Index

A

ABS
Store Absolute Value 12-23
absolute branch 5-22
ADD
Add Registers 12-24
add with saturation 7-16
ADDC
Add Register with Carry 12-25
ADDI
Add Immediate
16 bits $12-26$
32 bits 12-27
ADDK
Add Constant (5 Bits) 12-28
addressing $3-2-3-3$
ADDXY
Add Registers in XY Mode 12-29
A-file registers 5-2
airbrush effect 7-24
ALU 1-7
AND
AND Registers 12-30
ANDI
AND Immediate (32 Bits) 12-31
ANDN
AND Register with
Complement 12-32
ANDNI
AND Not Immediate (32 Bits) 12-33
antialiasing 7-23
applications 1-4
array pitch 4-15

B

background color register 5-17
bank selection 11-25
barrel shifter 1-7
B-file registers 5-3,5-5-5-19
BLANK 2-9, 9-2
blanking 2-9, 6-26, 6-28, 6-48, 6-50
block diagram 1-6
Boolean operations 7-17
Boolean pixel processing 6-11
Bresenham line algorithm 7-2,7-10
BTST
Test Register Bit constant 12-34
register 12-35
bulk initialization of VRAMs 9-19, 9-27
bus request priorities 11-4
bus request signal $2-10$
byte addressing 10-21
byte alignment 12-9
$\begin{array}{ll}\text { byte moves } & 12-9\end{array}$
bytes 4-1
B0 (SADDR) 5-7
B1 (SPTCH) 5-8
B10 (COUNT) 5-19
B11 (INC1) 5-19
B12 (INC2) 5-19
B13 (PATTRN) 5-19
B13 (TEMP) 5-19
B2 (DADDR) 5-9
B3 (DPTCH) 5-11
B4 (OFFSET) 5-12
B5 (WSTART) 5-13
B6 (WEND) 5-14
B7 (DYDX) 5-15
B8 (COLORO) 5-17
B9 (COLOR1) 5-18

C

C bit 5-21
cache disable 6-12
cache hit 5-25
cache miss $\quad 5-25$
cache replacement algorithm $\quad 5-24$
CALL
Call Subroutine indirect $12-36$
CALLA
Call Subroutine Absolute 12-37
CALLR
Call Subroutine Relative 12-38
Cartesian coordinates 4-15
CAS 2-7,11-2
CD bit 5-26, 6-9, 6-12
CF bit 5-26,6-31,6-32
chip select pin 2-5
clock timing logic 1-7
CLR
Clear Register 12-39
CLRC
Clear Carry 12-40
CMP
Compare Registers 12-41
CMPI
Compare Immediate
16 bits $\quad 12-42$
32 bits 12-43
CMPXY
Compare X and Y Halves of Registers 12-44
Cohen-Sutherland algorithm 7-30
color planes 7-12
color-expand operation 7-5
COLORO register 5-17
COLOR1 register 5-18
column address strobe 2-7
compare point to window 7-3
constant-to-register moves 12-8
CONTROL 6-9
CONTROL register 6-9
CONVDP 7-4
CONVDP register 4-12,6-13
conversion factor 6-13,6-14
CONVSP 7-4
CONVSP register 4-12, 6-14
COUNT register 5-19
CPW
Compare Point to Window 12-45
CVXYL
Convert XY Address to Linear Address 12-47

D

DADDR register 5-9
data enable pin 2-7
data paths 1-7, 5-28
data select pins $\quad 2-5$
data structures
bytes 4-1
fields 4-1, 4-2-4-5
pixel arrays 4-1
pixels 4-1, 4-6-4-10
DDOUT 2-7,11-2
DEC
Decrement Register 12-49
DEN 2-7,11-2
destination address register 5-9
destination conversion factor 6-13
destination pitch register 5-11
development tools list 1-3
DIE bit 6-39
DINT
Disable Interrupts $12-50$
DIP bit 6-40
display interrupt 8-4,9-14
display memory $9-19$
display pitch 4-10, 5-8, 5-11, 6-13,
6-14, 9-19
DIVS
Divide Registers Signed 12-51
DIVU
Divide Registers Unsigned 12-53
dot rate 9-15
DPTCH register 5-11, 6-13
DPYADR register 6-15
DPYCTL register 6-17
DPYINT register 6-22
DPYSTRT register 6-23
DPYTAP register 6-24
DRAM 6-9,11-5
refresh cycles 6-9
refresh interval 6-45
refresh rate 6-9
DRAM refresh 11-11, 11-12, 11-25
DRAV
Draw and Advance 12-55
draw and advance 7-10
DSJ
Decrement Register and Skip Jump 12-58
DUDATE bits $6-17,6-18$
DXV bit 6-17, 6-20
DYDX register 5-15

