INTRODUCTION

Data stacks are a clean,
efficient method by which
complex data can be manip-
ulated. And while it may
not seem immediately obvi-
ous to a programmer unfa-
miliar with the TI 990 fami-
ly of computers, stack struc-
tures can be implemented

STACK using the TMS9900 work-
' space system.

STRUCTURES _ Workspace techniques, how-

: ; i ever, are not difficult to

FOR THE ; ' learn, and most stack con-

\ 5 cepts can be applied direct-
‘ . ' E ly to the 990 family of com-
| puters. This report describes

a method for simple auto-

: matic workspace allocq,-
A TEXAS INSTRUMENTS s giack strictnzes Rl
APPLICATION SHEET hraose omented on th

[}

TEXAS INSTRUMENTS

INCORPORATED

TMS9900 ARCHITECTURE

The advanced architecture of the TMS9900 does not make extensive use
internal registers, instead memory is used to provide general purpo‘
register space. In fact, only three registers in the TMS9900, the Workspace
Pointer, the Program Counter, and the Status Register, are accessible to the
user. The Workspace Pointer (WP), a 16-bit register, is used to keep the address
of a 16-word contiguous block of memory which is being used for the 16 general
purpose registers. The Program Counter (PC) contains the address of the next
instruction to be executed. The Status Register (ST) contains information
about the existent state of processor operation.

A context switch occurs when the processor changes from one operating
environment (context) to another. When an interrupt, subroutine call (BLWP),
or Extended Operation (XOP) is executed, a context switch is said to have
happened. A new operating context can be affected by loading new values into
the Program Counter and Workspace Pointer Registers. These two values, WP
and PC, are called the “TRAP VECTOR”. The execution of a context switch
will store to present CPU environment, WP, PC, and ST in the new context
workspace registers R13, R14, and R15 respectively. The reverse operation
occurs when an “RTWP” instruction is executed. The contents of R13, R14, and
R15 are loaded into the WP, PC, and ST respectively

WORKSPACE STACKS

Nesting of “BLWP” subroutine calls is a common programming practice and
itis possible for a programmer to inadvertently allocate the same workspace
to routines which call each other. To avoid requiring the programmer

manually determine the workspace for each subroutine, it is preferable b
use a method by which the workspace is selected automatically at execution

time.
Figure 1 shows an XOP routine which performs this allocation by simply

“stacking” the workspace down through memory. Rather than by calling a
subroutine as:

BLWP @VECTOR
The subroutine is called through the XOP instruction which, for convenience.
has been renamed by a DXOR directive as “CALL"":

CALL @SUBRT

where SUBRT is the program counter (PC) for the subroutine. The XOP
routine automatically assigns the subroutine workspace to the next lowest =8
words of memory. This routine can be further enhanced to provide a means by
which the XOP routine can check for stack underflow and overflow.

DATA STACKS

%

The TMS9900 can easily accommodate data stacking with very simple
instruction sequences. For ease of programming the data stack, examples are
implemented as MACRO instructions. The structures can be manually
generated since the longest consists of only two instructions.

Two general purpose stack MACRO instructions — PUSH and POP — ar
defined. The PUSH instruction stores the operand data onto a stack, an
advances the stack pointer to the next available stack location. The POP sets
the stack pointer to the most recently stored data, and transfers the datato the
operand address.

Figure 1

A TRANSPARENT STACK STRUCTURE FOR THE 9900

J *********************************
* ABSTRACT *
* TRANSPARENT STACKING OF WORKSPACES IS ACHIEVED BY S
* CALLING ALL SUBROUTINES THROUGH AN XOP NAMED ‘CALL’ -
* RETURN FROM ANY SUBROUTINE IS VIA A NORMAL RTWP. *
* ARGUMENTS MAY BE PASSED BY STANDARD REGISTER *
* CONVENTIONS. THE STACK BUILDS DOWN THROUGH MEMORY *
+ AND WILL BE [N+32]BYTES DEEP, WHERE N IS THE *
% NESTING LEVEL. THE CALL XOP IS NOT REENTRANT, AND *
%« THEREFORE PROTECTS AGAINST INTERRUPTS. ANY *
x NUMBER OF WORKSPACE STACKS MAY COEXIST IN MEMORY. *
AKX K Ak A Ak Ak kA Ak kA k kA d khkdrhkhkhk ok kk k% &
+ EXAMPLE OF USE (XOP 14 IS ASSUMED TO BE THE CALL XOP.)
*
*
* DXOP CALL,14 ;DEFINE THE XOP NAME, NUMBER
PRESET THE XOP VECTOR

