
8. Interrupts, Traps, and Reset 

The TMS34010 supports eight interrupts, including reset. Memory addresses 
>FFFF FC00 to >FFFF FFFF contain the 32 vector addresses used during in-
terrupts, software traps and reset. Each vector is a 32-bit address that points 
to the beginning of the appropriate interrupt service routine. 

This section includes the following topics: 

Section 	 Page 
8.1 Interrupt Interface Registers 	  8-3 
8.2 External Interrupts 	  8-3 
8.3 Internal Interrupts 	  8-4 
8.4 Interrupt Processing 	  8-5 
8.5 Traps 	  8-8 
8.6 Illegal Opcode Interrupts 	  8-8 
8.7 Reset 	  8-9 

Table 8-1 and Figure  8-1 (page 8-2) summarize the TMS34010 interrupts and 
their priorities. RESET has the highest priority, and the illegal opcode interrupt 
has the lowest. If two interrupts are requested at the same time, the highest 
priority interrupt is serviced first (assuming it is enabled). The reset and 
nonmaskable interrupt cannot be disabled. 
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Interrupts, Traps, and Reset 

Table 8 - 1. Interrupt Priorities 

Int. Priority 
Internal/ 
External Description and Source 

Reset 1 I 

	

• ._ 	reset. Taken when the input signal at the  
:• • 	: 	pin is asserted low. 

NMI 2 I Nonmaskable interrupt. Generated by a host 
processor. 

HI 3 I Host interrupt. Generated by a host processor. 

DI 4 I Display interrupt. Generated by the TMS34010. 

WV 5 I Window violation interrupt. Generated by the 
TMS34010. 

I NT1 6 E External interrupts 1 and 2. Generated by 
external devices. 

I NT2 7 E 

I LLOP 8 I Illegal 	opcode 	interrupt. 	Generated 	by 	the 
TMS34010 	when 	an 	illegal 	opcode 	is 	en- 
countered. 

Trap 
Number 	A 3.20Re 

0 	>rr 	::L .  
1 	>FFFF I- I-Co 
2 	>FFFF FFAO 
3 	>FFFF FF80 
4 	>FFFF FF60 
5 	>FFFF FF40 
8 	>FFFF FF20 
7 	>FFFF Fri0 

>FFFF "CU.. 
9 	>FFFF FEE: 

10 	>FFFF 
11 	>FFFF : 
12 	>FFFF 
13 	>FFFF 
14 	>FFFF • . . 
15 	>FFFF 
16 	>FFFF 
17 	>FFFF FCCO 
18 	>FFFF F.• 
19 	>FFFF 
20 	>FFFF 
21 	>FFFF FD4.) 
22 	>FFFF h 
23 	>FFFF 
24 	>FFFF I • • 
25 	>FFFF 
26 	>FFFF 
27 	>FFFF F • 
28 	>FFFF 	1 ,,,  
29 	>FFFF 
30 	>FFFF t- L2( 
31 	>FFFF HOC  

Reset 
External Interrupt 1 
External Interrupt 2 

to.n Maskable Interrupt 
Fins! Interrupt 
Dmpay Interrupt 
Window Violation 

Illegal Opcode 

Figure 8-1. Vector Address Map 
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Interrupts, Traps, and Reset - Registers/External Interupts 

8.1 Interrupt Interface Registers 

Two registers, a subset of the I/O registers discussed in Section 6, monitor and 
mask interrupt requests. These registers are summarized below; for more in-
formation, please refer to the register descriptions in Section 6. 

The interrupt enable register, INTENB, contains the interrupt mask that se-
lectively enables various interrupts. An interrupt is enabled when the status 
IE (global interrupt enable) bit and the appropriate bit in the INTENB register 
are both set to 1. 

• X1E (bit 1) enables external interrupt 1. 

• X2E (bit 2) enables external interrupt 2. 

• HIE (bit 9) enables the host interrupt. 

• DIE (bit 10) enables the display interrupt. 

• WVE (bit 11) enables the window violation interrupt. 

The interrupt pending register, INTPEND, indicates which interrupts are cur-
rently pending. When an interrupt is requested, the appropriate bit in the 
INTPEND register is set. 

• X1P (bit 1 ) indicates that external interrupt 1 is pending. 

