific ones later. 

The Game of Life 
Life is a classic computer game. It is based on the idea 

of a population which goes through life cycles to form new 
generations; each position on the screen corresponds to a 
cell in the population. Cells which are alive are filled in (with 
asterisks in my example); dead cells are blank. The life cy-
cle, or rules of the game, are applied to each generation to 
obtain the next generation, and then the new generation is 
displayed on the screen. The rules of the game determine 
birth, death, or survival of individual cells, and depend on 
the state of each cell's 8 neighbors (adjoining cells, con- 

sidered horizontally, vertically, and diagonally) as follows: 

A live cell with 2 or 3 neighbors survives to the next 
generation. 
2. A live cell with 0 or 1 neighbor dies of loneliness; a live 
cell with more than 3 neighbors dies of overcrowding. 

The rules are applied to a generation as a whole, before the 
next generation is displayed. Depending on the initial 
population, you may see a colony which goes on changing 
forever, one which dies out or becomes static after a few 
generations, or one which oscillates among a few patterns. 

There are a few restrictions on my implementation of Life 
which should be explained. First, I have defined the initial 
population in the programs, whereas other versions might 
allow the user to enter the initial population on the screen 
at the beginning of the game. In order to be sure the col-
ony does not exceed the size of the 99/4A screen, which 
is 32 x 24, I have forced the border (rows 1 and 24 and 
columns 1 and 32) always to remain blank. This means that 
when the colony becomes large it may lose its symmetry as 
one side of the colony hits the border. 

The two programs which follow are in BASIC (Listing 
1) and in Assembly Language (Listing 3). Both follow the 
same strategy: display the initial colony, calculate the next 
generation by considering the neighbors of each cell in turn, 
clear the screen, display the new generation, and loop back 
to calculate the next generation. The Assembly Language 
version uses one byte to represent each cell; the BASIC ver-
sion uses one entry in array SCRN for each cell. At the start 
of each generation, live cells contain the value 1 and dead 
cells contain 0. During the calculation of the next genera-
tion, a cell can have the values 0 through 3 as follows: 

0 = cell is dead and remains dead for the next generation 
1 = live cell survives to the next generation 
2 = dead cell will be born in the next generation 
3 = live cell will die in the next generation 

It is necessary to have these four possible values during the 
calculation so that the program can have the information 
about the current state of each cell while calculating and 
storing the next state of each cell. Just before the new 
generation is displayed (or not displayed if dead), the values 
of the cells are reset to 0 or 1 by means of the array AFTER. 

In examining both versions of Life which follow (Listings 
1 and 3), you might wonder why anyone would use the more 
esoteric Assembly Language over the easier-to-understand 
BASIC. The answer is simple: speed. On the 99/4A, the 
BASIC program takes 2 minutes and 26 seconds between 
generations; the Assembly Language program takes less than 
one second! The BASIC version is no fun at all to watch, 
whereas the Assembly Language program provides fine 
entertainment. [The use of the Utility Routine VMBW (VDP 
Multiple Byte Write) in the Assembly language is partly 
responsible for this speed. It shows each new generation all 
at once. And fortunately, the monitor program is smart 
enough to capitalize on this by showing only the changed 
portions of the screen, rather than re-drawing the whole 
screen each time. If fast enough, the human brain's "per-
sistence of vision" allows us to see individual frames of mov-
ing images as continuous rather than discrete pictures—
thus making realistic animation sequences truly possible.—
Ed.] 
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Using Assembly Language to Move Sprites 
The ability to create sprites which move automatically is 

one of the best features of the 99/4A. Sprites can be used 
in Extended BASIC and in Assembly Language programs. 

VDP RAM has several areas dedicated to sprites. The 
Sprite Attribute Block, which gives the sprite locations, sprite 
numbers, and colors, starts at address > 300. Each entry in 
the Sprite Attribute Block occupies four bytes. A terminator 
byte with value > OD denotes the end of the Sprite Attribute 
Block. The Sprite Descriptor Block contains the sprite pat-
terns (shapes), with 8 bytes for each possible sprite. Although 
the Sprite Descriptor Block starts at VDP RAM address 0 
by default, we have already seen that VDP RAM locations 
0 through > 02FF are used for the screen image table, and 
locations > 0300 through > 03FF for the sprite Attribute 
Block. In order to avoid writing over these areas, the Sprite 
Descriptor Block usually starts at location > 0400 for prac-
tical purposes. The entries in the Sprite Descriptor Block 
are defined to correspond to sprite numbers starting at 0 
and occupying 8 bytes each; therefore the entry at location 
> 0400 is for sprite number > 80. Thus in Assembly 
Language programs, the lowest sprite number is usually 
> 80. The Sprite Motion Table, which gives the x- and y-
velocities of defined sprites, resides at VDP RAM location 
> 0780. Each entry in the Motion Table occupies four bytes, 
the last two of which are for system use. The Sprite Mo-
tion Table is filled only if automatic motion is to be used. 
An Assembly Language program could move the sprites 
(non-automatically) by changing the x- and y-locations of 
the sprites in the Sprite Attribute Block. But the system is 
able to move the sprites for you via an interrupt processing 
routine: Each time a VDP interrupt occurs (60 times per 
second), the interrupt processing routine moves any eligi-
ble sprites according to the Sprite Motion Table. In order 
to make use of this facility, the Assembly Language pro-
gram must also load the number of moving sprites at CPU 
RAM address > 837A and enable the VDP interrupts. 

Assembly Language vs Extended BASIC 
You are probably thinking that this sounds like a lot of 

work to achieve moving sprites, especially compared to the 
simple CALL SPRITE statement of Extended BASIC. 
However, there are times when an Extended BASIC pro-
gram is inadequate. Coincidence checking in Extended 
BASIC is not as responsive to velocity changes as you might 
like. 

The programs which follow (Listings 2 and 4) illustrate 
how Assembly Language can be used to overcome these 
deficiencies. The program simply moves a target from left 
to right on the screen while shooting an arrow from the top 
of the screen to the bottom. Both sprites wrap around the 
screen. Whenever the arrow hits the target, the sprites stop 
moving, the target changes to an X, and the program delays 
long enough to make the blow-up visible. Then the program 
starts over. The Extended BASIC program relies on CALL 
COINC to detect hits. You'll notice, however, that the pro-
gram doesn't seem to detect all hits. The Assembly Language 
program can stop the action by disabling the VDP inter-
rupt while it checks for coincidence by comparing the loca-
tions of the arrow and the target from the Sprite Attribute 
Block. Moreover, the Assembly Language program can 
check the point of the arrow against the target instead of 
checking the upper lefthand corners of the sprites. 

Because of these differences, the Assembly Language pro-
gram appears to detect more hits correctly. Of course, this 
stop-motion processing must slow down the motion, but 
it is not noticeable to me. (One indication of the speed of 
Assembly Language program execution is the large number 
of statements executed in LOOP2 while the hit shape brief-
ly remains on the screen.) 

Another shortcoming of the Extended BASIC version is 
that the hit shape appears quite a bit to the right of its ac-
tual position when the hit occurred. That is because the 
sprites have continued to move while two BASIC statements 
(lines 190 and 200) are interpreted and executed. The 
Assembly Language version has already stopped the mo-
tion by disabling the VDP interrupt program via LIMI 0; 
it doesn't start the motion again until after the hit sequence 
is complete. Thus, only the Assembly Language program 
actually shows the blow-up in the right place on the screen. 

Understanding An Assembler Listing 
The Assembly Language listing (Figure 4) was output by 

the 99/4A Assembler. You'll notice that the Assembler has 
added a page number and short title at the top of each page 
and added a cross-reference list and number-of-errors-
found-during-assembly message to the end. The cross-
reference list shows the location of the symbols used in the 
program relative to the beginning of the program. The line 
numbers in the first column were supplied by the Editor 
when the program was input and passed along by the 
Assembler. The second column of the listing shows the 
relative memory location where each statement or data area 
will reside during program execution. The third column was 
also supplied by the Assembler and shows the machine 
language generated by the Assembly Language statement 
to the right. The machine language (or object code) is ex-
pressed in hexadecimal notation with one word per line. The 
Assembly Language source program (or source code) itself 
starts in the fourth column, which contains the labels. The 
fifth column contains the source program opcodes, and the 
sixth column contains the operands. The seventh column 
contains comments, and other comments are sprinkled 
throughout the program with asterisks in column 1. Only 
the fourth through seventh columns comprise the Assembly 
Language source program; this is the only part entered by 
the programmer. The Assembler generates the rest. 

The Utility Routines VMBW, VSBW, VWTR, and 
VMBR are used in the example program. The VDP Multi-
ple Byte Write (VMBW) moves the number of bytes in 
register 2 (R2) from the CPU RAM address in R1 to the 
VDP RAM address in RO. VSBW, the VDP Single Byte 
Write routine, was explained earlier. VDP Write To Register 
(VWTR) puts the value that is in the rightmost byte of RI 
into the VDP register whose number is in the leftmost byte 
of R1. Among other things, these VDP registers are used 
to select VDP modes and features. VMBR is the VDP Multi-
ple Byte Read routine, which reads the number of bytes 
specified in R2 into the CPU RAM location in RI from the 
VDP RAM location in RO. 

The logic for detecting hits in the Assembly Language 
program is based on the fact that the point of the arrow 
is three pixels to the right and seven pixels below the corner 
of the sprite which is obtained from the Sprite Attribute 
Block. 
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Conclusion 
Although they are more complex to write, Assembly 

Language programs are far superior to BASIC programs 
when it comes to execution speed and for controlling the 
facilities of the 99/4A computer. In some cases, as in the 
game of Life, the faster speed of Assembly Language turns  

a boring game into one which is fun to watch. In other cases, 
as in the program SHOOT, Assembly Language is capable 
of providing more accurate results. Thus, having the 
capability to write programs or subroutines in Assembly 
Language lets you achieve results which are impossible with 
BASIC and Extended BASIC alone. 

Listing 1 	Life 
0 0 CAL L CLE A 5 1 0 F C N T 3 T H E N 5 3 0 
0 DIM OFFS E T S 8 A F T E 4 5 2 0 	S C RN S UB S C N S U B ) 2 

2 0 FOR 1=1 T 0 8 5 3 0 S UB S UB 1 
3 0 REA D OFF S E T S 5 4 0 	N E XT C 0 L 
4 0 NEX T I 5 5 0 S UB S UB 2 
5 

1 6 
0 
0 

DAT 
DAT 

A 
A 

-33 
1,3 1 

-3 
,3 

2 
2 ,3 

3 
3 

1 1 5 6 
5 7 

0 	N 
0 

E XT 
E M 

R 0 
9101/W S H N EW G E N E A T 0 N 

1 7 0 	DIM SCRN 76 8 58 0 	C A LL C L EA R 
18 0 REM INI T IA L IZ E 59 0 S UB 3 4 
1 9 0 	FOR I=1 T 0 7 68 6 0 0 	F 0 R R 0 2 T 0 2 3 
2 0 0 	SCR N(I) 0 6 1 0 	F 0 R C 0 L 2 T 0 3 1 
2 
2 2 
2 3 

0 	NEX 
0 	AFT 
0 	AFT 

T 
ER(0 
ER(1 

I 
1 = 
I = 

0 
1 

6 2 
6 3 
6 4 

0 	S 
0 
0 	C 

C RN 
F 
A LL 

C
( 

S 
S U 
N 

H C H 

B 
S 

A R 

A 
U B 

F T 

o
) 

E R 
0 

S 
T H 
0 L 

C 
E N 

4 

N 
6 

2 

S 
5 0 

U B 

2 4 0 	AFT ER(2 )= 1 6 5 0 S UB S U B 1 
2 5 0 	AFT ER (3 )= 0 6 6 0 	N E XT C 0 L 
2 6 0 	RE IN IT A L IZ E P 0 P U L A T 0 N 6 7 0 S UB S U B 2 
2 7 0 	REA D 	NU S U B 6 8 0 	N E XT 0 
2 8 0 	FOR =1 TO N UM S U B 6 9 0 G 0 TO 3 7 0 
2 9 0 	REA D 	RO C 0 L 7 0 0 	E N D 
3 0 0 	ISU B 	(R 0 *3 2 C 0 L 
3 1 0 	SCR N 	IS U B) 1 
3 2 0 	C AL L 	HC H AR OW C 0 L 4 2 
3 3 0 	NEX T 
3 4 
3 5 

0 	DAT 
0 	DAT 

A 	7 
A 	1 1 , 16 1 2 1 5 1 2 1 7 1 3 1 4 1 3 1 8 Listing 2 	Shoot an Arrow 

,14 4 , 1 4, 8 100 C A LL CL E A 
3 6 0 	REM C AL CU L A T E N E X T G E N E A T 0 N 110 R E M DE F N E S P R T E S 
3 7 0 	ISU B 	3 4 120 C A LL CH A 1 4 2 F F 8 1 B D A 5 A 5 B D 8 1 F F 
3 8 0 	FOR R 0 =2 T 0 	2 3 130 C A LL CH A 1 4 3 8 1 8 1 8 1 8 1 8 1 8 3 C 1 8 
3 9 0 	FOR C OL =2 T 0 	3 1 140 C A LL CH A 1 4 1 8 1 4 2 2 4 1 8 1 8 2 4 4 2 1 8 
4 0 0 	CNT 0 150 C A LL SP R 1 T E 1 4 2 7 1 2 4 1 	0 1 0 0 
4 1 0 	FOR K =1 TO 8 160 C A LL SP T E 2 4 3 2 1 1 2 4 	1 2 7 	0 
4 2 0 	M=S C R N1 SUB OFF S E T S K 170 R E M TE S T 	F 0 H T 
430 IF M 	0 T HEN 460 180 C A LL CO NC( 1 2,1 0 H 
440 IF M 	2 T HEN 460 190 I F H 	T- 0 TH E N 1 80 
4 5 0 CNT C NT 1 200 C A LL M 0 T ION 1 0,0 ) 

