
7. Graphics Operations 

This section provides an overview of the graphics drawing capabilities of the 
TMS34010. Topics in this section include: 
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Graphics Operations - Overview 

7.1 Graphics Operations Overview 

The TMS34010 instruction set provides several fundamental graphics drawing 
operations: 

• The PIXBLT and FILL instructions manipulate two-dimensional arrays 
of pixels. 

• The LINE instruction implements the fast inner loop of the Bresenham 
algorithm for drawing lines. 

• The DRAV (draw and advance) instruction draws a pixel and increments 
the pixel address by a specified amount. This function supports the im-
plementation of incremental algorithms for drawing circles, ellipses, arcs, 
and other curves. 

• The PIXT (pixel transfer) instruction transfers individual pixels from one 
location to another. 

The PIXBLT instruction plays an important role in rapidly drawing high-
quality, bit-mapped text. In particular, the PIXBLT B,XY and PIXBLT B,L in-
structions expand character patterns stored as bit maps (at one bit per pixel) 
into color or gray-scale characters of 1, 2, 4, 8 or 16 bits per pixel. This allows 
character shape information to be stored independently of attributes such as 
color and intensity, providing greater storage efficiency. 

The TMS34010 provides several methods for processing the values of the 
source and destination pixels before the result is written to the destination. 
These operations include: 

• Boolean and arithmetic pixel processing operations for combining source 
pixels with destination pixels. 

• A plane mask which specifies which bits within pixels can be altered 
during pixel operations. 

• Transparency, an option which permits objects written onto the screen 
to have transparent regions through which the background is visible. 

Pixel processing, plane masking and transparency can be used simultaneously. 
These operations on pixel values can be used in combination with any of the 
pixel drawing instructions listed above. The arithmetic operations are espe-
cially important in displays that use multiple bits per pixel to encode color or 
intensity information. For example, the MAX and MIN operations allow two 
objects with antialiased edges to be smoothly merged into a single image. 
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The TMS34010 has features such as automatic window checking to support 
windowed graphics environments. Three window-checking modes are pro-
vided: 

• Clipping a figure to fit a rectangular window. 

• Requesting an interrupt on an attempt to write to a pixel outside of a 
window. 

• Requesting an interrupt on an attempt to write to a pixel inside of a 
window. 

The last of these modes can be used to identify screen objects that are pointed 
to by a cursor. The window checking modes can be used with any of the pixel 
drawing instructions that use XY addressing. Window checking is optional 
and can be turned off. 

The TMS34010 provides further support for windowed environments by rap- 
idly detecting the following conditions: 	 1 

• Whether a point lies inside or outside a rectangular window. 

• Whether a line lies entirely inside or entirely outside a window. 

Lines that lie entirely outside a window can be trivially rejected, meaning that 
they take no further processing time. These conditions are detected via the 
CPW (compare point to window) instruction, which takes only one machine 
state to compare the XY coordinates of a point to all four sides of a window. 

Another operation that occurs frequently in windowed environments is calcu-
lating the region where two rectangles intersect. This is a feature available 
with the PIXBLT and FILL instructions. Based on the window-checking 
mode, one of two methods can be selected to calculate the region of inter-
section: 

• The destination pixel array is preclipped to a rectangular window before 
the PixBlt or fill operation begins. 

• The intersection of the destination pixel array with a rectangular window 
is calculated, but no pixels are transferred. 
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7.2 Pixel Block Transfers 

The TMS34010 supports a powerful set of raster operations, known as Pixfilts 
(pixel block transfers), that manipulate two-dimensional arrays of bits or pix-
els. A pixel array is defined by the following parameters: 

• A starting address (by default, the address of the pixel with the lowest 
address in the array) 

• A width DX (the number of pixels per row) 

• A height DY (the number of rows of pixels) 

• A pitch (the difference between the starting addresses of two successive 
rows) 

A pixel array appears as a rectangular area on the screen. The array pitch is the 
same in this case as the pitch of the display. The default starting address is 
the address of the pixel in the upper left corner of the rectangle. (This assumes 
that the ORG, PBH, and PBV bits in the CONTROL register are all set to their 
default value of 0.) 

Two operands must be specified for a PIXBLT instruction: 

• A source pixel array 

• A destination pixel array 

The two arrays must have the same width and height, although they may have 
different pitches. Each pixel in the source array is combined with the corre-
sponding pixel of the destination array. A Boolean or arithmetic pixel proc-
essing operation is selected and applied to the PIXBLT operation. The default 
pixel processing operation is replace. If replace is selected, source pixel values 
are simply copied into destination pixels. 

Before executing a PIXBLT instruction, load the following parameters into the 
appropriate GSP internal registers: 

DYDX 	Composed of two portions: DX, which specifies the width of the 
array, and DY, which specifies the height of the array. 

PSIZE 	Pixel size (number of bits per pixel). 

SADDR Starting address of source array (XY or linear address). 

DADDR Starting address of destination array (XY or linear address). 

SPTCH Source pitch, or difference in memory addresses of two vertically 
adjacent pixels in the source array. 

DPTCH Destination pitch, or difference in memory addresses of two verti-
cally adjacent pixels in the destination array. 
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If either the source or destination array is specified in XY format, the contents 
of the CONVSP and CONVDP registers will be used in instances in which the 
Y component of the starting address must be adjusted prior to the start of the 
PixBlt. The Y component may require adjustment, either to preclip the array 
or to select a starting pixel in one of the lower two corners of the array. 

Pitches and starting addresses must be specified separately for the two arrays 
(source and destination). The width, height, and pixel size are common to 
both arrays. (During a binary expand operation, only the destination pixel size 
is specified; the source pixel size is assumed to be one bit.) 

The starting address of a pixel array can be specified as a linear (memory) 
address or as an XY address. Window checking can be used only when the 
destination array is pointed to by an XY address. 

On-screen objects may be defined as XY arrays but may be more efficiently 
stored as linear arrays in off-screen memory. An array specified in linear format 
can be transferred to an array specified in XY format (and vice versa) by means 
of the PIXBLT L,XY and PIXBLT XY,L instructions. 

The FILL instruction fills a specified destination pixel array with the pixel value 
specified in the COLOR1 register. A fill operation can be thought of as a 
special type of PixBlt that does not use a source pixel array. The source pixel 
value used in pixel processing is the value in the COLOR1 register. The des-
tination array of a FILL instruction can be specified in either XY or linear for-
mat. 

7.2.1 Color - Expand Operation 

The TMS34010 allows shape information to be stored separately from attri-
butes such as color and intensity. A shape can be stored in compressed form 
as a bit map containing 1s and Os. The color information is added as the shape 
is drawn to the screen; the 1s in the bit map are expanded to the specified 
Color 1 value, and the Os are expanded to the Color 0 value. This saves a 
significant amount of memory when the pixel size in the display memory is two 
bits or more. 