0078 AORG >78 ;XOP VECTOR SPACE

0078 FFOO DATA XOPWP ;WORKSPACE FOR XOP

007A 0094 * DATA CALLPC ;CALL XOP ENTRY POINT
.
* XOP USEAGE EXAMPLE FOLLOWS

0080 AORG >80 ;ARBITRARY START ADDRESS

_) 0080 02E0 MAIN LWPI TPSTCK ;SET TOP OF WSPACE STACK

0082 FECO
*
*

0084 0200 LI RO,ARGH1 ;PREPARE SUBR. ARGUMENT

0086 0000

0088 2FAO0 % CALL @SUBR ;USE XOP TO CALL SUBR

008A 008C
*
*
*

008C COSD:SUBR MOV >R13,R1 ,GET RO OF CALLING ROUTINE
& ;PROCESS ARGUMENTS

008E CB41 ¥ MOV R1,@2(R13) JRESULT TO R1 OF CALLER

0090 0002

0092 0380 RTWP 'NORMAL SUBROUTINE RETURN

*

*

* ’

KAk kA hkhkhkhkhkhkhkhkk kA kA kA Ak hkhkhkhkhkhk khk kk k%
* THE SYMBOLS ‘XOPWP’, ‘TPSTACK’, AND ‘ARG1’ ALL HAVE *
* ARBITRARY VALUES FOR EXAMPLE USE ONLY. *
LR SR R 2h b 20 2b 2b b 2 2b 2b 2B B 2B 2B 2 R IR I b G S e R R T

The most common application of these routines is to save the return address of
a subroutine called by a “BL” instruction. Use of the PUSH and POP MACRO
instructions, along with an example of return address stacking, are shown in
Figure 2.

The sequence:

LABEL POP R11
RT

will normally be repeated in many modules. This sequence can be assigned a
label and shared by many subroutines. The result is that a program will
generally have more PUSH than POP instructions. For this reason the stack
was implemented as a build-up structure, allowing the shorter auto-increment

instruction to be used in the PUSH MACRO.
In the example, R10 was chosen as a stack pointer. There is no restriction on

which register can be used as the stack pointer, and multiple stacks and stack
pointers may coexist in a system.

Although the TMS9900 uses a unique and powerful workspace architecture,
traditional stack structures may be used both to augment workspace
allocation and to provide additional data handling capabilities. The richness
of TMS9900 addressing modes, and the minicomputer simplicity of the
TMS9900 family instruction set allows the mixture of workspace and stack
structures.

Figure 1 (Continued)

A TRANSPARENT STACK STRUCTURE FOR THE 9900

0094

0096

0098

009A
009C
009E
00AO0
00A2
00A4
00A6
00A8
00AA

0300
0000
CB4D
FFFA
CB4E
FFFC
CB4F
FFFE
C38B
022D
FFEO
0380

LIRS I dh 2b 2b b b b b b b 2b 20 2b b b b 2 b 2B 2 2B 2B 2b 2B 2b B 'Y
* CALL XOP
THIS XOP ROUTINE AUTOMATICALLY STACKS
* WORKSPACES DOWN THROUGH MEMORY. THE
* NORMAL SUBROUTINE ‘RTWP’ WILL RETURN
* TO THE CALLER WITH THE OLD WORKSPACE,
* EFFECTIVELY “POPPING” THE STACK.
* CALLING SEQUENCE:
* CALL @OPERAND OR XOP @OPERAND,N (N=CALL XOP)
KAk hkhk XAk hkhkhk kA hkhk khkkhk ok k Kk kkhk kk k %%
CALLPC LIMIO ;PROTECT AGAINST RE-ENTRY

MOV R13,@-6(R13) 'MOVE RETURN WP
MOV R14,@-4(R13) 'MOVE RETURN PC
MOV R15@-2(R13) ;MOVE RETURN STATUS
MOV R11,R14 'SUBROUTINE PC

o bk

Al R13,-32 :MOVE WORKSPACE DOWN IN RAM

*
= RTWP ;CALL THE SUBROUTINE

Kok ok kk k k ok kkkk kk k k & KAk ok ok ok ok ok ok k ok ok kK

:THIS XOP REQUIRES 168 CYCLES TO EXECUTE.