E

EINT
Enable Interrupts 12-64
EMU
Initiate Emulation 12-65
emulation 2-10
ENV bit 6-17
EXAMPLE
Example Instruction 12-21
EXGF
Exchange Field Size 12-66
EXGPC
Exchange Program Counter with Register 12-67
external interlaced video 9-18
external interrupts 8-3
external synchronization
9-16
external video 6-17

F

FE bit 4-2
FEO bit 5-20
FE1 bit $\quad 5-20$
field moves 12-10
field size $\quad 5-20,5-21$
fields 4-1, 4-2-4-5
addressing 4-2
alignment 4-3
extraction 4-2
insertion 4-2, 4-5
size 4-2
fill 7-5
Fill Array with Processed Pixels linear 12-68
XY 12-72
foreground color register 5-18
FSO 4-2
FSO bits 5-20
FS1 4-2
FS1 bits 5-20
function select pins 2-5

G

general-purpose register files 1-6,5-2-
5-19
GETPC
Get Program Counter into
Register 12-77
GETST
Get Status Register into Register 12-78
graphics standards 1-2

H

halt program execution 6-34
HCOUNT register 6-25
HCS 2-5, 10-2
HDO-HD15 2-6, 10-2
HEBLNK register 6-26
HESYNC register 6-27
HFSO, HFS1 2-5, 10-2
1:ll bit 6-39
ilīis $\overline{\mathrm{T}}$ 2-6, 10-2
HIP bit 6-40
HLDA/EMUA 2-10
HLDS 2-5, 10-2
HLT bit 5-26, 6-2, 6-31, 6-34
HOLD 2-10
hold and emulation signals 2-4, 2-10
HLDA/EMUA 2-10
HOLD 2-10
RUN/EMU 2-10
hold interface 11 -18
hold request 11-4
horizontal front porch 9-5
horizontal sync 2-9
horizontal timing 9-12
horizontal timing registers
HCOUNT 6-25, 9-4
HEBLNK 6-26,9-4
HESYNC 6-27, 9-4
HSBLNK 6-28, 9-4
HTOTAL 6-38, 9-4
horizontal video timing 9-6, 9-7
host interface 10-1, 10-24
bandwidth 10-22
data transfer 10-9
indirect accesses of local
memory 10-11
reads and writes 10-4
ready signal to host 10-8
registers 6-6
HSTADRH 10-3
HSTADRH register 6-29
HSTADRL 6-30, 10-3
HSTCTL 10-3
HSTCTLH 6-31,10-3
HSTCTLL 6-35,10-3
HSTDATA 6-37,10-3
selection 10-3
signals 10-2
timing examples 10-5
host interface bus pins 2-4, 2-5
HCS 2-5
HD0-HD15 2-6
HFS0,HFS1 2-5
HINT 2-6
HLDS 2-5
HRDY 2-5
HREAD 2-5
HI'DS 2-5
HWRITE 2-5
host interrupt 8-4
host read/write strobes 2-5
host-present mode 8-9, 8-12
HRDY 2-5, 10-2, 10-8
HREAD 2-5, 10-2
HSBLNK register 6-28
HSD bit 6-17
HSTADRH register 6-29
HSTADRL register 6-30
HSTCTLH register 6-31
HSTCTLL register 6-35
HSTDATA register 6-37
HSYNC 2-9,6-20, 6-25, 9-2
HTOTAL register 6-38
HUDS 2-5, 10-2
HWRITE 2-5,10-2