Two PIXBLT instructions, PIXBLT B,XY and PIXBLT B,L, provide the color-
expand capability. The source array for either instruction is a bit map (one bit 
per pixel) stored off-screen in linear format for greater storage efficiency. The 
destination array can be specified in either XY or linear format. The pixel size 
for the destination array is governed by the value in the PSIZE register. The 
colors to which the 1s and Os in the source array are expanded are specified 
in the COLOR1 and COLORO registers. 

A primary benefit of the color-expand capability is the reduction in table area 
needed to store text fonts. Font bit maps are stored in compressed form at one 
bit per pixel. The color-expand operation adds color to a character shape at 
draw time, allowing color to be treated as an attribute separate from the shape 
of the character. The alternative would be to store the fonts in expanded form, 
which can be costly. The amount of table storage necessary to store red letters 
A-Z, blue letters A-Z, and so on, multiplied by the number of font styles 
needed for an application program, would be prohibitive. Furthermore, the 
color-expand operation is inherently faster than using pre-expanded fonts 
because far fewer bits of character shape information have to be read from the 
font table when a character is drawn to the screen. 
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Figure 7-1 shows the expansion of a bit map, one bit per pixel and four bits 
wide, into four 4-bit pixels (transforming 0-1 -1 -0 into yellow-red-red-yellow, 
for example). Before transferring the expanded source array to the destination 
array, any of the Boolean or arithmetic pixel processing operations can be ap-
plied. 

Four bits per pixel example 
of color expand 

Four bit binary or unexpended Image 

151151111111fill 	fillE1611111511 	 ararassra COLOR1 
Register 

COLORO 111117115111 	 IIRIMIE111 	Iti1511141111 Register 
Execute Expand 

timakelig tunituaii 

Resulting 16-bit expanded Image 

Figure 7-1. Color-Expand Operation 

The expand function is also useful in applications that generate shapes or 
patterns dynamically. During the first stage of this process, a compressed im-
age is constructed in an off-screen buffer area at one bit per pixel. The image 
is built up of geometric objects such as rectangles, circles or polygons. Pat-
terns can also be added. When complete, the compressed image is color-
expanded onto the screen. This method defers the application of color and 
intensity attributes until the final stage. 

Combining color expand with the replace-with-transparency operation yields 
a new operation that is particularly useful in drawing overlapping or kerned 
text. The color value used to replace the Os in the source array is selected by 
the programmer as all Os, which is the transparency code. The GSP defers the 
check for transparency until after the color-expand operation has been per-
formed. As the color-expand operation is performed, the Os in the source array 
are expanded to all Os. Only the pixels in the destination array that correspond 
to nontransparent pixels in the resulting source array are replaced. 

The PIXBLT B,XY and PIXBLT B,L instructions can be used in conjunction 
with pixel processing, transparency and plane masking. Source pixels are ex-
panded before being processed. Window checking can be used with PIXBLT 
B,XY. 
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7.2.2 Starting Corner Selection 

The default starting address of a pixel array is the lowest pixel address in the 
array. When an array is displayed on the screen, as shown in Figure 7-2 a, the 
starting address is the address of the pixel in the upper left corner of the array. 
(The XY origin is located in its default position at the upper left corner of the 
screen.) During a PixBlt operation, this pixel is processed first. The PixBlt 
processes pixels from left to right within each row, beginning at the top row 
and moving toward the bottom row. The pixel at the lower right corner of the 
array is processed last. 

Certain PixBlt operations allow any of the other three corners to be used as the 
starting location. This may be necessary, for instance, if the source and des-
tination arrays overlap. The sequence in which pixels are moved when the 
arrays overlap should be controlled so as to not overwrite the pixels in the 
source array before they are written to the destination array. 

Figure 7-2 shows how the PBV and PBH bits in the CONTROL register de-
termine the starting corner for the PixBlt operation. The starting corner is in-
dicated for each of four cases. PBH selects movement in the X direction, from 
left to right or right to left. PBV selects movement in the Y direction, from top 
to bottom or bottom to top. 

       

  

Pixel Array 
Address 

4 

  

     

+X 

     

       

Pixel Array 
Address 

PBH=0, PBV=O 
	

PBH.t PBV=O 

Pixel Array 
Address 	• 

 

Pixel Array 
Address 

  

    

      

      

PBH=0, PBV=1 
	

PBH=1, PBV=1 

Note: Starting corners are shaded. 

Figure 7 - 2. Starting Corner Selection 
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PBH=O The PixBlt processes pixels from left to right; that is, in the direction 
of increasing X. 

PBH=1 	The PixBlt processes pixels from right to left; that is, in the direction 
of decreasing X. 

PBV=O The PixBlt processes rows from top to bottom; that is, in the di-
rection of increasing Y.  

PBV=1 	The PixBlt processes rows from bottom to top; that is, in the di- 
rection of decreasing Y. 

All the pixels in one row are processed before moving to the next row. 

When one or both of the arrays is specified in XY format, the GSP automat-
ically calculates the actual starting address (specified by PBH and PBV) from 
the default starting address (that is, the lowest pixel address in the array) and 
the width and height of the array. Automatic starting address adjustment is 
available with the following instructions: 

• PIXBLT L,XY 

• PIXBLT XY,L 

• PIXBLT XY,XY 

The programmer supplies the default starting addresses for these PixBlts in the 
SADDR and DADDR registers. During the course of instruction execution, 
SADDR and DADDR are automatically adjusted to the address of the corner 
selected by PBH and PBV. 

When both arrays are specified in linear format, the starting addresses of the 
appropriate corner pixels must be provided by the programmer. The PIXBLT 
L,L instruction allows any of the four corners to be used as the starting lo-
cation, but in this case the programmer must adjust the addresses in SADDR 
and DADDR to the corner selected by PBH and PBV. 
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7.2.3 Interrupting PixBlts and Fills 

PIXBLT and FILL are interruptible instructions. An interrupt can occur during 
execution of one of these instructions; when interrupt processing is com-
pleted, execution of the PIXBLT or FILL resumes at the point at which the in-
terruption occurred. 

The execution time of a PIXBLT or FILL instruction depends on the specified 
pixel array size. In order to prevent high-priority interrupts from being delayed 
until completion of PixBlts and fills of large arrays, the PIXBLT and FILL in-
structions check for interrupts at regular intervals during their execution. 

When a PIXBLT or FILL instruction is interrupted the PBX (PixBlt executing) 
status bit is set to 1. This records the fact that the interrupt occurred during 
a pixel array operation. The PC and the ST are pushed onto the stack, and 
control is transferred to the appropriate interrupt service routine. At the end 
of the interrupt service routine, an RETI (return from interrupt) instruction is 
executed to return control to the interrupted program. The RETI instruction 
pops the ST and PC from the stack. When the PBX bit is detected, execution 
of the interrupted PIXBLT or FILL instruction resumes. 

At the time of the interrupt, the state of the PIXBLT or FILL instruction is saved 
in certain B-file registers. The source and destination address registers contain 
intermediate values. The source and destination pitches may also contain in-
termediate values, depending on the instruction. The SADDR, SPTCH, 
DADDR, DPTCH registers and registers B10-B14 (as well as the original set 
of implied operands) contain the information necessary to resume the in-
struction upon return from an interrupt. 