4 6 0 NEX T 	K 210 C A LL M 0 T ION 2 0 0 ) 

4 7 0 IF S C RN S U B T H E N 	5 0 0 220 C A LL P A T TER N 1 4 ) 

4 8 0 IF C N T- 3 T H E N 5 2 0 230 F 0 R D E L A Y=1 T 0 5 0 
4 9 0 GOT 0 	53 0 240 N E XT D E L AY 
5 0 0 IF C N T = 2 T H E N 5 3 0 250 G 0 TO 1 5 0 

260 E N D 

Listing 3 	Life 
IDT 	'LIFER' 
DEF LIFEA 
REF VMBW 

WS 	BSS 32 
SCRN 	BSS 768 
GENSCR BSS 768 
OFSET 	DATA —33,-32,-31,-1 

DATA 1, 31 , 32 , 33 
FS TGEN DATA 7,335,366,368,397,401,429,433 
H00 	BY TE >00 
H01 	BY TE >01 
H02 	BYTE >02 
BLNK 	BYTE >20 
STAR 	BYTE >2A 
AFTER 	BYTE 0 , 1 ,1 , 0 

EVEN 
H2000 	DATA >2000 
LIFEA 	LWP I WS 	 START OF PROGRAM 
•CL EAR SCREEN ARRAY. 

LI R1,766 
	

LOOP COUNTER AND INDEX 
CLEAR 	CLR @SCAN ( R1 I 

	
CLEAR WORD 

DECT R1 
	

POINT TO WORD 
ILT 	INIT 
	

DONE 
IMP CLEAR 
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Listing 3 Life continued 

• LOAD INITIAL GENERATION AND DISPLAY. 
INIT 	MOV 	@FSTGEN , R 3 	R 3=110F CELLS 

A 	R3 , R3 	 DOUBLE IT FOR WORDS 
INITLP MOV @FSTGEN ( R3) , R4 	R4 CONTAINS OFFSET 

MOVB 0101 ,@SCRN ( R 4 ) 	SCREEN POSITION =1 
DEC T R3 
INE INITLP 	 MORE TO DO 
BL 	@SHOWIT 	 SHOW INITIAL GEN 
LIMI 2 	 ENABLE VDP INTERRUPT  FOR QUIT 

*CALCULATE NEXT GENERATION. 
CLCGEN LI 	R1, 33 	 INDEX ( I SUB ) 

LI 	R3 , 22 	 OUTER LOOP CTR ( ROW) 
CLCLP 	LI 	R4 , 30 
*COUNT NEIGHBORS. 
CLCNBR LI 	R5,0 	 NEIGHBORS COUNTER ( CNT 1 

LI 	R6 , 0 	 LOOP CONTROL, INDEX TO OFSET 
NBRS 	MOV 	R1 , R 7 	 COPY TO WORK ON 

A 	@OF S E T ( R61 , R7 	R 7—>D I SP OF NEIGHBOR 
CB 	@SCRN ( R7) ,@H00 	NBR=0? 
TEQ 	NXTNBR 	 YES 
CB 	@SCAN ( R7) , @HO 2 	NBR=2? 
I EQ 	NXTNBR 	 YES 
INC 	R5 	 NEIGHBOR ON 

NXTNBR INCT R6 
CI 	R6 , 16 	 DONE? 
!LT 	NBRS 	 LOOK AT NEXT NEIGHBOR 
CB 	@SCAN ( R1 ) ,@)H01 	IS CELL ON NOW? 
1EQ 	CELLON 	 YES 
CI 	R5 , 3 	 3 NEIGHBORS? 
1 EQ 	CHANGE 	 YES—BIRTH 
IMP 	NOCHG 	 NO 

CELLON CI 	RS , 2 	 2 NEIGHBORS? 
I EQ 	NOCHG 	 YES—SURVIVE 
CI 	R5 , 3 	 3 NEIGHBORS? 

EQ 	NOCHG 	 YES—SURVIVE 
CHANGE AB 	@HO 2 , @SCAN ( R1 ) 	BIRTH OR DEATH 
NOCHG 	INC 	R1 	 NEXT CELL 

DEC 	R4 	 NEXT COL 
INE 	CLCNBR 
INCT  R1 	 SKIP TWO EDGE CELLS 
DEC R3 	 NEXT ROW 
INE 	CLCLP 

• RESE T SCAN ELEMENTS TO 0 FOR DEAD, 1 FOR ALIVE. 
LI R5, 33 	 INDEX TO SCRN ( I SUB ) 
L I R3 , 22 	 ROW C TR 

LOOP 	LI R4 , 30 
LOOP1 	MOVB @SCAN ( R51 , R6 	 R 6=CE L L VALUE IN MS B 

SRL 	R6 , 8 	 SHIFT TO LSB 
MOVB @AFTER ( R6) , @SCAN ( R5 ) 	CHANGE CELL TO 0 OR 1 
INC 	R5 	 NEXT CELL 
DEC 	R4 	 NEXT COL 
'NE 	LOOP1 
INCT R5 
DEC 	R3 
1NE 	LOOP 
BL 	@SHOWIT 	 SHOW NEW GENERATION 
IMP 	CLCGEN 	 CALC NEXT GEN 

*SUBROUTINE TO DISPLAY GENERATION ON SCREEN. 
SHOWI T LI 	R5, 767 	 R5 INDEXES BOTH SCAN 

&GENS CR . 
BLDSCR CB 	@JIG° , @SCR N(R ) 	IS BYTE 0 (DEAD)? 

1EQ 	BLK 	 YES 
MOVB @STAR ,@GENSCR (R5 ) NO—PUT • IN GENSCR 
IMP 	NXTPOS 

BLK 	MOVB @BLNK ,@GENSCR ( R5 ) PUT BLANK IN GENSCR 
NXTPOS DEC 	R5 	 POINT TO NEXT CELL 

ILT 	OUT SCR 	 DISPLAY  IF DONE 
IMP 	BLDSCR 	 LOOP IF NOT DONE 

OUTSCR CLR 	R0 	 VDP RAM ADDRESS (HOME ) 
L I 	R1 ,GENSCR 	GENSCR CONTAINS DISP DATA 
LI 	R2 , 768 	 768 BYTES TO WRITE 
LIMI 
BLWP @VMBW 	 WRITE SCREEN 
LIMI 2 
B *R11 	 RETURN 
END 	LIFEA 
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Listing 4 	Shoot an Arrow 

99/4 	ASSEMBLER 
VERSION 	1.2 PAGE 	0001 

0001 IDT 'SHOOTA' 
0002 DEF SHOOTA 
0003 REF VMBW,VSBW,VWTR,VMBR 
0004 000 WS BSS 32 
0005 020 C SAL BYTE >7C,>01,>80,>06 	SPRITE 	1 	LOCN 	AND 	COLOR 

021 1 
022 0 
023 6 

0006 024 1 BYTE >01,>7C,>81,>01 	SPRITE 	2 	LOCN 	AND 	COLOR 
025 C 
026 1 
027 1 

0007 028 0 BYTE >D0 	 TERMINATOR 
0008 029 F SHAPE BYTE >FF,>81,>BD,>A5,>A5,>60,>81,>FF 	TARGET 

02A 1 
026 
02C 5 
02D 5 
02E 
02F 1 
030 F 

0009 031 8 BYTE >18,>18,>18,>18,>18,>18,>3C,>18 	ARROW 
032 8 
033 8 
034 8 
035 8 
236 8 
037 C 
038 8 

0010 039 HITSHP BYTE >81,>42,>24,>18,>18,>24,>42,>81 	HIT 	SHAPE 
03A 2 
03B 4 
03C 8 
03D 8 
03E 4 
03F 2 
040 1 

0011 041 0 SPEED BYTE >00,>64,>00,>00 	SPRITE 	1 	VELOSITY 
042 4 
043 0 
044 0 

0012 045 F BYTE >7F,>00,>00,>00 	SPRITE 	2 	VELOSITY 
046 0 
047 0 
048 0 

013 049 0 HOO BYTE >00 
014 04A 2 H02 BYTE >02 
015 04B Y1 BSS 1 
016 04C X1 BSS 1 
017 04D DUMMY BSS 2 
018 04F Y2 BSS 1 
019 050 X2 BSS 1 
020 051 03 H03 BYTE >03 
021 052 07 H07 BYTE >07 
022 EVEN 
023 054 0020 H0020 DATA >0020 
024 056 02E0 SHOOTA LWP I WS 

058 0000 
025 •FILL SCREEN WITH 	BLANKS. 
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Listing 4 Shoot an Arrow continued 

99/4 	A SEMB ER 
VERSION 1.2 PAGE 	0002 

0026 05A 4C0 CLR 	0 	 VDP 	RAM 	SCREEN 	HOME 
0027 05C 201 LI 	1, >2000 	 BLANK 	IN 	MSB 	OF 	R1 

05E 000 
0028 060 420 BLNKIT 	BLWP 	(FcVSBW 	 WRITE 	BLANK 

062 000 
0029 064 580 INC 	0 
0030 066 280 CI 	0,768 	 DONE? 

068 300 
0031 06A 1FA ILT 	BLNKIT 	 NOT 	YET 
0032 *SET 	UP 	VDP 	REGISTER 	1 
0033 06C 200 LI 	0 , >01E0 	 NORMAL 	SIZED 	SPRITES 

06E 1E0 
0034 070 420 BLWP 	TiVWTR 

072 000 
0035 *SET 	UP 	SPRITE 	ATT [BUTE 	BLOCK. 
0036 074 201 DEFSPR 	LI 	1, SAL 	 R1—MY 	ATTRIBUTE 	LIST 

076 020 
0037 078 200 LI 	0 , >0300 	 R0—>ADDRESS 	OF 	VDP 	SAB 

07A 300 
0038 07C 202 LI 	2 , 9 	 9 	BYTES 	TO 	WRITE 

07E 009 
0039 080 420 BLWP 	 WRITE 	TO 	VDP 	RAM 

082 000 
0040 • LOAD 	SPRITE 	DEFINITIONS 
0041 084 201 LI 	1, SHAPE 	 R1—>MY 	SPRITE 	SHAPES 

086 029 
0042 088 200 LI 	0 , >0400 	 ADDRESS 	OF 	FIRST 	SPRITE 

08A 400 
0043 08C 202 LI 	2,16 	 16 	BYTES 	TO 	MOVE 

08E 010 
0044 090 420 BLWP 	@VMBW 	 WRITE 	TO 	VDP 	RAM 

092 082 
0045 *SET 	UP 	SPRITE 	MOT ION 	TABLE. 
0046 094 200 LI 	0 , >0780 	 R0—>MOT ION 	TABLE 	IN 	VDP RAM 

096 780 
0047 098 201 LI 	1, SPEED 	 R1—>MY 	SPEED 	DATA 

09A 041 
0048 09C 202 LI 	2 , 8 	 8 	BYTES 	TO 	MOVE 

09E 008 
0049 0A0 420 BLWP 	oVMBW 	 WRITE 

0A2 092 
0050 *SET 	NUMBER 	OF 	MOVING 	SPRITES . 

0051 0A4 820 MOVB 	@H02 ,@>837A 	 2 	MOVING 	SPRITES 
0A6 04A 
0A8 37A 

0052 *MAKE 	SPRITES 	MOVE 	BY 	INTERRUPT 	FROM 	9901 	I/O 	BOARD. 
0053 0AA 

eAc 
300 
002 

MOVE I T 	L IMI 	2 	 ENABLE 	INTERRUPT 

0054 *CHECK 	FOR 	COINCIDENCE. 
0055 ORE 300 LIMI 	0 	 DISABLE 	VDP 	INTERRUPT 

0 B 0 000 
0056 *GET 	SPRITE 	POSITIONS. 
0057 0B2 200 LI 	0 , >0300 	 R 0—>Y 	OF 	SPRITE 	IN 	VDP RAM 

0 B 4 300 
0058 0 B 6 201 L I 	1, Y1 	 BUFFER 	FOR 	READ 

0B8 04B 
0059 0 BA 202 LI 	2 , 6 	 6 	BYTES 	TO 	READ 

0 BC 006 
0060 OBE 420 BLWP 	/,VMBR 	 READ 	FROM 	VDP 	RAM 
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Listing 4 Shoot an Arrow continued 

SEMBLER 
1. 2 
OCO 0000 

PAGE 0003 

99/4 A 
VERSION 

0066  
00 67  
0068 

0065 

0062 

0064 

0061 

0063 

0C2 B820 
0C4 0051' 
006 0050' 
008 7820 
OCA 004C ' 
OCC 0050' 
OCE 11ED 
0D0 9820 
0 D 2 0050 ' 
004 0052 ' 

006 15E9 

*CHECK COLUMNS FOR X1<=X24-3<=X1+7 
AB 	@H03,@X2 	 X2=X24-3 

0069 

0070 
0071 

080 

082 
083 
084 
085 
086 
087 

076 

077 

078 

081 

072 
073 
074 
075 

079 

GEE 
0F0 
0F2 
0F4 
0F6 
0F8 
OFA 
OFC 

OFE 
100 
102 
104 
106 
108 
10A 
10C 
10E 

SB 

MOVEIT 	 NO HIT IF RESULT >7 
*CHECKS ROWS FOR Y1<=Y2-1-7<=Y1+7. 