• X2P (bit 2) indicates that external interrupt 2 is pending. 

• HIP (bit 9) indicates that the host interrupt is pending. 

• DIP (bit 10) indicates that the display interrupt is pending. 

• WVP (bit 11) indicates that the window violation interrupt is pending. 

8.2 External Interrupts 

External interrupt requests are received via local interrupt pins LINT1 and 
LINT2. Each of the two external interrupt pins is dedicated to an individual 
interrupt, allowing two independent interrupt requests to be generated. (The 
pins are not encoded.) The local interrupt pins are level-sensitive, active-low 
inputs. Once an interrupt request has been initiated by driving an interrupt 
pin low, it must remain low until the GSP can respond to the interrupting de-
vice. This is necessary to ensure that the GSP detects the request. If the active 
level is maintained after returning from the interrupt service routine, however, 
the interrupt will be taken once again. 

Signals input to the local interrupt pins are assumed to be asynchronous to the 
GSP local clocks, and are synchronized internally by the GSP before they are 
processed. If two external interrupt requests are active at the same time, INT1 
will be serviced first. Table 8-2 shows the interrupt trap vectors for INT1 and 
INT2. 

Table 8-2. External Interrupt Vectors 

Name 
Input 
Pin 

Vector 
Address 

INT1 LINT1 >FFFF FFC0 

INT2 LINT2 >FFFF FFAO 
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Interrupts, Traps, and Reset - Internal Interrupts 

8.3 Internal Interrupts 

Several internal conditions are associated with specific interrupts. Table 8-3 
summarizes these interrupts. If two internal interrupts are requested simul-
taneously, or if two or more internal interrupt requests are pending, the highest 
priority interrupt will be serviced first; NMI has the highest priority, followed 
by HI, DI, and WV. When internal and external interrupts are pending, the 
internal interrupts are serviced first (with the exception of the ILLOP inter-
rupt) 

Table 8-3. Interrupts Associated with Internal Events 

Name Function Level 
Vector 

Location Description 

NMI Nonmaskable 
interrupt 

8 >FFFF FEED The host processor sets the NMI bit in the 
HSTCTL register to a 1. 

HI Host interrupt 9 >FFFF FECO The host processor sets the INTIN bit in the 
HSTCTL register to a 1. 

DI Display interrupt 10 >FFFF FEAO A particular horizontal line on the video display 
is being refreshed. The line number is specified 
in the DPYINT register. 

WV Window violation 
interrupt 

11 >FFFF FE80 An attempt has been made to move a pixel to a 
destination location that lies inside or outside a 
specified window, depending on the selected 
windowing mode. 

ILLOP Illegal operand 
interrupt 

30 >FFFF FC20 See Section 8.6. 

The nonmaskable interrupt, or NMI, occurs when a host processor requests 
an interrupt by writing a 1 to the NMI bit in the HSTCTL register. This inter-
rupt cannot be disabled, and will always occur as soon as possible following 
the request. The NMI will be delayed only for completion of an instruction 
already in progress, or until the next interruptible point of an interruptible in-
struction such as a PIXBLT is reached. 

The NMI mode bit in the HSTCTL register determines whether or not context 
information is saved on the stack when a nonmaskable interrupt occurs: 

• If NMIM = 0, the PC and ST are pushed on the stack before the interrupt 
is serviced. 

• If NMIM = 1, nothing is saved on the stack before the interrupt is ser-
viced. 

The display interrupt (DI) is used to coordinate processing activity with the 
refreshing of particular areas of the display. The display interrupt request be-
comes active when a particular display line, specified in the DPYINT register, 
is output to the monitor screen. At the start of each horizontal blanking period, 
the VCOUNT register is compared to the DPYINT register. When the vertical 
count value in VCOUNT = DPYINT, a display interrupt request is generated. 
If enabled, the interrupt is taken. 
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Interrupts, Traps, and Reset - Interrupt Processing 

8.4 Interrupt Processing 

An interrupt is said to be pending if it has been requested but has not yet been 
processed. If a pending interrupt is enabled, and no interrupt of higher priority 
is pending at the same time, the interrupt is accepted by the GSP at the end 
of the current instruction (or at the next interruptible point in the middle of a 
PIXBLT or FILL instruction). When the GSP takes an interrupt, it performs the 
following actions: 

1) The GSP pushes the PC on the stack. 