If the interrupt routine uses any of these registers, they should be saved on the 
stack and restored when interrupt processing is complete. By following this 
procedure, PIXBLT or FILL instructions can be safely executed within interrupt 
service routines. 

Note: 

The PBX bit is not set to 1 when a PIXBLT or FILL instruction is aborted 
due to a window violation. 
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7.3 Pixel Transfers 

The TMS34010 uses the PIXT (pixel transfer) instructions to transfer individ-
ual pixels from one location to another. The following pixel transfers can be 
performed: 

• From an A- or B-file register to memory, 

• From memory to an A- or B-file register, 

or 

• From one memory location to another. 

The address of a pixel in memory can be specified in XY or linear format. Li-
near addresses must be pixel aligned. 

The pixel size for all PIXTs is specified by the value in the PSIZE register. Pixel 
sizes are restricted to 1, 2, 4, 8, or 16 bits to facilitate XY address computa-
tions, window checking, transparency, and arithmetic pixel processing. 

The PIXT instruction can be used in conjunction with window checking, 
Boolean or arithmetic pixel processing, plane masking, and transparency. 

7.4 Incremental Algorithm Support 

The TMS34010 supports incremental drawing algorithms via its DRAV (draw 
and advance) and LINE instructions. The DRAV instruction is used primarily 
in the construction of algorithms for incrementally drawing circles, ellipses, 
arcs, and other curves. The DRAV instruction can also be used in the inner 
loop of algorithms for drawing straight lines incrementally. Lines, however, 
are treated as a special case by the TMS34010 in order to achieve even faster 
drawing rates. A separate instruction, LINE, implements the entire inner loop 
of the Bresenharn algorithm for drawing lines. 

The DRAV (draw and advance) instruction draws a pixel to a location pointed 
to by a register; the pointer register is then incremented to point to the next 
pixel. The pointer is specified as an XY address. The X and Y portions of the 
address are incremented independently, but in parallel. The value written to 
the destination pixel in memory is taken from the COLOR1 register. 

The DRAV instruction is embedded in the inner loop of an incremental algo-
rithm to speed up its execution. As an incremental algorithm plots each pixel 
on a curve, it also determines where the next pixel will be drawn. The next 
pixel is typically one of the eight pixels immediately surrounding the pixel just 
plotted on the screen. Advancing in this manner, the algorithm tracks the 
curve from one end to the other. 

The DRAV and LINE instructions may be used in conjunction with Boolean 
or arithmetic pixel processing operations, window checking, plane masking 
and transparency. 
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7.5 Transparency 

When a PixBIt is used to draw an object to the screen, some of the pixels in 
the rectangular pixel array that contains the object may not be part of the ob-
ject itself. Transparency is a mechanism that allows surrounding pixels in the 
array to be specified as invisible. This is useful for ensuring that only the ob-
ject, and not the rectangle surrounding it, is written to the screen. 

Transparency is enabled by setting the T bit in the CONTROL register to 1, or 
disabled by setting the T bit to 0. When enabled, a pixel that has a value of 0 
is considered transparent, and will not overwrite a destination pixel. Trans-
parency detection is applied not to the source pixel values, but to the pixel 
values resulting from plane masking and pixel processing. When an operation 
performed on a pair of source and destination pixels yields a 0 result, the GSP 
detects this and prevents the destination pixel from being altered. In the case 
of pixel processing operations such as AND, MIN, and replace, a source pixel 
value of 0 ensures that the result of the operation will be a transparent pixel. 

Figure 7-3 illustrates how transparency works in the GSP. Assuming four bits 
per pixel, the hardware must detect strings of Os of length four falling between 
pixel boundaries. While bit strings A and B are both of pixel length, only 
string A is detected as transparent. String B crosses the pixel boundary. The 
memory interface logic generates an internal mask to govern which bits are 
modified during a write cycle. This mask contains is in the bits corresponding 
to the transparent pixel. Only destination bits corresponding to Os in the mask 
will be modified. 

Data to be written 

String A 	Id—String B —$ 

1010110000j1000101101 

Mask generated 

Data to be modified 

Resulting data 

10 0 0 oil 1 1 1 1 o 0 0 010 0 0  

1A A A A1B B B BIC C C CID D D D1 

 

10 1 0 118 B B BI1 0 0 010 1 	1 01 

Note: This example assumes four bits per pixel. 

Figure 7-3. Transparency 

Figure 7-7 (page 7-17) and Figure 7-8 (page 7-19) illustrate several pixel 
processing operations. Figure 7-8 h shows an example of a replace operation 
performed with transparency enabled. The pixels surrounding the letter A 
pattern in the source array are transparent (all Os). Compare Figure 7-8 h with 
Figure 7-7 d; this replace-with-transparency operation is analogous to the 
logical OR operation in a one-bit-per-pixel display. 

Transparency can be used with any instruction that writes to pixels, including 
the PIXBLT, FILL, DRAY, LINE, and PIXT instructions. Transparency does not 
affect writes to non-pixel data. 
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7.6 Plane Masking 

The plane mask is a hardware mechanism for protecting specified bits within 
pixels. Mask-protected pixels will not be modified during graphics in-
structions. The plane mask allows the bits within pixels to be manipulated as 
though the display memory were organized into bit planes (or co/or planes) 
that can selectively be protected from modification. The number of planes 
equals the number of bits per pixel. 

Consider an example in which the pixel size is four bits. The bits within each 
pixel are numbered 0-3, and belong to planes 0-3, respectively. All the bits 
numbered 0 in all the pixels form plane 0, all the bits numbered 1 in all the 
pixels form plane 1, and so on. 

The plane mask allows one or more planes to be manipulated independently 
of the other planes. Given four planes of display memory, for example, three 
of the planes can be dedicated to eight-color graphics, while the fourth plane 
can be used to overlay text in a single color. The plane mask can be set so that 
the text plane can be modified without affecting the graphics planes, and vice 
versa. 

The PMASK register contains the plane mask. Each bit in the plane mask 
corresponds to a bit position in a pixel. The 1 s in the mask designate pixel 
bits that are protected, while Os in the mask designate pixel bits that can be 
modified. Those pixel bits that are protected by the plane mask are always 
read as Os during read cycles, and are protected from alteration during write 
cycles. While no single control bit enables or disables plane masking, it is ef-
fectively disabled by setting PMASK to all Os; this is the default condition 
following reset. 

In principal, the number of bits in the plane mask is the same as the pixel size. 
However, the mask for a single pixel must be replicated to fill the entire 16-bit 
PMASK register. For example, if the pixel size is four bits, the 4-bit mask is 
replicated four times within PMASK; in bits 0-3, 4-7, 8-11, and 12-15. These 
four copies of the mask are applied to the four pixels in a word written to or 
read from memory. A 16-bit PMASK value for pixels of 1, 2, 8, or 16 bits is 
constructed similarly by replicating the mask 16, 8, 2, or 1 times, respectively. 