AB 	@H07,@Y2 	 Y2=Y2-1-7 

SB 	@Y1,@Y2 
	

Y 2=Y 2-1 

ILT 	MOVEIT 
	

NO HIT IF RESULT <0 
CB 	@Y2,@H07 

IGT 	MOVEIT 
	

NO HIT IF RESULT >7 
*HIT 
*CHANGE SPRITE DEFINITIONS. 

201 	 LI 	1,HITSHP 
	

R1—>HIT SHAPE 
039 ' 

200 	 LI 	0,>400 
	

R0—>VDP RAM 
400 
202 	 LI 	2,8 
	

8 BYTES TO LOAD 
008 
420 	 BLWP @VMBW 
	

WRITE TO VDP RAM 
0A2' 

*WAIT TO LET BLOW UP BE SEEN. 
203 	 LI 	3,10 
	

OUTER LOOP CTR 
00A 
202 	LOOP2A LI 	2,12000 
	

LOOP CUONTER 
EEO 
602 	LOOP2 	DEC 	2 
	

DECREMENT 
6FE 	 INE 	LOOP2 
	

WAIT MORE 
603 	 DEC 	3 
	

DECREMENT OUTER CTR 
6FA 	 INE 	LOOP2A 
	

WAIT MORE 
0B2 	 IMP 	DEFSPR 
	

START OVER 
END 	SHOOTA 

@X1 ,EX2 	 X 2+X 2—X1 

ILT 	MOVEIT 	 NO HIT IF RESULT >0 
CB 	@X2,@H07 	 COMPARE TO 7 

0D8 8820  
ODA 0052 
ODC 004F 
ODE 7820 
0E0 004B 
0 E2 004F 
0E4 11E2 
0E6 9820 
0E8 004F 
0 EA 0052 
GEC 15DE 

9 /4 ASSEMBLER 
VE S ION 1 . 2 

BLNK I T 	0060 
' H0020 	0054 
' HI TSHP 	0039 

R0 	 0000 
R12 	 000C 
R2 	 0002 
R6 	 0006 

' SAL 	0020 
E VMBR 	0000 
' WS 	 0000 
' Y2 	 004F 
0000 ERRORS 

PAGE 	004 
DEFSPR 	074 	' DUMMY 	04D 	' H00 	 049 
H02 	 04A 	' H03 	 051 	' H07 	 052 
LOOP2 	106 	' LOOP2A 	102 	' MOVEIT 	0/IA 
R1 	 001 	 R10 	 00A 	 R11 	 00B 
R13 	 OOD 	 R14 	 00E 	 R15 	 OOF 
R3 	 003 	 R4 	 004 	 R5 	 005 
R7 	 007 	 R8 	 008 	 R9 	 009 

' SHAPE 	029 	D SHOOTA 	056 	' SPEED 	041 
E VMBW 	OFC 	E VSBW 	 062 	E VWTR 	 072 
' X1 	 04C 	' X2 	 050 	' Y1 	 04B 
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MAGIC CRAYON 

Learning 
Assembly Language 

The Hard Way 

L ike many other 99'ers, I was anxious to receive the 
long-awaited Editor/Assembler package. I remember 
the excitement of unwrapping the 470 page manual 

when it arrived—and the sinking feeling when I read, "This 
manual assumes that you already know a programming 
language, preferably an assembly language." 

My anxiety grew as I thumbed through it—there were no 
pictures, cartoons, or fill-in-the-blank examples. It did say, 
"There are many fine books available which teach the basics 
of assembly language." So I called the local computer stores. 
The only books they were aware of, however, also assumed 
familiarity with basics. 

I guess I had some fuzzy ideas about assembly language 
in the back of my mind: It was qualitatively different from 
higher level languages, requiring an in-depth knowledge of 
digital electronics and a capacity for the most detailed sort 
of logical-mathematical thought. In short—nothing seemed 
more difficult.. . 

And my experience thus far seemed to confirm my worst 
fear. Learning assembly language presumed a prior 
knowledge of assembly language; it was not merely 
difficult—it was impossible. After running Tombstone Ci-
ty a few times and typing in Pat Swift's Life program (See 
"Fundamentals of Assembly Language Programming, Part 
1"), I put the Editor/Assembler on a shelf thinking maybe 
I'd learn about it gradually over the next year or two. 

It would still be there gathering dust were it not for a back 
injury that kept me flat on the floor, unable to do anything 
except read the manual. I was surprised to discover that 
writing an assembly language program is similar to, and in 
some respects simpler than, writing a program in BASIC. 
A new programming context or conceptual model is re- 

quired. But to get started, I found that this picture could 
be primitive, containing many over-simplifications and 
approximations. 

The picture I developed enabled me to successfully for-
mulate and execute a simple programming objective. The 
program and associated underlying concepts are presented 
here to facilitate the learning process for others who, like 
me, find it hard to overcome preconceived notions about 
how difficult assembly language is. The program should not 
be taken as a model of exemplary programming technique; 
at this point my conception of "good programming" is pro-
gramming that works . . . period. You will undoubtedly be 
able to find ways to improve this one—to make it work 
faster and utilize memory more efficiently—and in so do-
ing, further develop the concepts presented. 

In TMS9900 Assembly Language, four video display 
modes are available: Graphics (or Pattern) Mode, Text 
Mode, Bit-Map Mode (99/4A only), and Multicolor Mode. 
In Multicolor Mode, the screen is divided into a grid 64 x 
48, with each box measuring 4 pixels on a side. Each box 
can have a color assigned to it. 

The program allows use of a joystick to move a flashing 
cursor on the screen. Whenever the fire button is depress-
ed, the cursor leaves a trail of small, colored boxes. The 
following single key commands are available: 

C—Change Color. Displays a color palette and pointer. 
Move the pointer to the desired color with the joystick. Press 
the fire button to make that the color of the boxes, or press 
the C key to make it the color of the screen background. 

S—Save Screen. Saves the current contents of the screen 
as DSK1.SCREEN. 

I46 	The Best of 99'er Volume 1 



R—Recall Screen. Loads the contents of DSK1.SCREEN 
for subsequent modification. 

E—Erase Screen. Erases the screen contents. 

T—Terminate. Returns to the Master Title Screen. 

In order to understand how the program works, it will 
be helpful to differentiate two systems. You probably know 
that the Central Processing Unit (CPU) in the Home Com-
puter is the TMS9900. It has three built-in 16-bit "hard-
ware" registers (the Program Counter, Workspace Pointer, 
and Status Register) and makes use of sixteen workspace 
registers located in read-write memory. Because these 16-bit 
workspace registers are not located on the chip, they are 
called "software" registers. The CPU can directly address 
the read-write memory (RAM) in the Memory Expansion 
Unit and CPU scratch pad, as well as ROM in the console, 
Command Cartridges, and various peripherals. However ,  
it cannot directly address the 16K of RAM  built into the 
console. 

The 16K RAM block is addressed by another 
microprocessor—The TMS9918 (or 9918A if you have a 
99/4A). This Video Display Procesor (VDP) has eight 8-bit 
hardware registers and four 8-bit software registers. The 
software registers are located in read-write memory loca-
tions which can also be addressed by the CPU. The fact 
that these four bytes can be addressed by both the CPU 
and VDP makes it possible for the CPU and VDP systems 
to transfer data back and forth. The CPU addresses of the 
registers-8800, 8802, 8C00, 8CO2—are assigned respectively 
to the symbols VDPRD (VDP Read Data Address), 
VDPSTA (VDP Read Status Register), VDPWD (VDP 
Write Data Address), VDPWA (VDP Write Address). 

We don't have to be concerned with the details of mov-
ing data to and from VDP RAM and to VDP registers, 
however, thanks to some of the built-in programs called 
utilities. The five utilities of use are identified by the sym-
bols VSBW, VMBW, VSBR, VMBR, and VWTR. The 
respective functions of these programs are VDP RAM: 
Single Byte Write, Multiple Byte Write, Single Byte Read, 
Multiple Byte Read, and Write to Register. User workspace 
registers are used to pass parameters—e.g., the number of 
bytes to read or write—to the utility. 

The standard utilization of VDP RAM in the 
Editor/Assembler is shown on Table 1. The blocks involved 
in the multicolor mode are the Screen Image and Pattern 
Descriptor Tables. Before entering multicolor mode, the 

Image Table is initialized. The 768 bytes of the table 
are divided into six 128-byte sets. Each set is further sub-
divided into four 32-byte groups. To initialize the table, the 
numbers 1-31 are written in order into each of the four 
32-byte groups in the first set: 0, 1, 2,. . . 31 four times. 
Then the numbers 32-61 are written four times into the next 
128-byte set. This process is continued until the numbers 
160-191 are written four times in the sixth 128-byte set. In 
my program, I didn't want this process to be visible on the 
screen, so I first put the display in Text Mode and made 
the foreground and background colors gray. 

Once the Screen Image Table is initialized, color boxes 
are placed on the screen by means of the Pattern Descrip-
tor Table. Each 4 x 4 pixel box on the screen corresponds 
to half a byte in the Pattern Descriptor Table. To place a 
colored box on the screen, the appropriate color code is writ- 

Table 1 VDP RAM MEMORY 
—Editor/Assembler- 

	

Address of 	Length 

	

First Byte 	of Block, 	Contents 
Decimal 	Hex 	Bytes 

0 
768 
896 

1024 
1920 
2048 

4096 

14295 

16383 

>0000 	768 	screen Image Table 
>0300 	128 	Sprite Attribute List 
>0380 	128 	Color Table 
>0400 	896 	Sprite Descriptor Table 
>0780 	128 	Sprite Motion Table 
>0800 	2048 	Pattern Descriptor Table and 

Peripheral Access Blocks 
>1000 	10199 	More Peripheral Access 

Blocks and Buffers 
>37D7 	2089 	Reserved for Diskette Device 

Service Routines 
>3FFF 	 Last Address 

Total 16384 Bytes 

ten in the nybble (4 bits) in the Pattern Descriptor Table 
which corresponds to the desired screen position. 

The first eight bytes of the Pattern Descriptor Table cor-
respond to the boxes in a column beginning in the upper 
left corner of the screen. The first four bits in byte #1 con-
tain the color of the box in the extreme upper left corner, 
and the last four bits the color of the box immediately to 
the right of the first box. Byte #2 contains the colors of the 
two boxes immediately under the first two, and so on for 
the first eight bytes. 

The ninth byte in the table contains the colors for the pair 
of boxes in a new column beginning again at the top of the 
screen. Subsequent bytes follow this pattern corresponding 
to 32 columns of box pairs with eight pairs in each column. 
This group of 256 bytes thus takes care of the top sixth of 
the screen. 

The 257th byte corresponds to the beginning of a new 
column of box pairs starting again on the left side of the 
screen. The six 256-byte groups thus correspond to the 3,072 
possible boxes in multicolor mode. [Since the color of each 
box is indicated in a name table in memory, and the names 
are mapped onto the screen according to their position in 
the table, this multicolor mode is a true memory-mapped 
configuration. It does, however, trade off lower resolution 
for color memory-mapping capability, but the high-
resolution sprites are still available. For an explanation of 
sprites and an introduction to the high-resolution bit-map 
mode, see "3-D Animation".—Ed.] 

In the program, a double-size sprite provides a reference 
point for determining where boxes will appear. The dot row 
and dot column of the sprite can be determined at any time 
by referring to the Sprite Attribute List in VDP RAM. Then, 
since boxes are supposed to appear in the center of the sprite, 
the screen location can be calculated by adding 8 to the dot 
row and dot column, which represent the sprite's upper left 
corner. But in order to find the corresponding location in 
the Pattern Descriptor Table, a few more calculations must 
be performed. 

If we let R and C be the dot row and dot column desired 
for the box location, the number of complete 256-byte 
groups above that location is the integer quotient of R/32. 
Multiplying that number by 256 thus gives the first compo-
nent of the offset in the Pattern Descriptor Table. 

Similarly, the integer quotient of C/8 gives the number 
of complete 8-byte columns to the left of the location. So 
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that number is multiplied by 8 and added to the offset. 
Dividing the remainder of R/32 by 4 gives the number of 
bytes above the location in the 8-byte column the location 
is in. Adding that to the offset gives the offset for the byte 
in the Pattern Descriptor Table. 

But we still have to know if the desired location is the 
most or least significant nybble of the byte, and to deter-
mine that we can divide the remainder of C/8 by 4. If the 
integer quotient is 0, it's the left nybble; if 1, it's the right 
nybble. The appropriate color code then need only be placed 
in the correct nybble (leaving the other one unchanged), and 
the box appears just where it should. 