I

1/O registers 1-7,6-1-6-51
addressing 6-2
at reset 6-2
host interface registers 6-6
interrupt interface registers 6-7
latency of writes 6-3
local memory interface registers 6-7
memory map 6-2
summary 6-4
video timing and screen refresh registers 6-8
IE bit 5-20
illegal opcode interrupts $8-8$
illegal operand 8-4
implied graphics operands 5-5
INC
Increment Register 12-79
INCLK 2-7,11-2
INCR bit 6-31,6-33, 10-11
incremental algorithms 7-10
INCW bit 6-31, 6-34, 10-11
INC1 register 5-19
INC2 register 5-19
indirect accesses of local memory 10-11
indirect branch 5-22
input clock 2-7
instruction cache 1-7,5-23-5-27
cache disable 6-12
cache flush 6-32
cache hit 5-25
cache miss 5-25
cache replacement algorithm 5-24
disabling 5-26
downloading new code 5-26
flushing 5-26
LRU stack 5-24
operation 5-25
P flag 5-25
segment miss 5-25
segments 5-24
SSA register 5-24
subsegment miss 5-25
instruction words 5-23
INTENB register 6-39
interlaced display 9-25
interlaced video 9-11, 9-18
internal interrupts 8-4
interrupt interface
registers 6-7
INTENB 6-39, 8-3
INTPEND 6-40,8-3
interruptible instructions 7-9
interrupts 2-6,8-1-8-7
display interrupt 6-22, 8-4, 9-14
enable bit 5-20
external interrupts 8-3
host interrupt 8-4
host interrupt request signal 2-6
IE bit 5-20
illegal opcode interrupts $8-8$
illegal operand 8-4
INTENB 6-39
internal interrupts $8-4$
interrupt request pins $8-3$
interrupt requests 6-36
INTIN bit 6-36
INTOUT bit 6-36
INTPEND 6-40
local interrupt request signals $\quad 2-8$ nonmaskable interrupt 6-31,6-32, 8-4
priorities $8-1,8-2,8-4$
processing 8-5
registers 8-3
RESET 2-11
stack operations 3-9
vector addresses 8-2
window interrupt 8-4
intersecting rectangles 7-3
INTIN bit 6-35, 6-36
INTOUT bit 6-35,6-36
INTPEND register 6-10, 6-40

J

JAcc
Jump Absolute Conditional 12-80
JRcc
Jump Relative Conditional
long 12-84
short 12-82
JUMP
Jump Indirect 12-86

K

key features of the GSP 1-3

L

LAD0-LAD15 2-8, 11-2
LAL 2-7,11-2
LBL bit 6-31, 6-33
LCLK1,LCLK2 2-8,11-2
LCSTRT bits 6-23
LINE
Line Draw with $X Y$
Addressing 12-87
line clipping 7-29
linear addressing $4-10$
LINT1, LINT2 2-8, 8-3, 11-2
LMO
Leftmost One 12-94
LNCNT bits 6-15, 6-23
local address/data bus 2-8
local memory interface 11-1,11-29
addressing mechanisms 11-23
hold interface timing 11-18
I/O register access cycles 11-14
internal cycles 11-13
memory bus request priorities 11-4
read cycle 11-8
read-modify-write operations 11-15
registers 6-7
CONTROL 6-9,11-3
CONVDP 6-13,11-3
CONVSP 6-14, 11-3
PMASK 6-42,11-3
PSIZE 6-44,11-3
REFCNT 6-45,11-3
shift-register-transfer cycles 11-9
signals 11-2
timing 11-5-11-22
wait states 11-16
write cycle 11-7
local memory interface pins 2-4, 2-7
CAS 2-7
DDOUT 2-7
DEN 2-7
INCLK 2-7
LADO-LAD15 2-8
LAL $2-7$
LCLK1,'rIK2 2-8
LINT1,Lil.!2 2-8
LRDY 2-8
$\begin{array}{ll}\text { RAS } & 2-7\end{array}$
$\overline{T R} / \overline{\mathrm{QE}} \quad 2-7$
W 2-7
local read/write strobes 2-7
logical pixels 4-6
LRDY 2-8,11-2

M

MAX operation 7-16
memory bus request priorities 11-4
memory map 3-4
message buffers 6-35, 6-36
microcontrol ROM 1-7
midpoint subdivision 7-30
MIN operation 7-16
MMFM 12-9
Move Multiple Registers from
Memory 12-95
MMTM 12-9
Move Multiple Registers to Memory 12-97
MODS
Modulus Signed 12-99