2) The GSP pushes the ST on the stack. PIXBLT and FILL instructions that 
are interrupted by external, host, and nonmaskable (if NMIM=0) inter-
rupts set the PBX bit in the ST before pushing the ST. 

3) The GSP modifies the contents of the ST as follows: 

3130 29 28 27 28 25 24 
(0 o 0 010 01010 

23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 	7 8 	5 4 3 2 	1 0 
0  010 10 0 0 0 0 00 0 010 10 0 0 0 01011 0 0 0 0 1 

X FE1 \ PB 	IE 

Reserved 

4) The GSP fetches the interrupt vector from external memory into the PC. 

5) The GSP begins executing the instruction pointed to by the new PC 
value. 

Reserved ry FS1 F60 

In step 5, the GSP resumes instruction execution at the entry point of the in-
terrupt service routine. At the time the first instruction of the service routine 
begins execution, the new status register contents imply the following condi-
tions: 

• All interrupts are disabled (except NMI and reset) 

• Field 0 is 16 bits long and is zero extended 

• Field 1 is 32 bits long and is zero extended 

The service routine can allow itself to be interrupted by loading a new inter-
rupt-enable mask into the INTENB register and setting status bit IE to 1. The 
INTENB mask value is selected to determine which interrupts can interrupt the 
currently executing service routine. The service routine can also load new field 
sizes if values other than the defaults are required. 

The last instruction in any interrupt service routine must be RETI (return from 
interrupt). Unlike the RETS (return from subroutine) instruction, which only 
pops the PC from the stack, RETI pops both the ST and PC. This restores the 
original state of the interrupted program so that execution can proceed from 
the point at which the interrupt occurred. 
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Interrupts, Traps, and Reset - Interrupt Processing 

8.4.1 Interrupt Latency 

An external interrupt, host interrupt request, or NMI request will be delayed 
by an amount of time that depends on the instruction in progress and on the 
local memory bus traffic at the time of the request. 

The delay from an interrupt request to the time that the first instruction of the 
interrupt service routine begins execution is the sum of six potential sources 
of delay: 

1) Interrupt request recognition 
2) Screen-refresh cycle 
3) DRAM-refresh cycle 
4) Host-indirect cycle 
5) Instruction interrupt 
6) Interrupt context switch 

In the best case, items 2 through 5 cause no delay. The minimum delay due 
to items 1 and 6 is 17 machine states. 

• The interrupt request recognition delay is the time required for a 
request to be internally synchronized to the local clock. In the case of 
an external interrupt request, the delay is measured from the high-to-low 
transition of the INT1 or INT2 pin. In the case of a host interrupt or NMI 
request, the delay is measured from completion of the host's write to the 
INTIN or NMI pin. 

• The screen-refresh and DRAM - refresh cycles are a potential source 
of delay, but in fact occur rarely and are unlikely to delay an interrupt. 

• The likelihood of a delay caused by a host-indirect cycle is small in 
most instances, but this depends on the application. The delay due to 
a single host-indirect cycle is two machine states, assuming no wait 
states, but multiple host-indirect cycles occurring within a brief period 
of time could cause additional delays. Theoretically, a fast host proces-
sor could generate so many local memory cycles that the GSP would be 
prevented from servicing interrupts for an indefinite period. 

• The instruction interrupt time refers to the time required for an in-
struction that was already executing at the time the interrupt request was 
received to either complete or to reach the next interruptible point in an 
instruction (such as a PIXBLT, FILL, or LINE). 

• The interrupt context switch operation pushes the PC and ST onto 
the stack, and fetches the PC for the interrupt service routine from the 
appropriate vector in memory. 
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Operation 
Latency ( n States) 

Max Min 

Instruction interrupt See Table 8-5 0 

DRAM-refresh cycle 0 2 
See Note 2 

Screen-refresh cycle 0 2 
See Note 2 

Host-indirect cycle See Note 1 0 

Interrupt recognition 1 2 

Interrupt context switch 16 16 

Interrupts, Traps, and Reset - Interrupt Processing 

Table 8-4 shows the minimum and maximum times for each of the six oper-
ations listed. The interrupt latency is calculated as the sum of the numbers in 
the six rows. In the best case, the interrupt latency is only 17 machine states. 
The worst-case latency can be as high as 22 machine states plus the delays 
due to host-indirect cycles and instruction completion. Table 8-5 shows in-
struction interrupt times for some of the longer, non interruptible instructions. 
Table 8-5 also shows the instruction completion time for a JRUC instruction 
that jumps to itself - the GSP may be executing this instruction if the software 
is simply waiting for an interrupt. 