Let's consider an example: Suppose the upper left cor-
ner of the sprite were at dot row 83 and dot column 147. 
The center of the sprite would then be at 91 and 155. The 
number of complete groups (32 columns with 8 bytes in 
each) above that location is 2, i.e., INT(91/32). So the in-
itial component of the offset is 2 * 256 or 512 bytes. The 
number of 8-byte columns to the left of the location is 
INT(155/8) or 19. That makes the offset 531. Above the 
location, in its 8-byte column, there are 6 bytes—i.e., 
INT((remainder 91/32)/4)—giving an offset of 537. The re-
mainder of 155/8 is 3, and INT(3/4) is 0, so the nybble of 
interest is the most significant (left) one of the 539th byte 
of the Pattern Descriptor Table. 

Now let's take a brief look at the source listing. The first 
section consists of a number of assembler directives. The 
DEF directive makes the symbol MARKER available to 
other programs, and the REF directives make several utilities 
available for use of MARKER. Then there is a variety of 
other assembler directives. The simplest type is EQUate, 
which assigns a constant to a symbol at assembly time. 
USRWS, for > 20BA (8378), and that value replaces the 
symbol wherever it appears in an operand; the label may 
subsequently be substituted for the number. 

The mnemonic BSS stands for Block Starting with Sym-
bol. This directive causes the assembler to advance its loca-
tion counter without writing anything into the object pro-
gram. It leaves an empty area (of the number of bytes 
specified in the operand) which can then be used as a storage 
space for data later on. The label is set equal to the memory 
location of the first byte in the block at the time the object 
program is loaded. (Since this program is relocatable, the 
place where the loader program decides to start loading it 
may change, depending on what other programs have 
already been loaded.) 

The DATA, BYTE, and TEXT directives are similar to 
BSS except that the contents of the buffer are explicitly 
defined in the operand field. The label is assigned the ad-
dress of the first byte at the time the object program is load-
ed. All of these buffer areas are contiguous. For example, 
look at the instructions immediately after the label 
MARKER. The pattern codes for two double-size sprites, 
the cursor and arrow, are loaded into the Sprite Descriptor 
Table in VDP RAM. Since the pattern data for ARROW 
is contiguous with that of CURSOR in both CPU and VDP 
RAM, all 64 bytes can be loaded in one shot. 

You should have little trouble figuring out the rest of the 
program by reading the comments provided and referring 
to the manual. But don't stop after you understand how 
it works—try to make some changes. To start with, try 
changing the shape and colors of the sprite cursor, the ar-
rangement of the color palette on the screen, etc. Then try 
to make the program more efficient in speed and utiliza-
tion of memory. 

Be prepared to run into problems; it's through encounter-
ing and solving them that you'll learn most rapidly. When 
I decided to stop reading and start trying to write a pro-
gram, I had visions of seeing a curl of white smoke rise from 
the computer's cooling vents, but that didn't happen to me 
and probably won't happen to you either. So don't be afraid 
to experiment. 
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Listing 1 	Magic Crayon 

DEF 	MARKER 
REF 	VSBW,VMBW,VMBR,VSBR 
REF 	VWTR,KSCAN,DSRLNK 

* DEFINITION OF LABELS 

SCREEN BSS 	>300 
PALET 	BSS 	>600 
PATRN 	BSS 	>600 
ROW 	BSS 	1 
COL 	BSS 	1 
CURSOR DATA >8040 >2010 >0804,>0000 

DATA >0000 >0408 >1020 >4080 
DATA >0102 >0408 >1020 >0000 
DATA >0000 >2010 >0804 >0201 

ARROW DATA >0102 >0408 >0000 >0000 
DATA >0000 >0000 >0000 >0000 	 11 
DATA >0080 >4020 >0000 >0000 
DATA >0000 >0000 >0000 >0000 

AT TR I B DATA >5878 >800F >D000 
ARRA T T DATA >6578,>8401 
PDATA 	DATA >0600 >1000 >0000 >0600 

DATA >0008 
TEXT 	' DSK1 . SCREEN ' 

ZERO 	DATA >0000 
D32 	DATA >0020 
D8 	DATA >0008 
GRAY 	DATA >EEEE 
MAX 	DATA >0 5 F F 
COLMAX DATA >0100 
LOAD 	BYTE >05 
BLACK 	BYTE >11 
ONE 	BYTE >01 
TWO 	BYTE >02 
FCOLOR BYTE >10 
BCOLOR BYTE >0E 
H18 	BYTE ,12 
H14 	BYTE >0E 
H11 	BYTE >0B 
H07 	BYTE >07 
H06 	BYTE >06 
H05 	BYTE >0 5 
H02 	BYTE >02 
NOK EY 	BYTE >F F 
PAB 	EQU 	>0F80 
USRWS 	EQU 	>20 BA 
PNTR 	EQU 	>8356 
UNIT 	EQU 	>8374 
F IRE 	EQU 	>8375 
JOYS TY EQU 	>8376 
IOYSTX EQU 	>8377 
SPRITE  EQU 	>337A 
STATUS EQU 	>837C 
GP LWS 	EQU 	>83E0 
• 
• DEFINE SPRITE PAT TERNS FOR CHRS 128 AND 132 
• 
MARKER LWPI USRWS 

LI 	80,>400 
LI 	R1,CURSOR 
LI 	R2,64 
BLWP @VMBW 

LOAD WORKSPACE POINTER / START 
VDP ADDRESS CH 128 SPRITE DESCRIPTOR TABLE 
CPU ADDRESS OF CHAR PATTERN 
64 BYTES TO MOVE (2 PATERNS) 
LOAD DATA TO VDP RAM 

• SET FOREGROUND AND BACKGROUND TO GRAY 

LI 	R0 , >01F0 
	

PLACE IN TEXT MODE 
BLWP (1,VWT R 
	

WRITE TO VDP R1 
LI 	RO , >0 7EE 
	

SET FORE AND BACKGROUND TO GRAY 
BLWP @VWTR 
	

WRITE TO VDP R7 

• INITIALIZE SCREEN IMAGE TABLE FOR MULTICOLOR MODE 

LI 	HO, SCREEN 
LI 	R1 6 
CLR 	R2 

LOOPO 	LI 	R3,4 
LOOP1 	LI 	R4,>20 

MOVB R2 R5 
LOOP2 	MOVB R5 *R0-1- 

AI 	85,>0100 
DEC 	R4 
'NE 	LOOP2 
DEC 	B3 

INITIALIZE POINTER 
INITIALIZE GROUP COUNTER 
INITIALIZE VALUE 
INITIALIZE REPETITIONS COUNTER 
INITIALIZE VALUE COUNTER 
START REPETITION 
STORE VALUE IN ARRAY SCREEN 
CHANGE TO NEXT VALUE 
COUNT DOWN FOR NEXT VALUE 
DO NEXT VALUE 
DEC REPETITION COUNTER 
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Listing 1 Magic Crayon continued 

INE 	LOOP1 
AI 	R2,>2000 
DEC 	R1 
INE 	LOOPO 
LI 	RO,>00 
LI 	R1,SCREEN 
LI 	R2,>300 
BLWP @VMBW 

DO NEXT REPETITION 
NEXT STARTING VALUE 
DEC GROUP COUNTER 
DO NEXT GROUP 
VDP ADDRESS FOR SCREEN IMAGE 
CPU ADDRESS OF DATA BUFFER 
768 BYTES TO WRITE 
INITIALIZE VDP SCREEN IMAGE 

*

• 

INITIALIZE COLOR PALETTE SCREEN 

LI 	RO,>100 
LI 	R1,PALET 

LOOP3 	MOV 	@GRAY,*R1+ 
DEC 	RO 
INE 	LOOP3 
CLR 	RO 
LI 	R3,16 

LOOP4 	LI 	R4,2 
LOOPS 	MOVB @GRAY,*R1+ 

MOVB @GRAY,*R14- 
MOVB @BLACK,*R1+ 
LI R5,4 

LOOP6 	MOVE RO,*R1+ 
DEC 	115 
INE 	LOOP6 
MOVB @BLACK,*R14- 
DEC 	R4 
INE 	LOOPS 
SWPB RO 
AI 	RO,>11 
SWPB RO 
DEC 	R3 
INE 	LOOP4 
LI 	RO,>300 

LOOP7 	MOVB @GRAY,*R1+ 
DEC 	Re 
INE 	LOOP7 

• 

INITIALIZE WORD COUNTER 
INITIALIZE POINTER FOR PALET ARRAY 
STORE GRAY COLOR >EEEE 
DEC WORD COUNTER 
WRITE NEXT WORD 
INITIALIZE COLOR VALUE 
INITIALIZE COLOR COUNTER 
INITIALIZE COLUMN COUNTER 
STORE GRAY BYTE 
STORE ANOTHER GRAY BYTE 
STORE BLACK BYTE 
LOAD COUNTER FOR COLOR BYTES 
STORE A COLOR BYTE 
DEC COLOR BYTE COUNTER 
STORE ANOTHER COLOR BYTE 
STORE A BLACK BYTE 
DEC COLUMN COUNTER 
DO SECOND COLUMN 
SHIFT TO LEAST SIG BYTE 
ADD 1 FOR NEXT COLOR NUMBER 
SHIFT BACK TO MOST SIG BYTE 
COUNT DOWN COLOR COUNTER 
DO NEXT TWO COLUMNS 
SET BYTE COUNTER FOR REMAINING SCREEN 
STORE A GRAY BYTE 
COUNT DOWN 
REPEAT UNTIL DONE 

* INITIALIZE PATTERN TABLE — TRANSPARENT 

CLEAR 	LI 	R0,>300 
LI 	R1,PATRN 

LOOPS 	MOV 	@ZER0,*R1+ 
DEC 	RO 
INE 	LOOP8 

*

• 

LOAD PATTERN TABLE 
* 

LI 	RO,>800 
LI 	R1,PATRN 
LI 	R2,>600 
BLWP @VMBW 

INITIALIZE WORD COUNTER 
INITIALIZE POINTER FOR PATTERN ARRAY 
STORE COLOR = TRANSPARENT 
COUNT DOWN FOR NEXT WORD 
WRITE NEXT WORD IN ARRAY 

VDP PATTERN TABLE ADDRESS 
CPU BUFFER ADDRESS 
1536 BYTES TO WRITE 
WRITE TO VDP RAM 

*

• 

SELECT DOUBLE SIZE AND MULTICOLOR MODE 

LI 	R0,>01EA 	 TO WRITE 11101010 TO VDP R1 
BLWP gVWTR 	 WRITE TO VDP R1 
SWPB RO 	 MOVE >EA TO MOST SIG BYTE 
MOVB R0,@>83D4 	 STORE COPY I>EA) IN CPU RAM 

*

• 

DEFINE ATTRIBUTES FOR SPRITE #0 

LI 	RO,>300 
LI 	R1,ATTRIB 
LI 	R2,6 
BLWP @VMBW 

*

• 

DEFINE # OF ACTIVE SPRITES 

VDP SPRITE ATTRIBUTE LIST 
LOCATION OF ATTRIBUTE LIST FOR SPRITE 0 
6 BYTES TO MOVE 
WRITE DATA TO VDP RAM 

MOVB @ONE,@SPRITE 	STORE NO. OF ACTIVE SPRITES IN CPU RAM 
• 
* INITIALIZE CURSOR COLOR AND COLOR CHANGE COUNTER 

LI 	R3,>0F01 	 SPRITE COLORS — WHITE/BLACK IN /I3 
CLR 	R4 	 INITIALIZE COUNTER — COLOR CHANGE 

	  START MAIN LOOP 	  

*

• 

CHECK IOYST FOR MOTION, FIRE BUTTON AND KEYS 

CHECK 	LIMI 2 	 ENABLE INTERRUPTS 
LIMI 0 	 DISABLE INTERRUPTS 
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Listing 1 Magic Crayon continued 

LI 	R0,1 	 INDICATE REPETIONS OF CHECKS 
BL 	@CHECKS 	 BRANCH TO SUBROUTINE CHECKS 
MOVB @ONE,@UNIT 	 SELECT REMOTE UNIT TO SCAN 
BLWP @KSCAN 	 SCAN LEFT KEYBOARD 
CB 	@FIRE,@H05 	 WAS °E" PRESSED? 
JEQ 	CLEAR 	 IF YES GO TO CLEAR SCREEN 
CB 	@FIRE,@H02 	 WAS "S" PRESSED? 
JNE 	NEXT1 	 IF NOT, GO ON 
B @SAVE 	 IF SO, BRANCH TO SAVE ROUTINE 

NEXT1 	CB 	4FIRE,H06 	 WAS "Ft" PRESSED? 
JNE 	NE.,XT2 	 IF NOT, GO ON 
B @RECALL 	 IF SO, BRANCH TO RECALL ROUTINE 

NEXT2 	CB 	@FIRE,@H11 	 WAS "T" PRESSED? 
JNE 	NEXT3 	 IF NOT, GO ON 
LIMI 2 	 ENABLE INTERRUPTS 
LWPI GPLWS 	 LOAD GPL WORK SPACE 
BLWP @0000 	 RETURN TO MASTER TITLE SCREEN 

