
INTERFACE STANDARD
& DESIGN GUIDE

for Tl 99/4A Peripherals
SECOND EDITION

>4000->5FFF
MEMORY

NON-CRU
MEM MAPPED

>4000
>4400
>4800
>4C00
>5000
>5400
>5800

CRU ONLY

>0400->OFOO
(12 POSITIONS)

CRU+MEM WAP
□R

CRU+DSP ROM

I >1FOO

>1600

>1500

>1000 CRU

MEMORY ONLY

>2000
>6000
>A000
>C000
>E000

>1300

-pm
Tfw

| >1900

>1DOO

>1COO

>1BOO

| >1ACO

TONY LEWIS, PE

COPYRIGHT 1994-96 WESTERN HORIZON TECHNOLOGIES

INTERFACE STANDARD
& DESIGN GUIDE

for TI 99/4A Peripherals
SECOND EDITION

TONY LEWIS, PE

COPYRIGHT 1994-96 WESTERN HORIZON TECHNOLOGIES

DISCLAIMER

DISCLAIMER ON CONTENTS

The following should be read and understood before purchasing
and/or using this Interface Standard/Design Guide.

The technical information contained in this document is accurate,
to the best of the knowledge of the author and the reviewers.
However, given the volatile nature of the computer and electronics
industry, along with the lack of access to original design
documentation on the 99/4A system, there is no warranty that the
contents of this manual will be free from error or will meet the
specific requirements of the purchaser. The purchaser assumes
complete responsibility for any decision made or actions taken based
on information obtained using the contents of this manual. Any
statements made concerning the utility of the contents are not
construed as expressed or implied warranties.

The author reserves the right to revise any of the contents at
any time without notice. However, registered owners will be notified
if significant revisions or additions to the contents are made.
Purchasers are encouraged to notify the author of any errors found in
the text or graphics.

The author makes no warranty, either expressed or implied,
including but not limited to any implied warranties of fitness,
operability, or validation of design, regarding the contents or any
information derived therefrom, and makes all contents available solely
on an "as is" basis.

In no event shall the author or the reviewers be liable to anyone
for special, collateral, incidental, or consequential damages in
connection with or arising out of the purchase or use of this
literature and the sole and exclusive liability of the author,
regardless of the form of the action, shall not exceed the purchase
price of this manual. Moreover, the author shall not be liable for
any claim of any kind whatsoever by any other party against the user
of this manual.

Texas Instruments did not contribute to, commission, nor approve
the creation of the Interface Standard/Design Guide. All information
used in deriving the contents of this manual are available in the
public domain. "TI", "TI 99/4A", and "99/4A" are registered
trademarks of Texas Instruments.

RESOURCES

RESOURCES

This document was created on TlWriter Version 4.2, by R. A. Green
Software. Graphics were created with AutoSketch 2.0.

Disassembly of existing console and DSR code was accomplished via
Millers Graphics EXPLORER and DISkASSEMBLER programs. The program
"GPLDIS" was used to disassemble the GPL code in GROMs 0-2. Reference
9 provided input on console routines. References 9, 10, and 14 were
used to compile information on use of console RAM locations as they
pertain to DSRs.

References 1, 2, 4, and 5 provide information on the TMS9900
microprocessor and related system design. References 1, 8 and 14 are
excellent sources on assembly programming. Reference 13 provides
completely disassembled and commented DSR codes for several
peripherals. Reference 15 provides information on the Graphics
Programming Language, which was useful in disassembling code in GROMs
0-2.

All references listed are recommended as excellent sources of
information for the 99/4A and its Peripheral Expansion System, and the
reader is encouraged to consult them for more information. Where
possible, consult with the local library about obtaining references
via the InterLibrary Loan System, using the ISBN number. Below is a
list of current addresses for some of the references:

Millers Graphics
1475 W. Cypress Ave.
San Dimas, CA 91773

Texas Instruments Inc.
Data Book Marketing
P0 Box 117692
Carrollton, TX 75011-7692
(800) 232-3200

The Bunyard Group
P0 Box 62323
Colorado Springs, CO 80962-2323

LL Conners Enterprises
Computer and Electronics
1521 Ferry Street
Lafayette, IN 47904

Readers interested in obtaining copies of Technical Data and the
GPL manual may contact the author directly for more information.

UTILITY PROGRAM COMMENTS

UTILITY PROGRAMS

A 5-1/4" single sided, single density diskette containing utility
programs is provided with the manual to assist the peripheral
developer in creating DSRs and application programs. The purpose of
including these programs with the manual is to provide (in the
author's opinion) the "best" utility programs available to the
developer such that DSRs may be quickly written, debugged and
released. Disassemblers are also included for reverse engineering
console/peripheral code as needed to insure compatibility. [Use of
Millers Graphics DISkASSEMBLER for disassembly is highly recommended;
DISkASSEMBLER is available from several sources.]

Each of the programs took several days of development by their
authors to complete. Responsible purchasers are obligated to forward
a contribution to the software authors to acknowledge the usefulness
of their products, and to encourage development of future products.

HOTBUG is not fairware; consult the documentation for proper
registration of ownership. The README file on the disk contains a
list of the utility programs, program description, recommended
contribution amount, author name and current address.

REFERENCES

REFERENCES

The following sources were used as references for this manual:

1. Microprocessors/Microcomputers System Design, Texas Instruments,
McGraw-Hill Book Company, 1980. QA76.S.T49. ISBN 0-07-0637558-X.

2. 16 Bit Microprocessor Systems, Texas Instruments, McGraw-Hill Book
Company, 1982. TK7895.M5.C35. ISBN 0-07-063760-1.

3. TI 99/4A Console and Peripheral Expansion System Technical Data,
Texas Instruments, 1983.

4. Hardware Manual for the TI 99/4A Home Computer, Micheal Bunyard,
PE, 1986.

5. TMS9900 Data Manual, Texas Instruments, 1985.

6. TTL Cookbook, Don Lancaster, Howard Sams Co., 1974. ISBN
0-672-21035-5.

7. TI 99/4A Peripheral Schematics: RS232-1039308; Memory Expansion-
1039330, Disk Controller-1039340.

8. Software Development Handbook, 2nd Edition, Texas Instruments,
1981. ISBN 0-904047-31-8.

9. TI 99/4A INTERN, Heiner Martin, Verlag fur Technik und Handwerk
GmbH, 1985. ISBN 3-88180-009-3.

10. Explorer Technical Manual, Millers Graphics, 1985.

11. DiskAssembler Technical Manual, Millers Graphics, 1986.

12. PEB ProtoBoard Manual, Scott Coleman and John Will forth, 1988.

13. Technical Drive, Monty Schmidt, 1987.

14. Editor/Assembler Manual, Texas Instruments, 1982.

15. Texas Instruments Graphics Programming Language User's Guide,
Personal Computer Division, Texas Instruments, Dec. 1979.

16. Horizon RAMDisk Source Code and Technical Manual, Horizon
Computer Limited, 1986.

INTRODUCTION

INTRODUCTION

The purpose of this manual is to consolidate all information
available in the public domain on the design and development of
peripherals for the TI 99/4A computer into one reference. There are
several excellent documents on the hardware and software of the
console and its peripheral system available; however, this manual has
been specifically written for designer/developers who wish to create
new hardware and/or software for TI 99/4A peripherals.

The manual is an intermediate level text in that it is assumed
that the reader is familiar with the TMS9900, its assembly language,
the 99/4A peripheral system, the File Management System, and general
computer and electronics concepts. Readers who are novices in any of
these areas should consult the appropriate references before using
this manual. Although some overlap of information exists between this
manual and the references, the reader is urged to consult the
references as needed for information not included in the Interface
Standard/Design Guide.

As the title implies, this manual is meant to provide a
consistent basis, or standard, for designers to create peripherals
that will be compatible not only with the TI 99/4A, but with other
peripherals as well. Basic information on hardware and software
techniques is also provided for use by the developer.

Sections A-H cover the hardware aspects of the console and
peripherals, and includes design information on chips and circuits.
New peripheral types are defined in Section C, and existing peripheral
locations are assigned in Section G. Section I covers the basics of
Device Service Routine (DSR) construction. Section J discusses how
the routines built into the console access peripherals and their DSRs.
Where ever possible, examples are given of hardware and software
concepts to assist the reader.

The author hopes that all readers will find the Interface
Standard/Design Guide useful and informative. The author would also
like to thank the following people who reviewed and commented on the
original draft of the manual:

John Will forth Mike Dodd
Matt Beebe Barry Boone
Jim Reiss Mid-Atlantic 99ers
Peter Hoddie John Johnson
Paul Carlton

TABLE OF CONTENTS

TABLE OF CONTENTS

SECTION PAGES

A: 9900 SIGNAL/INTERFACING A1-A6
1 .0 Introduction A1
2 .0 Memory Bus A1
3 .0 CRU Bus A2
4 .0 Interfacing with the /4A A3

B: CONSOLE (44 PIN) AND PBOX (60 PIN) CONNECTORS B1-B5
1 .0 Introduction B1
2 .0 Console 44 Pin Connector B1
3 .0 PBox Bus Signals - 60 Pin Connector B2
4 .0 General Notes B4

C: PBOX CARD ELECTRONIC FEATURES C1-C12
1 .0 Introduction C1
2 .0 Interfacing Notes C1
3 .0 General Notes on Buffering, Activation and Mise. Signals C8
4 .0 Peripheral Polling System C11

D: TYPICAL CARD CHIPS D1-D4
1 .0 Introduction D1

E: TYPICAL CIRCUIT EXAMPLES E1-E5
1 .0 Introduction E1
2 .0 Memory Interface E1
3 .0 CRU Interface E1
4 .0 Memory Mapped Interface E2

F: TI DEVELOPED CARDS F1
1 .0 Introduction F1
2 .0 RS232 Card F1
3 .0 32K Memory Card F1
4 .0 Disk Drive Controller Card F1

G: PERIPHERAL LOCATION ASSIGNMENTS G1-G3
1 .0 Introduction G1

H: MISCELLANEOUS DESIGN CONSIDERATIONS H1-H4
1 .0 PBox Peripheral Card Dimensions and Layout H1
2 .0 Prototype Board H1
3 .0 Extender Cable H2
4 .0 Modified Interface Card H2

TABLE OF CONTENTS

SECTION PAGES

I: DSR ARCHITECTURE 11-133
1 .0 Introduction II
2 .0 Device Service Routines II

3: DSR ACCESS 31-324
1 .0 Introduction 31
2 .0 Console DSR Access 31
3 .0 XBASIC DSRLNK 315

K: MISCELLANEOUS ACCESS NOTES K1-K5
1 .0 Introduction K1
2 .0 Direct Access K1
3 .0 Notes on PABs and File Management System K4

SECTION A: 9900 SIGNALS/INTERFACING PG A1

SECTION A: 9900 SIGNALS/INTERFACING

1 .0 Introduction

The TMS9900 microprocessor has 64 pins, 49 of which are used as
signals to communicate with other chips and the outside world. These
signals can be grouped into two basic sets, or buses: memory bus and
CRU bus. The memory bus can be further divided into three types of
signals: address, data, and control. This section will briefly
discuss the function of the TMS99OO signals, and how they are used and
modified by the /4A system. References 1, 2, and 5 contain more
detailed descriptions of the 9900 signals.

2 .0 Memory Bus

The memory bus is used to communicate with memory chips (or
memory mapped devices) by selecting an address, then reading or
writing data to or from the address. The address bus provides signals
to select individual addresses, while the data bus provides a two way
communication path for information to travel. The control bus signals
coordinate action between the microprocessor and other devices. Below
is a brief description of the functions of the memory bus.

2.1 Address Bus (A0-A14)

The 9900 has 15 address signals, AO - A14, with AO the most
significant bit (MSB). These signals are driven out of the micro, and
are used to select the address of information to be read or written.
It is assumed that the memory system will have a 16 bit word design,
and not a byte (8 bits) wide data bus, because the 9900 addresses 32K
words (16 bits) for each read or write function. The 9900 cannot
address individual bytes because there is no A15 signal to
discriminate between even and odd bytes. To perform byte reads, the
9900 will read two bytes simultaneously, discarding the information in
the unused byte. To perform byte writes, the 9900 first reads two
bytes, alters the byte being written to, and then writes both bytes
back to memory.

2.2 Data Bus (D0-D15)

The data bus is 16 bidirectional signal lines used to read or
write information from other devices. Since the data bus is 16 bits
wide instead of eight, the 9900 can access twice as much information
per unit of time than a similar micro with an 8 bit data bus.

2.3 Control Signals (DBIN, -WE, etc.)

Control signals are used to synchronize the operations of the
9900 with the devices that it is communicating with. The 9900 control
signals are summer!zed below; consult Reference 1 or 5 for more detail

SECTION A: 9900 SIGNALS/INTERFACING PG A2

on these signals.

in
I/O /4A? Si gnal Description
0 Y -MEMEN used to enable memory accesses, differentiates

between memory bus and CRU bus activity
0 Y DBIN data bus direction, determines the direction of

data (in or out) for the 9900
0 Y -WE write enable, denotes writes to memory
0 Y IAQ Instruction Acquisition Status, denotes that

the microprocessor is obtaining an
instruction from memory

I Y READY memory ready status, informs micro that
system memory is ready to be accessed.

0 N WAIT Ready acknowledge, status signal that 9900
acknowledges memory not ready to be accessed.

I N -HOLD HOLD process, when active, puts 9900 signals
in inactive state. Memory bus may now be
driven by another device.

0 Y HOLDA HOLD Acknowledge, informs external device that
9900 acknowledges receipt of HOLD request.

I Y -RESET Reset input, resets micro to initial state
I Y -LOAD nonmaskable interrupt, forces 9900 to branch

to address >FFFC for new program counter and
workspace values

I N IC0-IC3 interrupt code 0-3, inputs for up to 16
maskable interrupts

I Y -INTREQ Interrupt Request, informs 9900 that an
interrupt code is valid on ICO - IC3

[signals may be either available externally, or used only internally
by the console; signals may be altered or unused in current design]

3 .0 CRU Bus

The input/output bus on the 9900 is known as the Communication
Register Unit (CRU) bus. The CRU bus is similar in concept to the
memory bus, with the following exceptions:

1: The memory bus can communicate in words (16 bits) with a set
of odd and even addresses. The CRU bus associates one bit per address
accessed by the 9900.

2: The CRU address space is limited to >0000 to >1FFF, where as
the memory bus can address >0000 to >FFFF. These are separate and
distinct addresses; control signals are used to differentiate between
memory address space and CRU address space.

3: The CRU bus is used primarily to control peripherals (on/off)
versus communication of data because the memory bus transfers more
bits per access than the CRU bus.

4: The CRU bus does not have as many control signals as the
memory bus, sometimes causing design concerns when developing

SECTION A: 9900 SIGNALS/INTERFACING PG A3

circuitry.

The CRU bus consists of the following signals, all of which are
used in the /4A system:

A3-A14 (out) These lower order address lines define the CRU space
>0000 to >1FFF. Same lines as used by memory bus.

CRUCLK (out) CRU Clock, used during CRU output to inform external
device that address bus and CRUOUT output bit signals
are stable.

CRUOUT (out) CRU Output Data, outputs value of bit when CRUCLK
is active.

CRUIN (in) CRU Input Data, inputs bit value into 9900

References 1 and 2 have excellent discussions of the CRU bus as
implemented by the 9900.

4. 0 Interfacing with the /4A

The signals available for the 9900 are used in various
combinations to allow it to interface to external devices. This
section will cover the relationships between the signals on the memory
and CRU buses as they are presented to peripheral devices by the /4A
system. Not all 9900 signals are available in the /4A system for use
with peripherals; likewise, the relationship and timing of some
signals are radically modified by the /4A system and do not conform to
the original 9900 signal format. Most notable is the fact that the
/4A system has an 8 bit peripheral data bus, not 16 bits.

4.1 Memory Bus Interfacing

The /4A system will read an odd and even byte within a word
boundary by reading the odd byte first, then the even one. Control
logic circuitry internal to the /4A allows it to read the first byte,
then the second, and then reassembles them into a word before
presenting it to the 9900. Figure A.1 shows the appropriate signal
timing and relationships.

The control logic is:

IF -MEMEN is low AND DBIN is high, THEN a memory READ is
occur!ng.

There is no need to include -WE in decoding for a Read. The /4A
system automatically inserts two wait states (333 ns each) for each
byte access. Allowing for 100 ns settling time for the address lines
to become valid after -MEMEN goes low, a peripheral has up to 650 ns
to provide valid data on the data bus.

A0-A14 are held constant per memory read - - - only A15 changes
state during a memory access for a Read. A15 is generated by the /4A
system to differentiate between odd and even bytes, and is not
produced by the 9900.

SECTION A: 9900 SIGNALS/INTEREACING PG A4

The /4A system writes information to an odd and even byte within
a word boundary with timing similar to a Read operation. Figure A.2
shows signal timing and relationships for a Write operation. The
control signal logic is:

IF -MEMEN is low AND DBIN is low, THEN a memory Write is
occur!ng.

Data on D0-D7 is valid when -WE goes low.
Data is presented on the data bus and is valid (-WE goes low)

approximately 333 ns after -MEMEN and DBIN are both low; -WE remains
low for 578 ns, typically. One -WE pulse is generated per byte Write,
whereas the 9900 generates only one -WE pulse per word. Recall also
that the 9900 always performs a Read operation to a word boundary
prior to a Write operation; this is true of the /4A system also (ie-
the /4A reads two consecutive bytes, even when performing a single
byte write operation).

4.2 CRU Bus Interfacing

Input and output on the CRU bus is more simplistic but also can
create problems for designers if certain relationships are ignored.
The CRUCLK signal of the 9900 is inverted by the /4A system to produce
-CRUCLK. This is used to strobe a CRU bit out of the /4A via the
CRUOUT line, similar to the way -WE strobes data from the D0-D7 lines.
The timing relationship fo a CRU output series is shown in Figure A.3.
The control signal logic is:

IF -MEMEN is high AND -CRUCLK is low THEN a CRU bit is output on
CRUOUT.

The -MEMEN signal allows the /4A to multiplex the A15 and CRUOUT
on the same pin; the pin is for "A15" if -MEMEN is low, and for
"CRUOUT" if -MEMEN is high.

Input on the CRU bus is accomplished by establishing a valid
address on A0-A15, then reading the bit value on the CRUIN line 400 ns
after the address is valid.

No other control signals are needed to define a CRU Read
operation. Unlike the memory bus operation, external devices have no
warning that an operation on the CRU bus is about to occur (-MEMEN
going low notifies the system that a memory bus is going active; there
is no corresponding "-CRUEN" signal). Designers of peripherals
utilizing the CRU bus must be aware of this restriction.

SECTION A: 9900 SIGNALS/INTERFACING PG A5

FIG A.l: READ CYCLE TIMING
1
k_________

□DD BYTE 2 US EVEN BYTE ।
_J

_____ 1 1

-MEMEN \ 1 \r

1___________________ ____________________
DBIN ___ / i L। _____________ !____________________ _
△ n_A14 y 1 VALID__________ VALID __

1 1__
A15 ___ !