Table 8-4. Six Sources of Interrupt Delay 

Notes: 1) The latency due to host-indirect cycles depends on both the 
hardware system and the application. Theoretically, a host pro-
cessor could generate so many local memory cycles that the GSP 
could effectively be prevented from servicing interrupts. The delay 
due to a single host-indirect cycle is two machine states, assuming 
no wait states. 

2) DRAM-refresh and screen-refresh cycle times assume no wait 
states. 

3) Context switch time assumes that the SP is aligned to a word 
boundary; that is, the four LSBs of the SP are Os. If the SP is not 
aligned, the delay is 28 states. 

Table 8-5. Sample Instruction Completion Times 

Instruction 
Worst-Case Instruction 

Interrupt Time (In States) 

SP Aligned SP Not Aligned 

DIVS AO,A2 43 43 

MMFM SP,ALL 72 144 

MMTM SP,ALL 73 169 

Wait: JRUC wait 1 1 

Notes: 1) The worst-case instruction interrupt time is equal to the instruction 
execution time less one machine state (except for PIXBLTs, FILLs, 
and LINE). 

2) The SP-aligned case assumes that the SP is aligned to a word 
boundary in memory. 
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Interrupts, Traps, and Reset - Traps/Illegal Opcode Interrupts 

8.5 Traps 

The TMS34010 supports 32 software traps, numbered 0 through 31. Soft-
ware traps behave similarly to interrupts, except that they are initiated when 
the GSP executes a TRAP instruction. Unlike an interrupt, a software trap 
cannot be disabled. 

When the GSP executes a TRAP instruction, it performs the same sequence 
of actions that it performs for interrupts. The TRAP 1 through TRAP 31 in-
structions cause the status register and the PC to be pushed onto the stack. 
TRAP 0 is similar to a hardware reset because it does not push the status re-
gister or PC onto the stack; it differs from a hardware reset because it does not 
cause the GSP's internal registers to be set to a known initial state. TRAP 8 
is similar to an NMI interrupt, except that the NMIM (NMI mode) bit in the 
HSTCTLL register has no effect on instruction execution; the status register 
and PC are stacked unconditionally when TRAP 8 is executed. 

A 32-bit vector address is associated with each software trap. To determine 
the vector address for a trap number N, where N = 0 through 31, subtract 
32N from >FFFF FFEO. Figure 8-1 on page 8-2 shows the vector addresses 
for the software traps. 

8.6 Illegal Opcode Interrupts 

The GSP recognizes several reserved opcodes as illegal. When one of these 
opcodes is encountered in the instruction stream, the GSP will trap to vector 
number 30, located at memory address >FFFF FC20. An illegal opcode is si-
milar in effect to a TRAP 30 instruction. The illegal opcode interrupt cannot 
be disabled. Table 8-6 lists ranges of illegal opcodes. 

Table 8 - 6. Illegal Opcodes Ranges 

>0000 through >00FF 
>0200 through >02FF 
>0400 through >04FF 
>0800 through >08FF 
>0A00 through >OAFF 
>0000 through >OCFF 
>0E00 through >OEFF 
>3400 through >37FF 
>7000 through >7FFF 
>9E00 through >9FFF 
>BE00 through >BFFF 
>D800 through >DEFF 
>FE00 through >FFFF 
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Interrupts, Traps, and Reset - Reset 

8.7 Reset 

Reset puts the TMS34010  into a known initial  state.  It is entered when the 
input signal at the RESET pin is asserted low. RESET must remain active low 
for a minimum of 40 local clock (LCLK1 and LCLK2) periods to ensure that 
the TMS34010 has sufficient time to establish its initial internal state. 

While RESET remains asserted, all outputs are in a known state, no DRAM-re-
fresh cycles take place, and no screen-refresh cycles are performed. 