The plane mask affects only pixel accesses performed during execution of the 
PIXBLT, FILL, PIXT, DRAY, and LINE instructions. Data accesses by non-
graphics instructions are not affected. 

The following list summarizes operation of the PMASK register during pixel 
reads and writes: 

• 	Pixel Read: 

The Os in PMASK correspond to unprotected bits in the source pixel that 
are seen by the GSP to contain the actual values read from memory. 

The is in PMASK correspond to protected bits in the source pixel that 
are seen as Os by the GSP, regardless of the values read from memory. 
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• Pixel Write: 

The Os in PMASK specify those bits in the destination pixel in memory 
which may be altered. 

The is in PMASK specify protected bits in the destination pixel which 
cannot be altered. 

When a pixel is being transferred from a source to a destination location, plane 
masking is applied to the values read from the source and destination before 
pixel processing is applied. As the operands are read from memory, the bits 
protected by the plane mask are replaced with Os before the specified Boolean 
or arithmetic pixel processing operation is performed. Transparency detection 
is performed on the result of this operation. When the result is written back 
to the destination, those bits of the destination that are protected by the plane 
mask are not modified. 

Source pixels that originate from registers are not affected by the plane mask, 
and undergo pixel processing in unmodified form. The FILL, DRAY, LINE, 
PIXT Rs,*Rd, and PIXT Rs,*Rd.XY instructions obtain their source pixels from 
registers. 

Figure 7-4 shows how special hardware in the local memory interface of the 
TMS34010 applies the plane mask to pixel data during a read cycle. The pixel 
size for this example is eight bits per pixel. This could represent the execution 
of a PIXT •Rs.XY,Rd instruction, for instance. 

Move this pixel 
Into a GSP register 

15(MSB) 	 8 	7 	 0(LSB)  
(a) Original data In memory (2pixels)IA  A A A A A A AIBBBBBBBBI 

(b) Plane mask (PMASK) 
	

11 1 0 0 1 0 0 0 1 1 	1 0 0 1 0 0 0 I 

(o) Data read Into GSP register 
	

10000000010013B0BBBI 

Notes: 1. This example assumes eight bits per pixel. 
2. The pixel moved into the GSP register is left justified. All register bits to the left of 

the pixel are zero filled. 

Figure 7-4. Read Cycle With Plane Masking 

• Figure 7 - 4 a shows the 16-bit word containing the pixel as it is read 
from memory. 

• The word is AN Ded with the inverse of the plane mask shown in b. 

• The result in Figure 7-4 c shows that the bits within the data word that 
correspond to is in the mask have been set to Os. 
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After plane masking, the designated pixel is loaded into the eight LSBs of the 
32-bit destination register, and the 24 MSBs of the register are filled with Os. 

Figure 7-5 shows the effect of combining plane masking with pixel transpar-
ency. Again, the performance of the special hardware in the local memory 
interface controller is demonstrated. The example shows the transfer of two 
pixels during the course of a PixBlt operation with transparency enabled, the 
pixel size set at eight bits, and the replace pixel processing operation. The 
inverse of PMASK is ANDed with the source data, and transparency detection 
is applied to the resulting entire pixel. In other words, the result is used to 
control the write in the manner described in the previous discussion of pixel 
transparency. Since the three LSBs of the source pixel in bits 8-15 are Os, and 
the rest of the pixel is masked off, the entire source pixel is interpreted as 
transparent. The memory interface logic generates an internal mask to govern 
which bits are modified during a write cycle. This mask contains Os in the bits 
corresponding to the transparent pixel. 

15(MSB) 
	

8 
	

7 
	

0(LSB) 
(a) Original data In memory (2 pixels) 

(b) Souroe data In memory 
(to be moved) 

(0) Plane mask (PMASK) 

(d) Mask source data for trans-
parency detection (SRC • 15);MR) 

(e) Transparency mask 

(f) Combined mask (PMASR• trans-
parency mask) 

(g) Resulting memory data after 
write cycle (C ombined Mas• • 
SRC DATA + ombfrief Weal. • 
DST DATA) 

1A A A A A A A AIBBBBBBBB1 

IYYYYY000IZ Z 22 ZZ Z Z1 

111111 	00ol-1111100o) 

lo o 0 0 0 0 0 olo go 0 ozz z1 

Igo g o go 0 011111 111 11 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

IAA A A AA A AIBBBBBZ Z Z1 

Note: This example assumes eight bits per pixel. 

Figure 7-5. Write Cycle With Transparency and Plane Masking 

• Figure 7-5 a shows the original data at the destination location in me-
mory. 

• The source data are shown in b. 

• The source data are ANDed with the inverse of the plane mask shown 
in c. 

• Figure 7-5 d shows the intermediate result produced by c. 

• This result is used to generate the transparency mask in e, which is 
AN Ded with the inverse of the plane mask in c to produce the composite 
mask shown in f. 

• The result in g is produced by replacing with the source only those bits 
of the destination corresponding to 1s in the composite mask in f. 
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7.7 Pixel Processing 

Source and destination pixel values can be combined according to the pixel 
processing operation (or raster operation) selected. The TMS34010's pixel 
processing operations include 16 Boolean and 6 arithmetic operations. The 
Booleans are performed in bitwise fashion on operand pixels of 1, 2, 4, 8, or 
16 bits. The arithmetic operations treat operand pixels of 4, 8, or 16 bits as 
2's complement integers. 

When a pixel is read from its source location, it is logically or arithmetically 
combined with the corresponding destination pixel according to the pixel 
processing option selected, and the result is written to the destination pixel. 
The pixel processing operation is selected by the PPOP field in the CONTROL 
register. Table 7-1 and Table 7-2 list the 22 PPOP codes and their meanings. 

Table 7-1. Boolean Pixel Processing Options 

PPOP Field Operation 

00000 Source ' Destination 

00001 Source AND Destination " Destination 

00010 Source AND —Destination " Destination 

00011 Os " Destination 

00100 Source OR —Destination " Destination 

00101 Source XNOR Destination " Destination 

00110 —Destination ' Destination 

00111 Source NOR Destination " Destination 

01000 Source OR Destination ' Destination 

01001 Destination ' Destination 

01010 Source XOR Destination ' Destination 

01011 —Source AND Destination ' Destination 

01100 1s " Destination 

01101 —Source OR Destination ' Destination 

01110 Source NAND Destination " Destination 

01111 —Source ' Destination 

Table 7-2. Arithmetic (or Color) Pixel Processing Options 

PPOP Field Operation 

10000 Source + Destination ' Destination 

10001 ADDS(Source, Destination) ' Destination 

10010 Destination - Source " Destination 

10011 SUBS(Source, Destination) " Destination 

10100 MAX(Source, Destination) " Destination 

10101 MIN(Source, Destination) ' Destination 

10110-11111 Reserved 
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In Table 7-2, pixel processing codes 10000 and 10010 correspond to standard 
2's complement addition and subtraction. A result that overflows the specified 
pixel size causes the pixel value to wrap around within its 4, 8, or 16-bit range. 
Carry bits are, however, prevented from propagating to adjacent pixels. 