——u
i

no-D7 k | VALID _________ jvALID X

। ___ i _____ _____ ___ ।
-CLK 3 I U u LI 1 U u u 1

1
L w__ w___ J L Jz 1i< T " T 4 r 1
I ICONS 650NS 25CNSI 83NS 333NS 1

FIG. A.2: WRITE CYCLE TIMING
1
1

-MEMEN [V
BBIN |L
AQ-A14 ___ iC

1

A15 ___ |/
-WE |

______ 1

1
1

-r
।

VALID

—

1
1
1

--------- 1—
1
1

-—i—
--------- 1—

i
i

—X

__ 1

“I—

1
1
1

VALID

—

1
1

l/_

_____ k

1

1
-f—\

, J r-
B0-D7 ___L i VALID 1

1
i VALID LX

1
u

4-

ON!
2

u u
1

u u u
1

-CLK 3 I 1
1101
1

1 1
-4-

33NS

1 1
578NS

rll
1
1
1
1

1 1 1 1 1 1
1
11

SECTION A: 9900 SIGNALS/INTERFACING PG A6

FIG, A,3: CRU OUTPUT

A0-A14
CRUnUT
-CRUCLK
-CLK 3

BIT 1 1332 NS BIT 2

1 1

l ____
■X ! valid______ ।X ; VALID_______

__ i i________1______________________
X 1 VALID_______ X__ 1 VALID
1______________ ___________i______________

I_______
1
1 ___
1

_______ 1 __________ I u 1
1
11

1 ___
1
K 4____ 4< 4L _______ J

ru

1
1
1
1
1

P 4 T 4
llOONS 801
1 233NS

I T 4
83NS 333NS

FIG, A,4: CRU INPUT

A0-A14
A15
CRUIN
-CLK 3

VALID

X | VALID

1332 NS BIT 2BIT 1

83NS 333NSllOONS 400NS

* INPUT ON CRUIN LINE IS VALID

SECTION B: CONSOLE/PBOX CONNECTORS PG B1

SECTION B: CONSOLE (44 PIN) AND PBOX (60 PIN) CONNECTORS

1 .0 Introduction

Not all of the signals from the 9900 are made available to the
outside peripherals. The side connector on the console has 44 pins,
38 of which are signals (the rest are power and ground pins). The
PBox bus has a 60 pin connector, which has 12 power and ground pins, 7
unused (currently) signals, and 41 active signals. The signals for
the console and PBox are listed below, along with comments of their
intended functions. Figures B.1 and B.2 show the console and PBox
connectors as viewed looking into the connector.

2 .0 Console 44 Pin Connector

The side connector on the console is an edgecard type with 44
pins spaced 0.10" pin to pin spacing. The signals, functions and pin
numbers are as follows:

Si gnal Pin I/O Comments
AO (MSB) 31 0 Address bus signals
A1 30 0 II

A2 20 0 II

A3 10 0 II

A4 7 0 II

A5 5 0 II

A6 29 0 II

A7 17 0 II

A8 14 0 II

A9 18 0 II

A10 6 0 II

A11 8 0 II

A12 11 0 II

A13 15 0 II

A14 16 0 II

A15/ 19 0 A15 is created by logic internal to the
CRUOUT console, not by the CPU. CRUOUT is gated

A15, and is not active unless -MEMEN is
high.

DO 37 I/O Bidirectional data bus
D1 40 I/O II

D2 39 I/O II

D3 42 I/O II

D4 35 I/O II

D5 38 I/O II

D6 36 I/O II

D7 34 I/O II

SECTION B: CONSQLE/PBOX CONNECTORS PG B2

Signal
-MEMEN

Pin
32

I/O
0

Comments
Same as for 9900

DBIN 9 0 11

-WE 26 0 This is highly modified from the original
9900 signal into two active low -WE signals
per cycle (one per byte)

-MBE 28 0 Memory Block Enable. Created by console
logic; device enable signal for the >4000-
>5FFF memory block. Convenient for side
mounted peripherals. Signal not transmitted
to PBox bus.

-CRUCLK 22 0 Phase 3 clock, inverted
CRUIN 33 I Same as for 9900
READY 12 I " ", with pull up resistor
IAQ 41 0 Not transmitted to PBox bus
-LOAD 13 I II

-RESET 3 0 This is output, and cannot be used to
input a -RESET signal

-EXT INT 4 I External Interrupt, active low, used by
peripherals to indicate an interrupt
request to the 9900

-PH 3 24 0 Phase 3 of the 9900 4 phase clock,
inverted to active low.

SBE 2 0 Speech Block Enable; indicates access to
speech memory at >9000/>9400

AUDIO IN 44 I Input for audio from speech module to sound
chip

+5V 1 Supply voltage for speech module
-5V 43 II

*Not connected to PBox or interface cable.
DO NOT use for side peripherals, or damage
to console power supply may occur.*

GROUND 21,23,25,27 Ground

3.0 PBox Bus Signals - 60 Pin Connector

The PBox bus uses 60 pin female connectors with pins spaced 0.10"
pin to pin spacing. Not all of the signals available from the 44 pin
connector are available in the PBox bus. The Interface Card sold with
the PBox determines which signals were transferred. The PBox end of
the cable also holds some (currently) unused signals high, by tieing
them to a 5V source via a resistor. The signals, functions, and pin
numbers are as follows:

SECTION B: CONSOLE/PBQX CONNECTORS

Signal Pi n I/O* Comments
AO.A 43 I Address bus signals; "A" suffix denotes
A1 .A 44 I PBox signal
A2.2 41 I II

A3.A 42 I II

A4.A 39 I II

A5.A 40 I II

A6.A 37 I II

A7.A 38 I II

A8.A 35 I II

A9.A 36 I II

A10.A 33 I II

A11 .A 34 I II

A12.A 31 I II

A13.A 32 I II

A14.A 29 I II

A15/ 30 I II

CRUOUT.A
AMA. A 46 HIGH Extended address bit, held high by interface
AMB.A 45 HIGH card
AMC.A 48 HIGH II

DO 28 I/O Data bus signals
D1 25 I/O II

D2 26 I/O II

D3 23 I/O II

D4 24 I/O II

D5 21 I/O II

D6 22 I/O II

D7 19 I/O II

-MEMEN.A 56 I Same as 44 pin side port signals
DBIN.A 52 I II

-WE.A 54 I <1
-CRUCLK.A 51 I II

CRUIN 55 0 II

READY.A 4 0 II

IAQHA 14 N/C IAQ and Hold Acknowledge gated together. For

-LOAD 18 N/C
use with 9995 based machines as Hold Ack.
Not used with /4A

-RESET 6 I
-INTA 17 0 -EXT INT
-CLKOUT 50 I -PH 3
AUDIO 10 0

SCLK 8 N/C System clock. Use is not defined with /4A
-LCP 9 N/C 9995 indicator. Low=9995 machine, high=/4A.

PCBEN 12 HIGH

Possible use to switch peripherals to faster
speed.
Enables cards in PBox. Low disables all cards.

-HOLD 13 N/C Active low HOLD request for 9995 based machines

SECTION B: CQNSQLE/PBQX CONNECTORS PG B4

Signal Pin I/O* Comments
-SENILA 15 HIGH Interrupt level A and B Sense Enable. Allows
-SENILB 16 HIGH computer to quickly identify peripheral

interrupt. Not used by /4A system.
-RBDENA 11 0 Active low remote data bus driver enable line.

Each peripheral that utilizes the DATA bus
must generate an -RDBENA signal when accessing
the data bus. This signal enables the LS245
transciever in the console end of interface
card.

GROUND 3,5,7,20,27
47,49,53

UNREG 8V 1,2
UNREG -16V 57,58
UNREG +16V 59,60

Ground

Used to supply unregulated voltages to voltage
regulators mounted on peripheral cards.

L*Either input into the PBox bus, or output to the console]

4.0 General Notes

4.1 The interface cable shares a common ground between the
console and PBox. Positive and negative voltages are not
interconnected between the PBox and the 44 pin console connector.

4.2 -RBDENA is not needed for peripherals that do not use the
data bus (D0-D7). If used, it should be active low with the chip
enable signal for the data bus transciever for the peripheral.

4.3 Unregulated +8V, +16V, and -16V sources are provided to allow
for voltage regulators (as needed) on each peripheral card. Temporary
voltage transients on an individual card will not affect the other
peripheral cards.

4.4 Signals held high (+5V) by the Interface Card cannot be used
unless the Interface Card is removed, modified or replaced with a
different interface card.

SECTION B: CONSOLE/PBOX CONNECTORS PG B5

FIG. BJ: 44 PIN SIDE EDGEBOARD CONNECTOR
(VIEW LOOKING INTO CONSOLE SIDE)

o o CN Cslxt
n rO 4

CN-^-tOOOO^^COOO
CNCsICNCNCNon co oo

t- n m cn Nai"- cn roiDl^cn 2“ ro

i—
LiJ

^tOCN
n o n

o>
<LO

I

FIG B.2: 60 PIN PBOX CONNECTOR SOCKET
+8V

GROUND
GROUND
GROUND

-LCP
-RDBENA

HOLD
— SENILA

-INTA
D7
D5
D3
D1

GROUND
A14.A
A12.A
A10.A

AS .A
A6.A
A4.A
A2.A
AO .A

AMB.A
GROUND
GROUND

- CRUCLK.A
GROUND

CRUIN
-16V
+ 16V

3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

+8V
READY.A
-RESET
SCLK
AUDIO
PCBEN
IAQHA
-SENILB
-LOAD
GROUND
D6
D4
D2
DO
A15/CRU0UT
A13.A
A11.A
A9.A
A7.A
A5.A
A3. A
A1.A
AMA.A
AMC.A
-CLKOUT
DBIN.A
-WE.A
-MEMEN.A
-16V
+ 1 6V

(VIEW LOOKING INTO PBOX)

SECTION C: CARD ELECTRONIC FEATURES PG C1

SECTION C: PBOX CARD ELECTRONIC FEATURES

1 .0 Introduction

Each peripheral card designed to be used with the PBox will have
certain features that will not only allow the device to work properly,
but will keep it from interfering with other devices and the computer.
Due to the diverse nature of possible peripheral devices, not all of
the following electronic features will be implemented on every device.
The peripheral designer is responsible for insuring that his or her
design utilizes the appropriate buffering and device selection
techniques to prevent bus contention between devices.

2 .0 Interfacing Notes

As noted previously, the PBox has two basic bus systems, memory
and CRU. The CRU bus is used to control most peripherals, while the
memory bus is used to transfer data to and from the peripheral. The
CRU bus can also be used to transfer data to and from a peripheral,
but a slower rate since the CRU bus transfers information at the rate
of one bit per cycle, whereas the memory system transfers one byte (8
bits) each cycle.

These two buses can be used in several designs to communicate
between the computer and the peripheral. However, most interface
designs can be grouped into one of five categories:

1) CRU only (serial)
2) Memory only
3) CRU and Memory Mapped (non-DSR)
4) CRU, DSR ROM, and Device
5) Non-CRU Memory Mapped

Each of these categories are discussed below. Note that the
fourth category is the most common design, and the last category has
not been defined until now.

2.1 CRU Only

In many ways, interfacing the computer to a peripheral via the
CRU bus (only) is the simplist design of all. A peripheral that uses
only the CRU bus to communicate has only one constraint: the CRU
address(es) used by the peripheral must not be used by any other
device. This is extremely important because most of the peripheral
devices and the 9901 which drives the keyboard already have several
CRU addresses assigned to them. Attempting to use any of these CRU
addresses will result in contention on the CRU bus, and possible
activation of other peripherals on the memory bus. [Following
sections will explain how the CRU bus is used to poll and activate
peripherals.] Section G contains the CRU map for the /4A. Each >0100
CRU address block has 128 addresses. Each peripheral space in the 16

SECTION C: CARD ELECTRONIC FEATURES PG C2

locations reserved for peripheral devices (from >1000 to >1F00) has
128 CRU addresses available; however, usually no more than the first 8
CRU bits are used. The TMS9901 utilizes 32 CRU bits, starting at
address >0000. The CRU space from >0400 to >OFFE is unassigned and
has 12 sets of 128 CRU addresses available. It is recommended that
peripherals based upon using the CRU bus only should be located within
the >0400 to >OFFE CRU address range, with 128 bits available per
CRU-only peripheral space. Table C.1 defines these twelve peripheral
blocks. If more than 128 bits are required, then sequential
peripheral blocks should be utilized. Any device that utilizes one or
more of the peripheral blocks in Table C.1 shall have the CRU
addresses clearly identified in the device documentation, and noted on
the device itself, if possible. None of the CRU-only peripheral
blocks are currently defined.

TABLE C.1
CRU-ONLY PERIPHERIAL BLOCKS

Block CRU Address Range
1 >0400->04FE
2 >0500->05FE
3 >0600->06FE
4 >0700->07FE
5 >0800->08FE
6 >0900->09FE
7 >OAOO->OAFE
8 >OBOO->OBFE
9 >OCOO->OCFE

10 >ODOO->ODFE
11 >OEOO->OEFE
12 >OFOO->OFFE

Note: While it is possbile to utilize CRU addresses within the
sixteen polled peripheral spaces, it is not recommended since these
bits may be used in existing or future devices. The twelve CRU-only
peripheral blocks defined in Table C.1 should provide adequate space
for development of these types of peripherals.

2.2 Memory Only

As seen in the /4A memory map, there is a total of 48K possible
RAM space available, consisting of the following 8K blocks: >2000,
>4000, >6000, >A000, >C000, and >E000. Utilization of these spaces is
discussed below as they pertain to use in the PBox.

2.2.1 32K Design

The TI 32K RAM peripheral card covers the >2000 and >AOOO->FFFF
memory spaces. Since the operating system of the /4A was designed to
utilize RAM in these memory blocks, there is no need for special
controls (such as CRU) to activate this memory device, only simple

SECTION C: CARD ELECTRONIC FEATURES PG C3

address decoding. (See Section E.2 for more details.) The original TI
memory card utilizes dynamic RAM; subsequent third party devices use
more commonly available static RAM. Low power CMOS RAM is used in
some designs along with batteries to retain data when the PBox power
is off.

2.2.2 >4000 Space

The memory space from >4000 to >5FFF is reserved for paging in
various peripheral devices and for memory mapped devices. See
Sections 2.3 to 2.5.

2.2.3 >6000 Space

The space >6000->7FFF is traditionally not accessed from devices
in the PBox because the /4A system assumes that it will be accessed
from a cartridge in the 36 pin module port. The signal -ROMG on pin
34 is used to activate the 8K block at >6000. Bus contention will
occur if a device in the PBox contains RAM/ROM at >6000, and a plug-in
cartridge contains RAM/ROM/GROM at the same location. Peripheral
devices containing memory in this 8K location are acceptable only if
the memory is inactive upon powerup, and is activated by the user via
hardware (switch) or software (CRU activation). This places the
burden upon the user to activate this RAM space only after confirming
that no module with memory in the >6000 space is inserted in the
console. If software checking is used, a powerup routine that looks
for "AA" at byte >6000 can be used to confirm that the space is not
free for use.

2.2.4 Bank Switching

Bank switching via CRU control is acceptable for the >2000, >6000
and >AOOO->FFFF memory spaces. However, most applications programs,
especially BASIC utilizes these areas in predefined routines,
particulari1y the >2000 block. Therefore, bank switched RAM blocks
are useful for programs specifically designed to utilize them. As
with other concepts, the designer must insure that two RAM blocks do
not occupy the same address space simultaneously. Bank switching
circuitry should be disabled by powerup or RESET activation.

2.2.5 Extended Address Lines

The address lines AMA, AMB, and AMC are provided in the PBox bus
to increase the linear address space of the system from 64K to 512K.
As with bank switching, use of these lines to extend the available
memory space is acceptable, but useful only for programs specifically
designed to utilize them. A different interface card is required for
the /4A system to allow use of AMA-AMC, since the card holds these
signals high. Any memory device that uses these lines must make sure
that AMA-AMC are high (=1) when accessing the "normal" 32K. Also, the
designer should note that most of the TI produced peripheral cards
are not activated if either AMA, AMB, or AMC are low.

SECTION C: CARD ELECTRONIC FEATURES PG C4

2.2.6 Memory Mapping

An advanced technique for extending memory for peripherals is
referred to as memory mapping. This technique is similar to bank
switching, but utilizes a specialized LSI chip, the 74LS612 memory
mapper to control generation of address lines beyond A0-A15. The '612
can be utilized to expand the address lines to accomodate up to 16 Meg
bytes, without utilizing AMA-AMC. If a memory peripheral is designed
to address more than 512K, then it is recommended that a memory mapper
be located on the peripheral to generate local extended addresses for
that device. [A description of the '612 and an application report is
given in TI's "LSI Logic Data Book", 1986]

2.3 CRU Select and Memory Mapped (non-DSR ROM)

The /4A system is designed to sequentially poll 16 peripheral
spaces, all located in the >4000 memory space. The CRU bus is used to
select and activate these perpherials one at a time to prevent bus
contention. The system and the 16 peripheral spaces are described in
Section 4.0. This section covers memory mapped devices that are
placed in one of the 16 polled peripheral spaces. These devices may
or may not also have applications ROM/RAM; but it does not contain a
valid Device Service Routine program. Section 2.5 covers memory
mapped devices that are not polled by the /4A system, and do not have
separate applications programs within their assigned memory space.

Memory mapped devices are accessed at only one address, or a
small series of addresses. An existing example of a memory mapped
device is the 9918A video chip. For the purposes of this section, it
is assumed that these devices do not require a Device Service Routine
(DSR) ROM to properly operate. An applications ROM or RAM of up to 8K
length may be located within the same peripheral space, as long as it
does not place the value "AA" in the first byte, and its assigned
address range does not include the memory mapped address(es). This
type of device may be activated by the /4A peripheral polling system,
but will not respond since it does not have a valid DSR header. This
type of peripheral is different from the standard polled peripheral,
described in Section 4.0, in that it does not need a powerup,
interrupt or applications program that uses the /4A polling and PAB
access system, but does need valid addresses for memory mapped
devices, and possibly an applications program to run. Since it would
be located in the >4000 block, it can not be activated while the
polled peripherals are being accessed.

For this type of peripheral, the following requirements must be
met:

a) The memory mapped device must be located in the range of
>4002->5FFF; it cannot be located at either >4000 or >4001 since it
might be accidently activated by the polling system.

b) The memory mapped address(es) must not overlap with any
ROM/RAM activated by this device.

c) The memory mapped address decoder chips, data buffers and
ROM/RAM select chips are to be activated only when that peripheral

SECTION C: CARD ELECTRONIC FEATURES PG C5

space is selected by the CRU bus by the calling program, and be
deactivated when the peripheral is not selcted.

d) The peripheral must be activated by writing a high CRU bit
(=1) to the card, and deactivated by writing a low value (=0) to the
same bit. To avoid spurious activation by the /4A polling system, it
is recommended that the activation CRU bit not be at CRU bit 0 for
that peripheral space.

e) If the memory mapped device requires interrupts to communicate
with the console, or a powerup/reset program, then it must have a
valid DSR ROM (Section 2.4).

f) Applications software must be provided to properly activate
the peripheral and insure that it is deactivated when communication is
complete. Due to potential bus contention from another interrupt
driven peripheral (which would automatically activate the polling
system), all interrupts should be suspended via a LIMI 0 command by
the applications software, then restored when the device is
deacti vated.

g) The device should utilize one of the peripheral spaces and its
assigned CRU bit address range from the table in Section 4.0.

An example of this type of peripheral would be a Real Time Clock
(RTC) that is periodically read by an applications program, and does
not generate interrupts. The applications program would convert the
RTCs output into the desired format, and place the time on the
screen. When the applications program reads the RTC, or writes to set
the time, external interrupts are suspended, the peripheral device is
activated and accessed, then deactivated and interrupts are
react!vated.

2.4 CRU Select, Device and DSR ROM

This type of peripheral is similar to those described in Section
2.3, except that a ROM device with a valid DSR must be included for
the device to properly respond to the /4A polling system. The
software section of this manual covers requirements for creation of
DSR software. ROM/RAM up to 8K in length may be located in the
>4000->5FFF space, and must not overlap with any other device on the
peripheral that is memory mapped or uses other address decoding
schemes.