At the low-to-high transition of the RESET signal, the state of the HCS input 
determines whether the GSP will be halted or begin executing instructions. 
The GSP may be in one of two modes, host-present or self-bootstrap mode. 

• Host-Present Mode 

If HCS is high at the end of reset, GSP instruction execution is halted and 
remains halted until the host clears the HLT (halt) bit in HSTCTL (host 
control register). Following reset, the eight RAS-only refresh cycles re-
quired to initialize the dynamic RAMs are performed automatically by the 
GSP memory control logic. As soon as the eight RAS-only cycles are 
completed, the host is allowed access to GSP memory. At this time, the 
GSP begins to automatically perform DRAM refresh cycles at regular 
intervals. The GSP remains halted until the host clears the HLT bit. Only 
then does the GSP fetch the level-0 vector address from location 
>FFFF FFEO and begin executing its reset service routine. 

• Self-Bootstrap Mode 

If I-ICS is low at the end of reset, the GSP first performs the eight 
RAS-only refresh cycles required to initialize the DRAMs. Immediately 
following the eight RAS-only cycles, the GSP fetches the level-0 vector 
address from location >FFFF FFEO, and begins executing its reset ser-
vice routine. 

Unlike other interrupts and software traps, reset does not save previous ST or 
PC values. This is because the value of the stack pointer just before a reset is 
generally not valid, and saving its value on the stack is unnecessary. A TRAP 
0 instruction, which uses the same vector address as reset, similarly does not 
save the ST or PC values. 

8.7.1 Asserting Reset 

A reset is initiated by asserting  the  RESET input pin at its active-low level. To 
reset the GSP at power up, RESET must remain active low for a minimum of 
40 local clock periods after power levels have become  stable. At times other 
than power up, the GSP is also reset by holding RESET low for a minimum of 
40 clock periods. The 40-clock interval  is required to bring GSP internal cir-
cuitry to a known initial state. While RESET remains asserted, the output and 
bidirectional signals are driven to a known state. 

The GSP drives its RAS signal inactive high as long as RESET remains low. The 
specifications for certain DRAM and VRAM devices, including the TMS4161, 
TMS4164 and TMS4464 devices, require that the RAS signal be driven inac-
tive-high for 100 microseconds during system reset. Holding RESET low for 
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150 microseconds will cause the RAS signal to remain high for the 100 mi-
croseconds required to bring the memory devices to their initial states. 
DRAMs such as the TMS4256  specify an initial RAS high time of 200 micro-
seconds, i•- 11: ring that RESET be held low for 250 microseconds. In general, 
holding RI • ' low for t microseconds ensures that RAS remains high initially 
for t - 50 microseconds. 

8.7.2 Suspension of DRAM-Refresh Cycles During Reset 

An active-low level at the RESET pin is con i ■ l.•••l to be a power-up condition, 
and DRAM refresh is not performed until ••• • goes inactive high. Conse-
quently, the previous contents of the local memory may not be valid after a 
reset. 

8.7.3 Initial State Following Reset 

While the RESET pin is asserted low, the GSP's output and bidirectional pins 
are forced to the states listed in Table 8-7. 

Table 8-7. State of Pins During a Reset 

Outputs Driven 
To High level 

Outputs Driven 
To Low Level 

Bidirectional 
Pins Driven to 

High Impedance 

DDOUT BLANK HSYNC 
Y VSYNC 
• HDO-HD15 

LADO-LAD15 
TR/QE 

RAS 
CAS 

T./ 
HINT 

Immediately following reset, all I/O registers are cleared (set to >0000), with 
the possible exception of the HLT bit in the HSTCTL register. The HLT  bit is 
set to 1 if HCS is high just before the low-to-high transition of RESET. 

Just before execution of the first instruction in the reset routine, the 
TMS34010's internal registers are in the following state: 

• General-purpose register files A and B are uninitialized. 

• The ST is set to >0000 0010. 

• The PC contains the 32-bit vector fetched from memory address 
>FFFF FFEO. 

The instruction cache is in the following state at this time: 

• The SSA (segment start address) registers are uninitialized. 

• The LRU (least recently used) stack is set to the initial sequence 0,1,2,3, 
where 0 occupies the most-recently-used position, and 3 occupies the 
least-recently-used position. 