MODU
Modulus Unsigned 12-100
MOVB $12-9$
Move Byte Instruction absolute to absolute 12-110 absolute to register 12-109 indirect to indirect 12-105 indirect to register 12-104 indirect with displacement to indirect with displacement 12-107 indirect with displacement to register 12-106
register to absolute 12-103
register to indirect 12-101
register to indirect with displace-
ment 12-102
MOVE 12-8, 12-10
Move Field
absolute to absolute 12-139
absolute to indirect (postincrement) 12-137
absolute to register 12-135
indirect (postincrement) to indirect (postincrement) 12-123
indirect (postincrement) to register 12-121
indirect (predecrement) to indirect (predecrement) 12-127
indirect (predecrement) to register 12-125
indirect to indirect 12-120
indirect to register 12-119
indirect with displacement to indirect (postincrement) 12-131
indirect with displacement to indirect with displacement 12-133
indirect with displacement to register 12-129
register to absolute 12-118
register to indirect 12-113
register to indirect
(postincrement) 12-114
register to indirect
(predecrement) 12-115
register to indirect with displacement 12-116
Move Register to Register 12-112 summary 12-8
MOVI 12-8
Move Immediate

```
        16 bits 12-141
            32 bits 12-142
    MOVK 12-8
    Move Constant (5 Bits) 12-143
    MOVX 12-8
    Move X Half of Register 12-144
MOVY 12-8
    Move Y Half of Register 12-145
MPYS
    Multiply Registers Signed 12-146
MPYU
    Multiply Registers Unsigned 12-148
MSGIN bits 6-35
MSGOUT bits 6-35,6-36
multiple register moves 12-9
multiple-GSP systems 9-16
```


N

```
\(N\) bit 5-21
NEG
Negate Register 12-150
NEGB
Negate Register with Borrow 12-151
NIL bit 6-17, 6-20
NMI bit 6-31
non-branch 5-22
noninterlaced video 9-9
nonmaskable interrupt 6-7, 6-31, 8-4
nonmaskable interrupt mode 6-32
NOP
No Operation 12-152
NOT
Complement Register 12-153
```


0

```
OFFSET register 4-12, 5-12
on-screen memory 9-19
OR
OR Registers 12-154
ORG bit 6-17, 6-19
ORI
OR Immediate (32 Bits) 12-155
outcode 7-30
output clocks 2-8
```


P

Pflag 5-25
panning 9-26
PATTRN register 5-19
PBH bit 6-9,6-10
PBV bit 6-9, 6-11
PBX bit 5-21
PC 5-22
pick window 7-26
picture elements 4-6
pin descriptions 2-2
pinout 2-2
pitch 7-4
pitch conversion factors 4-12
PIXBLT
Pixel Block Transfer
Pixel Block Transfer Instruction
binary to linear 12-156
binary to $X Y$ 12-161
linear to linear 12-168
linear to $X Y$ 12-174
XY to linear 12-180
XY to $X Y$ 12-185
PixBlt direction 6-11
PixBlts 4-14, 7-4
pixel array 4-14
pixel block transfers 4-14, 7-4
pixel processing 6-11,7-15
pixels 4-1, 4-6-4-10
addressing 4-6
on the screen 4-7
pixel size 6-44
PSIZE register 6-44
representation in a register 4-6
size 4-6
storage in memory 4-7
XY addressing 4-7
PIXT
Pixel Transfer Instruction
indirect to indirect 12-198
indirect to register 12-196
indirect $X Y$ to indirect $X Y$ 12202
indirect $X Y$ to register 12-200
register to indirect 12-191
register to indirect $X Y \quad 12-193$
summary 12-14
plane mask 7-12
plane masking 6-42

PMASK register 6-42
POPST
Pop Status Register from Stack 12205
postclipping 7-29
PP bit 6-9
PPOP bits 6-11
preclipping 7-29
program counter 1-6,5-22
PSIZE register 4-12,6-44
PUSHST
Push Status Register onto Stack 12-206
PUTST
Copy Register into Status 12-207

R

RAS 2-7, 11-2
REFCNT register 6-45
references 1-10
register file A 5-2
register file B 5-3,5-5-5-19
register-to-register moves 12-8
relative branch 5-22
replace operation 7-18
RESET 2-11, 8-9-8-12
effect on cache 5-24
effect on GSP registers $8-10$
effect on instruction cache 8-10
effects on I/O registers 6-2
HLT bit 6-34
RETI
Return from Interrupt 12-208
RETS
Return from Subroutine 12-209
REV
Store Revision Number 12-210
RINTVL bits 6-45
RL
Rotate Left
constant 12-211
register 12-212
row address strobe $2-7$
row and column addressing 11-6
ROWADR bits 6-45
RR bit 6-9
RUN/EMU $2-10$