For this type of peripheral, the following requirements must be
met:

a) The DSR memory must be located starting at address >4000, and
may extend to >5FFF.

b) Permanent memory (ROM, PROM, EPROM, EEPROM) is recommended for
holding the DSR. RAM may be used, if loaded after powerup. Use of
RAM for holding the DSR prevents use of the peripheral until the DSR
is loaded. Non-DSR RAM (for scratchpad or data storage) may be used
as long as the total memory (DSR + non-DSR) is 8K or less.

c) Any other devices on the peripheral must not share the same
address space as the ROM/RAM.

d) The DSR memory must be designed such that the data buffers,

SECTION C: CARD ELECTRONIC FEATURES PG C6

DSR ROM/RAM select chips and any other device requiring address
decoding are to be activated only when that peripheral space is
selected by the /4A polling system. This system requires that the
first CRU bit of that peripheral space activate the peripheral by
writing a high value (=1) when it is selected, then deactivate the
peripheral by writing a low value (=0) to the same CRU bit.

e) If the peripheral utilizes interrupts, then it must have an
open collector driver connected to ground that can be cleared by the
applications software once the peripheral is accessed.

An example of this type of peripheral is the RS232 cards, which
are located at >1300 and >1500, and contain both DSR ROM and other
chips, like the TMS9902 UART. See Section 4.0 for more details on how
these peripherals are accessed by the /4A system.

2.5 Non-CRU Memory Mapped Devices

One of the drawbacks of the /4A's memory map is its utilization
of the 8K memory space at >8000 to >9FFF. This memory space is
assigned to the internal RAM and seven memory mapped devices, all of
which are block decoded in 1K increments. Therefore, the RAM and
memory mapped devices will respond whenever an access is made to an
address within the assigned 1K block.

To allow for implementation of memory mapped devices NOT accessed
internally by the /4A system, the memory space of >4000->5FFF is
assigned for non-CRU memory mapped devices. This space can be
accessed only when none of the 16 polled peripherals are paged in by
the CRU bus.

For this type of peripheral, the following requirements must be
met:

a) The peripheral must be disabled whenever a CRU access is made
to one of the 16 polled peripherals, and enabled only when none of the
polled peripherals is active.

b) The peripheral must be decoded to respond within one of the 8
1K blocks as defined below:

Memory mapped space
1
2
3
4
5
6
7
8

Address
>4000->43FF
>4400->47FF
>4800->4BFF
>4C00->4FFF
>5000->53FF
>5400->57FF
>5800->5BFF
>5C00->5FFF

If more than one address is needed, it shall be within the
assigned 1K block.

SECTION C: CARD ELECTRONIC FEATURES PG C7

FIG. C.1: PERIPHERAL TYPES

SECTION C: CARD ELECTRONIC FEATURES PG C8

3.0 General Notes on Buffering, Activation, and Mise. Signals

To insure that peripheral devices do not cause bus contention,
and are accessed properly, certain design features must be
incorporated. Most devices will have to be buffered from the memory
bus, activated only when that device is selected, and be capable of
generating signals to the console of its status. The following
sections discuss these design features.

3.1 Buffers

Devices which utilize the data bus must have a bidirectional
driver, such as a 'LS245, with direction control and enable signals.
The bus driver chip should be activated by the peripheral activation
CRU bit (see 3.2) if a polled peripheral; other peripheral types will
utilize other activation schemes. Other signals (address, control)
should be driven by a 1LS244 (except as noted in 3.4), which is always
acti ve.

3.2 CRU Peripheral Card Activation

Polled peripherial cards in the PBox are activated by writing a
high value (=1) to the first CRU bit of the assigned CRU peripheral
space. For example, to activate the peripheral card at location
>1500, CRU bit >1500 is turned 'on' (=1) via the SBO command. The
first CRU bit shall be used to enable the data buffer, DSR ROM (if
used), and indicator LED. CRU activated cards without DSRs should use
a CRU bit other than bit 0 for activation. This bit may be used to
enable any other chips located on the peripheral card; thereby
reducing power requirements when the card is not selected. An
indicator LED shall be provided to give the user visual feedback that
the peripheral card is active; yellow LEDs are recommended for
consistancy. The CRU bit is not the only enable signal for the DSR
ROM; see section 3.3. The CRU bit must be latched by a flip flop,
'LS259, 9901, or similar device that is capable of storing the status
of the CRU bit. Provisions must also be made in the design for use of
the -RESET signal to clear the latch whenever -RESET goes low.

For non-CRU memory mapped devices, the device must be selected
only when the assigned address is selected and none of the first bits
of the 16 peripheral spaces is activated. Circuitry must be provided
to track the status of the peripheral activation bits, and to deselect
the memory mapped device if one of these CRU bits is activated.
Provisions must also be made in the design for use of the -RESET
signal to clear the non-CRU activation circuitry whenever -RESET goes
low.

3.3 Memory Activation

All memory devices, whether for general storage or memory mapped
devices, must use address decode circuitry to insure that the device
will be activated at its assigned address(es). General storage memory
(at the >2000, >6000, or >AOOO->EOOO blocks), must be activated by use

SECTION C: CARD ELECTRONIC FEATURES PG C9

of upper address lines and -MEMEN. No CRU bits are required to
activate general storage memory locations.

Likewise, non-CRU memory mapped devices, CRU memory mapped
devices and DSR ROM/RAMs are activated by use of appropriate address
lines, -MEMEN, and the CRU bus. These devices must be located in the
>4000 to >5FFF address range. DSR ROMs must start at >4000; other
devices are not required to start at address >4000.

As noted previously, the READ access time for memory devices is
650 ns, which is extremely generous, and should allow use of 1LS type
decoders for use with the /4A system.

3.4 Miscellaneous Signals

Peripheral cards must use certain signals to communicate with the
console and other peripherals. These signals and design notes are
discussed below.

3.4.1 READY: System Ready signal

Used to put the 9900 in a WAIT state during initialization, or to
extend a memory access cycle for slow memory devices. If used by the
peripheral card, it must be an open collector driver (like an 1LS125)
that is tied to ground. Note- activation of the READY signal is the
sole responsiblity of the individual peripheral and not the console.
Failure to deactivate the READY signal will result in an inoperative
system. Note also that this signal is driven out of the card to the
console.

3.4.2 -RESET: active low console driven Reset signal

This signal should be used on peripheral devices to clear the CRU
activation bit, as well as any other CRU bits, and any other device
that must be reinitialized to function properly after a low -RESET
signal. It should be driven into the peripheral by an 1LS244 or
similar chip.

3.4.3 PCBEN: active high PCB Enable

This signal is gated with other signals to activate a peripheral
card. It can be driven into the peripheral by an 1LS244, or taken
directly into the PCB with no driver chip.

3.4.4 -RBDENA: active low Remote Data Bus driver

-RBDENA must be provided to indicate to the Interface Card that a
memory cycle (Read/Write) is needed for a peripheral in the PBox. It
enables the 1LS245 on the console end of the cable. It is recommended
that an open collector signal ('LS125) or tri-state gate ('LS244) tied
to ground be used to drive the signal, with the gate controller tied
to the same signal used to activate the data bus driver.

SECTION C: CARD ELECTRONIC FEATURES PG C10

3.4.5 CRUIN: CRUIN signal

Usually does not have buffer drivers. Signal sent unbuffered
directly to CRUIN pin of the 9900.

3.4.6 -LOAD: console LOAD input

-Load should not be used by a peripheral for the /4A system and
standard Interface Card. The Interface Card sold by TI did not
connect the -LOAD signal in the PBox to the console. Use of the -LOAD
signal assumes use of 32K memory exapansion, since the LOAD interrupt
vectors are at >FFFC and >FFFE. Therefore, peripherals for the PBox
cannot use the -LOAD signal with the /4A system and interface as
released by TI.

Use of the -LOAD signal is permitted with non /4A systems, or /4A
systems modified to properly use the signal. If used, an open
collector (1LS 125) tied to ground should drive the signal. Note- the
Tl-released disk drive controller drives the -LOAD signal
periodically. Any new peripherals designed to utilize the -LOAD
signal must either acknowledge the presence (and possible conflict) of
the disk drive card, or require the user to disable the -LOAD driver
on that card. TI has stated that the use of the LOAD signal on the
disk drive controller card was for use with an unreleased console, the
/4B.

3.4.7 -INTA: external interrupt to console

This signal informs the console that the Interrupt Service
Routine in the peripheral's DSR ROM must be serviced. The signal must
be driven by an open collector ('LS125) tied to ground. The gate
controller must be activated and deactivated by the peripheral. The
signal must be activated only when an interrupt is requested. The
signal must be deactivated only after the interrupt service routine
has been accessed by the console.

3.4.8 -SENILA, -SENILB: Interrupt Sense Enable Levels A + B

Values for these lines are set by the Interface Card as a high
level (+5V). If the peripheral is to be used with a non /4A system,
utilizing these signals, then -SENILA and -SENILB must be driven into
the card by an 1LS244 or similar driver. As noted earlier, -SENILA
enables 8 of 16 peripherals to drive one of 8 bits on the data bus
low, while -SENILB causes the other 8 peripherals to place a unique
interrupt code on the data bus; this allows the system to rapidly
identify the peripheral.

If the Interrupt Sense Enable system is implemented at a later
date, then each of the 16 polled peripherals may be assigned one bit
on the data bus for interrupt identification as shown in Table C.2.

SECTION C: CARD ELECTRONIC FEATURES PG Cl 1

TABLE C.2 INTERRUPT IDENTIFICATION BITS

-SENILA Active -SENILB Active
CRU Data Bit CRU Data Bit
Address Device Active Address Device Active

>1300 RS232-1 DO >1000 Unassigned DO
>1300 RS232-2 D1 >1100 Disk drive D1
>1400 Unassigned D2 >1200 Unassigned D2
>1600 " D3 >1700 " D3
>1500 RS232-3 D4 >1900 " D4
>1500 RS232-4 D5 >1 BOO " D5
>1A00 Unassigned D6 >1 DOO " D6
>1 COO " D7 >1 FOO " D7

The RS232 positions were established by TI; see section F 2.0
for detai Is.

To allow for development of future peripherals with this
capability from various developers, the following guidelines are
recommended:

1) Identify on the peripheral card and in the documentation that
the device will utilize the "A" and "B" interrupt sense levels.

2) Provide a switch or jumper on board to allow the user to
disable the -SENILA/B circuits.

3) Provide a switch or jumper on board to allow the user to
assign the ID bit to the peripheral to match individual system
hardware/software needs.

4. 0 Peripheral Polling System

Several peripheral concepts for the /4A system have been
discussed in this chapter- CRU-only, non-CRU memory mapped, memory
only, CRU and non-DSR, and CRU and DSR. Of these, only the last (CRU
and DSR) is automatically polled by the /4A operating system. Polling
is a technique whereby the console will use the CRU bus to activate
one of 16 peripheral locations in the >4000->5FFF memory block, and
perform a function. Activation of a peripheral also activates its DSR
ROM, which contains the software program(s) used with that peripheral.

As noted in Section I, the peripherals may automatically be
polled by the /4A under the following conditions:

1) INITIALIZATION (RESET): Some devices require initialization of
registers or other functions when the system is first activated, or
following a software reset.

2) INTERRUPT: Devices that use interrupts must be polled to
determine if an interrupt has occured; the interrupt must be cleared
after processing.

3) DEVICE ROUTINE: This is the application program that is used
to make the peripheral work. When requesting a certain device ("PIO",
etc.), the console will search for the DSR that corresponds to that

SECTION C: CARD ELECTRONIC FEATURES PG C12

device and execute the program.
4) BASIC SUBPROGRAMS (CALLS): Likewise, when BASIC or EXTENDED

BASIC make subroutine CALLS, the /4A will search the available DSR
ROMs for the corresponding program.

In each of the four categories, the /4A operating system performs
the peripheral polling within the 16 locations defined at >0100
intervals between >1000 to >1F00. The /4A will search for the
routine, starting at location >1000. If it does not find what it is
looking for there, it checks the peripheral at >1100, and so on,
incrementing the CRU address by >0100 until the peripheral at >1F00 is
checked. If no corresponding routine is found, an error message is
returned.

Peripheral devices in the other categories are not polled by the
operating system, and will not be checked automatically (unless
directed by a DSR in one of the 16 locations that directs the console
to check a non-DSR device). It is recommended that any peripheral
device that requires initialization, interrupts, device routines
(independent of the 32K RAM space) or BASIC CALL subroutines, be
placed in a polled peripheral space.

SECTION D: TYPICAL CARD CHIPS PG DI

SECTION D: TYPICAL CARD CHIPS

1 .0 Introduction

This section is provided to assist the designer with a quick
reference to integrated circuit chips commonly used in peripheral
devices for the /4A system. The chips listed are not 'all' of the
chips that could be utilized; the designer should have access to data
books such as "Standard TTL, Volumes 1 + 2", "LSI Logic Book", "ALS/AS
Logic Book", and "Interface Circuits Data Book" from Texas
Instruments. A complete list of logic data books is available from
Texas Instruments.

The chips are grouped into four types: drivers, logic, decode and
CRU. Only basic information is given about the chips. Consult the
data books for more detailed information, such as power requirements
and propogation delays.

SECTION D: TYPICAL CARD CHIPS PG D2

FIG. D.1: TYPICAL DRIVER CHIPS

OCTAL DRIVERS

QUAD DRIVER, INDEPENDENT
OUTPUTS, OPEN COLLECTOR

QUAD TRANSCEIVER OCTAL TRANSPARENT
LATCHES

SECTION D: TYPICAL CARD CHIPS PG D3

PIG. D.2; LOGIC CHIPS

d ff
PRE
CLR
CLK
D

Q

A B OUT
'32 QUAD 2 INPUTL L L

L H H
H L H
H H H

A B OUT
L L H '02 QUAD 2 INPUT
L H L '27 TRIPLE 3 INPUT
H L L '25 DUAL 4 INPUT W/STROBE
H H L

A B OUT
L L L '136 QUAD 2 INPUT, OC OUTPUT
L H H
H L H
H H L

A B OUT
L L H '135 QUAD XOR/XNOR
L H L
H L L
H H H

A B OUT
L L L '08 QUAD 2 INPUT
L H L '11 TRIPLE 3 INPUT
H L L '21 DUAL 4 INPUT
H H H

AI B1 OUT1 1 '00 QUAD 2 INPUTL । L। । n । । '10 TRIPLE 3 INPUTL H H । । '20 DUAL 4 INPUTH । । L 11 H । '30 8 INPUTH H L '133 13 INPUT
PRE CLR CLK D Q Q

L H X X H L '74 DUAL D TYPE
H L X X L H
H H t H H L
H H t L L H

J-K FF
PRE
CLR
CLK
J
K ’73/’7O POSITIVE EDGE

'73A NEGATIVE EDGE

CLR CLK J K Q Q
L X X X L H
H _[~L H L H L
H _n_ L H L H
H J-L H H TOG.

PRE CLR CLK J K Q Q
L H X X X H L
H L X X X L H
H H H L H L
H H j~L L H L H
H H _n_ H H TOG

’76/’71/’72 MASTER/SLAVE
'78 DUAL W/COMMON

CLK & CLEAR

SECTION D: TYPICAL CARD CHIPS. PG D4

FIGURE D.3: DECGDER CHIPS

4 TD 16

FIGURE D.4: CRU CHIPS

CE CLKQUT

S0-S5

CRUCLK
CRUUUT

CRUIN

IC0-IC3
INT0-INT15

<___> P7-P15 (ALSO INTERRUPTS)

P0-P6

SECTION E: TYPICAL CIRCUIT EXAMPLES PG El

SECTION E: TYPICAL CIRCUIT EXAMPLES

1.0 Introduction

Peripheral devices for the /4A system can vary greatly in
complexity and function. However, most of them will have to be
interfaced to the memory bus, CRU bus, or both. The following
sections present some typical circuit examples to demonstrate how
interfacing may be accomplished on the /4A system. As with Section D,
Typical Chips, these circuits are not necessarily optimal for al 1
peripheral devices, but are presented here as a reference for the
designer.

2 .0 Memory Interface

This example shows how a device incorporating the 32K RAM could
be assembled. The integrated circuits used are summerized below,
along with their function. This example has address decoding, data
bus buffering, and generating of the -RDBENA signal; these circuits
are common with most peripheral devices and are not repeated for the
other examples.

Chip Function
244 address and control signal drivers for AO-15, -WE, DBIN
245 data bus transceiver for DO-7
138 decode A0-A2 into 8K chip select banks; selects >2000,

>A000, >0000 and >E000 8K blocks
21 4 input AND gate, activates the -RDBENA and 245 chip

enable, inputs are from '138 chip select signals
04 1 of 6 hex inverter, used to convert DBIN to -DBIN (-0E

for 8K RAM and 245)

3 .0 CRU Interface

CRU interface can be implemented rather easily with relatively
common chips. Figure 3a shows how an 'LS259 is used to latch up to 8
individual CRU bits. The 'LS138 is used as an address decoder, while
-CRUCLK is used as an enable signal (to prevent activation during a
normal memory bus access). The 8 individual bits are selected by
address lines A12-A14, and the CRUOUT line inputs the value of the bit
(0 or 1). The -RESET line clears all the bits when the system is
reset. The 1LS259 is used in the Latch mode which means that the
value of the CRUOUT line at the time of access is held constant until
it is either rewritten or reset. Software must be written to insure
that CRU bits are not accidently left on when a peripheral device is
no longer accessed.

Figure 3b demonstrates how to input data via the CRU bus. Once
again, the 'LS138 is used for address decoding. The 'LS251 is used as
a 1 of 8 data input, with address lines A12-A14 selecting the input

SECTION E: TYPICAL CIRCUIT EXAMPLES PG E2

line. Once the line is selected, the CRUIN line reads the value (0 or
1). The -CRUCLK signal is not used, since it is for data output by
the CRU bus only. Data at the 8 inputs to the 'LS251 must be valid
before being read by the CRUIN line.

The most versatile, and often underused, chip for CRU interfacing
is the TMS9901. The 9901 can provide 6 dedicated interrupts, 7
dedicated I/O CRU bits, and 9 lines that can individually be
programmed as either interrupts or I/O bits. In addition, it has a 16
to 4 interrupt prioritizer (which is not used in peripheral designs
for the /4A, due to the limited interrupt structure), and a built-in
programmable timer that can be preset to interrupt at a specified
interval. Figure 3c shows the basic interconnect for a 9901 to the
PBox bus. Address decode circuitry selects the chip, while the full
CRU bus is directly connected to the 9901. The lower address bits
A10-A14 are used to select the I/O and interrupt pins. When an
interrupt occurs, the -INTREQ line drives the -XINT line low, and it
is up to the software to read the interrupts internally to determine
which one was active. -CRUCLK must be inverted back to positive
CRUCLK for the CRUOUT line to function properly.

4 .0 Memory mapped interface

Memory mapped decoding is similar to regular memory interfacing,
in that various address lines are used to select a particular device.
In Figure 4a, two 'LS138s are used to decode the 6 most significant
address lines. With this scheme, the second *138 provides 8 select
lines that will activate individual 1K blocks. These 8 1K blocks
reside within the 8K block chosen by the first '138 decoder. When
used in a polled peripheral, this 8K block would be >4000->5FFF. CRU
decoding is used to select the peripheral space and activate the
device (or DSR ROM) only if both the address is valid, and the first
CRU bit in the CRU peripheral space is set.

Figure 4b also uses two chips, but can decode all 16 bits to an
individual address. The first '688 compares the first 8 MSB (A0-A7)
to a value set by an 8 switch DIP set. When these 8 bits are equal,
they enable the second ‘688, which does a similar comparison for the
lower 8 address bits. The second '688 produces a low true signal when
the 16 address bits equal the value set on the DIP switches. Once
again, this is gated with the appropriate CRU bit to activate the
peripheral.

The non-CRU memory mapped decode circuitry is more complex, as
shown in Figure 4b. Once again, an *LS138 is used to decode A0-A2 to
enable the >4000 8K block. The 1LS154 further decodes A3-A7 into all
16 possible polled peripheral locations (>1000->1F000). All 16
outputs are routed to two 'LS21s (4 input AND gate) which are
connected such that the final AND gate output goes low if any of the
16 inputs goes low. This, along with other signals is latched by a
259. This circuit will provide a master output signal, -Qo, that
follows the following logic:

SECTION E: TYPICAL CIRCUIT EXAMPLES PG E3

IF -Qo is low THEN a polled perpiherial is active and the non-CRU
memory mapped device CANNOT BE ACTIVE.