• All P (present) flags are cleared to Os. 
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Interrupts, Traps, and Reset - Reset 

8.7.4 Activity Following Reset 

Immediately following the low-to-high transition of RESET, the GSP performs 
a series of eight RAS-only memory cycles to bring the DRAMs and VRAMs to 
their initial operating states. These cycles are completed before any accesses 
of the GSP's memory (by either the GSP or host processor) are allowed to 
occur. If the host processor attempts to access the GSP memory indirectly 
before the eight RAS-only cycles have completed, it will receive a not-ready 
signal from the GSP until the cycles have completed. The eight RAS-only cy-
cles occur regardless of the initial value to which the HLT bit in the HSTCTL 
register is set. 

Each of the eight RAS-only cycles is a standard DRAM-refresh cycle. The RF 
bus status signal output with the row address is active low. The row address 
is all Os. 

Following the eight RAS-only cycles, the GSP automatically begins to initiate 
a new DRAM-refresh cycle every 32 GSP local clock cycles. The first DRAM 
refresh cycle begins approximately 32 local clock periods after the end of reset. 
A DRAM-refresh cycle will continue to be initiated every 32 GSP clock cycles 
until the DRAM-refresh rate is changed by the GSP or host processor. 

The GSP is configured by means of an external signal input on the HCS pin to 
either: 

• Begin executing instructions immediately after reset is completed (self-
bootstrap mode) 
or 

• Halt until the host processor instructs it to begin executing (host-present 
mode) 

8.7.4.1 Self - Bootstrap Mode 

In self-bootstrap mode, the GSP begins executing instructions immediately 
following reset. This mode is typically used in a system in which the reset 
vector and reset service routine are contained in nonvolatile memory, such as 
a bootstrap ROM. This type of system does not necessarily require a host 
processor, and the GSP may be responsible for performing host processor 
functions for the system. 

The GSP is configured in self-bootstrap  mode  when the FICS pin is low just 
before the low-to-high transition of RESET. The low HCS level forces the HLT 
bit to 0. Immediately following the end of reset and the eight RAS-only cycles, 
the GSP fetches the level-0 vector address and begins executing the reset in-
terrupt routine. 

At the low-to-high transition of RESET, the FICS input is internally delayed 
before being checked to determine how to set the HLT  bit. In a system  with-
out a host processor, for instance, this permits the HCS and RESET pins to be 
tied together, eliminating the need for additional external logic. 

Transitions of the HCS and RESET signals are assumed  to be asynchronous 
with respect to the GSP local clock. HCS and RESET are internally synchro-
nized to the local clock by being held in latches for at least one clock period 
before being used by the GSP. The delay through the synchronizer latch is 
from one to two local clock periods, depending  on the phase  of the signal 
transitions relative to the clock. To permit the HCS and RESET pins to be wired 

8-11 



Interrupts, Traps, and Reset - Reset 

together, GSP on-chip logic delays the HCS low-to-high transition to ensure 
that it is detected after the RESET low-to-high transition. The level of the 
delayed FICS signal at the time the low-to-high RESET transition is detected 
determines the setting of the HLT bit. 

8.7.4.2 Host-Present Mode 

Host-present mode assumes that a host processor is connected to the GSP's 
host interface pins. In this mode, the GSP local memory can be composed 
entirely of RAM (no ROM). Following reset, the host processor must down-
load the initial program code, interrupt vectors, and so on, before allowing the 
GSP to begin executing instructions. 

The GSP is configured in host-present mode as follows. On the trailing edge 
of RESET, the HCS (host interface chip select) input is sampled. If the HCS pin 
is inactive high, internal logic forces the HLT (halt) bit to a 1. In this fashion, 
the GSP is automatically halted following reset, and will not begin execution 
of its reset service routine until the host processor loads a 0 to HLT. In the 
meantime, the host processor is able to load the memory and I/O registers with 
the appropriate initial values before the GSP begins executing instructions. 
This may include writing the reset vector and reset service routine into the 
GSP's memory, for example. 

No additional external logic is required to force HCS high before the low-to-
high transition of RESET. The simple external decode logic typically used will 
drive the HCS input active low only when one of the GSP's host interface re-
gisters is addressed by the host processor. Assuming that the host processor 
is not actively chip-selecting the GSP at the end of reset, FICS is high. 
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