NEXT3 	CB 	@FIRE,@H14 	 WAS "C" PRESSED? 
JNE 	NEXT4 	 IF NO, GO ON 
B @SELECT 	 IF YES, GO TO COLOR SELECT ROUTINE 

NEXT4 	CB 	@FIRE,@H18 	 WAS FIRE BUTTON PRESSED? 
'NE 	SKIP 	 IF NO, SKIP DRAW ROUTINE 

• 
• ROUTINE TO PLACE BLOCK ON SCREEN 

DRAW 	LI 	R0,>300 	 VDP SPRITE ATTRIBUTE ADDRESS 
LI 	R1, ROW 	 CPU BUFFER TO RECEIVE DATA 
LI 	R2,2 	 FETCH 2 BYTES 
BLWP @VMBR 	 FETCH DOT ROW AND DOT COLUMN 
CLR 	R7 	 INITIALIZE R7 AND R8 
CLR 	R8 	 --FOR USE IN DIVIDE OPERATION 
CLR 	R2 	 INITIALIZE OFFSET FOR PATRN ARRAY 
MOVB @ROW,R0 	 PUT DOT ROW IN R8 
SWPB R8 	 MAKE IT LEAST SIG BYTE 
AI 	R8,9 	 ADD ROW OFFSET FOR COLOR BLOCK +1 
C 	R8,@COLMAX 	 IS THE DOT ROW > 255? 
JLT 	NOCORR 	 IF NOT, DO NOT APPLY CORRECTION 
S 	@COLMAX,R8 	 IF SO, SUBTRACT 255 

NOCORR DIV 	@D32,R7 	 DIVIDE DOT ROW OF BLOCK BY 32 
SLA 	R7,8 	 CALCULATE BYTES IN PRECEEDING GROUPS 
A 	R7,R2 	 ADD # OF BYTES IN PREVIOUS 32X8 BYTE GROUPS 
SRL 	R8,2 	 DIVIDE REMAINDER BY 4 
A 	R87-112 	 ADD # BYTES ABOVE IN CURRENT 8 BYTE SET 
CLR 	R7 	 INITIALIZE R7 AND R8 
CLR 	R8 	 --FOR USE IN DIVIDE OPERATION 
MOVB @COL,R8 	 PUT DOT COLUMN IN R8 
SWPB R8 	 MAKE IT LEAST SIG BYTE 
Al 	R8,8 	 ADD COLUMN OFFSET FOR COLOR BLOCK 
C 	R8,@COLMAX 	 IS THE DOT COLUMN > 255? 
ILT 	NOCORC 	 IF NOT, DO NOT APPLY CORRECTION 

@COLMAX,R8 	 IF SO, SUBTRACT 256 
NOCORC DIV 	@D8,R7 	 DIVIDE BY 8 

SLA 	R7.3 	 CALCULATE BYTES IN PRECEEDING 8 BYTE SETS 
A 	R7, R2 	 ADD # BYTES IN PREVIOUS 8 BYTE SETS, THIS GROUP 
MOV 	R2,R2 	 CHECK IF INSIDE PATTERN ARRAY 	N 
JLT 	SKIP 	 IF NOT SKIP SCREEN PLACEMENT 
C 	R2,@MAX 	 CHECK IF INSIDE PATTERN ARRAY EEN 
JGT 	SKIP 	 IF NOT SKIP SCREEN PLACEMENT 
LI 	R0,>14 	 REPEAT SUBROUTINE CHECKS 20 TIMES 
BL 	@CHECKS 	 BRANCH TO SUBROUTINE CHECKS 
CLR 	R1 	 INITIALIZE R1 FOR BLOCK COLOR 
MOVB @FCOLOR,R1 	 STORE COLOR IN R1 
SWPB R1 	 MAKE IT LEAST SIG BYTE 
CLR 	RO 	 INITIALIZE RO FOR CURRENT ARRAY ELEMENT 
MOVB @PATRN(2),R0 	 COPY ARRAY ELEMENT AT OFFSET INTO RO 
SRL 	R8,2 	 CALCULATE WHETHER BLOCK IS LEFT OR RIGHT 
JEQ 	MARK1 	 IF 0 LEAVE BLOCK AS LEFT NYBBLE 
SRL 	R1,4 	 IF 1 MAKE BLOCK RIGHT NYBBLE 
SWPB RO 	 MAKE CURRENT ELEMENT LEAST SIG BYTE 
SRL 	R0,4 	 GET RID OF LEAST SIG NYBBLE 
SLA 	R0,4 	 PUT REMAINING NYBBLE BACK 
JMP 	MARK2 	 SKIP TO LABEL 

MARK1 	SLA 	R0,4 	 GET RID OF MOST SIG NYBBLE 
SRL 	R0,4 	 PUT BACK REMAINING NYBBLE 
SWPB R0 	 MAKE IT LEAST SIG BYTE 

MARK2 	A 	R1,R0 	 ADD NEW COLOR TO ADJACENT VALUE 
SWPB RO 	 MAKE IT MOST SIG BYTE 
MOVB R0,@PATRN(2) 	 MOVE IT TO ARRAY AT OFFSET 
LI 	R0,>0800 	 VDP PATTERN TABLE ADDRESS 
LI 	R1, PATRN 	 CPU BUFFER 
LI 	R2,>600 	 1536 BYTES TO MOVE 
BLWP @VMBW 	 WRITE TO REDRAW SCREEN 
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Listing 1 Magic Crayon continued 

SKIP 
	

CLR 	R5 	 CLEAR R5 AND R6 TO RECEIVE JOYST VALUES 
CLR 	R6 
MOVB @JOYS TY , R5 	 PUT Y RETURN IN R5 
NEG 	R5 	 MULTIPLY BY —1 
SLA 	R5,2 	 MULTIPLY BY 4 
MOVB @JOYS TX , R6 	 PUT X RETURN IN R6 
SLA 	R6 , 2 	 MULTIPLY TIMES 4 
SWPB R6 	 MAKE XVEL LEAST SIG BYTE 
MOVB R5 , R6 	 MOVE YVEL TO R6 AS MOST SIG BYTE 
LI 	R1 ,USRWS+12 	 CPU ADDRESS OF VELOCITY BYTES (R6 1 
LI 	RO , >0780 	 VDP ADDRESS OF MOT ION TABLE 
LI 	R2 , 2 	 2 BYTES TO MOVE 
BLWP @VMBW 	 WRITE DATA TO VDP RAM 
B @CHECK 	 START LOOP OVER AGAIN 

• 
• END OF MAIN PROGRAM LOOP 	  
• 
* COLOR SELECT ROUTINE 

SELECT LI 	RO , >07EE 	 CHANGE BACKGROUND TO GRAY 
BLWP @VWTR 	 WRITE TO VDP R7 
LI 	RO , >800 	 VDP BUFFER FOR PATTERN TABLE 
L I 	R1 , PAL ET 	 CPU BUFFER FOR PALETTE 
LI 	R2 , >600 	 1536 BYTES TO MOVE 
BLWP @VMBW 	 DISPLAY PALETTE 
LI 	RO , >300 	 VDP BUFFER FOR ATTRIBUTE LIST 
LI 	R1 , ARRATT 	 ARROW ATTRIBUTES 
LI 	R2 , 4 	 4 BYTES TO MOVE 
BLWP @VMBW 	 WRITE DATA 
BL 	(ijDEBNC 	 BRANCH TO "DEBOUNCE" SUBROUTINE 

LOOP9 	LIMI 2 	 ENABLE VDP INTERRUPT 
LIMI 0 	 DISABLE  INTERRUPT 
MOVB @ONE , @UN I T 	 IDENTIFY  REMOTE UNIT TO SCAN 
BLWP @KSCAN 	 SCAN LEFT KBD AND REMOTE UNIT #1 
CB 	@F IRE ,@H18 	 CHECK FIRE BUTTON 
JEQ 	CMARK 	 IF PRESSED, CHANGE MARK COLOR 
CB 	epF IRE ,H14 	 CHECK "C" KEY 

EQ 	CSCRN 	 I F PRESSED , CHANGE SCREEN COLOR 
CLR 	R6 	 INITIALIZE R6 
MOVB @JOYS TX , R6 	 PUT JOYST X IN R6 
SLA 	R6 , 2 	 MPY BY 4 
SWPB R6 	 MAKE LEAST SIG BYTE 
LI 	R1 ,USRWS+12 	 LOAD CPU ADDRESS ( R6 ) 
LI 	R0 , >0780 	 LOAD ADDRESS OF MOT ION TABLE 
LI 	R2 , 2 	 MOVE 2 BYTES 
BLWP @VMBW 	 LOAD DATA TO VDP RAM 
IMP 	LOOP9 	 GOTO LOOP9 

CSCRN 	BL 	@DOTCOL 	 DETERMINE COLOR FROM DOT COLUMN OF ARROW 
SWPB R1 	 MAKE IT MOST SIG BYTE 
MOVB R1 , @BCOLOR 	 MOVE IT TO BCOLOR 
IMP 	BACK 	 JUMP TO BACK 

CMARK 	BL 	@DOTCOL 	 DETERMINE COLOR FROM DOT COLUMN OF ARROW 
SLA 	R1,12 	 PUT IN PROPER POSITION FOR @FCOLOR 
MOVB R1 , @FCOLOR 	 MOVE IT TO FCOLOR 

BACK 	BL 	@DEBNC 	 DEBOUNCE 
CLR 	RO 	 PREPARE TO RETURN SCREEN COLOR 
MOVB @BCOLOR , RO 	 PUT BACKGROUND COLOR IN RO 
SWPB RO 	 MAKE IT LEAST SIG BYTE 
MOVB @H07 , RO 	 INDICATE WRITE TO VDP R7 
BLWP @VWTR 	 WRITE IT TO R7 
LI 	R0 , >800 	 VDP PATTERN TABLE ADDRESS 
LI 	R1 , PATRN 	 PATTERN BUFFER IN CPU RAM 
LI 	R2 , >600 	 1536 BYTES TO WRITE 
BLWP @VMBW 	 LOAD PATTERN SCREEN 
LI 	R0 , >300 	 VDP SPRITE ATTRIBUTE TABLE ADDRESS 
LI 	R1, ATTR I B 	 ADDRESS OF CURSOR ATTRIBUTES 
LI 	R2 , 4 	 4 BYTES TO MOVE 
BLWP @VMBW 	 LOAD DATA TO GET CURSOR SPRITE 
B @SK IP 	 BRANCH TO LABLE SKIP 

• 
* DSR ROUTINE TO SAVE "SCREEN" -- PATTERN TABLE 
• 
SAVE 	LI 	RO , >1000 

L I 	R1 , PATRN 
LI 	R2 , >600 
BLWP @VMBW 
LI 	RO , PAB 
LI 	R1 , PDATA 
LI 	R2 , 21 
BLWP @VMBW 
L I 	R6 PAB+9 
MOV 	R6 , @PN TR 
BLWP 6,DSRLNK 

PREPARE TO MOVE PAT RN TO VDP BUFFER 
CPU BUFFER ADDRESS 
1536 BYTES TO MOVE 
WRITE DATA 
VDP PERIPHERAL ACCESS BLOCK ADDRESS 
CPU BUFFER TO BE WRITTEN TO VDP 
21 BYTES TO WRITE 
WRITE PAB 
SET POINTER TO NAME LENGTH 
STORE IN >8356 > 8 3 5 7 
EXECUTE SAVE OR LOAD 
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Listing 1 Magic Crayon continued 

DATA 8 
B @CHECK 

	
IF SO, BRANCH BACK TO BEGINNING 

* DSR ROUTINE TO RECALL "SCREEN" -- PATTERN TABLE 

RECALL LI 	R0 , PAB 	 VDP PERIPHERAL ACCESS BLOCK ADDRESS 
LI 	R1 , PDATA 	 CPU BUFFER TO WRITE 
LI 	R2 , 21 	 21 BYTES TO WRITE 
BLWP @VMBW 	 WRITE PAB 
LI 	RO , PAB 	 SUBSTITUTE "LOAD" I/O OP CODE 
MOVB @LOAD , R1 	 MOVE OP CODE TO R1 
BLWP @VSBW 	 WRITE BYTE TO PAB 
LI 	R6 , PAB+9 	 SET POINTER TO NAME LENGTH 
MOV 	R6 ,@PNTR 	 STORE IN >8356 >8357 
BLWP @DSRLNK 	 COPY DATA TO VDP BUFFER 
DATA 8 
LI 	R0 , >1000 	 PREPARE TO COPY FROM VDP TO PATRN 
LI 	R1 , PATRN 	 CPU BUFFER ADDRESS 
L I 	112 , >600 	 1536 BYTES TO COPY 
BLWP @VMBR 	 COPY BUFFER 
LI 	RO , >0800 	 NOW COPY TO PATTERN TABLE 
LI 	R1 , PATRN 	 ADDRESS OF CPU BUFFER 
L I 	112 , >600 	 1536 BYTES TO COPY 
BLWP @VMBW 	 COPY TO TABLE 
B @CHECK 	 BACK TO THE BEGINNING 