The ADDS (add with saturation) and SUBS (subtract with saturation) oper-
ations shown in Table 7-2 produce results identical to those of standard ad-
dition or subtraction, except when arithmetic overflow occurs. When the 
ADDS operation would produce an overflow result, the result is replaced with 
all 1s. When the SUBS operation would produce an underflow result, the re-
sult is replaced with all Os. 

The MAX operation shown in Table 7-2 compares the source and destination 
pixels and then writes the greater value to the destination location. The MIN 
operation is similar, but writes the lesser value to the destination. 

Figure 7-6 depicts the interaction of pixel processing with other graphics op-
erations when a source pixel is transferred to a destination pixel. Note that this 
is a general description; some of these operations do not occur if they are not 
selected. Pixels are first read from memory and modified by the plane mask. 
Pixel processing is then performed on the modified pixel values. The plane 
mask is applied to the result. Bits which are 1s in the PMASK produce 0 bits 
in the result of this process. Thus, some processed pixels may become trans-
parent as the result of plane masking. Next, transparency detection is applied 
to the data, and finally, a read-modify-write operation is invoked. 

Source 	 Destination \ 
pixel pixel 

Read Readt 

PMASK PMASK 

Pixel 
Processing 

V 

PMASK 

Transparency 
Detect 

Read-Modify-Write t 

Destination 
Pixel 

t Only necessary if rep/ace is not selected. 
t Only necessary when plane masking or transparency is active and 

the pixel size is not 16, or when the data is not word-aligned. 

Figure 7-6. Graphics Operations Interaction 
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7.8 Boolean Processing Examples 

Figure 7-7 illustrates the effects of five commonly used Boolean operations 
when applied to one-bit pixels. Black regions contain Os, and white regions 
contain 1 s. Figure 7-7 a and b show the original source and destination ar-
rays. The source operand in a is the letter A, and the destination in b is a 
calligraphic-style X. 

(A) SOURCE ARRAY 
	

(B) ORIGINAL DESTINATION 
ARP. a .. 

(C) REPLACE (D) OR (E) AND-NOT 

(F) AND (G) XOR 

Figure 7-7. Examples of Operations on Single-Bit Pixels 
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7.8.1 Replace Destination with Source 

A simple replacement operation overwrites the pixels of the destination array 
with those of the source. Figure 7-7 c shows the letter A written over the 
center portion of a larger X using the replace operation. The rectangular region 
around the letter A obscures a portion of the X lying outside the A pattern. 
Other operations allow only those pixels corresponding to the A pattern within 
the rectangle to be replaced, permitting the background pattern to show 
through. These are the logical OR and logical AND-NOT (NOT source AND 
destination) operations. The replace-with-transparency operation performs 
similarly in color systems. 

7.8.2 Logical OR of Source with Destination 

Figure 7-7 d illustrates the use of the logical OR operation during a PixBlt. 
For a one-bit-per-pixel display, the OR function leaves the destination pixels 
unaltered in locations corresponding to Os in the source pixel array. Destina-
tion pixels in positions corresponding to 1s in the source are forced to 1s. 

7.8.3 Logical AND of NOT Source with Destination 

Logically AN Ding the negated source with the destination is complementary 
to the logical OR operation. Destination pixels corresponding to 1s in the 
source array remain unaltered, but those corresponding to Os in the source are 
forced to Os. Figure 7-7 e is an example of the AND-NOT PixBlt operation 
(notice the negative image of the letter A). For comparison, Figure 7-7 f 
shows the result of simply AN Ding the source and destination. 

7.8.4 Exclusive OR of Source with Destination 

The XOR operation is useful in making patterns stand out on a screen in in-
stances where it is not known in advance whether the background will be 1s 
or Os. At every point at which the source array contains a pixel value of 1, the 
corresponding pixel of the destination array is flipped - a 1 is converted to a 
0, and vice versa. XOR is a reversible operation; by XORing the same source 
to the same destination twice, the original destination is restored. These pro-
perties make the XOR operation useful for placing and removing temporary 
objects such as cursors, and in "rubberbanding" lines. As seen in the example 
of Figure 7-7 g, however, the object may be difficult to see if both the source 
and destination arrays contain intricate shapes. 
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7.9 Multiple-Bit Pixel Operations 

The Boolean operations described in Section 7.8 are sufficient for single-bit 
pixel operations, but they may be inappropriate for multiple-bit pixel oper-
ations, especially when color is involved. For example, the result of a logical 
OR operation on a black-and-white (one bit per pixel) display is easily pre-
dicted - logically ORing black and white yields white. However, the intuitive 
meaning of this operation is less clear when it is applied to multiple-bit pixels; 
what effect should be expected when the color red is ORed with blue? 

7.9.1 Examples of Boolean Operations 

Boolean operations can be applied to multiple-bit pixels by combining the 
corresponding bits of each pair of source and destination pixels on a bit-by-bit 
basis according to the specified Boolean operation. 

Figure 7-8 illustrates Boolean operations on multiple-bit pixels. Figure 7-8 a 
illustrates the source array. It contains a red letter A which has the value 8 
(10002); the black background pixels have the value 0 (00002). Figure 7-8 
b shows the destination array, a yellow X which has the value 12 (11002); the 
pixels in the blue rectangle have the value 2 (00102). Figure 7-8 c through 
g show the effects of combining the source and destination arrays using the 
replace, logical OR, OR-NOT, AND and XOR PixBlt operations. Compare 
these to Figure 7-7 (page 7-17). Figure 7-8 i through n are discussed in 
Section 7.9.1.1 through Section 7.9.1.4. 

(a) 
	

(b) 

(c) 
	

(d) 
	

(e) 

Figure 7-8. Examples of Boolean Operations 
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(f) 
	

(g) 
	

(h) 

(I) 
	

(k) 

(I) 
	

(m) 
	

(n) 

Figure 7-8. Examples of Boolean Operations (Concluded) 

7.9.1.1 Figure 7 -8 i and j - Simple Addition and Subtraction 

Figure 7-8 i shows the result of adding the source and destination arrays. 
Simple binary 2's complement addition is used. When the sum of the two 
pixels exceeds the maximum pixel value, the result overflows. 

Figure 7-8 j shows the result of subtracting the source array from the desti-
nation array. Underflow occurs for those pixels whose calculated difference 
is negative. 

Simple addition and subtraction are complementary operations. They are re-
versible operations in the same sense as the XOR operation - by adding a 
source to a destination, and then subtracting the same source, the original 
destination is recovered. 
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7.9.1.2 Figure 7-8 k and I - Add and Subtract with Saturate 

The add and subtract operations described in Section 7.9.1.1 are binary 2's 
complement operations which allow overflow and underflow. An add-with-
saturate operation can be defined that stops the result at the maximum value 
rather than allowing it to overflow. For example, with four bits per pixel, ad-
ding 00102 to 11102 produces 11112. Similarly, a subtract-with-saturate 
operation can be defined that stops the result at 0 rather than allowing it to 
underflow. 