IF -Qo is high THEN no polled peripheral is active and the
non-CRU memory mapped device CAN BE ACTIVE.

This circuit must be combined with other address decode circuitry
to select the peripheral within the >4000 block.

SECTION E: TYPICAL CIRCUIT EXAMPLES PG EA

FIG. E.2; MEMDRY INTERFACE EXAMPLE

PIG. E.3A SIMPLE OUTPUT FIG. E.3B SIMPLE INPUT

FIG. E.3: CRU INTERFACE EXAMPLES

FIG. E.3C 9901 EXAMPLE

SECTION E: TYPICAL CIRCUIT EXAMPLES PG E5

FIG. E.4: MEMORY MAPPED EXAMPLE

B> EXACT ADDRESS DECODE

138 688

A> IK BLOCK DECODE

138

FIG. E.5: NON-CRU MEMORY MAPPED

SECTION F: TI DEVELOPED CARDS PG Fl

SECTION F: TI DEVELOPED CARDS

1 .0 Introduction

Texas Instruments developed and sold 4 cards for the peripheral
expansion box: the RS232, 32K memory, disk drive controller and P-code
card. Reference 4, the Bunyard Manual, has a very detailed
explanation of how each of these cards are put together. For purposes
of comparison of design methodology (this document vs. TI), a brief
description of the interface circuitry for the RS232, 32K memory and
disk drive controller is provided.

2 .0 RS232 card

1LS244s are used to drive A0-A15, AMA-AMC, -CLKOUT, -MEMEN, -WE,
-CRUCLK and DBIN. An 1LS245 is used for D0-D7, with DBIN determining
the data flow direction. An 'LS125 is used to drive pin 17, -XINT,
and -RDBENA. CRUIN is brought on the board unbuffered, as well as
PCBEN. The majority of the address decode is done by a Programmable
Array Logic (PAL) chip. On the RS232, as well as the other cards,
that AMA-AMC and PCBEN must be active high to select the card. The
RS232 card can also drive DO and D1, or D4 and D5 if an interrupt
occurs, and -SENILA is brought low. The Bunyard Manual notes that the
CRU address of the card can be changed by moving one resistor.

3.0 32K memory card

1LS244s are used to drive A0-A15, AMA-AMC, -MEMEN, and DBIN.
Neither CRUCLK or -WE are used by this card. -RDBENA is driven by an
'LS125 when the card is selected, and an 'LS245 controls the data on
D0-D7, with DBIN controlling the direction. The interesting item on
this card is the lack of use of the -WE signal. A PAL controls the
32K worth of dynamic RAM, which is much more complicated than need be
if static RAM were used. Also, PCBEN is not used in the decode logic.

4.0 Disk drive controller card

Once again, ‘LS244s drive A0-A15, -MEMEN, -WE, -CRUCLK, DBIN,
AMA-AMC, and -CLKOUT. PCBEN and CRUIN are unbuffered, as well as
-RESET. An 'LS245 carries the data on D0-D7. -RDBENA and READY are
driven by an 'LS125. A PAL is used for most of the address decode
logic. The disk drive controller does not drive -XINT, but does have
an active, but unused interrupt signal -INTRQ. This originates from
the WD1771 controller chip, and is connected to pin 18, -LOAD on the
PBox bus. An 'LS125 also drives DO low if -SENILB is low.

SECTION G: PERIPHERAL LOCATION ASSIGNMENTS PG G1

SECTION G: PERIPHERIAL LOCATION ASSIGNMENTS

1 .0 Introduction

As noted previously, there are 16 CRU defined locations available
for peripherals for the /4A system. Of these 16, four locations are
assigned to existing products released by TI. Other locations were
reserved by TI, but the planned peripherals were not released. Table
G.1 lists the 16 peripheral spaces by their CRU address, indentifies
the address values to decode that space, and defines the assignment of
all spaces. The functions were arbitrarily assigned, but were done so
to help developers determine where their product should be located in
the peripheral space, thereby minimizing conflicts between different
devices. It is recommended that peripheral developers include
circuitry on their devices (similar to the examples in Section E) to
allow the user to select the CRU location for the device in their
individual systems. While this design feature could result in
conflicts between two devices accidently assigned to the same
peripheral space, it does allow maximum flexibility for the end user.
Any documentation accompanying the device should clearly identify the
recommended CRU location.

The space assignments are choose to correspond with individual
peripheral products currently available with various computer systems.
Availability of any peripheral product listed in Table G.1 is
dependent upon the efforts of the hardware developer, and does not
necessarily imply that such a product exists, or will at a later date.
Two peripheral spaces are left undefined to allow for prototype
projects, or future devices whose function is not clearly defined
elsewhere in Table G.1

SECTION G: PERIPHERAL LOCATION ASSIGNMENTS PG G2

Table G.1
Peripheral Location Assignments

Addr. Established Assigned
Peripheral Space Lines Function* Function Notes

*Items in parenthesis denote third party or unreleased TI
devices.

===x=============A34567==

>1000->1OFE
>1100->11FE

10000
10001 disk controller

mass storage
di sk controller

1

>1200->12FE 10010 (home security) math coprocessor 2
>1300->13FE 10011 RS232-1 RS232-1
>1400->14FE 10100 (internal modem) internal modem 3
>1500->15FE 10101 RS232-2 RS232-2
>1600->16FE 10110 (digital cassette) prototype low 4
>1700->17FE 10111 Hex Bus attached computer 5,6
>1800->18FE 11000 thermal printer MIDI/music 5,7
>1900->19FE 11001 (eprom programmer) programmer 8
>1A00->1AFE 11010 (student typing) speech/DSP 9
>1B00->1BFE 11011 (debugger card) Uti1i ty card 10
>1C00->1CFE 11100 video video
>1D00->1DFE 11101 IEEE 488 control real time clock 5,11
>1E00->1EEF 11110 — prototype high 4
>1F00->1FFE 11111 P-code P-code

SECTION G: PERIPHERAL LOCATION ASSIGNMENTS PG G3

Table G.1 Notes

1) Mass storage is currently defined as RAM disks, but also
includes other media such as CD-ROM.

2) Position >1200 is reserved for high speed math coprocessors,
which may be interrupt driven and require quick response times.

3) An internal modem is defined as a standalone peripheral with
direct connection to telephone lines, with no interface to the RS232
devices.

4) Prototype locations (low and high) are left undefined for
prototype circuits and undefined future products.

5) These card positions were defined by TI; however, the
peripheral either was not released, or is seldom used. Therefore,
this peripheral space was reassigned.

6) Attached computer or microprocessor refers to a self contained
computer system with its own microprocessor. This space can also be
utlitized for interfacing to independent computers.

7) This space is reserved for electronics music devices.
8) This space is reserved for programmers of various devices,

such as PROM, E(E)PROM, PAL, etc.
9) This space is reserved for speech and/or digital signal

processing devices.
10) A utility card refers to peripherals designed to enhance or

supplement development of assemlby or other advanced program
applications.

11) Real time clock peripheral space; also used as RTC space by
some third party products.

SECTION H: MISC. DESIGN CONSIDERATIONS PG H1

SECTION H: MISCELLANEOUS DESIGN CONSIDERATIONS

1 .0 PBox Peripheral Card Dimensions and Layout

Figure H.1 gives the physical dimensions of a printed circuit
board designed to fit in the /4A PBox. These dimensions are taken
from the prototype board, and assume that the card will be bare (ie-
will not use a 'clamshell1 cover like the original TI cards). These
dimensions are extremely useful for designers who are planning to
produce PCBs for kits or final projects, or for the hobbiest who
constructs his or her own one-of-a-kind PCBs. The extension section
in the rear is optional, and is designed to extend outside of the
PBox; it is not needed unless external connections are used by the
card. Positioning of the indicator LED is relatively critical - it
must line up with the built-in lens of the PBox to give the user a
good strong light signal.

Drivers and buffers must be physically located as close to the 60
pin edgeboard as possible. Unregulated +8V, +16V, and -16V are
provided at opposite ends of the card for input to voltage regulators.
If the +16V and -16V pins are not used, it is recommended that their
edge connectors not be put on the PCB. This will eliminate accidental
shortage of the unregulated voltage with adjacent signals, such as
-MEMEN. Voltage regulators may be mounted directly to the PCB for
heat sinking purposes. Voltage regulators should have heatsinks with
heat sinking compound in most designs, particularity if the circuit
draws more than one-half of the rated output of the regulator.
Regulators should also have enough de-spiking capacitors to ensure
reliable performance.

Layout of other components on the PCB should not be critical.
PCB traces with signals or power feeds should not be routed near the
front or back, where they could accidently short to ground against the
PBox chassis. All PCB areas not utilized for traces should be left
unetched (ie- solid copper), and tied to ground to act as a ground
plane, and minimize external signal interference. Any connecting
hardware such as plugs, sockets, etc., that will have cables inserted
and removed should be bolted to the board to prevent damage to the PCB
from repeated insertion/removal.

Each peripheral card should not use more than the following
maximum power on the three unregulated power buses:

500 ma on 8V
250 ma on 16V
30 ma on -16V
This is a function of the PBox power supply, split over a maximum

of seven cards. If more power is required by an individual card, an
independent power supply with common ground should be used.

2 .0 Prototype Board

Designers wishing to test their peripheral circuits prior to
manufacturing PCBs can utilize a prototype PBox board, which is

SECTION H: MISC. DESIGN CONSIDERATIONS PG H2

currently available from LL Conner Enterprises. This is a wire wrap
type board with all signals brought on board from the bus, and
positions for bus drivers and buffers provided. Multiple positions
for memory and general purpose chips are also provided, as well as for
the voltage regulators.

If the prototype board is unvail able, then prototypes can be
constructed from breadboard/wirewrap board with a 60 pin plug that is
compatible with the PBox bus (TI part // L21111121-30).

3 .0 Extender cable

Access to circuit boards installed in the PBox is extremely
limited. To facilitate easier testing and troubleshooting of
prototype devices, the hardware designer may wish to construct a bus
extender cable. A bus extender cable may be constructed by connecting
a 60 pin edgeboard plug to a 60 pin edgeboard connector (0.1" pin to
pin spacing for both) with two 30 conductor ribbon cables. A maximum
of two feet of cable is usually desirable to allow for ease in placing
the prototype card in a convenient location. Use of shielded cable is
recommended to minimize EMI/RFI interference.

4 .0 Modified Interface Card

As noted in several previous sections, the Interface Card sold
with the PBox limits the use of some signals in the PBox bus. Figure
H.2a is a simplified diagram of a modified interface card that
duplicates the function of the original interface card, but also
allows use of some of the restricted signals.

AMA-AMC, -SENILA/B, and HOLD are connected to +5V via resistors,
but also have a DIP switch set that allows these lines to float
(neither +5V or ground), like SCLK, IAQHA, etc. PCBEN must be held to
5V to allow the TI developed cards to operate, and does not have a
switch. -LCP is tied to the chip enables for the address and data
drivers such that a low value will disable the interface card. The
design shown in Figure H.2a would be useful in implementing a system
that has an independent computer/microprocessor in a peripheral space
that occasionally takes over the PBox bus from the /4A. Software
between the two systems would be responsible for disabling and
enabling the interface card. [This system would not be required if
HOLD and -HOLDA were available at the /4A 44 pin side port.]

A slightly different design for the interface card is shown in
Figure H.2b. Here, signals such as AMA-AMC, -SENILA/B, etc., are
taken to the console end of the interface cable, where an undefined
'black box' is used to generate signals under software control. As an
alternative, the black box circuitry could be on the interface card in
the PBox. This design assumes the /4A will generate all new signals.

AL
L DI

M
EN

SI
ON

S IN
 INC

HE
S

SECTION H: MISC. DESIGN CONSIDERATIONS PG H4
INDEPENDENT MICRO IN PBOXFIG. H.2A= MODIFIED INTERFACE

+8V

FIG.2B; MODIFIED INTERFACE-ALL SIGNALS ACTIVE

D0-D7

AO—A5,

A6-A13

CRUIN, INTA,
AUDIO

GROUND

AMA—C, IAQHA, LOAD
SCLK, HOLD. LCP
SENILA/B

CRUCLK. RESET
TO
ROBEna

SECTION I: DSR ARCHITECTURE PG II

SECTION I: DSR ARCHITECTURE

1 .0 Introduction

This section briefly covers the software required to make
peripherals compatible with the /4A and its File Management System
(FMS). Software for a standard peripheral is referred to as a Device
Service Routine, or DSR. Section I discusses the basic parts of a DSR
and gives coding examples. Section 0 examines how the console
accesses DSRs. Section K contains miscellaneous information on direct
access of peripherals and the non-DSR peripherals from a application
program, and information on Peripheral Access Blocks (PABs) and how
they interact with DSRs.

2 .0 Device Service Routines

Device Service Routines are included on many peripherals to allow
the /4A to communicate with the device(s) located on the peripheral.
To simplify the addition of new peripherals, the /4A has a defined
protocol for interaction with peripherals during inital powerup,
interrupts, and main device programs. Peripherals may also add new
subprograms (CALL XXX) to BASIC and XBASIC. The /4A communicates with
each peripheral in exactly the same manner; it is up to that
peripheral's DSR to define how the peripheral operates. This way, new
peripherals may be added without altering the console routines. More
information on the /4A and its File Management System can be found in
the Editor/Assembler manual, or /4A Peripheral Technical Data manual.

DSRs can be located in either GROM or ROM (PROM, EPROM, EEPROM,
battery backed SRAM) devices. Since GROMs are beyond the scope of
this manual, further discussion of DSRs will be limited to ROM-type
applications only. DSRs can be composed of several different kinds of
routines, depending on what functions the peripheral is to perform.
Six types of DSRs are defined: power up, user application, main device
service, subroutine links, BASIC subprogram libraries, and interrupt
service programs. The /4A finds and executes these programs by
searching the ROM header, which is in the first 10 bytes of the ROM.
The console identifies valid DSR ROMs by checking that byte 0 is "AA".
[Note: non-DSR peripherals may have applications programs in ROM at
the same location, but must be called by an independent program in the
console, and must not have the validation byte (0) set to "AA".] Byte
1 contains the version number of the DSR. The remaining bytes in the
header identify the entry points for the various programs used by the
DSR. Table 1.1 identifies the contents of the DSR header.

Table 1.1: DSR Header
Location Size Contents
>4000 byte >AA valid ID
4001 byte version number
4002 byte number of application programs, set to zero
4003 byte reserved, set to zero

SECTION I: DSR ARCHITECTURE PG 12

4004 word address of first power up header
4006 word address of first user program header*
4008 word address of first main device header
400A word address of first subroutine link header
400C word address of first interrupt link
400E word address of first BASIC subprogram library*

[*0nly in GROM or at >6000 location]

The address of any routine types should be >0000 in the ROM
header if there are no routines of that type in the DSR. The number
of application programs and version number values (bytes 1 and 2) are
ignored by the /4A system. Program entry addresses may be placed
anywhere within the >4010 - >5FFF range, and multiple routines per
program type are allowed (ie- there may be more than one main device
routine, interrupt, etc.). The address of the program type given in
the header is the link to the next routine of that type. At the first
address is the linking address of the next routine; the word
immediately after this address is the entry point of the first
routine. If the linking address is zero, then no more routines of
that program type are available. See Examples 1.1 - 1.5.

Not all peripherals require all types of routines; it is up to
the designer/programmer to determine which routines the peripheral's
DSR will require. As noted in Table 1.1, there are four types of
programs available for DSRs in ROMs: power up, interrupt, main device
routine and subroutine link [also referred to as BASIC CALL (sub), or
low level routines]. These program types are discussed next.

2.1 Power up routines

Some peripherals require inti alization upon power up or following
a system reset. Or a power up routine may be included simply to flash
the peripheral indicator light to let the user know that the device is
active. In either case, they will require a power up routine in the
DSR. The /4A initializes the console upon power up, then searches and
executes all peripheral DSR power up routines.

Each power up routine can use R0-R10 of the GPLWS. R12 will be
set up with the proper CRU address for the peripheral (which is also
the CRU address used to enable the peripheral). R11 contains the
return address. R13 and R15 contain the memory mapped addresses of
GROM Read Data and VDP Write Address, respectively. All VDP and GROM
operations can be indexed from these two registers. R14 contains the
status flags and should not be altered. The power up routine may use
VDP RAM from >0000 to the address pointed to by >8370 [note that the
VDP and its memory are not completely initiated at this point]. It
may also use all console scratch pad RAM except >8355->836D and
>83C0->83DF. Errors are not assumed to occur during execution of
power up routines, and there are not provisions in the FMS for
identifying power up errors. The power up routine may print an error
message on the title screen to let the user know of a problem with the
peripheral. If there are no errors, the power up routine returns with
a B *R11.

SECTION I: DSR ARCHITECTURE PG 13

EXAMPLE 1.1: POWER UP ROUTINES

AORG >4000
BYTE >AA
BYTE 1
DATA 0
DATA PU1

PU1 DATA PU2
DATA PU1EN
BYTE 0
EVEN

PU2 DATA >0000
DATA PU2EN
BYTE 0
EVEN

PU1EN $

PU2EN $

EXIT B *R11

start of DSR
validation byte
version number
reserved
first power up link

link to second power up
entry point of 1st power up routine
name length, set to zero
reset pointer to word boundary
no more power up routines
entry point of second power up

entry of 1st power up routine

entry of 2nd power up routine

return to console

SECTION I: DSR ARCHITECTURE PG 14

2.2 Interrupt routines

Interrupt routines are required for peripheral devices that
generate interrupts, and are connected to the -INTA line. Since the
/4A system scans all peripheral interrupt routines to determine which
DSR caused the interrupt, the DSR must be capable of checking the
peripheral to determine if it generated the interrupt. The interrupt
routine must clear the interrupt when the routine is complete.
Generally, peripheral devices will generate their own -INT signal,
which is cleared by DSR software. Other designs may incorporate a TTL
latch or flip flop that is cleared by CRU or other signal. In any
case, the -INT line must be cleared prior to exiting, or the console
will continue to branch to that interrupt routine indefinitely. The
flow diagram for the interrupt program logic is shown in Figure 1.1.

The interrupt routine can use R1-R1O of GPLWS, except for R9.
The contents of R13 - R15 are the same as for the power up routines;
R11 contains the return address. Because of the execution of an
interrupt routine only as part of a DSR, the DSR and interrupt routine
can split the allocation of scratch pad RAM from >834A to >836D. An
interrupt routine is always exited by a B *R11. As with power up
routines, no provisions are made for reporting errors that occur
during an interrupt routine.

The RS232 card as released by TI assumes that no other peripheral
will cause an interrupt while it is in use. Interrupt driven
peripherals must have routines that either acknowledge this feature,
or can function around the RS232 card. Refer to the RS232 interrupt
routine as disassembled and commented in "Technical Drive".