• 
• SUBROUTINE TO PERIODICALLY CHANGE SPRITE COLORS 
• 
CHECKS AI 	R4 , >100 

J EQ 	CHANGE 
DEC 	II0 
J NE 	CHECKS 
IMP 	RETURN 

CHANGE SWPB R3 
MOV 	R3 , R1 
LI 	I10 , >303 
BLWP @VSBW 

RETURN RT 
• 
• DEBOUNCE SUBROUTINE 
• 
DEBNC 	MOVB @ONE , @UN I T 

BLWP @KSCAN 
CB 	@F IRE ,@NOKEY 
JNE 	DEBNC 
RT 

ADD 256 TO R4 
WHEN R4 REACHES 0, CHANGE COLOR 
DEC COUNTER 
IF NOT 0 ADD ANOTHER 256 
BACK TO MA IN PROGRAM 
SWITCH COLOR BYTES IN 113 
PUT R3 IN R1 
ADDRESS OF SPRITE #0 COLOR IN VDP RAM 
WRITE MOST SIG BYTE OF R1 
BACK TO MA IN PROGRAM 

KEY UNIT TO CHECK 
SCAN KEYBOARD 
IS NO KEY PRESSED? 
IF A KEY IS PRESSED, CHECK AGAIN. 
GO BACK TO MA IN PROGRAM 

*

• 

SUBROUTINE TO DETERMINE COLOR FOR ARROW 
• 
DOTCOL CLR 	R1 

LI 	R0 , >301 
BLWP @VSBR 
SWPB R1 
AI 	R1 , >07 
SRL 	R1 , 4 
RT 

"END START" 

AUTO 	END 	MARKER 

INITIALIZE R1 TO RECEIVE DOT COLUMN 
VDP ADDRESS OF DOT COLUMN 
READ BYTE FROM ATTRIBUTE TABLE 
MAKE IT LEAST SIG BYTE 
ADD OFFSET FOR POINT OF ARROW 
DIVIDE BY 16 
RETURN 

AUTOSTART 
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MINI 
MEMORY 
CARTRIDGE 
There's More There 
Than Meets the Eye 

You know, looks can be deceiving. Who'd suspect 
that a bespectacled, mild-mannered reporter for 
the Daily Planet could leap over tall buildings with 

a single bound? In the same way, there's more to TI's 
Mini Memory Command Cartridge than meets the eye. 
What appears to be a normal, garden-variety Command 
Cartridge, however, really converts your TI Home Com-
puter from a good BASIC machine to a trim and effi-
cient assembly language instrument. 

Even the name is a clever disguise: "Mini" Memory, 
indeed! If you believe that there's just a tiny bit of 
memory in there, you probably believe that the Trojan 
Horse was nothing more than an overgrown hobby-horse! 
This cartridge actually has 14K bytes of memory: 4K of 
RAM, 4K of ROM and 6K of GROM. 

RAM (read/write) memory is used by your computer 
to store your programs. And you know that any program 
you write disappears from the computer's memory when 
you shut the computer off. But Mini Memory has a sur-
prise for you: When you shut the computer off and 
unplug the cartridge, your programs don't disappear 
from the cartridge's RAM. A battery inside the cartridge 
feeds a trickle of current to the CMOS devices—which 
are real power misers—and keeps them alive. And now 
you can carry your programs around with you, plug them 
in, and instantly load them—no cassettes, no diskettes, 
no messy cables, no long waits. 

But there's more yet. Besides battery-backed RAM, this 
cartridge also has 4K bytes of ROM (Read-Only Memory) 
and 6K bytes of GROM (Graphics Read-Only Memory). 
The ROM and GROM give you seven additional TI 
BASIC subprograms, as well as access to many system 
routines from assembly language programs. The ROM 
also contains a powerful program debugger, EASY BUG, 
which can help you exterminate those pesky "logic ver-
min" which infest programs. 

At this point, you may be saying to yourself, "What 
good does all this Assembly Language access and debug-
ging stuff do for me, anyway, without an assembler?" 
Glad you asked. The Mini Memory Command Cartridge 
comes with an assembler on cassette. You can load this 
assembler into memory, enter assembly language  

statements, and have the assembler translate them into 
TMS9900 object code. 

Let's explore this cornucopia one item at a time. 

FILE STORAGE 
Probably most persons will use the Mini Memory car-

tridge most often for temporary storage of programs and 
data. You can think of the Mini Memory cartridge as a 
very fast-access storage device. [See "Getting Down to 
Business" for a tutorial on random access files.—Ed.] 

When you have the Mini Memory Command cartridge 
plugged in, the 4K-byte RAM has the file name 
MINIMEM for TI BASIC program and data storage. The 
RAM occupies physical addresses 28672 through 32767 
(hexadecimal 7000 through hexadecimal 7FFF). You can 
save programs in this file and load programs from it. (For 
example, to save a TI BASIC program, just enter the 
command SAVE MINIMEM.) You can also store data 
in this file using the file specification available for any 
TI BASIC file. For example, the following statements 
open the Mini Memory file and store data values in the 
file. 

OPEN #3 :"MINIMEM",RELATIVE,FIXED, 
UPDATE, INTERNAL 
PRINT #3: A,B,C,D 
With the Mini Memory cartridge you can also access 

a second new file. EXPMEM2 is the name of a 24K-byte 
memory file located in the 32K Memory Expansion unit. 
EXPMEM2 is available, however, only if you have the 
Memory Expansion unit connected to your computer and 
turned on. 

ADDITIONAL TI BASIC SUBPROGRAMS 
Seven additional TI BASIC subprograms are yours 

with the Mini Memory cartridge. These subprograms are 
PEEK, PEEKV, POKEY, CHARPAT, INIT, LOAD, 
and LINK. 

The PEEK subprogram reads bytes of CPU RAM data 
and copies the data directly into TI BASIC variables. For 
example, the statement: 

CALL PEEK (8192,A,B,C,(8)) 
reads three bytes of data starting at address 8192, and 
assigns the values read to the variables A, B, and C(8). 

The PEEKV subprogram reads bytes from VDP RAM. 
It works exactly like PEEK, except PEEKV accesses VDP 
RAM instead of CPU RAM. 

The POKEV subprogram stores data values into VDP 
RAM. For example, 

CALL POKEV(784,30,30,30) 
writes the value 30 to VDP RAM locations 784, 785, and 
786. 
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The CHARPAT subprogram reads a 16-character pat-
tern identifier that specifies the pattern of a character 
code. For example, 

CALL CHARPAT(68,D$) 

places the pattern defining character code 68 in the string 
variable D$. 

The three TI BASIC subprograms INIT, LOAD, and 
LINK interface Assembly Language programs and TI 
BASIC programs. 

The INIT subprogram initializes the CPU memory for 
Assembly Language programs. The LOAD subprogram 
loads Assembly Language object files into CPU memory 
and it loads data into the CPU memory. 

There are two forms of the LOAD subprogram. One 
form is used to load an object file from a storage device 
into memory, and the second form is used to load data 
directly into CPU memory. For example, the statement 

CALL LOAD ("DSK1.DEMO") 

loads the file DEMO from the diskette in Disk Drive 1. 
The second form of the LOAD subprogram is a POKE 

function for CPU RAM. For example, the statement 

CALL LOAD (8197,85,40) 
loads the value 85 into memory location 8197 and the 
value 40 into memory location 8198. 

The LINK subprogram passes control and, optional-
ly, a list of parameters from a TI BASIC program to an 
Assembly Language program. For example, the statement 

CALL LINK ("PROG1",A,E(9)) 
passes control from a TI BASIC program to an Assembly 
Language program named PROG1 and passes the 
variables A and E(9) to the program. 

ACCESS TO SYSTEM ROUTINES 
The utility routines resident in the Mini Memory Com-

mand Cartridge can be called from an Assembly 
Language program to access machine resources and in-
terface with the TI BASIC interpreter. It's fair to warn 
you that the use of these routines requires a knowledge 
of the routines themselves and the organization of data 
used by the routines. You can get additional information 
about these routines from the Editor/Assembler owner's 
manual (available separately). 

Two types of access programs are resident in the Mini 
Memory Command Cartridge. One program contains a 
collection of system utilities with which to link to 
ROM/GROM routines, perform a keyboard scan, access 
the VDP, etc. The individual utility programs are 
classified as either Standard Utility programs or Extend-
ed Utility programs. 

A second program contains TI BASIC interface utilities 
with which an Assembly Language program can access 
variables passed through a CALL LINK statement in a 
TI BASIC program. This program also contains an error-
handling utility to return exceptions to a TI BASIC 
program. 

STANDARD UTILITY PROGRAMS 
The following standard system utilities become accessi- 

ble with the Mini Memory Command Cartridge: 
—VDP Single Byte Write—Write a single-byte value to 

a specified VDP RAM address.  

—VDP Multiple Byte Write—Write multiple bytes 
from CPU RAM to VDP RAM. 

—VDP Single Byte Read—Read a single byte from a 
specified VDP RAM address. 

—VDP Multiple Byte Read—Read multiple bytes from 
VDP RAM into CPU RAM. 

—VDP Write to Register—Write single-byte value to 
any of the VDP RAM registers. 

—Keyboard Scan—Scan the keyboard and return a 
key-code and status. This routine can also read the 
position of the Wired Remote Controller. 

EXTENDED UTILITY PROGRAMS 
Extended utilities are provided to access routines in the 

console GROMs and ROMs. These utilities are GPLLNK 
(link to GPL routines in GROM), XMLLNK (link to 
routines in ROM), and DSRLNK (link to Device Service 
Routines). 

GPLLNK Routines 
The GPLLNK routines are as follows: 
—Load Standard Character Set—Load the standard 

character set into VDP RAM 
—Load Small Character Set—Load the small 

character set (for the 40-column Text Mode) into 
VDP RAM. 

—Execute Power-Up Routine—Initialize the system as 
if the computer had just been turned on. 

—Accept Tone—Issue an accepting tone for input. 
—Bad Response Tone—Issue a bad-response tone 

warning. 
—Bit Reversal Routine—Provide a mirror image of a 

byte of information. 
—Cassette Device Service Routine—Access a cassette 

tape recorder/player as a storage device. 
—Load Lower Case Character Set—Load the 

lower-case character set into VDP RAM. 
The following floating point routines are also available 

through GPLLNK: 
—Convert a floating-point number to an ASCII string. 
—Compute the greatest integer contained in a value. 
—Raise a number to a specified power. 
—Compute the square root of a number. 
—Compute the inverse natural logarithm of a value. 
—Compute the natural log of a number. 
—Compute the cosine of a number. 
—Compute the sine of a number. 
—Compute the tangent of a number. 
—Compute the arctangent of a number. 

XMLLNK Routines 
Routines in the console ROM can be accessed through 

the XMLLNK routine, The following routines can be 
called from an Assembly Language program using 
XMLLNK: 

—Floating-point addition. 
—Floating-point subtraction. 
—Floating-point mutiplication. 
—Floating-point division. 
—Floating-point compare. 
—Floating-point stack addition. 
—Floating-point stack subtraction. 
—Floating-point stack multiplication. 
—Floating-point stack division. 
—Floating-point stack compare. 
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—Convert a string to a number. 
—Convert a floating-point format number to an integer. 
—Push a value onto the value stack. 
—Pop a value from the value stack. 
—Convert an integer number to floating-point format. 

DSRLNK Routines 
DSRLNK links an Assembly Language program to a 

Device Service Routine (DSR) or a subprogram in ROM. 
As with GPLLNK and XMLLNK, TI cautions you to 
make sure you know what you are doing before using 
DSRLNK. [A DSR is a machine language program that 
TI has burned into ROMs found in each of its peripherals. 
Since each peripheral contains its own custom "operating 
system," the TI-99/4A did not have to be designed to 
anticipate future peripheral requirements.—Ed.] 

TI BASIC INTERFACE UTILITIES 
TI BASIC interface utilities allow an Assembly 

Language program to read or assign values to variables 
passed in a parameter list from a CALL LINK statement 
in a TI BASIC program. These utility routines include 
argument-passing utilities and an error-reporting utility. 

The following are the TI BASIC interface utilities: 
—Assign a numeric value to a numeric variable. 
—Assign a string to a string variable. 
—Retrieve the value of a numeric parameter. 
—Retrieve the value of a string parameter. 
—Report an error. (The Assembly Language program 

can report any existing TI BASIC error or warning 
message upon returning to TI BASIC.) 

EASY BUG DEBUGGER 
Also inside the Mini Memory cartridge's ROM is 

EASY BUG. EASY BUG is a versatile program develop-
ment tool with which you can (1) debug your Assembly 
Language programs, (2) access the input/output ports of 
the computer, (3) load programs, and (4) store programs. 
And it really is easy to use. With EASY BUG, you can 
inspect and (optionally) modify the contents of CPU and 
VDP memory, display the contents of ROM, run 
Assembly Language programs from EASY BUG, directly 
access the peripheral devices which are connected to the 
computer via the 9900 microprocessor's serial I/O port 
(the CRU), and save or load programs on cassette. 

LINE-BY -LINE SYMBOLIC ASSEMBLER 
A line-by-line symbolic assembler on a cassette tape is 

supplied with the Mini Memory cartridge. It assembles 
Assembly Language statements and stores the object code 
directly into the 99/4A's CPU RAM. You can make both 
forward and backward references to one- or two-
character labels with the Assembler. Each source state-
ment you enter is immediately assembled into object code 
and stored into memory. Because some source code is re-
tained in a nine-page text buffer, you can scroll the screen 
to review previously entered lines of source code by press-
ing the up- and down-arrow keys. The source program 
cannot be saved, however. 