Figure 7-8 k and / illustrate examples of add and subtract with saturate. In 
these examples, the pixel size is four bits. By dedicating a different color to 
each value, the effects of each PixBlt operation become more visible. This 
method may present problems, however. For example, adding red to blue may 
not produce a meaningful result. 

An alternate method uses the 16 values 0 to 15 to represent increasing inten-
sities of a single color. Then the addition and subtraction operations would 
have obvious meaning - they would increase and decrease the intensity by 
known amounts. Developing this idea further, at 12 bits per pixel, four bits 
of intensity could be dedicated to each of the three color components, red, 
green and blue. Arithmetic operations could then be performed on the corre-
sponding components of each pair of source and destination pixels. These 
results would also have obvious meanings, and would not be limited to in-
tensities of a single color, as is the case with four bits per pixel. 

Figure 7-9 (page 7-22) presents examples in which the pixel values represent 
intensities of a single color. 

7.9.1.3 Figure 7 - 8 m - Maximum 

Figure 7-8 m illustrates the results of the MAX operation on the source and 
destination arrays. MAX compares two pixel values and replaces the destina-
tion pixel with the larger value. In some respects, MAX is the arithmetic 
equivalent of the Boolean OR function (compare Figure 7-8 m with Figure 7-7 
b) . The use of MAX in gray-scale and color displays is similar to that of OR 
in simple black and white. 

If the most-significant bits in each pixel are assigned to represent object pri-
ority (whether an object appears in front of or behind another object), the 
MAX operation can be used to replace only those pixels of the destination ar-
ray whose priorities are lower than those of the corresponding pixels in the 
source array. This allows an object to be drawn to the screen so that it appears 
either in front of or behind other objects previously drawn. In Figure 7-8 m 
the red A has a numerical value that is greater than that of the blue back-
ground, but less than that of the X. 

The MAX function is also useful for smoothly combining two antialiased ob-
jects that overlap. 
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7.9.1.4 Figure 7-8 n - Minimum 

Figure 7-8 n illustrates the results of the MIN operation on the source and 
destination arrays. MIN compares two pixel values and replaces the destina-
tion pixel with the smaller value. MIN is similar to the Boolean AND function. 
MIN can be used with priority-encoded pixel values, similar to MAX, but the 
effect is reversed. In Figure 7-8 n, the priorities of the two objects are reversed 
from that of the MAX example shown in Figure 7-8 m. The MIN operation 
also has uses similar to those of MAX in smoothly combining antialiased ob-
jects that overlap. 

7.9.2 Operations On Pixel Intensity 

Figure 7-9 illustrates the visual effects of various PixBIt operations on two 
intersecting disks. In these examples, each pixel is a four-bit value represent-
ing an intensity from 0 (black) to 15 (white). Before the PixBIt operation, 
only a single disk resides on the screen, as shown in Figure 7-9 a. The in-
tensity of the disk is greatest at the center (where the value is 12), and grad-
ually falls off as the distance from the center increases. Figure 7-9 b through 
f show the effects of combining a second, identical disk with the first. Figure 
7-9 b through e are produced using arithmetic operations; f is the result of a 
logical OR of the source and destination. These operations are discussed in 
Section 7.9.2.1 through Section 7.9.2.4. 

(a) 
	

(b) 
	

(c) 

(d) 
	

(e) 

Figure 7-9. Examples of Operations on Pixel Intensity 
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The gradual change in intensity at the edge of the disk in Figure 7-9 a is similar 
to the result produced by certain antialiasing techniques whose purpose is to 
reduce jagged-edge effects. A text font might be stored in antialiased form, 
for example, to give the text a smoother appearance. When two characters 
from the font table are PixBlt'd to adjacent positions on the screen, they may 
overlap slightly. The particular arithmetic or Boolean operation selected for the 
PixBlt determines the way in which the antialiased edges of the characters are 
combined within regions of overlap. 

7.9.2.1 Figure 7 -9 b - Replace with Transparency 

In Figure 7-9 b, a second disk is PixBlt'd into a position near the first disk. A 
replace-with-transparency operation is performed. Those pixels of the first 
disk that lie within the rectangular region containing the second disk, but are 
not part of the second disk, remain intact. The visual effect is that the second 
disk (at the right) appears to lie in front of the original disk (at the left). 
However, assuming that the gradual change in intensity at the perimeter of the 
disks is done for the purpose of antialiasing, the sharp edge that results where 
the second disk covers the first defeats this purpose. In other applications, this 
sharp edge may be desirable; for example, it might be used to make a text 
character or a cursor stand out from the background. The replace-with-
transparency operation also supports object priority by writing objects to the 
screen in ascending order of priority. 

7.9.2.2 Figure 7 -9 c - Add with Overflow and Subtract with Underflow 

In Figure 7-9 c, a second disk is PixBlt'd into an area overlapping the first disk, 
using an add-with-overflow operation. In this example, when 1 is added to 
an intensity of 15, the sum is truncated to four bits to produce the result 0. 
The effect of arithmetic overflow is visible at the intersection of the two disks 
as discontinuities in intensity. 

This effect is useful for making objects stand out against a cluttered back-
ground. Add with overflow has an additional benefit - the object can be re-
moved by subtracting (with underflow) the object image from the screen. 

7.9.2.3 Figure 7 - 9 d - Add and Subtract with Saturation 

In Figure 7-9 d, the original disk is on the left. A second disk is PixBlt'd into 
a region overlapping the original disk, using an add-with-saturate operation. 
Whenever the sum of two pixels exceeds the maximum intensity value, which 
is 15 for this example, the sum is replaced with 15. The bright region that 
occurs where the two disks intersect is produced when the corresponding 
pixels of the two disks are added in this manner. Subtract-with-saturate is the 
complementary operation; when the difference of the two pixel values is neg-
ative, the sum is replaced by the minimum intensity value, 0. 

The add-with-saturate operation shown in Figure 7-9 d approximates the ef-
fect of two light beams striking the same surface; the surface is brightest in the 
area in which the two beams overlap. 
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These operations can be used to achieve an effect similar to that of an airbrush 
in painting. Consider a display system that represents each pixel as 12 bits, 
and dedicates four bits each to represent the intensities of the three color 
components, red, green, and blue. This method permits the intensity of each 
component to be directly manipulated. With each pass of the simulated air-
brush over the same area of the screen, the color changes gradually toward the 
color of the paint in the airbrush. For example, assume that the paint is yellow 
(a mixture of red and green). Each time a pixel is touched by the airbrush, the 
intensity of the red and green components is increased by 1, and the intensity 
of the blue component is decreased by 1. With each sweep of the airbrush, 
the affected area of the screen turns more yellow until the red and green 
components reach the maximum intensity value (and are not allowed to over-
flow), and the blue component reaches 0 (and is not allowed to underflow). 