SECTION I: DSR ARCHITECTURE PG 15

FIG. 1.1: INTERRUPT ROUTINE

SECTION I: DSR ARCHITECTURE PG 16

EXAMPLE 1.2: INTERRUPT ROUTINE

AORG >4000
BYTE >AA
BYTE 1
DATA >0000
DATA------- powerup routine
DATA >0000
DATA------- main device routine
DATA------- subroutine link
DATA INT1 1st interrupt link
DATA >0000

INT1 DATA INT2 link to 2nd interrupt routine
DATA INTEN1 entry point of 1st routine
BYTE 0 name length set to zero
EVEN reset WP

INT2 DATA >0000 no more int. routines
DATA INTEN2 entry point of 2nd routine
BYTE 0
EVEN

INTEN1 $ entry of 1st device
[check for interrupt; if none go to END]
[interrupt service routine]
[go to CLEAR]

INTEN2 $ entry of 2nd device
[check for interrupt; if none go to END]
[interrupt service routine]
[go to CIEAR]

CLEAR $ clear interrupt
[reset -INT signal]

END B *R11 return

SECTION I: DSR ARCHITECTURE PG 17

2.3 Main Device Routine

The Main Device Routine(s) defines the function(s) of the
peripheral, and must be included on all peripherals with devices to be
accessed. As with the power up and interrupt routines, there may be
multiple main device routines for one peripheral, such as for the
R§232 card. Main device routines are called via the File Management
System in the BASIC/XBASIC environment, which establishes PABs in VDP
memory for each opened file. The device name is located in VDP RAM,
and is pointed to by a word value at >8356. The device name and
character count byte is also included in the PAB. The main device
routine is called by either the File Management System, or by DSRLNK
in an applications program.

R12 will contain the CRU address of the peripheral being
addressed, and R11 contains the return address. Registers RO-R1O can
be used by the routine as well as >834A ->836D. If an error occurs,
the DSR must set the error codes in the PAB, as defined in Section K,
and perform a B *R11. If no errors occur, the routine must increment
R11 by two prior to exit. However, if the peripheral is not
interested in responding to the call (ie- the same device name may be
on more than one peripheral), it may return via B *R11.

The main device routines often require extensive coding due to
numerous housekeeping responsibilities that they must perform. These
responsibilities include:

1) Maintain interface with FMS
Device routines are accessed in terms of files and records. [See

Section 18 of the Editor/Assembler manual]. The designer/programmer
must determine what data format(s) is appropriate for interfacing with
the FMS. Changes to the I/O status of a peripheral must also be
handled by the device routine.

2) Respond to STATUS I/O opcode
As noted in Section K, the DSR should be capable of responding to

a STATUS I/O request by updating byte 8 of the PAB. This byte is used
to determine the current status of the peripheral.

3) Report any errors
The DSR also reports errors that occur during processing of main

device routines before returning. Section K defines the error codes
and their meaning. Errors are reported in the FLAG byte of the PAB.

4) Maintain device housekeeping
The DSR must also tend to any requirements of devices located on

the peripheral while active. The DSR must also properly disable the
device prior to terminating access.

The basic flowchart for a main device routine is given in Figure
1.2. It is based upon a review of the CLOCK, RS232, and Disk Drive
Controller DSRs. The programmer is responsible for determining what
I/O opcodes are used with the peripheral, and developing the
appropriate code. Example I.3a is a typical main device routine
example. Example I.3b is the disassembled and commented DSR for the
CORCOMP 9900 Clock card (from "Technical Drive", by Monty Schmidt,
reprinted with permission). The programmer may consider using a

SECTION I: DSR ARCHITECTURE PG 18

similar structure in developing main device routines for new
peripherals. The programmer is strongly encouraged to review the
disassembled and commented RS232 and Disk Drive Controller DSRs given
in the manual "Technical Drive".

SECTION I: DSR ARCHITECTURE PG 19
de

vi
ce

s w
ith

FIG. 1.2: MAIN DEVICE ROUTINE

SECTION I: DSR ARCHITECTURE PG 110

EXAMPLE I.3a: MAIN DEVICE ROUTINES

AORG >4000
BYTE >AA
BYTE
DATA
DATA
DATA
DATA
DATA
DATA
DATA

1
>0000

>0000
DSR1

>0000

link to 1st device routine

DSR1 DATA DSR2 link to next DSR
DATA DSREN1 entry point of 1st device
BYTE 4 name length of 1st device
TEXT
EVEN

•DEVI 1 name of 1st device

DSR2 DATA >0000 no more DSRs
DATA DSREN2 entry to 2nd device
BYTE 4 name length of 2nd device
TEXT
EVEN

1DEV21 name of 2nd device

DSREN1 $ entry point of device 1

DSREN2 $ entry point of device 2

ERROR $
[set error

entry point of error reporting routine
bits]

B *R11 do not increment R11

OKEND $
INCT R11
B *R11

no errors return
increment R11 by two
return

j SECTION I: DSR ARCHITECTURE

* ** Source code for CORCOMP 9900 Clock card ** *
* Difisassembled and commented 3/20/86* *
* by Monty Schmidt **

4 000 AA01 DATA > AA01 ft* Valid DSR identifier and version
4002 0000 DATA >0000 ** Not used in DSR calls
4004 4038 DATA >4038 ** Address of Power up link
4006 0000 DATA >0000 ** Not used in DSR calls
4008 403E DATA >403E ** DSRLNK address
400A 0000 DATA >0000 ** Not used in DSR calls
400C 0000 DATA >0000 ** INTLNK zero, no interrupt rtn.
400E 0000 DATA >0000 ** Not used in DSR calls
4010 0460 DATA >0460 ** ???? Test routine perhaps
4012 430C DATA >434C ** Points to infinite loop Test rtn7
4014 2843 TEXT ’(C) COPYRIGHT 1985 ’
4016 2920
4018 434F
401 A 5059
401C 5249
401 E 4748
4020 5420
4022 3139
4024 3835
4026 2042 TEXT ’ BY CORCOMP, INC . ’
4028 5920
402A 434F
402C 5243
402E 4F4D
4030 502C
4032 2049
4034 4E43
4036 2E00 EVEN
4038 0000 DATA >0000 ** Linkage set to 0: only 1 power up
403A 4062 DATA >4062 ** Entry point of power up routine
403C 0000 DATA >0000 ** Name length set to 0
403E 0000 DATA >0000 ** Linkage to next device field-none
4040 40A4 DATA >40A4 ** Entry point of device

BYTE >05 ** Name length of device
4042 0543 TEXT ’CLOCK’ ** Dev ice n ame
4044 4C4F
4046 434B

BYTE >01 ** 799009979990

4048 01 13 BYTE >13 ** Number of characters to read
BYTE >08 ** Mask byte for write

404A 0804 BYTE >04 ** Maximum allowable opcode
BYTE >30 ** ASCII offset for numbers

404C 30C0 BYTE >C0 ** Enab 1e byte
BYTE >10 ** Mask byte for write

404E 1040 BYTE >40 ** 700077700000

BYTE >60 ** 700707000000

4050 60E0 BYTE >E0 ** Mask for status and enable byte
4052 2C2F TEXT ’: /, ’ •

SECTION I: DSR ARCHITECTURE

4 054 3A00 EVEN
4056
4058

000A
0004

DATA 10 ** Constants for write routin
DATA 4 *♦

405A 40F2 DATA >40F2 ** Open routine address
405C 4080 DATA >4082 ** Close routine address
405E 423A DATA >423A ** Read routine address
4060 4134

Power up

DATA >4134 ** Write routine address

i routine -M-+

4062
4064

CISC
045B

MOV R12.R6 ** Copy CRU address into R6
RT Return

** Er ror Codes **
4 06 6 0201 L I RI,>4000 ** Bad Open Attribute
4068 4000
406A 1008 JMP > 1 2 >407C
406C 0201 LI RI,>6000 ** Illegal Operation
406E 6000
4070 1005 JMP >0C >407C
4072 0201 LI RI,>8000 Out of Table or Buffer space
4074 8000
4076 1002 JMP S+ >06 >407C

407E5 0201 LI RI,>C000 **■ Attempt to read past end of -f i 1
407A C000
407C F901 SOCB RI,@>FF6B(R4) ** Set Status Bit in DSR area
407E FF6B

** Close Opcode Rout i ne

4080 06A0 BL
4082 4112
4084 4001 DATA

@>4112 ** Set up address to PAB Status Bvt

>4001
4086 DBE4 MOVB
4088 FF6B
408A FFFE

@>FF6B(R4).@>FFFE(R15) ** Write DSR Status Bvte to VDP PA

408C 06A0 BL
408E 4112
4090 4005 DATA

@>4112 ** Set up address to PAB Char count

>4005
4092 DBE4 MOVB
4094 FF6F
4096 FFFE

Q>FF6F(R4),@>FFFE(R15) ** Move DSR char ent to PAB char c

4098 05E4 INCT
409A FF86
409C 04C8 CLR

@>FF86(R4) ** INCT the return address

R8
409E C2E4 MOV
40A0 FF86

@>FF86(R4),R11 ** Move return address into Rll

40A2 045B RT

DSR Routine

and go back!

**

40A4 02A4 STWP R4 ** Store GLPWSP pointer in R4
40A6 C90B MOV
40A8 FF86

R11,@>FF86(R4) ** Save return address in DSR area

40AA C184 MOV R4,R6 ** Move GPLWSP pointer into R6
40AC 0226 AI
40AE FF78

R6,>FF78 ** Make it point to >8358 of DSR
** area

DSR ARCHI i tC i.URE PG M3 |

** Open Opcode Routine

40B0
40B2

0205
0007

LI R5,>0007 ** Clear out 7 words of the DSR area

40B4
40B6

04F6
0605

CLR
DEC

*R6 +
R5 ** Done yet?

40B8 16FD J NE $->04 ' >40B4 ** Nope?, do it again
40BA 06A0 BL @>4112 ** Set VDPWA to beginning of PAB
40BC
40BE
40C0

4112
0000
0205

DATA
LI

>0000
R5,>000A ** We’re going to get 10 bytes

40C2
40C4

000A
C184 MOV R4,R6 ** Put GPLWSP in R6

40C6 0226 AI R6,>FF6A Point to DSR area in Scratch Pad
40C8
40CA

FF6A
DDAF MOVB @>FBFE(R15),*R6 + ** Move byte from PAB to Scratch Pa

40CC
40CE

FBFE
0605 DEC R5 ** Done Yet?

40D0 16FC JNE $->06 >40CA ** nope?, Do it again
40D2 5920 SZCB @>4051,@>FF6B(R4) ** Clear out bottom 5 bits of stat
40D4
40D6
40D8

4051
FF6B
9824 CB @>FF6A(R4) ,@>404B

**

**

byte. Set to defaults

Is this valid opcode?
40DA
40DC
40DE

FF6A
404B
1202 JLE $+>06 >40E4 ** Yes, then keep going

40E0 0460 B @>406C ** Nope!, Return an error
40E2
40E4

406C
DI 64 MOVB @>FF6A(R4),R5 ** Put opcode in MSbyte of R5

40E6
40E8

FF6A
0985 SRL R5,8 ** Put it in low byte

40EA 0A15 SLA R5, 1 f* Mu 1t i p1y it by 2
40EC C165 MOV @>405A(R5),R5 ** Get address from opcode table
40EE
40F0

405A
0455 B *R5 Jump to the correct opcode rtn.

4110 4080

40F2 D0A4 MOVB @>FF6E(R4),R2 ** Move G DSR Log i c a1 1en g t h into
40F4 FF6E
40F6 1609 JNE $+>14 >410A If its not 0 then don’ t alter it
40F8 06A0 BL @>4112 ** Set up VDP po i nter to 1og i c a 1
40FA 4112 ** length
40FC 4004 DATA >4004
40FE 0202 LI R2,>1300 ** 19 Char s f or length
4 100 1300
4102 D902 MOVB R2,@>FF6E(R4) ** Put i t i n DSR logical length b y t
4104 FF6E
4106 DBC2 MOVB R2,@>FFFE(R15) ** Put i t i n PAB logical 1 engt h byt
4108 FFFE
410A D064 MOVB @>FF6B(R4),RI ** Move st atu s byte to RI
410C FF6B
410E 0460 B @>4080 ** Return

4112 C064 MOV @>FF76(R4),RI
4114 FF76

** Put device pointer in RI

** This routine sets up the VDPWA for a read or write from the PAB. A **
data statement is passed and used as follows: >40 in MSByte is a **

** write, >00 is a read, LSByte is offset into PAB. **

SECTION I: DSR ARCHITECTURE PG 114

4116 6064 S @>FF74(R4),RI ** Subtract the device name length
4118 FF74
411A 0221 AI
4UC FFF6
41 IE A07B A

Ri,>FFF6

*R11RI

**
**
**

Subtract 10 (Point to start
of PAB)
Add data statement to RI

4120 D7E4 MOVB
4122 0003
4124 1000 NOP
4126 D7C1 MOVB
4128 045B RT

@>0003(R4),*R15

RI,*R15

**

**
**
**

Move LSByte of RI into VDPWA

Wait
Move MSByte of RI into VDPWA
Go back

** This rout i ne is a delay routine. The• data statement passed is the
** number of times to execute the delay

412A C07B MOV *R11♦,R1
412C 1000 NOP
412E 0601 DEC RI

■ 1oop.

Get number of times to loop
** Wait

Done yet?
4130 16FD JNE
4132 045B RT

** Write Opcode

$->04 >412C

Rou t i ne

**
**

No?, loop again.
Go back

4134 C064 MOV
4136 FF6C
4138 06A0 BL
413A 4120

@>FF6C(R4),RI

@>4120

**
**
**
**

Data Buffer Address Pointer
into RI
Enter in middle of sub to set
VDPWA to the data buffer in VDP

413C D1E4 MOVB @>FF6F(R4),R7
413E FF6F
4140 0987 SRL R7,8
4142 0287 CI R7,>0013
4144 0013

** Get data -From PAB for write

**

**
**

**

Move Chr count to MSbyte R7

Put it in LSbyte R7
Compare to See if 19 bytes

Where’s the Jump if Greater?

4146 D1AF MOVB
4148 FBFE
414A 06C6 SWPB

@>FBFE(R15),R6

R6

**

**

Get day of week

Sw itch em
414C D1AF MOVB
414E FBFE
4150 91A0 CB
4152 4052

0>FBFE(R15), R6

@>4052,R6

**

**

Read another

Check to see if it’s a ’,’

4154 168E JNE
4156 06C6 SWPB

S->E2 >4072
R6

**
**

No? Then return an error
Put day back in High Byte

4158 D906 MOVB
415A FF7E

R6,@>FF7E(R4) Put it in DSR area >835E

415C D92F MOVB
415E FBFE
4160 FF82

@>FBFE(R15),@>FF82(R4) ** Get first digit of month

4162 D92F MOVB
4164 FBFE
4166 FF81

@>FBFE(R15),@>FF81(R4) ** Get second digit

4168 D1AF MOVB
416A FBFE
416C 1000 NOP

@>FBFE(R15),R6 **

**

Get rid of si ash

wa i t
416E D92F MOVB
4170 FBFE
4172 FF80

@>FBFE(R15),@>FF80(R4) ** Get first digit of day

TION !: DSR ARCHITECTURE PG H 5 i

4174 D92F MOVB @>FBFE<R15),@>FF7F(R4) ** Get second digit of day
4176 FBFE
4178 FF7F
417A DI AF MOVB @>FBFE(R15).R6 ** Get rid of si ash
417C FBFE
417E 1000 NOP ** wa i t
4 180 DI AF MOVB @>FBFE(R15),R6 ** Get -first digit o-f year
4182 FBFE
4184 D906 MOVB R6,@>FF84(R4) ** Move it into DSR area
4186 FF84
4188 0986 SRL R6,8 ** Move it into 16 bits
4 1 8A 39A0 MPY (2 >4056, R6 ** Multiply by 10
418C 4056
418E D16F MOVB @>FBFE(R15),R5 ** Get second digit o-f year
4 190 FBFE
4192 D905 MOVB R5,@>FF83(R4) ** Put it in DSR area
4194 FF83
4196 0985 SRL R5,8 ** Put it in 16 bits
4 198 A1C5 A R5, R7 ** Add it to First digit * 10
419A 04C6 CLR R6 ** Set up -for divide
419C 3DA0 DIV @>4058,R6 ** Divide by 4
419E 4058
4 1A0 C1C7 MOV R7, R7 ** Check to see i-f a leap year
41 A2 1603 JNE *♦>08 >41AA ** I-f its not then jump
41 A4 F920 SOCB @>404B,@>FF80(R4) ** Set bit 5 o-f -first digit o-f
41 A6 404B ** byte
41 A8 FF80
41 AA D1AF MOVB @>FBFE(R15),R6 ** Get the comma
41 AC FBFE
41 AE 91 A0 CB @>4052,R6 ** Is it a comma?
4 1 B0 4052
41B2 1302 JEQ *♦>06 >41B8 ** Yes?, Keep going
41B4 0460 B @>4072 ** Report the error
41B6 4072
41B8 D92F MOVB @>FBFE(R15),@>FF7D(R4) ** Get -first digit o-f hour
4 IBA FBFE
41BC FF7D
4 1 BE F920 SOCB @>404A,@>FF7D(R4) Set most significant bit o-f
41C0 404A ** 1o w nybble
41C2 FF7D
41C4 D92F MOVB @>FBFE(R15),@>FF7C(R4) ** Get second digit o-f hour
41C6 FBFE
41C8 FF7C
41CA D1AF MOVB @>FBFE(R15),R6 ** Get rid o-f colon
41CC FBFE
41CE 1000 NOP ** Wai t
41D0 D92F MOVB @>FBFE(R15) ,@>FF7B(R4) ** Get -first digit o-f minutes
41D2 FBFE
4 1D4 FF7B
41D6 D92F MOVB @>FBFE(R15),@>FF7A(R4) ** Get second digit o-f minutes
41D8 FBFE
41DA FF7A
41DC DI AF MOVB @>FBFE(R15),R6 ** Get rid o-f colon
41DE FBFE
4 1E0 1000 NOP ** Wait
41E2 D92F MOVB @>FBFE(RI5),@>FF79(R4) Get -first digit o-f seconds
41E4 FBFE
41E6 FF79
41E8 D92F MOVB @>FBFE(R15),@>FF78(R4) ** Get second digit o-f seconds
41EA FBFE

SECTION I: DSR ARCHITECTURE ' PG 116 |

41EC FF78
41EE 0206 LI R6,>000D 44 13 Bytes to write
41F0 000D
41F2 C 144 MOV R4 , R5 44 Duplicate GPLWS in R5
41F4 0225 AI R5,>FF84 44 Point to >8364 in DSR area (bytes

41F6 FF84 44 we want to put in clock)
41F8 0208 LI R8,>5040 ** Point to enable byte
41FA 5040
41FC D620 MOVB @>404D,4R8 44 Enable the device
41FE 404D
4200 06A0 BL @>412A 44 Delay >10 times
4202 412A
4204 0010 DATA >0010
4206 DOT5 MOVB 4R5,R3 44 Move the byte into R3
4208 0243 ANDI R3,>0F00 44 Mask out bits except for Low
420A 0F00 44 nybble of MSByte
420C C1C6 MOV R6„ R7 44 Copy R6 into R7
420E 0607 DEC R7 44 Subtract one from R7
4210 0A87 SLA R7,8 44 Put it in MSByte
4212 F1E0 SOCB @>404D,R7 44 Set Bits 0 and 1 of MSByte
4214 404D
4216 D607 MOVB R7,4R3 . 44 Move to enable byte
4218 D803 MOVB R3,@>5000 44 Move to data byte
421A 5000
421C 0247 ANDI R7,>4F00 44 Mask out bits 0,2 and 3 of MSBvte

421E 4F00 44 and al 1 of LSByte
4220 D607 MOVB R7,4R8 44 Move it to enable byte

4222 F1E0 SOCB @>404E,R7 44 Set bit 3 of MSByte
4224 404E
4226 D607 MOVB R7,4R8 44 Move it to enable byte
4228 51E0 SZCB @>404E,R7 44 Clear all but bit 3 of MSByte

422A 404 E
422C D607 MOVB R7,4R8 44 Move it to enable byte

422E 0605 DEC R5 44 Subtract one from pointer to data
4230 0606 DEC R6 44 Done yet?
4232 16E9 JME S- >2C >4206 44 Nope?, Do it again
4234 D606 MOVB R6,4R8 44 Disable write byte
4236 0460 B @>4080 44 Go back•
4238 4080