The Line-by-Line Assembler occupies about 2K bytes. 
When it is loaded into the Mini Memory cartridge's 4K 
byte RAM, you still have about 2K bytes of memory for 
your Assembly Language program. 

Assembler Directives 
The Assembler recognizes seven directives:  

—The AORG (Absolute Origin) directive establishes 
the location counter value to set the starting address 
of assembled code. 

—The BSS (Block Starting with Symbol) directive re-
serves a block of initialized memory. 

—The DATA (Data Initialization) directive initializes 
a word or words of memory to a specific value. 

—The END (End Program) directive terminates the 
assembler and causes a display of the number of 
unresolved references, if any. 

—The EQU (Equate) directive defines a value for a 
symbolic constant. 

—The SYM (Symbol Table Display) causes a display of 
all symbols and their values in the program. 

—The TEXT (String Definition) directive causes a 
string of characters to be translated into their ASCII 
code and stored as a part of a program. 

[Rather than being strictly a part of the internal logic 
of your program, assembler directives are commands 
which direct the Assembler to perform certain operations 
at assembly time.—Ed.] 

DEMONSTRATION PROGRAM 
Along with the Line-by-Line Assembler on the cassette 

is an Assembly Language demonstration program called 
LINES which draws a colorful line design on the screen. 
The LINES program can be run only on the TI-99/4A 
Home Computer, however, because it requires the 
enhanced graphic processor contained on the TI-99/4A. 

OPERATION 
TI has a knack for creating complex and versatile pro-

grams that are still simple to operate; they've definitely 
done it again with the Mini Memory Command Car-
tridge. When you plug in the cartridge, turn on the com-
puter, and pass the opening credits on the Master Title 
Screen, you are presented with a simple, three-choice 
selection screen. You can choose TI BASIC, EASY BUG, 
or MINI MEMORY. 

If you select MINI MEMORY, you are presented with 
a second three-choice selection screen. You can choose 
to load an object program into memory and run it, run 
a previously loaded program already in memory, or re-
initialize the cartridge to prepare it for loading new pro-
grams or storing data. Pick a number, pluck a key, and 
you're off and running. It's as easy as eating oatmeal 
cookies! 

CONCLUSION 
This has got to be one of the best deals around. 4K 

bytes of RAM with battery backup assure that all the 
good stuff stored in the RAM is not lost when you turn 
off the console or even when you remove the cartridge. 
10K bytes of ROM and GROM give you seven additional 
TI BASIC subprograms (including PEEK and POKE), 
access to system routines from Assembly Language, and 
routines to allow you to interface Assembly Language 
programs to TI BASIC. You've got a user-friendly pro-
gram debugger, a symbolic line-by-line assembler, and 
a captivating graphics demonstration program. All of 
this, plus 84 pages of documentation, for $99.95 (sug-
gested retail price). With all this to offer, it's really not 
too hard to see why there's definitely more to the Mini 
Memory Command Cartridge than meets the T-eye . (25 
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A Screen Printing Utility 

PART 1: Design Considerations 

One of the best features of the TI-99/4A computer 
is its graphics capability. The programmer can 
create a huge variety of screens by using the sim- 

ple character-definition commands of TI BASIC. 
Wouldn't it be nice to dump those screens to your non-
thermal printer? This two-part article presents a method 
for doing this on the TI-99/4 impact printer. Part I 
discusses the theory behind the screen dump. Part II will 
provide the Assembly Language subroutine itself. 

I should mention that the 99/4A has an improved video 
processor (TMS9918A) which allows you to define up to 
768 unique characters on the screen. However, this bit-
map mode requires an extra 12K of memory to hold the 
larger tables needed. We'll limit ourselves to the Graphics 
I, or standard mode, in this discussion. 

Approach —in English 
The video screen contains 768 character positions, ar-

ranged in 24 rows of 32 characters. Each character is com-
posed of an 8 x 8 dot matrix, giving you a screen of 192 
x 256 dots. The screen dump program will reproduce 
the screen dot-for-dot on the printer. 

With bit-image mode selected, the TI-99/4A prints 
characters which are one dot wide and 8 dots high. Since 
the screen characters are also 8 dots high, each screen 
character can be represented by 8 TI-99/4A bit-image 
characters, for a total of 64 possible dots per screen 
character. 

Accessing the Screen Image 
The contents of the screen are stored in VDP RAM. 

Since we are not concerned with color here, only two of 
the screen tables in VDP RAM are of interest. The first 
is the Screen Image Table, which starts at default 
address > 0000 and contains 768 bytes. Each byte cor-
responds to the character position on the screen and con- 

tains the character number occupying that screen posi-
tion. VDP RAM addresses > 0020 through > 003F cor-
respond to the second screen row, and so on. Since each 
character number is contained in one byte, you can see 
that the character numbers must be between > 00 and 
> FF, or decimal 0 through 255. 

The second table we'll need is the Pattern Descriptor 
Table, which starts at VDP RAM address > 0800 by 
default. This table contains the dot patterns for each of 
the 256 characters which can be in use. The BASIC sub-
program CHAR, which is used to define dot patterns for 
characters, stores patterns in this table. Since a character 
pattern takes 8 bytes to define, and there can be up to 
256 different characters, the Pattern Descriptor Table oc-
cupies 2084 bytes of VDP RAM. 

Figure 1 shows the relationship between these two 
tables. For a given screen ROW and COLUMN, the VDP 
RAM address of the corresponding character number is 
given by (ROW — 1) * 32 + COLUMN — 1. Once you 
have obtained this character number, you can use it to 
index to the correct spot in the pattern Descriptor Table. 
The offset in this table is just 1024 + (N — 32)*8 in 
decimal, since each pattern description is 8 bytes long. 
Figure 1 shows an example of finding the pattern for the 
home position (ROW 1, COLUMN 1) on the screen. The 
character number resides in the Screen Image Table at 
address 0. If the home character on the screen is "A", 
then VDP RAM address 0 contains the value 65 or > 41. 
From the offset in the Pattern Descriptor Table, we get 
VDP RAM address > 800 + > 200 = > 0A00. The eight 
bytes starting at > 0A00 in VDP RAM contain the pat-
tern for the character "A". You can see that for our pur-
poses, the contents of the Screen Image Table are just 
intermediate, though necessary, data. The character pat-
tern is what we're really after. 
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The 8-byte character pattern represents the dot pattern 
which appears on the screen in what I'll call row- wise 
form. The top portion of Figure 2 illustrates this for the 
character "A". The first byte of the pattern represents 
the first row of the dots which comprise the character. 
The hexadecimal notation is just a shorthand way to 
group four bits at a time, with bits of value 1 standing 
for dots which are turned on in the character. 

Translating the Characters to 
TI-99/4A Format 

The TI-99/4 printer constructs its bit-image output in 
a different way. It uses what I'll call column - wise form. 
It still takes 8 bytes to produce the same character, but 
each byte of data passed to the printer represents a col-
umn (rather than a row) of dots in the finished character. 
The bottom of Figure 2 illustrates this. If we think of 
the character's dot pattern as an 8 x 8 matrix, then the 
translation from TI internal format to TI-99/4A printer 
bit-image format is equivalent to transposing the matrix. 
We can't really treat each character pattern as a 64-bit 
matrix because 9900 Assembly Language does not have 
a BIT data type, but we can base the logic of the pro-
gram on this idea. 

Program Outline 
The screen dump program reads the Screen Image 

Table one byte at a time starting at the top (VDP RAM 
address 0). The value of each byte is used to calculate 
the position of the character pattern, and the 8-byte pat-
tern is obtained from the Pattern Descriptor Table. These 
8 bytes will be manipulated to produce 8 bytes of infor-
mation encoded for the TI-99/4 printer. Figure 3 shows 
how the bits of the TI-99/4A character pattern are 
rearranged to form bit-image data for the printer. Notice 
that the data at byte M, bit N is moved to byte N bit M—
or transposed. The program will also have to send cer-
tain control characters for bit-image mode to the printer. 

PART 2: Screen Dump 

T he Assembly Language subroutine for dumping 
99/4 screens to the TI-99/4 impact printer is 
designed to be called from console BASIC, and can 

be entered into your system using either the 
Editor/Assembler or the Line-by-Line Assembler in the 
Mini Memory Command Cartridge. 

VDP RAM Under Console BASIC 
When the TI-99/4A is under control of the BASIC in-

terpreter, VDP RAM contains two areas of interest here. 
VDP RAM addresses > 0000 — > 02FF (0 — 767 in 
decimal) contain the character numbers associated with 
each screen position. The character patterns for character 
numbers 32 — 159 start at VDP RAM address > 0400 
(1024). In the Pattern Descriptor Table address the 8-byte  

character pattern corresponding to a character number 
N is 1024 + (N — 32) * 8 in decimal. 

The dump subroutine (called DUMP) uses these facts. 
Starting with VDP RAM address 0, DUMP gets the 
screen character number and uses it to calculate the VDP 
RAM address of the associated character pattern. It then 
reads the 8-byte character pattern, transposes the matrix, 
and writes the resulting 8 bytes to the printer. DUMP per-
forms this process on each successive byte of screen 
RAM, up to and including VDP RAM address > 02FF 
(767). 

DSRLNK and Printer Output 
The actual output to the printer is done by means of 

a built-in Extended Utility Routine called DSRLNK. 

158 	The Best of 99'er 	Volume 1 
	

Copyright © 1983 Emerald Valley Publishing Co. 



Before calling DSRLNK, the Assembly Language 
subroutine must set up a Peripheral Access Block (PAB) 
in VDP RAM. Here is the format of the PAB we'll use 
for the printer: 

BYTE# CONTENTS 
0 	I/O opcode: > 00 = open 

> 01 = close 
> 03 = write 

1 	Flag/status byte. > 12 is the code for se- 
quential file, output operation, 
DISPLAY type data and variable length 
records. 

	

2, 3 	Data buffer address in VDP RAM. We'll 
use > 1E00. 

4 	Logical record length. 
5 	Number of characters to write. 

6, 7, 8 	Not used here. 
9 	Length of file descriptor which follows. 

	

10 — 35 	File descriptor. We'll use RS232.PA = O. 
DA = 8.BA = 9600.CR 

We'll put the PAB in VDP RAM starting at address 
> 1D00 (hereafter called V1D00), and we'll put the data 
area containing the actual data for output to the printer 
at V1E00. These addresses could have been elsewhere in 
VDP RAM, as long as the locations chosen were not used 
by something else. 

To perform a printer operation, the program must do 
the following: 

1. Build the PAB in VDP RAM. 
2. Put the address of the length of the file descriptor 

(byte 9 of the PAB) into CPU RAM address > 8356. 
3. Call DSRLNK. 
You'll notice that the call to DSRLNK must be 

followed by a word (two bytes) containing the value 8, 
which means that you want to link to a Device Service 
Routine (DSR). 

RS232 Considerations 
Since the DUMP subroutine uses the RS232 interface 

to communicate with the printer, some additional code 
is needed to save and restore the address of the GROM. 
This is because the GROM address is changed when the 
RS232 DSR is used. At the beginning of the DUMP 
subroutine, the GROM address is obtained one byte at 
a time from the GROM Read Address at location >9802. 
The GROM address increments itself when the first byte 
is read (actually moved) from the GROM Read Address. 
This makes the second byte of the GROM address one 
too big, so it must be decremented by DUMP. Just before 
returning to BASIC, the DUMP subroutine restores the 
GROM address by moving it to the GROM Write Ad-
dress at location > 9CO2, again one byte at a time. 

Linkage to Console BASIC 
A console BASIC program invokes the DUMP 

subroutine by the statement CALL LINK("DUMP"). 
DUMP returns to the BASIC program by branching to 
the contents of register 11 (R11). Just before returning 
to BASIC, the DUMP subroutine clears the error byte 
at @ > 837C (sets it to 0). Failure to clear this byte can 
result in an undeserved INCORRECT STATEMENT er-
ror when you return to BASIC. 

Transposing the 8x8 Character Matrix 
Once a screen character's 8-byte pattern has been read 

into CPU RAM (at label IN), the DUMP subroutine uses 
the following technique to build the 8 bytes of output at 
label DO. 

The first byte of DO is composed of the first bit of 
each of the 8 bytes starting at IN, the second byte of DO 
is composed of each second bit of the bytes at IN, and 
so on. Figure 2 of Part One shows the bit movements 
for the pattern character of an "A". 

DO is built from left to right, and R4 is used to hold 
each byte of DO as it is built. R4 is cleared before each 
byte is built, so DUMP has to turn on any bits necessary. 

To tell if a certain bit of IN is on, DUMP compares 
the value of the byte containing the bit in question to a 
power of 2. To see how this works, consider the byte con-
taining > 82 (130 in decimal, 1000 0010 in binary). The 
leftmost bit of the byte is on; in fact, the leftmost bit 
would be on in any byte containing >80 (128) through 
> FF (255). In other words, we could test for the left-
most bit's being on by comparing the value of the byte 
to decimal 128 (2 to the 7th power); if the value is less 
than 128, we wouldn't have to turn on the corresponding 
output bit. 