7.9.2.4 Figure 7 - 9 e - MAX and MIN Operations 

In Figure 7-9 e, the original disk is on the left. A second disk is PixBlt'd into 
the rectangular region to its right using the MAX operation. In the region in 
which the disks overlap, each pair of corresponding pixels from the two disks 
is compared and the greater value is selected. This produces a relatively 
smooth blending of the two disks. Unlike add with saturate, the MAX function 
does not generate a "hot spot" where two objects intersect. 

The visual effect achieved using the MAX operation is desirable in an appli-
cation, for instance, in which white antialiased lines are constructed on top of 
each other over a black background. MAX also smooths out places in which 
the lines are overlapped by antialiased text. MAX is successful in maintaining 
two visually distinct antialiased objects, while the add-with-saturate tends to 
run them together. 

MIN, which is complementary to MAX, can be used similarly to smooth the 
appearance of intersecting black antialiased lines and text on a white back-
ground. 

The MAX and MIN operations are particularly useful in color applications in 
which the number of bits per color gun is small (eight bits or less). Other 
operators could also be used to smooth the transition between the two over-
lapping antialiased objects in Figure 7-9 e, but any additional accuracy at-
tained by using a more complex smoothing function would probably be lost 
in truncating the result to the resolution of the integer used to represent the 
intensity at each point. 
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7.10 Window Checking 
The TMS34010's hardware window clipping confines graphics drawing op-
erations to a specified rectangular window in the XY address space. Other 
window checking modes cause an interrupt to be requested on a window hit 
or a window miss. 

Window checking affects only pixel writes performed by the following graph-
ics instructions: 

• PIXBLT 

• FILL 

• LINE 

• DRAV 

• PIXT 

Data writes by non-graphics instructions are not affected. 

A window is a rectangular region of display memory specified in terms of the 
XY coordinates of the pixels in its two extreme corners (minimum X and Y, and 
maximum X and Y). The corner pixels are considered to lie within the window. 
Window checking is available only in conjunction with XY addressing; it is not 
available with linear addressing. Specifically, the destination pixel address 
must be an XY address. 

One of four window checking modes is selected by the value loaded into the 
W field of the CONTROL register: 

W=0: Window checking disabled. No window checking is performed. 

W=1: Window hit detection. Request interrupt on attempt to write inside 
window. 

W=2: Window miss detection. Request interrupt on attempt to write outside 
window. 

W=3: Window clipping. Clip all pixel writes to window. 

When window checking is enabled (modes 1, 2 or 3), an attempt to write to 
a pixel outside the window causes the V (overflow) bit in the status register 
to be set to 1; a write (or attempt to write) to a pixel inside the window sets 
V to 0. When window checking is turned off (mode 0), the V bit is unaffected 
during pixel writes. 
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7.10.1 W=1 Mode - Window Hit Detection 

The W=1 mode detects attempts to write to pixels within the window. This 
form of window checking supports applications which permits objects on the 
screen to be picked by pointing to them with a cursor. In this mode, all pixel 
writes are inhibited, whether they address locations inside or outside the 
window. A window violation interrupt is requested on an attempt to write to 
a pixel inside the window. 

For the PIXBLT and FILL instructions, the V (overflow) bit is set to 1 if the 
destination array lies completely outside the window. No interrupt request is 
generated (the WVP bit in the INTPEND register is not affected) in this case. 
However, if any pixel in the destination array lies within the window, the V 
bit is set to 0 and a window violation interrupt is requested (the WVP bit is 
set to 1). If the interrupt is enabled, the saved PC points to the instruction that 
follows the PIXBLT or FILL that caused the interrupt. If the interrupt is disa-
bled, execution of the next instruction begins. 

While no pixel transfers occur during the PIXBLT and FILL instructions exe-
cuted in this mode, the specified destination array is clipped to lie within the 
window. In other words, the DADDR and DYDX registers are adjusted to be 
the starting address, width, and height of the reduced array that is the inter-
section of the two rectangles represented by the destination array and the 
window. This function can be adapted to determine the intersection of two 
arbitrary rectangles on the screen - a calculation that is often performed in 
windowed graphics systems. 

In the case of a DRAV or PIXT instruction, an attempt to write to a pixel out-
side the window causes the V bit to be set to 1. No interrupt request is gen-
erated (the WVP bit is not affected). An attempt to write to a pixel inside the 
window causes the V bit to be set to 0, and a window violation interrupt re-
quest is generated (the WVP bit is set to 1). 

At the end of a LINE instruction, the V bit is 0 if any destination pixel proc-
essed by the instruction lies within the window; otherwise, V is 1. Attempts 
to write to pixels outside the window do not cause interrupt requests to be 
generated (the WVP bit is not affected). An attempt to write to a pixel inside 
the window causes a window violation interrupt to be requested (the WVP 
bit is set to 1) and the LINE instruction aborts. If the interrupt is enabled, the 
PC saved during the interrupt points to the instruction that follows the LINE 
instruction. If the interrupt is disabled, execution of the next instruction be-
gins. 

The W=1 mode can be used to pick an object on the screen by means of the 
following simple algorithm. An object previously drawn on the screen is 
picked by moving the cursor to the object's position and selecting it. To de-
termine which object is pointed to, the software first sets the window to a 
small region surrounding the position of the cursor. The software next steps 
a second time through the same display list used to draw the current screen 
until one of the objects causes a window interrupt to occur. This should be 
the object pointed to by the cursor. If no object causes an interrupt, the pick 
window can be enlarged and the process repeated until the object is found. 
If two objects cause interrupts, the size of the pick window can be reduced 
until only one object causes an interrupt. 
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7.10.2 W=2 Mode - Window Miss Detection 

The W=2 mode permits a PIXBLT or FILL instruction to be aborted if any pixel 
in the destination array lies outside the window. The destination array is 
written only if the array lies entirely within the window, in which case the V 
(overflow) bit is set to 0, and no interrupt request is generated (the WVP bit 
is not affected). If any pixel in the destination array lies outside the window, 
the V bit is set to 1, and a window violation interrupt is requested (the WVP 
bit is set to 1). 

For the DRAV and PIXT instructions, the destination pixel is drawn only if it 
lies within the window. In this case, the V bit is set to 0, and no interrupt re-
quest is generated (the WVP bit is not affected). If the destination location 
lies outside the window, the pixel write is inhibited, the V bit is set to 1, and 
a window violation interrupt is requested (the WVP bit is set to 1). 

At the end of a LINE instruction, the V bit is 0 if the last destination pixel 
processed by the instruction lies within the window; otherwise, V is 1. At-
tempts to write to pixels inside the window do not cause interrupt requests to 
be generated (the WVP bit is not affected). An attempt to write to a pixel 
outside the window causes a window violation interrupt to be requested (the 
WVP bit is set to 1) and the instruction aborts. If the interrupt is enabled, the 
PC saved during the interrupt points to the instruction that follows the LINE 
instruction. If the interrupt is disabled, execution of the next instruction be-
gins. 

7.10.3 W=3 Mode - Window Clipping 

In the W=3 mode, only writes to pixels within the window are permitted; 
writes to pixels outside the window are inhibited. No interrupt request is 
generated for any case. 