S

SADDR register 5-7
scan line counter 6-15
screen origin $4-8,6-17,6-19$
screen refresh 6-20,6-23, 9-1-9-27
screen refresh enable 6-17
screen size limits 9-3
screen-refresh address 6-15
screen-refresh cycles 9-19
segment miss 5-25
self-bootstrap mode 8-9, 8-11
self-modifying code $5-26$
SETC
Set Carry 12-213
SETF
Set Field Parameters 12-214
SEXT
Sign Extend to Long $12-215$
shift register transfer enable pin 2-7
shift register transfers 6-17
sign (N) bit 5-21
SLA
Shift Left Arithmetic constant 12-216 register 12-217
SLL
Shift Left Logical
constant 12-218
register 12-219
software traps 8-8
source address register 5-7
source conversion factor 6-14
source pitch register 5-8
SP 3-6,5-2,5-4
SPTCH register 5-8, 6-14
SRA
Shift Right Arithmetic
constant 12-220
register 12-221
SRE bit 6-17,6-20
SRFADR bits 6-15,6-23
SRL
Shift Right Logical
constant 12-222
register 12-223
SRSTRT bits 6-23
SRT bit 6-17, 6-19
SSA register 5-24
ST 5-20
stack 3-6-3-11
multiple-register operations 3-9
operation during a subroutine $3-9$
operation during interrupts 3-9
structure 3-7
32-bit register operations 3-8
stack pointer 5-2,5-4
starting address of array 4-14, 7-7
starting corner selection 7-7
status register 1-6,5-20-5-21
strobes 10-4
SUB
Subtract Registers 12-224
SUBB
Subtract Registers with Borrow 12 225
SUBI
Subtract Immediate
16 bits 12-226
32 bits 12-227
SUBK
Subtract Constant 12-228
subsegment miss 5-25
subtract with saturation 7-16
SUBXY
Subtract Registers in XY Mode 12229

T

T bit 6-9
tap point register 6-24
TEMP register 5-19
$\overline{\mathrm{TR}} / \overline{\mathrm{OE}} \quad 2-7,11-2$
transparency 7-11
enabling (T bit) 6-10
TRAP 8-8
Software interrupt 12-230
traps 8-8
two-dimensional arrays 4-14,7-4

v

V bit 5-21
and window checking 7-25
VCLK 2-9, 9-2
VCOUNT register 6-22, 6-47
VEBLNK register 6-48
vector addresses 8-2
vertical front porch 9-5
vertical sync 2-9
vertical timing registers
VCOUNT 6-47,9-4
VEBLNK 6-48, 9-4

VESYNC 6-49, 9-4
VSBLNK 6-50, 9-4
VTOTAL 6-51,9-4
vertical video timing 9-8-9-13
VESYNC register 6-49
video clock 2-9
video enable 6-17
video timing 9-1-9-27
video timing and screen refresh
display address 6-15, 6-17
display interrupt 6-22
registers 6-8
DPYADR 6-15
DPYCTL 6-17
DPYINT 6-22
DPYSTRT 6-23
DPYTAP 6-24
HCOUNT 6-25, 9-4
HEBLNK 6-26,9-4
HESYNC 6-27,9-4
HSBLNK 6-28, 9-4
HTOTAL 6-38, 9-4
VCOUNT 6-47,9-4
VEBLNK 6-48,9-4
VESYNC 6-49,9-4
VSBLNK 6-50,9-4
VTOTAL 6-51,9-4
video timing signals 9-2
video tirn!! ! signals 2-4, 2-9
BLA:.4 2-9
HSYNC 2-9
VCLK 2-9
VSYNC 2-9
VRAM 11-5
VRAMs 6-8, 9-19
bulk initialization 9-27
tap point address 6-24
V. $1 . \mathrm{NK}^{2}$ register 6-50

ご:IN 2-9, 6-20, 9-2
VTOTAL register 6-51

W
W 2-7, 11-2
W bit 6-9, 6-10
WEND register 5-14
window checking $4-15,6-10,7-25$
window clipping 7-27
window end address register 5-14
window hit detection 7-26
window interrupt 8-4
window miss detection 7-27
window start address register 5-13
windows 5-13,5-14
WEND register 5-14
WSTART register 5-13
WSTART register 5-13
WVE bit 6-39
WVP bit 6-40

X

XOR
Exclusive OR Registers 12-232
XORI
Exclusive OR Immediate Value 12233
XY addressing $4-8,4-10,4-11,4-13$, 5-15
benefits 4-11
DYDX register 5-15
format 4-11
OFFSET register 5-12
XY-to-linear conversion 4-11, 6-13, 6-14
XY register moves 12-8
X1E bit 6-39
X1P bit 6-40
X2E bit 6-39
X2P bit 6-40
X3E bit 6-39
X3P bit 6-40

Z

Z bit 5-21
ZEXT
Zero Extend to Long 12-234