AT 3MHZ THIS WOULD BE 56 MICROSECONDS

:OF EXECUTION TIME.

KA KA kA A A KA A A A AA K A KA KAk kk ok ok kk kK
*
*

*
*
*
*
*
*

Figure 2

A TRANSPARENT STACK STRUCTURE FOR THE 9900

00AC
00AE

00BO
00B2
00B4
00B6
00B8

00BA
ooBC
00BE
00CO

00C2

020A
FO00

06A0
00B4
CE8B
06A0
00CO

064A
C2DA
045B
A081

0458

* h Ak k ko ok ok ok ok okok ok kok ok kok ok ok k ok ok ok k ok ok ok ok ok ok
* PUSH AND POP MACRO’S
THESE MACRO INSTRUCTIONS IMPLEMENT THE TWO
TRADITIONAL STACK OPERATIONS; PUSH AND POP.
REGISTER 10 OF THE CURRENT WORKSPACE IS USED AS A
STACK POINTER. THE MACRO OPERANDS MAY BE ANY VALID
‘MOV’ INSTRUCTION OPERAND. MULTIPLE STACKS MAY
EXIST IN MEMORY. THE STACK IN THIS SPACE IS
DESIGNED TO BUILD UPWARDS THROUGH MEMORY TO ALLOW
MAXIMUM CODE EFFICIENCY.
* % Kk k d ok Kk ok ok ok ok ok k ko ko ok ok ok ok ok ok k ko ok ok ok ok
SH $MACRO OFP ;DEFINE THE MACRO NAME, OPERAND
MOV :OP.S:#R10+ ;MOVE THE DATA ONTO STACK, BUMP(SP)
$END PUSH ;END OF PUSH DEFINITION

L
C
* ok % % o % %

POP $SMACRO OFP ;DEFINE THE MACRO NAME, OPERAND

DECT R10 ;BACKUP STACK POINTER

MOV %R10,:0P.S: ;GET THE DATA FROM THE STACK

$END POP ;END OF POP DEFINITION
* J k Kk Kk k k ok k ok Kk k k ok Kk ok k ok k ok ok k ko k k ok ok ok ok ok ok
*EXAMPLE OF USE FOR PUSH AND POP MACRO'’S *
* THE “M” OPTION MAY BE USED TO SUPPRESS MACRO EXPANSION *
* N THE LISTING. NOTE THAT THE MACRO EXPANSION IS FLAGGED *
* BY AN ASTRISK TO THE LEFT OF THE LINE NUMBER *
* Kk dk ok ok ok ok ok ok ok ok ko ok ok ok ok k ok ok k k k ok ok ok ok ok ok ok ok

MAINP LI R10,STACK :ASSIGN BOTTOM OF DATA STACK
BL @SUBRT 'CALL FIRST LEVEL SUBROUTINE
*
SUBR1 PUSH R11 'SAVE THE RETURN PC
MOV R11%R10+ :MOVE THE DATA ONTO STACK, BUMP(SP)
*
BL @SUBR2 :CALL SECOND LEVEL SUBROUTINE
*
POP R11 :‘RESTORE THE RETURN PC
DECT R10 ‘BACKUP STACK POINTER
MOV %R10,R11 :GET THE DATA FROM THE STACK
RT RT 'RETURN TO CALLER
e o
* g
SUBR2 A R1,R2 :PROCESS OPERANDS
* ...
RT :‘RETURN TO FIRST LEVEL
A Ak kA hkhkhk kA hk Ak kA Ak hkhkhkhkhkhkrxhkhkkhk kk *k *k x %
* THE SYMBOL ‘STACK’ HAS AN ARBITRARY VALUE FOR EXAMPLE ONLY “
XAk Ak Ak kA Ak hkhkhkhkhkhkhkhkkhkhkhkhkkhkhkkhkkhkhhk *x k k &