This technique can be used to test any bit of a byte for 
our purposes, using the appropriate power of 2. The 
second-to-leftmost bit can be tested against 64, its 
neighbor to the right against 32, and so on down to 1 
for the rightmost bit. This works because we'll be con-
sidering the bits from left to right in each byte. After each 
bit is tested, it must be turned off (in CPU RAM, not 
on the screen) so that it doesn't interfere with the test 
of the following bit. To see this, consider the byte con-
taining > 82 (130) again. If we want to determine if the 
second-to-leftmost bit is on, we would compare the byte 
to 64. You can see that it would pass the test, even though 
the bit in question is not on! However, if we had reset 
the leftmost bit to 0 after testing it previously, the byte 
would now contain > 02 instead of > 82, and the test 
would fail, as it should. 

Once we have decided that an input bit is on, we must 
set on the corresponding bit in R4. This is done by add-
ing the appropriate power of 2 to R4. To turn on the left-
most bit, add 128; to turn on the rightmost bit, add 1. 
Remember that the byte being built is in the right half 
(LSB, or least significant byte) of R4. 

DUMP uses R5 to contain the power of 2 for testing 
whether the input bit is on, and R6 to contain the power 
of 2 for setting the bit on for output. The LSB of R7 con-
tains the input byte being tested, and the most signifi-
cant byte of R7 is filled with zeros. This allows DUMP 
to use the simpler and more plentiful register instructions, 
and to completely avoid having the leftmost bit of a byte 
interpreted as a sign bit. 

Printer Consideration 
DUMP writes one full screen line to the printer at a 

time. Before each line, the program must write a 4-byte 
control sequence to put the printer in graphics mode and 
tell it how many graphics characters are coming next. This 
sequence is > 1B, > 4B, > FF, and > 00. The last two 
bytes mean 255 characters will be written, with the order 
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of the bytes being reversed for evaluation ( > OOFF, or 
255). 

The program issues a carriage return and line feed on-
ly after each of these writes, that is, at the end of each 
screen line. DUMP uses the CZC (Compare Zeros Corre-
sponding) instruction to accomplish this. R9 contains the 
position in VDP RAM of the next screen character 
number. Positions 0 — 31 ( > 00 — > 1F) of VDP RAM 
correspond to the characters on line 1 of the screen; posi-
tions 32 — 63 ( > 20 — > 3F) correspond to characters on 
line 2, etc. The CZC instruction occurs right after R9 is 
incremented and before the corresponding screen 
character is decoded. Therefore, the carriage return and 
line feed should be written whenever R9 is an even multi-
ple of 32. The CZC instruction uses a mask of > 1F (0000 
0000 0001 1111 binary). If R9 is a multiple of 32, then 
its last five bits will all be zero. Notice that the mask has 
only the last five bits turned on. Under these cir-
cumstances, the CZC instruction sets the equal status bit 
on if and only if the last 5 bits of R9 are all zero, that 
is, if and only if R9 contains an even multiple of 32. The 
JNE instruction which follows the CZC instruction causes 
the program to skip outputting the carriage return and 
line feed when R9 does not contain a multiple of 32. 

Left to its own devices, the printer will respond to a 
line feed by spacing down 1/8" or 1/6". This would leave 
blank stripes in the screen dump. The sequence ESCAPE 
A 8 is written by DUMP to tell the printer to space down 
only 8/72" on each line feed. This produces a continuous 
image. 

Mini Memory Considerations 
To enter the DUMP subroutine via the Line-by-Line 

Assembler, do the following: 
1. Select MINI MEMORY and then RUN from the 

first two menus. 
2. Enter NEW as the program name. 

3. When the Line-by-Line Assembler screen appears, 
type a space, then AORG, another space, > 7D14, and 
then press [ENTER.] (From now on the spaces will be 
assumed.) This sequence lets you start the program at 
> 7D14 instead of the traditional > 7D00. 

4. Enter the program as shown in Listing #1. Enter only 
the label (if any), opcode, and operands. Don't enter 
END yet. 

5. Put the entry point for DUMP into the DEF/REF 
table by entering the following lines: 

AORG > 7FE8(CR) 
TEXT 'DUMP '(CR) 
DATA > 7D14(CR) 

6. Set the last used address in Mini Memory by 
entering: 

AORG > 701C(CR) 
DATA > 7F02(CR) 

7. Indicate that you are finished by entering: 
END(CR). 

The system should show that you have no unresolved 
references. Press enter twice, and then QUIT the Line-
by-Line Assembler. 

8. Enter EASY BUG from the master menu. 
9. Press any key to bypass the instruction screen. 
10. Enter 57000 when the system prompts with ? and 

then 7FFF when the system prompts TO? This tells the 
system to save the contents of the Mini Memory to 
cassette tape. Just follow the instructions presented by 
the computer after this, and then QUIT EASY BUG 
when you have saved and checked your tape. 

You are now ready to use the DUMP subroutine. The 
sample BASIC program in Listing #2 just draws a screen 
and then waits for you to press the P key, at which point 
DUMP is called to print out the screen. You can incor-
porate DUMP into your own programs in any way you 
choose. Happy dumping! cat 
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Listing 1 	Dump 

AORG 	>7D14 
MOVB 	@>9802,@S1 
SWPB 	@S1 
MOVB 	@>9802,@S1 
SWPB 	@S1 

GET 	MSB 	OF 	GROM 	ADDR 	INTO 	S1 

GET 	LSB 	OF 	GROM 	ADDR 

DEC @S1 CORRECT 	FOR 	AUTO—INCREMENT 
LI ,>1D00 
LI 1 	, PD 
LI 2,36  
BLWP ca>6028 WR ITE 	PAB 	TO 	VDP 	RAM 
LI 6,>1D09 
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH 
BLWP @>6038 DSRLNK 	TO 	OPEN 	PR INTER 
DATA 8 
LI 10 , >0400 
MOV 10 ,@>7DEA 
LI 0,>1000 
LI 1, >0300 
BLWP 6>6024 PUT 	WRITE 	OP 	CODE 	IN 	PAB 
LI 0 , >1005 
LI 1 , >0400 
BLWP @>6024 PUT 	LENGTH 	OF 	4 	IN 	PAB 
LI 0 , >1E00 
LI 1,E2 PUT 	CODE 	FOR 	CARRIAGE 	R TN 	& 
LI 2 , 4 8/72 	VERTICAL 	LINE 	SPACING 
BLWP @>60 2 8 IN 	DATA 	BUFFER. 
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH 
BLWP @>6038 DSRLNK—CHANGE 	VERT 	SPACING 
DATA 8 
LI 10 , 50 DELAY 
DEC 10 
JNE 5-2 
CLR 9 R9—>NEXT 	SCREEN 	POSITION 

L O MOV 9 , 0 
BLWP @>602C PUT 	BYTE 	OF 	SCREEN 	RAM 	IN 	R1 
SRL 1 	, 8 SHIFT 	TO 	LSB 	OF 	R1 
AI 1,-128 ADJUST 	FOR 	BASIC 
S LA 1 	, 	3 .8 
AI 1 	,10 24 PTRN 	ADDR=1024+ 	CHAR #-32 ) .8 
MOV 1,0 
LI 1, 	IN 
LI 2 , 8 
BLWP @>6030 PUT 	PATTERN 	INTO 	IN 
LI 5,128 R5 	= 	B I T # 
CLR 8 R8 	= 	OFFSET 	FOR 	DO 

L3 LI 6,128 R6 	= 	BYTE It 
CLR 3 R3 	= 	OFFSET 	FOR 	IN 
CLR 4 R4 	IS 	FOR 	BUILDING 	NEXT 	CHAR 

L2 CLR 7 
MOVB @IN ( 3 ) 	, 7 R7 	HOLDS 	BYTE 	BEING 	DECODED 
SWPB 7 PUT 	BYTE 	IN 	LSB 	OF 	R7 
C 7 , 5 IS 	BIT 	ON? 
ILT L1 NO 
A 6 , 4 YES , TURN 	OUTPUT 	BIT 	ON 
5 5 , 	7 TURN 	OFF 	INPUT 	BIT 
SWPB 7 PUT 	BYTE 	IN 	MSB 	OF 	R7 
MOVB 7 	, 	I N 	( 	3 	) REWRITE 	TO 	IN 

L 1 INC 3 POINT 	TO 	NEXT 	INPUT 	BYTE 
SRA 6 	, 	1 /2 
IGT L2 DO 	NEXT 	BYTE, 	IF 	MORE 
SWPB 4 PUT 	OUTPUT 	BYTE 	IN 	MSB 	OF 	R4 
MOVB 4 ,g,D0( 8 ) STORE 	AT 	DO 
INC 8 POINT 	TO 	NEXT 	BYTE 	OF 	DO 
SRA 5 , 1 /2 
IGT 1.3 CONSTRUCT 	NEXT 	OUTPUT 	BYTE 
LI 0 , >1005 
LI 1 , >0000 
BLWP C>6024 PUT 	LENGTH 	OF 	4 	IN 	PAB 
LI 0, >1E00 
L I 1, 	E1 
LI 2 , 4 
BLWP @>6028 PUT 	ESC 	K 	SEQ. 	IN 	DATA 	BUFF 
LI 6 , >1009 
MOV 6,C>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH 
BLWP @>6038 DSRLNK 	TO 	WRITE 	ESC 	K 	SEQ. 
DATA 
LI 10 , >0000 
MOV 10 ,,?>7DEA 
L I 0 ,>1D05 
L I 1, >0800 
BLWP @>6024 PUT 	LENGTH 	OF 	8 	IN 	PAB 
L 	I 0 , >1E00 
LI 1 , DO 
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Listing 1 	Dump continued 

LI 	2 , 8 
BLWP @>6028 PUT 	DO 	INTO 	DATA 	BUFFER 
MOV 6 , @> 8 3 56 POINT 	TO 	DEVICE 	NAME 	LENGTH 
BLWP @>6038 DSRLNK 	TO 	OUTPUT 	8 	CHARS 
DATA 8 
LI 10 , 50 DELAY 
DEC 10 
INE 5-2 
INC 9 POINT 	TO 	NEXT 	SCREEN 	POSITION 
CI 9,767 DONE 	WI TH 	SCREEN 	YET? 
JGT L4 YES  
CZC @MK , 9 NO. 	ARE 	WE 	AT 	END 	OF 	LINE? 
J NE L0 NO—DO 	NEXT 	SCREEN 	CHARACTER 
LI 0 , >1D05 YES—OPUTPUT 	CR 	LF 
LI 1 , >0200 
BLWP @>6024 PUT 	LENGTH 	OF 	2 	IN 	PAB 
LI 0 , >1E00 
LI 1 , CR 
LI 2 	, 	2 
BLWP @>6028 PUT 	CR 	LF 	INTO 	DATA 	BUFFER 
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH 
BLWP @>6038 DSRLNK 	TO 	OUTPUT 	CR 	LF 
DATA 8 
LI 10 , >0400 
MOV 10 ,@>7DEA 
IMP LO DO 	NEXT 	SCREEN 	CHARACTER 

L4 LI 0 , >1D00 COME 	HERE 	WHEN 	FINISHED 	DUMP 
LI 1 , >0100 
BLWP c' >6024 PUT 	CLOSE 	OP 	CODE 	IN 	PAB 
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH 
BLWP @>6038 DSRLNK 	TO 	CLOSE 	PR INTER 
DATA 8 
L 	I 10 , 50 DELAY 
DEC 10 
INE 5-2 
MOVB @S1 ,@>9CO2 RESTORE 	SAVED 	DATA 	TO 	GRMWA 
SWPB @S1 
MOVB @S1,@>9CO2 
SB @>837C ,(,>837C 	CLEAR 	ERROR 	BYTE 	FOR 	BAS IC 
LI 10 , 50 	 DELAY 
DEC 10 
IRE 5-2 
B .11 RETURN 	TO 	BAS IC 

IN BSS 8 AREA 	FOR 	SCREEN 	PATTERN 
DO BSS 8 AREA 	FOR 	PR INTER 	PATTERN 
MK DATA >001F MASK 	FOR 	EOL 	TEST 
PD DATA >0012 , >1E00 , >FF00 , >0000 , >001A 

PAB 	DEFINITION 
TEXT ' RS232 	PA=0 

* 
DA=8 	BA=9600 . CR ' 

DEVICE 	NAME 
CR DATA >01)011 CR 	LF 
El DATA >1B 4B , >FF00 ESC 	K 	GRAPHICS 	SEQUENCE 
S1 BSS 2 SAVE 	AREA 
E2 DATA >0D1B , >4108 CR 	AND 	ESC 	A 	VERT 	SPACING 

END 

Listing 

10 0  

2 

A L L C L 

Screen 

E A 

Dump 

110 A L L C H A 9 6 1 8 3 C 7 E F F F F 7 E 3 1 8 
120 A L L H C H A 1 	,1 9 6 7 6 8 
130 A L L K E Y 0 VA L S T A 
140 I F S T A T 0 T H EN 1 3 0 
150 I F V A L 8 0 TH E N 3 0 
160 A L L L N K D U 
170 E N D 
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