44 Read Opcode Routine 44

423A 0206 LI R6,>000D 44 We’re going to read 13 bytes
423C
423E

000D
C144 MOV R4 , R5 44 Put GPLWSP in R5

4240 0225 AI R5,>FF84 44 Point to >8364 in DSR area
4242
4244

FF84
D920 MOVB @>4049,@>FF6F(R4) 44 Put 19 into chr count of DSR ar

4246
4248
424A

4049
FF6F
0208 LI R8,>5040 44 Enable Byte address in R8

424C
424E

5040
D620 MOVB @>404D,4R8 44 Put >C0 into Enable byte

4250
4252

404D
06A0 BL @>412A 44 Delay >10 times

4254
4256
4258

412A
0010
D620

DATA
MOVB

>0010
@>4051,4R8 44 Let it know we’re going to read

425A
425C

4051
C1C6 MOV R6, R7 *4 Copy R6 into R7

Id

id CTION i; DSR ARCHITECTURE - PG 117!
___ I

425E 0607 DEC R7 ** Subtract 1
4260 0A87 SLA R7,8 ** Put it in MSByte
4262 F1E0 SOCB @>4051,R7 ** Set 3 MSBits
4264 4051
4266 D607 MOVB R7,*R8 ** Tell it we want another byte
4268 1000 NOP Uai t
426A 1000 NOP
426C D0E0 MOVB @>5000,R3 ** Get numeric value from data byte
426E 5000
4270 F0E0 SOCB @>404C,R3 ** Add ascii offset for numbers
4272 404C
4274 D543 MOVB R3,*R5 ** Move it into DSR area
4276 0605 DEC R5 Dec DSR area address pointer
4278 0606 DEC R6 ** Done yet?
427A 16F0 J NE *->lE >425C ** Nope?, do it again
427C D606 MOVB R6,*R8 ** Put 0 into enable byte
427E C064 MOV @>FF6C(R4),RI ** Address to Pab Data buffer in RI
4280 FF6C
4282 06A0 BL @>41 IE ** Set up VDPWA
4284 41 IE
4286 4000 DATA >4000 ** Gonna wr i te
4288 DI A4 MOVB @>FF7E(R4),R6 ** Get Day of week from DSR area
428A FF7E
428C DBC6 MOVB R6,@>FFFE(R15) ** Put it in Pab Data buffer
428E FFFE
4290 DBE0 MOVB @>4052,@>FFFE(R15) ** Put a ’,’ in there‘
4292 4052
4294 FFFE
4296 DBE4 MOVB @>FF82(R4),@>FFFE(R15) ** Move number of month in there
4298 FF82
429A FFFE
429C DBE4 MOVB @>FF81(R4),@>FFFE(R15) ** Second digit of month
429E FF81
42A0 FFFE
42A2 DBE0 MOVB @>4053,@>FFFE(R15) ** Put in a ’/*
42A4 4053
42A6 FFFE
42A8 DI A4 MOVB @>FF80(R4),R6 ** Get the day number
42AA FF80
42AC 0246 ANDI R6,>3300 ** Mask out anything greater than
42AE 3300 ** ASCII 3
42B0 DBC6 MOVB R6,@>FFFE(R15) ** Put in PAB
42B2 FFFE
42B4 DBE4 MOVB @>FF7F(R4),@>FFFE(R15) ** Put in the second digit
42B6 FF7F
42B8 FFFE
42BA DBE0 MOVB 0>4053,Q>FFFE(RI5) ** Put in another ’/’
42BC 4053
42BE FFFE
42C0 DBE4 MOVB 0>FF84(R4),@>FFFE(R15) ** Put in the year
42C2 FF84
42C4 FFFE
42C6 DBE4 MOVB @>FF83(R4),@>FFFE(R15) ** Second digit of year
42C8 FF83
42CA FFFE
42CC DBE0 MOVB @>4052,@>FFFE(R15) ** Time for another
42CE 4052
42D0 FFFE
42D2 D1A4 MOVB @>FF7D(R4),R6 ** Get top digit of hour
42D4 FF7D

SECTiON I: DSR ARCHITECTURE PG 118

42D6 0246 ANDI R6,>3300 ** Mask out anything gr'eater than
42D8
42DA
42DC
42DE

3300
DBC6
FFFE
DBE4

MOVB

MOVB

R6,@>FFFE(R15)

@>FF7C(R4) ,@>FFFE(RI 5)

**
**
**

ASCII 3
Put it in PAB

Put in second digi t of hour
42E0
42E2
42E4
42E6
42E8
42EA
42EC
42EE
42F0

FF7C
FFFE
DBE0
4054
FFFE
DBE4
FF7B
FFFE
DBE4

MOVB

MOVB

MOVB

@>4054.@>FFFE (RI 5)

@>FF7B(R4),@>FFFE(R15)

@>FF7A(R4),@>FFFE(R15)

**

**

**

Put in a ’:’

Put in Mi nut es

Put in second digi t of minutes
42F2
42F4
42F6
42F8
42FA
42FC
42FE
4 300
4302

FF7A
FFFE
DBE0
4054
FFFE
DBE4
FF79
FFFE
DBE4

MOVB

MOVB

MOVB

@>4054,@>FFFE(R15)

@>FF79(R4),@>FFFE(R15)

@>FF78(R4),@>FFFE(R15)

**

**

**

another ’:*

Put i n seconds

Put in second digi t o-f seconds
4 304
4306
4308
430A
430C

FF78
FFFE
0460
4080
02E0

B

LWPI

@>4080

>8300

**
**

Go back

Load GPLWSP Test 'outi ne
430E
4310
4312

8300
0460
430C

B @>430C **
perhaps?
Keep looping???

SECTION I: DSR ARCHITECTURE PG 119

2.4 Subroutine links

Subroutine links (also known as low level routines or BASIC CALL
subprograms) are the least documented program types available on DSRs.
However, they offer the possibility of adding powerful new features to
BASIC and XBASIC on the /4A system. Subroutine links may be of two
types: low level routines or BASIC subprograms. Low level routines
may be accessed via DSRLNK with a DATA >A (instead of >8) statement,
as shown in the example code. Low level routines are not accessed by
the FMS in the console, as are the main device routines. BASIC
subprograms (ie- CALL FILES(x)), are accessed from the command mode of
BASIC or XBASIC, and from running BASIC programs. The search DSR
routine for subprograms in XBASIC searches only GROMs and not
peripheral ROMs when the XBASIC program is running. Both of these
routine types can be included in peripheral DSRs to enhance or add
features not available in other applications. An example of this is
the Disk Drive Controller which has seven low level routines for
disk/file access and adds "CALL FILES(x)" to the BASIC environment.
Each of the two routine types is discussed further below.

2.4.1 Low level routines

Low level routines are accessed only by DSRLNK. The PAB values
to be set are name length (1 byte) and the routine number (>10->FF).
The low level routine may use registers RO - R10. Registers R11 - R15
have the previously defined meanings. Upon entry into a low level
routine, R11 should be saved. Data or parameters may be passed
through the FAC RAM area or at a known offset in the VDP from the PAB.
The low level routine must include an error reporting subroutine that
places the 3 bit error codes used by main device routines in byte
>8350. Table 1.2 lists the memory locations and contents.

TABLE 1.2: LOW LEVEL ROUTINE PARAMETER ADDRESSES

Address Contents
>834A (FAC) data I/O, parameter passing
834B
834C
834D
834E
834F
8350 MSB contains error codes upon return
8352 data I/O

It is the responsibility of the application program to prepare
data for transfer in the available addresses, prepare for the DSRLNK,
and read the error codes and any other data in the >834A->8352
addresses returned by the DSR. Example I.4a lists partial code for a
low level routine. Example I.4b lists partial code for accessing a

SECTION I: DSR ARCHITECTURE PG 120

low level routine. Low level routines can be used in conjunction with
an application program to add utility or special purpose functions
that: 1) require speed (in assembly instead of BASIC), and 2) are
versatile enough for use in more than one program, thereby justifying
inclusion in ROM.

SECTION I: DSR ARCHITECTURE PG 121

EXAMPLE I.4a: LOW LEVEL ROUTINE

AORG >4000
BYTE >AA
BYTE 1
DATA >0000
DATA-----
DATA >0000
DATA-----
DATA LLR10
DATA —
DATA >0000

link to 1st low level routine

LLR10 DATA LLR20 link to 2nd low level routine
DATA LLR10E entry point of 1st low level routine
BYTE 1 name length
BYTE >10 low level routine number
EVEN

LLR20 DATA >0000 no more low levels
DATA LLR20E entry point for 2nd low level routine
BYTE 1
BYTE >20 low level routine number
EVEN

LLR10E $

LLR20E $

entry point of low level >10

entry point of low level >20

ERROR [set 3 MSbits of >8350]
ERRTN B *R11 return
RETURN INCT R11

B *R11

SECTION I: DSR ARCHITECTURE PG 122

EXAMPLE I.4b: LOW LEVEL ROUTINE ACCESS

PAB
DATBUF
PABPTR

DEF ACCESS
REF DSRLNK,VMBW
DATA >0110
EQU >1000
EQU >0F80

name length 1, routine >10
pointer to data buffer in VDP RAM
pointer to PAB in VDP RAM

ACCESS LI RO,>XXXX
MOV R0,@>834A

load data for transfer
put in 1st address

LI RO,PABPTR
LI R1,PAB
LI R2,2
BLWP @VMBW

(load other data in FAC if needed)
put PAB in >0F80 of VDP

2 bytes to write to VDP
write PAB to VDP

MOV RO,@>8356
BLWP @>DSRLNK
DATA >A

put pointer to PAB in >8356
access to low level

RETURN [check >8350 for
[recover data in

B *R11
END

error bits]
FAC]

return

SECTION I: DSR ARCHITECTURE PG 123

2.4.2 BASIC CALL subprograms

BASIC CALL subprograms are accessed from BASIC or XBASIC, and not
through the FMS. Because of this, special care must be taken in
interaction between the 'assembly1 environment of the DSR and the
'GPL' environment of BASIC. The header for CALL subprograms is
similar to that of low level routines. Errors may be returned by
setting the BASIC token value at >8342 to >07. This will return an
"INCORRECT STATEMENT" error in the BASIC program. DATA may be
transferred from the BASIC environment by this program type (for
example, CALL FILES(1)). The subprogram must manipulate the BASIC
token pointer (>832C) and the current token (>8342) to retrieve data
and reset the current BASIC line token before returning to GPL. Other
error bytes must be checked and cleared prior to returning also. The
routine is responsible for keeping track of the current token pointer
position, and adjusting it as needed.

CALL subprogram routines may use the registers as defined for the
low level routines. Errors can be returned as INCORRECT STATEMENT.
The routine should not utilize GROM access, as this may disrupt GROM
address settings assumed by the BASIC calling program. If GROM access
is required, then the GROM address should be saved and then restored.
As with all DSR accesses, it is the responsibi1ity of the programmer
to ensure that the routine does not disrrupt the BASIC/XBASIC
environment while executing, or upon its return. Figure 1.3 is a
flowchart of a CALL subprogram. Example 1.5 demonstrates how a
routine may be coded. The disassembled and commented CALL FILES of
the Disk Drive Controller (from "Technical Drive") is also included.
More documentation on these routines is available in the source code
and technical manual for the Horizon RAMdisk. The source code file
for the original version of the RAMdisk ROS section of CALL subs is
also included, and demonstrates how to recover input parameters from
the BASIC environment, and handle errors.

SECTION I: DSR ARCHITECTURE PG 124

FIG. 1.3: CALL SUBROUTINE

SECTION I: DSR ARCHITECTURE PG 125

EXAMPLE 1.5: CALL SUBPROGRAM

[routine for MACRO]

AORG >4000
BYTE >AA
BYTE 1
DATA >0000
DATA-----
DATA >0000
DATA-----
DATA CALL1
DATA-----
DATA >0000

link to 1st CALL sub

CALL1 DATA CALL2 link to 2nd CALL sub
DATA CALLIE entry point to 1st CALL sub
BYTE 3 name length
TEXT 1FPT' name of routine
EVEN

CALL2 DATA >0000 no more CALL subs
DATA CALL2E entry point of 2nd CALL sub
BYTE 5 name length
TEXT 'MACRO' name of routine
EVEN

—

CALL1E $ entry point of 1st CALL sub
MOV R11, R7 save return address
MOV @>832C,R8 put token pointer in R8
AI R8,3 add name length to get to end of line

[routine for FPT]

B @ERROR only if error
B @OKRTN return with no error

CALL2E $ entry point of 2nd CALL sub
MOV R11,R7 save return address
MOV @>832C,R8 put token pointer in R8
AI R8,5 add name length to get to end of line

B @ERROR
B @OKRTN

only if error
return with no error

ERROR LI RO,>0700 incorrect statement token
MOVB RO,@>8342
OMP EXIT

put it in current token address

OKRTN SZCB @>8342,@>8342 makes end of line (>00) current token
EXIT MOV R7,R11 recover return address

SECTION I: DSR ARCHITECTURE - PG 126

MOV R8,R1
SWPB R1
MOVB R1,@>8C02
SWPB R1
MOVB R1,@>8C02
MOV R1,@>8320
INCT R11
SZCB >4000,@>8354
B *R11
END

set token pointer
LSB first
move to VDP write

MSB next
reset token pointer
no other errors
clear floating point error
return

SECTION I: DSR ARCHITECTURE PG 127

BASIC CALL FILES ROUTINE FOR THE TI DISK DRIVE CONTROLLER

AORG >5D5A

MOV R11,R7 *save return address 5D5A
BL @>4724 *Init routine 5D5C
MOV @>002C(R9),R8 *token code pointer in R8 5D60
AI R8,>0007 *add 7 to skip 'FILESU 5D64
BL @>4B76 *get 2 bytes afer it 5D68
CI R0,>C801 *check for unquoted string,

*length of 1 (tokenized code)
5D6C

ONE AA *no?, then jump 5D70
INCT R8 *point to ASCII // 5D72
BL @>4B76 *get it from VDP 5D74
SWPB RO *put ASCII # in low byte,

*>B6 in high byte
5D78

AI R0,>49D0 *mask out ASCII offset 5D7A
CI RO,>0009 *check if non-numeric 5D7E
OH >5DAA *yes? then jump 5D82
SWPB RO *put // of FCB' s to reserve

*in MSByte
5D84

MOVB RO,@>004C(R9) *put it in >834C for >16 return 5D86
BL @>4658 *do routine >16 (reserve buffers) 5D8A
DATA >5DB4 5D8E
MOVB @>0050(R9),@>0050(R9) *error? 5D90
ONE >5DAA *yes? then jump 5D96
MOV @>002C(R9),R8 *put token pointer in R8 5D98
AI R8,>000C *point to end of statement 5D9C
MOV R8,@>002C(R9) *put it in token pointer 5DA0
SZCB @>0042(R9),@>0042(R9) *put >00 at >8342 (current token)

*(end of statement indicator)
5DA4

B
END

@>4676 *return 5DAA

PG 128 |SECTION I: DSR ARCHITECTURE

* RAMDISK OPERATING SYSTEM ** *
* COPYRIGHT 1985, HORIZON COMPUTER, LIMITED *
* *
* — ALL RIGHTS RESERVED — ** *
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★if*****
★ ★
* This code consists of all of the CALL sub-*
* programs accessable from TI BASIC and *
* Ext. BASIC command mode except for CALL DM*
* The code resides in the second 2K block. *

AORG >5800
WTPR EQU >415E
MAXSEC EQU >4010
SV1 EQU >419A
TEN EQU >41 DO
ONE EQU >40D0
SVADR EQU >41AA
FAC EQU >834A
DRIVE EQU >400E
FCB EQU >41D8
SAVADR EQU >41A8
VRWA EQU >4290
VDPRD EQU >8800
FCBDIF EQU >41D4
NUMDRV EQU >4014

* TI BASIC CALLS★
★______ __ ________________ —_ _
★
* CHANGE DRIVE NUMBER *

DRCNG MOV R11,@SVADR
MOV @>832C,R1 GET TOKEN POINTER
AI R1,4 POINT TO TOKEN FOR TRANSFER
BL @CLRD CALL ROUTINE DIGIT READ
MOV @FAC+2,@FAC+2 ERROR?
□ EQ DRN01
B @DRERR

DRN01 A @FAC+4,R1
MOV @FAC,R2

SECTION I: DSR ARCHITECTURE PG 129

OGT
B

DRN02
@DRERR

>0?

DRN02 CI R2,7 <7?
OLT DRN03
B @DRERR

DRNO3 MOVE @>8800,RO GET PARENTHESIS AND EOL BYTE
INC R1 R1 POINTS TO EOL BYTE
SWPB RO
MOVB @>8800,RO
CI RO,182 RIGHT PAREN?)
OEQ DRN04
B 0DRERR

DRN04 MOVB @DRIVE+1,RO
BL @DROPEN
MOV @FCB,@FCB
OEQ DRN05
B @DRERR

DRN05 MOV R2,R0
SWPB RO
BL @DROPEN
MOV @FCB,@FCB
OEQ DRN06
B @DRERR

DRN06 MOV R2, @DRIVE
OMP CALLRT

DRERR LI RO,>0700
MOVB RO,@>8342
OMP CALLER

CALLRT SZCB @>8342,@>8342
CALLER MOV @SVADR,R11

SWPB R1
MOVB R1 ,*R15
SWPB R1
MOVB R1 ,*R15 RE-LOAD WRITE REGISTER
MOV R1,@>832C RESET TOKEN POINTER
INCT R11
SZCB @>4014,@>8354
B *R11 RETURN

DROPEN MOV R11,R9
MOV @>8370,R8
AI R8,6
MOV R8,@FCB
DEC R8
BL @VRWA
MOVB @VDPRD,R4 MAX // OF OPEN FILES
SRL R4,8

DROP1 MOV @FCB,R8
AI R8,5
BL @VRWA
MOVB @VDPRD,R5 DRIVE //
CB R5,R0
ONE DR0P3

SECTION I: DSR ARCHITECTURE PG 130

MOVB @VDPRD,R3 1ST CHAR FILE NAME
OEQ DR0P3
B *R9

DR0P3

★
* SET
★
MAXSC

MAX01

MAX02

MAX03

A @FCBDIF,@FCB
DEC R4
ONE DR0P1
CLR @FCB
B *R9

MAXIMUM SECTOR SIZE

MOV R11,@SVADR
MOV @>832C,R1
AI R1,4
BL @CLRD
MOV @FAC+2,@FAC+2
3EQ MAX01
B @DRERR
A @FAC+4,R1
MOV @FAC,R2
3GT MAX02
B QDRERR
CI R2,1441
3LT MAX03
B @DRERR
MOVB @>8800,RO

GET NUMBER
ERROR?

GET PARENTHESIS AND EOL BYTE
INC R1 R1 POINTS TO EOL BYTE

MAX04

★
* CALL
★
EXCUT

EX01

SWPB RO
MOVB @>8800,RO
CI RO,182
OEQ MAX04
B @DRERR
MOV R2,@MAXSEC
B @CALLRT

EXECUTE ROUTINE

MOV R11,@SVADR
MOV @>832C,R1
AI R1,4
BL @CLRD
MOV @FAC+2,@FAC+2
OEQ EX01
B @DRERR
A @FAC+4,R1
MOV R1,@>8300
MOV @FAC,R2
BL *R2
LWPI >83E0
MOV @>8300,R1
SWPB R1
MOVB R1,*R15

RIGHT PAREN?)