For a PIXBLT or FILL instruction, only the portion of the destination array ly-
ing within the window is drawn. At the start of instruction execution, the 
specified destination array is automatically preclipped to lie within the window 
before the first pixel is transferred. Hence, no execution time is lost attempting 
to write destination pixels which lie outside the window. In the case of a 
PIXBLT, the source array is preclipped to fit the adjusted dimensions of the 
destination array before the transfer begins. 

During execution of a DRAV or PIXT instruction, a write to a pixel inside the 
window is permitted, and the V bit is set to 0. An attempted write to a pixel 
outside the window is inhibited, and the V bit is set to 1. 

For the LINE instruction, writes to pixels outside the window are inhibited at 
drawing time; no preclipping is performed. The value of the V bit at the end 
of a LINE instruction is determined by whether the last pixel calculated by the 
instruction fell inside (V=0) or outside (V=1) the window. 
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7.10.4 Specifying Window Limits 

The limits of the current window are specified in the WSTART (window start) 
and WEND (window end) registers. WSTART specifies the minimum XY co-
ordinates in the window, and WEND specifies the maximum XY coordinates. 

As Figure 7-10 shows, WSTART specifies the XY coordinates (Xstart ,Ystart) 
at the upper left corner of the window, and WEND specified the XY coordi-
nates (Xend,rend)  at the bottom right corner of the window. The origin is lo-
cated in its default position in the top left corner of the screen. 

Origin 
Display 
Memory 

A pixel with coordinates (XX) 
lies within the window if both 

X start 5 X s X end and v start s Y 5 Vend 

Figure 7-10. Specifying Window Limits 

Figure 7-10 shows that a pixel that has coordinates (X,Y) lies within the 
window if Xstart  < X 5_ Xen d and Ystart <Y 15- rend. If a pixel does not meet 
these conditions, it lies outside the window. 

When Xstart > Xend or Ystart 	rend, the window is empty; that is, it contains 
no pixels. Under these conditions, the window checking hardware detects all 
destination pixel addresses as lying outside the window. Note that the con-
ditions Xstart —  Xend and Ystart = Yen d together specify a window containing 
a single pixel. 

Window start and end coordinates must lie in the range (0,0) to 
(+32767,+32767). A window cannot contain pixels with negative X or Y 
coordinates. 

+y 
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7.10.5 Window Violation Interrupt 

A window violation (WV) interrupt is requested (the WVP bit in the INTPEND 
register is set to 1) when: 

• W=1 and an attempt is made to write to a pixel inside the window 

or 

• W=2 and an attempt is made to write to a pixel outside the window 

The interrupt occurs if it is enabled by the following conditions: 

• The WVE bit in the INTENB register is 1 

• The IE bit in the status register is 1 

Alternatively, if the WV interrupt is disabled (IE=O or WVE=O), the window 
violation can be detected by testing the value of either the V bit in the status 
register or the WVP bit following the operation. 

When a WV interrupt occurs, the registers that change during the LINE, 
PIXBLT and FILL instructions contain their intermediate values at the time the 
violation was detected. 

7.10.6 Line Clipping 

The TMS34010 supports two methods for clipping straight lines to the 
boundaries of a rectangular window: postclipping and preclipping. Postclip-
ping means that just before each pixel on the line is drawn, it is compared with 
the window limits. If it lies outside the window, the write is inhibited. In 
contrast, preclipping involves determining in advance of any drawing oper-
ations which pixels in the line lie within the window. The algorithm draws 
only these pixels, and makes no attempt to write to pixels outside the window. 
A preclipped line may take less time to draw since no calculations are per-
formed for pixels lying outside the window. In contrast, postclipping spends 
the same amount of time calculating the position of a pixel outside the win-
dow as it does calculating a pixel inside the window. 

When postclipping is used, special window comparison hardware compares 
the coordinates of the pixel being drawn against all four sides of the window 
at once. The W=3 window-checking mode is selected, and window checking 
is performed in parallel with execution of the LINE instruction, so no overhead 
is added to the time to draw a pixel. However, unless this form of clipping is 
used carefully, another type of overhead may become significant. For example, 
in a CAD (computer-aided design) environment where only a small portion 
of a system diagram is to be displayed at once, potentially a great deal of time 
could be spent performing calculations for points (or entire lines) lying off-
screen. 

Preclipping is generally faster than postclipping, depending on how likely a 
line is to lie outside the window. The first step in preclipping a series of lines 
is to identify those that lie either entirely inside or outside the window. This 
is accomplished by using an "outcode" technique similar to that of the Co-
hen-Sutherland algorithm. Those lines lying entirely outside are "trivially re-
jected" and consume no more processing time. Those lines lying entirely 
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within are drawn from one endpoint to the other with no clipping required. 
This still leaves a third category of lines that may cross a window boundary, 
and these require intersection calculations. However, this technique is pow-
erful for reducing the number of lines that require such calculations. While the 
calculation of outcodes could be performed in software, this would represent 
significant overhead for each line considered. The TMS34010 provides a more 
efficient implementation via its CPW (compare point to window) instruction, 
which compares a point to all four sides of the window at once. 

The outcode technique classifies a line according to where its endpoints fall 
in relation to the current clipping window. The area surrounding the window 
is partitioned into eight regions, as indicated in Figure 7-11. Each region is 
assigned a 4-bit code called an outcode. The outcode within the window is 
00002. When an endpoint of a line falls within a particular region, it is as-
signed the outcode for that region. If the two endpoints of a line both have 
outcodes 00002, the line lies entirely within the window. If the bitwise AND 
of the outcodes of the two endpoints yields a value other than 00002, the line 
lies entirely outside the window. Lines that fall into neither of these categories 
may or may not be partially visible within the window. 

Figure 7-11. Outcodes for Line Endpoints 

For those lines that require intersection calculations after the outcodes have 
been determined, midpoint subdivision is an efficient means of preclipping. 
The object again is to ensure that drawing calculations are performed only for 
pixels lying within the window. An example of the midpoint subdivision 
technique is illustrated in Figure 7-12. The line AB lies partially within the 
window. The first step is to determine the coordinates of the line's midpoint 
at C. These are calculated as follows: 
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Graphics Operations - Window Checking 

X = X MIN 
	

X = X MAX 
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Figure 7-12. Midpoint Subdivision Method 

Comparing the outcodes of B and C, segment BC lies entirely outside the 
window and can be trivially rejected. Segment AC still lies partially within the 
window and will be subdivided again. The coordinates of point D, the mid-
point of AC, are calculated as before. Point D is determined to lie within the 
window. The LINE instruction is now invoked two times, for segments DC 
and DA, with D selected as the starting point in each case. For each segment 
the W=2 window-checking mode is selected, but the window violation inter-
rupt is disabled. When each line crosses the window boundary, the win-
dow-checking hardware detects this and the LINE instruction aborts. In this 
way the LINE instruction performs drawing calculations only for portions of 
DA and DC lying within the window. 
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