SECTION I: DSR ARCHITECTURE PG 131

SWPB R1
MOVB R1,*R15
INC R1
MOVB @>8800,RO
SWPB RO
MOVB @>8800,RO
CI RO,182
□EQ EX02
B @DRERR

EX02 B @CALLRT★
* READ A NUMBER FROM THE CALLING PROGRAM
★
* R1 - POINTS TO THE STRING DESCRIPTOR TOKEN
* R0-R3 ARE USED
*
* FAC RETURNS THE INTEGER
* FAC+2 0 FOR NO ERROR, 1 FOR ERROR
* FAC+4 NUMBER OF TOKEN POINTER MOVES
* FAC+6 TEMP STORAGE OF R1
★
* VDPWA/R1
★

LEFT POINTING TO NEXT CHAR/TOKEN

CLRD MOV R11,@SV1
CLR @FAC
CLR @FAC+2
CLR @FAC+4
MOV R1,@FAC+6
SWPB R1
MOVB R1 ,*R15
SWPB R1
MOVB R1 ,*R15
CLR R1
MOVB @>8800,R1 CHECK TOKEN FOR UNQUOTED STRING
INC @FAC+4
CI R1,>C800
JEQ NM1
B @NMERR IF NOT, RETURN AN ERROR

NM1 MOVB @>8800,R1 CHECK NEXT BYTE FOR LENGTH OF STRING
INC @FAC+4
SRL R1,8
MOV R1 ,R1
OGT NM2 >0?
B @NMERR

NM2 CI R1,7 <7?
OLT NM25
B @NMERR

NM25 MOVB @>8800,R2 CHECK FOR MINUS SIGN
INC @FAC+4
SRL R2,8
CI R2,>0020
3EQ NM27

SECTION I: DSR ARCHITECTURE PG 132

CI R1 ,6 ARE THERE <6 DIGITS?
OLT NM35
B @NMERR

NM27 MOV @TEN,@FAC+2
J MP NM35

NM3 MOV @>8800,R2 READ A DIGIT
INC @FAC+4
SRL R2,8

NM35 AI R2,-48
BL @NMCK A VALID DIGIT?
MOV RO, RO R0=0 IF 0-9
JEQ NM4
B @NMERR

NM4 MOV R2,R2 IS DIGIT 0?
JEQ NM6 IF SO, SKIP MPY
CLR R3
MOV R1 , RO COUNTER FOR MPY

NM5 DEC RO
OEQ NM6 DONE?
MPY @TEN,R2
MOV R3,R2
OMP NM5

NM6 MOV R2,R3
A R3,@FAC
DEC R1 MORE DIGITS?
ONE NM3
C @FAC+2,@TEN I NEGATIVE NUMBER?
ONE NM7
NEG @FAC

NM7 CLR @FAC+2
B * @NMRTN

* RETURN TO
★

INTERNAL CALLER

NMERR MOV @0NE,@FAC+2
NMRTN MOV @SV1,R11

MOV @FAC+6,R1
B *R11

* CHECK DIGIT
★
NMCK LI R0,1

MOV R2,R2
OLT NMR
CI R2,9
OGT NMR
CLR RO

NMR B *R11★
* PROTECTION ON
★
WRPON MOV R11,@SVADR

SECTION I: DSR ARCHITECTURE PG 133

MOV @ONE,@WTPR
MOV @>8320,R1
AI R1,2
JMP WPN01

* PROTECTION OFF *
WRPOFF MOV R11,@SVADR

CLR @WTPR
MOV @>8320,R1
AI R1,2

WPN01
★

B @CALLRT

* CARD
★

CRU ON/OFF

CON INCT R11
MOV R11,@SVADR
MOV @>8320,R1
AI R1,2
J MP WPN01

COFF MOV R11 ,@SVADR
MOV @>8320,R1
AI R1,2

* JMP WPN01

* SET NUMBER OF DRIVES 1-4
*
SETNDR MOV R11,@SVADR

MOV @>8320,R1
AI R1,4
BL @CLRD
MOV @FAC+2,@FAC+2
JEQ STDRN1
B @DRERR

STDRN1 A @FAC+4,R1
MOV @FAC,R2
JGT STDRN2 >0?
B @DRERR

STDRN2 CI R2,5 <5?
J LT STDRN3
B @DRERR

STDRN3 MOVB @>8800,RO
INC R1
SWPB RO
MOVB @>8800,RO
CI RO,182 RIGHT PAREN?)
JEQ STDRN4
B @DRERR

STDRN4 MOV R2,@NUMDRV
B @CALLRT
END

SECTION J: DSR ACCESS - PG J1

SECTION J: DSR ACCESS

1 .0 Introduction

The purpose of this section is to demonstrate how the console can
access DSRs. Subsection 2.0 outlines how the console accesses
interrupts, power up (initialization) routines, BASIC subroutine links
(CALL xxx), and access of main device routines as files. Subsection
3.0 provides a simple DSRLNK routine in assembly for use with XBASIC
(which does not load the DSRLNK routine as does the E/A cartridge).
This is also provided as an example of DSR access programming for
application programs.

2 .0 Console DSR Access

2.1 Interrupt access routine

The interrupt access routine is discussed first because it is a
stand-alone 9900 assembly routine located in the console ROM; other
DSR access routines in the console are also in ROM or in GPL in GROMS
0-2. The interrupt access routine flowchart is shown in Fig. 2.1.
The disassembled and commented source code is given in Fig. 2.2.
Commonly used address EQUates are given in Table 0.1.

Upon entering the routine due to the detection of a low signal on
the -INTREQ line, all interrupts are disabled to prevent further
activation until the current interrupt is serviced. The GPL workspace
is loaded, and the CRU register (R12) is cleared. The cassette and
VDP interrupts are checked first. Then R12 is initialized and all
peripherals from >1000 to >1F00 are checked. If no peripheral caused
the interrupt, the CPU returns to the main program. When searching
the DSR, the routine checks for the header "AA" at byte >4000, then
checks for the first interrupt routine. If there is an interrupt
routine, the CPU will first save the next interrupt routine address in
RO, and execute the current interrupt routine. Upon return from the
first interrupt routine, the CPU will continue to execute subsequent
interrupt routines until none are found for that peripheral.
Therefore, any peripheral may have an interrupt routine (if needed),
and each peripheral may have multiple interrupt routines. It is the
responsiblity of the individual peripheral to determine if it has
caused an interrupt, and reset it when the routine is complete. All
DSR interrupt routines are accessed whether or not they caused the
interrupt, even after the one that caused the interrupt is found.

2.2 GPLDSR access routine

Access by the console to other DSRs is via routines in GPL in the
console GROMs or assembly in the console ROMs. Each of these access
routines (power up (ROM), CALL subprogram and main device/files
(GROM)) use a routine referred to as GPLDSR. The GPL interpreter
accesses this assembly language subroutine via an XML>19 command. The

SECTION J: DSR ACCESS PG J2

FIG. J.2.1: INTERRUPT ACCESS ROUTINE

SECTION J: DSR ACCESS PG J3

FIGURE 0.2.2: INTERRUPT ACCESS ROUTINE CODE

AORG >0900

LIMI >0000 *disable interrupts
0900
0900

LWPI >83E0 *load GPLWS 0904
CLR R12 *clear CRU register 0908

★
COC @>0032,R14 *is it the cassette int.? 090A
ONE NOCAS *no, jump 090E
B @>1404 *jump to cassette routine 0910

★
NOCAS TB >02 *is it the VDP int.? 0914

ONE AB *yes, jump to routine 0916
★

LI
SBO

R12, WOO
>00

*load initial search value
*turn on card 091C

★
LOOP SBZ >00 *turn off card 091E

AI R12,>0100 *add >0100 to search reg. 0920
k

CI R12,>2000 *are we at the end? 0924
□ EQ END *yes, jump to end 0928

★
SBO >00 *turn card on 092A

★
CB @>4000,@>000Ci *check for valid "AA" header 092C
ONE LOOP *no, start over 0932*

★
MOV @>400C,R2 *save entry addr. in R2 0934

NXTDSR □ EQ LOOP *no address, start over 0938

MOV R2,R0 *save next addr. in RO 093A
*

MOV @>0002(R2),R2I *get addr. for routine 093C

BL *R2 *branch and link to ISR 0940

MOV *R0,R2 *recover next ISR addr. 0942
★

OMP NXTDSR *check and execute 0944

END B @>0AB8 *end, return 0946
END

★ ★★if**

AORG >0AB8

CLR R8 *clear ROM search pointer 0AB8
LWPI >83C0 *load WP to INTWS OABA
RTWP *return OABE

SECTION J: DSR ACCESS PG J4

GPLDSR routine starts at >OACO and runs to >0B20 in the console ROM.
Although similar to the interrupt access routine, it is used only from
the GPL environment. The purpose of GPLDSR is to search all DSRs,
find and execute the requested routine type as needed. Since the
remaining DSR access routines utilize GPLDSR, it is outlined first.

Figure 2.3 is the flowchart for GPLDSR. Initially, RI is cleared
and is used as a DSR version counter. R2 is used as storage for the
address table value. >83D0 is a predefined ROM/GROM address which may
be set by the calling routine if the peripheral location is already
known. >83D2 is used to save the program address while >836D has an
increment, or table jump value set by the calling program to instruct
GPLDSR which address table value in the DSR to branch to.

Upon entry into GPLDSR, R1 is cleared and CRULST is checked. If
a non-zero value is given in CRULST (ie, the peripheral CRU value is
known, and does not have to be searched for), then the routine
branches to that peripheral CRU value directly. If CRULST is zero,
then the GPLDSR routine steps through each peripheral (>1000 - >1F00),
and checks for "AA" on the first byte. It then gets the first table
entry value, and checks to see if it is non-zero. If non-zero, the
address is saved in >83D2. The program entry point is stored in R9.
The name of the routine being searched for is checked by the routine
NAMEMATCH (Section 2.2.1). If there is no match, the search routine
continues. If there is a match, R1 is incremented, and the routine is
executed by a BL *R9. When GPLDSR is complete, it branches to a
subroutine @>0842 which changes the value of CRULST before returning
to the calling routine. If no matches are found in any peripheral,
GPLDSR branches to an error handler at >006A.

2.2.1 NAMEMATCH routine

The NAMEMATCH routine is at >0BE8 - >0C08 in the console ROM, and
is used by either ROMs or GROMs to match device names. CPU RAM >8354
is SCLEN, and the device name length; >834A is NBA, the name buffer
address (see Figures 2.5 and 2.6).

Upon entry into NAMEMATCH, the device name length is retrieved
from SCLEN and placed into R5 where it is used as a counter. If it is
zero, then the CPU returns to the calling routine. The value of R5 is
compared to the value given by the address in R2; if not equal then a
return is made directly via R11, indicating a problem. If the length
is OK, then R5 is adjusted to the right byte, and R6 is loaded with
the name buffer address (NBA). Next, NAMEMATCH checks to see if it is
searching a GROM. If not, the counter value of R2 is incremented.
The character (byte) pointed to by R6 is compared to that pointed to
by R2. If not equal, a return with error is made. If the characters
match, the loop continues until all characters are checked. If the
device name length is correct and all characters match, then R11 is
incremented by 2 (indicating no errors on return) and the CPU returns
to the calling routine.

2.3 Power up (initialization) access routine

The power up access routine is in GPL in GROM 0 at >018B (Figure

SECTION J: DSR ACCESS PG J5

FIG. J.2.3: GPLDSR ROUTINE

SECTION J: DSR ACCESS PG J6

FIGURE 3.2.4: GPLDSR ROUTINE CODE

AORG >OACO
OACO
OACOCLR R1 *clear counter R1

★
MOV @>83D0,R12 *get ROM search pointer (CRULST) 0AC2
ONE SEARCH *if none, jump to SEARCH 0AC6

★
LI R12,>OFOO *load initial value 0AC8

★
LOOP MOV R12, R12 *check CRULST OACC

JEQ NXTROM *if none, jump to NXTROM OACE
★

SBZ >00 *turn off card in case done OADO*
NXTROM AI R12,>0100 *add >0100 to CRULST 0AD2

CLR @>83D0 *clear search pointer 0AD6
★

CI R12,>2000 *at the end? OADA
OEQ END *yes, jump to end OADE

★
MOV R12,@>83D0 *move R12 into CRULST OAEO
SBO >00 *turn on card 0AE4
LI R2,>4000 *set R2 to >4000 (ROM addr) 0AE6

★
CB *R2,@>000D *valid "AA" header? OAEA
ONE LOOP *no start over OAEE

*
AB @>836D,@>83E5 *calculate program entry addr. OAFO
OMP ENDDSR *jump to ENDDSR 0AF6

★
SEARCH MOV @>83D2,R2 *move save addr. into R2 0AF8

SBO >00 *turn on card OAFC*
ENDDSR MOV *R2,R2 *no entry address given? OAFE

★
OEQ LOOP *start over OBOO

MOV R2,@>83D2 *move R2 into save addr. 0B02
INCT R2 *add 2 to R2 0B06
MOV *R2+,R9 *point to name 0B08*
BL @>0BE8 *check name via NAMEMATCH OBOA

OMP SEARCH *error, no match return OBOE
★

INC R1 *0K return, increment version no. 0B10*
BL *R9 *execute routine 0B12

★
OMP SEARCH *return if wrong peripheral 0B14

SECTION J: DSR ACCESS. PG J7

SBZ >00 *correct peripheral return, turn
off card

JMP CHGGRM *jump to CHGGRM 0B18
★

CLR *R8 *return for other routines 0B1A
CHGGRM
★

BL @>0842 *change ROM search value routine 0B1C

END B @>006A *return to GPL 0B20
END

R1 = DSR version number
R2= address table value
> 8300= predefined ROM/GROM value
> 83D2= save address
> 8360= jump increment for DSR entry table
> 83E5= R2 LSB

SECTION J: DSR ACCESS . PG J8

FIG. J,2 5- NAMEMATCH ROUTINE

SECTION J: DSR ACCESS. PG J9

FIGURE J.2.6: NAMEMATCH ROUTINE CODE

★

AORG >0BE8

MOVB @>8355,R5 *get name length, put in R5 for
0BE8
0BE8

★
JEQ ENDOK *END if zero OBEC

CB R5,*R2 *compare name length with value in
R2

OBEE

ONE ENDBAD *END if bad OBFO

SRL R5,8 *adjust to right byte 0BF2

*
LI R6,>834A *put NBA in R6 0BF4

COMPAR CI R2,>9800 *searching a GROM? 0BF8

★
OHE CHKCHR *yes, jump OBFC

★

INC R2 *no, this is ROM, increment addr by
1

OBFE

CHKCHR CB *R6+,*R2 *compare characters OCOO

★
ONE ENDBAD *no match, end bad 0C02

DEC R5 *counter=counter-1 (R5) 0C04

★
ONE COMPAR *keep going 0C06

ENDOK
★

INCT R11 *good return 0C08

ENDBAD B
END

*R11 *error return OCOA

SECTION J: DSR ACCESS PG J1O

2.7 and 2.8). This will cycle through all peripherals and execute any
power up routines found. The power up access routine clears CRULST
(>83D0) since a specific device or subprogram name is not being
searched for, and SCLEN (>8354) is also set to zero. A jump value of
>04 is stored at >8360 to tell GPLDSR where to start in the DSR access
table. Then a branch to XML >19 (GPLDSR) is made. This access
routine is made very early during the power up sequence and allow
initialization of the peripherals before they are accessed by the
console.

2.4 CALL subprogram access routine

When a CALL subprogram is executed from a running BASIC program,
or in the command mode of BASIC or XBASIC (DSRs in peripheral ROMs are
not searched by XBASIC programs during execution), then the GPL code
at >50DB - >5110 is executed (see Fig. 2.9 and 2.10). First, >830C
is cleared, and the contents of >8320 are set equal to those of >8356.
The CPU checks to see if the subprogram is in GROM or ROM. If in ROM,
a CALL G@>0010 is executed, and the GPL DSRLNK routine is accessed. A
data value of >0A is used as a jump value for proper entry in the DSR
address table.

The GPL DSRLNK routine is at >03DC - >0415; the flowchart is
shown in Fig. 2.9. Upon entry, the jump value is recovered and put
into >836D. The MSB of the SCLEN (>8354) is cleared and the
device/subprogram name length is placed in >8355. The name length
variable for this routine (>8358) is cleared. The word value in >8356
is moved to >8352, which is used as a counter. The main loop compares
the device name length in >8355 to >8358 to see if it is equal; if so,
an exit is made. The character value is checked to see if it is a

if so, the loop is exited. Otherwise, the value of >8358 is
incremented until it equals SCLEN or a is reached. This loop
allows the device name to be shortened to characters left of a
thereby eliminating device options not needed in the search. An
example of this would be "PIO.CR.LF" becomes "PIO.". The GPL DSRLNK
routine is also used by the Main Device search routine as noted in
Subsection 2.5). Once the loop is exited, the name length is checked
to see if it is zero; if so, an error is returned. The new device
name length is now moved from >8358 into >8355. If it is greater than
8 characters long, an error is returned. Now the MSB of SCLEN is
cleared (again), the ROM search pointer CRULST (>83D0) is cleared, the
subroutine pointer at >8356 is incremented by two, and the device name
is moved to the buffer at >834A (NBA). The word at >8356 is moved to
>8354 and now >8355 is the new device name length. Then GPLDSR is
called via a XML >19.

2.5 File/Main Device access routines

BASIC and XBASIC can access peripherals through the console File
Managment System which utilizes Peripheral Access Blocks or PABs. The
File Managment System and PABs are covered in Section K. Because of
the design of the File Management System, all peripherals1 main device
routines are accessed as files via different commands (or modes) such

SECTION J: DSR ACCESS- PG JI 1

FIG. J.2.7' PEVERUP ROUTINE

SECTION J: DSR ACCESS PG J12

FIGURE U.2.8: POWERUP ROUTINE CODE

DCLR
CLR
ST

@>83D0
@>8355
@>836D,>04

*clear
*clear
*store

ROM search pointer 0183
device name length byte
>04 in counter >836D

0186
0188

XML
END

>19 *go to GPLDSR 018B

SECTION J: DSR ACCESS’ PG J13

FIG. J.2.9; SUBPROGRAM ACCESS ROUTINE

Note;
>832C=prograr text or token code pointer
>8356=subroutine pointer
>830C=terp. variable

SECTION J: DSR ACCESS PG J14

FIGURE 0.2.10: CALL SUBPROGRAM ROUTINE CODE

*conti nue

★

CLR
DST

@>830C
@>8356,@>832C

*clear >830C temp, variable
*set token code pointer = subroutine
pointer

50E0
50E2

CZ @>8389 *is the subprogram in GROM? 50E5
BS G@>5101 *no, in ROM, jump 50E8

MOVE >0001 BYTE TO @>830D FROM G@>0000(@>832C) *GROM access 50EA
INC @>830D *code 50F1
MOVE *>830C BYTE TO V@>0320 FROM G@>0000(@>832C)* 50F3
DST @>8356,>0320 ★ 50FA

★
DADD @>832C,@>830C ★ 50FE

ROM CALL G@>0010 *go to GPL DSRLNK 5101
DATA >0A *with data value of >0A (entry offset 5104

★
value)

★
BS G@>510C *error return 5105

CZ @>8342 *good return, check for end of line 5107
★

BR G@>5671 *no, error 5109

510BCONT
END

SECTION J: DSR ACCESS- PG J15

as OPEN, CLOSE, DELETE, etc. The access routines are in GPL in GROM
2; all I/O mode routines utilize the GPL code from >4CB9 - >4CE9 with
three entry points: >4CB9, >4CC0, and >4CC6. Below is a list of
access modes and their associated entry points (for console BASIC
only):

I/O mode Entry point
OPEN >4CC6
DELETE 4CB9 DATA >07
CLOSE 4CC6
RESTORE 4CB9 DATA >04
INPUT 4CC0
LOAD 4CC6
SAVE 4CB9 DATA >06

(Note: The entire file access system logic is beyond the scope of
this manual. Only the common access routines are provided.]

Figure 2.11 is the flowchart of the files access routines from
>4CB9 - >4CE9. At entry point >4CB9, the opcode is recovered from the
DATA statement following CALL G@>4CB9 and is written to the VDP.
Entry point >4CC0 does not assume use of the DATA statement, and
directly calls the last routine at entry point >4CC6. Upon return
from >4CC6, the subroutine may either branch to an error message, or a
normal return. Entry point >4CC6 installs the screen offset value and
saves the FAC. The pointer for the DSR value is recovered, and an
offset of >0D is added to provide proper table entry into the DSR.
Then GPL DSRLNK is called with a data value of >08. Upon completion,
the FAC is restored, checking is done for errors, and a proper return
is made.

A point of interest is the GPL code from >4BA1 - >4BFB. This
section apparently is used by the console in creating PABs.

3.0 XBASIC DSRLNK

The XBASIC cartridge from Texas Instruments does not load DSRLNK
when a CALL INIT is issued, and therefore it is not available when in
the XBASIC environment. The following assembly program (provided by
TI) demonstrates how a DSRLNK assembly program maye access the RS232
card, print a message, and return to the XBASIC calling program. The
code and comments are provided to assist programmers in understanding
how the console accesses DSRs; note that several routines are very
similar to those presented in Subsection 2.0.

SECTION J: DSR ACCESS PG J1 6

FIG. J.2.11: GPL DSRLNK ROUTINE

SECTION J: DSR ACCESS. PG J17

FIGURE 0.2.12: GPL DSRLNK ROUTINE CODE

FETCH @>836D *get jump addr. value, put in >836D
*clear name length MSB
*get device name length, put in >8355
*clear name length variable
*put pointer value in >8352

03DC
03DE
03E0
03E4
03E6

★

CLR
ST
CLR
DST

@>8354
@>8355,V*>8356
@>8358
@>8352,@>8356

LOOP * DINC @>8352 *counter=counter + 2 03E9

CEQ @>8358,@>8355 *is name length equal? 03EB

★
BS G@>03FA *yes, jump to GO 03EE

CEQ V*>8352,>2E *is the current character "."? 03F0

★
BS G@>03FA *yes, jump to GO 03F4

INC @>8358 ♦otherwise, increment >8358 03F6
BR G@>03E9 *and start again at LOOP 03F8

GO CZ @>8358 *is the name length zero? 03FA

*
BS G@>0438 *yes, then exit 03FC

★

ST @>8355,@>8358 *replace old name length with value
in >8358

03FE

CGE @>8355,>08 *is it greater than or equal to 8? 0401
BS G@>0438 *yes, then error exit 0404

CLR @>8354 *clear MSB of name length word 0406
DCLR @>83D0 *clear ROM search pointer word 0408
DINC @>8356 *increment subroutine pointer by 2 040B
MOVE *>8354 BYTE TO @>834A FROM V*>8356 *move new name to VDP

buffer
040D

★

DADD @>8356,@>8354 *move word at >8356; now >8355=name
length

0412

XML
END

>19 *go to GPLDSR routine 0415

SECTION J: DSR ACCESS PG J18

FIG. J.2.13'. MAIN DEVICE/FILES ACCESS REUTINES

SECTION J: DSR ACCESS. PG J19

FIGURE 0.2.14: MAIN DEVICE/FILES ROUTINE CODE

ENT1 FETCH @>8356 *recover opcode from
*calling routine (DATA

>XX) and write to VDP

4CB9
4CBB

★
ST V@>0004(@>8304),@>8356

ENT2 CALL G@>4CC6 *call ENT3 routine 4CC0
BR G@>57C3 *error return 4CC3

★
RTN *normal return 4CC5

ENT3 ST V@>000C(@>8304),>60 *install screen offset 4CC6
MOVE >001E BYTE TO V@>03C0 FROM @>834A *save FAC 4CCB
DST @>8356,@>8304 *get pointer from >8304 4CD1
DADD @>8356,>000D *add >0D for entry addr 4CD4
CALL G@>0010 *call GPL DSRLNK 4CD8
DATA >08 *with a DATA >08 4CDB
MOVE >001E BYTE TO @>834A FROM V@>03C0 *restore FAC 4CDC
BS G@>4CE9 *branch to error if

needed
4CE2

CLOG
RTNC
END

V@>0005(@>8304),>E0 *check for other error
*return + 2 no errors

4CE4
4CE9

build PAB is located at >4BA1 - >4BFB

SECTION J: DSR ACCESS PG J20

★ ★★★-A-

* DSR ROUTINE FOR EXTENDED BASIC ENVIORNMENT *
★ ★
★★★

SOLEN EQU >8355 NAME LENGTH
SCNAME EQU >8356 NAME BUFFER POINTER
CRULST EQU >83D0 CRU ADDR VALUE
SADDR EQU >83D2 SAVE ADDRESS BYTE
GPLWS EQU >83E0 GPL WORKSPACE
VDPRD EQU >8800 VDP READ ADDR
VDPWD EQU >8000
VDPWA EQU >8002
FLGPTR DATA 0 POINTER TO FLAG BYTE IN PAB
SVGPRT DATA 0 SAVE GPL RETURN
SAVCRU DATA 0 *CRU ADDRESS OF PERIPHERAL
SAVENT DATA 0 *ENTRY ADDRESS OF DSR
SAVLEN DATA 0 SAVE DEVICE NAME LENGTH
SAVPAB DATA 0 POINTER TO DEVICE NAME IN PAB
SAVVER DATA 0 *VERSION OF DSR
DLNKWS DATA 0,0,0,0,0
TYPE DATA 0,0,0,0,0,0,0,0,0,0,0,★
***DATA

C1OO DATA 100
H20 EQU $
H2000 DATA >2000
DECMAL TEXT 1 1
HAA BYTE >AA

***UTILITY BLWP VECTORS★
DSRLNK DATA DLNKWS,DLENTR LINK TO DSR

***LINK TO DSR
★
DLENTR MOV

SZCB
MOV
MOV
AI
BLWP
MOVB
SRL

*R14+,R5
@H20,R15
@SCNAME,RO
R0,R9
R9,-8
QVSBR
R1, R3
R3,8
R4
R2,NAMBUF

FETCH PROGRAM TYPE FOR LINK
RESET EQUAL BIT
FETCH POINTER INTO PAB
SAVE POINTER
ADJUST POINTER TO FLAG BYTE
READ DEVICE NAME LENGTH
STORE IT
MAKE IT A WORD
INIT COUNTER
ADDRESS OF BUFFER TO HOLD NAME

SETO
LI

LNK$LP INC RO
C R4,R3 END OF NAME?
□EQ LNK$LN

SECTION J: DSR ACCESS- PG J21

BLWP 0VSBR READ A CHARACTER
MOVB R1,*R2+ MOVE TO NAMBUF
CB R1,@DECMAL A PERIOD?
ONE LNK$LP

LNK$LN MOV R4,R4 IS NAME LENGTH ZERO?
JEQ LNKERR ERROR ROUTINE
CI R4,7 IS NAME LENGTH > 7?
JGT LNKERR ERROR ROUTINE
CLR @CRULST
MOV R4,@SCLEN-1 STORE NAME LENGTH FOR SEARCH
MOV R4,@SAVLEN SAVE LENGTH
INC R4 NEXT AVAILABLE POSITION
A R4,@SCNAME POSITION AFTER NAME
MOV @SCNAME,@SAVPAB SAVE POINTER INTO DEVICE NAME

***SEARCH ROM FOR DSR
★
SROM LWPI GPLWS USE GPLWS FOR SEARCH

CLR R1
LI R12,>0F00 START

NOROM MOV R12,R12
□EQ NOOFF

ANYTHING TO TURN OFF?

SBZ 0 TURN OFF
NOOFF AI R12,>0100 NEXT ROM

CLR @CRULST CLEAR IN CASE WE'RE FINISHED
CI R12,>2000 END OF CONSOLE ROM
□EQ NODSR DIDN'T FIND DSR
MOV R12,@CRULST NEXT CRU
SBO 0 TURN ON ROM
LI R2,>4000 START AT BEGINNING
CB *R2,@HAA
ONE NOROM

IS IT A VALID ROM?

A @TYPE,R2
JMP SG02

GO TO FIRST POINTER

SGO MOV @SADDR,R2 CONTINUE WHERE WE LEFT OFF
SBO 0 TURN ON AGAIN

SG02 MOV *R2,R2 ZERO?
OEQ NOROM NO PROGRAM
MOV R2,@SADDR REMEMBER WHERE TO GO NEXT
INCT R2 GO TO ENTRY POINT

*
MOV *R2+,R9 GET ENTRY ADDRESS

***SEE
★

IF NAME MATCHES

MOVB @SCLEN,R5 GET LENGHT AS COUNTER
OEQ NAME2 ZERO LENGTH, NO MATCH
CB R5,*R2+
JNE SGO

LENGTH MATCH?

SRL R5,8 MAKE WORD
LI R6,NAMBUF POINT TO BUFFER

NAME1 CB *R6+,*R2+
ONE SGO

CHARACTER CORRECT?

SECTION J: DSR ACCESS PG J22

DEC
ONE

R5
NAME1

MORE TO LOOK AT?

NAME2 INC R1 NEXT VERSION FOUND
MOV R1, @SAVVER SAVE VERSION NUMBER * CAN BE USED *
MOV R9,@SAVENT SAVE ENTRY POINT * TO AVOID *
MOV R12,@SAVCRU SAVE CRU ADDRESS * SUBSEQUENT *
BL *R9 CALL SUBROUTINE * SEARCHES *
3 MP SGO NOT RIGHT VERSION
SBZ 0 TURN OFF ROM
LWPI DLNKWS SELECT DSRLNK WORKSPACE
MOV R9, RO POINT TO FLAG BYTE IN PAB
BLWP @VSBR READ FLAG BYTE
SRL R1,13 SAVE ERROR FLAGS
JNE IOERR ERROR?
RTWP

★
***ERROR HANDLING

NODSR LWPI DLNKWS DSRLNK WORKSPACE
LNKERR CLR R1 CLEAR ERROR FLAGS
IOERR SWPB R1

MOVB R1, *R13 STORE ERROR IN RO OF CALLER
SOCB @H2O,R15 INDICATE AN ERROR
RTWP RETURN TO CALLER

SECTION J: DSR ACCESS. PG J23

TABLE 3.1: DSR-RELATED RAM ADDRESSES

Address Name Description
>202E FLGPTR pointer to the flag in the PAB
>2030 SVGPRT GPL return address
>2032 SAVCRU CRU address of the peripheral
>2034 SAVENT entry address of DSR or subprogram
>2036 SAVLEN device or subprogram name length
>2038 SAVEPAB pointer to the device or subprogram name in PAB
>203A SAVVER version number of the DSR

>8300 - >834F

>8320
>833C
>8342

used by BASIC and XBASIC for temporary storage;
the following address apply to DSRs and/or PABs
pointer to token code
pointer to first entry in PAB list
current character/token

>834A - >836D FAC (floating point accumulator)

>834A PAB 1/0 code
>834B flag/status
>8340 data buffer address
>834E logical record length
>834F character count
>8350 record number
>8352 screen offset
>8353 option length
>8354 SOLEN device length
>8356 SCNAME subroutine pointer/ 1st char after PAB in VDP

>8358 - >836D DSR use

>836E - >837B mi sc. GPL usage

>8370 STATUS GPL status byte, set to zero for DSR call.
Bit 2 is cond. bit; console turns this bit
on to indicate non-existant file.

>8380 - >83BF mi sc. GPL usage

>8300 - >83DE INTWS Interrupt workspace, also:

>83D0 CRULST
>83D2 SADDR

>83E0 ->83FF GPLWS GPL workspace

SECTION J: DSR ACCESS PG J24

FIG. 2.15: OVERALL ACCESS

DSRCONSOLE

SECTION K: MISCELLANEOUS ACCESS NOTES PG KI

SECTION K: MISCELLANEOUS ACCESS NOTES

1 .0 Introduction

As the title implies, this section covers some miscellaneous tips
and techniques on accessing peripheral devices. Subsection 2.0
briefly covers direct access of peripherals and their DSRs.
Subsection 3.0 summerizes information on Peripheral Access Blocks
(PABs), particularly as they apply to interaction with DSRs.

2 .0 Direct Access

2.1 Memory access

Access to the DSR or peripheral (if memory mapped) by the
console, or access to system memory by the DSR is straightforward.
All possible memory locations fall between >4000 to >5FFF for
peripherals; it is assumed that the proper CRU manipulations have been
performed to page in the desired peripheral into the >4000 space prior
to access. The CRU base address should not be changed by the DSR
until the >4000 memory space is exited unless the contents of R12 are
saved upon entry into the DSR..

Data may be moved between the peripheral/DSR and the system via
MOV and MOVB instructions. MOV will transfer a 16 bit word, while
MOVB transfers the MSB of a 16 bit word. Some examples of these
instructions are as follows:

Operation Example
register to register MOV R4, RO

MOVB R4, RO
register to memory MOV R4, @>40C0

MOVB R4, @>40C0
register indirect MOV R4, *R0

reg. auto-increment

indexed memory

MOVB R4, *R0

MOV R4, *R1+

MOVB R4, *R1 +

MOV @>4033(R3), R2

MOVB @>4033(R3), R2

Description
move contents of R4 into RO
move R4 MSB to RO MSB
move contents of R4 into
address >40C0 and >40C1
move R4 MSB to byte >40C0
move contents of R4 to
address given in RO
move R4 MSB to MSB of
address given in RO
move contents of R4 into R1
and increment R1 by two
move R4 MSB into R1 MSB and
increment R1 by one
move contents at address
given in R3 plus >4033
move MSB between locations

Other transfer modes are possible. The Indexed Memory and
Auto-Increment are very common, particularily with memory mapped
devices, and VDP transfers. It is recommended that the programmer use
labels for commonly referenced addresses. Care must be taken with

SECTION K: MISCELLANEOUS ACCESS NOTES PG K2

devices such as GROMs, which autoinrement their addresses with each
access.

2.2 CRU access

Individual CRU bits may be manipulated via the SBO and SBZ
commands. For example, if register 12 contains the base CRU address,
>1500 for example, then

SBO 0

would activate CRU bit >1500 to 1 or "on". Likewise, the command

SBZ 4

would set CRU bit >1508 to 0 or "off". SBO 0 and SBZ 0 are found in
the DSR access routines and are used to activate the peripheral device
and its DSR ROM. Other SBO/SBZ commands can be found in the DSR
itself that manipulate the indicator light or other functions. The
programmer is reminded that all DSR software should clear any CRU bits
activated when exiting the DSR (the FMS will deactivate the 0 bit).
Most CRU bits toggle latches or flip flops which may remain active
unless its CRU bit is cleared, causing bus contention once the DSR is
exited.

The command TB can be used to determine the status of a CRU bit.
Following the previous example, if the CRU base is >1500, then

TB >5

would input the value (1 or 0) of CRU bit >150A. TB works only for
peripherals that have an active CRUIN line to the console.

The multiple bit transfers are more involved than the single bit
transfers. Register 12 contains the starting address of the CRU bit
selected, and the count "n" in the instruction indicates the decimal
number of successive bits to be transferred. For example:

LDCR @>4351,4

The command LDCR is an output operation. It transfers data from
the memory location >4351 (example) to the 4 CRU bits, starting at the
address that is the value of the contents of register 12. If n, the
number of bits to be transferred, is less than 8 the address is a byte
address. If n is 8 or more, the address represents a word address.
If n is 0, 16 bits are transferred. If using register addressing, the
byte addressed (for n less than 8) is the left byte of the register
containing the data. These statements apply equally to the input
operation STCR, which inputs n bits from the CRU device and stores
them in the specified memory location. For example, to input 6 bits
to the memory location addressed by the contents of register 10 would
require

STCR *R10,6

SECTION K: MISCELLANEOUS ACCESS NOTES PG K3

Single bit operations are usually associated with standard DSR
peripherals, while multiple bit CRU operations are useful for CRU-only
peripherals, or ones with 9901 interface chips.

2.3 Programming examples

Some simple assembly programming examples for accessing various
peripheral types are provided below. Note that all peripherals that
do not use a DSR in ROM must be accessed directly by an applications
program located in the system RAM, and cannot be accessed by the FMS
of the /4A.

*CRU-only

LI R12,>0600
SBO 4

set CRU base for >0600
turn on >0608 bit

END SBZ 4
B *R11

turn off >0608 bit
return

*Non DSR peripheral
These peripherals are paged into the >4000 space by an

independent applications program, and not the console.

LI R12,>1500 set CRU base for >1500
SBO 0 turn on bit 0. could be any bit within assigned

range of CRU bits

[program/device access]

END SBZ 0 turn off peripheral (bit 0)
B *R11 return

*DSR peripheral
These peripherals are normally accessed by the console FMS.

However, they can be accessed via an applications program using code
similar to the previous example.

*Non-CRU memory-mapped
These devices are in the >4000 - >5FFF memory address space, but

are paged in only when no other DSR peripheral is active. Although
this feature is implemented in hardware (see Section C), the following
code may be used to ensure that conflict does not occur.

LIMI 0 disable interrupts
LI R12,>0F00 initialize CRU counter

LOOP AI R12,>0100 increment by >0100
SBZ 0 turn off DSR peripheral

SECTION K: MISCELLANEOUS ACCESS NOTES PG K4

CI R12,>2000 check if at end
JEQ END stop
OMP LOOP continue

END $

[access to device]

B *R11 return

3 .0 Notes on PABs and File Management System

The Peripheral Access Blocks, or PABs are used in the
BASIC/XBASIC environment to access the peripheral main devices via the
File Management System (FMS). The Editor/Assembler manual, section
18, and Peripheral Technical Data Manual, section C, cover PABs and
the FMS in great detail and contain programming examples. The
following notes are provided to assist the developer/programmer when
designing DSR peripherals that interface with the FMS.

A) Consider the type of peripheral vs. its access mode. Memory
mapped devices will utilize sequential files. Mass storage devices
may use either sequential or relative files. Some peripherals may
only read, and are therefore limited to the INPUT mode. The DSR must
clearly define which I/O modes it will operate in, and generate error
codes for those that it does not implement.

B) DSRLNK is used to access the DSR in applications programs that
bypass the FMS. XBASIC requires a routine like that in Section 0. A
DATA >8 directive after the BLWP @DSRLNK is for linkage to a main
device routine, and >A for a low level routine.

C) DSR detected errors should be indicated in the flag byte (1)
of the PAB. The DSR should save the least significant 4 bits of the
I/O opcode byte or the most significant 5 bits of the flag byte.

Figure K.1: PAB Flag Byte

bit 0 1 2 3 4 5 6 7
XXXXXEEE

| — | — |----- 3 BIT ERROR CODE

It is the responsibility of the DSR to set bits 5-7 in the flag
byte to inidicate errors that occured within the DSR. Table K.1
defines the error codes.

D) The DSR is responsible for updating byte 8 (screen offset) of
the PAB when a STATUS I/O opcode is issued. When a STATUS (>09) code
is issued, the applications program can check on the current status of
the peripheral. The first six bits have meaning regardless if the
file is currently open or not. The last two bits are valid for open
files only. Some DSRs such as the decoded CLOCK DSR in Section I do

SECTION K: MISCELLANEOUS ACCESS NOTES PG K5

not implement the STATUS I/O response; it is recommended that all DSRs
be capable of responding to this opcode.

TABLE K.1: ERROR CODES FOR DSRS

Error code Meaning
000 no error or bad device name if bit 2 of >837C is set by FMS
001 device is write protected
010 bad open attribute or no records in relative file
011 illegal operation
100 out of buffer space on the device
101 attempt to read past EOF, or non existent relative record
110 device error
111 file error

TABLE K.2: STATUS BIT DEFINITION

Status bit Meaning
7 logical end of file; 1=E0F, cannot read more
6 physical end of file; 1=end of physical media
5 record type; 1=variable 0=fixed
4 file type; 1=program 0=data
3 data type; 1=BINARY/INTERNAL O=ASC11/DISPLAY
2 reserved set to zero
1 protect flag; 1=protected 0=not protected
0 non-existent file

